
Chapter 6

Solutions

In this solution set, to come back from the destination of hyperlinks click q.

6.1 Problems for Chapter 1

1.1 [Equivalence of heat and work]
A block of mass M = 1 g is at rest in space (vacuum). Another block of the same
mass and velocity V = 1.5 km/s collides with the first block and the two blocks stick
to each other.
(1) Assuming that there is no radiation loss of energy and that there is no rotation of
the resultant single block, obtain the temperature of the resultant single block after
equilibration. Assume that the specific heat of the material is 2.1 J/g·K.
(2) If rotation of the resultant body is allowed, what can be said about its final
temperature? In particular, is it possible not to raise the temperature of the resultant
single block? (Only a qualitative discussion will be enough.)

Solution
(1) The total initial macroscopic kinetic energy is MV 2/2 = 1.125× 103 J. The final
total kinetic energy of macroscopic motion is (the necessary speed is determined by
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the conservation of linear momentum)

1

2
(2M)(V/2)2 =

1

4
MV 2 = 562.5J. (6.1.1)

Therefore, 562.5 J should become the energy of thermal motion. Thus, 562.5/4.2 =
134 K is the increase in temperature, so the final temperature is 334 K.
(2) Rotational motion can be excited, so the temperature increase is reduced. How-
ever, this rotation is due to the non-zero angular momentum around the center of
mass of the initial system. Now, the question is whether the rotational kinetic en-
ergy can preserve the kinetic energy of relative motion. If the second body has an
extremely long thin rod to connect it to the other body to become a single block,
then we can reduce the loss of rotational kinetic energy indefinitely (compute the
final rotational kinetic energy and compare it with the relative kinetic energy). That
is, the temperature increase can be made indefinitely small.

1.2 [Exchange of temperatures]
Suppose there are two water tanks A and B containing the same amount of water.
Initially, A is 42◦C and B is 25◦C. The final state we want is A to be 25◦C and B
42◦C (that is, the temperatures of A and B are exchanged; e.g., A is the used warm
bath water, and B new clean tap water). Assume that the whole system is thermally
isolated.
(1) Is the process reversibly feasible? Explain why.
(2) Devise a process. No precise statement is needed; only state key ideas.
(3) If the reader’s process in (2) contains mechanical parts (e.g., a heat engine), de-
vise a process without any moving parts. No precise statement is needed; only state
key ideas. The reader can use other containers to hold water and can freely move or
flow water (ignore dissipation).
Solution
(1) The initial and final states obviously have the same entropy. Thus, if there is a
way to connect these two in a quasiequilibrium fashion, it is reversible. Well, is there
any quasiequilibrium process connecting them? [Notice that thermodynamics, esp.,
the second law postulates that there is an adiabatic process connecting two equilib-
rium states of the same system; the process must inevitably reversible in this case.
This is usually an assumption; however, depending on the formalism of equilibrium
thermodynamics, this can be proved.1]
(2) Operate a reversible engine between the two tanks until the temperatures be-
come equal. The work produced may be stored by pulling up a weight. Now, use

1E. H. Lieb and J. Yngvason, “The physics and mathematics of the second law of thermody-
namics,” Phys. Rep., 310, 1-96 (1999). This is the state of the art of thermodynamics.
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the engine as a heat pump with the aid of the stored energy in the weight.
(3) The answer (2) is fine, but if you wish to commercialize the machinery, you need
an engine and a motor, not very economical. In any case moving parts are where
troubles start (as is often the case with the hard disk). Thus, we wish to get rid of
moving parts. In the actual commercial product, water from the faucet is guided
through some clever heat exchange device. Thus, we assume we can freely move wa-
ter (but slowly). We must reduce the production of entropy, so heat transfer between
different temperatures should be maximally avoided. Initially, the temperatures are
distinct, so this is impossible. However, we can make this initial mismatch effect
indefinitely small by making the amount of water to be equal temperature from both
tanks as small as possible. Look at the scheme in the following figure. If the pipe is
thin enough, the effect of initial awkward thermal contact is reduced as much as you
wish, and the subsequent heat contact can be as isothermal as possible.2

42C

25C

The thermal contact between counter
flows can be made indefinitely long by
making a tortuous route. Cooled water
is drained and warmed water is used for
your shower. Such a device is industrially
common to save energy,

1.3 [The fourth law of thermodynamics]
(1) For 0.5 moles of a certain substance the equation of state is obtained as:

E = κTV 1/2, (6.1.2)

where E is internal energy, V is volume, T is absolute temperature, and κ is a
constant. Write down the equation of state for N moles of this substance.
(2) We can define extensive quantities per molecule x = X/N , where X = E, S, V
and x = e, s, v. Write down the Gibbs relation for one mole (or a molecule) That is,
express de in terms of x and other extensive quantities per mole (or molecule).

Solution
(1) Let e and v be internal energy per mole and the volume per mole. The given
equation of state can be rewritten as

e/2 = κT (v/2)1/2 ⇒ e =
√

2κTv1/2, (6.1.3)

2There is a way to do gradual temperature change through preparing numerous heat baths with
various temperatures, but this is of course only for extremely rich people.
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so
(E/N) =

√
2κT (V/N)1/2 ⇒ E =

√
2κTN1/2V 1/2. (6.1.4)

(2) You could use d(E/N) = dE/N − (E/N)(dN/N) and E = TS − PV + µN
(because E is extensive), but a wiser method is to use

e = sT − Pv + µ (6.1.5)

and the Gibbs-Duhem relation, SdT − V dP +Ndµ = 0 or

sdT − vdP + dµ = 0. (6.1.6)

Differentiating (6.1.5) and using (6.1.6), we get

de = Tds− Pdv. (6.1.7)

1.4 [Asymmetric coin and limit theorem]
The law of large numbers applies to an unfair coin as well. Suppose the coin we use
has a probability 1/2 + ε to yield a head (H). Otherwise, a tail (T) is yielded. One
get $1 when H shows up and must pay $1, otherwise.
(1) Write down the generating function ωN(k) for the reader’s expected gain per one
coin-tossing sN for the length N coin-tossing sequence.
(2) Compute the mean and the variance of sN .
(3) Using the generating function technique, find the density distribution function
fN for the fluctuation of sN to demonstrate3 the law of large numbers and the central
limit theorem.

Solution
(1) Let Xi be your gain by the i-th tossing. Then, sN = (1/N)

∑
Xi.

ωN(k) ≡
〈

exp

(
ik

1

N

∑
Xi

)〉
, (6.1.8)

=
N∏〈

exp

(
ik

1

N
Xi

)〉
, due to statistical independence (6.1.9)

= ω(k/N)N , (6.1.10)

where ω is the generating function for the single tossing:

ω(k) =

(
1

2
+ ε

)
eik +

(
1

2
− ε
)
e−ik, (6.1.11)

= cos k + 2iε sin k. (6.1.12)

3Need not be mathematical; quite a theoretical physicist’s way is OK!
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(There is no point to streamline this expression.) Therefore,

ωN(k) = [cos(k/N) + 2iε sin(k/N)]N . (6.1.13)

(2) [Directly] This is straightforward: the mean is

MN = 〈sN〉 =
1

N

∑
〈Xi〉 = (1/2 + ε)− (1/2− ε) = 2ε. (6.1.14)

The variance is:

VN =
〈
(sN − 〈sN〉)2

〉
=

〈(
1

N

∑
(Xi − 2ε)

)2
〉
, (6.1.15)

=
1

N2

〈∑
i

(Xi − 2ε)2 + 2
∑
i>j

(Xi − 2ε)(Xj − 2ε)

〉
.

(6.1.16)

Xi and Xj are statistically independent, so we can average them separately. There-
fore, the cross terms in the above vanish and we obtain

VN =
1

N
〈(X1 − 2ε)2〉 =

1

N
(〈X2

1 〉 − 4ε2) =
1

N
(1− 4ε2). (6.1.17)

[Using the generating function] We use the generating function: (note that ω(0) =
1)

MN =
dωN(k)

dik

∣∣∣∣
k=0

= −iN [· · ·]N−1

[
− 1

N
sin

k

N
+ 2iε

1

N
cos

k

N

]
k=0

= 2ε. (6.1.18)

The variance is obtained by the logarithmic second derivative (the derivative is eval-
uated at k = 0 at the end; the calculation may be easier if you do it in terms of
e±ik):

VN = − d2

dk2
logωN(k) = −N d2

dk2
log[cos(k/N) + 2iε sin(k/N)], (6.1.19)

= − d

dk

− sin(k/N) + 2iε cos(k/N)

cos(k/N) + 2iε sin(k/N)
, (6.1.20)

=
1

N

{
cos(k/N) + 2iε sin(k/N)

cos(k/N) + 2iε sin(k/N)
+

[− sin(k/N) + 2iε cos(k/N)]2

[cos(k/N) + 2iε sin(k/N)]2

}
k=0

,

(6.1.21)

=
1

N
(1− 4ε2). (6.1.22)
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Here, in (6.1.21) the sign in front of the second term is +, because we have an overall
− before differentiation.
(3) Assuming N is large, so k/N is small, we Taylor expand ωN(k). It is far cleverer
to expand logω (partition function!; you should see how partition functions are
mathematically natural objects), because we have computed the derivatives.

logωN(k) = ikMN −
1

2
k2VN + o[k2]. (6.1.23)

Therefore, the inverse-Fourier transformation gives

fN(x) =
1

2πi

∫
dke−ikxωN(k) =

1

2πi

∫
dk exp

(
−ikx+ ikMN − (k2/2)VN

)
,

(6.1.24)

=
1

2πi

∫
dk exp

(
−(VN/2)[k2 − 2ik(x−MN)/VN ]

)
, (6.1.25)

=
1

2πi

∫
dk exp

(
−(VN/2)[k − i(x−MN)/VN ]2 − (1/2VN)(x−MN)2

)
,

(6.1.26)

∝ exp
(
−(1/2VN)(x−MN)2

)
. (6.1.27)

Needless to say, this is consistent with our calculation above, but this tells us that the
distribution is Gaussian with variance VN = O[1/N ]; the central limit theorem
is a refinement of the law of large numbers.

1.5 [How to use Chebyshev’s inequality]
(1) We wish to know whether a coin is fair or not. To estimate the probability of H
within ±0.01, how many throwings do you need? Let us tolerate larger errors once
in 100 runs. You may assume that the coin is not grossly unfair.
(2) Theoretically, it is known that if the coin is flipped rapidly, the final surface
agrees with the original surface with probability 0.51 (for example, if the original
surface is H, then with probability about 0.51 H is obtained). To confirm this bias
how many throwings do you think is needed?

Solution
(1) Let p be the true probability for H which is not very different from 1/2. Let χi
be the index function of the i-th trial to be up. Then

p = E(χ1).

Chebyshev’s inequality tells us

P

(∣∣∣∣∣ 1n
n∑
i=1

χi − p

∣∣∣∣∣ > ε

)
<

1

nε2
V (χ1).
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We know V (χ1) = p − p2 = p(1 − p) ' 1/4. Now, ε = 0.01 and the overall error
tolerance is 0.01. Therefore, we may assume

1

nε2
V (χ1) =

104

4n
= 0.01.

Therefore, n = 2.5 × 105 is needed. That is, if if you throw the coin 250,000 times,
you can estimate the head probability of the coin within the tolerance about ±2%.
Or, with confidence level 99% you can find p within 2%.
(2) The answer depends on the level of your precision demand. Since the unfairness
is of 1% order, you must be able to estimate p at least to this order. The answer
to (1) gives a practical answer, if you reduce the confidence level to, say, 95%. If
you wish to stick to the 99% confidence level, then 250,000 trials are not enough; ε
should be halved at least, and you need 106 trials. See Diaconis et al., “Dynamical
Bias in the Coin Toss,” SIAM Review 49, 211 (2007). The lesson is, “If we have this
much trouble analyzing a common coin toss, the reader can imagine the difficulty
we have with interpreting typical stochastic assumptions in an econometric analysis.”

1.6 [A Monte Carlo method to determine π]
There is a unit square (1× 1 square) and in it is inscribed a disk of radius 1/2 shar-
ing the centers of mass. Randomly dropping points uniformly on the square, and
counting the number of points landing on the disk, we can measure π (or rather π/4
directly). How many points do we need to obtain 3 digits below the decimal point
of π/4 with probability more than 99%?

Solution
Let us introduce an iid variable X such that X = 1 if the point lands on the disk and
0, otherwise, and uniformly distributed on the unit square. Then, we expect

〈X〉 = lim
N→∞

1

N

N∑
i=1

Xi = π/4. (6.1.28)

The variance of X is π(1− π/4)/4 < 3/16. Therefore, Chebyshev tells us that

Prob.

(∣∣∣∣ 1

N

∑
Xi −

π

4

∣∣∣∣ > 10−3

)
≤ 3/16

10−6N
. (6.1.29)

This upperbound should be less than 10−2, so N ' 2× 107 is needed.

1.7 [Law of large numbers does not hold, if the distribution is too broad (if fluc-
tuations are too wild)]



358 CHAPTER 6. SOLUTIONS

The Cauchy distribution that is defined by the following density distribution func-
tion

p(x) =
1

π

a

x2 + a2
. (6.1.30)

does not satisfy E(|X|) < +∞ (needless to say, the variance is infinite). Actually,
the density distribution of

En =
X1 + · · ·+Xn

n
(6.1.31)

has exactly the same distribution function as X1, if {Xj} all obey the same Cauchy
distribution and are statistically independent. Let us demonstrate this.
(1) What is the characteristic function of the Cauchy distribution? You can look up
the result, but even in that case you must explain why the result is correct.
(2) Show what we wish to demonstrate.

Solution
(1)
We have only to compute

ω(k) =

∫ ∞
−∞

dx eikxp(x) =
1

2πi

∫ ∞
−∞

dx

(
1

x− ia
− 1

x+ ia

)
eikx = e−a|k|. (6.1.32)

It may be a good occasion to review contour integration, Cauchy’s theorem, etc.
(2) The characteristic function for En is given by ω(k/n)n. This is in our case exactly
ω(k) itself. QED!

1.8 [St. Petersburg Paradox by Daniel Bernoulli]
Let {Xi} be iid with

P (X1 = 2n) = 2−n (6.1.33)

for all positive integers n.
(1) Show that E(X1) =∞.
Thus, it seems that if X1 is the gambler’s gain, the reader can participate in this
gambling game with any entry price and still can expect a positive gain. However,
any sensible person would pay $1000 as a fair price for playing. Why? This is the
‘paradox.’
(2) Needless to say, the law of large numbers does not hold for En. This implies that
empirically obtainable expectation and theoretical one should have some discrepancy.
Indeed, it can be proved (the reader need not show this; not very easy) that for any
positive ε

P (|En/ log2 n− 1| > ε)→ 0 (6.1.34)

in the n→∞ limit. Recall that En is the expected payoff. Explain why the reader
does not with to pay $1000. (Or for this to be a fair price how many times does the
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reader have to play?)

Solution
(1) This is obvious:

E(X1) =
∑
m

2m2−m. (6.1.35)

(2) The above estimate implies with high probability (asymptotically) En ∼ log2 n.
That is, you must wait until log2 n = 1000 to have break-even. That is n = 21000 '
10300.

1.9. Explain ‘Bertrand’s paradox’ in about 10 lines (without using outrageous fonts).
What lesson can you learn? [You can easily find a detailed account in the web.]

Solution
Wikipedia: http://en.wikipedia.org/wiki/Bertrand’s_paradox_(probability)

gives a good account of this topic. In short, being random or uniform sampling is
a rather tricky idea. We need a detailed empirical analysis of what we mean by
‘uniform’ or ‘random’. This is the lesson.

However, this article may have given you an idea that there is a general principle
to ‘rescue’ the ambiguity inherent in the concept of ‘lack of knowledge’ following
Jaynes (‘maximum ignorance principle’ or, in essence, to use fully the symmetry in
the problem). This implies that we must perform a detailed analysis of what is NOT
known. If symmetry principles are used inadvertently, we can easily get nonsensical
result. A classic example is von Mises’ wine/water paradox. You can look this up
in the web, and perhaps will see proposals to resolve the paradox. The resolutions
require more detailed analysis of what is not known.

1.10 [System with dissipation]
There is a classical particle system described by the canonical coordinates {q, p} (q
and p are collective notations for position and momentum coordinates of all the par-
ticles in the system). In terms of the Poisson bracket and the system Hamiltonian
the equation of motion may be written as

dq

dt
= [q,H],

dp

dt
= [p,H]− αp,

where α is a small positive constant. That is, the system is not perfectly classical
mechanical, but contains a certain effect of dissipation.4

(1) Demonstrate that the Liouville’s theorem is violated for this system.
(2) Demonstrate that the system energy decreases. (Assume that H = K + U as

4This model may look artificial, but similar models are used to study nonequilibrium systems.
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usual and K is quadratic in p.)
(3) However, show that if H is time dependent, then the system energy may be
maintained.

Solution
(1) Let us check the incompressibility of the flow defined by this differential equa-
tion:

∂

∂q

dq

dt
+

∂

∂p

dp

dt
= −α∂p

∂p
= −3Nα, (6.1.36)

where N is the number of the point particles and 3 is the spatial dimensionality (3N
is the number of p coordinates).
(2) Let us compute

dH

dt
=
∂H

∂t
+ [H,H] +

∂H

∂p
· (−αp) = −2αK, (6.1.37)

where K is the kinetic energy and is positive definite. Therefore, H decreases. Here
K being a quadratic form (a homogeneous function of order 2) is used.
(3) As you can see from (6.1.37), if H is explicitly time dependent, you can do
whatever you want. (For example, although it is not physically interesting, H(t) =
U + e2αtK would do.)

1.11 The following can be read in a textbook. Point out the error in the argu-
ment.
“In general, there is no logical “room” for adding extra assumptions, such as equal
a priori probability. The evolution of an actual system is determined by the laws of
mechanics (or quantum mechanics). If the results of using any extra assumptions
always agree with the logical consequence of the laws of mechanics, and it should be
possible to show that fact. If they do not agree with the laws of mechanics, then the
extra assumptions are wrong.”

Solution
Dynamical laws are differential laws, so they must not be discussed without auxil-
iary conditions such as initial conditions. Such conditions are given independent of
the dynamical laws. That is, there is a room to introduce extra assumptions. For
example, when we sample from the phase volume, it seems that we can only sample
according to he probability measure absolutely continuous with respect to the Rie-
mann volume, but this has nothing to do with the dynamical laws. However, when
we study chaotic dynamical systems, observability condition of chaos is a condition
on the initial condition.

As can be seen from this example, it is simple minded or too haste to conclude
that some universal properties applicable to systems obeying dynamical laws is only
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due to dynamical laws. Another example is the unavoidable external disturbances.
Therefore, small stochastic perturbations are always there. That this is the reason
for the statistical nature of the system is logically perfectly legitimate assertion. If
the disturbance is universal, then the results would also be universal.

To be more precise, there is no verification of dynamical laws for many body sys-
tems. Therefore, at least purely logically no one can conclude that “If they do not
agree with the laws of mechanics, then the extra assumptions are wrong.”

1.12 Classically, the microcanonical distribution may be written as

Ŵ (E) =
1

N !h3N

∫
δ(H(q, p)− E)dqdp. (6.1.38)

Show that this can be expressed as follows:

Ŵ (E) =
1

N !h3N |gradH|
dσ, (6.1.39)

where σ is the area element of the constant energy surface and gradH is the 3N -
dimensional gradient vector of the system Hamiltonian H with respect to the canon-
ical variables (qi, pi).

Solution
Notice that dpdq = dσdE. If the 6N − 1 dimensional canonical coordinates in the
surface is collectively written as σ, then H can be written in terms of E and σ.
Notice that the following formula for the d-function holds:

δ(f(E)− E0) =
1

|f ′(E0)|
δ(E − E0). (6.1.40)

If as f(E) H(E,σ) is adopted, then we must use the partial derivative of H with
respect to E as f ′, but it is the directional derivative H perpendicular to the iso-
energetic surface, so its absolute value must be identical to the absolute value of the
gradient. Thus we have demonstrated (6.1.39).

1.13 [Equipartition of energy with the aid of microcanonical ensemble]
Within the microcanonical ensemble formalism5 for a classical fluid consisting of N
interacting but identical particles,
(1) Show that the temperature T can be expressed in terms of the average of the
reciprocal kinetic energy as (N � 1 may be assumed)

kBT =
2

3N〈K−1〉
, (6.1.41)

5Use W (E), the phase volume of the states with the total energy not exceeding E.
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where K is the total kinetic energy of the system.
Comment: We are NOT discussing ideal systems. The system can have any interac-
tion among particles. T is defined thermodynamically as 1/T = ∂S/∂E.
(2) In the thermodynamic limit show that this is equivalent to

kBT =
2

3
〈κ〉, (6.1.42)

where κ is the average kinetic energy par particle. This is essentially the equiparti-
tion of kinetic energy. [Hint. the reader may use intuitively the weak law of large
numbers.]

Solution
(1) Although I asked the case with N � 1 to use W (E) instead of the energy shell
volume (i.e., W (E + δE) −W (E)), if you carefully do a similar calculation below,
you get the result true for small N as well.

The phase volume W (E) of the states H =
∑
p2
i /2m + V (q) ≤ E is computed

as

W (E) =

∫
V (q)≤E

dq

∫
∑
p2i /2m≤E−V (q)

dp =

∫
V (q)≤E

dq CN [m(E − V (q))]3N/2 ,

(6.1.43)
where CN is a geometrical factor we need not calculate. Temperature is defined
by

1

T
= kB

d

dE
logW (E) =

3N

2

∫
dq (E − V (q))3N/2−1∫
dq (E − V (q))3N/2

. (6.1.44)

You may have expected the derivative to consist of two terms, but the derivative with
respect to the integration range for {q} vanishes, because the integrand vanishes
there: V (q) = E. The above formula is the average of (E − V (q))−1 over the
configuration space. It is not yet the desired result that is an average over the phase
space. Now, we use (again) the fact that for high-dimensions the total volume is
almost on the skin. Therefore,∫

K≤E
dpK−1 =

1

E

∫
K≤E

dp. (6.1.45)

That is, the configuration space average and the phase space average agree:6

β =
3

2
N〈K−1〉. (6.1.46)

6If you use the energy shell, perhaps the first step in the above calculation may be slightly more
complicated, but this last step is trivial.
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(2) Let ki be the kinetic energy of the i-th particle. K =
∑
ki. Notice that the law

of large numbers implies

N〈K−1〉 = N

〈
1∑
ki

〉
=

〈
1∑

i ki/N

〉
→ 1

〈ki〉
=

1

〈K〉/N
= N/〈K〉. (6.1.47)

Here, we intuitively assumed that ki are iid random variables.

1.14 [Generalized homogeneous function]
As we will learn much later, various thermodynamic quantities diverge near the
second-order phase transition point (critical point). The free energy density f as a
function of temperature τ ∝ T − Tc and pressure p behaves as7

f(λy1τ, λy2p) = λdf(τ, p), (6.1.48)

where λ (> 0) is a scaling factor, d is the spatial dimensionality, and y1 and y2 are
real constants (related to the so-called critical exponents). That is, f is a generalized
homogeneous function.8

Formulate the counterpart of Euler’s theorem and demonstrate it. You may freely
use the method of characteristics.

Solution
(1) Differentiating the given formula wrt λ and subsequently setting λ = 1 gives the
quasilinear PDE:

y1τ
∂f

∂τ
+ y2p

∂f

∂p
= d f. (6.1.49)

This must be a necessary and sufficient condition for a differentiable function f to
satisfy the (generalized) homogeneity relation. To prove sufficiency, we must solve
(6.1.49) with the aid of the method of characteristics.9 The characteristic equation
reads

dτ

y1τ
=

dp

y2p
=

df

d f
. (6.1.50)

You may combine these three fractions in any way, but here let us choose the least
sophisticated combinations:

dτ

y1τ
=

dp

y2p
,
dτ

y1τ
=

df

d f
. (6.1.51)

7Precisely speaking, this is the singular part of the free energy as we will learn later. Peculiar
phenomena near the critical point are governed by this part of the free energy.

8B. Widom realized from the empirical data that if f is a generalized homogeneous function,
then critical peculiar phenomena can be explained in a unified fashion.

9See Supplements
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The general solution to these ODEs are

τ 1/y1/p1/y2 = C1, τ
d/y1/f = C2, (6.1.52)

where C1 and C2 are integration constants. Hence, the general solution to (6.1.50)
is given by

f(τ, h) = τ d/y1g(τ 1/y1/p1/y2), (6.1.53)

where g is a well-behaved function (differentiable, bounded, etc.). Indeed,

f(λy1τ, λy2p) = (λy1τ)d/y1g((λy1τ)1/y1/(λy2p)1/y2) = λdτ d/y1g(λτ 1/y1/λp1/y2) = λdf(τ, p).
(6.1.54)

Another (much smarter) way to solve the characteristic equation (6.1.50) is to
introduced the so-called ‘dilation parameter’ λ as follows:

dτ

y1τ
=

dp

y2p
=

df

d f
=
dλ

λ
. (6.1.55)

This is solved as the following three ODEs:

dτ

y1τ
=
dλ

λ
, =

dp

y2p
=
dλ

λ
,
df

d f
=
dλ

λ
. (6.1.56)

The general solutions are

τ/λy1 = C1, p/λ
y2 = C2, f/λ

d = C3, (6.1.57)

where Ci are integration constants. Thus, the general solution to (6.1.49) reads

F (τ/λy1 , p/λy2 , f/λd) = 0, (6.1.58)

where F is a well-behaved function. In other words, for any λ (> 0)

f = λdG(τ/λy1 , p/λy2). (6.1.59)

Here, G is an appropriate differentiable function.

1.15. [Mixing entropy and Gibbs’ paradox]
We have two ideal gases with the same volume V , pressure P , and temperature T .
These two gases consist of different chemical species. Assume the whole system is
thermally isolated during the following processes.
(1) Two boxes containing the above gases are connected. That is, now the total vol-
ume of the mixture is 2V . Find the entropy change due to this procedure of joining
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two boxes.
(2) Find the entropy change if two gases are mixed into a single volume of V .
(3) How can you actually measure the entropy change in (1) experimentally?

Solution
(1) See the illustration at the end.
Before answering the question, let us consider the indistinguishable case. The entropy
formula for the gas in box V is

S1 = NkB

(
log

V

N
+

3

2
log

E

N
+ c

)
. (6.1.60)

If two boxes are joined, then

S1+2 = 2NkB

(
log

2V

2N
+

3

2
log

2E

2N
+ c

)
= 2S1 (6.1.61)

as expected.
Now, the distinguishable case.

S1+2 = (2N)kB

(
log

2V

N
+

3

2
log

E

N
+ c

)
= 2S1 + 2NkB log 2 (6.1.62)

This can be considered as the superposition of each gas expanded to 2V :

S ′1 = NkB

(
log

2V

N
+

3

2
log

E

N
+ c

)
= S1 +NkB log 2. (6.1.63)

Superposing these two, we have

S1+2 = 2S1 + 2NkB log 2. (6.1.64)

(2) Indistinguishable case:
Obviously

S1+2 = 2NkB

(
log

V

2N
+

3

2
log

2E

2N
+ c

)
= 2S1 − 2NkB log 2. (6.1.65)

This is the entropy decrease due to compression = halving the volume.
The distinguishable case: This is a simple superposition, so

S ′1+2 = 2S1 (6.1.66)
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That is, this is the result of Problem (1) compressed to the half volume: the entropy
decrease due to compression is 2NkB log 2, which exactly cancels the mixing entropy.
(3) Notice that there is no exchange of heat during the mixing process in either of the
two cases, distinguishable or indistinguishable. Therefore, to measure the mixing en-
tropy you must somehow connect the mixed final state to the initial separated state
(in a quasistatic way) and study this de-mixing process: for example, how much work
do you have to supply to do this (or gain by doing this). There is a possibility of
obtaining the absolute entropy of a gas with the aid of the Sackur-Tetrode formula.
However, there is no way to use the result for the present purpose.

The above conclusion implies that to measure the mixing entropy you must be
able to separate the mixture. If you did not know it is indeed a mixture, there would
be no way to separate the ‘mixture.’ That is, you must be able to distinguish the
components to measure the mixing entropy. You cannot use this experiment to tell
whether two gases are identical or not.

You might say someone gave you a semipermeable membrane to separate the two
components. However, since you have the membrane you can distinguish the com-
ponents already.

Δ S > 0

no change

no changeno change

< 0Δ S

< 0Δ S

no change

< 0Δ S

no change
< 0Δ S

before

superposition

before

superposition

1.16 [To check that Boltzmann’s formula does not contradict thermodynamics]
Let us check that Boltzmann’s principle (within classical physics) is indeed consistent
with thermodynamics: that is, if S = kB logw(E, V ),

dS =
dE + PdV

T
, (6.1.67)

where w(E, V ) is the number of microstates satisfying that the energy is in (E −
δE,E] and the volume is in (V − δV, V ]. Here, we clearly know what E and V
are in both mechanics and in thermodynamics. The pressure P can be computed



6.1. PROBLEMS FOR CHAPTER 1 367

mechanically, and T is related to the average kinetic energy K of the system.
Using the Boltzmann formula, we can write

dS = kB
1

w

∂w

∂E
dE + kB

1

w

∂w

∂V
dV. (6.1.68)

Therefore, if we can compute partial derivatives in the above and identify their
meanings, we should accomplish what we desire. This is actually what Boltzmann
did in 1864. The demonstration is not very trivial, so here we wish to use the
following relation

kB
1

w

∂w(E, V )

∂V
→ P

T
(6.1.69)

(in the thermodynamic limit) and consider only the energy derivative. We can
write

w(E, V ) =

∫
[E]

dqdp−
∫

[E−δE]

dqdp = δE
∂

∂E

∫
[E]

dqdp, (6.1.70)

where [E] denotes the phase volume with energy not larger than E. We assume that
the gas is confined in the volume V . Let E = K(p) + U(q), where K is the total
kinetic energy andU the total intermolecular potential energy. The phase integration
may be written as ∫

[E]

dqdp =

∫
dq

∫
K(p)≤E−U(q)

dp. (6.1.71)

Thus, the integration with respect to p is the calculation of the volume of the 3N -
sphere of radius

√
2m(E − U(q)).

(1) Show that

∂

∂E

∫
[E]

dqdp =

∫
dq
S3N

3N
2m

3N

2
[2m(E − U(q))]3N/2−1, (6.1.72)

where S3N is the surface area of the 3N − 1-dimensional unit sphere.
(2) Using this formula, we can differentiate the integrand with E. Obtain

1

w(E, V )

∂w(E, V )

∂E
= kB

(
3N

2
− 1

)〈
1

K(p)

〉
. (6.1.73)

(3) We know from the kinetic theory that the average kinetic energy of a point
particle is proportional to T (precisely speaking, the average of p2/2m = 3kBT/2).
Assuming that all the kinetic energies of the particles are statistically independent,10

10This is not really a trivial statement; we need that the system is ‘normal.’ That is, the
intermolecular interaction range must be very short, and the interactions are sufficiently repulsive
in the very short range.
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demonstrate that the formula in (2) is indeed equal to 1/T .

Solution
(1) The integration with respect to p in (6.1.71) is the calculation of the volume of

the 3N -sphere of radius
√

2m(E − U(q)).∫
[E]

dqdp =

∫
dqS3N

∫ √2m(E−U(q))

0

p3N−1dp =

∫
dq
S3N

3N
[2m(E − U(q))]3N/2,

(6.1.74)
where S3N is the area of the unit 3N − 1-sphere. From this,

∂

∂E

∫
[E]

dqdp =

∫
dq
S3N

3N
2m

3N

2
[2m(E − U(q))]3N/2−1 (6.1.75)

(2) The result of (1) gives us w, so we must differentiate this once more.

