
1 Differentiation Revisited

Every student knows what differentiation is, or does she?
The essence of differentiation is the study of linear response.
Many elementary properties of derivatives can be under-
stood naturally from this point of view. Furthermore, this
interpretation frees us from the elementary definition of
derivatives, and paves the way to variational calculus and
functional differentiation. However, these topics are post-
poned to 5 and 6. In this section, we review differentiation.

Key words: differentiation, chain rule, derivative as sus-
ceptibility, strong derivative, differentiation of complex func-
tion, partial differentiation, d’Alembert’s solution to wave
equation, moving coordinates.

Summary:
(1) To compute (strong) derivatives is to study linear responses (1.1,
1.4, 1.8).
(2) The reader must be able to change freely the independent variables
in PDE (1.11, 1.15).
(3) 1D wave equation in free space can be solved via change of variables.
The result is the famous d’Alembert’s solution (1.12).

1.A Elementary Review

1.1 What is differentiation? Let f be a function defined on an
(open) interval I, and a ∈ I. If the following limit, denoted by f ′(a),
exists, we say f is differentiable at a:

f ′(a) = lim
x→a

f(x)− f(a)

x− a
. (1.1)

f ′(a) is called the differential coefficient of f at a. If f is differentiable
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at x = a, then we have1

δf(a) ≡ f(a+ δa)− f(a) � f ′(a)δa. (1.2)

That is, we study the response of f against a small change of its vari-
able. If a linear approximation of the response is reasonable for suffi-
ciently small δa, we say f is differentiable. In other words, the essence
of differentiation is the study of the linear response of f to a small per-
turbation of independent variables. This point of view will be exploited
later (→1.4, 2.9), but we must note two immediate consequences of
linearity, 1.2 and 1.3.

Exercise. Perhaps, we should check our working knowledge of elementary calculus
first. if you are confident about your capability, you may use, e.g., Mathematica to
do the menial work.
(A) Discuss whether the following statements are true.2 If correct, prove the state-
ment.
(1) Pm is a (multi-variable) polynomial in the following formula:

dm

dxm

(
1
f

)
=

1
fm+1

Pm(f, f ′, · · · , f (m)), (1.3)

where m is a positive integer.
(2) Let f be a differentiable function. If f ′(0) = 1, then f is monotone in a
sufficiently small neighborhood of 0.
(3) Let f be a C∞ function with limx→∞ f(x) = 0. Then, limx→∞ f ′(x) = 0.
(B) Elementary differentiation questions:
(1) Let x = et cos t and y = et sin t. Compute d2y/dx2 as a function of t.
(2) Compute the limits

lim
x→0

(
1
x
− x

sin2 x

)
, (1.4)

lim
x→0

(1 + x)1/x − e
x

. (1.5)

(3) Compute dm(e−1/x2
)/dxm at x = 0 for all positive integers m.

(C) How many times are the following functions differentiable?
(1)

f(x) = x9/4 for x ≥ 0, 0 for x < 0 (1.6)

(2)
f(x) = x3 for x ≥ 0, 0 for x < 0 (1.7)

(3)
f(x) = |x|3. (1.8)

1 � is used informally, but in these notes accurate meaning can always be at-
tached. In the present case, � means equality ignoring o[δa].

2 B. R. Gelbaum and J. M. Olmsted, Counterexamples in Analysis (Holden-Day,
1964) is a useful book when you wish to think a delicate thing.
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(4)
y = e−1/x(1−x) for x ∈ [0, 1], 0 otherwise (1.9)

(5)

f(x) = xn sin
1
x

(with f(0) = 0), (1.10)

where n is a positive integer.
(D) Orthogonal polynomials
They will be discussed in a unified way in XX, but here, let us check some formulas
related to them (generalized Rodrigues’ formulas →??)
(1) Demonstrate that P (α,β)

n (x) defined as follows is an n-th degree polynomial
(called Jacobi’s polynomial→??) (α, β > −1):

P (α,β)
n (x) = (1− x)−α(1 + x)−β (−1)

n

2nn!

(
d

dx

)n
{(1− x)n+α(1 + x)n+β}, (1.11)

where α, β ∈ R.
In particular, Tn(x) ≡ ((2n)!!/(2n−1)!!)P (−1/2,−1/2)

n (x) are called the Cheby-
chev polynomials (→??), and P (0,0)

n (x) ≡ Pn(x) are called the Legendre polynomials
(→??).
(2)

Hn(x) = (−1)nex2
(
d

dx

)n
e−x

2
(1.12)

is an n-th degree polynomial called the Hermite polynomial (→??).
(3) Tn(x) = cos(n arccos x) (Chebychev’s polynomial) satisfies (→??)

(1− x2)d
2u

dx2
− xdu
dx

+ n2u = 0. (1.13)

(4) Laguerr’s polynomial

L(α)
n (x) =

n∑
r=0

(−1)r
(
n+ α
n− r

)
xr

r!
(1.14)

satisfies

x
d2u

dx2
+ (α+ 1− x)du

dx
+ nu = 0. (1.15)

(E) The following is a collection of standard special functions. They will not be
stressed in the book, but the reader should have enough analytical muscle to confirm
the following assertions.

Γ is the Gamma function (→XX), but we only need

Γ(x+ 1) = xΓ(x) (1.16)

for positive real x (→??).
(1)

Jm(x) =
(x
2

)m ∞∑
k=0

(−1)k
k!Γ(m+ k + 1)

(x
2

)2k
(1.17)
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satisfies
d2u

dx2
+

1
x

du

dx
+
(
1− m

2

x2

)
u = 0. (1.18)

Jm is called the Bessel function of order m (→??).3

(2)

Iν(x) =
(x
2

)ν ∞∑
n=0

(x/2)2n

n!Γ(ν + n+ 1)
(1.19)

satisfies
d2u

dx2
+

1
x

du

dx
−
(
1 +
ν2

x2

)
u = 0. (1.20)

Iν is called the modified Bessel function (of the first kind) (→??).
(3)

jn(x) ≡
√
π

2x
Jn+1/2(x), (1.21)

which is called the spherical Bessel function (→??), satisfies

d2u

dx2
+

2
x

du

dx
+
(
1− n(n+ 1)

x2

)
u = 0. (1.22)

(4) Whitaker’s function

Mκ,µ(x) = xµ+1/2e−x/2
∞∑
n=0

Γ(2µ+ 1)Γ(µ− κ+ n+ 1/2)xn

Γ(2µ+ n+ 1)Γ(µ− κ+ 1/2)n!
(1.23)

satisfies
d2u

dx2
+
(
−1
4
+
κ

x
− µ

2 − (1/4)
x2

)
u = 0. (1.24)

(5) Kummer’s confluent hypergeometric function

F (α, γ, x) =
∞∑
n=0

(α)nxn

(γ)nn!
(1.25)

satisfies

x
d2u

dx2
+ (γ − x)du

dx
− αu = 0. (1.26)

Here (α)n = α(α+ 1) · · · (α+ n− 1), etc. with (α)0 = 1.
(6) (cf. ??)

u(x) = Jν(ex) (1.27)

satisfies
d2u

dx2
+ (e2x − ν2)u = 0. (1.28)

[Hint: see Exercise (1) above or ??.]

3 Here, m can be any integer; if m < 0, terms with m + k + 1 ≤ 0 are ignored.
See ??.
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Discussion.
(A) A convex function is a function such that the set {(x, y) : y ≥ f(x)} is a
convex set.4 Any convex function can be written as

f(x) = sup
(a,b)∈A

{ax+ b} , (1.29)

where A is a subset of R2. A convex function must be a continuous function and
have right and left derivatives. The concept of convex function is very important
in physics, esp., in statistical physics. In 1873 Gibbs characterized the family of
equilibrium states of a system which is compatible with thermodynamics as follows
(in modern words): The totality of equilibrium states of a simple fluid is a once
differentiable manifold, which is the graph of a convex function U (internal energy)
of S (entropy) and V (volume).5

(1) If f is convex on [a, b] (or ([b, a]), then

f(pa+ (1− p)b) ≤ pf(a) + (1− p)f(b) (1.30)

for any p ∈ [0, 1]. This property can be used to define the convexity. This is a
simple case of Jensen’s inequality: f is convex if and only if

f(
∑
i

λixi) ≤
∑
i

λif(xi), (1.31)

where
∑

i λi = 1 and λi ≥ 0. This can be proved with the aid of (1.29).
(2) Show that ex, − log x, xq (q ≥ 1) are convex.
(3) Using the fact that − log x is convex and use Jensen’s inequality, show

∏
i

aλi

i ≤
∑
i

λiai, (1.32)

where λi are as in (1).
(4) A periodic convex function is a constant.
(5) Let f and g be convex, and g be monotone increasing. Then, g ◦ f is convex.6

[Note that f and g need not be differentiable.]
(6) For x > 0 if xf(x) is convex, so is f(1/x). This is obvious, if f ′′(x) exists. Is
this true even if f is less smooth? [Hint. Use (5)]
(B) Pathological continuous functions.
(1)Weierstrass function. The first example of nowhere differentiable continuous

4 A set A is a convex set if for any x, y ∈ A the segment connecting x and y is
inside A.

5 R. T. Rockafeller, Convex Analysis (Princeton, UP, 1970) is the standard refer-
ence of the topic. Its use in statistical physics is explained in the introduction by A.
S. Wightman in R. B. Israel, Convexity in the Theory of Lattice Gases (Princeton
UP, 1979). Y. Takahashi, Real functions and Fourier analysis I (Iwanami) has a
handy explanation of convex functions.

