Introduction to Applicable Analysis

Yoshi Oono 1997 Spring Version

AMI-00 ReadMe

Read this first
Study Guide
Book Guide

AMI-1 Introduction

1.1 Spatially extended system
1.2 Wave, Diffusion, and Laplace equations
1.2a Introduction to wave equation
1.2b Introduction to diffusion equation
1.2c Introduction to Laplace and Poisson equations
1.3 Typical problem
1.4 Linearity and superposition principle
1.5 Linear decomposition of problem
1.6 Fourier's idea, ca 1807
1.7 Who was Fourier?
1.8 Green's idea, 1828
1.9 Who was Green?
1.10 Conventional mathematical physics
1.11 What is (should be) modern mathematical physics?
1.12 PDE vs other modeling tools
1.13 Discretization of Δ-Intuitive meaning of Laplacian
1.14 Ubiquity of Laplacian
1.15 Utilize discretization to understand PDE
1.16 Classification of second order linear constant coefficient PDE, principal part
1.17 Linear PDE for practitioners
1.18 Parabolic equation
1.19 Elliptic equation
1.20 Hyperbolic equation
1.21 Then, what are mathematicians doing?

AMI-1 Physics examples (Appendix)

a1A Balance equation
a1A. 1 Continuum description
a1A. 2 Volume element
a1A. 3 Local conservation law
a1A. 4 Flux density
a1A. 5 Sign convention
a1A. 6 Examples of flux density for flux, "going out is positive."
a1A. 7 General form of local conservation law
a1B Diffusion equation and Laplace equation
a1B. 1 Linear phenomenological law
a1B. 2 Heat conduction, diffusion equation
a1B. 3 Laplace equation
a1B. 4 Reaction-diffusion equation, Fisher equation
a1B. 5 Conservation of probability
a1C Diffusion and Brownian motion
a1C. 1 Diffusion equation and Brownian particles
a1C. 2 Smoluchowski equation
a1C. 3 Smoluchowski equation vs Schródinger equation
a1C. 4 Fokker-Planck equation
a1C. 5 Reduction of Fokker-Planck equation to Smoluchowski equation
a1D Equation of motion of continuum body
a1D. 1 Momentum balance, Force as negative momentum flux
a1D. 2 Stress tensor
a1D. 3 Force on a volume
a1D. 4 Basic equation of continuum mechanics
a1D. 5 Deformation of a body
a1D. 6 Strain tensor
a1D. 7 Hooke's law
a1D. 9 Equation of motion of isotropic elastic body: wave equation
a1D. 10 Drumhead
a1D. 11 String under tension
a1D. 12 Energy integral
a1E Fluid dynamics: Navier-Stokes equation
a1E. 1 Momentum flux density
a1E. 2 Pressure; equation of motion
a1E. 3 Newtonian viscosity
a1E. 4 Viscosity and long-time tail
a1E. 5 Mass conservation, continuum equation
a1E. 6 Navier-Stokes equation
a1E. 7 Perfect fluid, Euler's equation
a1E. 8 Substantial derivative
a1E. 9 Incompressibility, potential flow
a1E. 10 Stokes' approximation
a1F Electrodynamics
a1F. 1 Empirical facts
a1F. 2 Differential forms of empirical facts
a1F. 3 Displacement current
a1F. 4 Maxwell's equation in vacuum
a1F. 5 Vector potential, scalar potential
a1F. 6 Poisson's equation
a1F. 7 Gauge symmetry
a1F. 8 Maxwell's equation in terms of potentials, electromagnetic wave
a1F. 9 Polarization
a1F. 10 Electrical displacement
a1F. 11 Dielectric constant
a1F. 12 Magnetization
a1F. 13 Magnetic field. magnetic permeability
a1F. 14 Maxwell's equation in material
a1F. 15 Supplementary equations
a1F. 16 Ohm's law
a1F. 17 Electromagnetic wave in matter, telegrapher's equation

AMI-2 Differentiation revisited

2A Elementary review

2A. 1 What is differentiation?
2A. 2 Chain rule
2A. 3 Linear response can be superposed
2A. 4 Generalization of differentiation: strong derivative
2A. 5 Differentiation of function on space
2A. 6 Warning
2A. 7 Differentiation of vector-valued function
2A. 8 Differentiation of complex function

2B Partial differentiation revisited

2B. 1 Partial differentiation
2B. 2 Warning
2B. 3 Change of variables
2B. 4 D'Alembert's solution for 1-space wave equation
2B. 5 Wave equation with boundary condition
2B. 6 Moving coordinates

2B. 7 D'Alembert 1717-1783

2C Vector Analysis revisited

2C. 1 Gradient
2C. 2 Coordinate expression of $\operatorname{grad} f$.
2C. 3 Remark
2C. 4 Nabla or del
2C. 5 Divergence
2C. 6 Cartesian expression of div
2C. 7 Operator
2C. 8 Curl
2C. 9 Cartesian expression of curl
2C. 10 Potential field. potential, solenoidal field, irrotational field
2C. 11 Laplacian, harmonic function
2C. 12 Laplacian for vector fields
2C,13 Theorem [Gauss-Stokes-Green's theorem]
2C. 14 Poincaré's lemma
2C. 15 Remark: differential forms
2C. 16 Converse of Poincaré's lemma holds
2C. 17 Theorem [Helmholtz-Hodge]
2C. 18 Theorem [Helmholtz-Stokes-Blumental]
2C. 19 Formulas of vector calculus

2D Curvilinear coordinates

2D. 1 Curvilinear coordinates, metric tensor
2D. 2 Riemann geometry
2D. 3 Orthogonal curvilinear coordinate system
2D. 4 Cylindrical coordinates
2D. 5 Spherical coordinates
2D. 6 Elliptic cylindrical coordinates
2D. 7 Gradient in orthogonal curvilinear coordinates
2D. 8 Volume element in orthogonal curvilinear coordinates
2D. 9 Divergence and curl in orthogonal curvilinear coordinates
2D. 10 Laplacian in orthogonal curvilinear coordinates

AMI-3 Calculus of Variation

3.1 Variational calculus
3.2 Theorem [Euler]
3.3 Proof of Euler-Lagrange equation
3.4 Conditional extreme, Lagrange's multiplier
3.5 Who was Lagrange?
3.6 Variable end points, transversality
3.7 Functional derivative
3.8 Delta function
3.9 Formal rules of functional differentiation
3.10 Intuitive introduction to minimization of functional I
3.11 Second variation
3.12 Legendre's condition
3.13 Intuitive introduction to minimization of functional II
3.14 Theorem [Sufficient condition for minimum wrt C^{1}-norm]
3.15 Noether's theorem
3.16 Usefulness of variational principle
3.17 Vainberg's theorem
3.18 Direct method
3.19 Ritz's method
3.20 Why variational principle?
3.21 Hamilton-Jacobi equation, Jacobi' theorem, etc.