∂2

∂E2

∫
[E]

dqdp =

∫
dq
S3N

3N
(2m)2 3N

2

(
3N

2
− 1

)
[2m(E − U(q))]3N/2−2,(6.1.76)

=

∫
dq
S3N

3N
(2m)

3N

2

(
3N

2
− 1

)
[2m(E − U(q))]3N/2−1 1

K(p)
,

(6.1.77)

=
∂

∂E

∫
dq
S3N

3N

(
3N

2
− 1

)
[2m(E − U(q))]3N/2

1

K(p)
, (6.1.78)

=

(
3N

2
− 1

)
w(E, V )

〈
1

K(p)

〉
. (6.1.79)

That is,
1

w(E, V )

∂w(E, V )

∂E
=

(
3N

2
− 1

)〈
1

K(p)

〉
. (6.1.80)

(3) We wish to demonstrate in the N →∞ limit(
3N

2
− 1

)〈
1

K(p)

〉
=

1

kBT
. (6.1.81)

Obviously, (
3N

2
− 1

)〈
1

K(p)

〉
=

〈
1

(3K(p)/2)/N

〉
. (6.1.82)

The law of large numbers tells us (cf. 1.13) that

3K(p)/2)/N =
3

2

1

N

∑ p2

2m
→ 3

2

〈
p2

2m

〉
= kBT. (6.1.83)
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1.17 [Superrelativistic ideal gas]
Consider a super-relativistic gas consisting of particles whose energy ε = c|p|, where
c is the speed of light, and p is the particle translational momentum.
(1) We have learned that the equation of state and the constant volume specific heat
CV of an ideal gas may be obtained almost dimensional analytically, if we accept the
basic postulate of statistical mechanics. Following this logic, find the pressure and
CV .
(2) Calculate the entropy to determine the constant corresponding to ‘c’ (the con-
stant in the entropy formula).

Solution
(1) Classically, we have only to consider the phase volume W̃ (V,E) whose dimension
is [q]3N [p]3N . Therefore,

W̃ (V,E) ∼ V NE3N . (6.1.84)

(Quantum mechanically, [W ] = 1 = [q]3N/[h/p]3N ∼ [V ]N [E]3N .) This implies
that

S = kB log W̃ (V,E) = NkB(log V + 3 logE + cN) = NkB

[
log

V

N
+ 3 log

E

N
+ c

]
.

(6.1.85)
Therefore,

P

T
=

∂S

∂V

∣∣∣∣
E

=
NkB
V

⇒ PV = NkBT, (6.1.86)

and
1

T
=

∂S

∂E

∣∣∣∣
V

=
3NkB

E
⇒ E = 3NkBT. (6.1.87)

Therefore, CV = 3NkB.

(2) Let us do this honestly. |p| = h|n|/2L, where L is the edge length of the
box: L3 = V , and n is a 3-dim positive integer vector. Therefore,

w̃(E, V ) =
1

N !

∑
{ni}:

∑
|ni|'2LE/ch

1. (6.1.88)

Here, ' implies the value between E− δE and E (thin shell); in this calculation this
is easier). This is not easy to evaluate directly, but a standard trick is to use the
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Laplace transformation (or to use the generating function):11

ω(t) =

∫ ∞
0

dE w̃(E, V )e−tE. (6.1.89)

Using (6.1.88), we can compute this as

ω(t) =
1

N !

∫ ∞
0

dE
∑

{ni}:
∑
|ni|'2LE/ch

e−
∑
|ni|cht/2L =

1

N !

(∑
n

e−|ni|cht/2L

)N

.

(6.1.90)
The sum may be calculated as an integral over the first octant in the 3D space:

∑
n

e−|ni|cht/2L =
1

8

∫ ∞
0

dn 4πn2e−|ni|cht/2L = (8π)

(
L

cht

)3

(6.1.91)

Therefore,

ω(t) =
1

N !
(8π)N

(
L

cht

)3N

. (6.1.92)

This implies (inverse Laplace transform; see an appropriate table. We ignore the
difference between nN and nN − 1)

w̃(E, V ) =

(
8π

c3h3

)N
V N

N !

E3N

(3N)!
. (6.1.93)

With the aid of Stirling’s formula this reads

w̃(E, V ) =

(
eV

N

)N (
eE

3N

)3N (
8π

c3h3

)N
. (6.1.94)

Therefore, entropy reads

S = NkB

(
log

V

N
+ 3 log

E

N
+ log

8e4π

9c3h3

)
. (6.1.95)

11Laplace transformation is not so popular among physicists, but it is only a variant of Fourier
transformation. However, it is extremely useful in solving linear constant coef ODEs. See Applicable
Analysis
http://web.me.com/oono/ApplicableMath/ApplicableMath files/AMII-33.pdf.
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1.18 [Application of the Sackur-Tetrode equation12]
The following data are all under 1 atm.
The melting point of mercury is 234.2 K and the heat of fusion is 2.33 kJ/mol. The
absolute entropy of solid mercury just at the melting temperature is 59.9 J/K·mol.
The entropy increase of liquid between the melting point and the boiling point is
26.2 J/K·mol. The boiling point is 630K and the evaporation heat is 59.3 kJ/mol.
(1) Calculate the absolute entropy of mercury gas just above the boiling point.
(2) Assuming that mercury vapor is a monatomic ideal gas, obtain Planck’s constant.
The reader may use the value of kB.
Solution
(1) We obtain the absolute entropy of mercury gas at 1 atm just above the boiling
point simply by adding required entropy increases:

S = 59.9 +
2330

234.2
+ 26.2 +

59300

630
= 190.1 J/mol·K.

(2) The translational entropy of an ideal gas is

S = NkB

{
log

V

N
+

3

2
log T +

5

2
+

3

2
log

2πmkB
h2

}
.

With the aid of the ideal gas law PV = NkBT this can be rewritten as

logP =
5

2
log T +

5

2
+ log

{
k

5/2
B

(
2πm

h2

)3/2
}
− S

NkB
.

Here S is the entropy in the vapor phase for which the classical ideal gas law holds.
Therefore, if this S is estimated correctly, then the above equation should be very
accurate.

log

{
k

5/2
B

(
2πm

h2

)3/2
}

=
S

NkB
+ log p− 5

2
log T − 5

2
= 22.84 + 11.52− 18.61 = 15.74

If we use the known parameter values, we get 15.82, an excellent agreement. m =
0.20059/NA and this gives h = 6.81×10−34 Js (6.623×10−34 Js is the accepted value).

1.19 [Negative temperature]
Let us consider the two state spin system containing 1 mole of spins as discussed

12The best elementary exposition is found in F. Mandl, Statistical Physics (Wiley, 1971) Section
7.6.
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in the text. Assume that under the magnetic field B, the energy gap between the
up and down spin states is 600 K per spin. Suppose the initial temperature of the
magnet is −500K.
(1) What is the temperature of this system measured with an ideal gas thermometer
containing 10−6 moles of monatomic gas particles?
(2) If, instead, the original negative temperature system is thermally equilibrated
with a 1 mole of ideal monatomic gas that is initially 200K, what is the equilibrium
temperature?

Solution
(1) The relation between the magnetization and the temperature can be solved
as

m = NA tanh
300

T
. (6.1.96)

We have already computed the problem

300NAkB tanh
300

500
= −300kBNA tanh

300

T
+

3

2
nkBT (6.1.97)

In this case we may expect that the temperature is extremely high, so

300NA tanh
300

500
= 161NA '

3

2
nT ⇒ T = 1.07× 108K. (6.1.98)

Since the temperature is outrageously high, we must pay attention to relativity. That
is, the gas must be superrelativistic. Then, is the temperature higher or lower? (You
can of course get the answer quantitatively easily.)
(2)

161NAkB +
3

2
200NAkB = −300NAkB tanh

300

T
+

3

2
NAkBT (6.1.99)

That is, we must solve

361 = −300 tanh
300

T
+

3

2
T (6.1.100)

That is, T = 374K.
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6.2 Problems for Chapter 2

2.1 [On derivation of canonical distribution]
A textbook of statistical mechanics has the following derivation of the canonical
distribution:
“The distribution function must not depend on the properties of particular systems,
but must be universal. That is, the probability P (EI) (resp., P (EII)) for the system I
(resp., II) to have energy EI (resp., EII) and the probability P (E) for the compound
system of I and II to have energy E = EI + EII must have the same functional
form. This must be so, as long as we expect statistical mechanics holds universally.
Therefore,

P (EI)P (EII) = P (EI + EII). (6.2.1)

For this equation to be valid, we can prove that P (E) must have the following
functional form:

P (E) = Ce−βE, (6.2.2)

where C is a constant.”
Is this argument correct?

Solution
Here, we must interpret C as the normalization constant. Therefore, C must be
a functional of E (or rather, the system Hamiltonian). This implies that P (E) is
not a simple function of E but a functional of the system Hamiltonian, so, although
(6.2.2) is a solution, we cannot conclude from (6.2.1), even if we assume smoothness
(recall Cauchy), that this is the only solution; we may conclude that logP is a linear
functional of H, but no further restriction is possible.

Everyone knows that (6.2.1) is incorrect, generally speaking, since
∑

EI
P (EI)P (EII) =

P (E). Precisely speaking, we must say that (6.2.1) holds for the most probable par-
tition of energy. As can be seen from the correct answer P = e−β(E−A),

PI(EI)PII(EII) = PI+II(EI + EII) (6.2.3)

holds for the most probable partition of energy.

2.2 [Elementary problem about spin system]
Due to the ligand field the degeneracy of the d-orbitals of the chromium ion Cr3+ is
lifted, and the spin Hamiltonian has the following form

H = D(S2
z − S(S + 1)/2), (6.2.4)
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where D > 0 is a constant with S = 3/2 (the cation is in the term 4F3/2).
(0) Why can you apply statistical mechanics to this ‘single’ ion?
(1) Compute the occupation probability of each energy level at temperature T (you
may use the standard notation β = 1/kBT ).
(2) Calculate the entropy.
(3) At high temperatures approximately we have C = kB(T0/T )2 with T0 = 0.18 K.
Determine D in K.

Solution
(0) Statistical mechanics exploits the fact that any macroscopic system may be con-
sidered as a set of numerous statistically independent collection of subsystems. That
is, if there is statistical independence and additivity, we may apply the statistical
mechanics framework to the collection.
(1) There are 4 states but there are only two energy levels with E = 3D/8 and
−13D/8. Therefore, Sz = ±3/2 is with p = 1/2(1 + e2βD) and Sz = ±1/2 is with
p = 1/2(1 + e−2βD).
(2) The easiest method is to use the Shannon formula:13

S = −2kB

[
1

2(1 + x)
log

1

2(1 + x)
+

x

2(1 + x)
log

x

2(1 + x)

]
= kB

{
log[2(1 + x)]− x

1 + x
log x

}
,

(6.2.5)
where x = e2βD.
(3) Setting x as above, we have

C = T
dS

dT
= −(2Dβ)

dS

d2Dβ
= −2Dβ

dx

d2Dβ

dS

dx
= −2Dβx

dS

dx
= kB(2Dβ)2 x

(1 + x)2
.

(6.2.6)
Therefore,

C = kB(D/kB)2/T 2. (6.2.7)

This implies D/kB = T0. That is, D is 0.18K.

2.3. [Vapor pressure of silicon]
The chemical potential µs of the atom in a solid is essentially given by the binding
energy ∆ of atom in the solid: µs = −∆. Obtain the formula for the equilibrium
vapor pressure of solid, and estimate the vapor pressure at room temperature of

13There are several ways to compute entropy. If you know probability explicitly, the Shannon
formula may be useful. In this case, you must not forget that the sum is over the elementary events.
The microcanonical way is probably the least useful in practice. When you compute S from the
canonical ensemble, use S = (E − A)/T with E being calculated by the Gibbs-Helmholtz relation
∂(A/T )/∂(1/T ) = −∂ logZ/∂β = E.
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silicon for which ∆ = 3eV.

Solution
This is a typical Physics 100 level question. We may assume that the gas is ideal,
so its chemical potential is given by µ = kBT log(n/nQ). The chemical potential of
the atom in the solid is −∆. Therefore the equilibrium condition (the identity of
chemical potentials in two phases) gives

n = nQe
−β∆ ⇒ p = kBTn (6.2.8)

We know m̂ = 28, so
nQ = 283/2 × 1030 ' 1.5× 1032. (6.2.9)

Therefore,

P = kBTnQe
−β∆ = 1.38× 10−23 × 300× 1.5× 1032e−3/0.026, (6.2.10)

= 4.8× 10−39 (Pa). (6.2.11)

2.4 [Specific heat]
Suppose that a (3D) classical mechanical system has the following Hamiltonian

H =
N∑
i=1

ak|pk + ck|s (6.2.12)

where ak (k = 1, · · · , N), s are positive constants, and ck are constant 3-vectors.
Without any explicit calculation compute the specific heat.

Solution
The partition function Z reads

Z =
V N

N !h3N

∏
k

∫
d3p e−βak|p+ck|s . (6.2.13)

Frist of all, ck may be ignored by shifting the integration ranges. You could use
the scaled variable λ defined by βakp

s = λs for each integral. However, the author
recommends you to use Dimensional Analysis.

A recommended solution begins here. βakp
s is dimensionless, so

[p] = [βak]
−1/s. (6.2.14)

On the other hand,

[Zh3N/V N ] = [p]3N ∝ [β−3N/s] = (kBT )3N/s. (6.2.15)
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Therefore, even the internal energy (the Gibbs-Helmholtz relation):

E =
∂βA

∂β
= −∂log β−3N/s

∂β
(6.2.16)

is independent of ak, so is C.
From the fact that ak is factored out, without any calculation you may conclude

that C is independent of ak.
Eq.(6.2.16) is correct, so you can proceed with this result, but let us proceed in

a more conventional way (although this is not a recommended approach). (6.2.13)
reads

Z =
V N

N !h3N

∏
k

(βak)
−3/s

∫
4πλ2e−λ

s

dλ ∝
∏
k

(βak)
−3/s. (6.2.17)

The Gibbs-Helmholtz relation immediately tells us that E is not dependent on ak.
E = 3NkBT/s and C = 3NkB/s.

The potential energy of a permanent electric dipole p is U = −p ·E in the electric
field E. Obtain the electric susceptibility of the system.

Solution
We must obtain the expectation value of the polarization P per unit volume of the
gas. In this case we ignore the interaction among gas particles, so the partition
function becomes a product of one particle partition functions. Furthermore, since
the translational motion of the particles has nothing to do with the polarization, we
have only to compute the canonical partition function for a single dipole:

z(E) =

∫
de eβpe·E =

∫
de eβpE cos θ, (6.2.18)

where e is the directional unit vector of the dipole moment with respect to the electric
field direction, E = |E|, and the angle between E and p (or e) is θ. The integration
is on the unit sphere and can be computed as

z(E) = 2π

∫
dθ sin θ eβpE cos θ = 2π

∫ 1

−1

dx eβpEx =
4π

βpE
sinh βpE. (6.2.19)

From the structure of z we can immediately see

〈p〉 = kBT
∂

∂E
log z(E) = pL(βpE)

E

E
(6.2.20)

where L(x) is the Langevin function

L(x) = coth x− 1

x
. (6.2.21)
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〈p〉 times the number of particle per volume n (= the number density) is the polar-
ization P = n〈p〉.

The correspondence to thermodynamics is as follows. −kBTN log z(E) is, as E
is written explicitly, not the Helmholtz free energy A(P ), but its Legendre transfor-
mation Φ(E) = A(P )− P ·E. That is,

dA = −SdT +E · dP , dΦ = −SdT − P · dE. (6.2.22)

Therefore,

P = − ∂

∂E
Φ(E) = kBTN

∂

∂E
log z(E), (6.2.23)

which is equivalent to (including the correct sign) (6.2.20).
To obtain the susceptibility (dielectric constant), we must differentiate P with

respect to E. It is a diagonal matrix proportional to the unit 3×3 matrix I as

ε = βp2NL′(βpN)I. (6.2.24)

2.6 [Internal degree of freedom]
There is a classical ideal gas of volume V consisting of N molecules whose inter-
nal degrees of freedom are expressed by a single (quantum-mechanical) harmonic
oscillator with a frequency ν. The frequency depends on the volume of the system
as

dlog ν

dlog V
= γ. (6.2.25)

(1) Obtain the pressure of the system.
(2) Obtain the constant pressure specific heat CP .

Solution
(1) The partition function is given by

Z = Z0ZI , (6.2.26)

where Z0 is the canonical partition function for the classical ideal gas, and ZI is the
partition function for the internal harmonic degree of freedom. You may use the
already computed results:

Z0 =
V N

N !

(
2mkBT

h2

)3N/2

(6.2.27)

and

ZI =

(
1

2 sinh βhν/2

)N
. (6.2.28)
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Therefore

P = − ∂A

∂V

∣∣∣∣
T

=
NkBT

V
+ PI , (6.2.29)

where

P1 =
∂kBT logZI

∂V

∣∣∣∣
T

= −NkBT
cosh βhν/2

sinh βhν/2

βh

2

∂ν

∂V
= −Nhν

2V
γ coth

βhν

2
. (6.2.30)

Notice that if we write the total energy of the internal degrees of freedom

U =
Nhν

2
coth

βhν

2
=
hν

2
+

hν

eβhν − 1
, (6.2.31)

then

PI = −γU
V
. (6.2.32)

That is,

P =
NkBT

V
− γU

V
. (6.2.33)

(2) The best way is to use enthalpy H = E + PV :

CP =
∂H

∂T

∣∣∣∣
P

. (6.2.34)

Again, you may use the results you know (you may assume there is only translational
and oscillatory degrees of freedom): the internal energy is

E =
3

2
NkBT +

Nhν

2
coth

βhν

2
. (6.2.35)

Therefore,

H =
5

2
NkBT + (1− γ)U. (6.2.36)

Use (6.2.31).

CP =
5

2
NkB + (1− γ)NkB

(
βhν

eβhν − 1

)2

eβhν . (6.2.37)

2.7 [Application of equipartition of energy]14

14original credit: B. Widom
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The internal motion of some ring puckering molecules (e.g., cyclobutanone) can be
described by the following Hamiltonian:

H =
p2

2m
+ ax4, (6.2.38)

where m is the effective mass of the oscillator and a is a positive constant. Obtain
the constant volume specific heat of this gas around the room temperature. Do not
forget the contribution of translational degrees of freedom, etc.

Solution
We use the equipartition of energy:

2

〈
p2

2m

〉
= kBT. (6.2.39)

and
4
〈
ax4
〉

= kBT. (6.2.40)

Therefore,

〈H〉 =
3

4
kBT. (6.2.41)

We must pay attention to the translational and rotational degrees of freedom. This
gives 3kBT . Therefore,

CV =
15

4
kB (6.2.42)

per molecule.

2.8. [Equipartition of energy for relativistic gas]
For a classical relativistic ideal gas show that the counterpart of the law of equipar-
tition of kinetic energy reads〈

1

2

mv2
x√

1− v2/c2

〉
=

1

2
kBT. (6.2.43)

Solution
The total energy of the particle ε is obtained from the Lorentz invariance p2−ε2/c2 =
−m2c2 as

ε = c
√
p2 +m2c2. (6.2.44)

We know the general relation to demonstrate the equipartition:〈
px
∂ε

∂px

〉
= 〈pxvx〉 = kBT. (6.2.45)
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Note that
pi =

mvi√
1− (v/c)2

, (6.2.46)

This concludes the demonstration.

2.9 [An equality about canonical ensemble]
Let Φ be the total potential energy of classical system. Show

〈∆Φ〉 = β
〈
(∇Φ)2

〉
. (6.2.47)

Here, the Laplacian and the nabla are understood as operators in the 3N-space.

Solution
Let H = K + Φ, where K is the total kinetic energy.

〈∆Φ〉 =
1

Z

∫
dΓ (div gradΦ)e−β(K+Φ),

=
1

Z

∫
dΓ div

(
e−βH∇Φ

)
− 1

Z

∫
dΓ∇Φ · ∇e−βH ,

= − 1

Z

∫
dΓ∇Φ · ∇e−βH = β〈(∇Φ)2〉.

The contribution from the boundary may be ignored thanks to the Boltzmann factor.

2.10 [Density operator for free particles: perhaps an elementary QM review]
The canonical density operator is given by

ρ =
1

Z
e−βH , (6.2.48)

where H is the system Hamiltonian and Z is the canonical partition function. Let
us consider a single particle confined in a 3D cube of edge length L. We wish to
compute the position representation of the density operator 〈x|ρ|x′〉 (x and x′ are
3D position vectors, and bras and kets are normalized).

Let U(β) = e−βH and H = p2/2m. There are two ways to compute 〈x|U(β)|x′〉:
A.
(1) Show that

∂

∂β
〈x|U(β)|x′〉 =

~2

2m
∆x〈x|U(β)|x′〉, (6.2.49)

where ∆x is the Laplacian with respect to the coordinates x.
(2) What is the initial condition (i.e., 〈x|U(0)|x〉)?
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(3) Solve the equation in (1) with the correct initial condition. You may use a
simple boundary condition assuming the volume is very large (and temperature is
not too low).
(4) Compute Z, using the result in (3). You may use (3) to study the finite volume
system as long as the temperature is not too low.

B.
We can directly compute 〈x|U(β)|x′〉 with the aid of the momentum representation
of U(β):

〈p|U(β)|p′〉 = e−βp
2/2mδ(p− p′).

(5) We use

〈x|U(β)|x′〉 =

∫
d3p d3p′〈x|p〉〈p|U(β)|p′〉〈p′|x′〉.

What is 〈x|p〉? You may assume the infinite volume normalization (i.e., the δ-
function normalization: 〈p|p′〉 = δ(p− p′)).
(6) Perform the integral in (5).

Solution
A(1) We immediately obtain

− d

dβ
U = HU, (6.2.50)

so its position representation is obtained as given. Notice that

〈x|H|x′〉 = − ~2

2m
∆xδ(x− x′). (6.2.51)

(2) U(0) = 1, so 〈x|U(0)|x〉 = δ(x−x′) (if you use the continuum approximation) or
= δx,x′ (if you honestly treat the finiteness of the system).
(3) This is a diffusion equation, so the solution may be obtained by looking up any
standard textbook; it is the Green’s function with the vanishing boundary condition
at infinity

〈x|U(β)|x′〉 =

(
mkBT

2π~2

)3/2

e−mkBT (x−x′)2/2~2 .

This clearly exhibits that quantum effect becomes important at low temperatures
(as can easily be guessed from the thermal wave length proportional to 1/

√
T ).

(4) Z = TrU(β), so

Z =

∫
d3x〈x|U(β)|x〉 =

∫
d3x

(
mkBT

2π~2

)3/2

= V

(
mkBT

2π~2

)3/2

.
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This is consistent with (2.2.3).

(5) |p〉 is an eigenket of H belonging to the eigenvalue p2/2m: H|p〉 = (p2/2m)|p〉.
Therefore,

− ~2

2m
∆x〈x|p〉 =

p2

2m
〈x|p〉.

The boundary condition is a periodic boundary condition. The equation is essentially
the harmonic oscillator equation, so the solution must be proportional to eipx/~. We
need a normalization condition:∫

d3xei(p−p
′)x/~ = h3δ(p− p′),

so

〈x|p〉 =
1

h3/2
eipx/~.

(6)

〈x|U(β)|x′〉 =

∫
d3p 〈x|p〉e−βp2/2m〈p|x′〉 =

∫
d3p e−βp

2/2m+i(x−x′)p/~.

This is a simple Gaussian integral, so indeed the answer agrees with (3) above.

2.11 [Density operator for a spin system]
Let ρ be the density operator of a single 1/2 quantum spin system whose Hamilto-
nian15 is given by H = −γσ ·B, where σ is (σx, σy, σz) in terms of the Pauli spin
operators.
(1) Obtain the matrix representation of ρ that diagonalizes σz.
(2) Find the average of σy.
(3) Obtain the matrix representation of ρ that diagonalizes σx.

Solution
(1) We take the direction of B to be the z axis.

ρ =
1

C

(
eβγB 0

0 e−βγB

)
, (6.2.52)

where C is the normalization constant: the trace of the matrix in the above formula,
so C = 2 cosh βγH.

If you wish to do the original problem we need the following calculation. Notice
that (n · σ)2 = I, where n is a unit vector.

eγB·σ =
∞∑
n=0

1

(2n)!
(γB)2n +

∞∑
n=0

1

(2n+ 1)!
(γB)2n+1B

B
·σ = cosh γB +

B

B
·σ sinh γB.

(6.2.53)

15Precisely speaking, this is te interaction Hamiltonian of the system with the magnetic field.
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(2)

〈σy〉 = Trσyρ = Tr

(
0 ieβγB

−ie−βγB 0

)
= 0. (6.2.54)

This should be obvious without any calculation.

(3) With the basis that diagonalizes σz we have

σx =

(
0 1
1 0

)
. (6.2.55)

Therefore

σx

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
=

(
1 0
0 −1

)(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
. (6.2.56)

That is, the following orthogonal (actually, unitary as well) matrix:

U =

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
(6.2.57)

diagonalizes σx as U∗σxU . Therefore,

U∗
(

0 ieβγB

−ie−βγB 0

)
U =

1

2

(
1 − tanh βγB

− tanh βγB 1

)
. (6.2.58)

2.12 [Legendre vs Laplace]
Consider an ideal gas consisting of N atoms under constant pressure P and temper-
ature T .
(1) What is the most convenient partition function and the thermodynamic poten-
tial? Compute the partition function. You may use the ideal gas canonical partition
function.
(2) Obtain the enthalpy of the system.

Solution
(1) We should use the pressure ensemble:

Q =

∫
dV Z(T, V )e−βPV . (6.2.59)
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This is related naturally to the Gibbs free energy: A + PV = G = −kBT logQ.
(Since N � 1, you need not worry about ±1 in N .)

Q =

∫ ∞
0

dV
1

N !

(
2πmkBT

h2

)3N/2

V Ne−βPV =

(
2πmkBT

h2

)3N/2

(βP )−N . (6.2.60)

This gives

G = −NkBT log

(
2πmkBT

h2

)3/2

+NkBT log
P

kBT
, (6.2.61)

which is

G = A− kBT logN ! +NkBT log
PV

kBT
= A+NkBT = A+ PV. (6.2.62)

Consistent!
(2) We can use an analogue of the Gibbs-Helmholtz relation

H =
∂G/T

∂1/T
= −∂logQ

∂β
=

5

2
NkBT. (6.2.63)

Thermodynamically, H = E + PV = E + NkBT . Consistent. This is of course
consistent with the constant pressure specific heat.

2.13 [Constant magnetic field ensemble]
The following situation is the same as 1.18: N lattice sites have spins of S = 1 (in
the term 3P ), and the spin Hamiltonian has the following form:

H = DS2
z . (6.2.64)

(1) Consider this as the constant magnetic field (B) ensemble (also constant T is
assumed), and construct the corresponding generalized canonical partition function.
The magnetization is given by M = µ

∑
Szi.

(2) Compute the magnetization as a function of the magnetic field and temperature.

Solution
(1) Since

dS =
1

T
dE +

P

T
dV − B

T
dM + · · · , (6.2.65)

the generalized partition function reads

ZH = (1 + e−βD+βµB + e−βD−βµB)N . (6.2.66)
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(2) The resulting generalized Massieu function

ψ = kB logZH (6.2.67)

satisfies

dψ = −Ed
(

1

T

)
+Md

(
B

T

)
+ · · · . (6.2.68)

Therefore,

M =
∂ψ

∂(B/T )
= N

µ(e−βD+βµB − e−βD−βµB)

1 + e−βD+βµB + e−βD−βµB
= N

sinh βµB

e−βD/2 + cosh βµB
. (6.2.69)

2.14 [Absorption of mixed ideal gas, or convenient partition function]
There is a gas mixture consisting of two distinct atomic species A and B. The mix-
ture is an ideal gas and the partial pressures of X is pX(X = A or B). The gas is
in equilibrium with an adsorbing metal surface on which there are adsorption sites.
Atom X adsorbed at the site is with energy −EX on the average relative to the one
in the gas phase, where X = A or B. Each surface site can accommodate at most
one atom. Assume that [Hint: I assume that you know how to calculate the chemical
potentials of the atoms, knowing the molecular weights.]
(1) Write down the ‘partition function’ (use the most convenient one) for the single
site.
(2) Obtain the average surface concentration nX (X = A or B) of atoms A and B.
(3) Under a given (partial) pressures of A and B nE : nA : nB = 1 : 1 : 18 (here E
means empty). Find the maximum concentration nA obtainable with changing only
the partial pressure of B. (UIUC Qual F95).

Solution
(1) Each adsorption site has three states, empty, occupied by A and occupied by B.
Therefore, for a single site the grand partition function function reads

Ξ = 1 + eβ(EA+µA) + eβ(EB+µB), (6.2.70)

where µX is the chemical potential of X that can be written as

µX = kBT log(βpX/nQX) = kBT log(pX/pQX) (6.2.71)

Here, nQX is the ‘quantum density’ depending on T and the mass (see 1.4.5), and
pQX = nQXkBT may be called the ‘quantum pressure.’ Therefore,

Ξ = 1 + pAe
βEA/pQA + pBe

βEB/pQB. (6.2.72)
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You need not compute nQ that is a matter of simple calculation as in 1.4.5.
(2) As seen in 6-2 we may write

d(kBT log Ξ) = SdT + pdV +NAdµA +NBdµB + · · · , (6.2.73)

so if we apply this to each site NX may be interpreted as nX :

nA =
∂(kBT log Ξ)

∂µA
=

pAe
βEA/pQA

1 + pAeβEA/pQA + pBeβEB/pQB
, (6.2.74)

nB =
pBe

βEB/pQB
1 + pAeβEA/pQA + pBeβEB/pQB

, (6.2.75)

nE =
1

1 + pAeβEA/pQA + pBeβEB/pQB
, . (6.2.76)

(3) It should be intuitively obvious that A absorption is facilitated if there is no
competition. Hence, the maximum concentration should be accomplished by pB = 0.
Now, nA = nE for a given pB, so we must conclude that pAe

βEA/pQA = 1. Therefore,
the max conc must be 0.5.

2.15 [Absorption on catalytic surface]
There are N absorption centers on the catalyst surface exposed to a gas (ideal gas)
of a certain chemical. Each absorption center can accommodate at most two parti-
cles. The partition function for the single particle absorption state is a1 and the two
particle absorption state is a2.
(1) Write down the single site (grand) partition function.
(2) Let a1 = 0 (i.e., absorption is possible only when a pair is formed). The average
number of particles absorbed on the catalytic surface is n0. Find the chemical po-
tential of the particles.
(3) Now, the pressure of the chemical is doubled (with the temperature kept con-
stant) and the average number of particles absorbed on the catalytic surface is n1.
Find n1 in terms of N and n0. a1 is still assumed to be zero.
(4) If a1 > 0, does the number of absorbed molecules increase from n0 in (2) (i.e.,
the a1 = 0 case)? Demonstrate your answer and give a brief physical explanation.

Solution
(1)

Ξsingle = 1 + a1e
βµ + a2e

2βµ. (6.2.77)

(2) The average particle numbers in the system (= the catalytic surface; notice
that the gas phase is treated as a chemical reservoir) is obtained by ∂ log Ξ/∂(βµ)
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(Ξ = ΞN
single):

n0 = N
2a2x

2

1 + a2x2
, (6.2.78)

where x = eβµ (called fugacity). Therefore, we have two possibilities, but x cannot
be negative, since βµ ∈ R:

x =

√
n0/N

(2− n0/N)a2

. (6.2.79)

Therefore,

µ = kBT log

√
n0/N

(2− n0/N)a2

. (6.2.80)

(3) If the pressure is doubled, the fugacity doubles. Therefore, (6.2.79) tells us
that

2

√
n0/N

(2− n0/N)a2

=

√
n1/N

(2− n1/N)a2

. (6.2.81)

Solving this for n1, we get

n1 =
8n0

2 + 3n0/N
. (6.2.82)

(4) Equation (6.2.78) now reads

n = N
a1x+ 2a2x

2

1 + a1x+ a2x2
. (6.2.83)

This may be written as

n = N

(
1 +

a2x
2 − 1

1 + a1x+ a2x2

)
. (6.2.84)

a1x > 0 implies that if a2x
2 > 1 (i.e., n/N > 1), then increasing a1 (that is, favoring

monomers) decreases the number of the absorbed molecules; otherwise, opposite.
Physically (or intuitively), this should be natural, because if monomers are fa-

vored when dimers are also sufficiently favored, they compete the sites. Thus, the
double occupancy fraction decreases, so does the total number of absorbed molecules.