6 (g ◦ f)(x) ≡ g(f(x)), i.e., the composition is denoted by ◦.
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function was given by Weierstrass (→10.5). An example is7

f(t) =
∞∑
r=0

1
r!
sin((r!)2t). (1.33)

The convergence is uniform, so that the limit must be a continuous function. To
prove the nondifferentiability at any point, a detailed estimate is needed. See Körner
Section 11. The lesson we should learn from such functions is that if we differen-
tiate a function repeatedly many times, then we could encounter bizarre functions,
because differentiation magnifies details (and generally reduces differentiability).
(2) Takagi function. Let D(x) be the distance between x and the closest integer
to it (That is, D(x) = dist(x,Z)).
(i) Illustrate the graph of D(x).
(ii) Define

T (x) =
∞∑
n=0

1
2n
D(2nx). (1.34)

This is called the Takagi function, which is continuous, but nowhere differentiable.
The function has self-similarity.8

Is any curve (except lines) which is self-similar nowhere differentiable?
(3) von Koch curve. Many beautiful examples of bizarre curves can be found
in B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, 1983). A simple
example of nowhere differentiable (and consequently without length) curves is the
von Koch curve constructed by a self-similar substitution as illustrated below.

1.2 Chain rule. Suppose the input to a system g (henceforth, a
system and its response function are denoted by the same symbol) is
x and we feed the output of g into another system f . Then the linear
response of f to a small change in x must be the linear response of f

7 The original Weierstrass’ functions are

f(t) =
∞∑
r

1
ar

sin brt

with b being an integer and b/a and a sufficiently large.
8 (To the instructor) Its Hausdorff dimension is 1.
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to the ‘linear response of g to the change of x.’ This is the essence of
the chain rule. Let F = f ◦ g (i.e., F (x) = f(g(x))). Then,

d(f ◦ g)(x)/dx = f ′(g(x))g′(x). (1.35)

Exercise.
(1) Let F be a differentiable function, and define a sequence {xn} through xn+1 =
F (xn). Compute dxn/dx1. In particular, if F (x) = 2x for x ∈ [0, 1/2] and 2(1− x)
for x ∈ (1/2, 1], then |dxn/dx1| = 2n−1. This implies that xn for large n (a long time
asymptotic result) is extremely sensitive to a small change in the initial condition
x1. This is an important feature of deterministic chaos. Indeed, for this F , {xn} is
a typical chaotic sequence.
(2) Demonstrate Leibniz’ rule with the aid of the binomial theorem.

1.3 Linear responses can be superposed. If there are several
parts to be changed by perturbation, then the overall perturbation ef-
fect is the superposition (→3.2) of all the responses of each part calcu-
lated as if other parts are intact. The simplest example is d(fg)/dx =
f ′g+fg′: the change of fg is the sum of the change of each part keeping
the rest constant. Consider the following example:

d

dt

∫ g(t)

f(t)
h(x, t)dx, (1.36)

where f , g and h are all well behaved. There are three places affected
by the modification of the parameter t. Hence, the result should be the
superposition of all three independent changes:

h(g(t), t)g′(t)− h(f(t), t)f ′(t) +
∫ g(t)

f(t)

∂h(x, t)

∂t
dx. (1.37)

Exercise.
(A) Compute

d

dt

∫ log t

sin t

cosh tx dx. (1.38)

(B) Let f be a continuous function.
(1) Compute

d

dx

∫ x2/2

−x2/2

f(t)dt (1.39)

(2) Find

lim
t→0

1
2t

∫ x+t

x−t
f(s)ds. (1.40)
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1.4 Generalization of differentiation, strong derivative. If we
have a device to measure the size of the perturbation δa and the size
of its effect δf (i.e., if we can reasonably say they are small (for ex-
ample, if these quantities are vectors, we know how to evaluate their
magnitudes9 ), then even if f is not an ordinary function and if a is not
a number, we may be able to define the linear response. The relation
between δf and δa should be linear. That is, if the response to δ1a of
f is denoted by δ1f and that for δ2a δ2f , then for any numbers α and
β, the response of f to αδ1a + βδ2a is given by αδ1f + βδ2f (→3.2).
If a relation between δa and δf satisfies this relation, we introduce a
symbol Df (this is a linear operator →3.2 whose domain is the set of
possible perturbations) and write

δf = Df [a]δa. (1.41)

Here the dependence of Df on a is denoted by [a]. If such Df exists, we
say f is strongly differentiable, and Df [a] is called the strong derivative
of f (at a). Notice that the linear operator Df [a] is independent of
the choice of the perturbation δa. This independence characterizes the
strong differentiability.

We write Df [a] = f ′(a) when f is an ordinary real scalar function
on a real number set R.

1.5 Differentiation of function on space. Consider a smooth func-
tion f : R3 → R. Changing r ∈ R3 slightly, we can study the linear
response of f(r), which is a scalar δf and must be a linear function of
δr. The derivative Df must be a vector such that (cf. 1.6)

δf � Df · δr. (1.42)

The vector Df is called the gradient of f at r (→3.2).
If f is a function of x and y, we can write

δf = (fx, fy)(δx, δy)
T . (1.43)

Here T denotes the transposition of the vector. Thus, we may write

Df = (fx, fy)
T . (1.44)

9 We need a norm (→?? footnote, ??)
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1.6 Warning. The existence of Df is much stronger than the condi-
tion for the existence of each fx and fy (→1.10).

1.7 Differentiation of vector valued function. Let f = (f1, f2, f3)
T .10

Then, Df must be a 3× 3 matrix whose each row is grad fi (i = x, y,
or z):

Df =
df

dx
=




∂fx

∂x
∂fx

∂y
∂fx

∂z
∂fy

∂x
∂fy

∂y
∂fy

∂z
∂fz

∂x
∂fz

∂y
∂fz

∂z


 (1.45)

Componentwisely, we can write

(Df)ij =
∂fi

∂xj
≡ fi,j . (1.46)

This is, of course, consistent with the formal expression

df =
df

dx
dx. (1.47)

As we will see, the trace of Df is called div f (→3.5).

Discussion: Hessian. Let f(x1, · · ·xn) be a twice differentiable function. The
matrix

Hess(f) =Matr.
(
∂2f

∂xi∂xj

)
(1.48)

is called the Hessian of f at (x1, · · · , xn). If the point is a critical point (= the point
where the derivative vanishes), then the Hessian determines its nature.

Exercise.
(A) Compute Dv for the following vector fields on R3:
(1) v = (ey − x cos(xz), 0, z cos(xz)).
(2) v = (y2 sin z, 2xy sin z, xy2 cos z).
(B) If we superpose the two Coulomb electric fields due to point charges of +q and
−q at the origin and at (d, 0, 0), respectively, we can get the electric field created
by an appropriate dipole moment. Find the matrix A such that the electric field

10 Whenever the components are written, we interpret the vectors to be column
vectors.
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due to the dipole moment p located at the origin is given by Ap. (Note that
p = q(d, 0, 0)T .]

1.8 Differentiation of complex functions. A map from C to itself
is usually called a complex function. If the following limit exists11

lim
h→0

f (z + h)− f(z)

h
, (1.49)

we say f is differentiable at z. The limit is written as f ′(z) or df/dz and
is called the derivative of f at z. Notice that this is a strong derivative
(→1.4). The condition that the limit does not depend on the direction
along which the point z+h reaches z is exactly the linearity requirement
of the response.

Exercise.
(1) Show that f(z) = z is not strongly differentiable. In complex analysis, we simply
say f is not differentiable.
(2) znzm is strongly differentiable only when m = 0.

1.B Partial Differentiation Revisited

1.9 Partial differentiation. We have already used ∂/∂t, etc., in 1.
For simplicity, let f(x, y) be a real-valued function defined in a region
D ⊂ R2, and (a, b) ∈ D. If f (x, b) is differentiable at a with respect
to x, we say that f(x, y) is partially differentiable with respect to x at
(a, b), and the derivative is denoted by fx(a, b). More generally, if f is
partial differentiable in D with respect to x, we may define fx(x, y):

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
=

∂f

∂x
= ∂xf.

11 This means that the limit does not depend on how the origin is approached on
the complex plane.
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If we write z = f(x, y), fx(x, y) is written as ∂z/∂x. fx(x, y) is called
the partial derivative of f with respect to x. Usually, we do not explic-
itly write the variables kept constant (in this case y). We can analo-
gously define ∂f(x, y)/∂y.

Discussion [Hadamard’s notation]. Hadamard introduced a convenient set of
notations to facilitate analysis of multivariable functions of x = (x1, · · · , xn). Let
α = (α1, α2, · · · , αn). We write

|α| ≡
∑
i

αi. (1.50)

For N = (N1, · · · , Nn),

xN ≡
∏
i

xNi

i , (1.51)

N ! ≡
∏
i

Ni!. (1.52)

Then, the partial differential operator is written as follows:

Dαf(x) =
∏
i

∂αi

∂xαi

i

f(x) =
∂αf(x)
∂xα

. (1.53)

(1) The multinomial theorem reads

|x|n =
∑
N

n!
N !
xN , (1.54)

where the summation is over all N such that |N | = n (The components of N must
be non-negative).
(2) Taylor expansion reads

f(x+ y) =
∑
N

xN

N !
f (N)(y). (1.55)

Of course, f (N) ≡ DNf . For example,

e|x| =
∑
N

xN

N !
. (1.56)

1.10 Warning. Even if fx and fy exist at a point, f need not be
continuous at the point.

Exercise.
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(1) Make or sketch such an example.
(2) If fxy is not continuous, then fxy = fyx is not guaranteed. Compute fxy and
fyx at the origin for

f(x, y) =
xy(x2 − y2)
x2 + y2

for (x, y) �= (0, 0) (1.57)

with f(0, 0) = 0. If you wish, use Mathematica for this problem and report what
you find.

