
HW 8 Solution
The following solution is without any cheating (mathematically respectable), but I do not
demand math precision, but demand sound physics intuition and reasonable (if not correct)
answers.

1. [Van der Waals gas]
(1) We know the van der Waals equation of state may be obtained from the gas made of
hard spheres interacting with the Kac potential. If we approximate the hard sphere gas as
an ideal gas moving in the free volume (= the volume - the total excluded volume due to
the cores), then we can obtain its Helmholtz free energy using the following ideas:
(i) Since the attractive interaction is infinite-ranged and independent of the distance and
direction, the Kac potential never depends on actual particle configuration details other
than on the number density. Each particle has a potential energy of −2an, where n is the
number density.
(ii) The excluded volume due to a single particle is b.
Write down the canonical partition function for the van der Waals gas.

Solution.
The system Hamiltonian is

H =
∑

i

p2
i

2m
− anN. (1)

To understand the potential part, let us look at it in more detail: The total potential energy
can be written as

Φ =
∑
i>j

φij. (2)

The potential energy of the ith particle is

Φi =
∑
j ̸=i

φij. (3)

In our case the interactions are uniform and long ranged, so infinitely may particles contribute
and consequently fluctuation disappears. Can we obtain Φ as

∑
i Φi? No, because of double

counting. That is, Φ = (1/2)
∑

i Φi. This explains why the total potential energy is not
−2naN but −naN .

The canonical partition function reads

Z(T, V ) =
1

h3NN !

∫
V −Nb

d3r1 · · ·
∫

V −Nb

d3rN

∫
d3p1 · · ·

∫
d3pNe−βH = Zideal(T, V −Nb)eβanN

(4)

(2) Write down the Helmholtz free energy [Extra: and write it in term of n = 1/Vr − 1 and
τ = Tr − 1 introduced in Problem 4.2 (and its solution in Chapter 6)].

Solution.
Using (2.2.3), we have

Z(T, V ) =

(
nQe(V − Nb)

N
eβan

)N

. (5)

Therefore, we obtain

A = −NkBT log
[nQe

N
(V − Nb)

]
− aN2

V
. (6)
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(Later I will give the expression in terms of n, τ , etc.)

2. [Takahashi nearest neighbor gas]1

Consider a one-dimensional fluid whose binary interaction potential φ is effective only for
the nearest neighbor particles, and depends only on the distance. That is, if ri denotes
the position of the ith particle, the total potential energy of the system reads (notice that
0 ≤ r1 ≤ · · · ≤ rN ≤ V )

Φ =
N−1∑
i=1

φ(ri+1 − ri).

(1) Write down the configurational partition function Q(T, V ) for this system confined in a
1D box of length V at temperature T . [Introduce xi = ri+1 − ri.]

Solution.

Q(T, V ) =
1

V N

∫
dr1 · · ·

∫
drN

0≤r1≤···≤rN≤V

e−βΦ (7)

=
1

V N

∫
dr1

∫
dx1 · · ·

∫
dxN−1

0≤r1+x1+···+xN−1≤V

e−β
P

φ(xi) (8)

Here, all the integrating variables are non-negative.

This is not easy to compute, but if we consider the same problem with the pressure ensemble
formalism, then we can write it in the following ‘non-interacting particle form.’

Y (T, P ) =

∫ ∞

0

dV Zideal(T, V )Q(T, V )e−βPV = [y(P, T )]N .

(2) Write down the formula for y(P, T ) and show that there cannot be any phase transition
(i.e., as a function of P and T it is holomorphic on the positive real half plane). You may
assume that the binary interaction potential is a physically reasonable one.

Solution.
It is convenient to recall convolution defined as follows

(f ∗ g)(x) =

∫ x

0

dyf(x − y)g(y) =

∫
dx1

∫
dx2

x1+x2=x

f(x1)g(x2). (9)

This can be generalized to m functions as

(f1 ∗ f2 ∗ · · · ∗ fm)(x) =

∫
dx1 · · ·

∫
dxm

x1+···+xm=x

f1(x1) · · · fm(xm). (10)

1H. Takahashi, Proc. Phys.-Math. Soc. Jpn. 24 60 (1942); Lieb, Mattis, Mathematical Physics in One
Dimension (Academic Press, 1966) Chapter 1. If more neighbors are included, see L. van Hove, Physica 16,
137 (1950).
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Here, all variables are non-negative. We are interested in the Laplace transformation of f
defined as

Lf(s) =

∫ ∞

0

f(t)e−st (11)

We can easily demonstrate (this is a fundamental relation for the Laplace transformation
you should remember)

L(f ∗ g)(s) = Lf(s)Lg(s). (12)

It is clear that Z = ZidealQ has almost the convolution structure.

