(2) Introduction to Dimensional Analysis?

Usually, a certain physical quantity, say, length or mass, is expressed by a number indicating
how many times it is as large as a certain unit quantity. Therefore, the statement that the
length of this stick is 3 does not make sense; we must say, with a certain unit, for example,
that the length of this stick is 3 m. A number with a unit is a meaningless number as the
number itself (3m and 9.8425- - - feet are the same). That is, we may freely scale it through
choosing an appropriate unit. In contrast, the statement that the ratio of the lengths of
this and that stick is 4 makes sense independent of the choice of the unit. A quantity whose
numerical value does not depend on the choice of units is calle a dimensionless quantity. The
number 4 here is dimensionless, and has an absolute meaning in contrast to the previous
number 3. The statement that the length of this stick is 3m depends not only on the property
of the stick but also on how we observe (or describe) it. In contrast, the statement that the
ratio of the lengths is 4 is independent of the way we describe it.

A formula describing a relation among several physical quantities is actually a relation
among several numbers. If the physical relation holds ‘apart from us,” or in other words,
is independent of the way we describe it, then whether the relation holds or not should
not depend on the choice of the units or such ‘convenience to us.” A relation correct only
when the length is measured in meters is hardly a good objective relation among physical
quantities (it misses an important universal property of the law of physics, or at least very
inconvenient).

When we switch units, the accompanying numbers are scaled. However, the numbers
with the same unit must be scaled in an identical way. Since there are many physical quan-
tities with different units such as length and quantity of electric charge, physical quantities
with distinct units may be scaled independently when we switch units. If two quantities scale
always identically when we switch units arbitrarily, we say these two quantities have the same
dimension. In other words scientists and engineers express independent scalability as having
different dimensions. An objective relation among physical quantities must keep holding even
when we scale all the quantities with different dimensions independently. Therefore, such a
relation must be expressed solely in terms of dimensionless quantities (= scaling invariant
quantities). To analyze a problem using this requirement is called dimensional analysis.

Let us look at a simple example. Consider a 1 dimensional diffusion equation
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where t is time, z is the spatial coordinate along the z-axis, v is, say the temperature, and
D is the diffusion constant. Let us write the total amount obtained by spatially integrating

W(x,t) as Q(t)0

There are three distinct units of physical quantities: time, distance (= length) and the
quantity of something diffusing (the unit of )). Let us denote the dimensions of these unit
quantities as T', L and M, respectively. It is customary to write the dimension of a quantity
X as [X]. Thus, [t] =T, [z] = L, and [Q] = M. 9 is the density of the diffusing ‘substance’
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(in the 1D world) it is [¢)] = M/L. Differentiation is nothing but division dimensionally,
[0v/0t] = M /LT, for example. The both sides of (12) must have the same dimensions; we say
the formula is dimensionally homogeneous). This means that the equation continues to hold,
even if we change the unit of length from, say m to inch. That is, no inconsistency emerges
with arbitrary changes of units. We do not lose any generality assuming only dimensionally
homogeneous relations are meaningful in physics (or physically meaningful equations can
always be rewritten in the homogeneous form).

To perform the dimensional analysis of the diffusion equation (12), we must first con-
struct dimensionless quantities. We make combinations of quantities for which all the pow-
ers of T, L, M are zero: tD/z* and 2/Q or v/tD/Q are dimensionless.? For example,
[tD/2? =T -(L?/T)/L* = 1. A dimensionless quantity must be a function of dimensionless
quantities only (think what happens if this is not true), so a solution to (12) must have the
following form:
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where f is a well-behaved function.* Putting this form into (12), we obtain an ordinary

differential equation for f, which is much easier to solve than the original PDE.

A remark is in order here. Whether we may regard two physical quantities with different
dimensions or not can be a problem. For example, in the usual engineering energy and mass
have distinct units (so with distinct dimensions). It is natural, however, to regard them to
have the same dimension in relativity where mass and energy convert into each other. The
famous formula £ = mc? contains a ‘conversion factor’ ¢? simply due to the non-relativistic
custom. Relativistically, the speed of light ¢ is a universal constant independent of any
observer, o it is much more natural to regard ¢? as a dimensionless parameter. Consequently,
length and time must have the same dimension. However, needless to say, in our usual non-
relativistic world, c¢ is so large that it is hardly distinguished from oco. Therefore, it drops
out from the formula and space and time are safely and conveniently regarded categorically
distinct.

Dimensional analysis can often be crucial. For example, we can understand why atoms
cannot be understood classical physically. A hydrogen atom consists of an electron trapped
by a proton with the Coulomb interaction, so its Newton’s equation of motion reads
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where e is the elemental charge (the charge of proton) and m is the mass of the electron.
47eq always appears with €2, so the fundamental variables and parameters are only two: m
and e?/4meg. [m] = M. Since [¢?/4mey] = M L3/T? (this you can see from the homogeneity

3There is no other independent combination. That is, all the dimensionless quantities are written in terms
of the product of appropriate powers of these two dimensionless quantities. A general theorem relevant to this
is called Bridgemen’s II theorem, but we need not such general discussion. In this example, there are three
(3) independent dimensions T, L, M. There are five (5) variables and parameters @,, D,t,z. Therefore,
there are 5 — 3 = 2 independent dimensionless quantities.

4The meaning of the word ‘well-behaved’ is context dependent, but usually, it means needed differentia-
bility, boundedness in the domain under consideration, etc.



of the equation), there is no way to construct a quantity with the dimension of length L.
Bohr thought, however, Planck’s constant A must be relevant in the atomic world. Since
[h] = ML?/T (recall that h times the frequency is the energy of a photon),

[€*/meo) = L*T 72, [h/m] = L*T". (15)
From these we may solve L. (h/m)?/(e?/me) is the answer:
[(h/m)?/(€*/meo)] = (L*T~1)*/(L°T?) = L. (16)

eoh?/me* x 1/7 is Bohr’s radius 0.53A= 0.053 nm (nanometer, Inm 0 10~?m) is an ap-
proximate size of the hydrogen atom in its ground state. Actually, Bohr used a dimensional
analytic argument to convince himself that A was the key.

Quiz 3.5A.1 Derive Kepler’s third law dimensional analytically.OJ
Quiz 3.5A.2 Migdal’s interesting book® begins with a dimensional analytical proof of Pythagorus’
theorem. This is based on the argument that the area S of an orthogonal triangle with the
smallest angle o and the length of the hypotenuse a may be written as S = a®f(«). As can
be seen from the figure a? + b* = 2. Is this really a respectable proof?

Also think what could happen, if the space was curved. O

a Pythgorus’ theorem. The argument does not contra-
dict a consequence of the Euclidean axiomatic sys-

c tem, but how can we demonstrate S = a?f(a) from

the system? Is Migdal really logical?

SA. B. Migdal, Qualitative methods in quantum theory (translated by A. J. Leggett).
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