2.16 [Gas under a weight]
Suppose there is a vertical cylindrical container of cross section s whose top wall is
a movable piston of cross section s with mass M . The piston is assumed to move
only in the vertical direction (z-direction) and feels gravity. The container contains
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N (� 1) classical noninteracting particles with mass m.
(1) Write down the Hamiltonian of the gas + piston system (write the piston vertical
momentum as pM).
(2) Obtain the pressure P of the gas, and write the Hamiltonian in terms of P and
the volume of the gas V = sz, where z is the position of the piston from the bottom
of the container.
(3) Now, the mechanical variables are the phase variables of the gas system and the
piston momentum pM and z = V/s. Compute the canonical partition function of
the whole system.
(4) You should have realized that the calculation in (3), apart from the unimportant
contribution in the thermodynamic limit of the piston momentum, is the calculation
of the pressure ensemble. [That is, the heavy piston acts as a constant pressure
device.] Obtain the equation of state of the gas in the cylinder (a trivial question).

Solution
(1)

H =
N∑
i=1

pi
2

2m
+
p2
M

2M
+Mgz. (6.2.85)

(2) From the force balance, we have

Ps = Mg ⇒ PV = Mgz. (6.2.86)

Therefore, (6.2.85) can be rewritten as

H =
N∑
i=1

pi
2

2m
+
p2
M

2M
+ PV. (6.2.87)

(3)

Z =
1

N !h3N+1

∫
dNpdNqdpMdz e

−βH , (6.2.88)

=
1

N !

(
2πmkBT

h2

)3N/2(
2πMkBT

h2

)1/2 ∫
V Ne−βPV

dV

s
(6.2.89)

=

(
2πmkBT

h2

)3N/2(
2πMkBT

h2

)1/2

(βP )−N . (6.2.90)

Notice that this is almost the pressure ensemble for the ideal gas.
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(4) We know (see 2.12) the above Z is proportional to the pressure ensemble parti-
tion function Q:

Z = Q

(
2πMkBT

h2

)1/2

, (6.2.91)

where

Q =

(
2πmkBT

h2

)3N/2

(βP )−N . (6.2.92)

We know from the Laplace-Legendre correspondence that G = −kBT logQ:

G = −NkBT log

(
2πmkBT

h2

)3/2

+NkBT log
P

kBT
, (6.2.93)

dG = −SdT + V dP , so

V =
∂G

∂P

∣∣∣∣
T

=
NkBT

P
. (6.2.94)

This is the equation of state as expected. The enthalpy of the gas can be obtained
by the Gibbs-Helmholtz relation

H =
∂(G/T )

∂(1/T )

∣∣∣∣
P

=
5

2
NkBT. (6.2.95)

2.17 [Ideal gas with the aid of grand canonical ensemble]
Let us study the classical ideal gas with the aid of the grand canonical ensemble. Let
µ be the chemical potential.
(1) Compute the grand canonical partition function for a monatomic ideal gas. As-
sume that the mass of the atom is m.
(2) Find the internal energy and the pressure as a function of chemical potential µ.
(3) Suppose the expectation value of the number of particles is N . How is the chim-
ical potentialdetermined?
(4) Are the results obtained above (especially the results of (2)) consistent with what
you already know?

Solution
(1) By definition

Ξ =
∞∑
N=0

1

N !

(
2πmkBT

h2

)3N/2

V NebµN = exp

[(
2πmkBT

h2

)3/2

V ebµ

]
(6.2.96)
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(2) From this we get

P =
kBT

V

(
2πmkBT

h2

)3/2

V eβµ. (6.2.97)

Since
d(PV/T ) = −Ed(1/T ) + (P/T )dV +Nd(µ/T ), (6.2.98)

E = T 2 ∂kB log Ξ

∂T

∣∣∣∣
µ/T,V

=
3

2
kBT

(
2πmkBT

h2

)3/2

V eβµ. (6.2.99)

Noice that this is equal to 3PV/2.
(3) Since

N =
1

kB

∂

∂βµ

PV

T
=

∂

∂βµ
log Ξ =

(
2πmkBT

h2

)3/2

V eβµ, (6.2.100)

we obtain

µ = kBT log
N

V

(
2πmkBT

h2

)−3/2

. (6.2.101)

The result agrees with the result obtained in the text. If n� nQ (i.e., the classical
case without overlapping of de Broglie wave packets), µ deviates verymuch to the
negative side (µ� 0).
(4) Thus, as has already been stated at various places, the results of the grand canon-
ical ensemble completely reproduces the properties of the classic ideal gas.

2.18 [To obtain the microcanonical partition function with the aid of Laplace in-
verse transformation]
Starting from

Z =
V N

N !

(
2πmkBT

h2

)3N/2

, (6.2.102)

obtain the microcanonical partition fucntion w(E, V ) (with the aid of Laplace inverse
transformation).

Solution

w(E, V ) =
1

2πi

∫ β∗+i∞

β∗−9∞
Z(β)eβEdβ. (6.2.103)

If you can demonstrate the following formula, you may use it:

1

2πi

∫ s′+i∞

s′−i∞

esx

xk+1
ds =

xk

Γ(k + 1)
. (6.2.104)



6.2. PROBLEMS FOR CHAPTER 2 391

If k is an integer, this is almost self-evident with the aid of Goursat’s theorem, but
in our case k need not be an integer.

2.19 [Equivalence of canonical and grand canonical ensembles]
Let us check the equivalence of grand canonical and canonical ensembles. That is,
if we compute thermodynamic quantities in the thermodynamic limit, both give the
same answers. Even experimentalists should look at this proof at least once in their
lives.

The grand partition function Ξ(T, µ) and canonical partition function Z(T,N)
(the ground state energy is taken to be the origin of energy) are related as

Ξ(T, µ) =
∞∑
N=0

Z(T.N)eβµN .

Let us assume that the system consists of N (which is variable) particles in a box
of volume V and the total interaction potential Φ among particles is bounded from
below by a number proportional to the number of particles N in the system: Φ ≥
−NB, where B is a (positive) constant. (The system Hamiltonian generally has the
form of H = K + Φ, where K is the kinetic energy.)

Through answering the following almost trivial questions, we can demonstrate the
ensemble equivalence (rigorously).
(1) Show that there is a constant a such that

Z(T,N) ≤
(
aV

N

)N
. (6.2.105)

Actually, show (classically)

Z(T,N) ≤ Z0(T,N)eβNB,

where Z0 is the canonical partition function for the ideal gas (e.g., (1.7.3)). This is
just eq.(6.2.105) above
(2) Show that the infinite sum defining the grand partition function actually con-
verges. The reader may use eq.(6.2.105) and N ! ∼ (N/e)N freely.
(3) Choose N0 so that

∞∑
N=N0

Z(T,N)eβµN < 1.

Show that this N0 may be chosen to be proportional to V (that is, N0 is at most
extensive).
(4) Show the following almost trivial bounds:

max
N

Z(T,N)eβµN ≤ Ξ(T, µ) ≤ (N0 + 1) max
N

Z(T,N)eβµN .
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(5) We are almost done, but to be explicit, show that PV/NkBT obtained thermo-
dynamically from the canonical partition function and that directly obtained from
the grand partition function agree.

Solution
(1) The canonical partition function reads

Z(T,N) =
1

N !

∫
dΓe−β(K+Φ) ≤ 1

N !

∫
dΓe−βKeβBN = Z0(T,N)eβNB, (6.2.106)

where Z0 is the canonical partition function of the ideal gas. We know the kinetic
part may be factorized into the individual particle contributions, and N ! ∼ (N/e)N ,
so there must be a satisfying the inequality.
Remark. The estimate is also correct quantum mechanically, so our proof being
checked here is quite general.
(2) The grand partition function is a positive term series, and each term is bounded
by the estimate in (1), so

Ξ(T, µ) =
∞∑
N=0

Z(T.N)eβµN ≤
∞∑
N=0

(
aV

N

)N
eβµN =

∞∑
N=0

(
aV eβµ

N

)N
.

That is, with the aid of Stirling’s formula,

Ξ(T, µ) ≤
∞∑
N=0

1

N !
(aV eβµ−1)N = exp

(
aV eβµ−1

)
.

The grand canonical partition function is a sum of positive terms, and bounded from
above, so it must converge to a positive number.

For many realistic systems the interaction potentials have sufficiently hard repul-
sive cores, so the convergence is much quicker.
(3) This is the tail estimation to majorize it. Any crude choice will do, so we first
‘overestimate’ the sum beyond N0 as

∞∑
N=N0

Z(T,N)eβµN ≤
∞∑

N=N0

1

N !
(aV eβµ−1)N '

∞∑
N=N0

(
aV eβµ

N

)N
(6.2.107)

Here, Stirling’s formula has been used. For example, if we assume

aV eβµ

N0

< 0.1, (6.2.108)
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then
∞∑

N=N0

Z(T,N)eβµN <

∞∑
N=N0

0.1N . (6.2.109)

The sum on the RHS is obviously bounded by 0.2 (by 1/9, at worst N0 = 1). Thus,
the choice (6.2.108) is enough. Such N0 can clearly be chosen proportional to V .
(4) The grand partition function is a sum of positive terms, so it must be larger than
any one term, especially larger than the largest term, in it:

max
N

Z(T,N)eβµN ≤ Ξ(T, µ). (6.2.110)

Notice that the largest term cannot be less than 1, because the N = 0 term is never
smaller than 1.16 To obtain the upper bound Ξ is divided into the sum up to N0− 1
and that beyond N0 − 1:

Ξ(T, µ) =

N0−1∑
N=0

Z(T,N)eβµN +
∞∑

N=N0

Z(T,N)eβµN . (6.2.111)

The second term on the right hand side is bounded by 1, which is not larger than the
maximum term in the sum, so it is bounded by maxN Z(T,N)eβµN . Therefore,

Ξ(T, µ) ≤
N0−1∑
N=0

Z(T,N)eβµN + max
N

Z(T,N)eβµN . (6.2.112)

The sum in the above inequality must be less than the number of terms × the largest
term:

N0−1∑
N=0

Z(T,N)eβµN ≤ N0 max
N

Z(T,N)eβµN . (6.2.113)

Therefore, we have

Ξ(T, µ) ≤ (N0 + 1) max
N

Z(T,N)eβµN . (6.2.114)

Combining this with (6.2.110) we get the desired result.

16Notice that Z(T, 0) ≥ 1: recall

Z(T,N) =
∑

w(E,N)E−βE ,

and N = 0 term is of course included, which is 1. This means maxZ(T,N)eβµN ≥ 1.
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(5) The grand canonical ensemble asserts

PV

NkBT
=

1

N
log Ξ(T, µ).

From the above inequality

1

N
log
(

max
N

Z(T,N)eβµN
)
≤ PV

NkBT
≤ 1

N
log
(

max
N

Z(T,N)eβµN
)

+
1

N
log(N0 + 1).

Notice that
1

N
log max

N
Z(T,N)eβµN =

1

N
max
N
{−βA+ βµN}

is a Legendre transformation of A (recall dA = −SdT − PdV + µdN or A =
−PV + µN). Therefore, minN{A− µN} = −PV . This is the PV obtained thermo-
dynamically with the aid of the canonical ensemble results. That is,(

PV

NkBT

)
th

≤ PV

NkBT
≤
(

PV

NkBT

)
th

+
1

N
log(N0 + 1).

log(N0 +1) is bounded by a number proportional to log V as demonstrated in (3), so
in the N →∞ limit the rightmost term behaves at worst as (logN)/N , and may be
ignored. Therefore, the pressure obtained thermodynamically from the Helmholtz
free energy (obtained by the canonical ensemble) and the pressure directly obtained
statistical mechanically with the aid of the grand canonical ensemble agree:(

PV

NkBT

)
th

=
PV

NkBT
.

2.20 [Legendre transformation in convex analysis]
(1) We know that −S is a convex function of internal energy E. Using the general
property of the Legendre transformation, show that Helmholtz free energy A is con-
vex upward as a function of T . You may assume any derivative you wish to compute
exists.
(2) When a phase transition occurs, the curve of S(E) has a linear part as a function
of E (that is, E can change under constant T = Te). Then, A as a function has a cusp
at T = Te (that is, all the states corresponding to the flat part is collapsed to a point,
the one-to-one nature of the Legendre transformation can be lost, if there is a phase
transition). To illustrate this point, let us consider the following toy function

f(x) =


2 tanh(x+ 1)− 2 for x < −1,

2x for − 1 ≤ x ≤ 1,
(x− 1)2 + 2x for x > 1.
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Sketch its Legendre transform f ∗(α) = supx[αx− f(x)]. [Do not try to compute the
explicit formula.]

Solution
(1) −S is a convex function of E, so that it is also a convex function of −E. We
know

−A
T

= sup
T

[−E/T − (−S)]. (6.2.115)

Therefore, −A/T is a convex function of 1/T . A dirty way to proceed is to perform
differentiation twice.

d(−A/T )

d1/T
= −A− 1

T

dA

d1/T
= −A+ T

dA

dT
. (6.2.116)

Therefore,

d2(−A/T )

d(1/T )2
= −T 2 d

dT

(
−A+ T

dA

dT

)
= −T 3d

2A

dT 2
> 0 (6.2.117)

Therefore, A is a concave function of T .
(2) We consider the Legendre transformation

f ∗(α) = sup
x

[αx− f(x)] (6.2.118)

For α > 2 this is easy, and we obtain f ∗(α) = α2/2− 1. Between −2 and 2 of x the
slope of f does not change and is 2, so α = 2, which means f ∗(2) = 0 is a cusp. For
α < 2, analytic calculation is not wise. We know α cannot be negative, and in the
α→ 0 limit, f ∗ → 4, because limx→−∞ f(x) = −4. Since f ∗ is convex, we can easily
sketch its overall shape as below:

Remember that convex functions are continuous.

2.21 [Information]
Suppose there are two fair dice. We assume that one dice is red and the other is
green (that is, distinguishable). Let us record the numbers that are up in this order
as (n,m) (n,m ∈ {1, 2, · · · , 6}).
(1) To know a particular pair of numbers (a, b) unambiguously what information (in
bits) do you need?
(2) You are told that the sum a+ b is not less than 5. What is the information you
gain from this message?
(3) Next, you are told, one of the dice shows the face less than 3. What is the
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1 1

2

2

4

4

_

_

_

2

4

2

2
x

α

Left: f , Right: f ∗.

information you gain? (You must know the info obtained from (2) already.)
(4) Now, you are told that actually, the one of the dice in (3) is the red one. What
is the information carried by this message?
(5) Finally, you are told that face pair is actually (2, 5). What is the information in
this final statement?

Solution
(1) There are 36 distinguishable states and they are all equally probable. Therefore,
the total uncertainty is log2 36 = 5.16 bits, or the surprisal you have when you are
told, say, (1, 1) actually happens is 5.16 bits. That is, you need 5.16 bits of informa-
tion to pinpoint a particular elementary event.
(2) There is no simpler way than actually to list all elementary states up: (1,1), (1,2),
(1,3), (2,1), (2,2), (3, 1). These 6 states are excluded. Remaining are 30 states, all
equally probably, so logs 30 = 4.91 bits is the uncertainty. That is, 5.16−4.91 = 0.25
bits is the information in the message.
(3) Red = 1: Green = 4, 5 or 6
Red = 2: Green = 3, 4, 5 or 6.
Therefore, there are 7× 2 = 14 states remaining. This uncertainty is log2 14 = 3.81.
We had 4.91 bits of uncertainty, so this message must have conveyed 1.1 bits.
(4) Obviously, 1 bit.
(5) There is no uncertainty remaining, so 2.81 bits (this is, needless to say, the sur-
prisal of an event of probability 1/7)

2.22 [Variational principle for free energy (classical case)17]
Let H = H0 + V be a system Hamiltonian.
(1) Show thatq

A ≤ A0 + 〈V 〉0,

17This holds quantum mechanically as well, but the proof is not this simple.
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where A is the free energy of the system with H and A0 that with H0. 〈 〉0 is the
average over the canonical distribution of the system with the Hamiltonian H0. The
inequality is (sometimes) called the Gibbs-Bogoliubov inequality.
(2) We can use the inequality to estimate A. If we can compute A0 and 〈V 〉0 (that is
the free energy for the system with H0 and the average with respect to this system),
then we can estimate the upper bound of A. Its minimum may be a good approx-
imation to A. This is the idea of the variational approximation. Let us study an
unharmonic oscillator with the Hamiltonian

H =
1

2m
p2 +

1

2
kx2 +

1

4
αx4,

where m, k and α are positive constants. Let us define

H0 =
1

2m
p2 +

1

2
Kx2.

Choose K to obtain the best estimate of A (you need not compute the estimate of
A; it is easy but messy). You may use all the available results in the text.

Solution
(1)

〈e−βV 〉0 =
1

Z0

∫
dΓe−βV e−βH0 =

Z

Z0

= e−β(A−A0).

Therefore, with the aid of Jensen’s inequality

e−β〈V 〉0 ≤ e−β(A−A0).

That is, we are done.
(2) We know

A0 = kBT log

[
~
√
K/m

kBT

]
and (with the aid of 〈x4〉0 = 3〈x2〉20 and equipartition of energy)〈

1

4
αx4

〉
0

=
3α

4K2
(kBT )2.

That is,

A ≤ kBT log

[
~
√
K/m

kBT

]
+

1

2
(k/K − 1)kBT +

3α

4K2
(kBT )2.
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Minimizing the right hand side wrt K, we obtain

1

2K
− k

2K2
− 3α

8K3
kBT = 0.

If α = 0 clearly we get the right answer K = k. Solving this, we obtain

K =
1

2

(
k +

√
k2 + 3αkBT

)
.

2.23 [Gibbs-Bogoliubov’s inequality (quantum case)]18

Gibbs-Bogoliubov’s inequality

A ≤ A0 + 〈H −H0〉0 (6.2.119)

holds in quantum statistical mechanics as well.
(1) Demonstrate Peierls’ inequaltiy:

Tre−βH ≥
∑
i

e−〈i|H|i〉, (6.2.120)

where {|i〉} is an arbitrary orthonormal basis.
(2) Let {|i〉} be the orthonormal basis consisting of the eigenstates fo H0. Then,

e−βA ≥
∑
i

e−β〈i|H|i〉 = e−βA0

∑
i

eβ(A0−〈i|H0|i〉)e−β〈i|(H−H0)|i〉. (6.2.121)

Show Gibbs-Bogoliubov’s inequality with the aid of Jensen’s inequality.
Soln.
(1) We need Klein’s inequality: Let f be convex C1. Then,

Tr[f(ρ)− f(σ)− (ρ− σ)f ′(ρ)] ≥ 0. (6.2.122)

Let ρ|x〉 = c|x〉 and σ|y〉 = y|y〉.

Tr[f(ρ)− f(σ)− (ρ− σ)f ′(ρ)] =
∑
x

〈x|[f(ρ)− f(σ)− (ρ− σ)f ′(ρ)]|x〉 (6.2.123)

=
∑
x

〈x|

[
f(x)−

∑
y

|y〉f(y)〈y| − (x−
∑
y

|y〉y〈y|)f ′(x)

]
|x〉

(6.2.124)

18M D Girardeau and R M Mazo, “Variational methods in statistical mechanics,”



6.2. PROBLEMS FOR CHAPTER 2 399

Notice that
∑

x,y〈x|y〉〈y|x〉 = 1, so

Tr[f(ρ)− f(σ)− (ρ− σ)f ′(ρ)] =
∑
x

|〈x|y〉|2[f(x)− f(y)− (x− y)f ′(x)] (6.2.125)

2.24 (1) For any density operator P

A ≤ TrP (H + kBT logP ), (6.2.126)

where A is the free energy for the system whose hamiltonian is H.
(2) Suppose P is the canonical density operator P = eβ(A0−H0) for a system with the
Hamiltonian H0. Show that the above inequality is jsut Gibbs-Bogoliubov’s inequal-
ity.

2.25 [Convexity of free energy] (Ruellle)

A[
∑

λiHi] ≥
∑

A[λiHi]. (6.2.127)

Soluton
Hölder + Peierls proves this.

2.26 [Thermodynamic perturbation theory]
Suppose the system Hamiltonian is given as H = H0 + εH1, where ε is a (small)
constant. Demnonstratet the following expansion formula:

A = A0 + ε〈H1〉0 −
1

2
βε2〈(H1 − 〈H1〉0)2〉0 + · · · , (6.2.128)

where A is the free energy of the system, A0 is the free energy in case H1 = 0, and 〈
〉0 is the expectation with respect to the canonical distribution with the Hamiltonian
H0.

2.27 [Jarzynski’s equality].19

A single stranded DNA with a certain binding protein is stretched slowly until the
protein dissociates from the DNA. Then, the length of the DNA is returned slowly
to the rather relaxed state where the binding of the molecule does not affect the
DNA tension. The work W dissipated during the cycle is measured at 300K and the
experimental results were as follows:

19Inspired by Rustem Khafizov and Yan Chemla’s experiment on SSB. The numbers are only
fictitious. although the magnitudes are realistic.
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W in pNnm number of times βW e−βW

78-82 4 19.3 4.04× 10−9

83-87 15 20.5 1.21× 10−9

88-92 7 21.74 3.62× 10−10

93-97 4 22.94 1.082× 10−10

98-102 1 24.15 3.23× 10−11

What is the best estimate of the (Gibbs) free energy change due to binding of the
protein in the relaxed state of the single stranded DNA? How is your estimate dif-
ferent from the simple average 〈W 〉?
Solution
Notice that kBT = 4.14pNnm. e−βW is written in the above table. Thus,∑

e−βW = 373.1× 10−10 ⇒
〈
e−βW

〉
= 1.2× 10−9 (6.2.129)

That is, our estimate of ∆A is 85.0 pNnm. If we directly average the result, we
obtain 87.4 pNnm. Of course, we have ‘confirmed’ the second law 〈W 〉 ≥ ∆A.

Although we wrote A in the above, its definition is complicated.

2.28 [Fluctuation and spring constant]20

Inside the F1ATPase is a rotor γ to which a long actin filament (it is a straight stiff
bar of length 30 nm) is perpendicularly attached. Thus, the filament swings back
and forth when the ATPase is waiting for an ATP molecule.
(1) The root mean square angle fluctuation of the stiff filament was 30 degrees at
290K. If the temperature is raised by 10%, by what percentage will the angular
fluctuation change? Assume that the molecular structure is not affected by this tem-
perature change.
(2) What is the torsional spring constant of this rotor captured by the surrounding
ring?
(3) Now, adding an appropriate polymers to the ambient solution, the effective vis-
cosity of the solution is doubled. What is the mean square angle fluctuation of the
filament? You may assume that the polymers do not affect the ATPase itself.

Solution
(1) Suppose θ is the angular deviation around the equilibrium direction. Then, the
torsional spring constant k reads

τ = kθ, (6.2.130)

20If you wish to see the structure of the ATPase or to learn about how you can be alive, see K.
Kinosita, K. Adachi, and H. Itoh, “Rotation of F1ATPase: how an ATP-driven molecular machine
may work,” Ann. Rev. Biophys. Biomol. Struct., 33, 245 (2005).
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where τ is the torsion. Since, k−1 is the ‘susceptibility’ of θ against τ , the fluctuation-
response relation tells us

k−1 =
∂θ

∂τ

∣∣∣∣
T

= β〈(δθ)2〉. (6.2.131)

That is,
〈(δθ)2〉 = kBT/k. (6.2.132)

Since we may assume k does not depend on T , the fluctuation should change by
about 5%.
(2) You must measure the angle in radians.

k = 1.382× 10−23 × 290/(π/6)2 = 1.46× 10−20 (6.2.133)

The unit is J/rad. Is it reasonable? It is about 15 pNnm/rad, a reasonable value.
(3) No change. The formula does not depend on the viscosity, so the amplitude of
the fluctuation never changes. This is true however gooey the solution is. It is true
that the oscillation becomes slow, but then small fluctuations can be accumulated
to a size as large as when the viscosity is very low.

2.29 [Thermodynamic fluctuations]
(1) Suppose X and y are nonconjugate pair with respect to energy, X extensive and
y intensive. Prove that 〈δXδy〉 = 0.
(2) Let X and x be a conjugate pair (wrt energy). Show 〈δXδx〉 = kBT .
(3) Express 〈δµ2〉 in terms of a single thermodynamic derivative. The system is as-
sumed to be described in terms of S, V,N (or their conjugate variables).
(4) Show with the aid of grand partition function that

kBT
2 ∂E

∂T

∣∣∣∣
µ,V

= 〈δE2〉 − µ〈δEδN〉.

(5) Let X be an extensive quantity. What can you conclude about 〈δSδX〉? The
result is pedagogically suggestive, because entropy fluctuation means spatially local
heat transport: that is, local temperature change.

Solution
(1) Recall that you can choose any combination of variables as independent variables
as long as one variable is chosen from each conjugate pair {X, x}. We know 〈δXiδXj〉,
so in this case, we should use the all extensive independent variable set.

〈δXδy〉 =

〈
δX
∑
Y

∂y

∂
∑

Y

Y δY

〉
= kBT

∑
Y

∂Y

∂x

∂y

∂Y
= kBT

∂y

∂x
= 0.
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In more detail for those who are skeptic:

dx =
∑
j

∂x

∂Xj

∣∣∣∣
X1···X̌j ···Xn

dXj, (6.2.134)

where X̌j implies to remove the variable under the check mark. Therefore,

∂xi
∂xk

∣∣∣∣
x1···x̌k···xn

=
∑
j

∂xi
∂Xj

∣∣∣∣
X1···X̌j ···Xn

∂Xj

∂xk

∣∣∣∣
x1···x̌k···xn

. (6.2.135)

We put (6.2.134) into 〈δXδy〉 (regarding X is a representative of {Xj} and y that
of {xk} (the derivatives are mere constants, so you can take them out of the average
symbol). Now, (6.2.135) tells you what you want.

(2)

〈δXδx〉 =

〈
δX

∂x

∂Y
δY

〉
= kBT

∑
Y

∂Y

∂x

∂x

∂Y
= kBT.

(3) Taking into account of (1) above, we should choose µ, S, V as independent vari-
ables.

δ2S = − 1

2T
(δNδµ+ · · ·) = − 1

2T

∂N

∂µ

∣∣∣∣
S,V

δµ2 + · · · .

Therefore,

P (δµ · · ·) ∝ exp

{
− 1

2kBT

(
∂N

∂µ

∣∣∣∣
S,V

δµ2 + · · ·

)}
.

That is,

〈δµ2〉 = kBT
∂µ

∂N

∣∣∣∣
S,V

.

(4) Since

Ξ =
∞∑
N=0

ZN(T )eβµN =
∞∑
N=0

∫
dE wE,Ne

−βE+βµN ,

〈E〉 =
1

Ξ

∞∑
N=0

∫
dE wE,NEe

−βE+βµN .
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Therefore,

d〈E〉
dβ

=
1

Ξ

∞∑
N=0

∫
dEWE,NE(µN − E)e−βE+βµN

− 1

Ξ2

∞∑
N=0

∫
dE wE,NEe

−βE+βµN

∞∑
N=0

∫
dE wE,N(µN − E)e−βE+βµN ,

= 〈δE(µδN − δE)〉

(5)

〈δSδX〉 = kBT
∂X

∂T

∣∣∣∣
x

.

That is, the temperature derivative is the cross correlation with entropy fluctuation.
This is, although trivial, worth remembering.

2.30 [Equilibrium fluctuation]
(1) Obtain 〈δSδV 〉.q
(2) Obtain 〈δPδT 〉.
Solution
(1) Perhaps, the cleverest way is to us the fluctuation-response relation. We imme-
diately obtain

〈δSδV 〉 = kBT
∂V

∂T

∣∣∣∣
P

. (6.2.136)

There is no simple trick, if you wish to use thermodynamic fluctuation theory. Choose
S and V as independent variables.

1

2kBT
[δSδT − δPδV ] =

1

2kBT

[
∂T

∂S

∣∣∣∣
V

+ 2
∂T

∂V

∣∣∣∣
S

δV δS − ∂P

∂V

∣∣∣∣
S

δV 2

]
. (6.2.137)

Therefore, (with the aid of the formulas for 2 variate Gaussian distribution)

〈δSδV 〉 = kBT
1

∂(T,P )
∂(S,V )

∂T

∂V

∣∣∣∣
S

= −kBT
∂S

∂P

∣∣∣∣
T

= kBT
∂V

∂T

∣∣∣∣
P

. (6.2.138)

(2) There is no simple trick. Choose T and P as independent variables.

1

2kBT
[δSδT−δPδV ] =

1

2kBT

[
∂S

∂T

∣∣∣∣
P

δT 2 + 2
∂S

∂P

∣∣∣∣
T

δTδP − ∂V

∂P

∣∣∣∣
T

δP 2

]
. (6.2.139)
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Therefore, (with the aid of the formulas for 2 variate Gaussian distribution)

〈δTδP 〉 = kBT
1

∂V
∂P

∣∣
T

∂S
∂T

∣∣
P

+ ∂S
∂P

∣∣2
T

∂S

∂P

∣∣∣∣
T

. (6.2.140)

This is OK as an answer, but we can go further, if we realize

〈δTδP 〉 = kBT
1

∂(V,S)
∂(P,T )

∂S

∂P

∣∣∣∣
T

= kBT

∂(S,T )
∂(P,T )

∂(V,S)
∂(P,T )

= kBT
∂(S, T )

∂(V, S)
= −kBT

∂T

∂V

∣∣∣∣
S

. (6.2.141)

2.31 [Fluctuation and Le Chatelier-Braun’s principle]
(1) Show that

〈δxδX〉2 ≤ 〈δx2〉〈δX2〉
where x and X are conjugate pair of thermodynamic variables (wrt energy).
(2) What is the relation between this inequality and the Le Chatelier-Braun princi-
ple?

Solution
(1) The easiest way is to use the following obvious inequality valid for any real t:

0 ≤ 〈(δX + tδx)2〉 = 〈δX2〉+ 2t〈δxδX〉+ t2〈δx2〉 (6.2.142)

Since 〈δx2〉 ≥ 0, we have its discriminant to be negative:

〈δxδX〉2 − 〈δX2〉〈δx2〉 ≤ 0. (6.2.143)

(2) We know 〈δxδX〉 = kBT , and (use clever way of calculating fluctuations)

〈δX2〉 = kBT
∂x

∂X

∣∣∣∣−1

y

, 〈δx2〉 = kBT
∂X

∂x

∣∣∣∣−1

Y

. (6.2.144)

Therefore,
∂x

∂X

∣∣∣∣
y

≤ ∂x

∂X

∣∣∣∣
Y

. (6.2.145)

Thus we have learned that Le Chatelier-Braun principle is a realization of | cos θ| ≤ 1
(or Cauchy-Schwarz inequality) just as Hesenberg’s uncertainty relation.

