
HW 6 Solutions Corrected (stupid error in 4F3) and augmented

1. [Very elementary problem]
There is a system with only three one-particle states with energies 0, ϵ and 2ϵ (ϵ > 0). There
are two identical particles without spin.
Suppose both particles are fermions.
(F1) Write down the canonical partition function for the system.
(F2) What is the probability P (N) to find N particles in the ground state? (Obtain P (0),
P (1) and P (2)).
(F3) What is the average occupation number of the one particle ground state?
Suppose both particles are bosons. Repeat the above questions. That is:
(B1) Write down the canonical partition function for the system.
(B2) What is the probability P (N) to find N particles in the ground state? (Obtain P (0),
P (1) and P (2)).
(B3) What is the average occupation number of the one particle ground state?

Solution
(F1) The definition of the canonical partition function is sum of e−E for all microstates,
where E is the energy of the microstate. Therefore, we must itemize all the microstates
allowed to this two-particle system.
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Figure 1: Three microstates

Therefore,
Z = e−βϵ + e−2βϵ + e−3βϵ.

(F2) From Fig. 1 we see the ground state and the first excited state have 1 particle in the 1P
ground state, and the second excited state has 0 particle in the 1P ground state. Therefore,

P (0) = e−2βϵ/(1 + e−βϵ + e−2βϵ), P (1) = (1 + e−βϵ)/(1 + e−βϵ + e−2βϵ),

and P (n) = 0 for any n > 1.
(F3) 〈n〉 =

∑
h nP (n), so 〈n〉 = P (1).

(B1) We repeat a very similar argument. The table of the microstates is in Fig. 2.

Therefore,
Z = 1 + e−βϵ + 2e−2βϵ + e−3βϵ + e−4βϵ.

(B2) From Fig. 2 we see n = 2 for E = 0, n = 1 for E = ϵ and 2ϵ, n = 0 for E = 2ϵ, 3ϵ and
4ϵ. Therefore,

P (0) =
e−2βϵ + e−3βϵ + e−4βϵ

1 + e−βϵ + 2e−2βϵ + e−3βϵ + e−4βϵ
,
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Figure 2: Six microstates: for non-interacting particles each microstate (= eigenstate of the system (many-
body) Hamiltonian) corresponds to a unique combination of one-particle (1P) state occupation numbers.

P (1) =
e−βϵ + e−2βϵ

1 + e−βϵ + 2e−2βϵ + e−3βϵ + e−4βϵ
,

P (2) =
1

1 + e−βϵ + 2e−2βϵ + e−3βϵ + e−4βϵ

For other n P (n) = 0.
(B3) Therefore,

〈n〉 =
2 + e−βϵ + e−2βϵ

1 + e−βϵ + 2e−2βϵ + e−3βϵ + e−4βϵ
.

2. [Very elementary problem]
There are 300 spinless bosons whose k-th one particle excited state has an energy (2k − 1)ϵ
(ϵ > 0, k ∈ {1, 2, · · ·}); the energy origin is the one-particle ground state.
(1) How many microstates does the system have whose energy is less than or equal to 4ϵ?
(2) Suppose the systems is attached to a chemostat whose temperature is T and chemical
potential µ. On the average 298 particles occupy the one-particle ground state, and 2
particles occupy the one-particle first excited state. The remaining one-particle states are
not appreciably occupied. Obtain β = 1/kBT and µ in terms of ϵ.

Solution
(1) Seven microstates: the table of the low-lying microstates is as follows
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Figure 3: Seven microstates with E ≤ 4ϵ.

(2) We simply write down the expected values in terms of µ and β as

〈n0〉 = 298 =
1

e−βµ − 1
, 〈n1〉 = 2 =

1

eβ(ϵ−µ) − 1
.

That is, [Since we can expect µ to be small, you should keep sufficiently many digits.]

e−βµ = 299/298, eβ(ϵ−µ) = 3/2,

2



or
βµ = log(298/299) = −0.00335, βµ − βϵ = −0.405465.

Therefore,

β = (0.405465 − 0.00335)/ϵ = 0.402115/ϵ, µ = −(0.00335/0.402115)ϵ = −0.0087ϵ < 0.

Confirm that µ < 0.

3. [Very elementary problem]
(1) We have an ideal gas mixture consisting of ideal fermions and ideal bosons in a volume V .
What is the relation between the total pressure and the total internal energy of the system?
(2) Explicitly demonstrate with the aid of the expression of the total number of particles N
that µ decreases as temperature goes up if N and the total volume are maintained.

Solution
(1) Note: Many people simply quoted that PV = (2/3)E is true for both fermions and
bosons, and concluded without any argument that PV = (2/3)E. The answer is correct,
but I wish you to explain why this is also true for mixtures. YOu must be conscious about
the fundamental laws (properties) you rely on. In this case, you need the extensivity of
internal energy and the law of partial pressures for ideal gases.

