
Exercises for Chapter 2

2.1 [On derivation of canonical distribution]

A textbook of statistical mechanics has the following derivation of the canonical distribution:

“The distribution function must not depends the properties of particular systems, but must

be universal. That is, the probability P (EI) (P (EII)) for the system I ( resp., II) to have

energy EI (resp., EII) and the probabilty P (E) for the compound system of I and II to have

energy E = EI + EII must have the same functional form. This must be so, as long as we

expect statistical mechanics holds universally. Therefore,

P (EI)P (EII) = P (EI + EII). (0.P.1)

For this equation to be valid, we can prove that P (E) must have the following functional

form:

P (E) = Ce−βE, (0.P.2)

where C is a constant.”

Needless to say, log P satisfies Cauchy’s equation, and furthermore, we may assume that P

is monotoneP , it is correct that (0.P.2) is the general solution of (0.P.1). However, is this

argument correct in any sense?

Solution

Everyone knows that (0.P.1) is incorrect. Although it is said that (0.P.2) is the correct

solution, as is easily seen by substituting this into (0.P.1), C2 = C is requires. That is,

C = 1. it is assumed that (0.P.1) is correct for any partition of E into two positive numbers,

but it is obviously false. Then, why is an apparently plausible answer obtained? As can be

seen from the correct answer P = e−β(E−A), this is because a similar equation as (0.P.1):

PI(EI)PII(EII) = PI+II(EI + EII). (0.P.3)

holds for the most probable partition of energy. Of course, the functional equation (0.P.3)

does not give a meaningful solution without adding some conditions. For example, in terms

of a commoon function φ and system specific constant C, we could require that PI(E) =

CIφ(E). However, such an assumption does not have any compelling reason unless one know

the correct answer.

2.2 [Elementary problem about spin system]

Due to the ligand field the degeneracy of the d-orbitals of the chromium ion Cr3+ is lifted,

and the spin Hamiltonian has the following form

H = D(S2
z − S(S + 1)/2), (0.P.4)

where D > 0 is a constant with S = 3/2 (the cation is in the term 4F3/2).

(0) Why can you apply statistical mechanics to this ‘single’ ion?

(1) Compute the occupation probability of each energy level at temperature T (you may use

1



the standard notation β = 1/kBT ).

(2) Calculate the entropy.

(3) At high temperatures approximately we have C = kB(T0/T )2 with T0 = 0.18K. Determine

D in K.

Solution

(0) Statistical mechanics exploits the fact that any macroscopic system may be considered

as a set of numerous statistically independent collection of subsystems. That is, if there is

statistical independence and additivity, we may apply the statistical mechanics framework

to the collection.

(1) There are 4 states but there are only two energy levels with E = 3D/8 and −13D/8.

Therefore, Sz = ±3/2 is with p = 1/2(1 + e2βD) and Sz = ±1/2 is with p = 1/2(1 + e−2βD).

(2) The easiest method is to use the Shannon formula:1

S = −2kB

[
1

2(1 + x)
log

1

2(1 + x)
+

x

2(1 + x)
log

x

2(1 + x)

]
= kB

{
log[2(1 + x)] − x

1 + x
log x

}
,

(0.P.5)

where x = e2βD.

(3) Setting x as above, we have

C = T
dS

dT
= −(2Dβ)

dS

d2Dβ
= −2Dβ

dx

d2Dβ

dS

dx
= −2Dβx

dS

dx
= kB(2Dβ)2 x

(1 + x)2
. (0.P.6)

Therefore,

C = kB(D/kB)2/T 2. (0.P.7)

Therefore, D/kB = T0. That is, D is 0.18K.

2.3. [Vapor pressure of silicon]

The chemical potential µs of the atom in a solid is essentially given by the binding energy

∆ of atom in the solid: µs = −∆. Obtain the formula for the equilibrium vapor pressure of

solid, and estimate the vapor pressure at room temperature of silicon for which ∆ = 3eV.

Solution

This is a typical Physics 100 level question. We may assume that the gas is ideal, so its

chemical potential is given by µ = kBT log(n/nQ). The chemical potential of the atom in

the solid is −∆. Therefore the equilibrium condition (the identity of chemical potentials in

two phases) gives

n = nQe−β∆ ⇒ p = kBTn (0.P.8)

We know m̂ = 28

nQ = 283/2 × 1030 ≅ 1.5 × 1032 (0.P.9)

1There are several ways to compute entropy. If you know probability explicitly, the Shannon formula may
be useful. In this case, you must not forget that the sum is over the elementary events. The microcanonical
way is probably the least useful in practice. When you compute S from the canonical ensemble, use S =
(E − A)/T with E being calculated by the Gibbs-Helmholtz relation ∂(A/T )/∂(1/T ) = −∂ log Z/∂β = E.
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Therefore,

p = kBTnQe−β∆ = 1.38 × 10−23 × 300 × 1.5 × 1032e−3/0.026, (0.P.10)

= 4.8 × 10−39(Pa). (0.P.11)

2.4 [specific heat]

Suppose that a (3D) classical mechanical system has the following Hamiltonian

H =
N∑

i=1

ak|pk + ck|s (0.P.12)

where ak (k = 1, · · · , N) and s are positive constants ck are constant 3D vectors. Without

any explicit calculation compute the specific heat.

Solution

The partition function Z reads

Z =
V N

N !h3N

∏
k

∫
d3pe−βakp+[c

k
|s . (0.P.13)

Frist of all, ck may be ignored by shifting the integration ranges. You could use the scaled

variable λ defined by βakp
s = λs for each integral. However, I recommend you to use

Dimensional Analysis.

My solution begins here. βakp
s is dimensionless, so

[p] = [βak]
−1/s. (0.P.14)

On the other hand,

[Zh3N/V N ] = [p]3N ∝ [β−3N/s] = (kBT )3N/s. (0.P.15)

Therefore, even the internal energy (the Gibbs-Helmholtz relation):

E =
∂βA

∂β
= −∂log β−3N/s

∂β
(0.P.16)

is independent of ak, so is C.

From the fact that ak is factored out, without any calculation you may conclude that

C is independent of ak.

Eq.(0.P.16) is correct, so you can proceed with this result, but let us proceed in a more

conventional way (although I do not recommend this approach). (0.P.13) reads

Z =
V N

N !h3N

∏
k

(βak)
−3/s

∫
4πλ2e−λs

dλ ∝
∏
k

(βak)
−3/s. (0.P.17)

The Gibbs-Helmholtz relation immediately tells us that E is not dependent on ak. E =

3NkBT/s and C = 3NkB/s.
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2.5 [Permanent dipole]

. The potential energy of a permanent electric dipole p is U = −p · E in the electric field

E. Obtain the electric susceptibility of the system.

Solution

We must obtain the expectation value of the polarization P per unit volume of the gas.

In this case we ignore the interaction among gas particles, the partition function becomes

a product of one particle partition functions. Furthermore, the translational motion of the

particles has nothing to do with the polarization we have only to compute the canonical

partition function for a single dipole:

z(E) =
∫

de eβpe·E =
∫

de eβpE cos θ, (0.P.18)

where e is the directional unit vector of the dipole moment with respect to the electric field

direction, E = |E|, and the angle between E and p (or e) is θ. The integration is on the

unit sphere and can be computed as

z(E) = 2π
∫

dθ sin θ eβpE cos θ = 2π
∫ 1

−1
dx eβpEx =

4π

βpE
sinh βpE. (0.P.19)

From the structure of z we can immediately see

〈p〉 = kBT
∂

∂E
log z(E) = pL(βpE)

E

E
(0.P.20)

where L(x) is the Langevin function

L(x) = coth x − 1

x
. (0.P.21)

〈p〉 times the number of particle per volume n (= the number density) is the polarization

P = n〈p〉.
The correspondence to thermodynamics is as follows. −kBTN log z(E) is, as E is

written explicitly, not the Helmholtz free energy A(P ), but its Legendre transformation

Φ(E) = A(P ) − P · E. That is,

dA = −SdT + E · dP , dΦ = −SdT − P · dE. (0.P.22)

Therefore,

P = − ∂

∂E
Φ(E) = kBTN

∂

∂E
log z(E), (0.P.23)

which is equivalent to (including the correct sign) (0.P.20).

