Name: \qquad Section: \qquad Score: \qquad

1. A ball is shot (by a pitching machine) from horizontal ground. It reaches the highest point after 3.2 seconds.

(a) What is the height H of the highest point? [5]
(0) The movement from A to B is the movement from B to A played backward' in time.
(1) x and y movements can be decoupled.

Therefore, for the y-component, B to A is free fall with zero initial velocity. Hence,

```
    H = (1/2)gt^2 = 4.9(3.2)^2 = 50.176 m.
```

(b) The highest point is exactly above the point which is $D=100 \mathrm{~m}$ horizontally away from the starting point as in the figure. What is the initial angle θ ? [If you are not sure about your answer to (a), find $\tan \theta$ in terms of H and D.] [Hint. Try to obtain the x-component v_{x} and y-component v_{y} of the initial velocity in terms of D and H, respectively.] [5]

If the initial velocity is $\mathrm{V}=\left(\mathrm{v} _\mathrm{x}, \mathrm{v}\right.$ _ y$)$, then tan \theta = v_x/v_y,
so we should compute these components.
v _x: the motion along the x -axis is without acceleration, so D/t = v_x
v_y: after t sec, the v_y-component vanishes when the ball reaches the highest point. Therefore, $0=v _y ~-g t, ~ o r ~ v _y ~=~ g t . ~$

Therefore,
tan \backslash theta $=$ gt^2/D= 2H/D = 1, so \theta $=45$ degrees.
2. Two masses m and M are connected with a massless string and hang from a massless and frictionless pulley as illustrated below.

You must be able to draw the free-body diagram.
The equation of motion for
$\mathrm{m}: ~ m a=T-m g$ (upward is positive)
$\mathrm{M}: \mathrm{Ma}=\mathrm{Mg}-\mathrm{T}$ (downward is positive).
Hence,
$(m+M) a=(M-m) g$ or $a / g=(M-m) /(M+m)=1 / 3$.
(b) Suppose M is much larger than m (say, $M=10^{4} m$). What is the magnitude a of the acceleration of m ? [5]

It's nothing but free fall of M, but m follows M, so g.

Or, from the above computation a/g -> 1 .

Name: \qquad Section: \qquad Score: \qquad

1. A block of mass m is on a rough and horizontal table with coefficient of kinetic friction $\mu_{k}=0.2$ and is connected to another block of mass M via a massless string through a massless and frictionless pulley as shown below.

Let us choose the positive direction along the string as illustrated here (you can choose the opposite direction).
(a) Suppose $m=M / 2$. What is the magnitude of the acceleration a of the block of mass m on the table? Give the ratio a / g, where g is the acceleration due to gravity. [5]

You must be able to draw the free-body diagrams.
Let us write down the initial
m : ma $=\mathrm{T}-\mathrm{f}$, you know $\mathrm{f}=\backslash \mathrm{mu}$

$M: M a=M g-T$.
Therefore,

$$
(m+M) a=M g-\backslash m u _k m g
$$

so

$$
\mathrm{a} / \mathrm{g}=\left(\mathrm{M}-\mathrm{m} \backslash \mathrm{mu} u_{-} \mathrm{k}\right) /(\mathrm{M}+\mathrm{m})=(1-0.5 \times 0.2) / 1.5=0.6 .
$$

(b) Suppose M is much larger than m (say, $M=10^{4} m$). What is the ratio a / g just discussed? You must justify your answer. [2]

It is iust a free fall of M, so $a(m$ must follow M).
Or, in the formula obtained above, take M/m -> infinity. We get a / g-> 1 .
2. At the moment when a ball is gently released from P, you shoot another ball from O aiming at the ball at P . The point P is exactly above the point that is $L=3 \mathrm{~m}$ horizontally away from you as illustrated. The line connecting O and P makes an angle of 30° with the horizontal.

(a) The two balls collide at the cross-mark, which is $D=4.9 \mathrm{~m}$ below P. Find the initial speed V. [Hint. First, try to calculate the x-component V_{x} of the initial velocity.] [5]

Let us pay attention to the time t when the collision occurs. $D=(1 / 2) \quad g t^{\wedge} 2$.
The x-motion and the y-motion are totally decoupled, so V_x $t=L$.
Therefore, V_x^2 $=L^{\wedge} 2 / t^{\wedge} 2=g L^{\wedge} 2 / 2 D$ or $V_{-} x=\backslash \operatorname{sqrt}\{g / 2 D\} L=3 \mathrm{~m} / \mathrm{s}$. $\mathrm{V}=\mathrm{V}$ _x/cos $30=2 \backslash \operatorname{sqrt}\{3\}=3.6 \mathrm{~m} / \mathrm{s}$.
(b) Suppose you do the same experiment on a planet whose acceleration of gravity is one half that on earth (i.e., $g / 2$). To keep the L and D, what is the new initial speed V^{\prime} ? Obtain V^{\prime} / V. [5]

$$
\begin{aligned}
& \text { V_x }=\text { sqret\{g/2D }\} \text { immediately tells you that } \mathrm{V}^{\prime}=\mathrm{V} / \backslash \text { sqrt }\{2\} \text {. } \\
& \text { If you do not wish to use this result, go to the basic, again: } \\
& D=(1 / 2) g t^{\wedge} 2, V_{-} x=L / t \text {, so } t->\backslash \text { sqrt }\{2\} t \text {, and } V 0>V / \backslash s q r t\{2\} .
\end{aligned}
$$