AMI-4 Complex Functions

4.1 Preliminary
4.2 Exponential function
4.3 How Euler arrived at Euler's formula
4.4 Who was Euler?
4.5 Complex trigonometric functions
4.6 Complex hyperbolic functions
4.7 Logarithm
4.8 Warning
4.9 Power
4.10 Examples and warnings
4.11 Inverse trigonometric functions

Appendix a4 Complex numbers
A4.1 Complex number
A4.2 Arithmetic rules of complex numbers
A4.3 Real part, imaginary part
A4.4 Conjugate complex numbers
A4.5 Complex plane
A4.6 Polar from of complex number, modulus and argument
A4.7 Principal value of argument

A4.8 Elementary properties of absolute values
A4.9 Graphic representation of arithmetic operations
A4.10 Limit
A4.11 Convergence of series

AMI-5 Differentiation of Complex Functions

5.1 Differentiation
5.2 Differentiation rules are the same as in elementary real analysis
5.3 Cauchy-Riemann equation
5.4 Holomorphic functions
5.5 Examples
5.6 Re and Im of holomorphic function are harmonic
$5.7 \log |f|$ is harmonic
5.8 How to construct conjugates

AMI-6 Integration on Complex Plane

6.1 Integration along contour
6.2 Bilinear nature of integration
6.3 Cauchy's theorem
6.4 Orientation of the boundary
6.5 Cell decomposition of a bounded closed region
6.6 Cauchy's theorem for a cell
6.7 The essence of Cauchy's theorem
6.8 Cauchy's theorem from Green's formula
6.9 Indefinite integral theorem
6.10 Cauchy's formula
6.11 Who was Cauchy?
6.12 Infinite differentiability of holomorphic functions
6.13 Derivative can be computed through integration
6.14 General formula for derivative
6.15 Holomorphic functions are Taylor expandable
6.16 Morera's theorem - converse of Cauchy's theorem
6.17 Who was Gauss?

AMI-7 Analytic Continuation

7.1 Motivation to study series and sequence, analyticity
7.2 Review of power series
7.3 Convergence circle must contain a non-holomorphic point
7.4 Convergence radius is a continuous function of expansion center
7.5 Theorem of identity
7.6 Principle of invariance of functional relations
7.7 Function element
7.8 Direct analytic continuation, indirect analytic continuation
7.9 Uniqueness of direct analytic continuation
7.10 Analytic function
7.11 Natural boundary
$7.12 C^{\infty}$ but not C^{ω} functions
7.13 Values of analytic function, Riemann surface
7.14 Poincaré-Vivanti's theorem
7.15 Who was Riemann?

AMI-8 Contour Integration

8A Singularities

8A. 1 Integral and singularities
8A. 2 Singularity
8A. 3 Classification of isolated singularities
8A. 4 Classification of branch point
8A. 5 Classification of non-branch isolated singular points
8A. 6 Branch point can be found by formal expansion
8A. 7 Cosorati-Weierstrass' theorem
8A. 8 Laurent's theorem
8A. 9 Uniqueness of Laurent expansion
8A. 10 Principal part
8A. 11 Examples
8A. 12 Laurent expansion and Fourier expansion

8B Contour integration

8B. 1 Residues
8B. 2 Residue theorem
8B. 3 How to get residues
8B. 4 Rational functions of sin and cos
8B. 5 Integral of rational functions
8B. 6 Integral of rational function times sin or \cos
8B. 7 Jordan's lemma
8B. 8 Integral of $\cos z^{n}$ or $\sin z^{n}$
8B. 9 Use of periodicity of e^{z}.
8B. 10 Use of residue to compute series

8B. 11 Cauchy principal value of integral
8B. 12 Simple poles on the real axis
8B. 13 Plemelj formula
8B. 14 Kramers-Kronig relation
8B. 15 Hilbert transformation
8B. 16 Delta function as Sato hyperfunction

AMI-9 Г-function

9.1 Euler's integral
$9.2 \Gamma(z+1)=z \Gamma(z)$
9.3 Factorial
9.49 .2 directly from Euler's integral
9.5 Formula of complementary arguments
9.6Γ for half integers
9.7 Bet function
9.8 Proof of 9.5
9.9 Taylor expansion
9.10 Use in perturbative field theories
9.11 Stirling's formula

AMI-10 Conformality and Holomorphy

10.1 Conformality

10.2 Holomorphy implies conformality
10.3 Convention:nConformal map form a region D to another region E
10.4 Conformality implies holomorphy
10.5 Möbius transformation
10.6 Decomposition of Möbius transformation
10.7 Circline
10.8 Cocircline condition
10.9 Möbius transformations map circlines to circlines
10.10 Riemann mapping theorem
10.11 There is a conformal map between two regions
10.12 'Unit disk \rightarrow unit disk' must be Möbius
10.13 'Upper half plane , map the unit disk' must be Möbius
10.14 Schwartz-Christoffel formula
$10.15 \partial / \partial z$ and $\partial / \partial \bar{z}$
10.16 Conformal invariance of harmonicity