To obtain the susceptibility (dielectric constant), we must differentiate P with respect

to E. It is a diagonal matrix proportional to the unit 3 × 3 matrix I as

ϵ = βp2NL′(βpN)I. (0.P.24)
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2.6 [Internal degree of freedom]

There is a classical ideal gas of volume V consisting of N molecules whose internal degrees

of freedom are expressed by a single harmonic oscillator with a frequency ν. The frequency

depends on the volume of the system as

dlog ν

dlog V
= γ. (0.P.25)

(1) Obtain the pressure of the system.

(2) Obtain the constant pressure specific heat CP .

Solution

(1) The partition function is given by

Z = Z0ZI , (0.P.26)

where Z0 is the canonical partition function for the classical ideal gas, and ZI is the partition

function for the internal harmonic degree of freedom. You may use the already computed

results:

Z0 =
V N

N !

(
2mkBT

h2

)3N/2

(0.P.27)

and

ZI =

(
1

2 sinh βhν/2

)N

. (0.P.28)

Therefore

P = − ∂A

∂V

∣∣∣∣∣
T

=
NkBT

V
+ PI , (0.P.29)

where

P1 =
∂kBT log ZI

∂V

∣∣∣∣∣
T

= −NkBT
cosh βhν/2

sinh βhν/2

βh

2

∂ν

∂V
= −Nhν

2V
γ coth

βhν

2
. (0.P.30)

Notice that if we write the total energy of the internal degrees of freedom

U =
Nhν

2
coth

βhν

2
=

hν

2
+

hν

eβhν − 1
(0.P.31)

then

PI = −γ
U

V
. (0.P.32)

That is,

P =
NkBT

V
− γ

U

V
. (0.P.33)

(2) The best way is to use enthalpy H = E + PV :

CP =
∂H

∂T

∣∣∣∣∣
P

. (0.P.34)
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Again, you may use the results you know (you may assume there is only translational and

oscillatory degrees of freedom): the internal energy is

E =
3

2
NkBT +

Nhν

2
coth

βhν

2
. (0.P.35)

Therefore,

H =
5

2
NkBT + (1 − γ)U. (0.P.36)

Use (0.P.31).

CP =
5

2
NkB + (1 − γ)NkB

(
βhν

eβhν − 1

)2

eβhν . (0.P.37)

2.7 [Application of equipartition of energy]

The internal motion of some ring puckering molecules (e.g., cyclobutanone) can be described

by the following Hamiltonian:

H =
p2

2m
+

a

4
x4, (0.P.38)

where m is the effective mass of the oscillator and a is a positive constant. Obtain the

constant volume specific heat of this gas around the room temperature.

Solution

We use the equipartition of energy:

2

〈
p2

2m

〉
= kBT. (0.P.39)

and

4
〈
ax4

〉
= kBT. (0.P.40)

Therefore,

〈H〉 =
3

4
kBT. (0.P.41)

We must pay attention to the translational and rotational degrees of freedom. This gives

3kBT . Therefore,

CV =
15

4
kB (0.P.42)

per molecule.

2.8. [Equipartition of energy for relativistic gas]

For a classical relativistic ideal gas show that the counterpart of the law of equipartition of

kinetic energy reads 〈
1

2

mv2
x√

1 − v2/c2

〉
=

1

2
kBT. (0.P.43)

Solution
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The total energy of the particle ϵ is obtained from the Lorentz invariance p2−ϵ2/c2 = −m2c2

as

ϵ = c
√

p2 + m2c2. (0.P.44)

We know the general relation to demonstrate the equipartition:〈
px

∂ϵ

∂px

〉
= 〈pxvx〉 = kBT. (0.P.45)

Note that

pi =
mvi√

1 − (v/c)2
, (0.P.46)

This concludes the demonstration.

2.9 [An equality about canonical ensemble]

Let Φ be the total potential energy of classical system. Show

〈∆Φ〉 = β
〈
(∇Φ)2

〉
. (0.P.47)

here the Laplacian is understood as an operator in the 3N-space.

Solution

Let H = K + Φ, where K is the total kinetic energy.

〈∆Φ〉 =
1

Z

∫
dΓ (div gradΦ)e−β(K+Φ),

=
1

Z

∫
dΓ div

(
e−βH∇Φ

)
− 1

Z

∫
dΓ∇Φ · ∇e−βH ,

= − 1

Z

∫
dΓ∇Φ · ∇e−βH = β〈(∇Φ)2〉.

The contribution from the boundary may be ignored thanks to the Boltzmann factor.

2.10 [Density operator for free particles: perhaps an elementary QM review]

The canonical density operator is given by

ρ =
1

Z
e−βH , (0.P.48)

where H is the system Hamiltonian and Z is the canonical partition function. Let us consider

a single particle confined in a 3D cube of edge length L. We wish to compute the position

representation of the density operator 〈x|ρ|x′〉.
Let U(β) = e−βH and H = p2/2m. There are two ways to compute 〈x|U(β)|x′〉 (x and

x′ are 3D position vectors), and bra and kets are normalized

A.

(1) Show that
∂

∂β
〈x|U(β)|x′〉 =

h̄2

2m
∆x〈x|U(β)|x′〉, (0.P.49)
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where ∆x is the Laplacian with respect to the coordinates x.

(2) What is the initial condition (i.e., 〈x|U(0)|x〉)?

(3) Solve the equation in (1) with the correct initial condition. You may use a simple

boundary condition assuming the volume is very large (and temperature is not too low).

(4) Compute Z, using the result in (3). You may use (3) to study the finite volume system

as long as the temperature is not too low.

B.

We can directly compute 〈x|U(β)|x′〉 with the aid of the momentum representation of U(β):

〈p|U(β)|p′〉 = e−βp2/2mδ(p − p′).

(5) We use

〈x|U(β)|x′〉 =
∫

d3p d3p′〈x|p〉〈p|U(β)|p′〉〈p′|x′〉.

What is 〈x|p〉? You may assume the infinite volume normalization (i.e., the δ-function

normalization: 〈p|p′〉 = δ(p − p′)).

(6) Perform the integral in (5).

Solution

A(1) We immediately obtain

− d

dβ
U = HU, (0.P.50)

so its position representation is obtained as given. Notice that

〈x|H|x′〉 = − h̄2

2m
∆xδ(x − x′). (0.P.51)

(2) U(0) = 1, so 〈x|U(0)|x〉 = δ(x− x′) (if you use the continuum approximation) or = δx,x′

(if you honestly treat the finiteness of the system).

(3) This is a diffusion equation, so the solution may be obtained by looking up any standard

textbook; it is the Green’s function with the vanishing boundary condition at infinity

〈x|U(β)|x′〉 =

(
mkBT

2πh̄2

)3/2

e−mkBT (x−x′)2/2h̄2

.

This clearly exhibit that quantum effect becomes important at low temperatures (as can

easily be guessed from the thermal wave length proportional to 1/
√

T ).

(4) Z = TrU(β), so

Z =
∫

d3x〈x|U(β)|x〉 =
∫

d3x

(
mkBT

2πh̄2

)3/2

= V

(
mkBT

2πh̄2

)3/2

.
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This is consistent with (1.7.3).

(5) |p〉 is an eigenket of H belonging to the eigenvalue p2/2m: H|p〉 = (p2/2m)|p〉. Therefore,

− h̄2

2m
∆x〈x|p〉 =

p2

2m
〈x|p〉.

The boundary condition is a periodic boundary condition. The equation is essentially the

harmonic oscillator equation, so the solution must be proportional to eipx/h̄. We need a

normalization condition: ∫
d3xei(p−p′)x/h̄ = h3δ(p − p′),

so

〈x|p〉 =
1

h3/2
eipx/h̄.

(6)

〈x|U(β)|x′〉 =
∫

d3p〈x|p〉e−βp2/2m〈p|x′〉 =
∫

d3p e−βp2/2m+i(x−x′)p/h̄.

This is a simple Gaussian integral, so indeed the answer agrees with (3) above.

2.11 [Density matrix for a spin system]

Let ρ be the density operator of a single 1/2 quantum spin system whose Hamiltonian is

given by H = −γσ · B, where σ is (σx, σy, σz) in terms of the Pauli spin operators.

