
HW 3 Solution.

1 [Easy review question 1]
Due to the ligand field the degeneracy of the d-orbitals of the chromium ion Cr3+ is lifted,
and the spin Hamiltonian has the following form

H = D(S2
z − S(S + 1)/2),

where D > 0 is a constant with S = 3/2 (the cation is in the term 4F3/2).
(1) Obtain the canonical partition function of the system consisting of N such ions (without
interactions).
(2) Compute the internal energy of the system
(3) Calculate entropy and the specific heat C.
(4) Show that its high temperature specific heat behaves as ∝ T−2.
(5) Suppose C = 0.023kB/T 2 at high temperatures. Determine D in K.

Solution
(1) By definition, and statistical independence of all the spins, we have

Z =
[
Tr e−βH

]N
.

Each spin is with total angular momentum quantum number S = 3/2. The eigenstates of
H and the simultaneous eigenstates for S and Sz agree. Eigenkets |ℓ,m〉 may be written as
|3/2,±3/2〉 and |3/2,±1/2〉. Since we know

H|3/2,±3/2〉 = (3D/8)|3/2,±3/2〉, H|3/2,±1/2〉 = −(13D/8)|3/2,±1/2〉,

Z = [2e−(3βD/8) + 2e13βD/8]N .

(There were several people who multiplied 1/N ! to this. Well, I did not say anything, but
since we are not discussing spatial motion at all (no kinetic energy in this case), you do not
need this factor.)

From this we can obtain the occupation probabilities of the microstates as

p(m = ±3/2) =
1

2(1 + e2βD)
, p(m = ±1/2) =

e2βD

2(1 + e2βD)
. (1)

(2) With the aid of the Gibbs-Helmholtz equation, we have

E = − ∂log Z

∂β

∣∣∣∣
N

= N
−(3D/8)e−(3βD/8) − (13D/8)e13βD/8

e−(3βD/8) + e13βD/8
= ND

3 − 13e2βD

8(1 + e2βD)
.

(3)

S =
E − A

T
=

ND

T

3 − 13e2βD

8(1 + e2βD)
+ NkB log{2[e−(3βD/8) + e13βD/8]}

= −2
ND

T

e2βD

1 + e2βD
+ NkB log{2[1 + e2βD]}

Actually, this formula is more easily obtained from the Shannon formula. By using (1), the
Shannon formula gives us

S = −NkB

[
1

(1 + e2βD)
log

1

2(1 + e2βD)
+

e2βD

(1 + e2βD)
log

e2βD

2(1 + e2βD)

]
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It is clear that this agrees with the thermodynamic result.
The specific heat is obtained by

C = T
∂S

∂T

∣∣∣∣
N

= −β
∂S

∂β
= β

∂

∂β

{
2NkBDβ

e2βD

1 + e2βD
− NkB log{2[1 + e2βD]

}
= 2NkBβD

e2βD

1 + e2βD
+ 2NkBDβ2

[
2De2βD

1 + e2βD
− 2De4βD

(1 + e2βD)2

]
− 2DNkBe2βD

1 + e2βD
(2)

= 2NkBD2β2

[
2e2βD

(1 + e2βD)2

]
∂E/∂T can also be used. Probably, this is better.

(4) Obvious from (3).
(5) Since C ≅ kB(Dβ)2 = kBD2/k2

BT 2 = 0.023kB/T 2, so (D/kB)2 = 0.023. Hence D/kB =
0.0231/2 = 0.152 K. I made a careless error in the original solution (but I never subtract any
point for not outrageous careless errors).

2 [Easy review question 2]

A

a

V

In a very deep cylindrical hole is a ‘putting
green’ and a cup. That is, there is a 2d sys-
tem confined to a area of A in which there
is a potential hole of depth V and area a
(≪ A), At temperature T , what it the re-
lation among A, a and V if a particle resides
evenly inside and outside the ‘cup’? [This
trivial-looking question has some relation to
biomolecular conformation changes.]

Solution
The canonical partition function for a single particle is (as a 2D system)

Z = A + a eβV .