AMI-11 ODE-general

11A General theory

11A. 1 Practical advice
11A. 2 Ordinary differential equation
11A. 3 General solution, particular solution, singular solution
11A. 4 Normal form
11A. 5 Normal form ODE is essentially first order
11A. 6 Non-autonomous equation is not special
11A. 7 Initial value problem for first order ODE
11A. 8 Theorem [Cauchy-Peano]
11A. 9 Lipschitz condition
11A. 10 Theorem [Cauchy-Lipschitz uniqueness theorem]
11A. 11 Importance of being more than continuous
11A. 12 Continuous dependence on initial condition
11A. 13 Smooth dependence on parameter
11B Elementary solution methods
11B. 1 Method of quadrature
11B. 2 Separation of variables
11B. 3 Perfect differential equation
11B.3a Integrating factor
11B. 4 Homogeneous equation
11B. 5 Linear first order equation, variation of constants
11B. 6 Bernoulli equation
11B. 7 Riccati's equation
11B. 8 Second order ODE
11B. 9 Method of reducing order
11B. 10 The standard form of linear second order ODE (Sturm-Liouville equation)
11B. 11 Linear second order ODE with constant coefficient
11B. 12 Theorem [Generalsolution to 11B. 11
11B. 13 Inhomogeneous equation, Lagrange's method of variation of constants
11B. 14 Equidimensional equation: invariance under scaling
11B. 15 Scale invariant equation
11B. 16 Clairaut's differential equation

AMI-12 Constant coefficient linear ODE

12.1 General form 12.2 Exponential function of matrix
12.3 General solution to (12.1)
12.4 Diagonalizable case
12.5 Practical procedure
12.6 Inhomogeneous case
12.7 Stability question of a fixed point
12.8 Theorem [Hartman-Grobman]
12.9 Stability analysis of fixed point 12.10 Gershgorin's theorem
12.11 Application of Gershgorin's theorem

Appendix a12 Decomposition of $e^{A t}$

AMI-13 Quasilinear first order PDE

13A General theory

13A. 1 Quasilinear first order PDE
13A. 2 Typical example
13A. 3 Two variable case
13A. 4 How to solve quasilinear first order PDE: method of characteristic equation
13A. 5 Homogeneous case
13A. 6 Examples

13B Homogeneous functions

13B. 1 Homogeneous functioin of degree p
13B. 2 Theorem [Euler]
13B. 3 Theorem
13B. 4 Example from thermodynamics
13B. 5 Kepler's third law
13B. 6 Generalized homogeneous function

13C Application to constant coefficient linear PDE

13C. 1 Constant coefficient linear PDE
13C. 2 [Malgrange-Ehrenpreis]
13C. 3 Factorization 'theorem'
13C. 4 How to solve inhomogeneous equation
13C. 5 Lemma
13C. 6 Examples
13C. 7 Example of inhomogeneous equation
13C. 8 Application to diffusion equation

AMI-14 Generalized function

14.1 Green's function and delta-function
14.2 Green's function and fundamental solution
14.3 Motivation of the theory: delta function as linear functional
14.4 Generalized function
14.5δ-function: an official definitioin
14.6 Value of generalized function at each point is meaningless
14.7 Multidimensional delta function
14.8 Test function
14.9 Equality
14.10 Regular distribution
$14.11 \delta(a x)=|a|^{-1} \delta(x)$
$14.12 \delta(g(x))$
14.13 Convergence of generalized function
14.14 Differentiation of generalized functions
14.15 Examples
14.16 All the ordinary rules for differentiation survive
14.17 Cauchy principal value $P(1 / x)$
14.18 Theorem [Differentiation of limit always commute]
14.19 Example
14.20 Example: Coulomb potential
14.21 Integral of generalized functions
14.22 Convolution
14.23 Examples

AMI-15 Green's functions for ODE

15.1 Fundamental solution exists for ODE
15.2 Proof of 15.1 for $n=2$
15.3 Example: damped oscillator under an impact
15.4 Regular Sturm-Liouville problem
15.5 Theorem
15.6 Explicit form of Green's function
15.7 Construction of Green's function
15.8 Remark
15.9 Examples
15.10 Theorem [Inhomogeneous boundary condition]
15.11 Another method to solve inhomogeneous case

AMI-16 Green's functions for PDE-Elementary approach

16A Green's function for Laplace equation

16A. 1 Free space Green's function for Laplace equation
16A. 2 Spherical symmetric solution of Laplace equation
16A. 3 Demonstration of $\Delta\left(1 / r^{d-2}\right) \propto \delta(x)$

16A. 4 Coulomb potential in d-space
16A. 5 Method of descent
16A. 6 Green's function in (semi)bounded space
16A. 7 Method of images I. Half space
16A. 8 Method of images II. More complicated case
16A. 9 Harmonicity and symmetry
16A. 10 Reflection principle
16A. 11 Conformal mapping
16A. 12 Harmonicity is conformal invariant
16A. 13 Demonstration of conformal invariance of harmonicity
16A. 14 Method of images III. General case
16A.15 Sphere, Dirichlet condition
16A.16 Charge outside conducting sphere, not grounded
16A.17 Method of images for dielectric materials
16A. 18 How to use Green's function (homogeneous Laplace case)
16A. 19 Green's formula
16A. 20 Symmetry of Green's function
16A. 21 Solution to Dirichlet problem in terms of Green's function
16A. 22 Green's function for more general domain

16B Green's function for diffusion equation

16B. 1 Fundamental solution of diffusion equation
16B. 2 Scaling invariant solution of diffusion equation
16B. 3 Dimensional analysis
16B. 4 Scaling invariant spherically symmetric solution to diffusion equation
16B. 5 Initial trick for diffusion equation
16B. 6 method of descent
16B.7 Markovian property of diffusion kernel
16B. 8 Random walk and heat kernel
16B. 9 Method of images for diffusion equation-image sources
16B. 10 How to use Green's function: homogeneous boundary problems
16B.11 Analogue of Green's formula for diffusion equation
16 C Green's function for wave equation
16C. 1 Free-space Green's function for 3 -wave equation
16C. 2 Retarded ad advanced Green's functions
16C. 3 Method of descent for wave equation
16C. 4 Afterglow
16C. 5 Method of images for wave equation

16 D Laplace equation in 2 -space

16D. 1 What do we know fro complex analysis?
16D. 2 Neumann problem can be reduced to Dirichlet problem
16D. 3 Solving Dirichlet problem by conformal map
16D. 4 Green's function
16D. 5 Agreement with the previous definition
16D. 6 Example
16D. 7 Green's function solves Dirichlet problem
16D. 8 Poisson's formula
16D. 9 Solution to Dirichlet problem on disk: Schwarz' theorem
16D. 10 Fourier expansion of harmonic function on the disk
16D. 11 Conformal mapping and Green's function
16D. 12 Green's function for a region D
16D. 13 Harmonic function on the half plane