1.11 Change of variables. Suppose f is a well behaved function of
x and t satisfying

∂2ψ

∂t2
− c2∂

2ψ

∂x2
= 0, (1.58)

where c is a positive constant. This is a 1D wave equation (→1.4,
2.27). In this formula, ∂/∂x is the partial differentiation with t being
kept constant, which is not explicitly written. We wish to change the
variables from (x, t) to (X, Y ) such that X = x + ct and Y = x − ct.
Now, Y is kept constant, when we write ∂/∂X . With the aid of the
chain rule

∂

∂x
=

∂X

∂x

∂

∂X
+

∂Y

∂x

∂

∂Y
=

∂

∂X
+

∂

∂Y
, (1.59)

and
∂

∂t
=

∂X

∂t

∂

∂X
+

∂Y

∂t

∂

∂Y
= c

∂

∂X
− c

∂

∂Y
. (1.60)

Or
∂

∂X
=
1

2

{
∂

∂t
+ c

∂

∂x

}
,

∂

∂Y
= −1

2

{
∂

∂t
− c

∂

∂x

}
. (1.61)

That is, we can rewrite the wave equation in the following form:

∂2ψ

∂X∂Y
= 0. (1.62)

This implies that ∂ψ/∂Y is a function of Y alone:12

∂ψ

∂Y
= φ(Y ). (1.63)

12 We assume well-behavedness of functions as much as we need to avoid technical
complications.
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Hence, ψ must be a sum of the function of Y only and X only. In other
words, the most general solution of (1.58) is given by

ψ(x, t) = F (x+ ct) +G(x− ct), (1.64)

where F and G are differentiable functions. Notice that F (x + ct)
denotes a wave propagating in the −x-direction with speed c without
changing its shape. We have found a general solution to the wave
equation:

1.12 D’Alembert’s solution for 1-space wave equation. Con-
sider (1.58) on the whole 1-space R and for all time t ∈ (0,+∞) with
the initial condition u(x, 0) = f(x), and ∂tu(x, 0) = g(x), where f is
C2 and g is C1.13 Then

u(t, x) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct
g(s)ds. (1.65)

This is called d’Alembert’s formula and is a C2-function. This is actu-
ally the unique solution of the problem.
[Demo] From (1.64) the functions F and G in the general solution are determined
as follows:

F (x) +G(x) = f(x), (1.66)
cF ′(x)− cG′(x) = g(x). (1.67)

From (1.67) we get

F (x)−G(x) = 1
c

∫ x

x0

g(ζ)dζ + const, (1.68)

where x0 is an arbitrary base point. From (1.67) and (1.68), we can solve F and G
as

F (x) =
1
2

[
f(x) +

1
c

∫ x

x0

g(ζ)dζ
]
, (1.69)

G(x) =
1
2

[
f(x)− 1

c

∫ x

x0

g(ζ)dζ
]
. (1.70)

Here the integration constant in (1.68) is absorbed into the choice of x0. This gives
the desired formula.

Discussion.

13 Cm denotes m-times continuously differentiable functions.
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(A) Formally apply the method to derive d’Alembert’s formula to the initial value
problem u(x, 0) = f(x) and ∂yu(x, 0) = g(x) of the Laplace equation to derive

u(x, y) =
1
2
[f(x+ iy) + f(x− iy)]− i

2

∫ x+iy

x−iy
g(s)ds (1.71)

The formula tells us that the fate of the solution is determined by the behavior of the
functions on the complex plane. For example, if f(x) = 1/(1+x2), then singularities
appear in the solution which cannot be controlled by the initial condition (not well
posed →??).

(B) Solve the forced 1D wave equation on R(
∂2

∂t2
− ∂2

∂x2

)
u = Q(x, t) (1.72)

with the initial condition u = f(x) and ∂tu = 0 (Use x± t).

Exercise.
(A) For a 1D wave equation, if the initial condition is nonzero only on a compact
subset of R, then so is the solution for any t > 0 (→??).
(B) All the spherically symmetric solutions to the 3-wave equation

∂2u

∂t2
− c2∆u = 0 (1.73)

in the whole space-time have the following form (see 3.31 for ∆, esp., (3.83); the
solution must be non-singular at the origin.):

u(x, t) =
F (|x| − ct) + F (|x|+ ct)

|x| . (1.74)

(C)
(1) Find the solution to the 1-space wave equation (c = 1) on R with the following
initial data:

ut=0 = cosh−2 x, ∂tut=0 = cosh−2 x tanhx. (1.75)

(2) Find the solution to the 1-space wave equation (c = 1) on R with the initial
condition

ut=0 = 0, ∂tu|t=0 = A sechx. (1.76)

Write A in terms of the total energy (→2.28 or ??).
(3) Illustrate the solution of the wave equation for the following initial displacement
with zero initial velocity.
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(D) Obtain the solution under the Cauchy condition given on the line x = at as
u(x, x/a) = f(x) and ∂tu(x, x/a) = g(x). What happens if a = ±c?
(E) Find the general solution to
(1)

∂2u

∂t2
− ∂

2u

∂x2
= sinx cos t. (1.77)

(2)
∂2u

∂t2
− ∂

2u

∂x2
= sin(x− t). (1.78)

these problems can also be solved by adding a particular solution for the in homo-
geneous equation to the general solution to the homogeneous equation.

1.13 Who was d’Alembert (1717-1783) ?.14 He was born as an
illegitimate son of a salon hostess and a cavalry officer, abandoned on
the steps of the Saint Jean-Le-Rond in Paris by his mother, but was
quickly located by his father, who found him a home with a humble
glazier, named Rousseau. His father, though never revealed his iden-
tity, provided an annual annuity of 1200 livres and also helped him to
enroll a prestigious school, Collége de Quatre-Nations, where he devel-
oped an aversion for religions. He started his mathematical study in
ca 1738. He learned mathematics largely by himself, later writing that
mathematics was the only occupation really interested him.

In 1739, he started submitting papers to Paris Academy of Science,
and was elected a member in 1741. In 1743, he published his most fa-
mous scientific work, Traité de Dynamique, in which he formulated
his principle. From 1744 for three years he developed partial differ-
ential equations as a branch of calculus, inventing the wave equation
(→1.4, XX). His study of fluid dynamics is also a breakthrough (e.g.,
d’Alembert’s paradox). However, d’Alembert’s quickly written papers
were poorly understood. When Euler (→2.4) refined these ideas and
wrote masterful expositions that did not give d’Alembert ample credit,
he was furious.

After 1750, his interest turned increasingly beyond mathematics,
and served as the science editor of Encyclopédie for seven years, but he
resigned in 1758, due to his article on Genevan pastors who “no longer
believe in the divinity of Jesus Christ, · · ·.” He was accepted to the
French Academy in 1754. He worked zealously to enhance its dignity

14 Mainly based on p479- of R. Calinger, Classics of Mathematics (Prentice-Hall,
1995). Read the original for his much more colorful private life, etc.
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and was made perpetual secretary in 1772. As his scientific and literary
fame spread, Friedrich the Great wanted him to be the president of the
Berlin Academy in 1764. d’Alembert recommended Euler for the posi-
tion. This healed a rift that had developed for more than a decade. He
subsequently declined the offer of Catherine the Great as well, refusing
to leave the cultural capitol, Paris.

D’Alembert, though himself discouraged about the future of math-
ematics, helped encourage Lagrange (→2.7) and Laplace (→13.3) to
launch their careers.

He stressed the importance of continuity, which led him to the con-
siderations of limits. Almost alone in his time, he understood deriva-
tives as ratios of limits of quotients of increments. He clearly recognized
that all the complex numbers can be written as the sum of real and
imaginary parts.

1.14 Wave equation with boundary condition. Consider the
initial value problem for 1-space wave equation on [0, L]

(
∂2

∂t2
− c2 ∂2

∂x2

)
u = 0, x ∈ (0, L), t ∈ (0,∞). (1.79)

The initial condition is

u = f(x),
∂u

∂t
= g(x), for t = 0, x ∈ [0, L], (1.80)

where f is a twice and g is a once differentiable function, and the
boundary condition is u = 0 at x = 0 and x = L for all t > 0. In this
case the boundary condition implies from (1.64) F (−ct) + G(ct) = 0
and F (L− ct)+G(L+ ct) = 0 for all t > 0. Thus F (x) = −G(−x) and
F (x+ L) = −G(−x+ L).15 Following ??, we get

u(t, x) =
1

2

[
f(x+ ct)− f(−x+ ct) +

1

c

∫ x+ct

−x+ct
g(ζ)dζ

]
. (1.81)

We notice that F (x) = F (x + 2L). That is, F must be a periodic
function of period 2L. This is the source of Daniel Bernoulli’s idea.

See the following example.

15 F (x) = −G(−x+ 2L) = F (x+ 2L).
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1.15 Moving coordinates. Consider the following equation

∂ψ

∂t
+ c

∂ψ

∂x
= D

∂2ψ

∂x2
, (1.82)

where c and D are positive constants. If c = 0, the equation is 2D
diffusion equation, which should describe the relaxation of ψ back to
‘equilibrium.’ Let us rewrite this equation with the aid of the moving
coordinate X = x − ct. To do so, the easiest way is to rewrite the
equation in terms of t and X as the new independent variables. It is
advantageous to introduce new time T = t to minimize confusion. We
get

∂ψ

∂T
= D

∂2ψ

∂X2
. (1.83)

Thus, we understand the meaning of (1.82): it is a diffusion process
advected by the flow of constant speed c to the positive x-direction.

Exercise.
(A) Rewrite the following equation with the aid of the moving coordinateX = x−vt,
and find the general solution

∂f

∂t
+ v
∂f

∂x
= F (x− vt), (1.84)

where F is a well-behaved function.
(B) Consider the following (original) Fisher equation:

∂ψ

∂t
= D

∂2ψ

∂x2
+ ψ(1− ψ). (1.85)
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(1) Rewrite the equation as seen from the moving coordinate with velocity v.
(2) Find the equation for a steady moving front propagating with speed v.
(3) How can you show that there is such a wave front for sufficiently large v?. [Hint:
interpret the equation obtained in (2) as an equation of motion of a particle moving
in a potential with a damping term.]
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2 Calculus of Variation

Variational calculus is the study of linear response of a func-
tional (a map which maps a function to another object, say,
a number). We discuss the classical Euler-Lagrange theory,
and then reconsider the theory from the functional differen-
tiation point of view. A necessary and sufficient condition
for a functional to have a minimum and direct methods to
variational calculus are briefly discussed.