2.32 [Fluctuation of internal energy]
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For a classical monatomic ideal gas consisting of N atoms, compute the fluctuation
of its internal energy (under constant T and P ). Or show

〈(E − 〈E〉)2〉/〈E〉2 = 2/3N. (6.2.146)

Solution
The Gibbs relation dE = TdS − PdV implies

〈δE2〉 = T 2〈δS2〉 − 2TP 〈δSδV 〉+ P 2〈δV 2〉. (6.2.147)

The volume fluctuation can be found as

〈δV 2〉 = −kBT
∂V

∂P

∣∣∣∣
T

= kB
V

P
. (6.2.148)

The entropy fluctuation can be calculated with the aid of S and P as independent
variables, we conclude

δT =
∂T

∂S

∣∣∣∣
P

δS + · · · , (6.2.149)

so

〈δS2〉 = T
∂S

∂T

∣∣∣∣
P

= kBCP =
5

2
k2
BN. (6.2.150)

Therefore, we need a result we have already obtained:

〈δSδV 〉 = kBT
∂V

∂T

∣∣∣∣
P

= kBV. (6.2.151)

Combining all the results, we obtain

〈δE2〉 = kBT
2CP − 2PkBT

2 ∂V

∂T

∣∣∣∣
P

− P 2kBT
∂V

∂P

∣∣∣∣
T

, (6.2.152)

= k2
BT

2

(
5

2
N − 2N +N

)
=

3

2
(kBT )2N. (6.2.153)

We know 〈E〉 = 3kBTN/2, so we arrive at the desired result.

2.33 [Stability and related topics, e.g., Le Chatelier-Braun]
(1) Suppose a phase transition from phase I to phase II occurs upon increasing the
magnetic field in the z-direction. What can you say about the relation between the
magnetisms of the phases?
(2) Suppose phase I is a low temperature phase and II a high temperature phase.
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The phase transition I → II is first order. What can you say about the sign of the
latent heat ∆H of this phase transition?
(3) Which specific heat is larger, CB or CM (under constant magnetic field, and
under constant magnetization, respectively)?
(4) Suppose there is a dielectric material between a parallel plate capacitor. The two
plates of the capacitor may be short-circuited by a switch. What can you say about
the relation between the heat capacity of the dielectric material under the open- and
short-circuited conditions? Let ε be its dielectric constant, that may or may not
depend on temperature.
(5) Suppose there is a liquid that crystallizes upon heating. Discuss the latent heat
for this transition.21

Solution
(1) The internal energy must be convex, so the susceptibility must be nonnegative,
if M is differentiable with respect to B. At the phase transition this is not usually
the case, but still the convexity must hold, so M must increase in the second phase.
(2) The argument is the same as above (we did this problem before!). Increasing T
must increase S, so S is larger for II. Therefore, ∆H = T∆S > 0 if we go from I to
II. That is latent heat must be absorbed by the system.
(3) This can be answered with the aid of Braun’s principle:

∂x

∂X

∣∣∣∣
y

<
∂x

∂X

∣∣∣∣
Y

. (6.2.154)

Thus,
∂T

∂S

∣∣∣∣
B

=
T

CB
<
∂T

∂S

∣∣∣∣
M

=
T

CM
. (6.2.155)

That is, CB > CM : under constant B M is reorganized to absorb more heat. This
is a hint to the next problem.
(4) When short-circuited, the electric field across the dielectric material is maintained
to be constant (actually, zero). When, the circuit is open, then the surface charge
(if any) on the dielectric material is kept constant; electric flux D is maintained.
Therefore, thermodynamically we expect CE ≥ CD. Now, ε is given, so we know the
relation between D and E: D = εEV (D is extensive but E is not! D = εE is a
relation for a unit volume! Here, we assume V does not change). We should proceed

21 Johari, et al., “Endothermic freezing on heating and exothermic melting on cooling,” J. Chem.
Phys., 123, 051104 (2005): α-cyclodextrin + water + 4-methylpyridine (molar ratio of 1:6:100).
For this system a liquid’s endothermic freezing on heating and the resulting crystal’s exothermic
melting on cooling occur. Cp decreases on freezing and increases on melting. Melting on cooling
takes longer than freezing on heating.
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a step further. (E in this problem is, of course, not the internal energy).

∂S

∂T

∣∣∣∣
E

=
∂S

∂T

∣∣∣∣
D

+
∂S

∂D

∣∣∣∣
T

∂D

∂T

∣∣∣∣
E

. (6.2.156)

With the aid of a Maxwell’s relation we obtain

∂S

∂D

∣∣∣∣
T

= − ∂E

∂T

∣∣∣∣
D

=
D

ε2V

dε

dT
. (6.2.157)

Also
∂D

∂T

∣∣∣∣
E

=
D

ε

dε

dT
. (6.2.158)

Therefore,

CE = CD + T
ED

ε2

(
dε

dT

)2

. (6.2.159)

This tells us that if ε does not depend on T , then there is no difference between the
two specific heat. This should be intuitively obvious, because no ‘reorganization’ of
the material is expected upon heating.
(5) The original paper contains the answer.

2.34 [Chemical equilibrium constant22]
The reaction

A
k+
−→
←−
k−

B. (6.2.160)

may be described as follows, if A and B are sufficiently dilute:

d[A]

dt
= k−[B]− k+[A] = −d[B]

dt
. (6.2.161)

For all t > 0 show that
[B]F (t)

[A]B(t)
= K, (6.2.162)

holds. Here, F denotes the forward reaction starting with pure A, and R denotes the
reverse reaction starting with the same moles of B as A. That is, if these two reactions
are started simultaneously, then the concentration ratio at time t as (6.2.162) is time-
independent and equal to the chemical equilibrium constant. [However, this cannot

22A. B. Adib, “Symmetry Relations in Chemical Kinetics Arising from Microscopic Reversibil-
ity,” Phys. Rev. Lett., 96, 028307 (2006).



408 CHAPTER 6. SOLUTIONS

be a general relation, but holds only under ideal solution and reaction conditions.]

Solution
Since [A] + [B] = C (constant), [B]F (t) obeys

d[B]F (t)

dt
= −(k+ + k−)[B]F (t) + k+C

with the initial condition [B]F (0) = 0. Similarly,

d[A]B(t)

dt
= −(k+ + k−)[A]B(t) + k−C

with the initial condition [A]B(0) = 0. Therefore,

[B]F (t) =
k+

k− + k+

C
(
1− e−(k−+k+)t

)
,

[A]B(t) =
k−

k− + k+

C
(
1− e−(k−+k+)t

)
.

These formulas tell us what we wish to have, because K = k+/k− = [B]eq/[A]eq.
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6.3 Problems for Chapter 3

3.1 [Fermions and bosons; the ultimate elementary problem]
There is a system with only three states with energies 0, ε and ε (ε > 0, i.e., excited
states are degenerate). There are three identical particles without spin.
(1F) If the particles are fermions, write down the canonical partition function.
(2F) Find the probability of finding N particles in the ground state.
(3F) Compute the average occupation number N0 of the ground state.
(1-3B) Repeat the same problems assuming that the particles are bosons.
(4) Consider the high temperature limit. (UIUC Qual Spring00)

Solution
(1F) Since all the one-particle states must be occupied, and there is only one mi-
crostate for the system:

Z = e−2βε. (6.3.1)

(2F) Since the one-particle ground state is always occupied by a particle, P (N) =
δN,1.
(3F) 1; there is no fluctuation at all.
(1-3B) The microstates of the system may be classified according to the number of
particles occupying the one-particle ground state: n = 3, 2, 1, or 0. They respectively
correspond to the microstates with the total energy 0, ε, 2ε or 3ε. The degeneracy of
the macrostate designated by n is

(
3−n+1

1

)
= 4−n. Therefore, the canonical partition

function is given by
Z = 1 + 2e−βε + 3e−2βε + 4e−3βε. (6.3.2)

The probability that the one-particle ground state is occupied by n particles is given
by

P (n) =
1

Z
(4− n)e−(3−n)βε. (6.3.3)

The expectation value 〈n〉 is

〈n〉 =
3 + 4e−βε + 3e−2βε

1 + 2e−βε + 3e−2βε + 4e−3βε
. (6.3.4)

(4) For the fermion case nothing changes even at high temperatures. For bosons in
the β → 0 limit, all 10 microstates are equally probable:

P (n) = (4− n)/10, 〈n〉 = 1. (6.3.5)
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3.2 [Elementary problem for boson systems]
There are 100 identical spinless bosons whose s-th one-particle state has an energy
Es = sε (s ∈ N) and is described by a wave function φn(r) (normalized). These
particles do not interact.
(1) How many microstates with the energy 4ε does the system have?
(2) When the system is in equilibrium with the particle reservoir (chemostat) of
temperature T and chemical potential µ, on the average 99 particles occupy the
one-particle ground state (s = 0), and one particle occupies the one-particle first
excited state (s = 1). The other one-particle states are negligibly occupied, Find µ
and β = 1/kBT in terms of ε.

Solution
(1) This is a problem of partitioning an integer. The microstates with the total
energy 4ε are

4 = 1 + 1 + 1 + 1, (6.3.6)

= 1 + 1 + 2, (6.3.7)

= 2 + 2, (6.3.8)

= 1 + 3, (6.3.9)

= 4. (6.3.10)

That is, there are 5 distinct microstates.
(2) Since

〈n0〉 =
1

e−βµ − 1
= 99, (6.3.11)

〈n1〉 =
1

eβ(ε−µ) − 1
= 1, (6.3.12)

we have

−βµ = log(100/99) = 1.005× 10−2, (6.3.13)

β(ε− µ) = log 2 = 0.693. (6.3.14)

Hence, β = 0.692/ε and µ = −0.01445ε. Clearly recognize that µ is negative (does
not exceed the ground state energy)!

3.3 [Basic problem for quantum ideal gas: isothermal compression]
In a cylinder with a piston are N identical particles. The temperature is maintained
constant.
The fermion case:
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(1) Suppose the system is maintained at T = 0, and the volume has been reversibly
halved. What is the relation between the initial energy ei per particle and the final
energy ef per particle?
(2) In the process described in (1) what is the ratio Pf/Pi, where Pi is the initial
pressure and Pf the final pressure.
(3) Now, suppose the system is maintained at a positive temperature T . As in (1)
we halve the volume of the system reversibly . How does the ratio ef/ei change as a
function of T? You may assume T is sufficiently close to T = 0.
The boson case:
(4) Suppose the density of the condensate is positive at the initial temperature. After
the volume is halved reversibly does the density of the condensate remain positive?
(5) Suppose T = 0 when the volume is reversibly halved. Find the ratio Pf/Pi ,
where Pi is the initial pressure and Pf the final pressure.

Solution
(1) Let us write gDt(ε) = aV ε1/2 with a numerical constant a. We know the following
relation:

N =
2

3
gDt(µ(0))µ(0) =

2

3
aV µ(0)3/2, (6.3.15)

E =
2

5
gDt(µ(0))µ(0)2 =

2

5
aV µ(0)5/2. (6.3.16)

From these formulas we get the relation

E/N =
3

5
µ(0) (6.3.17)

we already know. Since N is constant, µ(0) ∝ V −2/3, so

ef/ei = (V/2)−2/3/V −2/3 = 22/3. (6.3.18)

(2) We use the universal relation P ∝ E/V for any ideal gas

Pf/Pi = 2(ef/ei) = 25/3, (6.3.19)

where the factor 2 comes from the volume ratio Vf/Vi.
(3) In contrast to the T = 0 case, the particles need not be pushed up with the
energy levels. Consequently, the increase ratio of the energy is expected to decrease
with T .
(4) If the volume is decreased, the energy level spacings widen. Therefore, more
particles fall to the ground state. That is, N0 should increase. Quantitatively, we
have only to look at N1 = AV T 3/2. Since T is kept constant, N1 halves.
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(5) Since E ∝ V T 5/2, P = (2/3)(E/V ) does not depend on the system volume.
Hence, there is no pressure change: the ratio is unity. We can regard the ground
state as a pressure buffer.

3.4 [Basic problem for quantum ideal gas: adiabatic free expansion]
In a thermally isolated cylinder with a piston is an ideal gas, whose initial tempera-
ture is Ti. The piston is pulled suddenly to increase the volume by 10%.

The fermion case: Suppose the ideal gas is fermionic.
(1F) Find the final pressure Pf in terms of Pi, the initial pressure.
(2F) Which is correct, Ti < Tf , Ti = Tf or Ti > Tf?
(3F) Suppose the initial temperature is T = 0. Express the final temperature Tf
approximately in terms of the Fermi temperature TF before the expansion.

The boson case: Suppose the ideal gas is bosonic.
(1B) Find the final pressure Pf in terms of Pi, the initial pressure.
(2B) Suppose the initial temperature is sufficiently low and the condensate does not
disappear by expansion. What is the final temperature Tf?
(3B) Suppose the initial temperature is less than Tc. After expansion, the final tem-
perature becomes exactly Tc (for the expanded system). Find the initial temperature
Ti in terms of the Tc before expansion.

Solution
(1F) The internal energy E does not change, because the system is adiabatic and
free expansion does not do work. Therefore,

PV =
2

3
E (6.3.20)

implies
PiV = Pf (1.1V ). (6.3.21)

Hence, Pf = 0.91Pi.
(2F) Expansion makes packing energy level denser, so to keep the total energy the
only way is to occupy more excited states. Therefore, Ti < Tf .

This relation cannot be obtained purely thermodynamically. We have

∂T

∂V

∣∣∣∣
E

=
∂(T,E)

∂(V, T )

∂(V, T )

∂(V,E)
= − 1

CV

∂E

∂V

∣∣∣∣
T

, (6.3.22)

(this is thermodynamics) and

∂E

∂V

∣∣∣∣
T

=
3

2

[
∂P

∂V

∣∣∣∣
T

V + P

]
(6.3.23)
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(this is no more a thermodynamic relation, since we have used (??)). To proceed
further, we need the equation of state. Let us first consider the classical case PV =
NkBT :

V
∂P

∂V

∣∣∣∣
T

= −NkBT
V

= −P (6.3.24)

That is, Ti = Tf for the classical case. Compared with this case, fermionic ideal gas
should be harder to compress, so (∂E/∂V )T < 0, which implies (∂T/∂V )E > 0. We
could use an explicit energy formula as you can see in the following discussion.
(3F)

E =
3

5
Nµ(0) + ζ(2)

3

2µ(0)
N(kBT )2 + · · · , (6.3.25)

where

µ(0) =
h2

2m

(
3N/V

4π

)2/3

. (6.3.26)

If V is increased, the Fermi energy Fermi µ(0) goes down, so the first term of the
above formula decreases. Therefore, to keep E constant, we must increase the second
term. That is, T goes up. The Fermi temperature after expansion of the volume is
Ferm (1/1.1)2/3TF = 0.938TF , so approximately

T 2 ' 4

3π2
0.062(µ(0)/kB)2 =

4

3π2
0.062T 2

F = 0.00838T 2
F , (6.3.27)

or T = 0.092TF .
(1B) This is the same as (1F).
(2B) This is due to E ∝ V T 5/2. Tf = 1.1−0.4Ti ' 0.962Ti, so Tf < Ti. In this
case as well the expansion makes the energy level packing denser, so consequently
excitations become easier and the amount of condensate should decrease. However,
this does not imply the increase of temperature, because the total energy can be
maintained constant by occupying lower energy states with more particles.
(3B) (3.4.23) implies that the Tc before expansion is (here, m is the mass of the
particle)

Tc =
h2

2πkBm

(
n

ζ(3/2)

)2/3

(6.3.28)

Therefore, 1.1(T ∗c )5/2 = T
5/2
i , where T ∗c is the critical temperature after expansion.

Hence,

1.1−2/5Ti = T ∗c =
h2

2πkBm

(
n/1.1

ζ(3/2)

)2/3

, (6.3.29)
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where n is the number density before expansion. In terms of Tc

1.1−2/5+2/3Ti = Tc ⇒ Ti = 1.1−4/15Tc = 0.975Tc (6.3.30)

3.5 [Basic problem for quantum ideal gas: adiabatic quasistatic expansion]
In a thermally isolated cylinder with a piston is an ideal gas, whose initial tempera-
ture is Ti and initial pressure is Pi. The piston is pulled slowly to double the volume.

The fermion case: Suppose the ideal gas is fermionic.
(1F) Obtain the final pressure Pf in terms of Pi.
(2F) What is the final temperature Tf , if Ti = 0?
(3F) More generally, obtain Tf in terms of Ti.

The boson case: Suppose the ideal gas is fermionic.
(1B) Obtain the final pressure Pf in terms of Pi.
(2B) Obtain Tf in terms of Ti, assuming that the condensate does not disappear.
(4B) Let N0i be the initial number of particles in the condensate. Does the final
number of particles N0f in the condensate increase or decrease?

Solution
(1F) In this case, entropy does not change, so dE = −PdV . For any ideal gas
PV = (2/3)E, so

dE = −2

3

E

V
dV. (6.3.31)

This implies that EV 2/3 is constant. As can be seen from this derivation, the ration
is independent of statistics. Since EiV

2/3 = Ef (2V )2/3, we get Ef = 2−2/3Ei. That
is,

Pf (2V ) =
2

3
Ef =

2

3
2−2/3Ei = 2−2/3PiV, (6.3.32)

or

Pf =
1

25/3
Pi. (6.3.33)

(2F) We can expect Tf = 0. Indeed, at T = 0

E =

∫ µ(0)

0

dεDt(ε)ε =
3

4
µ(0)N ∝ N5/3V −2/3. (6.3.34)

That is, EV 2/3 is kept constant (adiabatic and isothermal processes can agree only
at T = 0). This result is an example of the general rule that the gas temperature
never goes up through quasistatic expansion.
(3F) This can be solved with the aid of (6.3.25).
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(1B) Exactly the same as (1F).
(2B) Since BCE occurs, µ = 0 and

E =

∫ ∞
0

dεDt(ε)
ε

eβε − 1
∝ V T 5/2. (6.3.35)

We know EV 2/3 is maintained constant irrespective of statistics, V 5/3T 5/2 is invari-
ant. That is, V 2/3T is constant. Hence, Tf = 2−2/3Ti; the system temperature goes
down.

Notice, however, that if we admit that the pressure increases with temperature,
thermodynamics can tell this:

∂T

∂V

∣∣∣∣
S

= − T

CV

∂S

∂V

∣∣∣∣
T

= − T

CV

∂P

∂T

∣∣∣∣
V

< 0. (6.3.36)

(4B) Since the process we are interested in is quasistatic and adiabatic, the average
occupation number of the one-particle ground state should not change. If you realize
this no calculation is needed, but if you wish to confirm this by computation, use

N0i = N −N1i and N1i = cV T
3/2
i :

N1f = c(2V )T
3/2
f = cV T

3/2
i = N1i. (6.3.37)

Hence, N0 cannot change.

3.6 [Basic problem for quantum ideal gas: compression under constant internal en-
ergy]
In a cylinder with a piston is an ideal gas consisting of N particles, whose initial
temperature is Ti. The piston is pushed in slowly to halve the volume while remov-
ing thermal energy appropriately to keep the internal energy constant. Let Tf be the
final temperature.

I.The case of spinless bosons: assume that there is a Bose-Einstein condensate ini-
tially.
(1) Find the number of particles N0 in the condensate before compression. You may
use the critical temperature Tc.
(2) Which is true, Tf < Ti, Tf = Ti or Tf > Ti?
(3) Does the number of particles in the condensate increase or decrease?

II. The case of spin 1/2 fermions.
(4) Find the final pressure Pf .
(5) Is there a minimum temperature (> 0) below which this process becomes impos-
sible?
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(6) Which is true, Tf < Ti, Tf = Ti or Tf > Ti?

Solution
(1)

N0 = N(1− (T/Tc)
3/2), (6.3.38)

where Tc ∝ n2/3.
(2) Below Tc we know E ∝ V T 5/2. Therefore,

V T
5/2
i = (V/2)T

5/2
f . (6.3.39)

That is, Tf = 22/5Ti or Tf > Ti.
(3) Since Tc ∝ n2/3, Tcf = Tci2

2/3 and Tf = 22/5Ti hold. Therefore,

Tf/Tcf = 22/5−2/3Ti/Tci < Ti/Tci. (6.3.40)

Consequently, the ration in (6.3.38) decreases and N0 increases. This is also under-
standable from the widening of the energy level spacings.
(4) Since

PiV = 2E/3 = Pf (V/2), (6.3.41)

we get Pf = 2Pi = 4E/3V .
(5) At T = 0, we know E ∝ n2/3, so E increases if the system is compressed; this
should be intuitively obvious because the level spacings increase. We cannot cool the
system further if T is very low. Therefore, quasiequilibrium constant energy process
becomes impossible at some low but positive temperature.
(6) We can generally write

∂E

∂V

∣∣∣∣
T

= T
∂P

∂T

∣∣∣∣
V

− P =
2

3V

[
T
∂E

∂T

∣∣∣∣
V

− E
]
. (6.3.42)

For ideal Fermi gases the graph of E(T ) (Fig. 3.3.3) implies

E

T
>
∂E

∂T

∣∣∣∣
V

. (6.3.43)

The difference converges to zero in the high temperature limit; the inequality is
not due to thermodynamics. This inequality combined with (6.3.42) implies that
(∂E/∂V )T < 0. That is, if T were kept constant and the system volume decreased,
then E would increase. Therefore, to maintain E, heat would have to be discarded.
Thus, the final temperature must be smaller: Ti > Tf . This conclusion can also be
obtained by noting that the energy level spacing increases upon compression.



6.3. PROBLEMS FOR CHAPTER 3 417

3.7 [Qualitative properties of quantum ideal gases]
Assume the particles do not interact. Answer the following qualitative questions and
give your justification for your answers. All the processes are quasistatic.

The boson case: there are N bosons in a volume V .
(1B) The volume is increased under constant energy. Does the temperature de-
crease?
(2B) The volume is increased under constant entropy. Does the temperature de-
crease?
(3B) Can we decrease the volume while keeping the internal energy?

The fermion case: there are N fermions in a volume V .
(1F) The volume is increased under constant energy. Does the temperature de-
crease?
(2F) The volume is increased under constant entropy. Does the temperature de-
crease?
(3F) Can we decrease the volume while keeping the internal energy?

Solution
(1B) Below Tc we can write explicitly as E ∝ V T 5/2 (5/2 = d/α + 1), so we im-
mediately see that T decreases. If the volume is increased, the energy level spacing
decreases, so excitations become easier (consequently Tc goes down), so the number
of particles occupying the one-particle ground state decreases. If you wish to keep
the system energy despite this, you have to decrease the system temperature. What
could happen above Tc is subtle, as can be seen from the behavior of CV . If the
temperature is sufficiently high, then the system is close to a classical ideal gas, so
the temperature dependence diminishes.
(2B) If S is kept, the particles must follow the behavior of the energy levels. The
level spacings decrease, so this is possible only by decreasing the temperature.
(3B) This is possible, if heat is supplied appropriately to warm up the system.
(1F) The energy level spacings decrease, so the total energy cannot be maintained
without increasingly occupying the excited states. Hence, the temperature goes up.
(2F) To keep S, the shape of the ‘cliff’ of the fermi distribution, but since the Fermi
energy goes down, this is possible only through cooling the system.
(3F) This is generally impossible.

3.8 [Conversion of fermion into bosons]
There is an ideal Fermi gas with the total energy 10 eV in an adiabatic container.
The fermion particles are actually metastable and turn into bosons without adding
any energy. Assume that the conversion is done quasistatically and adiabatically.
Does the container explode? [UIUC qual]

Solution
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Irrespective of statistics PV = 2E/3. Since E and V are constant, the pressure does
not change.

We know, if N and T are identical PFD > PMB > PBE (→(3.1.17)). Since E
is an increasing function of T , the pressure of the gas is an increasing function of
T (however, (∂P/∂T )V > 0 is NOT a thermodynamic inequality; think of counter
examples). Therefore, we must conclude TFD < TMB < TBE. This suggests that
we may handle the boson system as a classical ideal gas system; we can easily guess
T ∼ TF . Indeed, we can estimate the system temperature after conversion as

E = (3/5)µ0n = (3/2)nkBT ⇒ T = 2TF/5. (6.3.44)

This is an extreme high temperature, so the container melts away, and there is an
explosion.

3.9 [Equation of state of ideal gases]
We know the relation between PV and the internal energy does not depend on par-
ticle statistics.
(1) Is this still true for ideal gas mixtures?
(2) Compute PV/E in d-space (this is already mentioned in the text).

Solution
(1) You may use the law of partial pressure. Let Pi be the partial pressure due to
chemical species i. If its internal energy is Ei, PiV = (2/3)Ei holds for all i. Since the
internal energy is additive PV = (2/3)E must also hold for the ideal gas mixtures.
(2) You have only to trace the proof of PV = 2E/3. See up to (3.1.24). Let Dt(ε)
be the density of translational states in d-space. The key element of the derivation
of (3.1.24) is the relation between d(εD(ε))/dε and D(ε). In d-space we can write
D(ε) = Aεd/2−1 with an appropriate numerical factor A, so

d

dε
{εD(ε)} =

d

2
D(ε). (6.3.45)

Hence, we get PV/E = 2/d.

3.10 [Effective interaction due to statistics]
Fig. 3.1.1 illustrates how we can intuitively understand the effective interactions
between particles: compared with classical particles, between bosons there is an ef-
fective attraction, and between fermions there is an effective repulsion. Let us make
this understanding slightly quantitative. Here, we proceed step by small step, re-
viewing elementary quantum mechanics.

We wish to consider a two-particle system in terms of canonical ensemble theory.
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The system Hamiltonian reads

H =
p2

1

2m
+
p2

2

2m
, (6.3.46)

and the canonical partition function is

Z = Tre−βH , (6.3.47)

where the trace is with respect to the microstates specified by two momenta |p,p′〉.
To compute this trace semi-classically, we introduce a single-particle momentum
state |p〉.
(1) Express |p,p′〉 both for the boson and fermion cases in terms of single particle
kets |p〉. You may regard two momenta are distinct, but the obtained states must
be properly normalized.
(2) Assuming that the system is in a sufficiently big box of volume V , find the
position representation 〈r|p〉 (i.e., the wave function) of the momentum ket |p〉.
(3) Let ri be the position vector of the i-th particle. Find the position representation
of |p,p′〉. [This is of course virtually the same question as (1).]
(4) For an N -particle system in the semi-classical limit, the calculation of trace in Z
may be performed as follows:

Tr → 1

N !

∫
V N

d{rk}
N∏
k=1

〈rk| · · ·
N∏
k=1

|rk〉 (6.3.48)

=
1

N !

∫
V N

d{rk}
N∏
k=1

〈rk|

∑
{pi}

|{pi}〉〈{pi}|

 · · ·
∑
{pi}

|{pi}〉〈{pi}|

 N∏
k=1

|rk〉

(6.3.49)

If the volume is big enough, we should be able to replace the summation over mo-
menta by integration over them. The replacement rule is∑

{pi}

→ V N

h3N

∫
d{pi}. (6.3.50)

Justify this for N = 1 in 1-space.
(5) Write Z down using h−3/2eir·p/~ = 〈ri|p〉. Beyond this point, let us simplify
formulas by taking the V →∞ limit. You need not perform the integration.
(6) The outcome of (5) must have the following form:

1

2h6

∫
dr1dr2dpdp

′e−β(p2+p′2)/2m[· · ·]. (6.3.51)
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Perform the integral in this expression and find F in the following formula:

Z =
1

2h6

∫
dr1dr2dpdp

′ e−β(p2+p′2)/2mF (6.3.52)

(7) F may be interpreted as the Boltzmann factor coming from the effective inter-
action originating from particle statistics. Sketch the potential (×β) of this effective
interaction for bosons and fermions.

Solution
(1) The ket |p〉|p′〉 must be correctly symmetrized; + is for bosons and − for
fermions:

|p,p′〉 =
1√
2

(|p〉|p′〉 ± |p′〉|p〉). (6.3.53)

(2) |p〉 describes a plane wave of wave vector k = p/~:

〈r|p〉 ∝ eip·r/~. (6.3.54)

The normalization condition is

δpp′ =
1

~

∫
V

d3r 〈p′|r〉〈r|p〉. (6.3.55)

Therefore,

〈r|p〉 =

√
~
V
eip·r/~. (6.3.56)

(3)

(〈r1|〈r2|)|p,p′〉 =
1√
2

(〈r1|p〉〈r2|p′〉 ± 〈r1|p′〉〈r2|p〉). (6.3.57)

(4) The left-hand side is the sum over all the states in the volume V . If we adopt a
periodic boundary condition k = (2π/L)n (n ∈ Z).

∞∑
n=−∞

n '
∫ ∞
−∞

dn =
L

2π

∫
2π

L
dn =

L

2π

∫
dk =

L

h

∫
dp. (6.3.58)

The 3-dimensional version reads ∑
p

' V

h3

∫
dp. (6.3.59)
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If you do not like the periodic boundary condition, k = (π/L)n ( n ∈N ) and

∞∑
n=1

'
∫ ∞

1

dn =
L

π

∫ ∞
1

π

L
dn =

L

π

∫ ∞
0

dk =
L

h

∫ ∞
−∞

dp. (6.3.60)

(5) Using the results of (2) and (3), we get (the overall factor 1/2 comes from 1/N !
in the definition of trace)

Z = Tr e−βH =
1

2

∫
dr1dr2〈r1|〈r2|e−βH |r1〉|r2〉, (6.3.61)

=
1

2

∫
dr1dr2

∑
p,p′

e−β(p2+p′2)/2m|(〈r1|〈r2|)|p,p′〉|2, (6.3.62)

=
1

2

∫
dr1dr2

∑
p,p′

e−β(p2+p′2)/2m|(〈r1|〈r2|)|p,p′〉|2, (6.3.63)

=
1

2

∫
dr1dr2

∑
p,p′

e−β(p2+p′2)/2m1

2
|〈r1|p〉〈r2|p′〉 ± 〈r1|p′〉〈r2|p〉|2.(6.3.64)

If we write the matrix elements explicitly,

Z =
1

2

∫
dr1dr2

∑
p,p′

e−β(p2+p′2)/2m 1

V 2
[1±Re exp(i(p− p′) · (r1 − r2)/~)],

(6.3.65)

=
1

2h6

∫
dr1dr2

∫
dpdp′e−β(p2+p′2)/2m[1±Re exp(i(p− p′) · (r1 − r2)/~)].

(6.3.66)

(6) To obtain F we compute∫
dp e−β(p2/2m)+ip·r/~∫

dp e−β(p2/2m)
= e−mkBTr

2/2~2 . (6.3.67)

Hence,

F = 1± e−mkBT (r1−r2)2/~2 . (6.3.68)

(7) If we introduce the effective potential φ by F = e−βφ, we get

βφ(r) = − log[1± e−mkBT (r1−r2)2/~2 ]. (6.3.69)
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fermions

bosons

-log 2

The sketches of the potential are given in the attached figure.

As expected, the effective interaction is attractive for bosons, and repulsive for
fermions.

3.11 [Elementary low temperature formulas for fermions]
The following questions ask for standard elementary calculations, but you should do
them once in your life.
(1) Obtain the chemical potential (the Fermi level) to order T 2 around T = 0.
(2) Obtain the pressure P to order T 2 around T = 0.

Solution
(1) Let us apply

∫ +∞

0

dε φ(ε)f(ε) =

∫ µ(T )

0

φ(x)dx+ (kBT )2ζ(2)φ′(µ) + · · · (6.3.70)

to the following calculation:

N =

∫ ∞
0

dε gDt(ε)f(ε) =

∫ µ(T )

0

dx gDt(x) + ζ(2)
dgDt(ε)

dε

∣∣∣∣
ε=µ

(kBT )2 + · · · .

(6.3.71)
We know the T = 0 result:

N =

∫ µ(0)

0

dε gDt(ε). (6.3.72)
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This determines the Fermi energy µ(0).∫ µ(0)

0

dε gDt(ε) =

∫ ∞
0

dε gDt(ε)f(ε) =

∫ µ(T )

0

dx gDt(x)+ζ(2)
dgDt(ε)

dε

∣∣∣∣
ε=µ(T )

(kBT )2+· · · ,

(6.3.73)
so we can expect µ(T ) = µ(0) + aT 2 + o[T 2]:∫ µ(T )

0

dx gDt(x) =

∫ µ(0)+aT 2

0

dx gDt(x) =

∫ µ(0)

0

dx gDt(x) + aT 2 gDt(µ(0)).