(1) Obtain the matrix representation of ρ that diagonalizes σz.

(2) Find the average of σy.

(3) Obtain the matrix representation of ρ that diagonalizes σx.

Solution

(1) We take the direction of B to be the z axis.

ρ =
1

C

(
eβγB 0

0 e−βγB

)
, (0.P.52)

where C is the normalization constant: the trace of the matrix in the above formula, so

C = 2 cosh βγH.

If you wish to do the original problem we need the following calculation. Notice that

(n · σ)2 = I, where n is a unit vector.

eγB·σ =
∞∑

n=0

1

(2n)!
(γB)2n+

∞∑
n=0

1

(2n + 1)!
(γB)2n+1B

B
·σ = cosh γB+

B

B
·σ sinh γB. (0.P.53)

(2)

〈σy〉 = Trσyρ = Tr

(
0 ieβγB

−ie−βγB 0

)
= 0. (0.P.54)

This should be obvious without any calculation.
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(3) With the basis that diagonalizes σz we have

σx =

(
0 1
1 0

)
. (0.P.55)

Therefore

σx

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
=

(
1 0
0 −1

) (
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
. (0.P.56)

That is, the following orthogonal (actually, unitary as well) matrix:

U =

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
(0.P.57)

diagonalizes σx as U∗σxU . Therefore,

U∗
(

0 ieβγB

−ie−βγB 0

)
U =

1

2

(
1 − tanh βγB

− tanh βγB 1

)
. (0.P.58)

2.12 [Legendre vs Laplace]

Consider an ideal gas consisting of N atoms under constant pressure p and temperature T .

(1) What is the most convenient partition function and the thermodynamic potential? Com-

pute the partition function. You may use the ideal gas canonical partition function.

(2) Obtain the enthalpy of the system.

Solution

(1) We should use the pressure ensemble:

Q =
∫

dV Z(T, V )e−βpV .

This is related naturally to the Gibbs free energy: A + pV = G = −kBT log Q. (Since

N ≫ 1, you need not worry about ±1 in N .)

Q =
∫ ∞

0
dV

1

N !

(
2πmkBT

h2

)3N/2

V Ne−βpV =

(
2πmkBT

h2

)3N/2

(βp)−N .

This gives

G = −NkBT log

(
2πmkBT

h2

)3/2

+ NkBT log
p

kBT
,

which is

G = A − kBT log N ! + NkBT log
pV

kBT
= A + NkBT = A + pV.

Consistent!

(2) We can use an analogue of the Gibbs-Helmholtz relation

H =
∂G/T

∂1/T
= −∂log Q

∂β
=

5

2
NkBT.
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Thermodynamically, H = E + pV = E + NkBT . Consistent. This is of course consistent

with the constant pressure specific heat.

2.13 [Constant magnetic field ensemble]

The following situation is the same as 1.18: N lattice sites have spins of S = 1 (in the term
3P ), and the spin Hamiltonian has the following form:

H = DS2
z . (0.P.59)

(1) Consider this as the constant magnetic field (B) ensemble (also constant T is assumed),

and construct the corresponding generalized canonical partition function. The magnetization

is given by M = µ
∑

Szi.

(2) Compute the magnetization as a function of the magnetic field and temperature.

Solution

(1) Since

dS =
1

T
dE +

p

T
dV − H

T
dM + · · · , (0.P.60)

the generalized partition function reads

ZH = (1 + e−βD+βµH + e−βD−βµH)N . (0.P.61)

(2) The resulting generalized Massieu function

ψ = kB log ZH (0.P.62)

satisfies

dψ = −Ed
(

1

T

)
+ Md

(
H

T

)
+ · · · . (0.P.63)

Therefore,

M =
∂ψ

∂(H/T )
= N

µ(e−βD+βµH − e−βD−βµH)

1 + e−βD+βµH + e−βD−βµH
= N

sinh βµH

e−βD/2 + cosh βµH
. (0.P.64)

2.14 [Absorption of mixed ideal gas, or convenient partition function]

There is a gas mixture consisting of two distinct atomic species A and B. The mixture is an

ideal gas and the partial pressures of X is pX(X = A or B). The gas is in equilibrium with

an adsorbing metal surface on which there are adsorption sites. Atom X adsorbed at the

site is with energy −EX on the average relative to the one in the gas phase, where X = A

or B. Each surface site can accommodate at most one atom. Assume that [Hint: I assume

that you know how to calculate the chemical potentials of the atoms, knowing the molecular

weights.]

(1) Write down the ‘partition function’ (use the most convenient one) for the single site.

(2) Obtain the average surface concentration nX (X = A or B) of atoms A and B.
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(3) Under a given (partial) pressures of A and B nE : nA : nB = 1 : 1 : 18　 (here E means

empty). Find the maximum concentration nA obtainable with changing only the partial

pressure of B. (UIUC Qual F95).

Solution

(1) Each adsorption site has three states, empty, occupied by A and occupied by B. There-

fore, for a single site the grand partition function function reads

Ξ = 1 + eβ(EA+µA) + eβ(EB+µB), (0.P.65)

where µX is the chemical potential of X that can be written as

µX = kBT log(βpX/nQX) = kBT log(pX/pQX) (0.P.66)

Here, nQX is the ‘quantum density’ depending on T and the mass (see 1.4.5), and pQX =

nQXkBT may be called the ‘quantum pressure.’ Therefore,

Ξ = 1 + pAeβEA/pQA + pBeβEB/pQB. (0.P.67)

I do not require you to compute nQ that is a matter of simple calculation as in 1.4.5.

(2) As seen in 6-2 we may write

d(kBT log Ξ) = SdT + pdV + NAdµA + NBdµB + · · · , (0.P.68)

so if we apply this to each site NX may be interpreted as nX :

nA =
∂(kBT log Ξ)

∂µA

=
pAeβEA/pQA

1 + pAeβEA/pQA + pBeβEB/pQB

, (0.P.69)

nB =
pBeβEB/pQB

1 + pAeβEA/pQA + pBeβEB/pQB

, (0.P.70)

nE =
1

1 + pAeβEA/pQA + pBeβEB/pQB

, . (0.P.71)

(3) It should be intuitively obvious that A absorption is facilitated if there is no competition.

Hence, the maximum concentration should be accomplished by pB = 0. Now, nA = nE for a

given pB, so we must conclude that pAeβEA/pQA = 1. Therefore, the max conc must be 0.5.

2.15 [Absorption on catalytic surface]

There are N absorption centers on the catalyst surface exposed to a gas (ideal gas) of a certain

chemical. Each absorption center can accommodate at most two particles. The partition

function for the single particle absorption state is a1 and the two particle absorption state

is a2.

(1) Write down the single site (grand) partition function.

(2) Let a1 = 0 (i.e., absorption is possible only when a pair is formed). The average number of

particles absorbed on the catalytic surface is n0. Find the chemical potential of the particles.

(3) Now, the pressure of the chemical is doubled (with the temperature kept constant) and
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the average number of particles absorbed on the catalytic surface is n1. Find n1 in terms of

N and n0. a1 is still assumed to be zero.

(4) If a1 > 0, does the number of absorbed molecules increase from n0 in (2) (i.e., the a1 = 0

case)? Demonstrate your answer and give a brief physical explanation.

Solution

(1)

Ξsingle = 1 + a1e
βµ + a2e

2βµ. (0.P.72)

(2) The average particle numbers in the system (= the catalytic surface; notice that the gas

phase is treated as a chemical reservoir) is obtained by ∂ log Ξ/∂(βµ) (Ξ = ΞN
single):

n0 = N
2a2x

2

1 + a2x2
, (0.P.73)

where x = eβµ (called fugacity). Therefore, we have two possibilities, but x cannot be

negative, since βµ ∈ R:

x =

√√√√ n0/N

(2 − n0/N)a2

. (0.P.74)

Therefore,

µ = kBT log

√√√√ n0/N

(2 − n0/N)a2

. (0.P.75)

(3) If the pressure is doubled, the fugacity doubles. Therefore, (0.P.74) tells us that

2

√√√√ n0/N

(2 − n0/N)a2

=

√√√√ n1/N

(2 − n1/N)a2

. (0.P.76)

Solving this for n1, we get

n1 =
8n0

2 + 3n0/N
. (0.P.77)

(4) Equation (0.P.73) now reads

n = N
a1x + 2a2x

2

1 + a1x + a2x2
. (0.P.78)

This may be written as

n = N

(
1 +

a2x
2 − 1

1 + a1x + a2x2

)
. (0.P.79)

a1x > 0 implies that if a2x
2 > 1 (i.e., n/N > 1), then increasing a1 (that is, favoring

monomers) decreases the number of the absorbed molecules; otherwise, opposite.