AMI-17 Fourier expansion

17.1 Fourier expansion of function with period 2ℓ : A formal statement
17.2 Periodic extension of function
17.3 Theorem [Weierstrass]
17.3a Bernstein polynomial
17.3b Who was Weierstrass?
17.4 Set of trigonometric functions is complete
17.5 Three basic facts for piecewise smooth functions
17.6 Gibbs phenomenon
17.7 Dirichlet's sufficient condition for expandability: practical condition 17.8 Theorem [Riemann-Lebesgue]
17.9 Advanced theorems
17.10 remark
17.11 Theorem [Riemann-Lebesgue lemma]
17.12 Smoothness and decay rate
17.13 Smoothness examples
17.14 Nontrivial numerical series obtained via Fourier expansion
17.15 Importance of smoothness
17.16 Sine and cosine Fourier expansion
17.17 More sophisticated extension
17.18 Impact of Fourier
17.19 Who was Cantor?

AMI-18 Separation of variables-rectangular domain-
18.1 Separation of variables: general strategy
18.2 Illustration: 2D Laplace, Dirichlet
18.3 Laplace equation: Dirichlet condition
18.4 Laplace equation: Neumann condition
18.5 Diffusion equation
18.6 Obtaining Poisson's formula
18.7 1-space wave equation

AMII-19 Integration revisited

19.0 Practical check
19.1 Dirichlet function
19.2 The area below $D(x)$ must be zero
19.3 Measure zero
19.4 Lebesgue's characterization of Riemann integrability
19.5 "Almost everywhere"
19.6 Simple function
19.7 Lebesgue integral of simple function
19.8 Lebesgue integral of general function: $L_{1}([a, b])$
19.9 Remark
19.10 Relation between Riemann and Lebesgue integrals
19.11 Theorem [Lebesgue dominated convergence theorem]
19.12 Theorem [Beppo-Levi]
19.13 Example
19.14 Theorem [Fubini]
19.15 Pathological example
19.16 Good function principle
19.17 Exchanging differentiation and integration
19.18 Why is Lebesgue integral most natural for Fourier analysis?
19.19 Gaussian integral, "Wick's theorem"
19.20 Gaussian integral: complex case

Appendix 19a Measure
a19.0 Reader's guide to this appendix
a19.1 What is volume?
a19.2 Area of fundamental set
a19.3 Heuristic consideration
a19.4 Outer measure
a19.5 Inner measure
a19.6 Measurable set, area $=$ Lebesgue measure
a19.7 Additivity
a19.8 σ-additivity
a19.9 Measure, general case
a19.10 Minimum algebra on \mathcal{S}, extension of measure
a19.11 Lebesgue extension
a19.12 Remark
a19.13 σ-additivity
a19.14 Measurable function
a19.15 Lebesgue integral with measure
a19.16 Functional integral
a19.17 Uniform measure
a19.18 Borel measure
a19.19 Probability
a19.20 Lebesgue's measure problem
a19.21 Hausdorff and non-measurable set

AMII-20-Hilbert space

20.1 Vector space
20.2 Infinite dimensional space
20.3 Hilbert space
20.4 Who was HIlbert?
20.5 Examples 20.6 Parallelogram law and Pythagoras theorem
20.7 Cauchy-Schwartz inequality
20.8 Bracket notation
20.9 How Dirac introduced brackets
20.10 Orthogonal basis, separability
20.11 Bessel's inequality
20.12 Parseval's equality
20.13 Generalized Fourier expansion
20.14 Least square approximation and Fourier expansion
20.15 Resolution of unity [called decomposition of unity in the text]
20.16 Gran-Schmidt orthonormalization
20.17 Respect the order in the basis
20.18 Orthogonal projection
20.19 Space $L_{2}([a, b], w)$
20.20 Dirac's "abuse" pf symbols
$20.21 f(x)$ as an x-component of a vector
20.22 Inner product of functions
20.23 Resolution of unity [called decomposition of unity in the text]
20.24 Trigonometric expansion revisited
20.25δ-function (with weight)
20.26δ-function for curvilinear coordinates
20.27δ-function in terms of orthonormal basis
20.28 Green's operator and Green's function-a formal approach
20.29 Eigenfunction expansion of Green's function-a formal approach

AMII-21 Orthogonal polynomials

21A General theory

21A.1 Existence of general theory
21A. 2 Orthogonal polynomials for $L_{s}([a, b], w)$ via Gram-Schmidt
21A. 3 Theorem
21A. 4 Least square approximation and generalized Fourier expansion
21A. 5 Example: Legendre polynomials
21A. 6 Generalized Rodrigues' formula
21A. 7 Relation to the Sturm-Liouville problem
21A. 8 Generating functions
21A. 9 Generating function for Legendre polynomial
21A. 10 Three term recursion formula
21A. 11 Zeros of orthogonal polynomials
21A. 12 Remark: how to locate real zeros of polynomials
21A. 13 Examples of Sturm's theorem
21A. 14 Descartes' sgn rule
21B Representative examples
21B. 1 Table of orthogonal polynomials
21B. 2 Legendre polynomials
21B. 3 Sturm-Liouville equation for Legendre polynomials
21B. 4 Recursion formula for Legendre polynomials
21B. 5 Legendre polynomials, some properties
21B. 6 Hermite polynomials
21B. 7 Sturm-Liouville equation for Hermite polynomial
21B. 8 Recursion formula for Hermite polynomial
21B. 9 Chebychev polynomials
21B. 10 Remarkable properties of Chebychev polynomials

AMII-22 Numerical integration
22A Gauss formulas

22A. 1 Numerical integration
22A. 2 Simple demonstration
22A. 3 Fundamental theorem of Gauss quadrature
22A. 4 Error estimate of Gauss formulas
22A. 5 How to get the weights
22A. 6 Many dimension 22A. 7 Integral equation solver
22A. 8 Trapezoidal vs Simpson rule
22A. 9 Discrete Fourier transform I
22A. 10 Discrete Fourier transform II
22B Variable transformation schemes
22B. 1 Functions of double exponential decay
22B. 2 Double exponential (DE) formula
22B. 3 Numerical estimate of Fourier transform