(6.3.74)
Now, combining (6.3.73) and (6.3.74), we obtain∫ µ(0)

0

dε gDt(ε) =

∫ µ(0)

0

dx gDt(x)+aT 2 gDt(µ(0))+ζ(2)
dgDt(ε)

dε

∣∣∣∣
ε=µ(0)

(kBT )2+· · · ,

(6.3.75)
or

aT 2 gDt(µ(0)) + ζ(2)
dgDt(ε)

dε

∣∣∣∣
ε=µ(0)

(kBT )2 = 0. (6.3.76)

Therefore,

a = −ζ(2)
dlogDt(ε)

dε

∣∣∣∣
ε=µ(0)

k2
B = −π

2

6

dlogDt(ε)

dε

∣∣∣∣
ε=µ(0)

k2
B. (6.3.77)

Thus, the final result is

µ(T ) = µ(0)− π2

6

d

dε
logDt(ε)

∣∣∣∣
ε=µ(0)

(kBT )2 + · · · . (6.3.78)

(2) P is required, but it is easier to compute E. Utilizing (6.3.70), we get

E(T ) =

∫
dε gDt(ε)εf(ε), (6.3.79)

=

∫ µ

0

dεgDt(ε)ε+ ζ(2)(kBT )2dgDt(ε)ε

dε

∣∣∣∣
µ

+ · · · . (6.3.80)

We must expand µ(T ) using the result of (1):∫ µ(T )

0

dεgDt(ε)ε =

∫ µ(0)

0

dεgDt(ε)ε−
π2

6

dlogDt(ε)

dε

∣∣∣∣
ε=µ(0)

gDt(µ(0))µ(0)(kBT )2,

(6.3.81)

= E(0)− π2

6
gD′t(µ(0))µ(0)(kBT )2 (6.3.82)
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Comparing this with (6.3.80), we can write

E(T ) = E(0)− π2

6
gD′t(µ(0))µ(0)(kBT )2 + ζ(2)(kBT )2dgDt(ε)ε

dε

∣∣∣∣
µ

+ · · · ,

(6.3.83)

= E(0) +
π2

6
gDt(µ(0))(kBT )2. (6.3.84)

Since P = 2E/3V

P (T ) = P (0) +
π2

9V
gDt(µ(0))(kBT )2. (6.3.85)

3.12 [Derivation of Maxwell’s distribution]
Maxwell derived in his Illustrations of the Dynamical Theory of Gases (1860) the
density distribution function f(v) of the gas particle velocity.

Maxwell assumed that orthogonal components of the velocity are statistically in-
dependent. This implies that we may write

f(v) = φx(vx)φy(vy)φz(vz), (6.3.86)

where φx, etc., are density distribution function for each component. Maxwell also
assumed isotropy. Hence, f is a function of v2 ≡ |v|2, so we may regard f(v) ≡ F (v2),
and φx’s do not depend on suffixes. Let us introduce ψ(s2) ≡ φx(s). Then, the above
functional equation reads

F (x+ y + z) = ψ(x)ψ(y)ψ(z). (6.3.87)

If Fand ψ are both once differentiable, we obtain

F ′(x+ y + z) = ψ(x)ψ(y)ψ′(z). (6.3.88)

Setting y = z = 0, we have

F (x) = ψ(x)ψ(0)ψ(0), F ′(x) = ψ(x)ψ(0)ψ′(0), (6.3.89)

so F ′(x)/F (x) must be a constant. This implies that the distribution is Gaussian.
(1) Is there any other solution? If we do not assume the differentiability of F (that
is, if we assume only the continuity of F ), what do you get?23

(2) Since we know the result of equilibrium statistical mechanics, if the particle

23If we do not assume the continuity of F , there would be uncountably many solutions.
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energy is E, then the distribution function is proportional to e−βE. This is derived
from the consistency of mechanics and thermodynamics. On the other hand, the
above derivation of the Maxwell distribution uses only the statistical independence
of the orthogonal components and its isotropy, and mechanics is never used. Then,
this seems to imply that Maxwell’s logic determines the form of the kinetic energy
K in terms of velocity from statistically natural assumption + thermodynamics; at
least K ∝ v2 is concluded. This sounds incredible, even if thermodynamics is great.
What is wrong? [Hint: think of relativistic case.]
[Comment] Maxwell himself did not like the above derivation we criticize here,24 so
he rederived the distribution a few years later. He this time used the detailed balance
argument (as explained in the text). Pay due respect to Maxwell’s sound instinct.

Solution
(1) Needless to say, if we assume differentiability there is no other solution. Maxwell
was correct.

Let us try to solve the problem assuming only continuity (and isotropy). Let us
introduce g = logF and φ = logψ; this is admissible because F and ψ are positive.
We have

g(x+ y) = φ(x) + φ(y) + φ(0) = φ(x+ y) + 2φ(0). (6.3.90)

Therefore, if we define f(x) = φ(x)− φ(0), then we get

f(x) + f(y) = f(x+ y). (6.3.91)

Since we assume f to be continuous, the solution is f(x) = cx for some constant c.
Thus, we can get only a Gaussian form.
(2) If we consider the relativistic case, the velocity distribution function reads

P (v) ∝ exp(mc2/
√

1− v2/c2). (6.3.92)

Obviously, it does not have the structure (6.3.86). That is, orthogonal components
are not statistically independent, although isotropy is still correct.

3.13 [2-dimensional neutron system]
1018 neutrons are confined in a square of edge length 1 m. If we regard this as a
2-dimensional system, estimate the needed temperature required for this system to
be regarded as a classical system.25

Solution

24However, even strict Pauli uncritically repeat the above argument in W. Pauli, Thermodynam-
ics and the Kinetic Theory of Gases (edited by C. P. Enz), Section 25.

25cf ProblWS p176.
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Non-classical behavior is observed if the interparticle distance is comparable to the
thermal wave length of the particle. This happens when the number density becomes
comparable to the so-called quantum number density nQ (the quantum density must
be computed in 2-space):

nQ = 2πmkBT/h
2. (6.3.93)

Since m = 1.65 × 10−27kg, kB = 1.38 × 10−23J/K, h = 6.63 × 10−34 Js, n/nQ ∼ 1
implies T ∼ 3.1K. That is, if the temperature is as high as 30 K, the system behaves
classically.

3.14 [2-dimensional fermion system]
The density of translational states of a 2D fermion system confined in a volume
(area) V may be written as c D(ε) = cV with a positive constant c.
(1) Find the chemical potential µ in terms of the number density ρ and (inverse)
temperature β.
(2) In the high density limit, we have µ ∝ ρ. Explain why this form is plausible.
(3) What is the classical limit? Does the obtained result consistent with the classical
ideal gas result?

Solution
(1) We can write

ρ = c

∫ ∞
0

dε
1

eβ(ε−µ) + 1
. (6.3.94)

To integrate this, recall:

1

eβ(ε−µ) + 1
=

d

d(βµ)
log[1 + e−β(ε−µ)]. (6.3.95)

Therefore,

ρ = c

∫ ∞
0

dε
1

eβ(ε−µ) + 1
= −c

∫ ∞
0

dε
d

d(βε)
log[1 + e−β(ε−µ)] = (c/β) log[1 + eβµ].

(6.3.96)
That is,

µ = β−1 log(eβρ/c − 1). (6.3.97)

In the high density limit, µ ' ρ/c.
(2) The high density limit implies high degeneracy for a Fermi gas.26D We may

26The slope of the cliff of the Fermi distribution in the present case is 4/kBT , so you might think
it is not sharp. However, the width of the cliff (∼ 5kBT ) must be compared with the width of the
plateau µ(0) = kBTF , which becomes indefinitely large as the density increases, so the distribution
is after all close to a step function of the low temperature limit.
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approximate the distribution as a step function going from 1 to 0 around the Fermi
level µ. Therefore, the integration range of (6.3.94) is essentially from 0 to µ. Hence,
ρ = cµ is very plausible.
(3) We certainly have

µ→ kBT log(βρ/c); (6.3.98)

consistent!

3.15 [Quantum gas with internal degrees of freedom]
Let us consider a quantum gas consisting of N particles. Individual particles have
internal states consisting of two levels: the ground state and the non-degenerate ex-
cited state with energy ε (> 0).
(1) Suppose the particles are fermions. How does the Fermi energy µF (i.e., the
chemical potential) behave as a function of ε?
(2) Suppose the particles are bosons. How does the Bose-Einstein critical tempera-
ture Tc depends on ε? Give a clear argument even if it is qualitative.

Solution
(1) The Fermi energy µ is determined by

N =

∫
dED(E)

1

eβ(E−µ) + 1
. (6.3.99)

If ε is increase, then the occupation number of the one-particle states with internal
excitation. If the number of particles is constant, then to accommodate these in-
ternally non-excited particles, the Fermi level must be increased. Therefore, µ is an
increasing function of ε.
(2) Consider the total number of internally excited particles (note that µ = 0):

N1 =

∫
dED(E)

1

eβE − 1
. (6.3.100)

If ε is increased, N1 decreases, so this favors the formation of condensate. That is,
Tc increases with ε.

3.16 [Zeemann splitting]
The outer shell of an ion has a magnetic moment µB of 1 Bohr magneton. In a
magnetic field B this outer shell state splits into two energy states with energies
E = E0±µBB. Let nu (resp., nd) be the occupancy number of up-spin (resp., down-
spin) states. Then the magnetization reads M = µB(nu − nd). You may ignore the
electron-electron interactions.
(1) Find 〈M〉 and 〈N〉 (N = nu +nd) with the aid of the grand canonical formalism.
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(2) Find the magnetization when the outer shell has one electron for each ion. Com-
pare the result with the result of (1) for µ = E0.27

Solution
(1) Since

nu =
1

eβ(E0+µBB−µ) + 1
, nd =

1

eβ(E0−µBB−µ) + 1
, (6.3.101)

〈M〉 and 〈N〉 can be written down immediately.
(2) Define x = eβ(ε−µ) and y = eβµBH . Then, 〈N〉 = 1 can be written as

1 = nu + nd =
2 + x(y + 1/y)

1 + x(y + 1/y) + x2
. (6.3.102)

If we set x = 1, this equality holds for any y. Therefore, E0 = µ is the condition,
and

〈M〉 = µB

(
1

1 + xy
− 1

1 + x/y

)
= µB

1− y2

1 + y2
. (6.3.103)

3.17 [Electron paramagnetism]
Due to the spin, each electron in a magnetic field B (assumed to be pointing the
z-direction) has the potential energy ±µ̃B. Let Dt(ε)be the one-particle transla-
tional density of states (however, the electrons may be in a crystal field, so we do
not specify its form).
(1) The magnetization M of this system M is the expectation of the magnetic mo-
ment due to electron spins. Express M in terms of Dt(ε± µ̃B).
(2) Express the magnetic susceptibility χ in terms of D′t(ε), assuming that µ̃B is not
too large.
(3) Obtain χ to order T 2 around T = 0 with the aid of logDt(ε).

Solution
(1) The contribution of the up-spin electrons to the magnetization is

M+ = µ̃

∫
dεDt(ε)

1

eβ(ε−µ̃B−µ) + 1
= µ̃

∫
dεDt(ε+ µ̃B)

1

eβ(ε−µ) + 1
. (6.3.104)

We can easily obtain the analogous formula for down-spin electron, so we get

M = M+ +M− = µ̃

∫
dε [Dt(ε+ µ̃B)−Dt(ε− µ̃B)]

1

eβ(ε−µ) + 1
. (6.3.105)

27UIUC QualFall 95
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(2) µ̃B is assumed to be not too large, we may Taylor expand as

M = µ̃

∫
dε [Dt(ε+ µ̃B)−Dt(ε− µ̃B)]

1

eβ(ε−µ) + 1
= 2µ̃2B

∫
dεD′t(ε)

1

eβ(ε−µ) + 1
.

(6.3.106)

(3) From the definition

χ =
∂M

∂B

∣∣∣∣
T

= 2µ̃2

∫ ∞
0

dεD′t(ε)
1

eβ(ε−µ) + 1
. (6.3.107)

To expand this around T = 0 we use, setting φ = 2µ̃2D′t(ε),∫ ∞
0

dε φ(ε)
1

eβ(ε−µ) + 1
=

∫ µ

0

dε φ(ε) + (kBT )2ζ(2)φ′(µ). (6.3.108)

That is,

χ = 2µ̃2Dt(µ) + 2µ̃2(kBT )2ζ(2)D′′t (µ). (6.3.109)

This is, however, not yet the final result. Since

µ = µ0 − ζ(2)
d

dε
logDt(ε)

∣∣∣∣
ε=µ0

, (6.3.110)

(6.3.109) reads

χ = 2µ̃2Dt(µ0)− 2µ̃2(kBT )2ζ(2)D′t(µ0)
d

dε
logDt(ε)

∣∣∣∣
ε=µ0

+ 2µ̃2(kBT )2ζ(2)D′′t (µ).

(6.3.111)
This can be streamlined to the following form:

χ = 2µ̃2Dt(µ0) + 2µ̃2(kBT )2ζ(2)Dt(µ0)
d2

dε2
logDt(ε)

∣∣∣∣
ε=µ0

= 2µ̃2Dt(µ0)

[
1 + ζ(2)(kBT )2 d2

dε2
logDt(ε)

∣∣∣∣
ε=µ0

]
. (6.3.112)

3.18 [Do we have only to treat the ground state special below Tc?]
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For a bose gas in 3-space we know the following integral expression is not always
correct:

〈N〉 =
∞∑
i=0

〈n̂i〉 =

∫ ∞
0

dεDt(ε). (6.3.113)

It is because the expression ignores a large number of particles in the one-particle
ground state. Thus, we are taught that if we count the number N0 of the particles
occupying the one-particle ground state and if we add this to N1, then the number of
particles in the system may be expressed correctly. However, ther may be the people
who are not so convinced yet: why only ground state? Don’t we have to consider
the first excited state? Don’t we actually have to perform the following calculation
· · ·:

〈N〉
V

=
1

V
〈n̂0〉+

1

V
〈n̂1〉+

1

V

∫ ∞
0

dεDt(ε). (6.3.114)

Let us perform a slightly more honest calculation (to recognize clearly that Einstein
is always correct!):
(1) Our energy coordinate convention is that the ground state is always 0: ε0 = 0.
Let us assume that the system is a cube of edge length L: V = L3. The lowest
excited one-particle state energy ε1 as a function of V .
(2) Compare the occupation number of the one-particle ground state and the one
particle first excited states (which is triply degenerate). That is, compute the ratio
(〈n̂0〉/(〈n̂1〉+ 〈n̂2〉+ 〈n̂3〉) = 〈n̂0〉/3〈n̂1〉 for a very small negative chemical potential
µ28 required by the Bose-Einstein condensation. How big is it as a function of V ?
(3) We just saw in (2) except for 〈n̂0〉 other expectation values are not extensive. That
is, the ground state is really special. Excited states cannot contribute an extensive
quantity unless infinitely many of them are collected. Explain that the contribution
of all the excited states may be obtained accurately by replacing the summation with
integration (as usual).

Solution
(1) This calculation is just as we did in Chapter 1:

εn =
h2

8mV 2/3
(n2

x + n2
y + n2

z), (6.3.115)

where n’s are positive integer quantum numbers. Therefore, the energy difference
between the ground state and the first excited state is

∆ε = 3
h2

8mV 2/3
. (6.3.116)

28which is not zero, because the system is finite.
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This is ε1 according to our convention.
(2) We have

〈n̂0〉
3〈n̂1〉

=
eβ(ε1−µ) − 1

e−βµ − 1
. (6.3.117)

We know below Tc βµ = O[N−1] (< 0). Furthermore, we know ε1 = O[V −2/3]. Since
T > 0 is a fixed temperature, however small it is (or however large β is), if we take a
sufficiently large V , we may regard βε1 to be sufficiently small (βµ is much smaller
than this), so we may expand as

〈n̂0〉
3〈n̂1〉

=
ε1 − µ
−3µ

=
1

3
(1− ε1/µ) = O[N1/3]� 1. (6.3.118)

Thus, we see that only the one-particle ground state is occupied by an extensive
number of particles; any finite some of the occupation numbers of one-particle excited
states is far less than N0 for large systems.
(3) Let {f(i)} be a monotone decreasing sequence of positive integers and assume∑
f(i) converge. Define monotone decreasing (piecewise linear ) functions fL(x) as

fL(i − 1) = f(i) for i = 1, 2, · · · and fU(x) as fU(i) = f(i) for i = 1, 2, · · · and
fU(0) = fU(1) (see the graphs below). Then,∫ ∞

0

fL(x)dx ≤
∞∑
i=1

f(ε) ≤
∫ ∞

0

fU(x)dx. (6.3.119)

The thick curve in the center is fU ; that in the right is fL.

As can easily be seen from the figure∫ ∞
0

fU(x)dx−
∫ ∞

0

fL(x)dx < f(ε1). (6.3.120)

Therefore, the difference divided by V is extremely small.
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3.19 [Ideal boson gas slightly warmer than Tc]
Fig. 3.4.2 illustrates that the specific heat Cv of the ideal Bose gas has a cusp. Let
us demonstrate this. To compute Cv we need the internal energy of the system. Let
us compute it.
(1) What is the internal energy below Tc? (This is an easy question.)
(2) If we compute the internal energy assuming µ = 0 and write its value as E0,
show

∂E0

∂µ
' 3

2
N0(T ), (6.3.121)

where

N0(T ) ≡ N(T, 0) =
V

h3

∫ ∞
0

1

eβp2/2m − 1
4πp2dp. (6.3.122)

Therefore, for T (> Tc) we could approximate the true internal energy at T as
E(T ) = E0 + (3/2)N0(T )µ. This implies that to obtain E as a function of T , we
need µ as a function of T . To this end let us write the number of particles for T > Tc
(µ < 0) as

N = N0(T ) +
V

h3

∫ ∞
0

{
1

eβ(p2/2m−µ) − 1
− 1

eβp2/2m − 1

}
4πp2dp. (6.3.123)

(3) Show that we may approximate the second term of (6.3.123) as∫ ∞
0

{
1

eβ(ε−µ) − 1
− 1

eβε − 1

}√
εdε ' kBTµ

∫ ∞
0

dε
1√

ε(ε+ |µ|)
= −πkBT

√
|µ|.

(6.3.124)
Do not forget that µ < 0. [This allows us to obtain µ in terms of N0(T ) which is
obtainable from (6.3.122) as a function of T .]

Solution
(1) Simply copy the formula:

E =

∫
dεgDt(ε)

ε

eβε − 1
=

3

2
kBTV

(
2πmkBT

h2

)3/2

ζ(5/2) ∝ V T 5/2, (6.3.125)

(2) Since

E =
V m3/2

21/2π2~3

∫ ∞
0

ε3/2

eβ(ε−µ) − 1
dε, (6.3.126)

we have

∂E

∂µ
=

V m3/2

21/2π2~3

∫ ∞
0

ε3/2 ∂

∂µ

1

eβ(ε−µ) − 1
dε, (6.3.127)
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= − V m3/2

21/2π2~3

∫ ∞
0

ε3/2 ∂

∂ε

1

eβ(ε−µ) − 1
dε, (6.3.128)

=
V m3/2

21/2π2~3

∫ ∞
0

(
∂

∂ε
ε3/2

)
1

eβ(ε−µ) − 1
dε, (6.3.129)

=
3

2

V m3/2

21/2π2~3

∫ ∞
0

ε1/2

eβ(ε−µ) − 1
dε. (6.3.130)

Comparing this with (6.3.122), we get (6.3.121).
(3) The first approximate relation in (6.3.124) is due to simple Taylor expansion.
The integral in the second formula could be computed with the aid of complex
analysis (you must respect the branching due to

√
ε), but an easier way may be to

set
√
ε = x:∫ ∞

0

dε
1√

ε(ε+ |µ|)
= 2

∫ ∞
0

dx
1

x2 + |µ|
=

∫ ∞
−∞

dx

x2 + |µ|
. (6.3.131)

3.20 [Bose-Einstein condensation in a harmonic trap]
Let us consider an ideal bose gas consisting of N particles confined in a 3D harmonic
potential.29 It is hard to treat this in terms of the canonical ensemble, so we dis-
cuss this with the aid of the grand canonical theory; if N is larger than 103, then
logN/N30 is not large, so this approach must not be bad.
(1) Suppose the angular frequency of the trapped boson is ωt. Find the density D(ε)
of one-particle state as a function of energy ε. Measure the energy from the ground
state and ignore the zero-point energy.
(2) Find the number of particles N1 in the non-condensate as a function of the chem-
ical potential. Show that the integral (or N1) is bounded from above in 3-space (no
explicit integration required). Thus, Bose-Einstein condensation is possible in this
system.
(3) The number of particles occupying the one-particle ground state approaches zero
as

N0(T ) = N

(
1−

(
T

Tc

)γ)
, (6.3.132)

when T ↗ Tc. Find γ.
(4) Find Tc as a function of N . For N = 3000, and ωt = 103 rad/s estimate Tc. (Use
ζ(3) = 1.2020569031595 · · ·.)

29Actually, BEC is observed in a collection of Rb atoms confined in a (not spherically symmetric)
3D harmonic potential.

30It is emphasized again that the error is not of order
√
N/N = 1/

√
N , but logN/N .
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(5) If a 2D harmonic potential can trap 2D Bose gas,31 can we observe Bose-Einstein
condensation?

Solution
(1) The one particle energy in a 3D harmonic potential may be written as ε =
~ωt(nx + ny + nz), where nx are nonnegative integers. The number of energy levels
up to energy ε is the volume of a cone x+ y + z ∈ [0, ε/~ωt] within the first octant,
we get ∫ ε

0

D(ε′)dε′ =
1

3!

(
ε

~ωt

)3

. (6.3.133)

That is,

D(ε) =
ε2

2(~ωt)3
. (6.3.134)

(2) By using D obtained in (1), the number of particles in the excited states is given
by

N1 =

∫ ∞
0

dεD(ε)
1

eβ(ε−µ) − 1
=

∫ ∞
0

dε′
ε′2

2(~ωt)3

1

eβ(ε′−µ) − 1
. (6.3.135)

This is an increasing function of µ, so by setting µ = 0 an upper bound of N1 may
be obtained:

N1 ≤
1

2

(
kBT

~ωt

)3 ∫ ∞
0

dx
x2

ex − 1
. (6.3.136)

This integral from 1 to ∞ converges and∫ 1

0

dx
x2

ex − 1
≤
∫ 1

0

xdx =
1

2
. (6.3.137)

Therefore, N1 is bounded from above. We may estimate it as

N1(T ) ≤ AT 3, (6.3.138)

where A (> 0) is an appropriate constant. Hence, BEC must occur.
(3) If µ = 0, we know from (2) that N1(T ) ∝ T 3. Therefore, γ = 3.
(4) To estimate Tc we need the value of A in N1 = AT 3

c : at Tc

N = N1 =

∫ ∞
0

dε′
ε′2

2(~ωt)3

1

eβε′ − 1
=

1

2

(
kBT

~ωt

)3 ∫ ∞
0

x2

ex − 1
dx = ζ(3)

(
kBT

~ωt

)3

.

(6.3.139)

31This is virtually realized on graphene.
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Therefore, we conclude

Tc = (1.2)−1/3~ωt
kB

N1/3 = 9.02× 10−8 K. (6.3.140)

(5) For 2D harmonic potential

D(ε) = ε/(~ωt)2. (6.3.141)

Therefore, N1 is computed as

N1 =

∫ ∞
0

dε′
ε′

(~ωt)2

1

eβ(ε′−µ) − 1
≤
∫ ∞

0

dε′
ε′

(~ωt)2

1

eβε′ − 1
, (6.3.142)

which is bounded from above (bounded by some AT 2). Therefore, BEC can occur
in 2D if harmonically bound (quite different from the free space).

3.21 [Expanding universe]
At present, the cosmic background radiation is at 3 K. Suppose the volume of the
universe doubles adiabatically. What is the temperature of the cosmic background
radiation after this expansion?

Solution
We know the entropy of the radiation field is S ∝ V T 3. If the system expand
quasistatically, the entropy is constant, so (2V )T 3 = V 33. That is, T = 3/21/3 K.
Actually, the process may not be quasistatic, so this estimate must be the lower
bound.32

3.22 [Specific heat of hydrogens]
Consider a 1 mole of ideal gas at 10 K consisting of pure HD, pure HT or pure DT.
Whose specific heat CV is the largest? Give your answer without detailed computa-
tion. You may assume that the length of the chemical bonds are all the same.

Solution
We may totally ignore the the contribution of oscillations. There is no difference
in the contribution of translational motions. These are all heteronuclear molecules,
so we need not worry about spin-rotation coupling. Therefore, we have only to pay
attention to the rotational contributions. The molecules with the largest moment of
inertia is the easiest to excite, so their rotational specific heat is the largest (notice
that the peak of the rotational specific heat occurs around 40 K or above). Therefore,

32This is virtually a monatomic ideal gas problem, but do not forget that the particles are
superrelativistic.
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the specific heat of DT must be the largest around 10K. This is indeed the case.

3.23 [Internal degree of freedom of heavy hydrogen]
The potential energy function describing the chemical bond in a heavy hydrogen D2

may be approximately described as

φ(r) = ε
[
e−2(r−d)/a − 2e−(r−d)/a

]
, (6.3.143)

where ε = 7× 10−19 J, d = 8× 10−11 m and a = 5× 10−11 m.
(1) Evaluate the smallest energy required to excite the rotational motion, and esti-
mate the temperature Tr for which the rotation starts to contribute significantly.
(2) Evaluate the smallest energy required to excite the vibrational motion, and esti-
mate the temperature Trv for which the vibration starts to contribute significantly.

Solution
(1) The moment of inertia is

I =
1

2
md2 = (1/2)× (1.66× 10−27)× (8× 10−11)2, (6.3.144)

so Θr = ~2/2kBI ' 150K.
(2) The vibrational quantum is ~ω/kB ' 6300K.

3.24 [Computation of inertial moment tensor]
Obtain the moment of inertia tensor for CH3D around its center of mass, and com-
pute its rotational partition function classically. [You have only to state your strategy
without actually estimating the components of the tensor.]

Solution
The inertial moment tensor around the center of mass ACM and that AO around an
arbitrary point O is related as

A = AO − ACM , (6.3.145)

where
ACM = M

[
r2
CMI − rCMrTCM

]
. (6.3.146)

Here, M is the total mass, rCM is the CM coordinate vector relative to O. AO is
computed as

AO =
∑
i

mi

[
r2
i I − rirTi

]
, (6.3.147)

where mi is the mass of atom i, ri it its position vector relative to O.
Let us compute the inertial moment tensor of CH3D. The molecule may be consid-

ered to be a regular tetrahedron, so it is convenient to compute the inertial moment
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tensor around the central carbon. H and D sits at the apices of the tetrahedron and
the cC is at its geometrical center. Take the position of the carbon as O. Let us
write the length of the CH (or CD) bond as r0. Let us take r0/

√
3 as the length unit.

Three H’s are placed at (1,−1,−1), (−1,−1, 1) and (−1, 1,−1), and D at (1, 1, 1).
Then, we have

AO =

 10 −1 −1
−1 10 −1
−1 −1 10

m2
H(r2

0/3). (6.3.148)

The position of the center of mass is rCM = (1, 1, 1)/17, so

ACM =
1

17

 2 −1 −1
−1 2 −1
−1 −1 2

m2
H(r2

0/3). (6.3.149)

Combining these results, we have

A =

 10− 2/17 −16/17 −16/17
−16/17 10− 2/17 −16/17
−16/17 −16/17 10− 2/17

m2
H(r2

0/3). (6.3.150)

To compute the rotational partition function, we have only to compute the determi-
nant of this matrix.
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6.4 Problems for Chapter 4

4.1. [Kac potential]
There is an imperfect classical gas with a binary potential φ given by

φ(|r|) =


∞ if |r| < a,
−ε/l3 if a ≤ |r| < l,

0 otherwise.
(6.4.1)

Here, ε > 0, a is a length scale of atom size, and the l →∞ limit is taken. (This is
an example of the Kac potential.)
(1) Compute the second virial coefficient (in the l→∞ limit).
(2) Compute the Joule-Thomson coefficient (∂T/∂P )H , where H is enthalpy. The
reader may assume that the heat capacity CP under constant pressure is a constant
and is known.

Solution
Since

B(T ) =
1

2

∫ ∞
0

[
1− e−βφ(r)

]
4πr2dr, (6.4.2)

we have

2B(T ) =

∫ a

0

4πr2dr +

∫ l

a

(1− eβε/l3)4πr2dr, (6.4.3)

→ 4

3
πa3 − 4

3
πβε. (6.4.4)

That is,

B(T ) =
2π

3
(a3 − βε). (6.4.5)

(2)
∂T

∂P

∣∣∣∣
H

=
∂(T,H)

∂(T, P )

∂(T, P )

∂(P,H)
= − ∂H

∂P

∣∣∣∣
T

/
∂H

∂T

∣∣∣∣
P

. (6.4.6)

(∂H/∂T )P = CP and

∂H

∂P

∣∣∣∣
T

= T
∂S

∂P

∣∣∣∣
T

+ V = −T ∂V

∂T

∣∣∣∣
P

+ V. (6.4.7)

Since the equation of state is

PV = NkBT

(
1 +B(T )

N

V
+ · · ·

)
, (6.4.8)
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we obtain
V

N
=
kBT

P
+B +O[ρ], (6.4.9)

where ρ is the number density, and

∂V

∂T

∣∣∣∣
P

=
NkB
P

+NB′ + · · · . (6.4.10)

Therefore, (again higher order terms in ρ are ignored)

T
∂V

∂T

∣∣∣∣
P

= V + TNB′ + · · · , (6.4.11)

so the Joule-Thomson coefficient reads

∂T

∂P

∣∣∣∣
H

=
N

CP

(
T
dB(T )

dT
−B

)
. (6.4.12)

Now, introduce B obtained in (1) and we get

∂T

∂P

∣∣∣∣
H

=
2πN

3CP

(
2

ε

kBT
− a3

)
. (6.4.13)

From this we see that if the temperature is sufficiently low, we can cool the gas using
the Joule-Thomson effect (as the ordinary gases).

4.2 [van der Waals equation of state]
(1) Show that the critical point is defined by

∂P

∂V

∣∣∣∣
T

=
∂2P

∂V 2

∣∣∣∣
T

= 0. (6.4.14)

(2) For the van der Waals equation of state, find the universal ratio PcVc/kBTc.
(3) Obtain the reduced equation of state Pr = f(Vr, Tr) for the van der Waals gas.
Here, Pr = P/Pc, Vr = V/Vc and Tr = T/Tc are reduced variables. [The reader can
work with a 1 mole gas.]
(4) Near the critical point Pr − 1 may be expanded in powers of Tr − 1 and nr − 1,
where nr = 1/Vr is the reduced number density. Find the coefficients A - C (we will
see a close relation of this to the Landau theory of phase transition later).

Pr − 1 = A(Tr − 1) +B(Tr − 1)(nr − 1) + C(nr − 1)3 + · · · . (6.4.15)
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(5) For hydrogen gas H2, b = 26.61 cm3/mol. This volume can be interpreted as the
smallest volume that the molecules can be squeezed into. Assuming that Avogadro’s
constant is known, estimate Planck’s constant (use dimensional analysis to guess the
atom size in terms of electron charge e, mass m, h and 4πε0).