Thus, A = a eβV is required.
The flat ‘green’ corresponds to a disordered (high entropy state) and the states in the

cup corresponds to an ordered low energy state. This is a for to of a model of the first order
phase transition between liquid and crystal or proteins between folded and denatured states.

3. [Jarzynski’s equality]
With a certain protocol, starting from a canonical distribution at temperature 300 K, work
has been added to an isolated system to modify the initial Hamiltonian H0 to the final one
H1 by tweaking the control parameter. The observed work needed to change the parameter
in the Hamiltonian was found to obey a Gaussian distribution with average 38 pNnm per
particle and the standard deviation 17 pN·nm.
(1) Find the free energy difference between the equilibrium state defined by the initial Hamil-
tonian H0 and that defined by the final Hamiltonian H1 at 300 K.
(2) What is the entropy change between these two equilibria?

2



(3) We know the average of the work W is (significantly) larger than the reversible work.
What is the difference? You should have realized that if the distribution of W is sharp, then
Jarzynski’s equality is hardly possible. Can you imagine what kind of unusual fluctuations
are required to make Jarzynski’s equality to hold? Explain why your life is too short to
confirm the equality if the system contains 1015 particles.

Solution
(1) Although it is a well-known integral, let us do it honestly〈

e−βW
〉

=

∫
dW e−βW 1√

2πσ2
e−(W−〈W 〉)2/2σ2

(3)

=
1√

2πσ2
e−β〈W 〉

∫
dx e−βx−x2/2σ2

(4)

=
1√

2πσ2
e−β〈W 〉

∫
dx e−(x+βσ2)2/2σ2+(1/2)β2σ2

(5)

= e−β〈W 〉+β2σ2/2. (6)

This formula is more easily computed by the so-called cumulant expansion (see Chapter 4
for details):

log
〈
e−βW

〉
= log

〈
1 − βW +

1

2
β2W 2 + · · ·

〉
= log

[
1 − β〈W 〉 +

1

2
β2〈W 2〉 + · · ·

]
= −β〈W 〉 +

1

2

(
β2〈W 2〉 − β2〈W 〉2

)
+ · · ·

(7)

but for a Gaussian distributions, only the first and the second cumulants survive (i.e., · · · =
0). Therefore,

log
〈
e−βW

〉
= −β〈W 〉 +

1

2
β2σ2

Consequently,

∆A = kBT (β〈W 〉 − β2σ2/2) = 〈W 〉 − 1

2
βσ2.

Therefore, numerically, noting kBT = 4.14 pN·nm, we estimate ∆A = 38 − 172/8.28 = 3.1
pN·nm.

(2) This is a ‘trap question.’ Perhaps a bit unkind. It is true that we can obtain ∆A. To
get ∆S we need ∆E (or if you wish to use the Gibbs-Helmholtz equation, we need the T
dependence of ∆A). Can we obtain ∆E? The system is not energetically closed, so the heat
generated by the irreversible work (since W ≫ ∆A, definitely the work is mostly irreversible)
leaves the system. Therefore, we cannot obtain ∆E. Therefore, it is absolutely impossible
to obtain δE. Do not confuse dissipated energy and entropy increase.

(3) Since this asks about the time scale, there is no way to quantitatively answer this question.
I simply ask for an intuitive answer.

In the present case W/kBT is about 10, so you could expect even W = −〈W 〉 is
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realizable easily (for our time scale). Therefore, even though 〈W 〉 is significantly larger than
the reversible work, still you need not live long to verify Jarzynski’s equality. Suppose the
system contains about 1015 particles (it is about 10−9 moles, so this corresponds to about 2
to 3 cubic micrometers of water; it is roughly a size of bacterium cell. Now, you apply some
work that can affect the cell position or shape, then it is about 1010 times as large as the
work (semi macroscopic work) considered in this problem. If you consider the Boltzmann

factor, it is clear that such fluctuations of scale of order
√

1010 is impossible.

4. [Entropy-information conversion]
Show that 1 eu (cal/K·mol) is about 0.72 bit (per molecule) as noted in the lecture notes,
but I wish you to confirm this by yourself.

