Name: \qquad Section: Score: \qquad

1. WILL Channel 12 TV carrier wave was about 200 MHz . What is the wavelength of this electromagnetic wave in vacuum? The speed of light in vacuum is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. [5]
2. A uniform string is stretched between a transducer of a constant frequency and a smooth peg. The tension in the string is provided by a block of mass M on a massless tray as illustrated below. The number of nodes of the standing wave in the figure is 5 (including both ends). We wish to replace the block of mass M on the tray with another block of mass m (as illustrated) to produce a standing wave with 7 nodes on the string (including both ends). What is the ratio m / M ? [5]

3. Let the loudness you hear at the midpoint P of two sirens be β. Now, you move to the point A. Is the loudness you hear at A due to these two sirens larger or smaller than β ? You must justify your answer. [5]

4. You stand on the roadside and are watching a police car approaching you and then receding from you at a constant speed v along a straight road. When the police car approaches you, you observe its siren frequency as 890 Hz . When the police car is receding from you, the frequency you observe is 790 Hz . What is the speed v of the police car? Assume that the speed of sound is $330 \mathrm{~m} / \mathrm{s}$. [5]

Name: \qquad Section: Score: \qquad

1. The wavelength of a sound wave in medium A is 1.2 m , and that in medium B is 2.3 m . What is the ratio of the sound speeds in these two media, c_{A} / c_{B}, where c_{A} (resp., c_{B}) is the sound speed in medium A (resp., B)? [5]
2. A uniform string is stretched with a tension T between a transducer of a constant frequency and a peg. The number of nodes of the standing wave in the figure is 5 (including both ends). We wish to produce a standing wave with 7 nodes on the string (including both ends) by modifying the tension from T to T^{\prime}. What is the ratio T^{\prime} / T ? [5]
transducer

3. The loudness you hear is β from two identical sirens placed 2 m away from you. Now, you prepare 5 of the same sirens and place all of them L m away from you. Then, you observe the identical loudness β as before. What is L ? [5]
4. You are driving a car at a speed $18 \mathrm{~m} / \mathrm{s}$ along a straight road. Then, a police car catches up and passes you at a constant speed v. You hear the siren frequency change from 650 Hz to 620 Hz . What is the speed of the police car? Assume that the speed of sound is $330 \mathrm{~m} / \mathrm{s}$. [5]

Name: Section: Score: \qquad /20

1. A gravitational wave produced by a supernova propagates at the speed of light $\left(=3 \times 10^{8}\right.$ m / s). The frequency is 1.2 GHz . What is the wavelength? [5]
2. A uniform string of linear density μ_{0} is stretched with a tension T between a transducer of a constant frequency and a peg, and the tension is provided by a mass M. The number of nodes in the figure is 4 (including both ends). We wish to to produce a standing wave with 5 nodes on the string (including both ends) by replacing the string with a different linear density μ_{1}. What is the ratio μ_{1} / μ_{0} ? [5]

3. The loudness you hear is β from three identical sirens placed 3 m away from you. Now, you prepare 5 of the same sirens and place all of them 5 m away from you. The loudness you hear now is β^{\prime}. What is the difference $\beta^{\prime}-\beta$? [5]
4. You are driving a car at a speed of $18 \mathrm{~m} / \mathrm{s}$ along a straight road. Then, a police car comes along the opposite lane toward you and passes you. You hear the siren frequency change from 850 Hz to 620 Hz . What is the speed v of the police car? Assume that the speed of sound is $330 \mathrm{~m} / \mathrm{s}$. [5]

Name: \qquad Section: Score: \qquad /20

1. What is the frequency of light of wavelength $\lambda=350 \mathrm{~nm}$? The speed of light is 3×10^{8} m / s and $1 \mathrm{~nm}=10^{-9} \mathrm{~m}$. [5]
2. A uniform string of linear density μ_{0} is stretched with a tension T between a transducer of a constant frequency and a peg, and the tension is provided by a mass M. The number of nodes in the figure is 5 (including both ends). We wish to produce a standing wave with 4 nodes on the string (including both ends) by replacing the mass M with another mass m. What is the ratio $m / M ?[5]$
transducer

3. Which is larger, the loudness β_{1} due to 100 identical sirens placed at 50 m or that β_{2} due to 200 sirens (the same ones as before) placed at 70 m ? [5]
4. On a salt flat a car propelled by a jet engine reaches a speed of $c / 3$, where c is the speed of sound. The car zips past you along a straight trajectory. A siren is placed on the car. What is the ratio of the frequency f_{A} you hear while the car is approaching and the frequency f_{R} you hear while the car is receding from you? [5]