Physically (or intuitively), this should be natural, because if monomers are favored when

dimers are also sufficiently favored, they compete the sites. Thus, the double occupancy frac-

tion decreases, so does the total number of absorbed molecules.
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2.16 [Gas under a weight]

Suppose there is a vertical cylindrical container of cross section s whose top wall is a movable

piston of cross section s with mass M . The piston is assumed to move only in the vertical

direction (z-direction) and feels gravity. The container contains N (≫ 1) classical noninter-

acting particles with mass m.

(1) Write down the Hamiltonian of the gas + piston system (write the piston vertical mo-

mentum as pM).

(2) Obtain the pressure P of the gas, and write the Hamiltonian in terms of P and the

volume of the gas V = sz, where z is the position of the piston from the bottom of the

container.

(3) Now, the mechanical variables are the phase variables of the gas system and the piston

momentum pM and z = V/s. Compute the canonical partition function of the whole system.

(4) You should have realized that the calculation in (3), apart from the unimportant con-

tribution in the thermodynamic limit of the piston momentum, is the calculation of the

pressure ensemble. [That is, the heavy piston acts as a constant pressure device.] Obtain

the equation of state of the gas in the cylinder (a trivial question).

Solution

(1)

H =
N∑

i=1

pi
2

2m
+

p2
M

2M
+ Mgz. (0.P.80)

(2) From the force balance, we have

Ps = Mg ⇒ PV = Mgz. (0.P.81)

Therefore, (0.P.80) can be rewritten as

H =
N∑

i=1

pi
2

2m
+

p2
M

2M
+ PV. (0.P.82)

(3)

Z =
1

N !h3N+1

∫
dNpdNqdpMdz e−βH , (0.P.83)

=
1

N !

(
2πmkBT

h2

)3N/2 (
2πMkBT

h2

)1/2 ∫
V Ne−βPV dV

s
(0.P.84)

=

(
2πmkBT

h2

)3N/2 (
2πMkBT

h2

)1/2

(βP )−N . (0.P.85)

Notice that this is almost the pressure ensemble for the ideal gas.

(4) We know the above Z is proportional to the pressure ensemble partition function Q:

Z = Q

(
2πMkBT

h2

)1/2

, (0.P.86)
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where

Q =

(
2πmkBT

h2

)3N/2

(βP )−N . (0.P.87)

We know from the Laplace-Legendre correspondence that G = −kBT log Q:

G = −NkBT log

(
2πmkBT

h2

)3/2

+ NkBT log
P

kBT
, (0.P.88)

dG = −SdT + V dP , so

V =
∂G

∂P

∣∣∣∣∣
T

=
NkBT

P
. (0.P.89)

This is the equation of state as expected. The enthalpy of the gas can be obtained by the

Gibbs-Helmholtz relation

H =
∂(G/T )

∂(1/T )

∣∣∣∣∣
P

=
5

2
NkBT. (0.P.90)

2.17 [Ideal gas with the aid of grand canonical ensemble]

Let us study the classical ideal gas with the aid of the grand canonical ensemble. Let µ be

the chemical potential.

(1) Compute the grand canonical partition function for a monatomic ideal gas. Assume that

the mass of the atom is m.

(2) Find the internal energy and the pressure as a function of chemical potential µ.

(3) Suppose the expectation value of the number of particles is N . How is the chimical

potentialdetermined?

(4) Are the results obtained above (especially the results of (2)) consistent with what you

already know?

Solution

(1) By definition

Ξ =
∞∑

N=0

1

N !

(
2πmkBT

h2

)3N/2

V NebµN = exp

(
2πmkBT

h2

)3/2

V ebµ

 (0.P.91)

(2) From this we get

P =
kBT

V

(
2πmkBT

h2

)3/2

V eβµ. (0.P.92)

Since

d(PV/T ) = −Ed(1/T ) + (P/T )dV + Nd(µ/T ), (0.P.93)

E = T 2 ∂kB log Ξ

∂T

∣∣∣∣∣
µ/T,V

=
3

2
kBT

(
2πmkBT

h2

)3/2

V eβµ. (0.P.94)
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Noice that this is equal to 3PV/2.

(3) Since

N =
1

kB

∂

∂βµ

PV

T
=

∂

∂βµ
log Ξ =

(
2πmkBT

h2

)3/2

V eβµ, (0.P.95)

we obtain

µ = kBT log
N

V

(
2πmkBT

h2

)−3/2

. (0.P.96)

The result agrees with the result obtained in the text. If n ≪ nQ (i.e., the classical case

without overlapping of de Broglie wave packets), µ deviates verymuch to the negative side

(µ ≪ 0).

(4) Thus, as has already been stated at various places, the results of the grand canonical

ensemble completely reproduces the properties of the callsic ideal gas.．

2.18 [To obtain the microcanonical partition function with the aid of Laplace inverse trans-

formation]

Starting from

Z =
V N

N !

(
2πmkBT

h2

)3N/2

, (0.P.97)

obtain the microcanonical partition fucntion W (E) (with the aid of Laplace inverse trans-

formation)．
Solution

W (E) =
1

2πi

∫ β∗+i∞

β∗−9∞
Z(β)eβEdβ. (0.P.98)

If you can demonstrate the following formula, you may use it:

1

2πi

∫ s′+i∞

s′−i∞

esx

xk+1
ds =

xk

Γ(k + 1)
. (0.P.99)

If k is an integer, this is almost self-evident witt the aid of Goursat’s theorem, but in our

case k need not be an integer.

2.19 [Equivalence of canonical and grand canonical ensembles]

Let us check the equivalence of grand canonical and canonical ensembles. That is, if we

compute thermodynamic quantities in the thermodynamic limit, both give the same answers.

Even experimentalists should look at this proof at least once in their lives.

The grand partition function Ξ(T, µ) and canonical partition function Z(T,N) (the

ground state energy is taken to be the origin of energy) are related as

Ξ(T, µ) =
∞∑

N=0

Z(T.N)eβµN .

Let us assume that the system consists of N (which is variable) particles in a box of volume

V and the total interaction potential Φ among particles is bounded from below by a number
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proportional to the number of particles N in the system: Φ ≥ −NB, where B is a (positive)

constant. (The system Hamiltonian generally has the form of H = K + Φ, where K is the

kinetic energy.)

Through answering the following almost trivial questions, we can demonstrate the en-

semble equivalence (rigorously).

(1) Show that there is a constant a such that

Z(T,N) ≤
(

aV

N

)N

. (0.P.100)

Actually, show (classically)

Z(T,N) ≤ Z0(T,N)eβNB,

where Z0 is the canonical partition function for the ideal gas (e.g., (1.7.3)). This is just

eq.(0.P.100) above

(2) Show that the infinite sum defining the grand partition function actually converges. The

reader may use eq.(0.P.100) and N ! ∼ (N/e)N freely.

(3) Choose N0 so that
∞∑

N=N0

Z(T,N)eβµN < 1.

Show that this N0 may be chosen to be proportional to V (that is, N0 is at most extensive).

(4) Show the following almost trivial bounds:

max
N

Z(T,N)eβµN ≤ Ξ(T, µ) ≤ (N0 + 1) max
N

Z(T,N)eβµN .

(5) We are almost done, but to be explicit, show that PV/NkBT obtained thermodynamically

from the canonical partition function and that directly obtained from the grand partition

function agree.

Solution

(1) The canonical partition function reads

Z(T,N) =
1

N !

∫
dΓe−β(K+Φ) ≤ 1

N !