22C Multidimensional integral

22C1 Overview

22C2 Polynomial variable transformation: recommended preconditioning
22C3 Weyl's equidistribution theorem
22C4 Theorem [Weyl]
22C5 Improved Haselgrove method
22C6 Monte Carlo method

AMII-23 Separation of variables-General consideration-

231 Separation of variables: general idea
232 Practical procedure via separation of variables
233 What do we need to justify and implement our procedure?
234 What problem can we solve by hand?
235 What is a special function?
236 Are the analytic solutions useful? 237 Importance of qualitative understanding
238 Use of symbol manipulation programs
239 Case study of separation of variables: Laplace equation with Dirichlet condition
2310 Remarks to 23.9

AMII-24 General Linear ODE

24A General Theory

24A1 The problem
24A2 Theorem [Unique existence of solution]
24A3 Analyticity of solution
24A4 Theorem [Fundamental system of solutions]
24A5 Fundamental matrix
24A6 Wronskian
24A7 Theorem
24A8 Theorem (derivative of the Wronskian)
24A9 Theorem
24A10 Second order linear ODE
24A11 Fundamental system of solutions
24A12 Theorem [Sparation theorem]
24A13 Making a partner
24B Frobenius' theory
24B1 Analyticity of solutions
24B2 Singular points
24B3 Expansion around regular singular point
24B4 Indicial equation
24B5 Use of symbol manipulation programs
24B6 Theorem
24B7 Theorem [For $\mu_{1}-\mu_{2} \in \mathbb{N}$]
24B8 Practical Frobenius
24B9 Construction of the second solution by differentiation
24B10 Example
24B11 Singularity at infinity
24B12 How to solve inhomogeneous problem
24C Representative examples
24C. 1 Legendre equation
24C. 2 Series expansion method applied to Legendre's equation
24A3 Series expansion method applied to Legendre's equation; around $z=1$
24A4 Gauss' hypergeometric equation
24C. 5 Associate Legendre functions
24C. 6 Confluent hypergeometric equation
Appendix a24 Floquet theory
a24.1 Problem
a24.2 Theorem [Floquet]
a24.3 Theorem
a24.4 Characteristic exponents
AMII-25 Asymptotic expansion
25.1 Irregular singularity ad divergence
25.2 Asymptotic sequence
25.3 Asymptotic series
25.4 Example
25.5 Optimal truncation of asymptotic series
25.6 Uniqueness of asymptotic expansion
25.7 Warning
25.8 Stikes line
25.9 Convergence power series is asymptotic
25.10 Operations with asymptotic series
25.11 How to obtain expansion I: Integration by parts
25.12 How to obtain expansion II: Watson's lemma
25.13 How to obtain expansion III: Laplace's method
25.14 Gamma function and Stirling's formula
25.15 How to obtain expansion IV: Method of steepest descent
25.16 Acceleration or improving of asymptotic series
25.17 Most perturbation series in physics are at best asymptotic
25.18 Borel transform
25.19 Heuristics
25.20 Nevanlinna's theorem

AMII-26 Spherical harmonics

26A Basic theory

26A. 1 Separating variables in spherical coordinates
26A. 2 Further separation of angular variables
26A. 3 Legendre's equation $\quad 26 \mathrm{~A} .4 \mathrm{~m}=0$.
26A. $5 n \neq 0$
26A. 6 Associate Legendre functions
26A. 7 Orthonormalization of associate Legendre functions
26A. 8 Spherical harmonics
26A. 9 Orthonormal relation for spherical harmonics
26A. 10 Angular momentum
26A.11 Spherical harmonic function
26A. 12 Addition theorem
26A. 13 Lemma
26A. 14 Multipole expansion
26A. 15 Lower order multipole expansion coefficients

26B Application to PDE

26B.1 Formal expansion of harmonic function in 3-space

26B. 2 Interior problem
26B. 3 Exterior problem
26B. 4 Uniqueness condition for exterior problem
26B. 5 Annular problem
26B. 6 Cylindrically symmetry case
26B. 7 Examples

AMII-27 Cylinder functions

27A General theory

27A. 1 Bessel's equation
27A. 2 Series solution to Bessel's equation around $z=0$
27A. 3 Definition [Bessel function]
27A. 4 Series expansion
27A. 5 Generating function
27A. 6 Bessel's integral
$27 \mathrm{~A} .7 J_{-n}(z)=(-1)^{n} J_{n}(z)$
27A. 8 Sine of sine \Rightarrow Bessel function
27A. 9 Recurrence relations
27A. 10 Cylinder function
27A. 11 Zeros of Bessel functions
27A. 12 Proposition on $\left|J_{n}\right|$
27A. 13 Addition theorem
27A. 14 Gegenbaum-Neumann formula
27A. 15 Integrals containing Bessel functions
27A. 16 Neumann function of order m
27A. $17 N_{n}(z)$ is singular at $z=0$
27A. 18 Lommel's formula
27A. 19 Bessel function with half odd integer parameters
27A. 20 Hankel functions
27A. 21 Orthonormal basis in terms of Bessel functions
27A. 22 Fourier-Bessel-Dini expansion
27A. 23 Modified Bessel functions
27A. 24 Helmholtz equation
27A. 25 Spherical Bessel functions
27A. 26 Orthonormal basis in terms of spherical Bessel functions
27A. 27 Partial wave expansion of plane wave
27A. 28 ODE solvable in terms of Cylinder functions
27B Applications to solving PDE

AMII-28 Diffusion equation: How irreversibility is captured

28.1 Elementary summary

28.2 Maximum principle
28.3 Well-posedness (in the sense of Hadamard)
28.4 Cauchy problem of diffusion equation with Dirichlet condition is well-posed
28.5 Anti-diffusion: violation of second law
28.6 Preservation of order, positivity
28.7 Spatially inhomogeneous and/or anisotropic diffusion
28.8 Unbounded space
28.9 Infinite propagation speed
28.10 Short-time modification of diffusion equation: the Maxwell-Cattaneo equation

