
HW 5 Solutions. [augmented after grading]

1. [Easy review question of canonical ensemble]
A set of N noninteracting (classical) spins are in a magnetic field B (in the z-direction) as
the example we discussed in Chapter 1: The spin-magnetic field interaction energy is

H = −µB
N∑

i=1

σi,

Obtain the specific heat under constant magnetic field of this spin system.

Solution
[ Strictly speaking, the internal energy E = 0 for this example; the generalized enthalpy
J = E − MB is called the ‘internal energy’ in the conventional textbooks and courses. We
know dJ = TdS − MdB, so

CB = T
∂S

∂T

∣∣∣∣
B

=
∂J

∂T

∣∣∣∣
B

.

You can of course use S to compute CB, but this formula says CB via J is easier. Do not
stick to a single method; before jumping into a full computational activity, think a bit. Do
not jump into a bathtub without checking its T .

Notice that (∂E/∂T )B = CB + B(∂M/∂T )B and is not equal to CB (0 in our case!),
generally speaking. ]

Let us use the ‘canonical’ formalism:

Ẑ =
∑

σ

eβB
P

σi = (2 cosh βB)N .

J may be obtained by the Gibbs-Helmholtz relation or

J =
∂log Z

∂β

∣∣∣∣
B

= −NB
sinh βB

cosh βB
= −NB tanh βB.

cf (1.5.31). Therefore,

CB = − ∂NB tanh βB

∂T

∣∣∣∣
B

= −BN
1

cosh2 βB

(
− B

kBT 2

)
= NkB

(
βB

cosh βB

)2

.

The abuse, Ẑ → Z, J → E, etc., is OK as long as you clearly recognize the abuse.

2. Calculate the fluctuation of the internal energy, i.e., 〈δE2〉. You may assume that the
Gibbs relation of the system is dE = TdS − PdV (i.e., you need not worry about δN).
There are many ways, but perhaps the most ‘unsophisticated’ is to use δE = TδS − PδV .
However, you may use any correct method, needless to say.

Solution
There are a few people who calculated 〈δE2〉 using the canonical ensemble. Although I did
not penalize this solution (far easier than the true answer of this question), I wish you to
know clearly that the fluctuation you get from this calculation is under constant volume.
In the usual fluctuation problem, any quantity can fluctuate without constraints. In the
present case we could imagine a very flexible ‘bag’ containing N particles and then ask what
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the internal energy in the bag is. Its volume is not constant, and the pressure inside is not
constant, either.

The ‘unsophisticated’ approach is indeed unsophisticated, and does not use what we
already know: 〈δXδy〉 = 0. To exploit this to reduce the amount of computation, let us use
T and V as independent variables:

δE = T

(
∂S

∂T

∣∣∣∣
V

δT +
∂S

∂V

∣∣∣∣
T

δV

)
− PδV.

We know

∂S

∂T

∣∣∣∣
V

=
CV

T
,

∂S

∂V

∣∣∣∣
T

=
∂(S, T )

∂(V, T )
=

∂(S, T )

∂(−P, V )

∂(−P, V )

∂(V, T )
=

∂P

∂T

∣∣∣∣
V

.

Therefore,

δE = CV δT +

(
T

∂P

∂T

∣∣∣∣
V

− P

)
δV.

We need
〈δT 2〉 = kBT 2/CV

(this we already computed) and the fluctuation-response relation gives us1

〈δV 2〉 = −kBT
∂V

∂P

∣∣∣∣
T

.

(Do not forget that the conjugate of V is −P .) Therefore,

〈δE2〉 = C2
V 〈δT 2〉 +

(
T

∂P

∂T

∣∣∣∣
V

− P

)2

〈δV 2〉 = kBT 2CV − kBT

(
T

∂P

∂T

∣∣∣∣
V

− P

)2
∂V

∂P

∣∣∣∣
T

.

If we use δE = TδS − PδV , we need

〈δS2〉 = kBT
∂S

∂T

∣∣∣∣
P

= kBCP , 〈δSδV 〉 = kBT
∂S

∂P

∣∣∣∣
T

.

