
HW 4 Solutions.

1. [Easy review question 1]
Compare the free energy Ap of a system of volume V at T of a classical monatomic ideal gas
consisting of 3N particles and that Am of a classical ideal gas mixture consisting of three
different monatomic chemical species of N particles each (at T occupying the same volume
V ).
(1) What is the difference between these free energies? First, guess your answer (with
justification).
(2) Do your calculation of Ap and Am. Does the difference agree with your expectation?

Solution
Since this is an ideal gas, there cannot be any energetic difference. Therefore, the difference
must be only the mixing entropy. Thus, Am is smaller than AP by 3N log 3.

We can almost copy (2.2.3) in the text:

Zp =

[
enQ3V

3N

]3N

and

Zm =

[
enQ3V

N

]3N

.

Therefore,
Zm = Zp3

3N .

That is,
Am = Ap − 3NkBT log 3.

Since A = E − TS, this implies Sm − Sp = 3NkB log 3.

2. [Easy review question 2]
A classical ideal gas consisting of N particles in a volume V has three low lying internal
states (non-degenerate) equally separated by energy gap ϵ (i.e., 0, ϵ and 2ϵ). What is the
chemical potential of this ideal gas?

Solution
The internal partition function is

zi = (1 + e−βϵ + e−2βϵ)N .

Therefore,

A = Aideal−NkBT log(1+e−βϵ+e−2βϵ) = NkBT log(n/nQ)−NkBT−NkBT log(1+e−βϵ+e−2βϵ)

Since Nµ = G = A + PV ,

G = NkBT log(n/nQ) − NkBT log(1 + e−βϵ + e−2βϵ)

or
µ = log(n/nQ[1 + e−βϵ + e−2βϵ])

What is the general implication? The chemical potential is less than that of the struc-
tureless ideal gas. The quantity in [ ] is the effective number of different chemical species, so
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n/[· · ·] is the number of particles of each chemical species. That is, the effective number of
particles is reduced if there are internal states.

3. [Ensemble equivalence]
We have discussed the constant force ensemble Y (T, F ) of a freely jointed polymer chain
(The ideal rubber band problem in Section 2.6)

Y (T, F ) =

∫ Na

−Na

Z(T, L)eβLF dL,

where Z(T, L) is the canonical partition function of the chain with a fixed end-to-end length
L. Prove the equivalence of these two descriptions. That is, the (densities of) generalized
Gibbs free energy G computed from Y (as G = −kBT log Y ) and that computed from the
Helmholtz free energy A = −kBT log Z thermodynamically (i.e., by a Legendre transforma-
tion: G = A − LF ) agree in the thermodynamic limit (i.e., in the limit of long polymers).
[You can mimic the proof in the notes, but this is much easier, because the integration range
is FINITE.]

Solution
From the hint in [ ] I never expected most of you to compute an explicit example. In any
case, we want a general relation that cannot be proved by the study of any concrete model.
[Statistical physics is not materials science.]

Simply mimic what is illustrated in Fig. 2.6.1; since you need not worry about infi-
nite integration rage, so the hardest part of the mirocanonical-canonical equivalence proof
is totally ignored. Let L∗ be the L that maximizes ZeβFL. Then, obviously,∫ L∗+1

L∗−1

Z(T, L)eβLF dL ≤
∫ Na

−Na

Z(T, L)eβLF dL ≤ 2NaZ(T, L∗)eβL∗F .

You could replace the leftmost term with 2Z(T, L∗)eβL∗F , so we are done.
If you wish to be a bit more rigorous, we estimate

2 min
L∈[L∗−1,L∗+1]

Z(T, L)eβLF ≤
∫ L∗+1

L∗−1

Z(T, L)eβLF dL,

so taking the log

log min
L∈[L∗−1,L∗+1]

Z(T, L)eβLF + log 2 ≤ log Y ≤ log Z(T, L∗) + βL∗F + log(2Na).

