
Statistical Mechanics Review I with answers in footnotes

Quoted pages refer to the version Feb 26.

As a sort of ‘midterm’ I ask you to solve problems with ∗ marks (15 of them, numbered).

Since a 400 level statistical mechanics course is a prerequisite, I did not wish to repeat the
elementary explanation and practice very much, BUT it is clear that the 400 level material
has not sunk into many of you. This is a review (or a checklist) of Chapters 1-3 with ba-
sic/elementary questions. If you have some trouble in answering these questions, you must
carefully review the relevant topics. Chapters 1-3 are the ground-level rather-boring portion
that should have been covered by any reasonable 400 level course (albeit with instructors’
misunderstanding/misconception of various topics).

1. The ergodic-theoretical foundation of equilibrium statistical mechanics is only a myth.
Even Boltzmann, who conceived this myth, later realized (p18 footnote 18) its irrelevance
to statistical mechanics, and reached a conclusion that statistical mechanics works because
almost any one of microstates compatible with an equilibrium macrostate (thermodynamic
state) gives identical values for any thermodynamic observable.

The law of large numbers is believed to be behind this. You must be able to explain
what the (weak) law of large numbers is (p25), why it holds (p30) and how we can use it
practically (p31). How can we refine the law of large numbers (p35-)?
Q. Suppose a coin is very skewed and we expect that the H and T probabilities differ at
least by 15%. How many tossings of the coin is required to estimate this bias? [You must
decide when you feel confident, etc.]1

2. Thermodynamic observables are either extensive or intensive (p19). You must be able to
write down the Gibbs relation, and to demonstrate the Gibbs-Duhem relation (p20).
Q∗1. The following expression of the equation of state is obtained for 2 moles of a certain
substance: E =

√
S(1 + aV ), where E, S, V are usual thermodynamic quantities and a is a

positive constant. Give the equation of state for N moles of the same substance.2

1A. Let Xi be a stochastic variable for the i-th tossing of the coin such that Xi = 1 if it is head, and 0,
otherwise. Chebyshev tells us (the equality signs may be included or omitted)

P

(∣∣∣∣∣ 1
N

N∑
i=1

Xi − P

∣∣∣∣∣ > ϵ

)
<

V/N

ϵ2
, (1)

where P is the probability for H, V is the variation, which is equal to V = P (1 − P ) ≤ 1/4 (a binomial
distribution!). The question is how big ϵ we should allow. |E − 0.5| > 0.0375 (15% of 0.5 is 0.075), so E
should be estimated at least within the error of ca. 0.005. Now, how often can we tolerate a big error when
we perform experiments of N -coin-tossing runs? Perhaps once in 100 times? Then, V/N

ϵ2 < 1/(4× 0.0052N)
should be 0.01 or smaller. Therefore, N must be at least 25/0.0052 = 106. You have just seen how difficult
to estimate the probability accurately.

2A. If we regard E, S and V are the quantities for N moles. 2E/N =
√

2S/N(1 + a2V/N). Therefore,

E =

√
NS

2

(
1 + a

2V

N

)
. (2)

[The above might look cryptic: Let Xm be X for the m-mole system. E2 = 2EN/N , S2 = 2SN/N and
V2 = VN/N . The problem gives E2 =

√
S2(1 + aV2). Combining all of them solves the problem.]
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Q. Is the above equation of state thermodynamically sound?3

3. Thermodynamic coordinates consisting of internal energy E and work coordinates {X}
are the privileged set of thermodynamic variables, and span the thermodynamic space (p40).
Q. What is a quasiequilibrium process? Is it reversible?4

Q∗2. In what sense is the thermodynamic coordinate system privileged? (p38 footnote 67).5

Q. What is heat? [This is a hard question, but do your best.] (∼p42).6

4. (−)Entropy is a convex function of thermodynamic coordinates (p55). You must under-
stand the geometrical meaning of the Legendre transformation and why it does not lose any
information about thermodynamic potentials (p95).
Q. Demonstrate that the Helmholtz free energy is convex upward (i.e., −A is convex) as a
function of temperature.7

3A. While T > 0, P is not positive. Therefore, it is not a normal system. Further worse, CV is negative.
4A quasiequilibrium process is a process whose path may be drawn in the thermodynamic space, because

at any time the state is infinitesimally close to equilibrium. For this to be true changes have only to be
sufficiently slow. However, as can be exemplified by a hot coffee in a good thermos, even if the change is
very slow, the process need not be reversible.