Name: \qquad Section: \qquad Score: \qquad /20

1. At the moment when a ball is gently released from P, you throw another ball from O aiming at the ball at P . The point is exactly above the point that is $L=5 \mathrm{~m}$ horizontally away from you as illustrated. The line, which is the direction of the initial velocity, connecting O and P , makes an angle of 30° with the horizontal.

(a) Obtain the x-component of the initial velocity of the ball you throw. [5]

Pay attention to the time t when the collision occurs.
L/\sqrt\{3\} = (1/2) gt^2.
V_x = L/t, so V_x^2 = L^2/t^2 = (\backslash sqrt $\{3\} / 2$) gL = 42.4, or
$V_{-} x=6.51 \mathrm{~m} / \mathrm{s}$.
(b) What is the speed of the ball you throw when it hits the other ball? [5]

```
This is the same as the initial speed, so
V = V_x/\cos 30 = 7.52 m/s
```

2. On a frictionless slope that makes an angle $\theta=35^{\circ}$ with the horizontal is a block of mass m, which is connected to another identical block of mass M with a massless string through a massless and frictionless pulley as illustrated below.

(a) Suppose $m=M$. What is the magnitude gf the acceleration of the blocks?[5]

You must be able to draw the free-body diagrams for m and M.
Let us write down the equations of motion:
m : ma $=\mathrm{T}-\mathrm{mg}$ sin \theta (upward along the slope is positive)
$\mathrm{M}: \mathrm{Ma}=\mathrm{Mg}-\mathrm{T} \quad$ (downward is positive)
Therefore,
$(M+m) a=(M-m \backslash \sin 35) g$,
or
$a / g=(1-\sin 35) / 2=0.213$.
(b) Suppose M is much larger than m (say, $M=10^{4} m$). What is the acceleration of the block of mass m ? [5]

```
This is just a free fall of M, but m must follow it, so g.
Or you can take M/m -> infinity limit, to get a/g -> 1.
```

Name: \qquad Section: Score: \qquad

1. We wish to aim at the target on the wall that is $L=15 \mathrm{~m}$ away at a height of $H=$ $L / 2=7.5 \mathrm{~m}$. You throw a ball with an initialvelocity of $\boldsymbol{V}=\left(V_{x}, V_{y}\right)$.

What is the initial speed $V=|\boldsymbol{V}|$? Let us solve this in two parts.
(a) In terms of the x-component V_{x} of the initial velocity, it takes the ball $t=L / V_{x}$ to reach the wall. Using this time, write down H in terms of the x-component of the initial velocity $V_{x}\left(=V_{y}\right), L$ and the acceleration due to gravity g. [5]

$$
\begin{aligned}
& H=0+V _y t-(1 / 2) g t^{\wedge} 2, \\
& H=\left(V _y / V _x\right) L-g L^{\wedge} 2 / 2 V_{-} x^{\wedge} 2=L-g L^{\wedge} 2 / V^{\wedge} V_{0}
\end{aligned}
$$

so
(b) Obtain V_{x} and then V. [5]

```
    H = L/2 = L - gL^2/V^2.
That is,
    1/2 = gL/V^2.
Therefore,
    V = \sqrt{2gL} = \sqrt{30g} = 17.15 m/s.
```

2. On frictionless slopes are two blocks of mass M and of mass m as illustrated below. They are connected by a massless cord through a massless and frictionless pulley.

Let us choose this direction along the string to be positive.
(a) Suppose $m=M$. What is the magnitude of the acceleration of the blocks? [5]

The equation of motion for
$\mathrm{m}: ~ m a=T-m g \sin 30$, (upward along the slope is positive)
M: Ma = Mg \sin $60-\mathrm{T} . \quad$ (downward along the slope is positive).
Therefore,
$(\mathrm{m}+\mathrm{M}) \mathrm{a}=(\mathrm{M} / 2-\mathrm{m} \backslash \mathrm{sqt}\{3\} / 2) \mathrm{g}$, or (sin $60=$ \sqrt\{3\}/2)
$a=(M \backslash \operatorname{sqrt}\{3\} / 2-M / 2) /(M+m)$. If $M=m$, we get
$\mathrm{a}=(\backslash \operatorname{sqrt}\{3\} / 2-1 / 2) \mathrm{g} / 2=0.183 \mathrm{~g}=1.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
(b) Suppose M is much larger than m (say, $M=10^{4} m$). What is the magnitude of the acceleration of the block of mass m ? [5]

This is just free sliding down of M along the slope, and m must follow it, so
g sin $60=8.5 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ must be the answer.