Keywoods: functional, Euler-Lagrange equation, Lagrange
multiplier, variable end point case, functional derivative,
delta function, second variation, Legendre’s condition, Noether’s
theorem, Vainberg’s theorem, direct method.

Summary
(1) Calculus of variation is the calculus on a function space (2.1, 2.9).
(2) Euler-Lagrange equation is a necessary condition for extremity
(2.2). A sufficient condition for extremity is more involved than the
ordinary calculus case (2.16).
(3) In terms of functional derivative (2.9-2.11), the parallelism be-
tween the ordinary calculus and variational calculus becomes explicit
(2.12-2.15).
(4) Variational principle is practically useful (2.21, 2.22), so remember
that there is a way to costruct a variational functional (if any) for a
given equation (2.19).

2.1 Variational calculus The study of the linear response (→1.3,
1.4) of a functional (a map which maps a function to another function
or to a number is called a functional) is called variational calculus. The
essence of calculus of variation is the differential calculus of functionals.
This point will be made more explicit later through the introduction of
functional derivatives (→2.9-2.11). A typical problem of variational
calculus is to extremize a given functional.

The best introductory book of calculus of variation is: I. M. Gel’fand
and S. V. Fomin, Calculus of Variation (Englewood Cliffs, 1963).

An early example of variational problems was the following which
tries to solve the Dirichlet problem for the Laplace equation. Find a
C1 function u on D such that

u = f (2.1)
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on ∂D, whereD is a bounded region, and f is continuous, and minimize

I[u] =
∫
D
|∇u|2dx. (2.2)

This is the variational formulation of the Lapalce equation boundary
value problem.

Initially, it was believed that any extremum problem had a so-
lution. Riemann relied on a variational formulation of the Laplace
equation to demonstrate the fundamental theorem of conformal trans-
formation. However, soon later Weierstrass (→10.5) pointed out that
it is not always the case. Weierstrass’ counter example is the follow-
ing: Find the C1 function ϕ : [0, 1]→ R, satisfying the end conditions
ϕ(0) = a and ϕ(1) = b(�= a), that gives the smallest value of

J [ϕ] =
∫ 1

0
(xϕ′(x))2dx. (2.3)

The infimum of J is obviously zero. However, there is no C1-function
which can give this value.

2.2 Theorem [Euler]. Let S[f ] be a functional on the set of C1-
functions on [a, b] such that f(a) = A, f(b) = B (fixed) defined as

S[f ] =
∫ b

a
dxL(f, f ′, x), (2.4)

where L is a C2-function of its variables. A necessary condition for g to
give an extremal value of S is that g satisfies Euler’s equation (or the
Euler-Lagrange equation)(→2.7, for a sufficient condition see 2.16):

∂L

∂f
− d

dx

(
∂L

∂f ′

)
= 0. (2.5)

✷

2.3 Proof of Euler-Lagrange equation. A necessary condition for
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f to give an extremal value with respect to the small change16 of f is

δS[f ] ≡ S[f + δf ]− S[f ] =
∫ b

a
dx

[
∂L

∂f
δf +

∂L

∂f ′ δf
′
]
= 0 (2.6)

for any small δf (see the above footnote). Integrating this by parts, we
get (note that δf = 0 at the boundaries)

∫ b

a
dx

[
∂L

∂f
− d

dx

∂L

∂f ′

]
δf = 0. (2.7)

Thus, the quantity in the square brackets must vanish.17

2.4 Who was Euler?18 Euler’s analysis textbook Introductio in
analysin infinitorum (1748) was extremely influential beyond 1800, so
that his notations such as sin, cos, e, π, i,

∑
, etc., became conventional.

He, not Newton, wrote down the so-called Newton’s equation of motion
for the first time, and laid the foundations of continuum mechanics in-
cluding fluid dynamics (but see d’alembert ??).

Leonhardt Euler was born in Basel, Switzerland, on April 15, 1707.
He revealed a photographic memory by reciting Aeneid page by page
by heart. In 1720 he enrolled at the University of Basel and graduated
with first honors two years later. His master’s thesis in 1724 compared
the natural philosophies of Descartes and Newton. Euler convinced Jo-
hann Bernoulli to tutor him in mathematics and natural philosophy for
one hour on Saturday afternoons. Bernoulli quickly recognized Euler’s
genius and helped convince his father to allow his son to concentrate on
mathematics. After failing to get a physics position at Basel, he joined

16 This statement is actually tricky. We must fix a method to evaluate the size of
a function, or we must be able to tell whether a function f and g are close or not.
We measure the size of f in the present context in terms of the norm ‖f‖ (→??)
which is the sum of the largest value of |f | in the relevant domain and that of |f ′|.
This is called the C1-norm. δS = 0 in (2.6) means, more precisely, that ‖δS‖ is
much smaller than ‖δf‖, or ‖δS‖ = o‖δf‖.

17 More precisely: if continuous functions α and β satisfy

∫ b

a

[α(x)h(x) + β(x)h′(x)]dx = 0

for any C1-function on [a, b] such that h(a) = h(b) = 0, β is differentiable and
α− β′ = 0. See Gel’fand and Fomin, Lemma 3 in Section 3.

18 This entry is mainly based on p486– of R. Calinger, Classics of Mathematics
(Prentice-Hall, 1995).
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the St. Petersburg Academy of Sciences in 1727, boarding at Daniel
Bernoulli’s home.

He became the first professor of mathematics, succeeding D. Bernoulli
in 1733, who returned to Switzerland. From 1733 to 1741, Euler im-
mersed himself in research with enthusiasm despite hostility from the
Russian nobility and from the Orthodox Church which opposed Coper-
nican astronomy. He precisely computed ζ(2) =

∑
(1/n2) = π2/6 (see

Discussion below). He gained an European-wide reputation with this
and with his first book Mechanica (1736). During this period he found
eix = cosx+i sinx and eiπ+1 = 0. He also introduced beta and gamma
functions (→??).

In 1741 he accepted the invitation of Friedrich the Great to join the
Brandenburg Society (Berlin Academy of Sciences after 1744) (→1.13).
He was the director of its mathematical section from 1744 to 1765. He
was at the peak of his career during this period. In the mid-1750s
Euler tutored Lagrange (→2.7) by correspondence and selflessly with-
held from publication the part of his work on the calculus of variations
(→2.2-2.3) so that Lagrange might receive due credit for his contribu-
tion to the subject.

After disagreeing with the king over academic freedom, Euler re-
turned to Russia in 1766, where Catherine the Great made him a gen-
erous offer. A cataract and its maltreatment made him totally blind by
1771 (he had lost his right eye sight in 1735), but his productivity at
least in number of pages increased; he dictated books to a small group
of collaborators, doing calculations in his head involving as many as 50
decimal places. He died of a brain hemorrhage in 1784.

Euler was chiefly responsible for differential equations, and calcu-
lus of variation with Lagrange. He pioneered differential geometry and
topology (Euler’s polyhedral formula: v − e + f = 2). His colleagues
dubbed him “analysis incarnate.” His disciplinary intuition never failed
when he used infinite series, even though its general theory was to be
created by Cauchy (→??). Euler found the prime number theorem
in 1752, although he could not prove it, which was to be rediscovered
and proved by Gauss (→3.14). Most of his number theoretic results
appeared in his correspondence with his best friend in St. Petersburg,
Christian Goldbach (famous for his conjecture: every even number is a
sum of two prime numbers. This is mentioned in Hilbert’s 8th problem
(→??), and is still open).

Discussion.
(1) Euler often used ‘algebraic formalism’ (the belief that algebraic expressions are
always correct whatever numbers replace the symbols in them) to obtain nontrivial
results. The following illustrates his approach to compute ζ(2), etc. [An example
of the ‘modern version’ of ‘algebraic formalism’ is illustrated in 10.4 Discussion.]

Euler tried to extend the factorization of polynomials to more general func-
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tions. Sine has zeros at nπ for all n ∈ Z. Therefore, he guessed

sin z ∝ z
(
1− z

2

π2

)(
1− z2

4π2

)
· · · . (2.8)

We know sin z � z for small z, so that the proportionality constant should be 1:

sin z = z
(
1− z

2

π2

)(
1− z2

4π2

)
· · · . (2.9)

Admitting this relation (which is actually correct) and expanding the both sides in
the Taylor series, we obtain

z − z
3

3!
+ · · · = z

{
1−
(

1
π2

+
1

4π2
+

1
9π2

+ · · ·
)
z2 + · · ·

}
. (2.10)

Comparing the coefficients on both sides, Euler obtained

ζ(2) ≡ 1 +
1
22

+
1
32

+ · · · = π
2

6
. (2.11)

In this way the value of the zeta function for even positive integers can be obtained.
Obtain ζ(4) = π4/90.
(2) Show ∫ ∞

0

log(1− x)
x

dx = −π
2

6
. (2.12)

2.5 Remark on differentiability. For the action integral to be
meaningful, we have only to assume that f is differentiable. How-
ever, the Euler equation is a second order differential equation. The
interesting and important point is that the stationary f becomes twice
differentiable even if it is not assumed so. This is due to the following
theorem:
Theorem [essentially due to P. du Bois-Reymond]. Let f be a
continuous function and ϕ be a sufficiently smooth function vanishing
at the ends of the interval [a, b]. If

∫ b

a
f(x)ϕ(m)(x)dx = 0, (2.13)

then f is m times differentiable and f (m)(x) = 0.

2.6 Conditional extremum, Lagrange multiplier. Let S[f ] be a
functional. We wish to extremize this under the condition that G[f ] =
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0, where G is another functional. A necessary condition for S[f ] to be
extremal is as follows. Define I[f, λ] = S[f ]+λG[f ]. Extremize I w.r.t.
f and λ. This condition would give f as a function(al) of λ. Insert this
into S, and fix λ with the auxiliary condition. The result gives the
extremal value of S under G = 0.