Solution
(1) The condition for the criticality is for the van der Waals loop to become a single
point. Therefore, the critical point corresponds to the inflection point of the PV -
curve (the point where te local max and min points coalesce). This implies the two
conditions stated in the problem.
(2) The equation of state we start with is

P =
NkBT

V −Nb
− aN2

V 2
, (6.4.16)

and the two conditions in (1) read

− NkBTc
(Vc −Nb)2

+ 2
aN2

V 3
c

= 0, (6.4.17)

2
NkBTc

(Vc −Nb)3
− 6

aN2

V 4
c

= 0. (6.4.18)

Taking the ratio of these two equations, we get Vc−Nb = 2Vc/3. That is, Vc = 3Nb.
From the first equality (6.4.17)

kBTc
(2bN)2

= 2
aN

(3bN)3
⇒ kBTc =

8a

27b
. (6.4.19)

Now, with the aid of the equation of state, we get

Pc =
N(8a/27b)

2Nb
− aN2

9N2b2
=

a

27b2
. (6.4.20)

Combining all the results, we get

PcVc
NkBTc

=
(a/27b2)(3Nb)

N(8a/27b)
=

3

8
. (6.4.21)

That is, unless the ratio is 3/8, a gas does not obey the van der Waals equation of
state.
(3) Introducing P = (a/27b2)Pr, kBT = kBTr(8a/27b) and V = (3b)Vr into the van
der Waals equation of state, we get

Pr
a

27b2
=
NTr(8a/27b)

3bNVr −Nb
− aN2

9N2b2V 2
r

, (6.4.22)
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that is,

Pr =
(8/3)Tr
Vr − (1/3)

− 3

V 2
r

. (6.4.23)

(4) If you are confident about your analytical muscle, you may leave all the following
calculation to, e.g., Mathematica.

Using Pr = π+ 1, Tr = τ + 1, and Vr = 1/(1 +n), we can rewrite (6.4.23) as

π + 1 =
(8/3)(1 + τ)

1/(n+ 1)− 1/3
− 3(1 + n)2 =

8(1 + τ)(1 + n)

2− n
− 3(1 + n)2, (6.4.24)

= 4(1 + τ)(1 + n)

(
1 +

n

2
+
n2

4
+ · · ·

)
− 3(1 + n)2, (6.4.25)

= 4(1 + τ + n+ nτ)

(
1 +

n

2
+
n2

4
+
n3

8
+ · · ·

)
+ (3 + 6n+ 3n2),(6.4.26)

= 4

(
1 + τ +

3n

2
+

3

2
nτ +

3

4
n2 +

3

4
n2τ +

3

8
n3 + · · ·

)
− 3− 6n− 3n2,

(6.4.27)

= 1 + 4τ + 6nτ +
3

2
n3 + 3n2τ + · · · . (6.4.28)

That is,

π = 4τ + 6nτ +
3

2
n3 + · · · . (6.4.29)

This implies that A = 4, B = 6 and C = 3/2.
(5) The radius of the atom may be dimensional-analytically estimated as follows:
[m] = M , [e2/4πε0] = ML3T−2 and [h] = ML2T−1, so the quantity with the dimen-
sion of length that can be constructed from these quantities is

[(h/m)2/(e2/4πmε0)] = (L2T−1)2/(L3/T−2) = L. (6.4.30)

That is, the radius of an atom may be evaluated as a = 4πε0h
2/me2. This a is

something like (b/NA)1/3. Therefore,

h =

√
me2

4πε0

(
b

NA

)1/3

= 2.2× 10−34 Js. (6.4.31)

This is not very bad (taking the crudeness of the argument into account, it is not at
all bad).
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4.3 [The free energy of the van der Waals gas]
The Helmholtz free energy of the van der Waals gas may be expressed as

A = −NkBT
{

log
[nQ
N

(V −Nb)
]

+ 1
}
− aN2

V
. (6.4.32)

(1) Comparing this with the free energy formula for the ideal gas, explain why this
form is natural.
(2) Compute the internal energy and the entropy of the van der Waals gas.

Solution
(1) If we forget about the effect of the attractive forces, the fundamental idea of the
van der Waals gas is the ideal gas in the effective volume (= free volume) V − Nb,
that is, the actual space − the excluded volume due to molecules. The first term of
A is, as you can see by comparing it with the ideal gas formula, just the term for such
an ideal gas. The second term is the effect of attractive forces: since ∂A/∂V = −P ,
the effect of the attractive forces may be computed as (integrating −PdV )

−
∫ V

∞

[
−aN

2

V 2

]
= −aN

2

V
. (6.4.33)

(2)

S = −A
T

= N

{
log
[nQ
N

(V −Nb)
]

+
5

2

}
. (6.4.34)

E = A+ ST is

E =
3

2
NkBT −

aN2

V
. (6.4.35)

They are very natural expressions.

4.4 [Thermodynamically respectable derivation of Maxwell’s rule]
If the temperature is sufficiently low, the PV -curve given by the van der Waals
equation of state implies

∂P

∂V
= − NkBT

(V −Nσ)2
+ a

N2

V 3
> 0. (6.4.36)

That is, it is thermodynamically unrealizable. Actually, gas-liquid coexistence oc-
curs when this ‘unphysical behavior’ happens, and the coexistence temperature T is
determined by the Maxwell rule. This is what Maxwell proposed and an ‘explana-
tion’ was given in the text but was with a remark that the argument is an abuse
of thermodynamics. Many textbooks argue that Maxwell’s rule cannot be derived
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thermodynamically properly, because the argument in the text (the usual one) uti-
lizes thermodynamics where the states are unstable. However, it is possible to avoid
this abuse and still we can thermodynamically demonstrate Maxwell’s rule. The
coexistence condition for phase A and phase B is the agreement of P , T and µ.
µB(T, P )− µA(T, P ) of the difference of the Gibbs free energy must be computable
along the path in the phase diagram through only stable phases (that is, the broken
curve in the following figure).

A B

P

Since
G = E − ST + PV, (6.4.37)

if we compute EB − EA and SB − SA, then GA = GB allows us to compute the
difference of PV , that is, P (VA − VB).
(1) Compute EB − EA.
(2) Compute SB − SA.
(3) Since GB−GA = 0, these results allow us to compute P (VB−VA). Confirm that
this and the result obtained by the naive abuse of thermodynamics:∫ B

A

PdV (6.4.38)

agree.

Solution
(1) We compute the internal energy difference as

EB − EA =

∫ B

A

dE =

∫ B

A

[
∂E

∂V

∣∣∣∣
T

dV +
∂E

∂T

∣∣∣∣
V

dT

]
, (6.4.39)

where the temperatures at A and at B are identical. To compute the second term we
need the constant volume specific heat CV . CV for the van der Waals gas is identical
with that for a (monatomic) ideal gas (the effect of the attractive interaction depends
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only on the density, so it does not contribute to CV as can explicitly be seen from
(6.4.35)). Since TA = TB, the second term is always zero. From dE = TdS − PdV
we get

∂E

∂V

∣∣∣∣
T

= T
∂S

∂V

∣∣∣∣
T

− P = T
∂P

∂T

∣∣∣∣
V

− P =
1

2
a

(
N

V

)2

. (6.4.40)

Therefore,

EB − EA =

∫ B

A

1

2
a

(
N

V

)2

dV =
aN2

2

(
1

VA
− 1

VB

)
. (6.4.41)

(2) This can also be obtained, if we note TA = TB. The temperature derivative gives
(CV /T )dT , but this is a function of T only, so if the initial and the final temperatures
are the same, it cannot contribute to the integral. Therefore,

SB − SA =

∫ B

A

dS =

∫ B

A

∂S

∂V

∣∣∣∣
T

dV. (6.4.42)

Thus, we get

T (SB − SA) = T

∫ B

A

∂P

∂T

∣∣∣∣
V

dV =

∫ B

A

NkBT

V −Nσ
dV = NkBT log

VB −Nσ
VA −Nσ

. (6.4.43)

(3) Since GB−GA = 0 and since the initial and the final T and P are the same,

P (VB − VA) = T (SB − SA)− (EB − EA). (6.4.44)

If we introduce (6.4.43) and (6.4.41) into this, along the broken curve in the above
figure

P (VB − VA) = NkBT log
VB −Nσ
VA −Nσ

− aN2

2

(
1

VA
− 1

VB

)
. (6.4.45)

The RHS of this formula agrees exactly with the naive computation of (6.4.38) along
the van der Waals curve. Therefore, Maxwell’s rule has been justified thermodynam-
ically. Notice that this happy consequence depends on a peculiar feature of the van
der Waals gas that its specific heat is not volume dependent at all.

4.5 [Grand canonical approach to 1D van der Waals gas]
Let us study the 1D Kac model with the aid of the grand canonical approach.
(1) If there are N particles in the container of volume V , the canonical partition
function reads

ZN(V ) =

∫ V−σ

(N−1)σ

dxN · · ·
∫ x3−σ

σ

dx2

∫ x2−σ

0

dx1

∫
dp1 · · · dpne−

∑N
i=1 p

2
i /2mkBT+aN2/kBTV .

(6.4.46)
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After checking the formula is correct, actually compute this.
(2) Using the result of (1) write down the grand partition function (you cannot per-
form the summation in a closed form).
(3) The grand partition function written down in (2) has the following structure:

Ξ =
M∑
N=0

eV A(N/V ), (6.4.47)

where M is the maximum number of particles we can push into the volume V . Show
that if the temperature is sufficiently high, there is only one n = N/V that maximizes
A(n). Also demonstrate that if the temperature is sufficiently low, there can be three
extrema for A(n).
(4) What do you expect the grand partition function looks like, if n that maximizes
A(n) are not unique?
(5) There is a text book which writes explicitly as follows:

Ξ = eβPV + eβP
′V . (6.4.48)

Here, we have assumed that A(n) have two maxima, and the two terms correspond
respectively to the two maxima. Is this correct?

Solution
(1) Let us start with the N = 2 case:

Z2(V ) =
1

h2

∫ V−σ

σ

dx2

∫ x2−σ

0

dx1

∫
dp1dp2e

−
∑2
i=1 p

2
i /2mkBT+aN2/2kBTV

(6.4.49)

=

(
2πmkBT

h2

)2/2 ∫ V−2σ

0

dy2

∫ y2

0

dy1e
2aV kBT (6.4.50)

=

(
2πmkBT

h2

)2/2
1

2
(V − 2σ)2e2aV kBT . (6.4.51)

In the above calculation the interparticle distances y2 = x2−x1 and y1 = x1−0 have
been introduced.

For N = 3, introducing y3 = x3 − x2 as well we get

Z3(V ) =
1

h3

∫ V−σ

2σ

dx3

∫ x3−σ

σ

dx2

∫ x2−σ

0

dx1

∫
dp1dp2dp3e

−
∑3
i=1 p

2
i /2mkBT+aN2/kBTV

(6.4.52)
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=

(
2πmkBT

h2

)3/2 ∫ V−3σ

0

dy3

∫ y3

0

dy2

∫ y2

0

dy1e
9a/2V kBT (6.4.53)

=

(
2πmkBT

h2

)3/2
1

3!
(V − 3σ)3e9a/2V kBT . (6.4.54)

Now, it is easy to guess the following general formula:

ZN(V ) =
1

N !

(
2πmkBT

h2

)N/2
(V −Nσ)NeaN

2/2V kBT . (6.4.55)

It is not hard to show that this is correct in 1D if you plot possible trajectories of
particles as a function of time.
(2)

Ξ =
M∑
N=0

1

N !
(V −Nσ)N(2πmkBT/h

2)N/2eaN
2/2V kBT eµN/kBT . (6.4.56)

(3) From (6.4.56) we obtain

A(N) = N log(V−Nσ)−N logN+N+
N

2
log(2πmkBT/h

2)+aN2/2V kBT+µN/kBT,

(6.4.57)
so

A(n) = V [n log(1/n− σ) + n+
n

2
log(2πmkBT/h

2) + an2/2kBT + µn/kBT ]

(6.4.58)

= V [n log(1/n− σ) + nΛ + an2/2kBT ], (6.4.59)

where Λ = 1 + (1/2) log(2πmkBT/h
2) +µ/kBT . Differentiating this wrt to n, we get

the condition for a maximum:

∂A(n)

∂n
= V

[
log

(
1

n
− σ

)
− 1

1− nσ
+ Λ + an/kBT

]
= 0. (6.4.60)

The first two terms in the brackets are

log(1/n) + log(1− nσ)− 1

1− nσ
. (6.4.61)

This is a monotone decreasing function from +∞ (at n = 0) to −∞ (at n = 1/σ, the
maximum packing density). Therefore, if T is sufficiently large, then there is only
one solution to (6.4.60). Also we see there could be three solutions for this equation
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if T is sufficiently small; they correspond to two maxima and one minimum between
them of A(n).
(4) At high temperatures there is only one maximum for A(n), so we may use the
maximum term to estimate (6.4.56). This is just as we have seen in the proof of
ensemble equivalence in the text.

Ξ ' ePV/kBT . (6.4.62)

If T is sufficiently low (with an appropriate chemical potential), as noted in (3) there
are two maxima. If the heights of these maxima are different, then thanks to the
multiplicative V in the exponent of (6.4.56) only one maximum can contribute. Only
when these two maxima have exactly the same heights can they both contribute to
the grand partition function, and this corresponds to the phase coexistence temper-
ature.
(5) As already explained in (4) this form holds only at the phase transition temper-
ature. At other temperatures one term is overwhelmingly smaller than the other,
and around the taller maximum are numerous higher A(n)’s than the secondary
maximum, so if we do not pay attention to the former, there is no point to keep
the secondary maximum contribution. Thus, if we interpret eβPV as representative
term(s) among the summands we cannot write such a formula. However, if you in-
terpret each term to be the sum below or above some n (intermediate value of the
two coexisting phases), you might be allowed to write such a formula symbolically.

4.6 [Hard sphere fluid]
The virial equation of state for a fluid interacting with 2-body potential reads

P

nkBT
= 1− 2π

3
βn

∫ ∞
0

φ′(r)g(r)r3dr. (6.4.63)

Using this formula, derive the equation of state for the hard sphere fluid:

PH
nkBT

= 1 +
2π

3
ng(σ)σ3, (6.4.64)

where σ is the diameter of the sphere. Strictly speaking, g(σ) is limr↘σ g(r).

Solution
Notice that φHg is zero inside the sphere.

−2π

3
n

∫ ∞
0

βφ′H(r)g(r)r3dr =
2π

3
n

∫ ∞
0

df(r)

dr
eβφg(r)r3dr (6.4.65)

=
2π

3
n

∫ ∞
0

δ(r − σ)eβφg(r)r3dr (6.4.66)

=
2π

3
ng(σ)σ3 (6.4.67)
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4.7 [Internal energy of fluid interacting with binary forces]
(1) Suppose the interactions among spherical particles can be expressed in terms of
the two-body interaction potential φ(r) = φ(r). Write down its internal energy in
terms of E φ, the number density n and the radial distribution function g(r).
(2) Obtain the internal energy of the Kac fluid (i.e., the fluid interacting via the Kac
potential). Set σ = 1.
(3) Using the virial equation of state

P/nkBT = 1− 2π

3
nβ

∫ ∞
0

φ′(r)g(r)r3dr, (6.4.68)

obtain the augmented van der Waals equation of state for a Kac fluid:

βP = βPH +
n2

2
β

∫
d3r φ(r). (6.4.69)

Notice that the radial distribution function of the Kac fluid is the same as the had
sphere fluid with the same number density.33

Solution
(1) The internal energy is the expectation value of the system Hamiltonian. The
expectation value of the kinetic energy is simple:〈∑

p2/2m
〉

= (3/2)NkBT. (6.4.70)

The expectation value of the potential energy is

〈U〉 =

〈
1

2

∑
i 6=j

φ(|ri − rj|)

〉
=

∫
dxdy φ(|x− y|)

〈
1

2

∑
i 6=j

δ(x− ri)δ(y − rj)

〉
(6.4.71)

=
1

2

∫
dxdy n(2)(x,y)φ(|x− y|). (6.4.72)

Therefore,

E =
3

2
NkBT + 2πnN

∫
dr r2φ(r)g(r). (6.4.73)

33However, we cannot derive the Maxwell’s rule requirement.
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(2) For the Kac potential case, the hard-core part of the potential does not contribute
to the energy, so we have only to consider the attractive part in the γ → 0 limit:

U =
1

2
nN4π

∫ ∞
1

γ3φ(γr)g(r)r2dr =
1

2
nN4π

∫ ∞
γ

φ(y)g(y/γ)y2dy. (6.4.74)

g(y/γ)→ 1 for any finite y in the γ → 0 limit, so

U =
1

2
nN4π

∫ ∞
0

φ(y)y2dy =
1

2
Nnφ. (6.4.75)

Therefore,

E =
3

2
NkBT +

1

2
nNφ. (6.4.76)

(3) consider the contribution of the interaction potential to the pressureβ∆P (we
perform the limit γ → 0 at a convenient stage of calculation):

β∆P = −β 2π

3
n2

∫ ∞
0

φ′(r)g(r)r3dr (6.4.77)

= −β 2π

3
n2

∫ ∞
0

[φ′H(r) + γ4φ′(γr)]g(r)r3dr. (6.4.78)

We have already computed the contribution of the hard-core portion:

−2π

3
n2

∫ ∞
0

βφ′H(r)g(r)r3dr =
2π

3
n2g(σ)σ3. (6.4.79)

The contribution from the foothill of the potential is

−β 2π

3
n2

∫ ∞
1

γ4φ′(γr)g(r)r3dr = −β 2π

3
n2

∫ ∞
γ

φ′(y)g(y/γ)y3dy (6.4.80)

→ −β 2π

3
n2

∫ ∞
0

φ′(y)y3dy, (6.4.81)

where we have used g → 1 at infinity. Therefore,

β∆P = +
2π

3
n2g(σ)σ3 + 2πn2β

∫ ∞
0

φ(y)y2dy. (6.4.82)

4.8 [Functional differentiation]
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Compute the following functional derivative.

δ

δψ(x)

∫
d3r

[
1

2
(∇ψ(r))2 − 1

2
τψ2(r) +

1

4
ψ4(r)

]
, (6.4.83)

where τ is a constant.
(2) [Green’s function and functional differentiation] Consider a differential equation
(partial or ordinary) Lϕ = f , where L is a linear differential operator acting on the
functions of x.34 Show that δϕ/δf is the Green’s function for the initial boundary
value problem defined by the linear operator L. (This is a problem immediately
solved by inspection, but the fact is not meaningless. The method of Green’s function
is actually a method to solve a differential equation by the first order functional
Taylor expansion approach explained in the text; in this case the problem is linear,
so the method gives an exact solution.)
(3) Regard the entropy S of a fluid interacting with the binary potential φ as its
functional, and express the functional derivative

δS

δφ(r)
(6.4.84)

in terms of the radial distribution function (and its appropriate partial derivatives).
It may be easy to compute the corresponding functional derivative of the Helmholtz
free energy.

Solution
(1)

δ

δψ(x)

∫
d3r

[
1

2
(∇ψ(r))2 − 1

2
rψ2(r) +

1

4
ψ4(r)

]
=

∫
d3r

[
(∇ψ(r))∇δ(r − x)− rψ(r)δ(r − x) + ψ3(r)δ(r − x)

]
= −∇2ψ(x)− rψ(x) + ψ3(x)

(6.4.85)

(2) The first order Taylor expansion approximation reads

δϕ =

∫
d • δϕ

δf(•)
δf(•), (6.4.86)

34If (Lf)(x) is determined by the value of f at x and the values of various derivatives of f at x,
L is called a differential operator.
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where dummy variables are expressed by •. The integration wrt the dummy is
written as

∫
. If the problem is linear, ϕ does not depend on f , so ‘integrating’ the

above formula, we find

ϕ =

∫
d • δϕ

δf(•)
f(•) (6.4.87)

Functionally differentiating Lϕ = f wrt f (recall that we may always exchange the
order of functional calculus procedures and ordinary calculus procedures), we obtain
(in the following L is written as Lx to emphasize that it acts on the functions of
x)

Lx
δϕ(x)

δf(y)
= δ(x− y) (6.4.88)

(under the same linear auxiliary conditions), Hence, we have G(x|y) = δϕ(x)/δf(y).
Indeed,

Lx

∫
G(x|y)f(y)dy = Lx

∫
d • δϕ(x)

δf(•)
f(•) =

∫
d • δ(Lϕ)(x)

δf(•)
f(•) (6.4.89)

=

∫
d • δf(x)

δf(•)
f(•) =

∫
d • δ(x− •)f(•) = f(x).

(6.4.90)

(3) Let us write dΓN = (1/h3NN !)d(phase volume) and differentiate the free energy
first:

δA

δφ(r)
=

δ

δφ(r)
(−kBT log

∫
dΓN e

−β(K+
∑
φ(xi−xj)) (6.4.91)

=
1

Z

∫
dΓN

∑
i<j

δ(r − (xi − xj))e−β(K+
∑
φ(xi−xj)) =

〈∑
i<j

d(r − (xi − xj))

〉
(6.4.92)

=
1

2

〈∑
i 6=j

∫
dy δ(r + y − xi)δ(y − xj)

〉
=

1

2

∫
dy n(2)(r + y, y). (6.4.93)

Since the system is expected to be translationally symmetric and isotropic, we can
simplify this as

δA

δφ(r)
=

1

2
V n(2)(r, 0) =

1

2
Nng(|r|). (6.4.94)

Incidentally, this formula gives a perturbative way to compute A.
Since S = −∂A/∂T (notice that n is a constant)

δS

δφ(r)
= −1

2
Nn

∂

∂T
g(|r|). (6.4.95)
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4.9 [Functional derivatives of canonical partition function]
Redo the calculations (4.4.26)-(4.4.28) using the canonical formalism; this is slightly
easier than the grand canonical approach given in the text.

4.10 [Debye-Hückel theory]
Let us perform the functional Taylor approximation approach explained in Section
4.4 with A = n and B = U .
(1) Within this approach find the equation governing the radial distribution function
g.
(2) Obtain the Fourier transform of the indirect correlation function in the present
approximation.
(3) Let φ be the Coulomb potential. Its Fourier transform may be written as
φk = Q/k2. What is the functional form of the indirect correlation function h(r)?

Solution
(1) From the formulas in the text,we can almost write down the solution as

h = −β(nh ∗ φ+ φ). (6.4.96)

First, (4.4.31) tells us(
δn(x|U)

δ−βU(y)

)
U=0

= n2h(x− y) + nδ(x− y), (6.4.97)

so the Taylor approximation reads

n(x|φ)− n(x|0) =

∫
dy[n2h(x− y) + nδ(x− y)](−βφ(y)− 0). (6.4.98)

That is,

nh(x) = −βn2

∫
dyh(x− y)φ(y)− βnφ(x). (6.4.99)

This leads to the answer given above.
(2) Fourier transforming (6.4.96), we get

hk =
−βφk

1 + βnφk
. (6.4.100)

(3) For the Coulomb potential

hk =
−βQ

k2 + βnQ
. (6.4.101)
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Therefore,

h ∝ 1

r
e−r
√
βnQ. (6.4.102)

This is a Yukawa potential. That is, the Coulomb force is shielded by many-body
effects. Recall that log g ∼ h is the effective two-body interaction.

4.11 [Toy integral equation for liquid]
Let us make a prototype closure for the radial distribution.
(1) Make the first order approximation (i.e., the first order functional Taylor expan-
sion approximation) of n(1)(x|U) in terms of the Boltzmann factor exp[−βU(x)].
(2) What is the direct correlation function?
(3) Find the Fourier transform of the indirect correlation function.
(4) Find the equation of state with our approximation with the aid of compressibility
or its reciprocal. Assume that the diameter of the hard core is a.
Solution
Let A = n(1)(x|U) and B = exp[−βU(x)]. We need the following calculation:

δA(x|U)

δB(y|U)
= −eβU(x) δn

(1)(x|U)

δβU(y)
(6.4.103)

= eβU(x)[n(2)(x,y|U)− n(1)(x|U)n(1)(y|U) + n(1)(x|U)δ(x− y)].

(6.4.104)

Let us estimate this at U = 0:

δA(x|U)

δB(y|U)

∣∣∣∣
U=0

= n2g(x− y)− n2 + nδ(x− y). (6.4.105)

Let φ be the potential created by the particle placed at the origin. Then, A(x|φ) =
n(1)(x|φ) = ng(x), A(x|0) = n(1)(x|0) = n, B(x|φ) = exp[−βφ(x)] and B(x|0) = 1.
Using these formulas, the linear Taylor approximation reads

ng(x)− n = n

∫
dy[ng(x− y)− n+ δ(x− y)] (exp[−βφ(y)]− 1) . (6.4.106)

Using h and Mayer’s f , we have

h(x) =

∫
dy [nh(x− y) + δ(x− y)]f(y), (6.4.107)

or

h(x) = f(x) + n

∫
dy h(x− y)f(y). (6.4.108)
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This is our final result. This is already a closed equation for h.
(2) Comparing (6.4.108) and the Ornstein-Zernike equation, we immediately see
c = f .
(3) (6.4.108) is linear in h, so we can solve it with the aid of Fourier transforma-
tion:

f(k) =

∫
d3re−ik·rf(r). (6.4.109)

Its inverse is

f(r) =
1

(2π)3

∫
d3keik·rf(k). (6.4.110)

The most important feature we use is that the convolution is converted into prod-
uct:

(f ∗ g)(k) = f(k)g(k). (6.4.111)

Using this, we have
h(k) = f(k) + nh(k)f(k). (6.4.112)

That is,
h(k) = f(k)/(1− nf(k)). (6.4.113)

(4) The compressibility equation gives ∂P/∂n:

β
∂P

∂n

∣∣∣∣
T,V

= 1− n
∫
cdx = 1 + n

4π

3
a3. (6.4.114)

Therefore,
P

nkBT
= 1 +

2π

3
a3n. (6.4.115)

4.12. [Scaled particle theory of hard core fluid]35

As we know well by now, for a spherical hard core fluid

P/nkBT = 1 +
2π

3
nσ3g(σ), (6.4.116)

where σ is the diameter of the spherical core. Therefore, to know the hard core
equation of state we need g only at r = σ.

Let p0(r) be the probability of observing a bubble of radius r. Let nG(r) be
the expected number of the centers just outside the bubble (nGdr is the expected

35R. J. Baxter, in Physical Chemistry an advanced treatise volume VIIIA Liquid State (edited
by H. Eyring, D. Henderson and W. Jost, Academic Press 1971) Chapter 4, Section VIII.
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number of particle centers in the spherical shell between r and r + dr). When the
bubble is of radius σ, it just behaves as the exclusion zone by the hard sphere at the
origin. Therefore,

g(σ) = G(σ). (6.4.117)

We have only to determine G to know the hard-core fluid pressure.
(1) Derive

p0(r + dr) = p0(r)[1− 4πnr2G(r)dr]. (6.4.118)

That is,
d

dr
log p0(r) = −4πnr2G(r). (6.4.119)

(2) We can determine G for very large r. According to the fluctuation theory, the
probability of fluctuation that creates a bubble of radius r may be written in terms
of the reversible work W (r) required to make it. Therefore,

p0(r) = e−βW (r). (6.4.120)

Using this and the thermodynamic result for large r (i.e., for the usual macroscopic
bubble!)

dW (r) = PdV + f [1− (2δ/r)]dA, (6.4.121)

where A is the surface area of the bubble, and f(1− 2δ/r) is the surface tension of
the curved surface of mean curvature 1/r. Using (6.4.119)-(6.4.121), find G(r) as a
function of r.
(3) If r < σ/2, only 1 particle center can come in the bubble. What is this probabil-
ity? This must be 1− p0(r) for r < σ/2.
(4) Determine G(r) for r < σ/2.
(5) Unfortunately, G(r) is not a smooth function, but it is known that it is contin-
uously differentiable at r = σ/2. Let us make an approximation that the unknown
parameters f and δ may be determined by matching G obtained in (2) and in (4) at
r = σ/2 smoothly (match G and G′ there). Derive, under this approximation,

P

nkBT
=

1 + η + η3

(1− η)3
, (6.4.122)

where η is the packing density: η = πσ3n/6 as usual.
[This is identical to PY-C! Furthermore, f obtained is quite reasonable.]

Solution
(1) If we assume that there is no more than a single particle in a thin shell, then
4πr2dr × nG(r) is the expectation value of the number of particles in the shell
immediately outside the bubble of radius r. Poisson distribution tells us that the
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probability to find no particle in the shell is e−4πnr2G(r)dr = 1− 4πnr2G(r)dr.
(2)

−β d
dr
W (r) = −4πnr2G(r). (6.4.123)

A and V must be expressed in terms of r: V = (4π/3)r3, A = 4πr2. Therefore,

dW

dr
= 4πPr2 + 8πf [1− (2δ/r)]r = 4πkBTnr

2G(r). (6.4.124)

That is,

G(r) =
P + (2f/r)− (4fδ/r2)

nkBT
. (6.4.125)

(3) (4π/3)nr3 is the expectation value of the number of (the centers of the) particles.
Here, the sphere of radius r does not contain any particle (with probability p0) or
contains only one particle (with probability p1 = 1− p0), and the expectation value
of the number of particle is equal to p1. Therefore,

p0(r) = 1− 4

3
πnr3. (6.4.126)

(4) If we use p0 obtained in (3) in (6.4.119), we get

G(r) =
1

1− (4π/3)r3n
. (6.4.127)

(5) If we demand G just obtained and (6.4.125) agree at r = σ/2:

1

1− (4π/3)(σ/2)3n
=
P + (4f/σ)− (16fδ/σ2)

nkBT
. (6.4.128)

Introducing the following variable

X = P/nkBT, Y = 4f/nσkBT, Z = 4δ/σ, (6.4.129)

the above equality reads
1

1− η
= X + Y − Y Z. (6.4.130)

If we further demand the agreement of G′ there, we have

4πr2n

(1− (4π/3)r3n)2
=
−(2f/r2) + 2(4fδ/r3)

nkBT
, (6.4.131)
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or
4πr3n

(1− (4π/3)r3n)2
=
−(2f/r) + 2(4fδ/r2)

nkBT
. (6.4.132)

This can be rewritten as follows:

3η

(1− η)2
= −Y + 2Y Z. (6.4.133)

We need one more relation. It is the expression of the pressure in terms of G(σ):

X = 1 + 4ηG(σ) = 1 + 4η(X + Y/2− Y Z/4), (6.4.134)

where the second equality is obtained with the aid of (6.4.125).
From (6.4.130) and (6.4.133) we get

Y Z =
1

1− η
+

3η

(1− η)2
−X, (6.4.135)

Y =
2

1− η
+

3η

(1− η)2
− 2X. (6.4.136)

Introducing these into (6.4.134) gives

X = 1 + 4ηX + 2ηY − ηY Z, (6.4.137)

= 1 + 4ηX +
3η

1− η
+

3η2

(1− η)2
− 3ηX. (6.4.138)

Therefore,

(1− η)X = 1 +
3η

1− η
+

3η2

(1− η)2
=

1 + η + η2

(1− η)2
. (6.4.139)

We’ve done it!

4.13 [Quantum effect on the second virial coefficient]36

The second virial coefficient for a spherical symmetrical particle is, classically,

B = 2π

∫ ∞
0

(1− e−βφ(r))r2dr. (6.4.140)

Its quantum version should be obtained by replacing the Boltzmann factor e−βφ with
the diagonal element of the 2-body density operator ρ(r):

B = 2π

∫ ∞
0

(1−Nρ(r))r2dr, (6.4.141)

36This is based on T. Kihara, Molecular forces.
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where N is the normalization constant to make Nρ(r)→ 1 in the r →∞ limit.37

Thus, the calculation has been reduced to that of ρ. Let us perform this through
small steps. The difference of fermions and bosons can be ignored except for helium
below 25 K. Therefore, we totally ignore the effect of particle symmetry on the wave
function. The following calculation was done for the first time by E. Wigner in the
1930s. For 4He, below 50 K the quantum correction increases the classical value by
about 50%, but by about 10% around 100 K, so the quantum correction is not very
small.
(1) Let us assume that two-body Hamiltonian to be

H = − ~2

2m
(∆1 + ∆2) + φ(|r1 − r2|), (6.4.142)

where ∆i is the Laplacian wrt the position coordinates of the i-particle. The two-
body density operator is given by ρ = e−βH . Show that the matrix element 〈r1, r2|ρ|r′1, r′2〉
of the 2-body density operator satisfies the following equation:

∂

∂β
〈r1, r2|ρ|r′1, r′2〉 = −H〈r1, r2|ρ|r′1, r′2〉. (6.4.143)

If we use the normalized eigenket |i〉 (H|i〉 = Ei|i〉) of H, we can write

〈r1, r2|ρ|r′1, r′2〉 =
∑
i

〈r1, r2|i〉e−βEi〈i|r′1, r′2〉. (6.4.144)

Here, the summation may include integration.
(2) For the case with φ = 0 (i.e., for the ideal gas case) obtain 〈r1, r2|ρ|r′1, r′2〉. As
already noted, you can totally forget about the particle exchange symmetry. You
must specify the initial and the boundary conditions correctly to solve the above
parabolic equation.
(3) Let us introduce the deviation Ψ from the case without interactions as

〈r1, r2|ρ|r′1, r′2〉 =

(
2π~2β

m

)−3

exp

[
− m

2~2β
[(r1 − r′1)2 + [(r2 − r′2)2] + Ψ(r1, r2; r′1, r

′
2)

]
.