∫
dΓe−βKeβBN = Z0(T,N)eβNB, (0.P.101)

where Z0 is the canonical partition function of the ideal gas. We know the kinetic part may

be factorized into the individual particle contributions, and N ! ∼ (N/e)N , so there must be

a satisfying the inequality.

Remark. The estimate is also correct quantum mechanically, so our proof being checked

here is quite general.

(2) The grand partition function is a positive term series, and each term is bounded by the

estimate in (1), so

Ξ(T, µ) =
∞∑

N=0

Z(T.N)eβµN ≤
∞∑

N=0

(
aV

N

)N

eβµN =
∞∑

N=0

(
aV eβµ

N

)N

.
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That is, with the aid of Stirling’s formula,

Ξ(T, µ) ≤
∞∑

N=0

1

N !
(aV eβµ−1)N = exp

(
aV eβµ−1

)
.

The grand canonical partition function is a sum of positive terms, and bounded from above,

so it must converge to a positive number.

For many realistic systems the interaction potentials have sufficiently hard repulsive

cores, so the convergence is much quicker.

(3) This is the tail estimation to majorize it. Any crude choice will do, so we first ‘overesti-

mate’ the sum beyond N0 as

∞∑
N=N0

Z(T,N)eβµN ≤
∞∑

N=N0

1

N !
(aV eβµ−1)N ≅

∞∑
N=N0

(
aV eβµ

N

)N

(0.P.102)

Here, Stirling’s formula has been used. For example, if we assume

aV eβµ

N0

< 0.1, (0.P.103)

then ∞∑
N=N0

Z(T,N)eβµN <
∞∑

N=N0

0.1N . (0.P.104)

The sum on the RHS is obviously bounded by 0.2 (by 1/9, at worst N0 = 1). Thus, the

choice (0.P.103) is enough. Such N0 can clearly be chosen proportional to V .

(4) The grand partition function is a sum of positive terms, so it must be larger than any

one term, especially larger than the largest term, in it:

max
N

Z(T,N)eβµN ≤ Ξ(T, µ). (0.P.105)

Notice that the largest term cannot be less than 1, because the N = 0 term is never smaller

than 1.2 To obtain the upper bound Ξ is divided into the sum up to N0 −1 and that beyond

N0 − 1:

Ξ(T, µ) =
N0−1∑
N=0

Z(T,N)eβµN +
∞∑

N=N0

Z(T,N)eβµN . (0.P.106)

The second term on the right hand side is bounded by 1, which is not larger than the

maximum term in the sum, so it is bounded by maxN Z(T,N)eβµN . Therefore,

Ξ(T, µ) ≤
N0−1∑
N=0

Z(T,N)eβµN + max
N

Z(T,N)eβµN . (0.P.107)

2Notice that Z(T, 0) ≥ 1: recall

Z(T,N) =
∑

W (E,N)E−βE ,

and N = 0 term is of course included, which is 1. This means max Z(T,N)eβµN ≥ 1.
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The sum in the above inequality must be less than the number of terms × the largest term:

N0−1∑
N=0

Z(T,N)eβµN ≤ N0 max
N

Z(T,N)eβµN . (0.P.108)

Therefore, we have

Ξ(T, µ) ≤ (N0 + 1) max
N

Z(T,N)eβµN . (0.P.109)

Combining this with (0.P.105) we get the desired result.

(5) The grand canonical ensemble asserts

PV

NkBT
=

1

N
log Ξ(T, µ).

From the above inequality

1

N
log

(
max

N
Z(T,N)eβµN

)
≤ PV

NkBT
≤ 1

N
log

(
max

N
Z(T,N)eβµN

)
+

1

N
log(N0 + 1).

Notice that
1

N
log max

N
Z(T,N)eβµN =

1

N
max

N
{−βA + βµN}

is a Legendre transformation of A (recall dA = −SdT − PdV + µdN or A = −PV + µN).

Therefore, minN{A − µN} = −PV . This is the PV obtained thermodynamically with the

aid of the canonical ensemble results. That is,(
PV

NkBT

)
th

≤ PV

NkBT
≤

(
PV

NkBT

)
th

+
1

N
log(N0 + 1).

log(N0 + 1) is bounded by a number proportional to log V as demonstrated in (3), so in the

N → ∞ limit the rightmost term behaves at worst as (log N)/N , and may be ignored. There-

fore, the pressure obtained thermodynamically from the Helmholtz free energy (obtained by

the canonical ensemble) and the pressure directly obtained statistical mechanically with the

aid of the grand canonical ensemble agree:(
PV

NkBT

)
th

=
PV

NkBT
.

2.20 [Legendre transformation in convex analysis]

(1) We know that −S is a convex function of internal energy E. Using the general property

of the Legendre transformation, show that Helmholtz free energy A is convex upward as a

function of T . You may assume any derivative you wish to compute exists.

(2) When a phase transition occurs, the curve of S(E) has a linear part as a function of

E (that is, E can change under constant T = Te). Then, A as a function has a cusp at

T = Te (that is, all the states corresponding to the flat part is collapsed to a point, the
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one-to-one nature of the Legendre transformation can be lost, if there is a phase transition).

To illustrate this point, let us consider the following toy function

f(x) =


2 tanh(x + 1) − 2 for x < −1,

2x for − 1 ≤ x ≤ 1,
(x − 1)2 + 2x for x > 1.

Sketch its Legendre transform f ∗(α) = supx[αx− f(x)]. [Do not try to compute the explicit

formula.]

Solution

(1) −S is a convex function of E, so that it is also a convex function of −E. We know

−A

T
= sup

T
[−E/T − (−S)]. (0.P.110)

Therefore, −A/T is a convex function of 1/T . A dirty way to proceed is to perform differ-

entiation twice.
d(−A/T )

d1/T
= −A − 1

T

dA

d1/T
= −A + T

dA

dT
. (0.P.111)

Therefore,
d2(−A/T )

d(1/T )2
= −T 2 d

dT

(
−A − T

dA

dT

)
= −T 3d2A

dT 2
> 0 (0.P.112)

Therefore, A is a concave function of T .

(2) We consider the Legendre transformation

f∗(α) = sup
x

[αx − f(x)] (0.P.113)

For α > 2 this is easy, and we obtain f ∗(α) = α2/2− 1. Between −2 and 2 of x the slope of

f does not change and is 2, so α = 2, which means f ∗(2) = 0 is a cusp. For α < 2, analytic

calculation is not wise. We know α cannot be negative, and in the α → 0 limit, f∗ → 4,

because limx→−∞ f(x) = −4. Since f ∗ is convex, we can easily sketch its overall shape as

below:

Remember that convex functions are continuous.

2.21 [Information]

Suppose there are two fair dice. We assume that one dice is red and the other is green

(that is, distinguishable). Let us record the numbers that are up in this order as (n,m)

(n,m ∈ {1, 2, · · · , 6}).
(1) To know a particular pair of numbers (a, b) unambiguously what information (in bits)

do you need?

(2) You are told that the sum a + b is not less than 5. What is the information you gain

from this message?

(3) Next, you are told, one of the dice shows the face less than 3. What is the information
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you gain? (You must know the info obtained from (2) already.)

(4) Now, you are told that actually, the one of the dice in (3) is the red one. What is

information of this message?

(5) Finally, you are told that face pair is actually (2, 5). What is the information in this final

statement?

As you guess, in what order the information is given, if the total information you gain does

not depend on the actual ‘path,’ because the extent of your ignorance is a ‘state function.’

Solution

(1) There are 36 distinguishable states and they are all equally probable. Therefore, the

total uncertainty is log2 36 = 5.16 bits, or the surprisal you have when you are told, say,

(1, 1) actually happens is 5.16 bits. That is, you need 5.16 bits of information to pinpoint a

particular elementary event.

(2) There is no simpler way than actually to list all elementary states: (1,1), (1,2), (1,3),

(2,1), (2,2), (3, 1). These 6 states are excluded. Remaining are 30 states, all equally probably,

so logs 30 = 4.91 bits is the uncertainty. That is, 5.16 − 4.91 = 0.25 bits is the information

in the message.

(3) Red = 1: Green = 4, 5 or 6

Red = 2: Green = 3, 4, 5 or 6.