5A. A thermodynamic state is an equivalence class of equilibrium macrostates according to the values
of the thermodynamic coordinates, so a thermodynamic state and a set of thermodynamic coordinates are
one-to-one correspondent. This is the privilege. However, you might say it is unfair, because thermodynamic
states are so defined to make thermodynamic coordinates special. That is true, but you must think why this
definition is unanimously accepted. We must pay attention to the following two points:
(i) These variables are all non-thermal quantities. That is, only (macroscopic) mechanics and electromag-
netism are required to define/measure [i.e., these quantities are operationally definable clearly].
(ii) Phase coexistence can be described ‘in detail.’ That is, a coexistence phase composition (say, liquid 20%,
solid 80%) can be described for any phase coexistence. [In contrast, in terms of T and other variables, as
you know well, the melting temperature remains the same for any composition of the phases.]

6A. Clausius wrote a paper entitled “Über die Art der Bewegung, die wir Wärme nennen,” Annalen der
Physik, 100: 353-379 (1857) [in English (not available at UIUC) “On the Nature of the Motion which we call
Heat,” Phil Mag 14, 108-27 (1857)]. Thus, heat is a kind of ‘motion,’ but I do not think anyone has given a
respectable definition of heat in terms of microscopically meaningful quantities. We all know it is a part of
motion, and, for example, Einstein formally introduced the expression of work in his derivation of statistical
mechanics as outlined in Chapter 2, so conservation of energy (the first law) allows us to define heat as well.
However, his definition of work does not contain any macroscopic feature of work in thermodynamics. Thus,
if you wish to be theoretically conscientious, we must recognize that heat is defined only thermodynamically.
This is outlined in footnote 77 on p42: Suppose a system can be changed from a state A to state B under
isolation solely with the mechanical changes of work coordinates. If we can bring the state A to B by a
process with exactly the same mechanical changes of work coordinates, the process is called an adiabatic
process. Now, we go from A to B using thus defined adiabatic process, we can define heat unambiguously.”
Suppose we can go from A to B adiabatically only doing work W ; notice that the process may be irreversible,
so state B is with a larger entropy, generally speaking. We know ∆E = EB − EA = W . Next, we use a
different process and go from A to B. If the work needed is W ′, then Q = ∆E−W ′ is called the heat supplied
during this process.

7A. A = infS(E − ST ) or −A = supS(ST − E) (inf may be understood as ‘min,’ and sup as ‘max.’ E
is a convex function of S, and this formula is a legitimate Legendre transformation. Therefore, −A is a
convex function of T . [Warning: any exposition of Legendre transformation that does not mention ‘complex
analysis’ may be questionable. You must clearly understand that differentiation has nothing to do with
complex analysis itself (let alone Legendre transformation). That is why we can discuss phase coexistence
without any difficulty.]
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5. If a system is isolated, S = kB log w(E, {X}) (Boltzmann’s principle) (p43).8 You must
remember that Boltzmann actually demonstrated that dS = (1/T )dE +(P/T )dV for a gen-
eral particle system.

A single quantum microcanonical state corresponds to hNd of classical phase volume (p67).
This microcanonical ensemble/distribution is not very practical, unless the system is very

simple.
Q∗3. A 1D polymer consists of N monomers whose length can be a or b = a(1 + θ) (a > 0,
θ > 0). Energy ϵ is required to change a monomer from state a to state b. We assume that
each monomer has its own kinetic energy p2/2m. Study this system both under constant
length L = (N − ν)a + νb, where ν is the number of monomers in the longer state, and
under constant force F that stretches the chain (under constant T ). That is, write down
appropriate partition functions.9

8If an isolated system is under the influence of an external field x conjugate to X, we can apply Boltz-
mann’s principle as if the system Hamiltonian is H ′ = H − xX̂. Do not forget, however, that, precisely
speaking, the 〈H ′〉 is not the internal energy, but J = E − xX (a generalized enthalpy). See, e.g., a system
under constant magnetic field B. S = kB log w(J, x, {Y }) and dJ = TdS − MdB (cf p94).