(6.4.145)
Note that −kBTΨ corresponds to the ‘quantum-corrected two-body interaction. Ψ
satisfies the following equation:

φ+
∂Ψ

∂β
+kBT [(r1−r′1) ·∇1 +(r2−r′2) ·∇2]Ψ =

~2

2m
[(∇1Ψ)2 +∆1Ψ+(∇2Ψ)2 +∆2Ψ].

(6.4.146)

37As we will see below, the diagonal element of the position representation of the density operator
is proportional to the probability of finding particles, so it is proportional to the Boltzmann factor
semi-classically. Therefore, normalizing the density operator appropriately, we can interpret it as a
quantum statistical extension of the spatial Boltzmann factor.
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This equation can be obtained from (6.4.143) by substituting (6.4.145); nothing
special has not been done at all.

To obtain the quantum correction we expand Ψ as

Ψ = Ψ0 +
~2

2m
Ψ1 + · · · (6.4.147)

and then introduce this into (6.4.146). Requiring the order by order agreement of
the substituted result, we get

φ+
∂

∂β
Ψ0 + kBT [(r1 − r′1) · ∇1 + (r2 − r′2) · ∇2]Ψ0 = 0, (6.4.148)

∂

∂β
Ψ1 +kBT [(r1−r′1) ·∇1 + (r2−r′2) ·∇2]Ψ1 = (∇1Ψ0)2 + ∆1Ψ0 + (∇2Ψ0)2 + ∆2Ψ0,

(6.4.149)
etc. First, we must solve the zeroth order equation. Show that the diagonal element
of the only meaningful solution is Ψ0(β, r1, r2; r1, r2) = −βφ(|r1 − r2|).
(4) We have only to obtain the diagonal element of Ψ1. Solve the simplified equation
that can be obtained by taking the diagonal limit of (6.4.149):

∂

∂β
Ψ1 = lim

{r′i}→{ri}

[
(∇1Ψ0)2 + ∆1Ψ0 + (∇2Ψ0)2 + ∆2Ψ0

]
. (6.4.150)

As can immediately be seen, to compute the RHS of this equation, we cannot use
Ψ0(β, r1, r2; r1, r2) = −βφ(|r1−r2|) that is already in the diagonal limit. The deriva-
tive must be computed from the original expression of Ψ0. Find lim{r′i}→{ri}∇1Ψ0

and lim{r′i}→{ri}∇2Ψ0.
(5) To obtain ∆1Ψ0 we could perform a similar calculation. However, our purpose
is not to practice calculation (although this practice is also meaningful), the needed
result is provided:

∆iΨ0 = −1

3
β∆iφ, (6.4.151)

where i = 1, 2.
Obtain the diagonal element 〈r1, r2|Ψ1|r1, r2〉. Then compute the quantum cor-

rection to the second virial coefficient to order ~2. Show that the correction is positive
for any T (as stated for helium, quantum correction always increases the second virial
coefficient).
(6) The quantum correction starts with the term of O[~2]. Why, or why is’t there
any correction of odd order in h?

Solution
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(1) Obviously,
d

dβ
e−βH = −He−βH . (6.4.152)

If we position represent this, we get the desired equation. The result is a parabolic
partial differential equation.
(2) We must solve the following partial differential equation:

d

dβ
f(β, {ri}, {r′i}) =

~2

2m
(∆1 + ∆2) f(β, {ri}, {r′i}), (6.4.153)

where the primed vector variables are regarded as constant parameters in this equa-
tion. The initial condition at β = 0 can be obtained immediately from the definition
of the density matrix:

f(0, {ri}, {r′i}) =
∑
i

〈r1, r2|i〉〈i|r′1, r′2〉 = 〈r1, r2|r′1, r′2〉 = δ(r1 − r′1)δ(r2 − r′2).

(6.4.154)
The boundary condition is that the solution goes to zero if {ri} and {r′i} are far
apart.

This equation can be totally separated for different particles (as can be guessed
from physics), so we have only to solve

∂

∂β
ϕ(β, r, r′) =

~2

2m
∆ϕ(β, r, r′). (6.4.155)

This is an elementary diffusion equation (the simplest way to solve it is to use Fourier
transformation):

ϕ(β, r, r′) =

(
2π~2β

m

)−3/2

exp

[
− m

2~2β
(r − r′)2

]
. (6.4.156)

Therefore, the answer is (6.4.145) without Ψ. We immediately see that N can be
chosen to cancel the numerical factor in front of the exponential function.
(3) The characteristic equation of this linear first order partial differential equation
is

dβ

1
= −dΨ0

φ
=

βdx1

x1 − x′1
=

βdy1

y1 − y′1
= · · · , (6.4.157)

where · · · denote similar equations for al the remaining particles. From this we see
that the diagonal element is Ψ0 = −βφ+ const. The answer must agree with the
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ideal case in th βφ→ 0 limit, the constant must be zero.
(4) If we apply ∇1 to the zeroth order equation (6.4.148), we get

∇1φ+
∂

∂β
∇1Ψ0 +

1

β
∇1Ψ0 + kBT [(r1−r′1) ·∇1 + (r2−r′2) ·∇2]∇1Ψ0 = 0. (6.4.158)

Its diagonal element is

∇1φ+
∂

∂β
∇1Ψ0 +

1

β
∇1Ψ0 = 0. (6.4.159)

This is an ordinary differential equation, so its general solution reads

∇1Ψ0 = −1

2
β∇1φ+ kBTc, (6.4.160)

where c is an arbitrary function of r. However, we know that both Ψ and Ψ0 must
vanish in the β → 0 limit, c = 0. Similarly,

∇2Ψ0 = −1

2
β∇2φ. (6.4.161)

(5) Since

〈r1, r2|Ψ1|r1, r2〉 =
β3

6
(∇φ)2 − β2

3
∆φ, (6.4.162)

we now know the ‘quantum-corrected’ two-body potential. Therefore, we can write

B(T ) =
1

2

∫
V

dr(1−eΨ) = Bc(T )− ~2

4m

∫
V

(
β3

6
(∇φ)2 − β2

3
∆φ

)
e−βφd3r, (6.4.163)

where Bc is the classic value. If we perform integration by parts, the result becomes
cleaner. Using Gauss’ theorem, we have

(∆φ)e−βφ = ∇ · ((∇φ)e−βφ)−∇φ · ∇e−βφ, (6.4.164)

so ∫
(∆φ)e−βφ =

∫
S

e−βφ∇φ · dS −
∫
d3r∇φ · ∇e−βφ = +β

∫
d3r(∇φ · ∇φ)e−βφ.

(6.4.165)
Thus, we have arrived at the desired result:

B(T ) = Bc(T ) +
~2

4m

∫
V

β3

6
(∇φ)2e−βφd3r. (6.4.166)
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Thanks to the spherical symmetry ∇φ(r) = (r/r)φ′(r) (the chain rule!), we can
further rewrite this as

B(T ) = Bc(T ) +
πβ3~2

6m

∫ ∞
0

(φ′)2e−βφr2dr. (6.4.167)

The correction term is clearly positive for any T .
(6) Perform h → −h in quantum mechanics. For the system with spatial inversion
symmetry, this corresponds to the time reversal operation. We are discussing equi-
librium states, so the situation should not be affected by time reversal. Therefore,
quantum correction must be even in h. [What if the system is chiral?]
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6.5 Problems for Chapter 5

5.1 [Phase transition and analyticity]
If there is no phase transition in a range of fugacity z = eβµ, P/kBT is, by definition,
holomorphic in z, so we may expand it as

P

kBT
=
∞∑
`=1

b`z
`, (6.5.1)

where b` is called the `-body cluster coefficient. They are smooth (actually real ana-
lytic) functions of T and positive for lower temperatures, so each b` has the smallest
real positive zero T`. It is known that {T`} is a monotone decreasing sequence of `.
It is demonstrated38 that
(i) b`(Tc) > 0 if ` is sufficiently large.
(ii) There are infinitely many T` between any T (> Tc) and Tc.
Let Ta be the accumulation point of {T`}. Show Tc = Ta.

39

Solution
(ii) implies that Tc is an accumulation point of {T`}. Needless to say, {T`} is bounded
from below and monotone decreasing, its accumulation point is unique. Therefore,
Tc = Ta. (i) is unnecessary.

5.2 [Crude version of rigorous Peierls’ argument]
Let us impose an all up spin boundary condition to the 2-Ising model on the finite
square. Then, we wish to take a thermodynamic limit. If the spin at the center of
the square is more likely to be up than to be down, we may conclude that there is a
long-range order.

Let γ be a closed Bloch wall (i.e., the boundary between up and down spin do-
mains; this does not mean that the domain enclosed by γ is a totally up or down
domain (lakes can contain islands with ponds with islets, etc.; the wall corresponds
to the shore lines.) The probability PV (γ) to find such a wall in the system with
volume V has the following estimate (we used this in our discussion on Peierls’ ar-
gument):

PV (γ) ≤ e−2βJ |γ|, (6.5.2)

where |γ| is the total length of the contour γ, β = 1/kBT , and J is the usual
ferromagnetic coupling constant. [This naturally looking inequality needs a proof; it

38T. Kihara and J. Okutani, Chem. Phys. Lett., 8, 63 (1971).
39This problem asks a mathematically trivial question, but the main point is the fact stated

here.
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is not trivial.]
(1) Since the outside boundary is all up, there must be a Bloch wall encircling the
origin for the spin at the origin to be down. Therefore, the probability P 0

V of the
spin at the origin to be down must be smaller than the probability of the occurrence
of at least one contour encircling the origin. Show

P 0
V ≤

∑
γ

e−2βJ |γ|, (6.5.3)

where the summation is over all the possible contours surrounding the origin. [Hint:
Don’t think too much. If event A occurs when at least one of B and C occurs, then
A ⊂ B ∪ C.]
(2) Estimate the number of contours with circumference |γ| crudely as the total
number of random walks of length |γ| starting from appropriate neighborhood points
of the origin. Use this crude estimate and show that if β is sufficiently large, P 0

V < 1/2
for large V .

Solution
The argument here is, although simplified, almost rigorous.
(1) The event that the spin at the origin is down occurs only if at least one Bloch
wall surrounds the origin. Let P (γ) be the probability that there is a closed Bloch
wall γ surrounding the origin. Then,

P 0
V ≤ P (at least there is one Bloch wall surrounding the origin) = P (∪{∃γ}) ≤

∑
γ

P (γ),

(6.5.4)
where ∪{∃γ} is the event that there is at least one closed wall around the origin ir-
respective of its shape. The left-most inequality is due to P (A∪B) ≤ P (A) +P (B).
The sum is over all the closed curves around the origin. We use (6.5.2) to get (6.5.3).
(2) Again we perform extremely excessive estimate: to draw a closed curve surround-
ing the origin of length |γ|, we must start at some point. Let the starting point be
the closest point on γ to the origin. The number of candidate points for this cannot
exceed |γ|2. Let us start a random walk of length |γ|. There is no guarantee that the
walk makes a closed curve, but all the curves satisfying the desired condition can be
drawn in this fashion. Since the number of distinct walks is 4× 3|γ|−1, we have

P 0
V ≤

∑
γ

e−2βJ |γ| ≤
∞∑
|γ|=4

|γ|23|γ|e−2βJ |γ|. (6.5.5)

Here, we have used the fact that the smallest closed curve on the lattice surrounding
the origin has length 4 (the smallest square on the dual lattice; notice that the wall
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is a curve on the dual lattice). Therefore, if β is sufficiently large,for any V we can
make P 0

V < 1/2. The key point of the argument is that [logC|γ|]/|γ| is uniformly
bounded from above, where Cn is the total number of closed curves of length n sur-
rounding the origin.

(6.5.5) tells us that the spin at the origin points upward more likely than down-
ward. The required β is unrealistically large due to the crudeness of the estimation,
but still it is finite (that is, T > 0). Thus, we have shown that the system orders at
some low but positive temperature.

Now, we demonstrate (6.5.2).40 This is called Peierls’ inequality. The statement
of the proposition is:
Let V be a finite domain. On its boundary all the spins are fixed to point upward.
Under this condition the probability PV (γ) of formation of a Bloch wall γ is bounded
from above as

PV (γ) ≤ e−β2J |γ|, (6.5.6)

where |γ| is the total length of γ.
To demonstrate this, the energy in the volume V is estimated (let us denote the

number of lattice points in V by the same symbol V ):

HV (φ) = −2JV + 2J |∂φ(V )|, (6.5.7)

where ∂φ denotes the totality of the Bloch walls appearing in the spin configuration
φ. We may write

PV (γ) =

∑
φ(V ):γ⊂∂φ(V ) e

−βHV (φ)∑
φ(V ) e

−βHV (φ)
. (6.5.8)

Here, in the numerator the sum is over all the spin configurations containing the
Bloch wall γ. Next, the spin configurations on V is divided into the ones includ-
ing γ denoted by Φγ and the rest denoted by Φ−γ . Let us define a one-to-one map
χ : Φγ → Φ−γ that flips all the spins inside γ (see the figure below).

γ

Configurations with and without γ.
This correspondence is one-to-one.

40Chapter 2 Section 1 of Ya G Sinai, Theory of Phase Transitions: Rigorous Results (Pergamon
Press, 1982).
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The map χ reduce the number of adjacent up-down spin pairs by |γ|, so the Boltz-
mann factor must be multiplied by e2β|γ|. Therefore, if we replace every element in
Φγ with the corresponding element in Φ−γ , we must multiply e−2β|γ| to cancel this
Boltzmann factor:

P+
V (γ) =

∑
Φγ
e−βHV (φ)∑

φ(V ) e
−βHV (φ)

. (6.5.9)

= e−2β|γ|

∑
Φ−γ
e−βHV (φ)∑

φ(V ) e
−βHV (φ)

≤ e−2βJ |γ|. (6.5.10)

5.3 [Phase transition in 1D long-range system]
Using Peierls’ argument, discuss the phase transition in a 1d spin system whose cou-
pling constant behaves as r−q (q < 2) beyond some distance r0 (you may assume that
the coupling constant for r < r0 is J , constant). No rigorous argument is wanted.

Solution
Assume initially all the spins are up. Then, we flip L contiguous spins. The required
energy is estimated as

∆E = 2

∫ ∞
L/2+δ

dx

∫ L/2

−L/2
dy

1

(x− y)q
. (6.5.11)

The contribution of the short-range interactions is ∼ 2Jδ, so it is ignored. It is easy
to see ∫ ∞

L

dx

∫ L/2

−L/2
dy

1

(x− y)q
= O[L2−q]. (6.5.12)

This energy increases indefinitely with L if q < 2. As we have seen for the nearest
neighbor interaction system in the text, the contribution of entropy that fatally crip-
ple system ordering is of order logL, so the entropy effect cannot destroy the order
even at finite temperatures.

According to a rigorous argument even for q = 2 phase transition occurs at a finite
temperature.

5.4 [Griffiths’ inequality]
Empirically, it is known that there is the following relation among critical expo-
nents:

α + β(1 + δ) = 2. (6.5.13)
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(1) Thermodynamically, demonstrate the following inequality (Griffiths’ inequal-
ity)

α + β(1 + δ) ≥ 2. (6.5.14)

[Hint: You may proceed just as the case of Rushbrooke’s inequality, but use m ∼ h1/δ

(at T = Tc) to differentiate wrt H under constant temperature. At τ = 0 and h = 0
the (vertical) line T = Tc is tangent to m = m(τ, h = 0), so m may be parameterized
by τ .]
(2) Using the scaling relation or Kadanoff’s argument (that is, using the expression
of the magnetization as a generalized homogeneous function of h and τ), show that
the equality actually holds. [Hint: the wisest approach may be to use βδ = β + 1.
You may use such as α + 2β + γ = 2 we have already discussed.]

Solution
(1) We start with the following inequality (just as in the case of Rushbrooke’s in-
equality):

∂S

∂T

∣∣∣∣
H

∂M

∂H

∣∣∣∣
T

≥ ∂S

∂H

∣∣∣∣
T

∂M

∂T

∣∣∣∣
H

=
∂M

∂T

∣∣∣∣2
H

. (6.5.15)

Using m ∼ h1/δ at Tc, very close to Tc we have

T−1|τ |−αh1/δ−1 = |τ |−αm1−δ ≥ |τ |2(β−1), (6.5.16)

where the T in the LHS is almost Tc, so we may ignore it. Using the hint, we
have

|τ |−α|τ |β(1−δ) ≥ |τ |2(β−1). (6.5.17)

This requires that the LHS of the following formula must be larger than some con-
stant:

|τ |−(α+β(1+δ)−2) ≥ const, (6.5.18)

which implies α + β(1 + δ)− 2 ≥ 0.
(2) Using the following result we have obtained in the text:

β = (d− y2)/y1, δ = y2/(d− y2), γ = (2y2 − d)/y1, (6.5.19)

we get
βδ = y2/y1 = β + γ. (6.5.20)

This with α + 2β + γ = 2 gives what we want.
[In Griffiths’ original (PRL 14 623 (1965)), primed and unprimed quantities are
undistinguished. This distinction corresponds the values below and above Tc. Now,
we believe this distinction is not needed, so in the present exposition, primes were
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removed.]

5.5 [A toy illustration of Lee-Yang theory]41

Suppose the grand partition function of a fluid in a volume V is given by

ΞV = (1 + z)V
1− zV

1− z
, (6.5.21)

where z is the fugacity.
(1) Find the zeros of ΞV . How does the distribution of the zeros change as V →∞?
(2) Obtain P for real positive z and locate the phase transition.
(3) Find the volume v per particle as a function of z.
(4) Find the P -v relation, and demonstrate that phase coexistence does happen.

Solution
(1) Zeros are −1 and e−2πik/V (k = 1, 2, · · · , V ). Therefore, as V → ∞, the density
of zeros on the unit circle increases. In particular on the real positive axis, z = 1 is
an accumulation point of zeros. Therefore, z = 1 must be a phase transition point.
(2) Let us take the thermodynamic limit. If |z| < 1,

βPV =
1

V
log

[
(1 + z)V

1− zV

1− z

]
→ log(1 + z). (6.5.22)

If |z| > 1,

βPV =
1

V
log

[
(1 + z)V

1− zV

1− z

]
=

1

V
log

[
(1 + z)V zV

z−V − 1

1− z

]
→ log z + log(1 + z).

(6.5.23)
Therefore,

βP =

{
log(1 + z) z < 1,

log z + log(1 + z) z > 1.
(6.5.24)

As expected, z = 1 is a singularity and phase transition occurs there.
(3) Since

∂βPV
∂log z

=
z

1 + z
− zV

1− zV
+

1

V

z

1− z
, (6.5.25)

we have
1

v
= lim

V→∞

∂βPV
∂log z

=

{
z/(1 + z) z < 1,

(2z + 1)/(1 + z) z > 1.
(6.5.26)

41S similar question can be found in Reichl
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Notice that for z > 1 and for z < 1 the number densities (or the specific volumes)
are distinct; of course, the smaller z corresponds to gas.
(4) For z < 1, we have v = 1 + 1/z, so v > 2, and

βP = log
v

v − 1
. (6.5.27)

Notice that this is equal to log 2 at v = 2.
For z > 1 since z = (1− v)/(2v − 1), 1/2 < v < 2/3 and

βP = log
v(1− v)

(2v − 1)2
. (6.5.28)

This gives log 2 at v = 2/3. Therefore, in the interval v ∈ [2/3, 2] the pressure is
constant: βP = log 2; we expect a phase coexistence. The equation of state can be
plotted as

βP

v
1/2 2/3 2

log 2

5.6 [The Lee-Yang circle theorem illustrated
The theorem is proved in Supplementary Pages. Here, let us check its content for
simple cases.
(1) According to the theorem the root of p(z) = 1 + 2az + z2 must be on the unit
circle as long as a ∈ [−1, 1]. Confirm this.
(2) On the apices of a triangle are spins interacting with each other. For this system
construct the polynomial of z, and confirm that as long as the interactions are fer-
romagnetic, all the zeros are on the unit circle.

Solution
(1) This is the circle theorem for the two spin system. The roots can be computed



470 CHAPTER 6. SOLUTIONS

explicitly and −a± i
√

1− a2, so they are on the unit circle.
(2) The polynomial in the theorem reads

p(z) = 1 + 3az + 3az2 + z3, (6.5.29)

where a = e−2βJ (even if the interactions are different for different spin pairs, the
modification of the following argument is easy and no different argument is needed),
which is less than 1 for ferromagnetic interactions. This polynomial is a real positive
coefficient polynomial, so according to the theorem −1 must be a root. It is indeed
the case: we can factorize the polynomial as

p(z) = (z + 1)(z2 + (3a− 1)z + 1). (6.5.30)

The complex roots are

1

2

{
(1− 3a)± i

√
4− (1− 3a)2

}
, (6.5.31)

which are actually on the unit circle. Very interestingly, as soon as the intereaction
ceases to be ferromagnetic, the theorem breaks down.

5.7 [A derivation of mean field theory]
A mean field approach may be obtained with the aid of a variational principle for
free energy. If the (density) distribution function of microstates is f (we consider
classical case) the Helmholtz free energy may be written as:

A = 〈H〉+ kBT

∫
dΓf(Γ) log f(Γ). (6.5.32)

Here, the integration is over the whole phase space. 〈H〉 is the expectation value of
the system Hamiltonian with respect to f . Let us apply this to the Ising model on
a N ×N square lattice. Its Hamiltonian is as usual

H = −J
∑
〈i,j〉

SiSj. (6.5.33)

If we could vary f unconditionally and minimize A, then the minimum must be
the correct free energy, but this is in many cases extremely hard or plainly impossi-
ble. Therefore, we assume an approximate form for f and the range of variation is
narrowed. For example, we could introduce a ‘single-body’ approximation:

f = φ(S1)φ(S2) · · ·φ(SN), (6.5.34)
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where φ is a single-spin (density) distribution function.
(1) Under this approximation write down A in terms of φ. That is, find X1 and X2

in the following formula:

A = X1

[∑
S

φ(S)S

]2

+X2

∑
S

φ(S) log φ(S), (6.5.35)

where N and N ± 1 need not be distinguished.
(2) Minimize A wrt φ. φ must be normalized. What is the equation determining φ?
(3) Using the obtained formula, write down the magnetization per spin. The used
Lagrange’s multiplier must be determined.

Solution
(1) We have only to compute each term honestly:

〈H〉 = −J
∑
〈i,j〉

∑
Sk=±1

SiSj
∏
k

φ(Sk) (6.5.36)

= −J
∑
〈i,j〉

〈Si〉〈Sj〉 = −2JN2〈S〉2. (6.5.37)

Hence, X1 = 2JN .
The entropy part reads

kBT
∑
Si=±1

∏
k

φ(Sk)
∑
k

log φ(Sk) = N2kBT
∑
s=±1

φ(s) log φ(s). (6.5.38)

Therefore, X2 = N2kBT .
(2) Introducing a Lagrange’s multiplier λ to impose the normalization condition, we
must minimize

A+λ
∑
S=±1

φ(S) = −2N2J

[∑
S=±1

φ(S)S

]2

+N2kBT
∑
S=±1

φ(S) log φ(S) +λ
∑
S=±1

φ(S).

(6.5.39)
The minimization condition reads

−4N2JS〈S〉+N2kBT (1 + log φ(S)) + λ = 0, (6.5.40)

so we see

φ(S) ∝ exp(−4βJmS), (6.5.41)
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where 〈S〉 = m.
(3) We can get rid of λ from the formula for m with the aid of 〈S〉 = m:

m = tanh 4Jβm. (6.5.42)

This is nothing but the self-consistency equation.

5.8 [Gibbs-Bogoliubov’ inequality and mean field]
(1) Derive the following inequality (called the Gibbs-Bogoliubov inequality) with the
aid of Jensen’s inequality for classical systems [This question has already been asked
in Chapter2, but is reproduced here]:

A ≤ A0 + 〈H −H0〉0. (6.5.43)

Here, A is the free energy of the system with the Hamiltonian H, A0 is the free
energy of the system with the Hamiltonian H0, 〈 〉0 is the average over the canonical
distribution wrt H0. [Hint: compute

〈
e−(H−H0)

〉
0
; the temperature may be absorbed

or we could use the unit system with kB = 1.]
All the variational approximations for statistical thermodynamics are applications

of this inequality.42 Let H be the Hamiltonian of the system we are interested in, and
H0 be the Hamiltonian of a system whose free energy A0 we can compute exactly.
We introduce variational parameters in H0 and tehn try to make the RHS of (6.5.43)
as small as possible.
(2) As H we adopt the N ×N 2-Ising model Hamiltonian (without a magnetic field;
even with it there is almost no change), and

H0 =
∑
i

hsi. (6.5.44)

Derive the equation for h that minimizes the RHS of (6.5.43).

Solution
(1) See the solution to 2.22.
(2) Let us first compute A0 and m = 〈si〉0:

A0 = −kBT log[2 cosh βh]N
2

, (6.5.45)

m = − tanh βh. (6.5.46)

42See, for example, M. D. Girardeau and R. M. Mazur, “Variational methods in statistical
mechanics,” Adv. Chem. Phys. XXIV, eds. I. Prigogine and S.A. Rice (Academic, New York,
1974), p187-255.
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Consequently, since the number of nearest neighbor pairs is 2N2,

〈H〉0 = −J(2N2) tanh2 βh. (6.5.47)

Also we have
〈H0〉0 = −N2h tanh βh. (6.5.48)

Combining all the results, we can write the Gibbs-Bogoliubov inequality as

A ≤ −N2kBT log[2 cosh βh]− J(2N2) tanh2 βh+N2h tanh βh. (6.5.49)

Differentiating the RHS wrt h, we have

−N2 sinh βh

cosh βh
− 4JN2 tanh βh

sinh βh

cosh2 βh
+N2 tanh βh+N2h

sinh βh

cosh2 βh
= 0, (6.5.50)

so we obtain
4J tanh βh = h. (6.5.51)

If we multiply β to the both sides and taking their tanh, we get

tanh(4βJ tanh βh) = tanh βh, (6.5.52)

but if we use (6.5.46), this turns out to be our familiar formula:

m = tanh 4βJm. (6.5.53)

5.9 [Exact mean field for 1-Ising model]
The starting point of the mean-field theory can be the following exact relation for
the 1-Ising model:

〈s0〉 = 〈tanh βJ(s−1 + s1)〉, (6.5.54)

where 〈 〉 is the equilibrium expectation. Utilizing s2 = 1 and translational symmetry
of the system, write down a closed equation for m = 〈s〉, and then discuss the possible
phase transitions.

Solution
The odd powers of s1 and s−1 are identical to the original s1 and s−1, respectively,
we can write

tanh βJ(s−1 + s1) = A(s−1 + s1), (6.5.55)

where A is a numerical constant. If we set s1 = s−1 = 1, we have tanh 2βJ = 2A,
which fixes A, and we get the following identity:

m = (tanh 2βJ)m. (6.5.56)
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Unless β = ∞, tanh 2βJ < 1, so m = 0 for any positive temperature; we know
there is no phase transition for T > 0. If β → ∞, the equation reads m = m, so
the theory does not exclude the possibility of Tc = 0, but it seems we cannot say
anything further.

5.10 [2-Ising model on the honeycomb lattice]
Let us consider a 2-Ising model on the honeycomb lattice whose coupling constant
is J . Assume there is no magnetic field.
(1) Find the equation corresponding to (5.8.4).
(2) Find Tc with the aid of the approximation corresponding to (5.8.6).
(3) Then, using a more accurate mean field theory corresponding to (5.8.13) com-
pute Tc. Which Tc obtained by (2) or this question should be lower? Is your result
consistent with your expectation?

Solution
(1) The coordination number of the honeycomb lattice is 3, so

〈s0〉 = 〈tanh[βJ(s1 + s2 + s3)]〉. (6.5.57)

(2) The approximation gives
m = tanh 3βJm. (6.5.58)

That is,
x = 3βJ tanhx. (6.5.59)

This gives 3βcJ = 1 or Tc = 3J/kB.
(3) The equation corresponding to (5.8.10) is

tanh βJ(s1 + s2 + s3) = a(s1 + s2 + s3) + bs1s2s3, (6.5.60)

and the coefficients are determined by the following simultaneous equation

tanh 3βJ = 3a+ b, (6.5.61)

tan βJ = a− b. (6.5.62)

We get

a =
1

4
(tanh βJ + tanh 3βJ), b =

1

4
(tanh 3βJ − 3 tanh βJ). (6.5.63)

Thus, the mean-field equation reads

m = 3am+ bm3, (6.5.64)
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or

m =

√
1− 3a

b
. (6.5.65)

This implies Tc is determined by a = 1/3:

tanh βJ + tanh 3βJ = 4/3. (6.5.66)

A more accurate calculation is expected to take the effect of fluctuations more accu-
rately into account. Fluctuations oppose ordering, so better approximation should
give lower Tc. That is, we can expect that the Tc from the current approximation
method is lower than that obtained in (3), i.e., Tc = 3J/kB.

It is not hard to prove that the Tc according to the ‘better’ approximation is indeed
lower than 3J/kB, but here let us use a numerical result: βcJ = .47 or Tc = 2.13J/kB.
The exact answer is known to be Tc = 1.52J/kB; the improvement is considerable.

5.11 [1-Gaussian model]
At each lattice point i of a one-dimensional lattice lives a real variable qi, and the
system Hamiltonian is given by

H =
∑
j

[
1

2
q2
j −Kqjqj+1

]
. (6.5.67)

The partition function reads

Z =

(∏
j

∫ ∞
−∞

dqj

)
N−1∏
j=1

exp[w(qj, qj+1)], (6.5.68)

where

w(x, y) = −1

4
(x2 + y2) +Kxy. (6.5.69)

The partition function should be evaluated just as the 1-Ising model with the aid of
the eigenvalue problem:

λf(x) =

∫ ∞
−∞

dy f(y) exp

[
−1

4
(x2 + y2) +Kxy

]
. (6.5.70)

The integral kernel is Gaussian, so the eigenfunction belonging to the largest eigen-
value should be of constant sign [Hint: you can see a correspondence to the transfer
matrix approach; actually, there is a counterpart of Perron-Frobenius theorem for
positive definite integral kernels]. Therefore, we may assume that f is also Gaussian.
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(1) Find f(x) (its multiplicative numerical coefficient may be ignored).
(2) Find the free energy per lattice point. Is there any phase transition? y
Solution
(1) Since he integral kernel is L2 (square integrable), the integral operator is com-
pact (a Hilbert-Schmidt operator), so the spectrum is discrete.43 The integral ker-
nel is positive definite, so the largest eigenvalue is positive and non-degenerate (a
counterpart of the Perron-Frobenius theorem holds for compact operators). We are
discussing an integral operator, so there are infinitely may eigenvalues, but they
accumulate at 0. We have only to consider the eigenvalue corresponding to the
Perron-Frobenius eigenvalue. Assume

f(x) = e−ax
2/2. (6.5.71)

Then, we have∫
dy e−ay

2/2 exp

[
−1

4
(x2 + y2) +Kxy

]
=

√
2π

a+ 1/2
exp

(
−1

2
+

K2

a+ 1/2

)
x2.