δI

δf
= 0,

∂I

∂λ
= 0. (2.14)

The parameter λ is called the Lagrange multiplier.

Discussion [Canonical distribution].
The canonical distribution function

ρ =
1
Z
e−βH (2.15)

of statistical mechanics can be obtained as the solution to the following conditional
maximization problem: Maximize entropy

S = −
∫
ρ ln ρ dΓ (2.16)

under the condition

E =
∫
HρdΓ, 1 =

∫
ρdΓ. (2.17)

Here, H is the system Hamiltonian, and dΓ is the phase volume element (the Liou-
ville measure). Z and β are introduced as the Lagrange multipliers.

The above formulation is for classical cases, but with the replacement of
∫
dΓ

with Tr, we can easily obtain the quantum counterpart. The formula for the entropy
was first given by Gibbs. Later, the same formula was used to define information
by Shannon.

The reader might be tempted to conclude that in this way we can found sta-
tistical mechanics on the Baysian statistics, and can dispense with the principle of
equal probability. However, the principle is already implicit in (2.16) in the choice
of the volume.

2.7 Who was Lagrange ?19 Lagrange was born in Turin in 1736,
where he stayed until 1766. In the mid-1750s he began to establish
his reputation, and began his correspondence with Euler (→2.4), who
became his tutor praising his work on variational calculus, and with

19 Mainly based on R Calinger, Classics of Mathematics (Prentice Hall, 1982,
1995).
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d’Alembert, who became his political counselor. As a poorly paid pro-
fessor of the Royal Artillery School at Turin from 1755-66, he worked
relentlessly to the extent to harm his health, sustained by his associa-
tion with Euler and d’Alembert (→1.13). He brought the calculus of
variation to maturity and applied it to mechanics.

In 1766, Lagrange succeeded Euler as director of the mathemati-
cal section of the Berlin Academy. The years in Berlin were extremely
productive for Lagrange. He contributed to the three-body problem,
various number theoretical problems, and his 1770 memoir opened a
new era in algebra (group theory).

When Friedrich the Great died in 1787, he accepted an invitation
of Louis XVI to join the Paris Academy of Science. A year later he
published his classic, Mécanique analytique. This was the first book of
mechanics without any geometrical argument.

Shy, diplomatic, and amenable, Lagrange not only survived the
Revolution but was treated throughout with honor and respect. In
1790 he served on the committee which proposed the metric system. In
1794 he helped to establish Ecole Polytechnique. He taught elementary
mathematics at Ecole Normale (with Laplace (→13.3) as his assistant).

He was the last great mathematician of the 18th century. He
opened the abstract mathematics of the 19th century. He tried to
give a sound foundation to calculus, which was to be given by Cauchy
(→??), Weierstrass (→10.5), and others. To denote derivatives with ′
was due to Lagrange.

2.8 Variable end points, transversality. Consider

S[f ] =
∫ b

a
dxL(f, f ′, x)dx, (2.18)

but now with the unspecified end point values of f . An elementary
calculation gives

δS =
∫ b

a
dt

(
Lf − d

dt
Lf ′

)
δf(t)+Lf ′δf(t)|ba+(L− Lf ′f ′)t=b δb−(L− Lf ′f ′)t=a δa.

(2.19)
The first order variations must be killed to be extremal, so f must obey
the Euler-Lagrange equation (→2.2).

We still have first order terms at the end points. A realistic sit-
uation is that the end points are constrained on prescribed curves ca
and cb. Hence δf |t=a = c′a(a)δa and δf |t=b = c′b(b)δb. Putting these
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conditions into (2.19), we get the following so-called transversality con-
ditions:

[L+ Lf ′(c′a − f ′)]t=a = 0, [L+ Lf ′(c′b − f ′)]t=b = 0. (2.20)

These equations give the boundary conditions for the Euler-Lagrange
equation to single out its solution.

2.9 Functional derivative. As we noted in 2.1, calculus of varia-
tion is essentially the differential calculus on a function space.20 As
a preliminary step, let us review the differentiation of a scalar valued
function of a vector S(f ). Its (strong) derivative (→1.4) is the gradient
of S and is a vector gradS = (∂S/∂f1, · · · , ∂S/∂fn). We have

δS =
n∑

i=1

∂S

∂fi
δfi. (2.21)

Compare this with the formula (2.6). The parallelism becomes almost
perfect, if we regard the value f(a) of f at x = a as the ‘a-component of
a vector f ’. In this case a is a continuous parameter, so that the sum-
mation in (2.21) must be replaced by an integration over the parameter,
and we have the form, something like:

δS =
∫

dx
δS

δf(x)
δf(x). (2.22)

Here the integration kernel δS/δf(x) is called by physicists the func-
tional derivative of S with respect to f . Its functional form can be read
off by comparing this formula and the standard variational formula such
as (2.6). Hence, the calculation in the proof of Euler’s theorem tells us
that

δS

δf(x)
=

∂L

∂f (x)
− d

dx

∂L

∂f ′(x)
. (2.23)

for S given in 2.2.

20 A set with a certain structure is often called a space. In the case of functional
analysis, it is often a linear space. That is, linear combinations of the elements in
the space are again in the space.
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2.10 Delta function. We ought to be able to differentiate any (well-
behaved) functional of f w.r.t. f . For example f itself is a functional
of f just as the indentity map maps a vector v to itself. Because
∂vi/∂vj = δij (the identity matrix), we expect the functional derivative
of f w.r.t. f itself should be an identity operator (or the integration
kernel corresponding to the identity). We introduce δ as follows

δf(x)

δf(y)
= δ(x− y). (2.24)

For any (integrable) variation δf , (2.6) in the present case reads21

δf(x) =
∫

dyδ(x− y)δf(y). (2.25)

δ(x − y) is called the delta function,22 and later mathematically ra-
tionalized by Schwartz as a generalized function (→7.4). We will en-
counter this object later in many other contexts.

2.11 Formal rules of functional differentiation. With respect to
the functional differentiation, the ordinary integration and differentia-
tion just correspond to procedures to make linear combinations of the
components of the vectors, so that we may freely change the order as

δf ′(x)
δf(y)

=
d

dx
δ(x− y), (2.26)

or
δ

δf(y)

∫ b

a
dxf(x) =

∫ b

a
dxδ(x− y). (2.27)

Furthermore, the chain rule holds as

δF (f(x))

δf(y)
= F ′(f(x))δ(x− y), (2.28)

where F is a function. Hence, we can obtain Euler’s equation 2.2 quite
mechanically as follows:

δS[f ]

δf(y)
=
∫

dx

[
∂L

∂f (x)
δ(x− y) +

∂L

∂f ′(x)
d

dx
δ(x− y)

]
=

∂L

∂f (y)
− d

dy

∂L

∂f ′(y)
.

(2.29)
21 The reader must remember that the definition of the delta ‘function’ is insepa-

rable from the definition of the integral being used (→??).
22 Physicists seem to believe that this was introduced by Dirac, but actually, this

has been used for more than 100 years.
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Here integration by parts has been used.

2.12 Intuitive introduction to minimization of functional I.
Suppose we wish to minimize a well-behaved functional S[f ]. 2.11
tells us that the essence of Euler’s theorem 2.2 is that the necessary
condition is

δS

δf
= 0. (2.30)

This is quite parallel to the ordinary calculus. Therefore, it is tempting
to seek more parallelisms. To this end we need an analogue of the
second derivative.

2.13 Second variation. If the change of S[f ] can be written as

S[f + h] = S[f ] + ϕ1[h] + ϕ2[h] + o[‖h‖2], (2.31)

where ϕ1 is a linear functional and ϕ2 is a bilinear form, we say S has
the second variation. In physicists’ way, we can write

ϕ2[h] =
1

2

∫
dxdy

δ2S

δf(x)δf(y)
h(x)h(y). (2.32)

Actually, we can formally compute the second functional derivative as
explained in 2.11.

2.14 Legendre’s condition. If we can write

S[f ] =
∫ b

a
dxL(f(x), f ′(x), x), (2.33)

then the second variation can be written as (after integration by parts,
taking into account h(a) = h(b) = 0)

ϕ2[h] =
∫ b

a
(Qh2 + Ph′2)dx, (2.34)
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where

Q =
1

2

(
Lff − d

dx
Lff ′

)
, P =

1

2
Lf ′f ′ . (2.35)

A necessary condition for ϕ2 to be nonnegative is

P ≥ 0. (2.36)

2.15 Intuitive introduction to minimization of functional II.
Legendre wished to establish a necessary and sufficient condition for the
minimization of S[f ]. Naturally, he guessed that the nonnegativity of
the second variation as a sufficient condition. Therefore, he wished to
claim that P ≥ 0 in 2.14 was a sufficient condition, but failed to prove
the assertion. Actually, the assertion is false, because the condition is
only local. That is, if we change f only locally in space, indeed P ≥ 0
implies the positivity of the second variation. However, a small change
of f need not be spatially locally confined, and for such changes P ≥ 0
does not guarantee the positivity of the second variation. We need a
supplementary global condition. The final form of a sufficient condition
reads:

2.16 Theorem [Sufficient condition for minimum w.r.t. C1-
norm]23 A sufficient condition for g to give a minimum of (2.4) is
(1)+(2)+(3) below:
(1) g satisfies Euler’s equation (2.5).
(2) ∂2L/∂f ′2(g, g′, x) > 0.
(3) The interval [a, b] does not contain the conjugate point24 of a.✷
We need (3) to exclude the global pathology. (To understand the mean-
ing of (3) consider the shortest distance between the points on a great
circle of a 2-sphere.) The global condition cannot be derived easily by
a formal consideration alone.