9A. The system Hamiltonian is

H =
∑

i

(
p2

i

2m
+ hi

)
,

where hi = 0 or ϵ, depending on the monomer conformation a or b. To study the macrostate with internal
energy E and with length L, we need

L =
∑

i

ℓi = (N − ν)a + νb,

where ℓi is the length of monomer i, and ν is the number of longer monomers. ν = (L − Na)/(b − a).
What we should do first is to characterize the microstates of the system. pi and ‘long’ or ‘short’ of the

monomer characterize each monomer. The spatial location of a monomer depends on the interpretation of
the system. I assumed that the ordering of the monomers along the ‘x‘-axis does not change. Then, the set
of the above mentioned variables is complete. The solution below is according to this interpretation. You
could interpret that each monomer can have two lengths and the polymer is a 1D random walk (with two
different step widths). This is a possible interpretation. Why don’t you redo the following solution under
this interpretation; no one interpreted in this way.

The microcanonical ensemble reads

ω(E,L) =
1

hN

∫
P

i p2
i /2m∈(E−νϵ,E+δE−νϵ]

dp1 · · · dpN

(
N

ν

)
≅

(
N

ν

)
1

hN
BN (E − νϵ),

where BD(r) is the volume of the D-sphere of radius r. To study the macrostate at T and with length L,
we need

Z(T,L) =
(∫

dp e−p2/2kBTm

)N (
N

ν

)
e−βνϵ =

(√
2πkBTm

)N
(

N

ν

)
e−βνϵ,

where, properly speaking, ν must be replaced by the above formula in terms of L. The T , F constant
ensemble reads

Y (T, F ) =
∫

dLZ(T,L)eβFL =
N∑

ν=0

Z(T,L)eβF (Na+(b−a)ν) =
(√

2πkBTm
)N

eβFNa
[
1 + e−βϵ+βF (b−a)

]N

.
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6. Gibbs paradox (explain why we need N !) (p56). Understand mixing entropy intuitively.
See Problem 1.15 (or its solution).

Explain why T > 0 (p60).

7. Understand the principle of adiabatic cooling (p77). Understand the rubber elasticity
(p74). It was a good occasion to practice the so-called Jacobian technique (p75) and to learn
how to use Maxwell’s relations in the Jacobian form.
Q∗4. Under a constant tensile force F a rubber band is cooled. What will happen? Demon-
strate that your intuition is correct from the entropic elasticity point of view.10

Q∗5. Show T (∂V/∂T )P = CP (∂T/∂P )S.11

8. A = −kBT log Z (p91), where Z = Tr e−βH (and its classical counterpart).
Q. There is a classical ideal gas consisting of N particles with two internal state (energy 0
and ϵ). Find its Gibbs free energy and constant pressure specific heat CP .12

Q. Why can the canonical distribution be used for small systems as well? (p131)13

You must review elementary QM (especially, angular momentum).
Q∗6. Compute the canonical partition function for the system whose (spin) Hamiltonian is
H =

∑
i(s

2
i − Asiz), where si is the quantum 1/2 spin of the ith particle (i = 1, · · · , N).14

Q∗7. Now, apply a magnetic field B to the above system, and compute its canonical parti-

10A. The rubber band lengthens.

∂L

∂T

∣∣∣∣
F

=
∂(L,F )
∂(T, F )

=
∂(L,F )
∂(T, S)

∂(T, S)
∂(T, F )

=
∂(T, S)
∂(T,L)

∂(T,L)
∂(T, F )

=
∂S

∂L

∣∣∣∣
T

∂L

∂F

∣∣∣∣
T

< 0.

11A.

T
∂V

∂T

∣∣∣∣
P

= T
∂(V, P )
∂(T, P )

= T
∂(V, P )
∂(S, T )

∂(S, T )
∂(T, P )

= T
∂(S, P )
∂(T, P )

∂(S, T )
∂(S, P )

= CP
∂T

∂P

∣∣∣∣
S

.