(6.5.72)
If we choose a as

a =
1

2
− K2

a+ 1/2
, (6.5.73)

or
a =

√
(1/4)−K2, (6.5.74)

f becomes an eigenfunction belonging to the following eigenvalue:

λ =

√
4π

1 +
√

1− 4K2
(6.5.75)

(2) The problem is quite parallel to the ordinary spin problems; the free energy per
lattice is given by

f = −1

2
kBT log

4π

1 +
√

1− 4K2
. (6.5.76)

If f is holomorphic wrt K, there is no phase transition. A candidate singularity is at
K = ±1/2, and it is a branching point. In the current problem, the system loses sta-
bility for |K| > 1/2 (the free energy is not bounded from below), so we conclude that
there is no phase transition in the range of parameters where the model is meaningful.

43Kolmogorov-Fomin, Introductory Functional Analysis )Dover) is an excellent textbook to re-
view such common-sense knowledge.
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5.12 [Correlation function by mean field theory, or mean field for nonuniform space]
(1) Let us assume that the coupling constant and the magnetic field depend on spatial
position:

H = −
∑
〈i,j〉

Jijsisj −
∑
i

hisi. (6.5.77)

Derive the basic equation for the mean-field theory for a square lattice:

〈si〉 =

〈
tanh(β

∑
j

Jijsj + βhi)

〉
. (6.5.78)

If we introduce the crude approximation like (5.8.6), we obtain

〈si〉 = tanh

(
β
∑
j

Jij〈sj〉+ βhi

)
. (6.5.79)

(2) We wish to compute the spatial correlation 〈sisj〉. First, demonstrate that

∂〈si〉
∂hk

= kBT 〈sisk〉 (6.5.80)

without any approximation.
(3) Applying this to the following form of (6.5.79), obtain the equation for {〈sisk〉}:

Arctanh〈si〉 = β
∑
j

Jij〈sj〉+ βhi. (6.5.81)

(4) Now, let us go over to the continuum limit, assuming that the system has a
translational symmetry. If we write the correlation as g, the equation obtained in
(3) becomes ∫

dy

(
δ(x− y)

1−m2
− βJ(x− y)

)
g(y − z) = δ(x− z). (6.5.82)

We have already assumed the spatial translational symmetry and set m(x) = m.
The Fourier transform of the coupling constant reads

J(k) =
∑
j

eik·rjJ(rj) = 2dJ cos kx cos ky · · · . (6.5.83)
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Find the Fourier transform G(k) of the correlation function g.
(5) If we are interested in global features, we have only to pay attention to small
k. Determine the coefficients A and B in the following formula (you may assume
T > Tc):

G(k) ' 1

A+Bk2
. (6.5.84)

(6) Determine the critical exponent ν.

Solution
(1) no explanation should be needed.
(2) This is an exact relation without any approximation.

∂

∂hk
〈si〉 =

∂

∂hk

∑
si exp (βJ

∑
sjsk + β

∑
hksk)∑

exp (βJ
∑
sjsk + β

∑
hksk)

(6.5.85)

= β

∑
sisk exp (βJ

∑
sjsk + β

∑
hksk)∑

exp (βJ
∑
sjsk + β

∑
hksk)

− β〈si〉〈sk〉. (6.5.86)

(3) Differentiating (6.5.81) with hk, we obtain

β
1

1− 〈si〉2
〈sisk〉 = β2

∑
j

Jij〈sjsk〉+ βδik. (6.5.87)

That is,
1

1− 〈si〉2
〈sisk〉 = β

∑
j

Jij〈sjsk〉+ δik. (6.5.88)

(4) Fourier transformation is defined as follows:

G(k) =

∫
dx eikxg(x). (6.5.89)

(6.5.88) becomes (
1

1−m2
− βJ(k)

)
G(k) = 1, (6.5.90)

so we obtain

G(k) =
1

1/(1−m2)− βJ(k)
. (6.5.91)

(5) Since we may assume T > Tc, m = 0. An approximation of J(k) for small k is
obtained from (6.5.83) as

J(k) = 2dJ

(
1− 1

2
k2 + · · ·

)
, (6.5.92)
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so

G(k) ' 1

1− 2dβJ + 2d−1βJ
∑
k2
i

. (6.5.93)

Therefore,
A = 1− 2dβJ, B = 2d−1βJ. (6.5.94)

(6) The mean-field critical point is determined by 2dβJ = 1 so we may write A ∝
(T − Tc). On the other hand B is almost a constant, so taking positive constants a
and b, the Fourier transform of the correlation function reads

G(k) =
1

a(T − Tc) + bk2
. (6.5.95)

Therefore, the critical exponent for the correlation length is ν = 1/2.

5.13 [Lattice gas on honeycomb lattice]
Let us relate the 2-Ising model on the honeycomb lattice and the lattice gas on the
same lattice. The Ising Hamiltonian H and the lattice gas Hamiltonian HL as just
as given in the text:

H = −J
∑
〈i,j〉

sisj − h
∑
i

si, (6.5.96)

HL = −J ′
∑
〈i,j〉

ninj. (6.5.97)

Let V (� 1) be the total number of lattice points and down spins are regarded
particles.
(1) Following the procedure around p260, rewrite the canonical partition function of
the Ising model in therms of the number of down spins [D] and that of down spin
pairs [DD].
(2) Express the lattice gas pressure in terms of magnetic field h and the free energy
per spin f .
(3) Demonstrate that the lattice gas pressure P is a continuous function of h.
(4) Sketch the free energy V f = −kBT logZ44 of the Ising model for a few repre-
sentative temperatures. Next, sketch the pressure of the lattice gas as a function of
log z (this is essentially the chemical potential) for a few representative temperatures.
Then, explain their noteworthy features succinctly.

Solution
(1) V = [U ] + [D] so ∑

i

si = −[D] + [U ] = V − 2[D]. (6.5.98)

44Notice that this free energy is G rather than A, since h is on.
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The total energy is

−J
∑
〈i,j〉

sisj − h
∑
i

si = J([UD]− [UU ]− [DD]) + h(2[D]− V ). (6.5.99)

Since
2[UU ] + [UD] = 6[U ], 2[DD] + [UD] = 6[D], (6.5.100)

we have

[UD]− [UU ]− [DD] = [UD]−
(

3[U ]− 1

2
[UD]

)
−
(

3[D]− 1

2
[UD]

)
= 2[UD]− 3V.

(6.5.101)
Therefore (subtracting the energy −J from each spin energy),

H = 2J [UD] + h(2[D]− V ) = −hV + (12J + 2h)[D] + 4J [DD]. (6.5.102)

This equation happens to be identical to (5.3.14). The canonical partition function
for the spin system reads

Z =
∑
C

exp{−β(−hV + (2h+ 12J)[D]− 4J [DD])}, (6.5.103)

where
∑

C implies the some over all the spin configurations.
(2) since [D] is the total number of particles, e−β(2h+12J) = z is the fugacity. HL =
−4J [DD] and

Ze−βhV = e−βV (h+f) =
∑

z[D]e4βJ [DD]. (6.5.104)

That is, the Pressure of the lattice gas is given by P = −h− f .
(3) We know from the result of the Ising model that f is a continuous function of h.
Therefore, P is continuous. Even if we lack such knowledge about the Ising model,
we may use the logic explained below (5.3.5). Needless to say, the number density
is bounded from above. If V is finite, then P is differentiable, and its derivative is
uniformly bounded from above. Therefore, P in the thermodynamic limit must be
continuous.
(4) If the temperature T is very high, there is no phase transition, so f is a smooth
function (actually a holomorphic function) of h. If |h| is increased, f decreases. f is
an even function of h. If we lower T , eventually we encounter a second-order phase
transition, and then first order phase transitions. This happens for h = 0, so f starts
to have a kink at h = 0. Thus, the sketch of f is as in the left of the following figure.

As a function of log z P = −h− f may be guessed easily, since log z is essentially
−h. The crucial point is that the P -log z curve exhibits a kink corresponding to the
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gas-liquid phase transition.

See Fig. 2 of the first paper by Lee and Yang: Phys. Rev., 87, 404 (1952).

5.14 [RG by Migdal approximation45]
When we discussed ‘decimation’, we have realized that the procedure is not very
good in the space higher than 1D. For example, if we apply the method to the
2-Ising model (taking ` = 2, i.e., thin half of spins), we obtain

K ′ =
1

4
log cosh 4K, (6.5.105)

where the Hamiltonian is written in the following form:

H = −
∑

Ksisj (6.5.106)

and the temperature is absorbed in the parameter. The fixed point of this transfor-
mation is K = 0 (i.e., the high temperature limit), so there is no ordering.

Migdal proposed to remedy the defect of underestimating the interactions as fol-
lows (see the figure below).

y-bond move x-decimation x-bond move y-decimation

45
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(i) [y-bond moving step] Every other vertical bonds (y-bonds) are combined with
their right-neighboring bonds . If the coupling constant in the y-direction is Ky, the
coupling constant due to the new bonds made by combining two vertical couplings
is 2Ky.
(ii) [x-decimation step] For the x-direction, one dimensional thinning is performed.
For the new x-directional coupling constant is computed by the 1D thinning result
we obtained (5.10.10).
(iii) [x-bond moving step] Next, every other x-bonds are merged with their lower
neighbor x-bonds.
(iv) [y-decimation step] Apply one-dimensional decimation in the y-direction.
Thus, we have arrived at the square lattice with the lattice spacings doubled (i.e.,
` = 2). If we halve the spatial scale we can complete a renormalization group trans-
formation.
(1) Let us put ′ to the parameters after the procedure (i)-(iv). Show that

K ′x = log cosh(2Kx), (6.5.107)

K ′y =
1

2
log cosh(4Ky). (6.5.108)

Here, the ‘initial values’ are K for both the x and y couplings. Notice that in two
different directions, the step-cycle of the procedure is ‘out of phase,’ so to speak. In
the x-direction, the decimation is applied first and then the bond are moved, while
in the y-direction the bonds are merged first, and then decimation follows. Conse-
quently, the fixed points of these two equations have different fixed points (marked
with ∗): K∗x = 2K∗y .46

(2) Find all the fixed points K∗x. Which corresponds to the critical fixed point?
(3) Linearizing the renormalization transformation around the fixed point, we can
calculate critical exponents; we have only to compute d log cosh(2Kx)/dKx. This
corresponds to `y1 . Determine ν. We cannot say the result is impressive, but still
there is an improvement from the mean-field approach.

Solution
(1) These formula should be obvious, if you understand the 1D decimation.
(2) 0 and ∞ are stable fixed points and they correspond to the high and low tem-
perature limits, respectively. If you draw the graph of the LHS, there is one more
fixed point, which is unstable. This must be the most interesting fixed point. This
is determined by (1/2)Arc cosh ex = x (iterative substitution could solve this): we
have K∗ = 0.609.
(3) The derivative is 2 tanh 2K, which is 1.678 at K∗. Therefore, 1.678 = 21/ν or

46This might be remedied by changing the ordering every other RG step; that is, with obvious
abbreviations: My → Dx →Mx → Dy →Mx → Dy →My → Dx.
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1/ν = 0.746, that is, ν = 1.339. The mean field result is 1/2, and the exact result is 1.

5.15 [Finite size effect]
The specific heat of a certain magnetic system behaves C ∼ |τ |−α near its critical
point without external magnetic field, if the specimen is sufficiently large. If the
magnet is not very large, or more concretely, if it is a sphere of radius R, near its
critical point, its maximum specific heat is C(R). Compute the ratio C(2R)/C(R)
in terms of critical indices.

Solution
We expect that C would depends on R, but the dependence must be only through
a dimensionless parameter. The most natural dimensionless quantity near Tc must
be its ratio against the correlation length. Thus, C = τ−αf(R/ξ). Since ξ ∼ τ−ν ,
we have

C = τ−αf(τ νR). (6.5.109)

If we are sufficiently close to the critical point, the effect of the size (i.e., R) becomes
prominent, and the temperature effect should be masked: in the τ → 0 limit C must
not depend on τ . To this end, the function f(x) around x = 0 must be a power:
f(x) ∝ xq. τ−α(τ ν)q ∼ 1 implies q = α/ν. Consequently, we see

C ∼ Rα/ν . (6.5.110)

Hence, C(2R)/C(R) ' 2α/ν .

5.16 [Use of block spins in 1-Ising model]
Let us construct an RG transformation for a 1-Ising model with a similar approach
as is applied to the triangle lattice1-Ising model. We start with (5.10.12). The figure
corresponding to Fig. 5.10.2 os as shown below:

1 2 31 23

α β

The equation corresponding to (5.10.13) is

K ′s′αs
′
β = Ksα3sβ1, (6.5.111)

and s′ is the block spin of ±1 determined by the majority rule. This relation cannot
literally be realized, so just as in the triangle lattice case, we need an analogue of
(5.10.14).
(1) Write down φ(K) corresponding to (5.10.16).
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(2) Write down the RG equation corresponding to (5.10.19) and (5.10.21).
(3) Find the fixed points.
(4) What can you conclude from these calculations?

Solution
(1) We wish to demand that

K ′s′αs
′
β = Ksα3sβ1 (6.5.112)

is an identity, but this is impossible, so we demand that the identity holds on the
average. Therefore, we demand

K ′s′αs
′
β = K〈sα3〉s′α〈sβ1〉s′β , (6.5.113)

where 〈sα3〉s′α is the conditional expectation value of sα3 under the condition s′α = 1
or −1. The up-down symmetry of the spin system (for simplicity we consider the
case with h ' 0, so you may assume h = 0), so if we understand the s′α = 1 case, the
rest is obvious. We can trace what we have done for the triangle lattice. The table
corresponding to the one just above (5.10.16) reads

+ + + + +− +−+ −+ +
sα2 +1 +1 −1 +1
sα3 +1 −1 +1 +1
E −2J 0 +2J 0

(6.5.114)

Following the logic in the text, we have

〈sα3〉s′α =
e2K + e−2K

2 + e2K + e−2K
s′α =

cosh 2K

1 + cosh 2K
s′α. (6.5.115)

〈sα1〉s′α is quite the same.

(2) From the above result, we get

K ′ = K

(
cosh 2K

1 + cosh 2K

)2

. (6.5.116)

Actually, we also need 〈sα2〉s′α :

〈sα2〉s′α =
e2K − e−2K + 2

2 + e2K + e−2K
=

1 + sinh 2K

1 + cosh 2K
. (6.5.117)

This gives

h′ = h
1 + sinh 2K + 2 cosh 2K

1 + cosh 2K
. (6.5.118)
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(3) We have to solve

KF = KF

(
cosh 2KF

1 + cosh 2KF

)2

. (6.5.119)

KF = 0 and cosh 2KF = +∞ that is KF = +∞ are the fixed points. hF = 0 is
obvious. Hence, (0, 0) is a stable fixed pint and (+∞, 0) an unstable fixed point.47

(4) Obviously, (0, 0) corresponds to the high temperature limit. (∞, 0) corresponds
to T ↘ 0. Since it is a repeller, we expect that the fixed point corresponds to a
critical point at T = 0.

5.17 [‘Democracy’]48

Let us consider a hierarchical organization in which the decision at the kth level
depends on the decisions of the s cells of the k− 1st level. Assume that the 0th level
corresponds to individual members of the organization, and the decision at level F is
the decision of the organization. If there are sufficiently many levels (actually 5 levels
are enough), the system may be understood as a system to coarse-grain individual
opinions. To be frank, any political organization is a coarse-graining mechanism of
opinions, and it is usually the case that conscientious subtle voices do not reach the
top.

In the following, we assume there are two options A and B that must be chosen.
Consider the fraction pn of the cells at level n that support B.
(1) Suppose s = 3 and strict majority rule is applied. Find all the fixed points of
this system and study their stability.
(2) Suppose s = 4. Majority rule is applied but if two opinions A and B are equally
supported, A is always selected. For B to be the decision of the organization, at least
how many % of the people should support B? In the extreme case, if s = 2, what
happens?
(3) Suppose s = 5. Majority rule is applied, but due to the organizational propa-
ganda at every level there is always at least one cell that supports A. For B to win
despite this arrangement, what is the minimum % of the supporters of B?

Solution
(1) If 3 or 2 cells vote for B, the choice of the cell is B, so if pn is the fraction of
B-supporter at the nth level,

pn+1 = p3
n + 3p2

n(1− pn). (6.5.120)

47Here, KF = −∞ is also a fixed point, and this corresponds to the antiferromagnetic case.
However, we ignore this, because, if the initial system (the actual system we wish to study) is
ferromagnetic and K > 0 the RG flow never go into the K < 0 region.

48cf. S. Galam and S. Wonczk, “Dictatorship from majority rule voting,” Eur. Phys. J. B 18,
183 (2000). The paper contains some trivial calculation errors, so trust your own result.
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The fixed point f obeys
f = f 3 + 3f 2(1− f), (6.5.121)

or
f(1− f)(2f − 1) = 0. (6.5.122)

Therefore, f = 0, 1 and 1/2. 0 and 1 are stable fixed points, and 1/2 is unstable. This
scheme is fair in the sense that the the majority (whose fraction is 1/2 + infinitesimal
number) regulated the whole organization, and can change the regime. [Really? Of
course, voting or democracy can decide only not very serious questions; you cannot
nationalize foreign companies only by voting.]
(2) In this case to choose B 4 or 3 cells must choose B:

pn+1 = p4
n + 4p3

n(1− pn). (6.5.123)

This case is discussed in the quoted paper. The fixed point fractions f obey

f(1− f)(1 + f − 3f 2) = 0, (6.5.124)

so 0, 1 and (1 +
√

13)/6 = 0.76759 are the fixed points. It is very hard (77% support
required) to change the regime.

If s = 2, then
pn+1 = p2

n, (6.5.125)

so it is impossible to change the regime.
As you have already realized, the problem is a caricature of constructing block

spins or Kadanoff transformation K. What if we choose a coarse-graining procedure
that destroys the system Hamiltonian? In this case, automatically the field appears
that tries to restore the system symmetry.
(3) This is exactly the case of (2).
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1-PI diagram, 230

ergodic dynamical system, 25
Le Chatelier’s principle, 154
measure theoretical dynamical system, 25
thermodynamic fluctuation theory, 39

abduction, 317
absolute temperature, positivity, 62
absolute zero, 63
acoustic phonon, 324
activity, 153
additivity, 27, 28
adiabatic cooling, 79
adiabatic process, 58
adiabatic theorem, 58
adiabatic wall, 92
Alder transition, 255
algebraic function, 306
anharmonicity, 206
annealed system, 210
annihilation operator, 177
argument principle, 278
asymptotic equipartition, 134
Avogadro’s constant, 46

ball, volume of, 67
Bayesian statistics, 30
Bernal, J. D., 239
bifurcation, 301
binary mixture, 282
Bloch-de Dominicis theorem, 180
block spin, 299, 313

Bochner’s theorem, 35
Bohr-van Leeuwen theorem, 108
Bohr-vanLeeuwen theorem, 197
Boltzmann, 24, 30, 47, 118
Boltzmann and Zermelo, 20
Boltzmann constant, 11
Boltzmann’s principle, 45, 53, 66
Bose-Einstein condensation, 111, 174, 195
Bose-Einstein distribution, 172, 184
boson, 169
Braun, K. F. 1850-1918, 147
bridge function, 255

canonical correlation function, 139
canonical density operator, 94
canonical distribution, 94
canonical partition function, 11, 94
canonical partition function, classical, 102
canonical transformation, 123
Carnahan-Stirling equation, 252
Carnot cycle, 68
Casimir effect, 199
central limit theorem, 36, 37, 299
central limit theorem vs. large deviation,

299
centrifugal force, 110
centrifugal potential, 111
characteristic function, 34
Chebyshev’s inequality, 32
chemical affinity, 152
chemical equilibrium constant, 153
chemical potential, 152
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chemical reaction, 149
classical ideal gas, 64, 101
coarse-graining, 295, 310
coexistence temperature, 328
coherence, 240
complex analysis, 278
compressibility, 253
compressibility equation, 251
conditional expectation value, 31
conditional probability, 29
configuration space, 102
configurational partition function, 102, 225
conjugate pair, 21
conserved order parameter (COP), 337
convex analysis, 100
convex curve, 99
convex function, 121
convexity, 146
coordination number, 241
coordination shell, 242
COP, 337
Coriolis force, 110
correlation, 32
correlation length, 286
correlation length, of 1-Ising model, 308
coupling constant, 268, 269
covariance matrix, 143
creation operator, 176
critical divergence, 284
critical fluctuation, 140
critical index, 288, 289
critical point, 238, 274
critical surface, 297
crowding effect, 255
cumulant, 228
cumulant expansion, 227

de Broglie thermal wave length, 68, 101
de Broglie wave, 64, 225
Debye approximation, 202

Debye frequency, 202
Debye temperature, 203
Debye’s T 3 law, 203
decimation, 311
degree of polymerization, 73
density, 21
density distribution function, 35
density operator, 50
detailed balance, 149, 183
diagram, 230
diathermal wall, 92
diatomic molecules, 206
dimensional analysis, 319
direct correlation function, 245
disordered state, 269
distribution function, 35
DLR equation, 274
doubly stochastic, 124
Dulong-Petit law, 203
dynamical system, 25, 297

easy axis, 269
easy direction, 269
Einstein, 118, 139
elementary event, 27
endoergic, 151
endothermic, 151
energy-time uncertainty principle, 144
ensemble equivalence, 130, 329
entire function, 306
entropic elasticity, 74
entropy, 44
entropy maximum principle, 56
ε-expansion, 319
ε-expansion method, 320
equilibrium, 14
equipartition of energy, 67, 111, 206
ergodic measure, 25
ergodic theory, 24
ergodicity, 24
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Euler’s theorem, 151
Euler’s theorem (for homogeneous func-

tions), 22
Euler-MacLaughlin summation formula,

207
event, 27
evolution criterion, 145
exoergic, 151
exothermic, 151
expectation value, 31
extensive quantity, 21
extent of reaction, 151

Fekete’s lemma, 278
Fenchel’s equality, 100
Fermi energy, 184
Fermi level, 184
Fermi-Dirac distribution, 172
fermion, 169
ferromagnet, 16
fetish problem, 204
field, 21
field theory, 317
finite size scaling, 294
first law of thermodynamics, 42
first law of thermodynamics, open sys-

tem, 150
first order phase transition, 285, 328, 330
fixed point, 298, 315
fluctuation, 139, 142
fluctuation-response relation, 137, 143
Fock space, 178
4-potential, 108
fourth law of thermodynamics, 17, 21
free energy density, 336
free energy, work and, 12
fugacity, 153, 276
functional, 246
functional analysis, 246
functional derivative, 246

functional Taylor expansion, 239

Gamma function, 60
gas constant, 46
gas thermometer, 71
generalized canonical partition function,

136, 141
generalized enthalpy, 98
generalized Gibbs free energy, 99, 285
generalized homogeneous function, 23
generating function, 34, 102
Gibbs measure, 274
Gibbs measures, totality of, 275
Gibbs paradox, 98
Gibbs relation, 22, 44, 60, 127
Gibbs’ paradox, 58, 59
Gibbs-Duhem relation, 22
Gibbs-Helmholtz relation, 97, 106, 153
Gibbs-Shannon formula, 185
Ginzburg criterion, 320
Ginzburg-Landau Hamiltonian, 319, 336
glass, 241
grand canonical ensemble, 170
grand canonical partition function, 128
grand partition function, 170
Griffiths’ inequality, 286, 344
Griffiths’s inequality, 291

Hadamard’s notation, 228
Hamiltonian density, 317
harmonic function, 272
harmonic oscillator, 103
harmonic system, 112
Hartman-Grobman theorem, 298
heat bath, 91
heat capacity, 77
heat of reaction, 153
Heisenberg model, 325
Helmholtz free energy, 95
heteronuclear, 206
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high dimensional object, 65
holomorphic function, 276
holomorphy, 276
homogeneous functions, 21
homonuclear, 206
homonuclear diatomic molecule, 208
Hooke’s constant, 129
humanistic fallacy, 29
hyperbolic fixed point, 298
hypernetted chain closure, 254
hyperscaling law, 293

ideal liquid, 240, 254
ideal polymer chain, 73
ideal spin system, 73
iid, 26
independent events, 29
indicator, 31
indirect correlation function, 244
inertial moment tensor, 110
inf, 95
information, 114, 115
intensive quantities, 21
internal degrees of freedom, 205
invariant measure, 25
ionization potential, 205
irreducible cluster integral, 233
irrelevant parameters, 321
Ising model, 268
Ising spin, 269
Ising-lattice-gas correspondence, 280
isolated system, 15
isolation sensu lato, 16
isothermal process, 13
isotope effect, 225

Jacobian technique, 77
Jarzynski’s equality, 119
Jensen’s inequality, 120
Jordan normal form, 305

Josephson relation, 293

Kac potential, 236
Kac, M, 29
Kadanoff construction, 291, 295, 316
Kadanoff, L. P/ , 291, 310
Kamerlingh-Onnes, 197, 226
Kapitza, 197
Khinchin, 21
KMS condition, 275
Kolmogorov’s 0-1 law, 36
Kramers’ q, 128, 170
Krylov-Bogoliubov theorem, 25
Kullback-Leibler entropy, 117

Landsburg, P T, 21
Langevin function, 129
Laplace, 30
Laplace transformation, 127
Laplace’s demon, 30
Laplace’s method, 59
Laplacian, 271
large deviation, 118
large deviation function, 39
large deviation theory, 36
lattice gas model, 280
law of correspondence state, 238
law of large numbers, 27, 117
law of mass action, 153
law of small numbers, 148
Le Chatelier’s principle, 146, 151
Le Chatelier, H. L. 1850-1936, 146
Le Chatelier-Braun’s principle, 147
Lebesgue-Stieltjes integral, 31
Lee-Yang circle theorem, 281
Lee-Yang theory, 279
Legendre transformation, 99, 127, 328
Lenard’s theorem, 124
Lenz, W. 1888-1957, 268
lever rule, 338, 340
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Lie-Trotter formula, 138
linearized exponential function, 227
Liouville’s theorem, 52

magnetic susceptibility, 288
many-body distribution function, 242
marginal parameter, 320
mass action, 149
Massieu function, 127
Maxwell’s distribution, 48, 135
Maxwell’s relation, 75, 78, 138
Maxwell’s rule, 234
Mayer’s f -function, 226
mean field, 300
mean field theory, possible improvement,

302
mean field theory, reliability, 303
mechanical momentum, 108
Meissner effect, 197
Mermin-Wagner theorem, 326
mesoscopic free energy, 337
metaphysical framework, 26
metastability, 333
metastable phase, 333
microcanonical distribution, 51
microcanonical partition function, 95
microstate, 14
minimax principle, 133
mixed Gibbs state, 275
mode, 198
molar quantity, 151
mole, 150
moment generating function, 227
Monte Carlo integration, 34
µ-space, 135
multiatomic molecular gas, 112
multinomial theorem, 229
multivariate Gaussian distribution, 143
multivariate Taylor expansion, 228

Nambu-Goldstone bosons, 324

NCOP, 337
NCRI, 109
negative temperature, 71
Nernst, W. H. 1864-1941, 63
NG boson, 324
non-conserved order parameter (NCOP),

337
nonclassical rotational inertia, 109, 111,

197
nuclear spin, 205
number operator, 177
number representation, 176

occupation number, 171
Onsager, 309
Onsager solution, 283
Onsager, L. 1903-1976, 304
order parameter field, 317
Ornstein-Zernike equation, 245
orthodic distribution, 49

particle exchange, 169
partition, 31
Pauli’s exclusion principle, 169
P (φ)d-model, 320
Peierls’ argument, 270
Peirce, C. S. 1839-1914, 317
Percus-Yevick closure, 251
Percus-Yevick integral equation, 250
Perron-Frobenius eigenvalue, 306
Perron-Frobenius theorem, 306
phase, 279
phase rule, 330
phase transition, 275, 279
phase volume element, 69
phenomenological theory, 322
phenomenology, 322
φ4
d model, 319

phonon, 198
phonon, acoustic, 202
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photon, 198
phylogenetic learning, 30
Planck, 201
Planck’s principle, 43
Planck’s radiation law, 201
Poincarë time, 20
Poisson distribution, 148, 181
polyatomic gas, 211
polymer chain, 322
Pomeranchuk effect, 146
potential of mean force, 244
Potts model, 333
pressure ensemble, 127
principle of equal probability, 51, 117
probability, 27
probability measure, 28
probability space, 30
probability, measure theoretical, 27
progress variable, 151
proton spin, 210
pure Gibbs state, 275

quadratic form, positive definite, 145
quadratic Hamiltonian, 198
quantum mechanical adiabatic process, 41
quantum number density, 68
quasi free energy density, 336
quasiequilibrium process, 43
quasistatic reversible adiabatic process, 43
quenched system, 210

radial distribution function, 241
rate function, 39
ray, 14
Rayleigh, 202
relevant parameter, 319
renormalizability, 321
renormalization group, 295
renormalization group flow, 295
renormalization group transformation, 295

response, 136
retraceable process, 43
reversible process, 43
Richards, T. W. 1868-1928, 63
rigidity, 324
rotation, 109
rotation-vibration coupling, 206
rotational motion, 205
roughening transition, 284
rubber band, 128
rubber elasticity, 74
Rubens, H, 202
ruled surface, 329
Rushbrooke’s inequality, 291

Sanov’s theorem, 117
scaling argument, 295
Schottky type specific heat, 107
second law of thermodynamics, 42, 68,

118
second law of thermodynamics, open sys-

tem, 150
second order phase transition, 285
second quantization, 176
semipermeable wall, 149
set function, 28
Shannon information formula, 115
Shannon’s formula, 113
σ-additivity, 28
simple system, 42
singular part, 313
singularity, 276, 279, 327
small world, 288
spherical average theorem, 272
spin-statistics relation, 170
spinodal curve, 341, 342
spontaneous symmetry breaking, 17, 324
Stückelberg-Petermann renormalization group

method, 323
stability criterion, 145
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stability of matter, 170
stable manifold, 298
standard deviation, 32
statistical field theory, 318
statistical principle, 51
Stefan, 200
Stefan-Boltzmann law, 200
Stirling’s formula, 59
stochastic variable, 30
stoichiometric coefficient, 150
subadditive, 277
sum function, 21
sup, 95
super-relativistic, 199
superconductivity, 197
superfluidity, 197
superrelativistic gas, 67
surprisal, 115

Takahashi, H. , 305
tangent lines, 99
thermal contact, 91, 92
thermal isolation, 16
thermodynamic coordinate, 40, 327
thermodynamic densities, 18
thermodynamic field, 18
thermodynamic fluctuation theory, 140
thermodynamic limit, 17, 277
thermodynamic space, 43
Thiele-Wertheim solution, 251
third law of thermodynamics, 63, 68
tiling problem, 257
Tonks’ gas, 237
transfer matrix, 304
triple point, 239, 329
trivial universalities, 204
Trotter’s formula, 138
typicality, 96

ultrafine structure, 205

unitary transformation, 123
universal structure, 322
universality, 204
unstable phase, 333

van der Waals, 234
van der Waals equation of state, augmented,

236
van der Waals model, 334
van der Walls equation of state, 234
van Hove limit, 273
van’t Hoff’s equation, 153
variance, 32
variational principle, 39
vector potential, 108
virial coefficient, 226
virial equation of state, 252
virial expansion, 226
virial expansion of equation of state, 233
virial theorem, 251
Vitali-Montel’s theorem, 278
Vitali-Porter’s theorem, 278
von Neumann equation, 123

Weber-Fechner law, 115
whole event, 27
Wien, 201
Wilson-Kadanoff renormalization group method,

323
work coordinate, 40
work, required to create fluctuations, 143

Zermelo, E., 1871-1953, 20
zeroth law of thermodynamics, 15, 119
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