
\qquad

1. WILL Channel 12 TV carrier wave was about 200 MHz . What is the wavelength of this \downarrow lectromagnetic wave in vacun? The speed of light in vacuum is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. [5]

$$
\mathrm{v}=\mathrm{f} \text { \times \lambda }
$$

You should memorize this relation.
\lambda $=3 \times 10^{\wedge} 8 / 200 \times 10^{\wedge} 6=300 / 200=1.5 \mathrm{~m}$

Thus, the tension is Mg .
2. A uniform string is stretched between a transducer of a constan frequency and a smooth peg. The tension in the string is provided by a block of mass M on a massless tray as illustrated below. The number of nodes of the standing wave in the figure is 5 (including both ends). We wish to replace the block of mass M on the tray with another block of mass m (as illustrated) to produce a standing wave with 7 nodes on the string (including both ends). What is the ratio m / M transducer M,

Wavelengths
\lambda_7/\lambda_5 = v_7/v_5 = \sqrt\{m/M\}.
Therefore, (\backslash lambda_7/\lambda_5 $=(\mathrm{L} / 3) /(\mathrm{L} / 2)=2 / 3)$
\backslash sqrt $\{\mathrm{m} / \mathrm{M}\}=2 / 3$ or $\mathrm{m} / \mathrm{M}=4 / 9$.

Qualitative understanding:
Since f is constant, v and \lambda are proportional, so shorter wavelength implies slower wave, which implies weaker tension.
($\mathbf{3}$ and $\mathbf{4}$ on the next page)

Note for TA:
Truly mathematical justification might seem a bit hard, but if you know convex functions, this is trivial.

Grad students should know the ABC of convex analysis.
3. Let the loudness you hear at the midpoint \mathbf{P} of two sirens be β. Now, you move to the point A. Is the loudness you hear at A due to these two sirens larger or smaller than β ? You must justify your answer. [5]

The area of the sphere of radius R centered at the source.

The source power

We use $I=P /\left(4 \backslash p i R^{\wedge} 2\right)$ in the formula sheet.
In our case, the sirens are the same, so P is a constant you may ignore.

If loudness is large, intensity is large, and vice versa.

Instead of comparing the loudnesses, we can compare the intensities directly.

At P it is proportional to $1 / R^{\wedge} 2+1 / R^{\wedge} 2$.
At A it is proportional to $1 /(R-x)^{\wedge} 2+1 /(R+x)^{\wedge} 2$. Thus, A is always larger.

For TA: This is the convexity of 1/R^2 as a function of R. [How can we prove this? If you draw the graph of $1 / R^{\wedge} 2$ vs R, it is easy to see $1 /(R-x)^{\wedge} 2-1 / R^{\wedge} 2>1 / R^{\wedge} 2-1 /(R+x)^{\wedge} 2$. 个
4. You stand on the roadside and are watching a police car approaching you and then raced-
observer
speed $=0$

Here, the speed (magnitude) is written as v. The sign of the velocity must be chosen correctly. ing from you at a constant speed v along a straight road. When the police car approaches you, you observe its siren frequency as 890 Hz . When the police car is receding from you, the frequency you observe is 790 Hz . What is the speed v of the police car? Assume that
the speed of sound is $330 \mathrm{~m} / \mathrm{s}$. [5]

This is a Doppler effect problem: Remember the sign convention clearly!

$790(330+v)=330 f$.

Therefore,
$330(890-790)=(890+790) v$
or

$$
\mathrm{v}=330 \times 100 / 1680=19.64 \mathrm{~m} / \mathrm{s}
$$

Name: \qquad Section: \qquad Score: \qquad

1. The wavelength of a sound wave in medium A is 1.2 m , and that in medium B is 2.3 m . What is the ratio of the sound speeds in these two media, c_{A} / c_{B}, where c_{A} (resp., c_{B}) is the sound speed in medium A (resp., B)? [5]

2. A uniform string is stretched with a tension T between a transducer of a constant frequency and a peg. The number of nodes of the standing wave in the figure is 5 (including both ends). We wish to produce a standing wave with 7 nodes on the string (including both ends) by modifying the tension from T to T^{\prime}. What is the ratio T^{\prime} / T ? [5]

transducer

5 nodes: \lambda_5 = L/2
7 nodes: \lambda_7 = L/3.
A more detailed explanation may be found in QA.