12A. Its canonical partition function Z is the product of Zideal given in Section 2.2 and the canonical
partition function for the internal degrees of freedom: Zint = (1 + e−βϵ)N . To obtain the Gibbs free energy,
we can Laplace transform Z as

Y = Zint

∫
Zideal(T, V )e−βPV dV = (1 + e−βϵ)N (nQkBT/P )N+1 = (1 + e−βϵ)N (nQ/n)N+1.

Therefore,
G = A + PV = −NkBT log(1 + e−βϵ) + NkBT log(n/nQ).

Q: Is the chemical potential of this gas larger or smaller than the gas without any internal degree?
13A. Z has a direct product structure as explained on p131. Then, the marginal distribution for a single

molecule reads ∝ e−βh.
14A.

Z =
[
Tr e−β

P

i(s
2
i−Asiz)

]N

We know s2
i = s(s + 1) = (3/4)~2 [remember that we are dealing with a quantum system; the magnitude of

s2
i is s(1 + s), not s2], so (note that s = (~/2)σ, where σ is the Pauli operator)

Z =
[
2e−(3/4)~2β cosh(βA~/2)

]N

.
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tion function (i.e., add the interaction Hamiltonian −
∑

i B · si).
15

9. Ensemble equivalence: Classically, you must be able to choose the most convenient en-
semble to compute what you want (p124).
Q. Obtain P of a classical ideal gas with the aid of the grand canonical ensemble.16

Microcanonical, canonical and grand canonical results disagree only to O[log N ]. This implies
that the thermodynamic potentials computed directly with the aid of statistical mechanics,
and those computed via Legendre transformation with the aid of thermodynamics agree (en-
semble equivalence) (p126-).

10. Classically, equipartition of energy may be useful (p107).
Q. What is the part of the specific heat due to the ring puckering degree of freedom?17

11. Entropy is closely related to information (Section 2.4; p109-).
Q∗8. An intramolecular rearrangement reaction changes the molecular entropy by 11 eu.
What is the (expected) required information to describe the change in a single molecule?18

12. Fluctuation-response relations and their general conclusions must be understood (p133).

15A. Now, we must compute

Z =
[
Tr e−β

P

i(s
2
i−Asiz−B·si)

]N

= e−(3N~2/4)β
[
Tr eβ

P

i(Asiz+B·si)
]N

We use the usual formula: The formula we need is

eα·σ = cosh α + (n · σ) sinhα,

Since s = (~/2)σ, in our case

α =
β~
2

(Bx, By, Bz + A),

but Tr of σ is zero, so

Z = e−(3N~2/4)β
[
2 cos

{
(β~/2)

√
B2

x + B2
y + (A + Bz)2

}]N

.

16A.

Ξ(T, V, µ) =
∞∑

N=0

Z(T, V,N)eβµN =
∞∑

N=0

(nQV )N

N !
eβµN = exp(nQV eβµ).

We must determine µ with the condition

∂log Ξ
∂βµ

= N ⇒ N = nQV eβµ.

Therefore, Ξ = eN . log Ξ = PV/kBT , but this is indeed N .
17A. This is directly related to Problem 2.7. The equipartition of energy implies 〈Ax4〉 = kBT/4. There-

fore, CV = kB/4 is the contribution. [the answer corrected]
18A. 1 eu = 0.72 bit, so 11×0.72 = 8 bits/molecules. In any case, the point is that 1 eu and 1 bit/molecule

are the same order
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Q. What is the volume fluctuation related to?19

Q∗9. The constant pressure specific heat CP should be written in terms of the fluctuation
of some extensive quantity. Find the expression.20

Q. Explain how to measure the (effective) spring constant that governs the opening of a gate
of some molecular pore.21

Do not forget that the quantum version is complicated due to the noncommutativity of the
original Hamiltonian and the perturbation Hamiltonian (p134). It is a good occasion to
learn the Trotter formula.