Solution
1eu = NkB log p, so for a single molecule log p = 4.2/R = 4.2/8.31 = 0.505. We must
convert this to bits: log2 p = log p/ log 2, so 1 eu is equal to 0.505/ log 2 ≅ 0.726. [I should
revised the value in the lecture notes.]

5. [Information gained by cheating]
In a test students must answer whether given statement is correct or incorrect. It is known
that two possibilities have equal probabilities. A student cannot guess the answer at all, so
he decides to exploit an opportunity that the best student in his class is just in his convenient
neighborhood. He knows that the best student’s success rate is 75 % when he says ‘correct,’
and 95 % when he says ‘incorrect.’ What is the information (in bits) he can gain by looking
at the best student’s answer?

Solution
We must assume that the best student’s choice is on the average even; this must be so, since
the correct cases are even. When he says correct: The remaining entropy is obtained by the
Shannon formula, so

S = −(3/4) log2(3/4) − (1/4) log2(1/4) = 0.81

This means, you can gain 1 − 0.81 = 0.19 bits. In case, he says incorrect,

S = −0.95 log2(0.95) − 0.05 log2(0.05) = 0.286

That is , you can get 1 − 0.286 = 0.714 bits. On the average about 0.45 bits.
Is this averaging procedure correct? Let p1 be the best student to say ‘incorrect’, and

p2 to say ‘correct.’ Then, 0.95p1 + .25p2 must be the probability that ‘incorrect’ is the
correct choice. Similarly, 0.05p1 +0.75p2 must be the probability that ‘correct’ is the correct
choice. They are even, so 0.95p1 + 0.25p2 = 0.05p1 + 0.75p2 = 1/2, or 0.9p1 = 0.5p2. Thus,
the probability to see his choice is ‘incorrect’ is only 5/14, and ‘correct’ 9/14. Hence, 0.38
bits should be the correct estimate. The expected score of this best student is about 82,
miserable.

If the cheater looks at the answer of the best student (actually this student is not so
good as we have seen), what the cheater sees is answer ‘yes’ or ‘no’ irrespective of the true
answer. Therefore, we must classify the cases according to the answer. The answer ‘no’ is
much more reliable: 95% correct! Thus, the remaining entropy (= uncertainty) is 0.286 bits.
Initially, nothing is known, so the amount of ignorance is 1bit (do not forget that the problem
is a yes-no question; those who gave more than 1 bit for the answer get nice penalty), so
1 − 0.286 = 0.714 bits is the information gain. The answer ‘yes’ gives only 1 − 0.81 = 0.19
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bits. These gains must be averaged over both the cases.

Information and Entropy
[I realized that the relation between these concepts were not explained well in my notes.
This is an appendix.]

Entropy measures the extent of randomness; we do not know which choice/possibility is
realized, so entropy may be understood as a measure of our ignorance. Therefore, if the
entropy of the ‘collection of choices’ decreases from SI to SF , then ∆S = SF − SI < 0 (the
decrease of entropy); our knowledge should have increased by −∆S, which is called (the gain
of) information: I = −∆S.

HOWEVER, sometimes S is identified with information itself. An example is already
in the lecture notes. We introduced Shannon’s formula asking how much information we
can send using n letters. As can be read there, the information we can send by a sentence
increases with the number of possible sentences we can compose. Therefore, the entropy
of the sentences may be understood as the amount of information we can send. In such
contexts, entropy is identified with information.

6. [Information in the message]
(1) If you are given a positive integer, it must start with 1, 2, · · ·, or 9. If all the numbers
appear evenly, what is the information in the message that actually the first digit was 9 (in
bits)?
(2) Actually, it is well known that the first digit D does not distribute evenly, but empirically
follows the so-called first digit law: P (D) = log10(1 + 1/D) (approximately). Then, what is
the information you can gain by knowing the first digit law (relative to the equal distribution
‘prejudice.’)?
(3) Now knowing this, you are told again the first digit was 9. What is the information of
this message (in bits)?

The solution is in the lecture notes.
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