AMII-29 Laplace equation: consequence of spatial moving average

29.1 Elementary summary
29.2 Laplace equation and harmonic functions
29.3 Green's formula
29.4 Spherical mean-value theorem
29.5 Theorem [Converse of mean-value theorem]
29.6 Maximum principle
29.7 Classical physics cannot explain atoms: Earnshaw's theorem
29.8 Strong maximum principle
29.9 Uniqueness and well-posedness
29.10 Smoothness of the solution
29.11 Well-posedness of Poisson's equation
29.12 Comparison theorem
29.13 Liouville's theorem
29.14 More general elliptic equation

AMII-30 Wave equation: finiteness of propagation speed
30.1 Elementary summary
30.2 Characteristic curve
30.3 Domain of dependence, finite propagation speed
30.4 Energy conservation
30.5 Uniqueness revisited
30.6 Well-posedness 30.7 Inhomogeneous wave equation
30.8 Wave equation in 3 -space, Huygens' principle
30.9 Method of spherical mean [Poisson]
30.10 Focussing effect
30.11 What is a mathematical essence of the wave equation?
30.12 Hyperbolicity in Gårding's sense
30.13 Example
30.14 Theorem [Gårding]
30.15 Theorem [Finiteness of the propagation speed]

AMII-31 Numerical solution of PDE

31.1 Discretization

31.2 Two major methods of discretization
31.3 Consistency, stability and convergence
31.4 Discretization of PDE
31.5 Discretization of Poisson's equation
31.6 Solvability of (31.11)
31.7 Consistency and stability \Rightarrow convergence
31.8 Discretizing diffusion equation
31.9 Stability analysis
31.10 Von Neumann's stability criterion
31.11 Consistency and convergence of θ-method
31.12 Courant-Friedrichs-Lewy condition
31.13 Wave equation

AMII-32 Fourier transformation

32A Basics
32A. 1 Fourier transform
32A. 2 Deconvolution
32A. 3 Differentiation becomes multiplication
32A. 4 Theorem [inversion]
32A. 5 Theorem [Inversion formula for piecewise C^{1}-function]
32A. 6 More general convergence conditions
32A. 7 Remark
32A. 8 Sine and cosine transform
32A. 9 Bra-ket notation of Fourier transform or momentum (wave vector) ket
32A. 10 Plancherel's theorem
32A. 11 Theorem [Riemann-Lebesgue lamma]
32B Applications of Fourier transform
32B. 1 Theorem [Uncertainty principle]
32B. 2 Remark

32B. 3 Coherent state
32B. 4 Band-limited function
32B. 5 Theorem [Sapling theorem]
32B. 6 Sampling function
32B. 7 Band-limited periodic function 32B. 8 Aliasing
32B. 9 Time-correlation function
32B. 10 Theorem [Wiener-Khinchin]
32B. 11 Discrete Fourier transformation
32B. 12 Principle of fast Fourier transform

32C Fourier analysis of generalized functions

32C. 1 Delta function
32C. 2 Poisson's sum formula
32C. 3 Applications of Poisson sum formula
32C. 4 Eyler-MacLaurin sum formula
32C. 5 Mulholland's formula for the canonical partition for the rotational motion of a het-
eronuclear diatomic molecules
32C. 6 Fourier transform of generalized functions
32C. 7 Convenient test function space
32C. 8 Fourier transform of unity $=$ delta function
32C. 9 Translation
32C. 10 Fourier transform of $x, d / d x \leftrightarrow+i k$
32C. 11 Fourier transform of x^{n}
32C. 12 Fourier transform of sign function
32C. 13 Plemelj formula
32C. 14 Initial value problem for wave function
32D Radon transformation
32D. 1 Radon's problem
32D. 2 Radon transform
32D. 3 Some properties of Radon transform
32D. 4 Fourier transform of Radon transform
32D. 5 Theorem [Radon inversion formula]
32D. 6 X-ray tomography
32D. $7 d$-space version
32D. 8 Theorem [Inversion formula]
32D. 9 Solving d-wave equation using Radon transform
32D. 10 Waves in odd and even dimensional spaces behave very
Appendix 32a Bessel transform
a32.1 Theorem [Hankel]
a32.2 Bessel transform and its inverse
a32.3 Examples

AMII-33 Laplace transformation

33.1 Motivation
33.2 Definition of Laplace transformation
33.3 Who was Laplace (1749-1827)?
33.4 Fundamental theorem of Laplace transform
33.5 Theorem [Holomorphy]
33.6 Theorem [Limit]
33.7 Some properties of Laplace transform
33.8 Convolution
33.9 Time delay
33.10 Periodic function
33.11 Examples
33.12 Laplace transform of delta function
33.13 Short time limit
33.14 Practical calculation of Laplace inverse transformation
33.15 Heaviside's expansion formula
33.16 Examples
33.17 Fast inverse Laplace transform

Appendix a33 Mellin ransformation
a33,1 Mellin transformation
a33.2 Theorem [Fundamental theorem of Mellin transformation]
a33.3 Application to PDE

AMII-34 Linear Operators

34A Self-adjointness

34A. 1 Linear operator
34A. 2 When can a linear operator be an observable?
34A. 3 Adjoint operator
34A. 4 Self-adjoint operator
34A. 5 Observable should be at least self-adjoint
34B Spectral decomposition
34B. 1 Spectral decomposition in finite dimensional space
34B. 2 Resolution of unity in Hilbert space

34B. 3 Theorem [Spectral decomposition]
34B. 4 Why do we pay attention to spectral decomposition?
34B. 5 Practical conclusion
34B. 6 Justification of separation of variables

34C Spectrum

34C. 1 Introduction to spectrum
34C. 2 Resolvent, resolvent set
34C. 3 Spectrum
34C. 4 Classification of spectrum
34C. 5 Discrete and essential spectrum
34C. 6 Classification of continuous spectrum
34C. 7 Pure point spectrum
34C. 8 Are the above classification relevant to physics?
34C. 9 Compact operator
34C. 10 Integral operator, Fredholm integral equation
34C. 11 Theorem [Hilbert-Schmidt]
34C. 12 Spectral theorem for compact self-adjoint operator [Hilbert-Schmidt]
34C. 13 Variational principle for compact self-adjoint operator
34C. 14 Finding eigenvalue with the aid of variational principle