13. Thermodynamic fluctuation theory (Einstein theory). Notice that the general formula
can be written down easily if you know the Gibbs relation, but you must understand how
to compute the multivariate Gaussian distribution (p138). Recall also the relation to the
minimum reversible work and fluctuation probability (p139).
Q. Show that 〈δXδy〉 = 0.22

Fluctuations are closely related to the stability criterion and evolution criterion (p141).
It is basically a result of convex analysis, so no differentiability is required to apply the basic
theory (p142).
Q∗10. What can you say about the magnetization in the z direction of the phases, if a
magnetic field in the z direction causes a phase transition from phase I to phase II.23

Le Chatelier-Braun’s principle: if you remember CP > CV , it is easy to guess the general
relations (∆X)y > (∆X)Y and (∆x)Y > (∆X)y (p143).

14. The second law and equilibrium statistical mechanics have some tantalizing relations
(p115-).
Q. Write down Jarzynski’s equality, and then explain how to use it experimentally to esti-

19A.

〈δV 2〉 = −kBT
∂V

∂P

∣∣∣∣
T

= kBTV κ,

where κ is the isothermal compressibility.
20A. CP = T (∂S/∂T )P . One hint is 〈δX2〉 = kBT ∂X

∂x

∣∣
y

kBT
∂S

∂T

∣∣∣∣
P

= 〈δS2〉.

That is, kBCP = 〈δS2〉.
(In this paragraph H is enthalpy) If we use the pressure ensemble Y (T, P ), H = −(∂ log Y/∂β)P .

Therefore, (∂2 log Y/∂β2)P = −(∂H/∂β)P = kBT 2(∂H/∂T )P = 〈δH2〉. Since dH = TdS + V dP ,
(∂H/∂T )P = CP . Therefore, kBT 2CP = 〈δH2〉. If you know kBT 2CV = 〈δE2〉, the second answer may be
more natural than the first.

21A. The potential energy is kx2/2, where x is the displacement and k is Hooke’s constant. The equipar-
tition implies 〈x2〉 = kBT/k. Sometimes the force F = kx is measured, so the force fluctuation is of interest
〈δF 2〉 = k2〈x2〉 = kBTk.

22A.

〈δXδy〉 =
∑
Z

〈δXδZ〉 ∂y

∂Z

∣∣∣∣
···

=
∑
Z

∂Z

∂x

∣∣∣∣
···

∂y

∂Z

∣∣∣∣
···

= δxy = 0.

23A. The stability (this is from convexity of E) implies ∆Bz∆Mz > 0, so phase II must have larger
z-component magnetization than phase I.
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mate the free energy change. However, it is not equivalent to the second law. [This answer
will not be given. You should reread the relevant pages.]

15. Grand canonical formalism log Ξ = βPV , where µ is fixed implicitly from the expression
of N . Use A = G−PV = Nµ−PV (p179, p187). The sum over 1P (= one-particle) states
may be replaced with the corresponding integral for PV and E (p168), but not always for
N in the case of bosons (p189).

16. At least one charged species (+ or −) must be fermions for a matter to be stable (p164
footnote 2). Fermions tend to avoid each other and bosons to do the opposite (Fig. 3.1.1).
This can be illustrated by the variation of the occupation number of a single 1P state: 〈δn2〉.
incidentally, recall the Poisson distribution and the law of small numbers.
Q∗11. Compute this directly from the grand canonical partition function (i.e., ∂2 log Ξ/∂(βϵi)

2).24

17. You should remember when thermodynamic quantities are easy to calculate: at T = 0
for fermions (p181-2), and T < Tc for bosons (p189-90).
Q∗12. Suppose N bosons (without spin) are confined in a 2D harmonic potential. After
showing that the BEC is possible, determine the exponents for E and PV as functions of T

24A. We know
log Ξ = ∓

∑
log(1 ∓ e−β(ϵ−µ)).

From this we know
−∂log Ξ

∂βϵi
=

1
eβ(ϵi−µ) ∓ 1

.