Therefore,

〈δE2〉 = kBT 2CP − 2kBT 2P
∂S

∂P

∣∣∣∣
T

− kBTP 2 ∂V

∂P

∣∣∣∣
T

or

〈δE2〉 = kBT 2CP + 2kBT 2P
∂V

∂T

∣∣∣∣
P

− kBTP 2 ∂V

∂P

∣∣∣∣
T

.

[The original version had sign errors.]
Are this result and the above result identical? Let us check this.

2kBT 2P
∂P

∂T

∣∣∣∣
V

∂V

∂P

∣∣∣∣
T

= 2kBT 2P
∂(P, V )

∂(T, V )

∂(V, T )

∂(P, T )
= −2kBT 2P

∂(P, V )

∂(S, T )

∂(S, T )

∂(P, T )

= −2kBT 2P
∂S

∂P

∣∣∣∣
T

= −2kBT 2P
∂S

∂P

∣∣∣∣
T

.

1Notice that in this case extensive quantities can fluctuate without any constraint, so we may consider
the fluctuation in the ensemble with constant intensive variables.
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This implies that the second term shows up from the cross terms obtained by the expansion
of the square. We further know

dS =
CV

T
dT +

∂S

∂V

∣∣∣∣
T

dV,

so
CP

T
=

CV

T
+

∂S

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
P

.

Notice that

−kBT 3 ∂P

∂T

∣∣∣∣
V

∂P

∂T

∣∣∣∣
V

∂V

∂P

∣∣∣∣
T

= −kBT 3 ∂P

∂T

∣∣∣∣
V

∂(P, V )

∂(T, V )

∂V, T )

∂(P, T )
= kBT 3 ∂P

∂T

∣∣∣∣
V

∂V

∂T

∣∣∣∣
P

= kBT 3 ∂S

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
P

Thus, these two results are identical.

3. There is a pendulum of length ℓ (on the earth’s surface) with mass m. What is the
mean square amplitude of this pendulum at temperature T? [Hint: reversible work required
determines fluctuations.]

Solution
Let θ be the angular displacement of the pendulum from the vertical. Then, the increase of
the potential energy is

Φ = mgℓ cos θ − 1 = +
1

2
mglθ2.

Therefore,

P (θ) ∝ exp

[
−β

1

2
mglθ2

]
Thus, we can read the result off:

〈θ2〉 = kBT/mgℓ

Therefore, the displacement δx in the horizontal direction reads

〈δx2〉 = kBTℓ/mg

Notice that m matters.
If you think the pendulum in 3D has 2 degrees of freedom in x and y directions, then the

amplitude squared is 〈δx2 + δy2〉 = 2〈δx2〉 gives the amplitude.

You may use the equipartition of energy, but I believe the fluctuation theory is more
direct and easier to use.

4. Let the transversal displacement be y(x) at x along a string of length L with tensile force
F . Then, the extra elastic energy due to this displacement can be calculated as

Φ[y] =
F

2

∫ L

0

(
dy

dx

)2

dx.

Assuming that the system is in equilibrium at temperature T . What is the transversal
fluctuation of the string at x ∈ (0, L), that is, 〈y(x)2〉?
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Figure 1: The configuration of the string y(x) that gives a displacement of a at x with the minimum extra
energy.

[Hint. The fluctuation probability is ∝ e−WR/kBT , where WR is the reversible minimum work
required to create the desired fluctuation. ]

Solution
As you can easily guess, the way to produce the displacement we wish with the minimum work
must be as illustrated in the figure (as someone actually did, using the variational calculus,
you can demonstrate this shape is indeed the minimum displacement energy required to
produce the deviation a).

We need the slopes: up to x it is a/x; beyond x it is a/(L−x). Therefore, the minimum
work needed is

Φ[y] =
F

2

∫ x

0

(a

x

)2

dx′ +
F

2

∫ L

x

(
a

L − x

)2

dx′ =
1

2
Fa2

(
1

x
+

1

L − x

)
Hence,

〈a2〉 =
kBT

F
(

1
x

+ 1
L−x

) =
kBT

FL
x(L − x).
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