Therefore, there are 7×2 = 14 states remaining. This uncertainty is log2 14 = 3.81. We had

4.91 bits of uncertainty, so this message must have conveyed 1.1 bits.

(4) Obviously, 1 bit.

(5) There is no uncertainty remaining, so 2.81 bits (this is, needless to say, the surprisal of

an event of probability 1/7)

2.22 [Variational principle for free energy (classical case)3]

Let H = H0 + V be a system Hamiltonian.

3This holds quantum mechanically as well, but the proof is not this simple.
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(1) Show that

A ≤ A0 + 〈V 〉0,

where A is the free energy of the system with H and A0 that with H0. 〈 〉0 is the average

over the canonical distribution of the system with the Hamiltonian H0. The inequality

is (sometimes) called the Gibbs-Bogoliubov inequality. (2) We can use the inequality to

estimate A. If we can compute A0 and 〈V 〉0 (that is the free energy for the system with

H + 0 and the average with respect to this system), then we can estimate the upper bound

of A. Its minimum may be a good approximation to A. This is the idea of the variational

approximation. Let us study an unharmonic oscillator with the Hamiltonian

H =
1

2m
p2 +

1

2
kx2 +

1

4
αx4,

where m, k and α are positive constants. Let us define

H0 =
1

2m
p2 +

1

2
Kx2.

Choose K to obtain the best estimate of A (you need not compute the estimate of A; it is

easy but dirty). You may use all the available results in the lecture notes.

Solution

(1)

〈e−βV 〉0 =
1

Z0

∫
dΓe−βV e−βH0 =

Z

Z0

= e−β(A−A0).

Therefore, with the aid of Jensen’s inequality

e−β〈V 〉0 ≤ e−β(A−A0).

That is, we are done.

(2) We know

A0 = kBT log

 h̄
√

K/m

kBT


and (with the aid of 〈x4〉0 = 3〈x2〉20 and equipartition of energy)〈

1

4
αx4

〉
0

=
3α

4K2
(kBT )2.

That is,

A ≤ kBT log

 h̄
√

K/m

kBT

 +
1

2
(k/K − 1)kBT +

3α

4K2
(kBT )2.

Minimizing the right hand side wrt K, we obtain

1

2K
− k

2K2
− 3α

8K3
kBT = 0.
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If α = 0 clearly we get the right answer K = k. Solving this, we obtain

K =
1

2

(
k +

√
k2 + 3αkBT

)
.

2.23 [Gibbs-Bogoliubov’s inequality (quantum case)]4

Gibbs-Bogoliubov’s inequality

A ≤ A0 + 〈H − H0〉0 (0.P.114)

holds in quantum statistical mechanics as well.

(1) Demonstrate Peierls’ inequaltiy:

Tre−βH ≥
∑

i

e−〈i|H|i〉, (0.P.115)

where {|i〉} is an arbitrary orthonormal basis.

(2) Let {|i〉} be the orthonormal basis consisting of the eigenstates fo H0. Then,

e−βA ≥
∑

i

e−β〈i|H|i〉 = e−βA0
∑

i

eβ(A0−〈i|H0|i〉)e−β〈i|(H−H0)|i〉. (0.P.116)

Show Gibbs-Bogoliubov’s inequality with the aid of Jensen’s inequality.

2.24 (1) For any density operator P

A ≤ TrP (H + kBT log P ), (0.P.117)

where A is the free energy for the system whose hamiltonian is H.

(2) Suppose P is the canonical density operator P = eβ(A0−H0) for a system with the Hamil-

tonian H0. The, show that the above inequality is jsut Gibbs-Bogoliubov’s inequality.

2.25 [Convexity of free energy] (Ruellle)

A[
∑

λiHi] ≥
∑

A[λiHi]. (0.P.118)

Soluton

Hölder + Peierls proves this.

2.26 [Thermodynamic perturbation theory]

Suppose the system Hamiltonian is given as H = H0 + ϵH1, where ϵは is a (small) constant.

Demnonstratet the following expansion formula:

A = A0 + ϵ〈H1〉0 −
1

2
βϵ2〈(H1 − 〈H1〉0)2〉0 + · · · , (0.P.119)

4M D Girardeau and R M Mazo, “Variational methods in statistical mechanics,”
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wgere A is the free energy of the system, A0 is the free energy in case H1 = 0, and 〈 〉0 is

the expectation with respect to the canonical distribution with the Hamiltonian H0.

2.27 [Jarzynski’s equality]

When Jarzynski’s equality is actually used to obtain ∆A from, e.g., computer experiments,

the moments of work are computed instead of obtaining the distribution of the work. To

this end, it is convenient to use cumulants.5

(1) Suppose the average of a stochastic variable x is zero. Let us define the second cumulant

〈x2〉C and the fourth cumulant 〈x4〉C as

log〈exp(λx)〉 =
λ2

2
〈x2〉C +

λ4

4!
〈x4〉C + · · ·

On the other hand, the second moment 〈x2〉 and the fourth moment 〈x4〉 are defined as

〈exp(λx)〉 = 1 +
λ2

2
〈x2〉 +

λ4

4!
〈x4〉 + · · · .

Demonstrate that

〈x2〉C = 〈x2〉,

〈x4〉C = 〈x4〉 − 3〈x2〉2.

(2) With a certain protocol, starting from a canonical distribution at a temperature 300K

(i.e., kBT = 4pNnm; you may use this number), work has been added to an isolated system

to modify the initial Hamiltonian H0 into the final one H1 by tweaking the control parameter.

The work needed to change the parameter in the Hamiltonian was observed again and again

under isolation starting with an equilibrium state at T = 300K. The average work was

78 pNnm, the standard deviation was 15 pNnm, and the fourth order moment around the

average was 157,000 (pNnm)4.

What is the ∆A between the equilibrium states defined by H(0) and H(1) at 300K (up to

the fourth order cumulant approximtion)?

Solution

(1) We expand

log〈exp(λx)〉 = log

[
1 +

λ2

2
〈x2〉 +

λ4

4!
〈x4〉 + · · ·

]
with the aid of log(1 + f) = f − f 2/2 + · · ·. We obtain

log〈exp(λx)〉 =

[
λ2

2
〈x2〉 +

λ4

4!
〈x4〉 + · · ·

]
− 1

2

[
λ2

2
〈x2〉 +

λ4

4!
〈x4〉 + · · ·

]2

,

=
λ2

2
〈x2〉 +

λ4

4!
〈x4〉 − λ4

8
〈x2〉2 + higher order in λ.

5We will discuss this concept in more detail in conjunction to imperfect gas.
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Comparing this with the definition of cumulants, we get the desired results.

(2) According to Jarzynski’s equality

∆A = −kBT log〈e−βW 〉 = −kBT log〈e−β(〈W 〉+δW )〉 = 〈W 〉 − kBT log〈e−βδW 〉

where 〈W 〉 = 78 pNnm is the average and δW is the deviation from it. Since its mean is

zero, we may use the cumulant formula above around the average:

−kBT log〈e−βδW 〉 = −1

2
β〈δW 2〉C−

1

24
β3〈δW 4〉C = −1

2

152

4
− 1

24

1

43
(157, 000−3×154) = −28.1−3.3 = −31.4

Therefore, ∆A = 78 − 31 = 47 pNnm.

Remark. Although I pretended that Jarzynski’s equality facilitated computation of ∆A,

computational experts recommend straightforward slow simulations, so the equality may

remain as a theoretical curiosity.

2.28 [Jarzynski].6

A single stranded DNA with a certain binding protein is stretched slowly until the protein

dissociates from the DNA. Then, the length of the DNA is returned slowly to the rather

relaxed state where the binding of the molecule does not affect the DNA tension. The work

W dissipated during the cycle is measured at 300K and the experimental results were as

follows:

W in pNnm number of times βW e−βW

78-82 4 19.3 4.04 × 10−9

83-87 15 20.5 1.21 × 10−9

88-92 7 21.74 3.62 × 10−10

93-97 4 22.94 1.082 × 10−10

98-102 1 24.15 3.23 × 10−11

What is the best estimate of the (Gibbs) free energy change due to binding of the protein

in the relaxed state of the single stranded DNA? How is your estimate different from the

simple average 〈W 〉?
Solution

Notice that kBT = 4.14pNnm. e−βW is written in the above table. Thus,∑
e−βW = 373.1 × 10−10 ⇒

〈
e−βW

〉
= 1.2 × 10−9 (0.P.120)

That is, our estimate of ∆A is 85.0 pNnm. If we directly average the result, we obtain 87.4

pNnm. Of course, we have ‘confirmed’ the second law 〈W 〉 ≥ ∆A.