AMII-35 Spectrum of Sturm-Liouville problem

35.1 Rewriting of the eigenvalue problem as integral equation
35.2 Formal theory [20.28 repeated]
35.3 Theorem [Fundamental theorem of Sturm-Liouville eigenvalue problem
35.4 Justification of separation of variables
35.5 Theorem [Weyl-Stone-Titchmarsh-Kodaira]

AMII-36 Green's function: Laplace equation

36.1 Summary up to this point
36.2 Fundamental solution
36.3 Theorem [Unique existence of Dirichlet problem Green's function]
36.4 Symmetry of Dirichlet Green's function
36.5 Free space Green's function is the largest
36.6 Solution to Dirichlet problem in terms of Green's function (16A. 2 repeated)
36.7 Special feature of homogeneous Neumann condition
36.8 Neumann function
36.9 Method of images $(\rightarrow$ 16A. $7,8,14)$

AMII-37 Spectrum of Laplacian

37.1 Theorem [Fundamental theorem]
37.2 Theorem [Monotonicity]
37.3 Theorem [Continuity]
37.4 Theorem [Courant]
37.5 Vibrating drumhead
37.6 Can one hear the shape of the drum?
37.7 Eigenfunction expansion of Green's function
37.8 Examples
37.9 Neumann function in terms of eigenfunctions

AMII-38 Green's function: Diffusion equation

38.1 Summary up to this point
38.2 The most general diffusion problem

38,3 Green's function
38.4 Existence of Dirichlet Green's function
38.5 Counterpart of Green's formula
38.6 Reciprocity relation
38.7 Solution to general boundary value problem
38.8 Stead source problem, recurrence of random walk
38.9 Eigenfunction expansion of Green's function
38.10 Markov property revisited
38.11 Feynman-Kac formula for the heat kernel
38.12 Feynman-Kac path integral

AMII-39 Green's function: Helmholtz equation

39.1 Helmholtz equation
39.2 Green's function for Helmholtz equation on bounded domain
39.3 Example: Neumann condition on a rectangular region
39.4 Green's function for the whole space
39.5 How to interpret the formal solution (39.11)?
39.6 Radiation condition (Ausstrahlungsbedingung) 39.7 Green's function for 2 and 1-spaces
39.8 Analogue of Green's formula

AMII-40 Green's function: Wave equation

40.1 Fundamental solution
40.2 Advanced Green's function
40.3 Propagator
40.4 Symmetry of propagator
40.5 Eigenfunction expansion of propagator
40.6 Propagator in infinite space
40.7 Propagator in 2- and 1-space
40.8 Afterglow revisited
40.9 Helmholtz formula
40.10 General causal solution

AMII-41Colloquium: What is computation?

41A Recursive functions and Church thesis
41A. 1 What is a computer?
41A. 2 Arithmetic function
41A. 3 Remark
41A. 4 Obviously computable functions
41A. 5 Basic operations on functions
41A. 6 Composition
41A. 7 (Primitive) recursion
41A. 8 Minimalization
41A. 9 Partial recursive function
41A.10 Algorithm and partial recursive functions
41A. 11 Recursive functions
41A. 12 Church's thesis
41A. 13 Remark
41A. 14 The thesis was not well accepted initially
41A. 15 Turing machine was crucial
41B Turing machine
41B. 1 Turing mchine
41B. 2 Turing program
41B. 3 Turing's motivation
41B. 4 How to operate Turing machine
41B. 5 Turing computable function
41B. 6 Turing computability $=$ Church computability
41B. 7 Remark
41B. 8 Universal Turing machine

41B. 9 Universality of universal Turing machine
41B. 10 Absoluteness of Turing machine

41C Decision problem

41C. 1 Decision problem
41C. 2 Remark
41C. 3 Examples
41C. 4 Halting problem of Turing machine
41C. 5 Halting problem is undecidable
41C. 6 Recursive set
41C. 7 Recursively enumerable set
41C. 8 Theorem: There exists a recursively enumerable non recursive (RENR) set
41C. 9 Theorem
41D Computable analysis
41D. 1 Computable rational sequence
41D. 2 Effective convergence
41D. 3 Computable real number
41D. 4 Remark: effectiveness
41D. 5 How to destroy effectiveness
41D. 6 Waiting lemma
41D. 7 Theorem
41D. 8 Computable function
41D. 9 'Ordinary functions' are computable
41D. 10 Computable operations on functions
41D. 11 Theorem [Myhill]
41D. 12 PDE and computability
41E Algorithmic randomness
41E. 1 Regularity in sequence
41E. 2 Another example
41E. 3 Intuitive introduction to algorithmic randomness
41E. 4 A definition of randomness
41E. 5 Random sequence
41E. 6 Noncomputability of randomness
41E. 7 Examples
41E. 8 Randomness and chaos
41F Randomness as a fundamental concept
41F. 1 Why do we discuss randomness further?
41F. 2 Mathematization and 'randomness'
41F. 3 Why axiomatization of randomness?

41F. 4 Van Lambargen axioms
41F. 5 Grave consequence of R

Appendix Rudiments of Analysis

A1 Point set and limit

A1.1 Sequence
A1.2 Convergence, limit
A1.3 Theorem [Cauchy]
A1.4 Symbol ' O ' and ' o '
A1.5 Limit and arithmetic operations commute
A1.6 Lower and upper bound, supremum and infimum
A1.7 Monotone sequences
A1.8 Theorem [Bounded monotone sequences converge]
A1.9 Divergence tp \pm infinity
A1.10 Limsup and liminf
A1.11 Infinite series
A1.12 Absolute convergence
A1.13 Power series
A1.14 Conditional convergence, alternating series
A1.15 Theorem [Nested sequence of intervals shrinking to a point share the point]
A1.16 Denumerability
A1.17 Cantor's theorem [Continuum is not denumerable]
A1.18 n-space, distance, ϵ-neighborhood
A1.19 Inner point, boundary, accumulation point, closure, open kernel
A1.20 Open set, closed set
A1.21 Limit of point sequence
A1.22 Bounded set, diameter
A1.23 Theorem [Shrinking nested sequence of bounded closed sets]
A1.24 Covering
A1.25 Compact set
A1.26 Theorem [Compactness is equivalent to bounded closedness]
A1.27 Theorem [Bolzano and Weierstrass]