The partial pressure of the bosons is PBV = (2/3)EB, where EB is the total internal
energy carried by the bosons. For the fermions we have a similar formula PF V = (2/3)EF .
The system is non-interacting, so the total pressure must be P = PB + PF due to the
law of partial pressures. The total internal energy E = EB + EF due to extensivity, so
PV = (2/3)E.

If you wish, we can honestly start with the grand-canonical formalism, but we have
two different chemical species, so we need two distinct chemical potentials µB and µF (each
determined from the numbers of bosons and fermions, separately), which are determined
by the total numbers of particles. Fermions and bosons do not interact, so (with obvious
notations)

Ξ = ΞF ΞB.

Therefore, obviously, PV = β log Ξ = PF V + PBV . Thus, our intuitive approach has been
vindicated.

When you conclude something, you must provide a justifying argument.
(2) We know

N =
∑

i

1

eβ(ϵ−µ) ∓ 1
.

If T ↗, β ↘. Since ϵ − µ > 0, if we fix µ, eβ(ϵ−µ) ↘, so 1/(eβ(ϵ−µ) ∓ 1) ↗. That is, if
we maintain µ and T ↗, then N ↗, but we wish to keep N . Since eβ(ϵ−µ) is a decreasing
function of µ, 1/(eβ(ϵ−µ) ∓ 1) is an increasing function of µ. Hence, to keep N despite T ↗,
we must reduce µ.

A simplified argument is: Since we wish to maintain N despite decreasing β, we must at
least increase ϵ − µ for any ϵ. This means we must decrease µ.

However, these arguments do not show that N is indeed maintained. In this sense the
argument is not complete.
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More formally, we know

dN =
∂N

∂µ

∣∣∣∣
β

dµ +
∂N

∂β

∣∣∣∣
µ

dβ = 0.

We can explicitly compute the partial derivatives in the above formula as1

∂N

∂µ

∣∣∣∣
β

=
∑ βeβ(ϵ−µ)

(eβ(ϵ−µ) ∓ 1)2
,

∂N

∂β

∣∣∣∣
µ

=
∑ (µ − ϵ)eβ(ϵ−µ)

(eβ(ϵ−µ) ∓ 1)2
.

Therefore, we may write
∂N

∂µ

∣∣∣∣
β

= Aβ,
∂N

∂β

∣∣∣∣
µ

= Aµ − B,

where

A =
∑ eβ(ϵ−µ)

(eβ(ϵ−µ) ∓ 1)2
, B =

∑ ϵeβ(ϵ−µ)

(eβ(ϵ−µ) ∓ 1)2
.

Let us assume that Dt(ϵ) is at most algebraic and bounded at ϵ = 0. A and B are obviously
finite for fermions. For bosons B is obviously finite; A is bounded from above by N2. Both
are positive.

βdµ + (µ − B/A)dβ = 0 ⇒ ∂µ

∂β

∣∣∣∣
N,V

= kBT (B/A − µ) > 0

Therefore, if T ↗, then µ ↘.

4. In a cylinder with a piston are N identical particles.
The fermion case: At T = 0 the volume is doubled reversibly and adiabatically.
(F1) What is the final temperature?
(F2) Suppose the initial internal energy is E. What is the work done by the system?
(F3) What is the ratio Pf/Pi of the initial Pi and the final Pf pressures? [no extra work is
needed, if you do (2)]

The boson case:
(B1) When the volume is doubled reversibly and adiabatically, does the critical temperature
of the system go up or down?
(B2) Let us assume that the temperature is always below Tc. What is the ratio of the initial
Ti and the final Tf temperatures?
(B3) What is the work done by the system, if the initial internal energy is E?

Solution
For simple problems you seem to use whatever logic you can manage to reach supposedly
correct answers. I strongly dissuade you to do so.
First, try to use thermodynamics without any ad hoc or materials-specific assumptions.
(F1) The temperature is still T = 0, because particles ‘move’ with the energy levels; filled
1P states are still filled, and unoccupied states are still unoccupied if the change is adiabatic
(see the note at the end).

1The summation and the differentiation may be exchanged, because the series formally constructed from
derivatives converges uniformly in ϵ − µ (if Dt increases only algebraically).
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More formally, we could use thermodynamics (+ the property of a free fermion system).
Let us show

∂T

∂V

∣∣∣∣
S

→ 0

in the T → 0 limit.

∂T

∂V

∣∣∣∣
S

=
∂(T, S)

∂(V, S)
=

∂(T, S)

∂(T, V )

∂(T, V )

∂(V, S)
=

T

CV

∂(T, S)

∂(V, T )
.