Although we wrote A in the above, its definition is complicated.

6Inspired by Rustem Khafizov and Yan Chemla’s experiment on SSB. The numbers are only fictitious.
although the magnitudes are realistic.
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2.29 [Fluctuation and spring constant]7

Inside the F1ATPase is a rotator γ to which a long actin filament (it is a straight stiff bar of

length 30 nm) is perpendicularly attached. Thus, the filament swings back and forth when

the ATPase is waiting for an ATP molecule.

(1) The root [I forgot to put this word] mean square angle fluctuation of the stiff filament

was 30 degrees at 290K. If the temperature is raised by 10%, by what percentage will the

angular fluctuation change? Assume that the molecular structure is not affected by this

temperature change.

(2) What is the torsional spring constant of this rotator captured by the surrounding ring?

(3) Now, adding an appropriate polymers to the ambient solution, the effective viscosity of

the solution is doubled. What is the mean square angle fluctuation of the filament? You

may assume that the polymers do not affect the ATPase itself.

Solution

(1) Suppose θ is the angular deviation around the equilibrium direction. Then, the torsional

spring constant k reads

τ = kθ, (0.P.121)

where τ is the torsion. Since, k−1 is the ‘susceptibility’ of θ against τ , the fluctuation-response

relation tells us

k−1 =
∂θ

∂τ

∣∣∣∣∣
T

= β〈(δθ)2〉. (0.P.122)

That is,

〈(δθ)2〉 = kBT/k. (0.P.123)

Since we may assume k does not depend on T , the fluctuation should change by about 5%.

(2) You must measure the angle in radians.

k = 1.382 × 10−23 × 290/(π/6)2 = 1.46 × 10−20 (0.P.124)

The unit is J/rad. Is it reasonable? It is about 15 pNnm/rad, a reasonable value.

(3) No change. The formula does not depend on the viscosity, so the amplitude of the

fluctuation never changes. This is true however gooey the solution is. It is true that the

oscillation becomes slow, but then small fluctuations can be accumulated to a size as large

as when the viscosity is very low.

2.30 [Thermodynamic fluctuations]

(1) Suppose X and y are nonconjugate pair with respect to energy, X extensive and y

intensive. Prove that 〈δXδy〉 = 0.

(2) Let X and x be a conjugate pair (wrt energy). Show 〈δXδx〉 = kBT .

(3) Express〈δµ2〉 in terms of a single thermodynamic derivative. The system is assumed to

7If you wish to see the shape or learn about how you can be alive, see K. Kinosita, K. Adachi, and H. Itoh,
“Rotation of F1ATPase: how an ATP-driven molecular machine may work,” Ann. Rev. Biophys. Biomol.
Struct., 33, 245 (2005).
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be described in terms of S, V,N (or their conjugate variables).

(4) Show with the aid of grand partition function that

kBT 2 ∂E

∂T

∣∣∣∣∣
µ,V

= 〈δE2〉 − µ〈δEδN〉.

(5) Let X be an extensive quantity. What can you conclude about 〈δSδX〉? The result is

pedagogically suggestive, because entropy fluctuation means spatially local heat transport:

that is, local temperature change.

Solution

(1) Recall that you can choose any combination of variables as independent variables as long

as one variable is chosen from each conjugate pair {X, x}. We know 〈δXiδXj〉, so in this

case, we should use the all extensive independent variable set.

〈δXδy〉 =

〈
δX

∑
Y

∂y

∂Y
δY

〉
= kBT

∑
Y

∂Y

∂x

∂y

∂Y
= kBT

∂y

∂x
= 0.

In more detail for those who are skeptic:

dx =
∑
j

∂x

∂Xj

∣∣∣∣∣
X1···X̌j ···Xn

dXj, (0.P.125)

where X̌j implies to remove the variable under the check mark. Therefore,

∂xi

∂xk

∣∣∣∣∣
x1···x̌k···xn

=
∑
j

∂xi

∂Xj

∣∣∣∣∣
X1···X̌j ···Xn

∂Xj

∂xk

∣∣∣∣∣
x1···x̌k···xn

. (0.P.126)

We put (0.P.125) into 〈δXδy〉 (regarding X is a representative of {Xj} and y that of {xk}
(the derivatives are mere constants, so you can take them out of the average symbol). Now,

(0.P.126) tells you what you want.

(2)

〈δXδx〉 =

〈
δX

∂x

∂Y
δY

〉
= kBT

∑
Y

∂Y

∂x

∂x

∂Y
= kBT.

(3) Taking into account of (1) above, we should choose µ, S, V as independent variables.

δ2S = − 1

2T
(δNδµ + · · ·) = − 1

2T

∂N

∂µ

∣∣∣∣∣
S,V

δµ2 + · · · .

Therefore,

P (δµ · · ·) ∝ exp

− 1

2kBT

 ∂N

∂µ

∣∣∣∣∣
S,V

δµ2 + · · ·

 .

That is,

〈δµ2〉 = kBT
∂µ

∂N

∣∣∣∣∣
S,V

.
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(4) Since

Ξ =
∞∑

N=0

ZN(T )eβµN =
∞∑

N=0

∫
dEWE,Ne−βE+βµN ,

〈E〉 =
1

Ξ

∞∑
N=0

∫
dEWE,NEe−βE+βµN .

Therefore,

d〈E〉
dβ

=
1

Ξ

∞∑
N=0

∫
dEWE,NE(µN − E)e−βE+βµN

− 1

Ξ2

∞∑
N=0

∫
dEWE,NEe−βE+βµN

∞∑
N=0

∫
dEWE,N(µN − E)e−βE+βµN ,

= 〈δE(µδN − δE)〉

(5)

〈δSδX〉 = kBT
∂X

∂T

∣∣∣∣∣
x

.

That is, the temperature derivative is the cross correlation with entropy fluctuation. This

is, although trivial, worth remembering.

2.31 [Equilibrium fluctuation]

(1) Obtain 〈δSδV 〉.
(2) Obtain 〈δpδT 〉.
Solution

(1) Perhaps, the cleverest way is to us the fluctuation-response relation. We immediately

obtain

〈δSδV 〉 = kBT
∂V

∂T

∣∣∣∣∣
p

. (0.P.127)

There is no simple trick, if you wish to use thermodynamic fluctuation theory. Choose S

and V as independent variables.

1

2kBT
[δSδT − δpδV ] =

1

2kBT

[
∂T

∂S

∣∣∣∣∣
V

+ 2
∂T

∂V

∣∣∣∣∣
S

δV δS − ∂p

∂V

∣∣∣∣∣
S

δV 2

]
. (0.P.128)

Therefore, (with the aid of the formulas for 2 variate Gaussian distribution)

〈δSδV 〉 = kBT
1

∂(T,p)
∂(S,V )

∂T

∂V

∣∣∣∣∣
S

= −kBT
∂S

∂p

∣∣∣∣∣
T

= kBT
∂V

∂T

∣∣∣∣∣
p

. (0.P.129)

(2) There is no simple trick. Choose T and p as independent variables.

1

2kBT
[δSδT − δpδV ] =

1

2kBT

 ∂S

∂T

∣∣∣∣∣
p

δT 2 + 2
∂S

∂p

∣∣∣∣∣
T

δTδp − ∂V

∂p

∣∣∣∣∣
T

δp2

 . (0.P.130)
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Therefore, (with the aid of the formulas for 2 variate Gaussian distribution)

〈δTδp〉 = kBT
1

∂V
∂p

∣∣∣
T

∂S
∂T

∣∣∣
p
+ ∂S

∂p

∣∣∣2
T

∂S

∂p

∣∣∣∣∣
T

. (0.P.131)

This is OK as an answer, but we can go further, if we realize

〈δTδp〉 = kBT
1

∂(V,S)
∂(p,T )

∂S

∂p

∣∣∣∣∣
T

= kBT

∂(S,T )
∂(p,T )

∂(V,S)
∂(p,T )

= kBT
∂(S, T )

∂(V, S)
= −kBT

∂T

∂V

∣∣∣∣∣
S

. (0.P.132)

2.32 [Fluctuation and Le Chatelier-Braun’s principle]

(1) Show that

〈δxδX〉2 ≤ 〈δx2〉〈δX2〉

where x and X are conjugate pair of thermodynamic variables (wrt energy).