Since the frequency does not change, the wavelength is proportional
to the wave speed v.
$\mathrm{v}=\backslash \mathrm{sqrt}\{\mathrm{T} / \backslash \mathrm{mu}\}$ [$\backslash \mathrm{mu}=$ linear density of the string], so v is proportional to \backslash sqrt $\{T\}$.
Hence,
wave length is proportional to \sqrt\{T\}.
Therefore,
\lambda_7/\lambda_5 = \sqrt\{T'/T\} = 2/3.
Thus, we get
T'/T = 4/9.

3. The lpudness yqu hear is β from two identical sirens placed 2 m away from you. Now, you prepare 5 of the same sirens and place all of them $L \mathrm{~m}$ away from you. Then, you observe the identical loudness β as before. What is L ? [5]
 old: \#=2, R=2, so I propto $2 / 2 \wedge=1 / 2$.
new: \#=5, R=L, so I \backslash prфpti $5 / L^{\wedge} 2$
Therefore,
$1 / 2=5 / L^{\wedge} 2 \quad O R \quad L^{\wedge} 2=10$.
Thus,

$$
\mathrm{L}=\backslash \operatorname{sqrt}\{10\}=3.16 \mathrm{~m}
$$

4. You are driving a car at a speed $18 \mathrm{~m} / \mathrm{s}$ along a straight road. Then, a police car catches up and passes you at a constant speed v. You hear the siren frequency change from 650 Hz to 620 Hz . What is the speed of the police car? Assume that the speed of sound is $330 \mathrm{~m} / \mathrm{s}$.

Name: \qquad Section: \qquad Score: \qquad /20

1. A gravitational wave produced by a supernova propagates at the speed of light $\left(=3 \times 10^{8}\right.$ m / s. The frequency is 1.2 GHz . What is the wavelength? [5]
```
v = f \lambda See QA.
3 x 10*8/1.2 x 10^9 = 3 x 10*8/12 x 10^8 = 1/4 = 0.25 m.
```

Do not confuse this M and the M in the formula for $v^{\wedge} 2$ on the formula sheet; the latter M is the mass of the string.

Key point: changing the \# of nodes implies changing the
wavelength, which implies changing the wave speed (if the
frequency is constant). So, let us study the wavelength:
4 nodes: \lambda_4 = 2L/3
5 nodes: \lambda_5 = L/2
Hence, (from \lambda \propto v)
\lambda_5/\lambda_4 = v_5/v_4 = (L/2)/(2L/3) = 3/4.
We know $\mathrm{v}=\backslash$ sqrt $\{\mathrm{T} / \backslash \mathrm{mu}\}$. Here, T is kept constant, so

```
    v_5/v_4 = \sqrt{\mu0/\mul} = 3/4.
```

Therefore,

$$
\backslash \mathrm{mu} 1 / \backslash \mathrm{mu} 0=16 / 9 .
$$

Qualitative understanding:
($\mathbf{3}$ and $\mathbf{4}$ on the next page)
f is the same, so shorter wavelength corresponds to slower wave speed. If the tension is the same, 'heavier wire' gives slower propagation speed.
Therefore, to shorten the wavelength, the wire should be heavier under the constant frequency and tension.
3. The loudness you hear is β from three identical sirens placed 3 m away from you. Now, you prepare 5 of the same sirens and place all of them 5 m away from you. The loudness you hear now is β^{\prime}. What io the difference $\beta^{\prime}-\beta$? [5]

$$
\begin{aligned}
& \#=3, R=3 \quad \downarrow \\
& I=3\left(P / 4 \backslash p i 3^{\wedge} 2\right)=(1 / 3)(P / 4 \backslash \mathrm{pi}) . \\
& \#=5, R=5 \\
& I^{\prime}=5\left(P / 4 \text { pi } 5^{\wedge} 2\right)=(1 / 5)(P / 4 \backslash \text { pi }) . \\
& \text { Therefore, } \\
& \quad \backslash \mathrm{b}=10 \text { log_\{10\}(I/I_0),} \\
& \quad \backslash b^{\prime}=10 \text { log_\{10\}(I'/I_0), }
\end{aligned}
$$

so

$$
\begin{aligned}
\backslash \mathrm{b}^{\prime}-\backslash \mathrm{b} & =10 \log _\{10\}\left(\mathrm{I}^{\prime} / \mathrm{I}\right) \\
& =10 \log _{2}\{10\}(3 / 5)=-2.2(\mathrm{~dB}) .
\end{aligned}
$$

4. You are driving a car at a speed of $18 \mathrm{~m} / \mathrm{s}$ along a straight road. Then, a police car comes alongthe opposite lane toward you and passes you. You hear the siren frequency change from 850 Hz to 620 Hz . What is the speed v of the police car? Assume that the speed of
sound is $330 \mathrm{~m} / \mathrm{s}$. [5]

Read an explanation in QA
Doppler effect

The observer is $b^{850}=\mathrm{f}(330 \uparrow 18) /(330-<\mathrm{V})=348 \mathrm{f} /(330-\mathrm{v})$, running against the sound observed, so
v _\{obs $\}=-18$

The source (police car) is running in the same direction of the observed sound propagation, so v_\{source\} = +v.