A2 Function

A2.1 Function, domain, range, independent and dependent variables
A2.2 Limit of function
A2.3 Cauchy's criterion

A2.4 Graph of a function
A2.5 Continuity
A2.6 Left and right continuity
A2.7 Theorem of middle value
A2.8 Uniform continuity
A2.9 Maximum and minimum
A2.10 Composite function
A2.11 Monotone function
A2.12 Inverse function
A2.13 Even abd odd function

A3 Differentiation

A3.1 Differentiability, derivative
A3.2 Theorem [Differentiability implies continuity]
A3.3 Increment, differential quotient
A3.4 Right or left differentiable
A3.5 Differentiation and arithmetic operations commute
A3.6 Derivative of composite function
A3.7 Derivative of inverse function
A3.8 Theorem [Mean-value theorem]
A3.9 Theorem [Rolle's theorem]
A3.10 Theorem [Generalization of mean-value theorem]
A3.11 Theorem [Condition for monotonicity]
A3.12 Counterexamples
A3.13 Higher order derivatives
A3.14 Leibniz' formula
A3.15 Taylor's formula, remainder
A3.16 Taylor's series
A3.17 Convex and concave function
A3.18 Theorem [Convexity and second derivative]
A3.19 Local maximum, minimum
A3.20 Stationary value
A3.21 Class C^{n}
A3.22 Class C^{ω}
A3.23 Theorem [Existence of mollifier]
A3.24 Theorem [Identity theorem]
A3.25 Complex analysis

A4 Integration

A4.1 Definite integral (Riemann integral)
A4.2 Riemann-integrability
A4.3 Basic properties of definite integral
A4.4 Theorem [Mean value theorem]
A4.5 Fundamental theorem of calculus, primitive function, indefinite integral
A4.6 Integration by parts
A4.7 Improper integral
A4.8 Change of integration variables

A5 Infinite series

A5.1 Changing the order of summation in infinite series
A5.2 Product of two series
A5.3 Theorem [Comparison theorem I. comparison with improper integral]
A5.4 Theorem [Comparison theorem II. comparison of series]
A5.5 Cauchy's convergence criterion
A5.6 Gauss' convergence criterion
A5.7 Abel's formula
A5.8 Function sequence, convergence
A5.9 Uniform convergence
A5.10 Theorem [Cauchy's criterion for uniform convergence]
A5.11 Function series, convergence, uniform convergence, maximall convergence
A5.12 Theorem [Uniform convergence preserves continuity]
A5.13 Theorem [Dini's theorem]
A5.14 Theorem [Comparison theorem]
A5.15 Theorem [Exchange of limit and integration]
A5.16 Theorem [Exchange of limit and differentiation]
A5.17 Theorem [Arzela's theorem]
A5.18 Majorant
A5.19 Convergence radius of power series
A5.20 Theorem [Power series is termwise differentiable]
A5.21 Theorem [Power series defines a real analytic function]
A5.22 Theorem [Continuity at $x=r$ or $-r$]
A5.23 Infinite product
A5.24 Convergence of infinite product
A5.25 Theorem Convergence condition for infinite product]
A5.26 Conditional convergence of infinite product

A6 Function of two variables

A6.1 Rudiments of topology
A6.2 Function, domain, range
A6.3 Limit
A6.4 Continuity
A6.5 Theorem [Maximum value theorem]
A6.6 Partial differentiation
A6.7 Differentiability, total differential
A6.8 Theorem [Partial differentiability and differentiability]
A6.9 Theorem [Order of partial differentiation]
A6.10 Theorem [Young's theorem]
A6.11 [Schwarz' theorem]
A6.12 $f_{x y}=f_{y x}$ is not always correct
A6.13 C^{n}-class function
A6.14 Composite function
A6.15 Taylor's formula
A6.16 Limit of double sequence
A6.17 Warning
A6.18 Theorem [Exchange of limits]
A6.19 Double series, convergence
A6.20 Power series of two variables
A6.21 Exchange of order of limits. uniform convergence
A6.22 Counterexample
A6.23 Theorem [Differentiation and integration within integration]
A6.24 Theorem [Differentiation and integration within improper integration]

A7 Fourier series and Fourier transform

A7.1 Fourier series
A7.2 Theorem
A7.3 Complex Fourier series
A7.4 Theorem [Bessel's inequality]
A7.5 Theorem [Parseval's equality]
A7.6 L^{2}-convergence
A7.7 Theorem
A7.8 Theorem [duBois-Reymond]
A7.9 Theorem [Fejér]
A7.10 Piecewise C^{1}-function
A7.11 Theorem

A7.12 Theorem
A7.13 Theorem [Locality of convergence]
A7.14 Fourier transform
A7.15 Rapidly decreasing function
A7.16 inverse Fourier transform
A7.17 Theorem
A7.18 Parseval's equality
A7.19 Convolution
A7.20 Properties of convolution
A7.21 Theorem [Inverse formula for piecewise C^{2}-function]
A7.22 Multidimensional case

A8 Ordinary differential equation

A8.1 Ordinary differential equation
A8.2 General solution, singular solution
A8.3 Normal form
A8.4 Initial value problem of first order ODE
A8.5 Theorem [Cauchy-Peano]
A8.6 Lipschitz condition
A8.7 Theorem [Cauchy-Lipschitz uniqueness theorem]
A8.8 Theorem
A8.9 Method of quadrature
A8.10 Separation of variables
A8.11 Perfect differential equation, integrating factor
A8.12 Linear first order equation, variation of parameter
A8.13 Bernoulli equation
A8.14 Linear ODE with constant coefficients, characteristic equation
A8.15 Theorem [General solution to (A8.2)]
A8.16 Inhomogeneous equation, Lagrange's method of variation of constants

A9 Vector analysis

A9.1 Gradient
A9.2 Coordinate expression of grad f
A9.3 Remark
A9.4 Nabla or del
A9.5 Divergence
A9.6 Cartesian expression of div
A9.7 Operator div

A9.8 Curl
A9.9 Cartesian expression of curl
A9.10 Potential field. potential, solenoidal field, irrotational field
A9.11 Some formulas
A9.12 Theorem [Gauss-Stokes-Green's theorem]
A9.13 Laplacian
A9.14 Laplacian for vector field