23 Gel’fand and Fomin, Section 24 Theorem.
24 Let g and g̃ be two solutions of (2.5) starting from point a. The conjugate point

of a is the crossing point of g and g̃ in the limit of g̃ → g in the C1-norm (→2.3
footnote).
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Discussion. Discuss the relation between the conjugate point and focus in geo-
metrical optics.

2.17 Noether’s theorem.25 Let the functional S in 2.2 be invariant
under the following one to one map gα : (x, f) → (x∗, f∗), where x∗ =
ϕ(x, f, α) and f ∗ = ψ(x, f, α) such that x = x∗ and f = f ∗ for α = 0.26

That is, S[f ] = S[f ∗]. We assume the transformation is differentiable
with respect to α. Then, along each stationary curve, the following
quantity is constant:

ψ̂Ff ′ + (F − f ′Ff ′)φ̂ = const. (2.37)

Hereˆdenotes the partial derivative w.r.t. α evaluated at α = 0.✷
This should be easily demonstrated, if we look at the calculation in 2.8.

2.18 Usefulness of variational principle. As we see in 2.21, if we
could cast a (partial) differential equation in the variational principle
form (i.e., if we know the variational functional whose Euler’s equation
(→2.2) is the desired equation), then there is a means to get its solution
numerically, at least approximately. Hence, to construct a variational
principle (if any) is of practical importance. The following Vainberg’s
theorem tells us when we can expect a variational principle.

2.19 Vainberg’s theorem. Suppose
(1) N is an operator from a Hilbert space (→??) into its conjugate
space,
(2) N has a linear Gâteaux27 derivative DN(u, h) at every point of the

25 The theorem can be restated as: If a system is invariant under a continuous
symmetry operation, then the corresponding generator of the symmetry operation
is an integral of motion.

26 That is, {gα} is a one parameter transformation group, and α = 0 corresponds
to the unit element.

27 A functionalN [f ] is said to be Gâteaux differentiable if there is a linear operator
Q such that for a function f , g and for sufficiently small λ N [f+λg] � N [f ]+λQ[f ]g.
This is a much weaker condition than the strong differentiability (→1.4).
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ball ‖u− u0‖ < ε28 for some positive ε,
(3) The scalar product 〈h1, DN(u, h2)〉 is continuous at every point of
D.
Then, a necessary and sufficient condition for N(u) = 0 to be the
Euler-Lagrange equation of a variational functional in the ball D is the
symmetry

〈h1, DN(u, h2)〉 = 〈h2, DN(u, h1)〉. (2.38)

A desired variational functional is given by

F (u) = −
∫

dt
∫ 1

0
dλuN(λu). (2.39)

Here − is only cosmetic. ✷29

2.20 Remark. This theorem is not quite general, because there are
cases that the equation itself cannot be directly obtained by a variati
onal principle, but the equation timessome function may well be deriv-
able as an Euler-Lagrange equation. The case is well illustrated in A. K.
Raycha udhuri, Classical Mechanics (Oxford UP, Calucutta, 1983).30

2.21 Direct method. The Euler-Lagrange equation often becomes
a complicated partial differential equation, so a method to use approxi-
mation sequence directly in the variational functional was conceived.31

For a functional S[f ], let us assume that it has an infimum inff S[f ] =
µ > −∞. Then, due to the definition of infimum, there is a sequence
{fn} such that S[fn] → µ. Such a sequence is called a minimization
sequence.

28 ‖ ‖ is the C1 norm we discussed in the footnote of 2.3.
29 Actual applications can be seen in: R. W. Atherton and G. M. Homsy, “On the

existence and formulation of variational principles for nonlinear differential equa-
tions”, Studies Appl. Math. LIV, 31-60 (1975), and the references cited therein.
For ODE see I. A. Anderson and G. Thompson, The inverse problem of the calculus
of variations for ordinary differential equations, Memoirs of Am. Math. Soc. 98,
Number 473 (1991).

30 Thi s book was kindly informed by Akash Bandyopadhyay.
31 Already Euler used it.
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Theorem.32 If this sequence has a limit f̂ , and S is lower semicontinuous,33

then
lim
n

S[fn] = S[f̂ ]. (2.40)

✷

2.22 Ritz’s method. To construct a minimization sequence, Ritz
used a complete function set (practically an orthonormal basis →??)
{un}:

fn =
n∑

j=1

cjuj. (2.41)

Let µn be the minimum of S[fn] obtained by varying the coefficients in
fn. Then, obviously {µn} is a monotonically decreasing sequence.
Theorem. If S[f ] is continuous, and the function set {un} is complete,34
then µn converges to the desired minimum µ.

2.23 Why variational principle? The study of variational calcu-
lus was initiated to understand or to organize classical mechanics. The
fundamental equation of motion is given as Newton’s equation of mo-
tion. But why is this the form chosen by Creator? Under the strong
influence of Christianity they thought the equation had to be a spe-
cial one, for example, characterized by a sort of maximum or minimum
principle. Thus a variational principle was pursued. Such a reasoning
may sound irrational, but all the creative activities must have irrational
components. We should not forget that Newton was a serious student of
alchemy (his hair contains large amount of mercury, because he tasted
reaction products) and the Bible chronology; his research was almost
a religious activity to glorify God; he was a devout Unitarian. John
Keynes wrote that Newton was the last magician.

32 Gel’fand and Fomin, Section 36.
33 That is, for ε > 0 there is δ > 0 such that for any h such that |h| < δ S[f +
h]− S[f ] > −ε.

34 Roughly speaking, this means that any function can be described as a linear
combination of this set of functions (→10.3).

32



2.24 Hamilton-Jacobi’s equation, Jacobi’s theorem, etc. These
are best understood in the context of classical mechanics, so they will
not be covered here. Although there is no balanced modern textbook
of classical mechanics, read the first and the last chapters of Landau-
Lifshitz, Classical Mechanics to start with. For a more serious student,
V I Arnol’d, Mathematical Methods of Classical Mechanics (Springer,
1979) is recommended. Especially read all the appendices.
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3 Review of Vector Analysis

We will review vector analysis as intuitively as possible.
Also coordinate free definitions of gradient, divergence and
curl are stressed. As a technical topic, expressions of these
operators in various cruvilinear coordinates are summarized.

Key words: gradient, nabla, divergence, curl, Laplacian,
Gauss-Stokes-Green’s theorem, Poincaré’s lemma, converse
of Poincaré’s lemma, Helmholtz-Hodge’s theorem, Helmholtz-
Stokes-Blumental’s theorem, curvilinear coordinates, metric
tensor.

Summary:
(1) Geometrical meanings of grad, div and curl (3.1, 3.5, 3.8) as well
as their coordinate-free definitions must be understood clearly (1.5,
3.6, 3.9).
(2) Gauss-Stokes-Green’s theorem 3.13, Poincaré’s lemma 3.15, and
its converse (when the domain is singly connected) 3.17 are crucial.
(3) If curl and div both vanish, the vector field is (essentially) constant.
This can be shown by the Helmholtz-Hodge decomposition 3.18.
(4) The reader should be able to demonstrate various formulas of vector
calculus (3.20).
(5) Differential operators in orthogonal curvilinear coordinates 3.24
must be understood without difficulty (3.28, 3.30, 3.31).
(6) Do not use ∇ as a simple operator except in the Cartesian coordi-
nate system (3.12).

3.A Vector Analysis Revisited

3.1 Gradient. Suppose we have a sufficiently smooth function f :
D → R, where D ⊂ R2 is a region. We may imagine that f(P )
for P ∈ D is the altitude of the point P on the island D. Since we
assume the landscape to be sufficiently smooth, at each point on D
there is a well defined direction n of the steepest ascent and the slope
(magnitude) s(≥ 0). That is, at each point on D, we may define the
gradient vector sn, which will be denoted by a vector grad f .

Exercise.
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(A) Demonstrate Df = gradf (Hint. Compute the slope of f along that line in the
direction n passing through r: (d/dt)f(tn+ r) with the aid of the chain rule.)
(B) Compute the following gradients. (1) grad(r).
(2) grad(r−2).

3.2 Coordinate expression of grad f . Although grad f is meaning-
ful without any specific coordinate system (i.e., the concept is coordinate-
free), in actual calculations, introduction of a coordinate system is of-
ten useful. The 3-space version of gradient reads as follows. Choose a
Cartesian coordinate system O-xyz.

grad f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
, (3.1)

or

grad f = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
. (3.2)

3.3 Remark. Note that to represent grad f (in 3-space) in terms of numbers, we
need two devices: one is a coordinate system to specify the point in D with three
numbers, which allow us to describe f as a function of three independent variables;
the other device is the basis vectors spanning the three dimensional vector ‘grad f ’
at each point on D (i.e., spanning the tangent space at each point of D). In
principle, any choice is fine, but practically, it is wise to choose these base vectors
to be parallel to the coordinate directions at each point. In the choice of 3.2, the
coordinate system has globally the same coordinate directions at every point on
D, and the basis vectors of the tangent space are chosen to be parallel to these
directions, so again globally uniformly chosen. Nonuniformity of the choice of the
base vectors causes complications. We must be very careful (→3.7, 3.12 for a
warning), especially when we formally use operators explained below.

3.4 Nabla or del. (3.2) suggests that grad is a map which maps
f to the gradient vector at each point in its domain (if f is differen-
tiable). We often write this linear operator (→3.2) as∇, which is called
nabla,35 but is often read ‘del’ in the US. We write grad f = ∇f . ∇
has the following expression if we use the Cartesian coordinates

∇↽==
n∑

k=1

ek
∂

∂xk
, (3.3)

where xk is the k-th coordinate and ek is the unit directional vector in
the k-th coordinate direction.