(2) What is the relation between this inequality and the Le Chatelier-Braun principle?

Solution

(1) The easiest way is to use the following obvious inequality valid for any real t:

0 ≤ 〈(δX + tδx)2〉 = 〈δX2〉 + 2t〈δxδX〉 + t2〈δx2〉 (0.P.133)

Since 〈δx2〉 ≥ 0, we have its discriminant to be negative:

〈δxδX〉2 − 〈δX2〉〈δx2〉 ≤ 0. (0.P.134)

(2) We know 〈δxδX〉 = kBT , and (use clever way of calculating fluctuations)

〈δX2〉 = kBT
∂x

∂X

∣∣∣∣∣
−1

y

, 〈δx2〉 = kBT
∂X

∂x

∣∣∣∣∣
−1

Y

. (0.P.135)

Therefore,
∂x

∂X

∣∣∣∣∣
y

≤ ∂x

∂X

∣∣∣∣∣
Y

. (0.P.136)

2.33 [Fluctuation of internal energy]

For a classical monatomic ideal gas consisting of N atoms, compute the fluctuation of its

internal energy. Or show

〈(E − 〈E〉)2〉/〈E〉2 = 2/3N. (0.P.137)

Solution

The situation must be under constant temperature and volume.

〈δE2〉 = T 2〈δS2〉 − 2Tp〈δSδV 〉 + p2〈δV 2〉. (0.P.138)
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The volume fluctuation can be found as

〈δV 2〉 = −kBT
∂V

∂p

∣∣∣∣∣
T

= kB
V

p
. (0.P.139)

The entropy fluctuation can be calculated with the aid of S and p as independent variables,

we conclude

δT =
∂T

∂S

∣∣∣∣∣
p

δS + · · · , (0.P.140)

so

〈δS2〉 = T
∂S

∂T

∣∣∣∣∣
p

= kBCp =
5

2
k2

BN. (0.P.141)

Therefore, we need the answer to 1.29 (2).

〈δSδV 〉 = kBT
∂V

∂T

∣∣∣∣∣
p

= kBV. (0.P.142)

Combining all the results, we obtain

〈δE2〉 = kBT 2Cp − 2pkBT 2 ∂V

∂T

∣∣∣∣∣
p

− p2kBT
∂V

∂p

∣∣∣∣∣
T

, (0.P.143)

= k2
BT 2

(
5

2
N − 2N + N

)
=

3

2
(kBT )2N. (0.P.144)

We know 〈E〉 = 3kBTN/2, so we arrive at the desired result.

2.34 [Stability and related topics, e.g., Le Chatelier-Braun]

(1) Suppose a phase transition from phase I to phase II occurs upon increasing the magnetic

field in the z-direction. What can you say about the relation between the magnetisms of the

phases?

(2) Suppose phase I is a low temperature phase and II a high temperature phase. The phase

transition I → II is first order. What can you say about the sign of the latent heat ∆H of

this phase transition?

(3) Which specific heat is larger, CB or CM (under constant magnetic field, and under

constant magnetization, respectively)?

(4) Suppose there is a dielectric material between a parallel plate capacitor. The two plates

of the capacitor may be short-circuited by a switch. What can you say about the relation

between the heat capacity of the dielectric material under the open- and short-circuited

conditions? Let ϵ be its dielectric constant, that may or may not depend on temperature.

(5) Suppose there is a liquid that crystallizes upon heating. Discuss the latent heat for this

transition.8.

8Johari, et al., “Endothermic freezing on heating and exothermic melting on cooling,” J. Chem. Phys.,
123, 051104 (2005): α-cyclodextrin + water + 4-methylpyridine (molar ratio of 1:6:100). For this system a
liquid’s endothermic freezing on heating and the resulting crystal’s exothermic melting on cooling occur. Cp

decreases on freezing and increases on melting. Melting on cooling takes longer than freezing on heating.

30



Solution

(1) The internal energy must be convex, so the susceptibility must be nonnegative, if M is

differentiable with respect to B. At the phase transition this is not usually the case, but still

the convexity must hold, so M must increase in the second phase.

(2) The argument is the same as above (we did this problem before!). Increasing T must

increase S, so S is larger for II. Therefore, ∆H = T∆S > 0 if we go from I to II. That is

latent heat must be absorbed by the system.

(3) This can be answered with the aid of Braun’s principle:

∂x

∂X

∣∣∣∣∣
y

<
∂x

∂X

∣∣∣∣∣
Y

. (0.P.145)

Thus,
∂T

∂S

∣∣∣∣∣
B

=
T

CB

<
∂T

∂S

∣∣∣∣∣
M

=
T

CM

. (0.P.146)

That is, CB > CM : under constant B M is reorganized to absorb more heat. This is a hint

to the next problem.

(4) When short-circuited, the electric field across the dielectric material is maintained to be

constant (actually, zero). When, the circuit is open, then the surface charge (if any) on the

dielectric material is kept constant; electric flux D is maintained. Therefore, thermodynam-

ically we expect CE ≥ CD. Now, ϵ is given, so we know the relation between D and E:

D = ϵEV (D is extensive but E is not! D = ϵE is a relation for a unit volume! Here, we

assume V does not change). We should proceed a step further. (E in this problem is, of

course, not the internal energy).

∂S

∂T

∣∣∣∣∣
E

=
∂S

∂T

∣∣∣∣∣
D

+
∂S

∂D

∣∣∣∣∣
T

∂D

∂T

∣∣∣∣∣
E

. (0.P.147)

With the aid of a Maxwell’s relation we obtain

∂S

∂D

∣∣∣∣∣
T

= − ∂E

∂T

∣∣∣∣∣
D

=
D

ϵ2V

dϵ

dT
. (0.P.148)

Also
∂D

∂T

∣∣∣∣∣
E

=
D

ϵ

dϵ

dT
. (0.P.149)

Therefore,

CE = CD + T
ED

ϵ2

(
dϵ

dT

)2

. (0.P.150)

This tells us that if ϵ does not depend on T , then there is no difference between the two

specific heat. This should be intuitively obvious, because no ‘reorganization’ of the material

is expected upon heating.

(5) The original paper contains the answer.
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2.35 [Chemical equilibrium constant9]

The reaction

A
k+

−→
←−
k−

B. (0.P.151)

may be described as follows, if A and B are sufficiently dilute:

d[A]

dt
= k−[B] − k+[A] = −d[B]

dt
. (0.P.152)

For all t > 0 show that
[B]F (t)

[A]B(t)
= K, (0.P.153)

holds. Here, F denotes the forward reaction starting with pure A, and R denotes the reverse

reaction starting with the same moles of B as A. That is, if these two reactions are started

simultaneously, then the concentration ratio at time t as (0.P.153) is time-independent and

equal to the chemical equilibrium constant. [However, this cannot be a general relation, but

holds only under ideal solution and reaction conditions.] Solution

Since [A] + [B] = C (constant), [B]F (t) obeys

d[B]F (t)

dt
= −(k+ + k−)[B]F (t) + k+C

with the initial condition [B]F (0) = 0. Similarly,

d[A]B(t)

dt
= −(k+ + k−)[A]B(t) + k−C

with the initial condition [A]B(0) = 0. Therefore,

[B]F (t) =
k+

k− + k+

C
(
1 − e−(k−+k+)t

)
,

[A]B(t) =
k−

k− + k+

C
(
1 − e−(k−+k+)t

)
.

These formulas tell us what we wish to have, because K = k+/k− = [B]eq/[A]eq.

9A. B. Adib, “Symmetry Relations in Chemical Kinetics Arising from Microscopic Reversibility,” Phys.
Rev. Lett., 96, 028307 (2006).
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