If the discrepancies are of order log N or less, we are happy. The second inequality is obvi-
ously OK. If the polymer is ideal as discussed we know Z explicitly, so log Z is extensive,
and changing L∗ by 1 does not cause any extensive change. Thus we are done. In the gen-
eral case, first we must demonstrate that log Z is extensive (for general monomer-monomer
interactions). The the rest is the same as the ideal chain case.

4. Suppose there are N noninteracting quantum spins with S = 1/2 in a lattice system
which has an easy axis in the x-direction:

H0 = −A

N∑
i=1

σix,
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where A is a positive constant, and σ denotes the Pauli operator (i.e., the spin operator
is (~/2)σ). We apply an external magnetic field B in the z-direction, so the interaction
Hamiltonian reads

Hi = −B

N∑
i=1

σiz.

(1) Compute
Z1 = Tr e−β(H0+Hi).

[Hint: for example, see 27.13 of my Introductory QM notes.]
(2) Compare this with

Z2 = Tr
{
e−βH0e−βHi

}
.

Is there any macroscopically meaningful difference?

Solution
The formula we need is

eα·σ = cosh α + (n · σ) sinh α,

where n = α/α, the unit direction vector.

Z1 = zN
1 ,

where
z1 = Tr eβ(Aσx+Bσz) = Tr eC ·σ

with C = (βA, 0, βB), so in the above formula α = β
√

A2 + B2, and n = C/α. Notice that
the trace of the second term vanishes, so

z1 = Tr cosh(β
√

A2 + B2) = 2 cosh(β
√

A2 + B2).

That is,

Z1 =
[
2 cosh(β

√
A2 + B2)

]N

.

To compute Z2 first we note
Z2 = zN

2 ,

where
z2 = Tr eβAσxeβBσz .

We can compute

eβAσxeβBσz = (cosh(βA) + σx sinh(βA)) (cosh(βB) + σz sinh(βB))

= cosh(βA) cosh(βB) + · · · ,

where · · · denotes the traceless terms (notice σxσz = −iσy). Therefore,

Z2 = [2 cosh(βA) cosh(βB)]N .

These partition functions come close when the temperature is sufficiently high, but at low
temperatures they are quite different.

Thus, we cannot easily study a quantum system with external field based on the study
of the system without it.
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The following questions can be tricky, so they are extra questions.
(3) What is the partition function Z(T,M) for this system under the condition that the
z-component of the magnetization is M (without the B field)?
(4) Is

Y (T,B) =
∑
M

Z(T,M)e+βBM

identical to the Z’s above? What is the lesson you learn?

Solution [To outline the idea, I identity σ and the magnetic moment vector, ignoring ~/2,
etc.)
Z(T,M) should be the trace of eβA

P

i σxi over the subspace specified by Sz = M , where
Sz =

∑
i σzi is the z-component of the total spin angular momentum (I ignore ~/2). The

dimension of this subspace is just
(

N
N+

)
, where N± = (N ±M)/2 (as the classical case). This

space may be understood to be spanned by |±〉 · · · |±〉 (where |±〉 = |1/2,±1/2〉). Therefore,

Z(T,M) = TrM e−βH0 =
∑

〈· · · ,±, · · ·|e−βH0 |· · · ,±, · · ·〉,

where |· · · ,±, · · ·〉 is the ket with N+ +1/2 states. That is

〈· · · ,±, · · ·|e−βH0|· · · ,±, · · ·〉 =
[
〈+|eβAσx |+〉

]N+
[
〈−|eβAσx |−〉

]N−
.

We know
〈±|eβAσx |±〉 = cosh(βA).

Therefore,

Z(T,M) =

(
N

N+

)
coshN(βA)

Now,

Y (T,B) =
∑
M

Z(T,M)e+βBM =
∑
N+

(
N

N+

)
coshN(βA)e+βBN+e+βBN− = coshN(βA) 2N coshN(βB)

As expected, we get only the ‘classical version.’

[Legendre-Laplace correspondence fails in QSM]
I said the Legendre-Laplace correspondence so useful in classical statistical mechanics is not
always allowed1. I wish you taste how grave the mismatch is.

1I emphasize that this is fine for microcanonical, canonical and grand canonical ensembles.
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