35 ‘Nabla’ is a kind of harp (Assyrian harp).
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3.5 Divergence. Suppose we have a flow field (velocity field) u on
a region D ∈ R3. Let us consider a region V ⊂ R3 whose boundary
∂V is sufficiently smooth. V may be imagined to be covered by area
elements dS which can be identified with a vector whose magnitude
|dS| is the area of the area element, and whose direction is parallel to
the outward normal direction of the area element. Then u · dS is the
rate of the volume of fluid going out through the area element in the
unit time (cf. 2.5). The area integral∫

∂V
dS · u (3.4)

is the total amount of the volume of the fluid lost from the region V .
The following limit, if exists, is called the divergence of the vector field
u at point P and is written as divu:

divu ≡ lim
|V |→0

∫
∂V u · dS
|V | , (3.5)

where the limit is taken over a concentric spheres (or cubes) converging
to a unique point P .36 div u is the rate of loss of the quantity carried
by the flow field u per unit volume (i.e., the loss rate density).

Discussion
(1) A precise version of (3.5) in terms of a generator producing a flow should have
been mentioned at least in the discussion. However, to this end, we must discuss
the flow Tt induced by a vector field a(x), where Tt is the solution semigroup (this
concept should be explained in the elementary part of ODE) of

dx

dt
= a(x). (3.6)

Let D be a bounded region. Tt(D) denotes the region after time t if the region is
passively advected by the flow whose velocity field is given by a. Then a precise
version of (3.5) is

d

dt

∣∣∣∣
t=0

∫
Tt(D)

dx =
∫
D

diva(x)dx. (3.7)

The proof of this reduces to a calculation of the Jacobian ∂(Ttx)/∂(x) for very
small t, or to calculate the determinant of the following matrix,

∂(Ttx)
∂(x)

= 1 + t
∂(a)
∂(x)

+ o[t]. (3.8)

(2) The electric displacement satisfies divD = ρ (→2.49), where ρ is the charge
density. At the boundary of two media I and II is a surface charge of density σ.
Let n be the unit normal vector of the interface pointing from I to II. Show

(DI −DII) · n = σ. (3.9)
36 Here the volume can have more general shapes, but our definition is usually

enough.
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See Section 1.5 of Jackson, Classical Electrodynamics (Wiley, 1975) for similar ex-
amples.

3.6 Cartesian expression of div. From (3.5) assuming the exis-
tence of the limit, we may easily derive the Cartesian expression for
div. Choose as V a tiny cube whose surfaces are perpendicular to the
Cartesian coordinates of O-xyz. We immediately get

divu =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
. (3.10)

div has the following coordinate-free definition:

divu = Tr(Du), (3.11)

where D denotes the strong derivative (see discussion (1) in 3.5).

3.7 Operator div. (3.10) again suggests that div is a linear operator
(→3.2) which maps a vector field to a scalar field. Comparing (3.3)
and (3.10) allows us to write

divu = ∇ · u. (3.12)

This ‘abuse’ of nabla is allowed only in the Cartesian coordinates (why?
→3.3). Generalization to n-space is straightforward.

Exercise. Compute div(r/r).

3.8 Curl. Let u be a vector field as in 3.5. Take a singly connected37

compact smooth surface S in R3 whose boundary is smooth.38 to the
existence of what we need is the existence of length, area and so on of
the object The boundary closed curve with the orientation according to

37 A region is singly connected, if, for any given pair of points in the region, any
two curves connecting them are homotopic. That is, they can be smoothly deformed
into each other without going out the region.

38 Around here the word ‘smooth’ is used often to avoid pathological cases. Prac-
tical physicists may understand ‘smoothness’ as the existence of strong derivatives
to any order needed. Often the smoothness assumption may be weakened; for ex-
ample smoothness of the surface may be replaced by the existence of its area or
smoothness of a curve with the existence of its length. Therefore, fractal surfaces
and curves are usually excluded.
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the right-hand rule is denoted by ∂S (see Fig.). Consider the following
line integral along ∂S: ∫

∂S
u · dl, (3.13)

where dl is the line element along the boundary curve. Let us imagine
a straight vortex line and take S to be a disc perpendicular to the line
such that its center is on the line. Immediately we see that this integral
is the strength of the vortex whose center (singular point) goes through
S. Therefore, the following limit, if exists, describes the ‘area’ density
of the n-component of the vortex (as in the case of angular velocity,
the direction of vortex is the direction of the axis of rotation with the
right-hand rule):

n · curlu = lim
|S|→0

∫
∂S u · dl
|S| , (3.14)

where the limit is over the sequence of nested39 smooth surfaces which
converges to point P with its orientation in the n-direction. If the limit
exists, then obviously there is a vector curlu called curl of the vector
field u.

3.9 Cartesian expression of curl. If we assume the existence of the
limit (3.14), we can easily derive the Cartesian expression for curlu.
We have

curlu =

(
∂uz

∂y
− ∂uy

∂z
,
∂ux

∂z
− ∂uz

∂x
,
∂ux

∂y
− ∂uy

∂x

)
, (3.15)

or

curlu =

∣∣∣∣∣∣∣
i j k
∂x ∂y ∂z

ux uy uz

∣∣∣∣∣∣∣ = ∇× u. (3.16)

This ‘abuse’ of the nabla symbol is admissible only with the Cartesian
coordinates (→3.3).

Componentwisely, we can write (with the summation convention)

(curlu)i = εijk∂juk, (3.17)

where εijk is defined as ε123 = 1 and εijk = sgn(ijk), where sgn(ijk) is
the sign of the permutation: if (ijk) is obtained from (123) with even
number of exchanges of symbols, it is +1, and otherwise −1.40 Notice
that

(a× b)i = εijkajbk. (3.18)

39 They need not be nested, but for simplicity let us assume this.
40 e.g., (213) = −1, and (312) = +1.
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A useful formula is

εijkεabk = δiaδjb − δibδja. (3.19)

(The summation convention is implied.) The easiest way to demon-
strate this equation is to start with the following general form

εijkεabk = Aijabδijδab + Aiajbδiaδjb + Aibjaδibδja, (3.20)

and fix the coefficients. There is no term of other forms.

Exercise.
(1) Let v = (x2z,−xy3z2, xy2z). Compute div v and curl v.
(2) Show

div(fv) = grad f · v + fdiv v, (3.21)
curl(fv) = gradf × v + fcurlv. (3.22)

(3) Compute
curl
(
µ× r/r3) . (3.23)

(4) Show

curl curlu = grad divu−
∑ ∂2

∂x2i
u. (3.24)

See 3.12 about the Laplacian applied to a vector.
The coordinate free definition can be written as follows. Compute

the strong derivative du/dx (→1.4). Denote its skew symmetric part41

as (du/dx)−.42 Then

(
du

dx

)
−
v =

1

2
curlu× v, (3.25)

where v is an arbitrary 3-vector. See 2.23.

Discussion
Let us study the motion of a small vector e near the origin flowing with a flow field
specified by v. We have

dr

dt
= v. (3.26)

41 Let A be a square matrix. A− ≡ A−AT is called its skew symmetric part.
42 (

du

dx

)
−
=


 0 ∂yux − ∂xuy ∂zux − ∂xuz
∂xuy − ∂yux 0 ∂zuy − ∂yuz
∂xuz − ∂zux ∂yuz − ∂zuy 0


 .
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If e is small, its deformation is governed by

de

dt
= v(e)− v(0) =

(
dv

dr

)
0

e, (3.27)

where the (strong) derivative of the velocity field is evaluated at the origin. For a
very small time δt, we can solve this equation as

e(δt) =
(
1 + δt

(
dv

dr

)
0

)
e(0). (3.28)

We can separate the velocity derivative into the symmetric (+) and anti (or skew)
symmetric part (−) as (

dv

dr

)
0

=
(
dv

dr

)
+

+
(
dv

dr

)
−
, (3.29)

where (
dv

dr

)
±
≡ 1

2

[(
dv

dr

)
0

±
(
dv

dr

)T
0

]
. (3.30)

Ignoring higher order terms, we can rewrite (3.28) as

e(δt) =

(
1 + δt

(
dv

dr

)
+

)(
1 + δt

(
dv

dr

)
−

)
e(0). (3.31)

This tells us that we may separately study the effects of the symmetric and of the
skew symmetric parts.
(1) Demonstrate that the symmetric part changes the volume of a (small) cube
C spanned by ex, ey, and ez. The changing rate of the volume is given by div v
(→3.6).
(2) Demonstrate that the skew part does not change the volume of the cube C. It
rotates the cube with the angular velocity curl v/2. This is (3.25) above.

3.10 Potential field, potential, solenoidal field, irrotational
field. If a vector field u allows an expression u = grad φ, then the field
is called a potential field and φ is called its potential. A field without
divergence, divu = 0, is called a divergenceless or solenoidal field. The
field without curl, curlu = 0, is called an irrotational field.

3.11 Laplacian, harmonic function. The operator ∆ defined by

∆f ≡ div grad f (3.32)

is called the Laplacian, and is often written as ∇2. ∆ is defined for a
scalar function. A function f satisfying ∆f = 0 in a region D is called
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a harmonic function in D. According to our understanding of the
Laplacian (→1.8) a harmonic function is a function which is invariant
under the spatial moving average (→??-??). Hence, intuitively, no local
extrema should exist. Graphs of harmonic functions.

3.12 Laplacian for vector fields. If we formally calculate curl curlu
in the Cartesian coordinates, then we have (→(3.24)

curl curlu = grad divu−∇2u. (3.33)

Since the formal calculation treating ∇ as a vector is legitimate only in
the Cartesian coordinate system (cf. 3.3), this calculation is meaningful
only in the Cartesian system. In particular, ∇2u = (∆ux,∆uy,∆uz)
is meaningful only in this coordinate system. However, the other two
terms in the above equality are coordinate-free. Hence, we define ∆u
as

∆u ≡ grad divu− curl curlu. (3.34)

3.13 Theorem [Gauss-Stokes-Green’s theorem]. From our defi-
nitions of divergence and curl (→3.5, 3.8), we have43

(1) Gauss’ theorem.