The rest is mere algebra:
From this

$$
(850 / 348)(330-v)=(620 / 312)(330+v) .
$$

or

$$
\begin{aligned}
& 2.4425(330-v)=1.9871(330+v) \\
& 0.4554 \times 330=4.885 \mathrm{v}
\end{aligned}
$$

Hence,

$$
\mathrm{v}=30.76 \mathrm{~m} / \mathrm{s}(110 \mathrm{~km} / \mathrm{h})
$$

Name: \qquad Section: \qquad Score: \qquad /20

1. What is the frequency of light of wavelength $\lambda=350 \mathrm{~nm}$? The speed of light is 3×10^{8} m / s and $1 \mathrm{~nm}=10^{-9} \mathrm{~m}$. [5]
```
v = f \lambda
f = 3 x 10^8/350 x 10^{-9} = 8.57 x 10^{14} Hz.
```

```
                        See QA.
```

Sketch this.

2. A unifgrm string of linear density μ_{0} is stretched with a tension T betwe\&r a transducerof a constant frequency and a peg, and the tension is provided by a mass M. The number of nodes in the figure is 5 (including both ends). We wish to produce a standing wave with 4 nodes on the string (including both ends) by replacing the mass M with another mass m. What is the ratio $m / M ?[5]$
transducer

\} [$\backslash \mathrm{mu}=$ linear density of the string].
Wave speed is $v=\$ sqrt $\{M g\langle\backslash m u\} \quad[\backslash m u=$ linear density of the string].
We keep the frequency, so the wave length is proportional to the wavelength.

Let us study the wave length:
\lambda_5 = L/2,
\lambda_4 = 2L/3.
So,
\lambda_5/\lambda_4 = v_5/v_4 = (L/2)/(2L/3) = 3/4
On the other hand, v \propto \backslash sqrt $\{\mathrm{M}\}$, so
$\mathrm{v}_{-} 4 / \mathrm{v} _5=\backslash \operatorname{sqrt}\{\mathrm{mg} / \mathrm{Mg}\}$.
That is,

$$
\mathrm{m} / \mathrm{m}=16 / 9 .
$$

Qualitative understanding:
Since the frequency does not change, longer wavelength implies faster wave speed. If the string is the same, stronger tension implies faster wave speed. Therefore, to make wavelength longer we need a heavier weight.

3. Which is larger, the loudness β_{1} due to 100 identical sirens placed at 50 m or that β_{2} due to 200 sirens (the same ones as before) placed at 70 m ? [5]

```
\# = 100, R \(=50 \mathrm{~m}\)
    \(I=100\left(\mathrm{P} / 4 \backslash \mathrm{pi} 50^{\wedge} 2\right)=(1 / 25)(\mathrm{P} / 4 \backslash \mathrm{pi})=(2 / 50)(\mathrm{P} / 4 \backslash \mathrm{pi})\).
\# = 200, \(\mathrm{R}=70 \mathrm{~m}\)
    \(I^{\prime}=200\left(\mathrm{P} / 4 \backslash \mathrm{pi} 70^{\wedge} 2\right)=(2 / 49)(\mathrm{P} / 4 \backslash \mathrm{pi})\).
```

Instead of comparing \beta we can compare I, since log is a monotone increasing function.
I < I',
so

\qquad \beta_2 > \beta_1.
It should have been clearly stated, but I guess you understand that the observer is standing still. $\mathrm{v} _\{\text {obs }\}=0$.

4. On a salt flat a car propelled by ajet engine reaches a speed of $c / 3$, where c is the speed of sound. The car zips past you along a straight trajectory. A siren is placed on the car. What is the ratio of the frequency f_{A} you hear while the car is approaching and the frequency f_{R} you hear while the car is receding from you? [5]

See QA for further
explanation/memo.

Doppler effect

