Name: \qquad Section: Score: \qquad /20

1. A ball is shot (by a pitching machine) from horizontal ground. It reaches the highest point after 3.2 seconds.

(a) What is the height H of the highest point? [5]
(b) The highest point is exactly above the point which is $D=100 \mathrm{~m}$ horizontally away from the starting point as in the figure. What is the initial angle θ ? [If you are not sure about your answer to (a), find $\tan \theta$ in terms of H and D.] [Hint. Try to obtain the x-component v_{x} and y-component v_{y} of the initial velocity in terms of D and H, respectively.] [5]
2. Two masses m and M are connected with a massless string and hang from a massless and frictionless pulley as illustrated below.

(a) Suppose $m=M / 2$. What is the magnitude a of the acceleration of the blocks? Give the value of a / g, where g is the acceleration due to gravity. [5]
(b) Suppose M is much larger than m (say, $M=10^{4} m$). What is the magnitude a of the acceleration of m ? [5]

Name: Section: \qquad Score: \qquad /20

1. A block of mass m is on a rough and horizontal table with coefficient of kinetic friction $\mu_{k}=0.2$ and is connected to another block of mass M via a massless string through a massless and frictionless pulley as shown below.

(a) Suppose $m=M / 2$. What is the magnitude of the acceleration a of the block of mass m on the table? Give the ratio a / g, where g is the acceleration due to gravity. [5]
(b) Suppose M is much larger than m (say, $M=10^{4} m$). What is the ratio a / g just discussed? You must justify your answer. [2]
2. At the moment when a ball is gently released from P, you shoot another ball from O aiming at the ball at P . The point P is exactly above the point that is $L=3 \mathrm{~m}$ horizontally away from you as illustrated. The line connecting O and P makes an angle of 30° with the horizontal.

(a) The two balls collide at the cross-mark, which is $D=4.9 \mathrm{~m}$ below P. Find the initial speed V. [Hint. First, try to calculate the x-component V_{x} of the initial velocity.] [5]
(b) Suppose you do the same experiment on a planet whose acceleration of gravity is one half that on earth (i.e., $g / 2$). To keep the L and D, what is the new initial speed V^{\prime} ? Obtain V^{\prime} / V. [5]

Name: Section: Score: \qquad /20

1. At the moment when a ball is gently released from P, you throw another ball from O aiming at the ball at P . The point is exactly above the point that is $L=5 \mathrm{~m}$ horizontally away from you as illustrated. The line, which is the direction of the initial velocity, connecting O and P , makes an angle of 30° with the horizontal.

(a) Obtain the x-component of the initial velocity of the ball you throw. [5]
(b) What is the speed of the ball you throw when it hits the other ball? [5]
2. On a frictionless slope that makes an angle $\theta=35^{\circ}$ with the horizontal is a block of mass m, which is connected to another identical block of mass M with a massless string through a massless and frictionless pulley as illustrated below.

(a) Suppose $m=M$. What is the magnitude of the acceleration of the blocks?[5]
(b) Suppose M is much larger than m (say, $M=10^{4} m$). What is the acceleration of the block of mass m ? [5]

Name: Section: Score: \qquad /20

1. We wish to aim at the target on the wall that is $L=15 \mathrm{~m}$ away at a height of $H=$ $L / 2=7.5 \mathrm{~m}$. You throw a ball with an initialvelocity of $\boldsymbol{V}=\left(V_{x}, V_{y}\right)$.

What is the initial speed $V=|\boldsymbol{V}|$? Let us solve this in two parts.
(a) In terms of the x-component V_{x} of the initial velocity, it takes the ball $t=L / V_{x}$ to reach the wall. Using this time, write down H in terms of the x-component of the initial velocity $V_{x}\left(=V_{y}\right), L$ and the acceleration due to gravity g. [5]
(b) Obtain V_{x} and then V. [5]
2. On frictionless slopes are two blocks of mass M and of mass m as illustrated below. They are connected by a massless cord through a massless and frictionless pulley.

horizontal
(a) Suppose $m=M$. What is the magnitude of the acceleration of the blocks? [5]
(b) Suppose M is much larger than m (say, $M=10^{4} m$). What is the magnitude of the acceleration of the block of mass m ? [5]