Therefore, the fluctuation can be computed as

∂2 log Ξ
∂(βϵi)2

= − ∂

∂βϵi

1
eβ(ϵi−µ) ∓ 1

=
eβ(ϵi−µ)

(eβ(ϵi−µ) ∓ 1)2
= n2

i e
β(ϵi−µ)

(There were not a few people who stopped just before the last equality. As you know the answer is 〈δn2〉 =
n ± n2. Could you immediately see these two answers were identical? If not, I cannot believe why you stop
there.) We can calculate eβ(ϵi−µ) = (1/ni) ± 1. Therefore,

n2
i e

β(ϵi−µ) = n2
i

(
1
ni

± 1
)

= ni ± n2
i .
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(< Tc).
25

18. For fermions thermodynamic quantities for small T may be understood qualitatively with
the aid or thermodynamics (p184). For example, we see at once that E(T )−E(0) = O[T 2].
This implies CV = O[T ] and S(T ) ≅ CV for sufficiently small T .
Q∗13. Show µ(0) − µ(T ) = o[T ] > 0. Is this true for bosons in 2-space as well? (Obviously
wrong in 3-space)26

19. It is a good occasion to learn/review the second quantization formalism (p172, i.e.,
creation-annihilation operators) and Bloch-De Dominicis theorem (p174).
Q∗14. Compute 〈a+a+aa〉 for fermions and bosons.27

Q∗15. Compute 〈ea+
ea〉 for bosons and for fermions.28

25A. E = (nx + ny)~ω (here the ground state is zero according to the usual boson formulas):

N =
∑

nx,ny

1
eβ[~ω(nx+ny)−µ] − 1

.

The integral version of this formula reads as follows, and we wish to who it is bounded from above as

N1 =
∫

dxdy
1

eβ[~ω(x+y)−µ] − 1
< CT 2,

where C is a positive constant; Its convergence on the large variables is OK. What happens near the ground
state, if µ = 0? Basically, we must consider∫

[0,1]2
dxdy

1
x + y

=
∫ 1

0

dx[log(x + 1) − log x] < +∞.

Therefore, N1 is bounded from above. We must conclude that there is BEC.
Since µ = 0, we can write

E =
∑

nx,ny

~ω(nx + ny)
eβ~ω(nx+ny) − 1

∝ T 3.

PV = −kBT
∑

nx,ny

log
(
1 − e−β~ω(nx+ny)

)
∝ T 3.

Q. Is there any clean relation between PV and E?
26A. Let us compute

∂µ

∂T

∣∣∣∣
N,V

=
∂(µ,N)
∂(T,N)

∣∣∣∣
V

=
∂(µ,N)
∂(S, T )

∣∣∣∣
V

∂(S, T )
∂(T,N)

∣∣∣∣
V

= − ∂S

∂N

∣∣∣∣
T,V

< 0.

This goes to zero in the T → 0 limit, so the first order term should not exist. The sign was discussed long
ago for ideal gasses.
You cannot show thermodynamically that µ(0) − µ(T ) > 0 around T = 0. Actually, if BEC occurs, this is
false!. Sorry.

27A. For fermions this must be zero; you do not need Bloch-De Dominicis, since a2 = 0 (such relations
are operator-algebraic, so use them before any calculation). For bosons

〈a+a+aa〉 = 2〈a+a〉〈a+a〉 = 2〈n̂〉2.

Do not forget that a and a∗ are operators. Do not equate them sixth, e.g.,
√

n.
28A. For fermions obviously, 1 + n, because ea+

= 1 + a+.
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20. Detailed balance is a very important concept (p177).

21. Photons and phonons may be treated as bosons with zero chemical potential formally
(p192).29 Therefore, they are treated as bosons below Tc. From this point of view, it is easy
to determine E and PV as a function of T (p194-).

For bosons, we have

〈ea+
ea〉 = 1 + 〈a+a〉 + (2!)−2〈(a+)2a2〉 + · · · + (n!)−2〈(a+)nan〉 + · · · .

We need
〈(a+)nan〉 = n〈a+a〉〈(a+)n−1an−1〉 = · · · = n!〈n̂〉n

Therefore,
〈ea+

ea〉 = 1 + 〈n̂〉 + (2!)−1〈n̂〉2 + · · · + (n!)−1〈n̂〉n + · · · = e〈n̂〉.

29Do not misunderstand that their chemical potentials are indeed 0; chemical potentials are well defined
only for particles with definite conservation laws such as baryon number or charge conservation.
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