We know CV /T is finite for free fermions (this is not thermodynamic).

∂(T, S)

∂(V, T )
=

∂(T, S)

∂(P, V )

∂(P, V )

∂(V, T )
= − ∂P

∂T

∣∣∣∣
V

∝ − ∂E

∂T

∣∣∣∣
V

,

where the last step is due to PV = (2/3)E for ideal gas. We know E(T ) = E(0) + O[T 2], so
this goes to zero for T → 0. We are done.

Some people claim that E(0) scales as V −2/3 as E(T ). so Tf = 0. This logic is not enough
unless you show that the O[T 2] is NOT proportional to V −2/3. Also I found dS = 0 ⇒ dT =
0. This is not generally true.
(F2) Thus we need how the Fermi energy changes with the volume. We know (N/V )2/3 ∝ µ,

so µ
3/2
i /2 = µ

3/2
f That is, µf = 2−2/3µi. Since E = (3/5)µ(0)N at T = 0, we have Ef =

2−2/3E. Therefore, W = (2−2/3 − 1)E (< 0). The system produces a positive work (the
system energy must be reduced).

Perhaps, you do not like this. More ‘honestly,’ since dS = 0 (reversible and adiabatic),
dE = −PdV (use thermodynamics whenever you can!). We know E = (3/2)PV (or P =
2E/3V ), so

dE = −2E

3V
dV

That is, EV 2/3 must be constant. This implies EV 2/3 = Ef (2V )2/3. That is, Ef = 2−2/3E.
The rest is the same as above.

In this second argument, did we use something peculiar to fermions? No. Thus you
have also answered (B3) (partially, a merit of thermodynamics).
(F3) Use PV ∝ E. Pf/Pi = EfV/2V E = 2−2/3/2 = 2−5/3.

The point of the boson part is that below Tc many thermodynamic quantities are simple
power functions of T , so you can answer many questions quantitatively. However, always
try to use thermodynamics and intuitive arguments as much as possible.

(B1) TC(V ) is a decreasing function of V , so Tc goes down. You could use V T
3/2
c ∝ N .

(In the problem it is said ‘reversible’, needless to say, such a condition is not needed.) An
intuitive understanding is that the gap between the ground 1P-state and the first excited 1P-
state is reduced if V is increased, so the ground state particles become easier to jump up to
the excited state. That is, the condensate becomes less populated at the same temperature.
Therefore, if you wish to keep the population of the condensate, you must cool the system.
In particular, to create the condensate you need a lower temperature, so Tc lowers with the
increase of V .
(B2) Adiabatic change implies that the number of the particles in the condensate does not
change (see te note at the end). So AV T 3/2 = N1 is constant. (Notice that if the energy levels
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are uniformly scaled as in the present case ϵ → aϵ, scaling T and µ can maintain the same

occupation numbers for all the 1P states.) Therefore, V T
3/2
i = 2V T

3/2
f or Tf = 2−2/3Ti.

(B3) (If you do not use thermodynamics) The internal energy is E ∝ V T 5/2. Therefore,

E = AV T
5/2
i , and Ef = A(2V )T

5/2
f , where A is a constant. That is,

Ef/E = 2(Tf/Ti)
5/2 = 2(2−2/3)5/2 = 2−2/3 ⇒ Ef = 2−2/3E.

Therefore, the works done by the system is

−W = E − Ef = (1 − 2−2/3)E.

This is the same as above, but we already know this.

Comment on adiabaticity
In this problem, the systems are changed reversibly and adiabatically. Thermodynamically,
this implies that the systems are modified very gently (avoiding any cause of dissipation2),
so no ‘production’ of entropy occurs in the system. Since the systems are adiabatic (in the
thermodynamic sense), no heat is imported to or exported from the systems. Hence, the
system entropy does not change. This is the hallmark of thermodynamic adiabatic process.

In the solutions above, I used ‘quantum mechanical adiabatic change’ as a mechanical
description of thermodynamic adiabatic process: each particle follows its already occupying
energy level that moves along the energy axis. It is worth remembering that this type of ar-
gument works whenever a process is macroscopically gentle and without any heat exchange.

However, as stressed repeatedly in the lecture notes, thermodynamic reversible processes
are far more violent processes than quantum-mechanical adiabatic processes. Since we know
quantum mechanics does not contradict thermodynamics, you can use the mechanical inter-
pretation of thermodynamic reversible adiabatic process to guess the results (as above), but
never believe that actual thermodynamic reversible adiabatic processes can be described as
quantum-mechanical adiabatic processes.

2Notice that the entropy production rate is proportional to (the changing rate)2, so if the changing rate
is small, entropy change may be ignored (according to the linear irreversible thermodynamics).
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