ZidealQ =
(nQe

N

)N
∫

dr1

∫
dx1 · · ·

∫
dxN

0≤r1+x1+···+xN≤V

e−β
P

i φ(xi) (13)

=
(nQe

N

)N
∫ V

0

dR

∫
dr1

∫
dx1 · · ·

∫
dxN

R=r1+x1+···+xN

e−β
P

i φ(xi) (14)

Thus,

Y (T, P ) =
(nQe

N

)N
∫ ∞

0

dV

∫ V

0

dR

∫
dr1

∫
dx1 · · ·

∫
xN−1

R=r1+x1+···+xN−1

e−β
P

i φ(xi)e−βPV (15)

=
(nQe

N

)N
∫ ∞

0

dR

∫ ∞

R

dV

∫
dr1

∫
dx1 · · ·

∫
xN−1

R=r1+x1+···+xN−1

e−β
P

i φ(xi)e−βPV (16)

=
(nQe

N

)N
∫ ∞

0

dR

∫ ∞

0

dV ′
∫

dr1

∫
dx1 · · ·

∫
xN−1

R=r1+x1+···+xN−1

e−β
P

i φ(xi)e−βP (V ′+R) (17)

=
(nQe

N

)N
∫ ∞

0

dV ′e−βPV ′
∫ ∞

0

dR

∫
dr1

∫
dx1 · · ·

∫
xN−1

R=r1+x1+···+xN−1

e−β
P

i φ(xi)e−βPR

(18)

=
(nQe

N

)N 1

βP

∫ ∞

0

dR

∫
dr1

∫
dx1 · · ·

∫
dxN−1

R=r1+x1+···+xN−1

e−β
P

i φ(xi)e−βPR (19)

Now, we can exploit the above mentioned property of the Laplace transformation:(nQe

N

)N 1

βP

∫ ∞

0

dR

∫
dr1

∫
dx1 · · ·

∫
dxN−1

R=r1+x1+···+xN−1

e−β
P

i φ(xi)e−βPR (20)

=
(nQe

N

)N
(

1

βP

)2 [∫ ∞

0

dx e−βφ(x)−βPx

]N−1

. (21)

The above calculation is an honest one, but you can ignore some prefactors and also use the
fact N ≫ 1.
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From the result we can obtain the Gibbs free energy

G = −kBT log Y (T, P ) = −NkBT log(nQe/N)+2kBT log(βP )−NkBT log

[∫ ∞

0

dx e−βφ(x)−βPx

]
.

(22)
To demonstrate that the system does not have any phase transition for the usual binary

interaction potential (like the Lenard-Jones interaction), we should show that G/N in the
thermodynamic limit is a holomorphic function of P and T and is not zero. Therefore, we
have only to show the holomorphy of

q(P, T ) =

∫ ∞

0

dx e−βφ(x)−βPx (23)

For a fixed x which is outside the hardcore (if any), this is a holomorphic function of β (or
T ) and P (if their real part is positive). For large x φ vanishes, so q ∼ e−βPx. Now, we use
the following elementary fact:
Theorem.2 For the following integral, where S is the integration range and z ∈ D a certain
domain on the complex plane,

F (z) =

∫
x∈S

dxf(x, z) (24)

If
(i) For each z ∈ D f is integrable,
(ii) f is holomorphic on D for any x,
(iii) For any compact subset of D, there is an integrable function Φ such that |f(x, z)| < Φ(x),
then F is holomorphic on D.

Therefore, it is easy to see that as a function of T or P the Gibbs free energy density is
holomorphic, so there cannot be any phase transition.

Some people confuses holomorphy and monotonicity of the PV -curve. If you honestly
compute the partition function, then the monotonicity of the PV curve is never violated;
the violation is due to approximation. Here, we calculate the partition function exactly. The
positivity of y does not imply its holomorphy. If holomorphy is state without any reason, I
gave −2 penalty.
(3) When the φ is a hard core potential, demonstrate that we get the Tonks gas equation of
state.

Solution.
For the hard core potential of radius σ,

q(P, T ) =

∫ ∞

0

dx e−βφ(x)−βPx =

∫ ∞

σ

dx e−βPx =
e−βPσ

βP
. (25)

We know dG = −SdT + V dP , so (N ≫ 1 is used)

V =
NkBT

P
+ Nσ, (26)

2This is a theorem for Lebesgue integration theory, so a slightly more careful statement is desirable, but
for physicists this should be enough; basically, if the integration converges clearly, then holomorphy survives
integration. Those who wish to be theoreticians must learn Lebesgue integrals.
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so

P =
NkBT

V − Nσ
. (27)

It is a nice math exercise, but I wish you to remember how I ‘derived’ this equation chasing
the trajectories of the particles.
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