∫
∂V
u · dS =

∫
V
div u dτ, (3.35)

43 Here the boundaries ∂V , ∂S and ∂D below must be sufficiently smooth, and
the vector field must be (piecewise) C1.
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where V is a region in the 3-space and dτ is the volume element.
(2) Stokes’ theorem.44

∫
∂S
u · dl =

∫
S
curlu · dS, (3.36)

where S is a compact surface in 3-space.
(3) In 2-space, Stokes’ theorem reduces to Green’s theorem

∫
∂D
(udx+ vdy) =

∫
D

(
−∂u

∂y
+

∂v

∂x

)
dxdy, (3.37)

where u and v are differentiable functions of x and y.

Exercise.45

(A)
(1) Let S = {(x, y, z) | 4x2 + y2 + z = 1, −3 ≤ z} and v(x, y, z) = (3xy + 7y +
x, y, z + 3). What is

∫
S v · dS?

(2) Let S = {(x, y, z) |x2 + y2 + 4z6 = 4, 0 ≤ z} and v(x, y, z) = (ey, z, x2). What
is
∫
S
v · dS?

(3) Compute ∫
S

v · dS (3.38)

for S = {(x, y, z) |x2 + y2 + 4z6 = 4, 0 ≤ z} and v(x, y, z) = (ey, z, x2 + cos y) (this
is not a misprint).
(B) Prove Green’s formula (3.37).

3.14 Who was Gauss?46 Carl Friedrich Gauss was born on April
30, 1777 in Braunschweig. Although he studied at University of Göttingen
from 1795 to 98, he was already the first rate mathematician, and
completed his number theory masterpiece (Disquisitiones Arithmeti-
cae) when he was 20 (the printing of this famous book, which Dirichlet
carried wherever he went, started in April, 1798, but was interrupted
several times, and was published only in 1801).

He obtained his PhD in 1799 from University of Helmstedt with
the thesis on the existence of the roots of algebraic equations. This was
his favorite topic, which he proved several times with different methods
in his life. The thesis avoided the use of imaginary numbers, because
he was afraid that he might not get PhD due to conventional profes-
sors. Therefore, the statement was that any algebraic equation can be

44 George Gabriel Stokes, 1819-1903.
45 From K Fukaya, Electromagnetic Fields and Vector Analysis (Iwanami, 1995),

p98.
46 heavily relying on T. Takagi, Kinsei Suugaku Shidan (Tales from Modern Math-

ematics History) (Kyoritu, 1933). See also W. K. Bühler, Gauss, a biographical
sketch (Springer, 1981). All of his offsprings seem to be in the US.
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factorized into first or second order factors.
After his PhD, from 1799 to 1807, he was fully supported by Prince

Ferdinand of Braunschweig, and could concentrate on mathematics un-
til he was 30. Almost all his great accomplishments started during this
‘happiest time of my life’ (according to old Gauss in his 70s,“for math-
ematics unhindered and uninterrupted time is mandatory”).

After 1807, he was a professor and the chief astronomer at Göttingen,
and ‘could not have any time to do big work.’ “When my head is com-
pletely occupied by the effort to grasp a shadow of the spirit floating
in the air comes the time to give a lecture. I must jump up and switch
my attention to a completely different world. The pain is beyond any
expression · · ·.” In his memoir mixed with the calculations on elliptic
functions one finds, “Der Tod ist mir lieber als ein solches Leben.”47

From 1816 he participated in the field work to make the map of
Hannover. It is a famous story that he attempted to check the flatness
of the space. In 1828 Gauss invited Wilhelm Weber to Göttingen, and
for a few tens of years they collaborated on the study of electromag-
netism. He died on May 22, 1855 in Göttingen. His monument carries
‘Mathematicorum princeps.’

Gauss had already known the main part of complex function the-
ory by 1811, but he never published it. He should have known elliptic
function theory, but he did not publish it. Later Abel and Jacobi
constructed the theory, expecting that Gauss should have known most
results. Gauss knew non-Euclidean geometry, but he did not publish it.
He avoided debate and argument with reactionary conservatives (recall
what he did in his thesis). His seal had one tree with a couple of fruits
with the motto ‘pauca sed matura.’48

Gauss wrote in his diary on January 8, 1797 that he started to
study lemniscate in conjunction to

u =
∫ x

0

dx√
1− x4

. (3.39)

He was trying to generalize trigonometric functions for some time using
the analogy

arc sinx =
∫ x

0

dx√
1− x2

. (3.40)

This was the starting point of his study of elliptic functions. In this
study (and in many others) he did a lot of experimental mathematics
using numerical studies. He loved numbers; for example, when one of
his acquaintances died, he computed the life span of the deceased in
days on the back of the notice. In one of his note he gave e−π up to 50

47 Death is dearer than such a life.
48 cf., paucity, maturity.
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decimal places. His computations were extremely elegant and clever,
often exploiting number theory. His mathematics was inductive; he was
an explorer of the universe of numbers.

He developed fast Fourier transform (→12.26), one of the best
numerical integration schemes (1814→17A needed to perform pertur-
bation calculation), the least square approximation method (1821-3 in
order to study the motion of planetoids), etc. His theory of curved
surfaces (1827) was during his map making activity, and his potential
theory (1839-40) was related to his electromagnetism study.

His pure and applied mathematics were inseparably intertwined,
that is, his applied mathematics was the true applied mathematics; we
saw such examples recently in Kolmogorov.

3.15 Poincaré’s lemma.49

(1) div curlA = 0,
(2) curl grad φ = 0.
[Demo] Let V be a compact region of R3 whose boundary ∂V is sufficiently smooth.
Notice that ∂2V = ∅. With the aid of the Gauss-Stokes-Green theorem (→3.13),
we have ∫

V

dτ div curlA =
∫
∂V

curlA · dS =
∫
∂2V

A · d� = 0. (3.41)

To demonstrate (2), take a surface S whose boundary ∂S is sufficiently smooth.
Then, Stokes’ theorem and the definition of grad tell us∫

S

curl grad φ · dS =
∫
∂S

grad φ · d� = 0. (3.42)

3.16 Remark: differential forms. Notice that these relations are
due to the topologically trivial fact that the boundary of a boundary
is an empty set (∂2V = ∅). These are examples of the general formula
d2ω = 0, where ω is a differential form. I. M. Singer and J. A. Thorpe,
Lecture Notes on Elementary Topology and Geometry (Scott, Foresman
and Company, 1967) is strongly recommended. B. Schutz, Geometrical
Methods of Mathematical Physics (Cambridge UP, 1980) is less modern,
but may still be good for physicists who are not interested in elegance
and depth of mathematical ideas. The Gauss-Stokes-Green theorem
has the following unified expression

∫
M

dω =
∫
∂M

ω, (3.43)

49 Henri Poincaré, 1854-1912.
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where M is an orientable50 n-manifold (which must be sufficiently
smooth), and ω is a differential form. Notice that this is a natural
extension of the fundamental theorem of calculus:∫

[a,b]
df = f(b)− f(a) (=

∫
[a],[b]

f). (3.44)

Poincaré’s lemma d2ω = 0 follows from ∂2M = ∅. d and ∂ are, in a
certain sense, dual (Good symbols reveal deep relations. This duality
is the duality between cohomology and homology. The references cited
above will tell the reader about this a bit.).

3.17 Converse of Poincaré’s lemma holds.
(1) If a vector field F is irrotational (i.e., curlF = 0) in a singly
connected orientable region, there is a potential function φ such that
F = grad φ.
(2) If a vector field F is solenoidal (i.e., div F = 0) in a singly connected
orientable region, then there is a vector field (called a vector potential)
A such that F = curlA. ✷
In the language of differential forms, the converse of Poincaré’s lemma
can be written as: if dω = 0 ⇒ there is a differential form φ such
that ω = dφ. (1) can be demonstrated easily by calculation. Do not
overlook the importance of the shape of the region.
[Demo of (1)] Define

φ(x)↽==
∫ 1

0

dtF (tx+ (1− t)x0) · (x− x0). (3.45)

The assumption of (1) implies that for any closed curve C in the region
∫
C
F ·d� = 0.

That is, the line integral of F along a smooth curve in the region D connecting two
points x0 ∈ D and x ∈ D does not depend on smooth paths connecting these two
points. Hence φ is a well-defined function of x. Check that actually grad φ = F .
Perhaps the clearest way to demonstrate (2) is to use the Helmholtz-Hodge theorem
3.18 below. The condition of (2) with the aid of 3.15 implies that F can be written
as (3.48) with ∆φ = 0 such that φ→ 0 at infinity. We will see later that only φ ≡ 0
satisfies this condition (→Liouville’s theorem ??).

Exercise
(A) Hint: There is no clever method. Guess.
(1) Show that the following 3-vector field has a vector potential and construct it.

v = (ey − x cos(xz), 0, z cos(xz)). (3.46)

(2) Show that the following 3-vector field has a scalar potential and find it

v = (y2 sin z, 2xy sin z, xy2 cos z). (3.47)
50 A n-manifold is orientable, if an atlas can be chosen which is with a consistent

handedness.
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(3) Find the vector potential of v = (−y/(x2 + y2), x/(x2 + y2), 0).
(4) Find a potential for v = f(r)r.
(B) Construct an example of an irrotational vector field on an appropriate domain
which does not have any scalar potential.

3.18 Theorem [Helmholtz-Hodge]. Let F be a vector field which
is once differentiable, and its first order derivatives vanish at infinity.
Then, there is a scalar field φ and a solenoidal (i.e., divA = 0) vector
field A such that51

F = grad φ+ curlA. (3.48)

✷
This can be rewritten with the aid of 3.15 as

3.19 Theorem [Helmholtz-Stokes-Blumental]. Let F be a vector
field which is once differentiable, and its first order derivatives vanish
at infinity. Then, there is the following decomposition of F :

F = U + V , curlU = 0, divV = 0. (3.49)

✷

Discussion.
Check the following formal result: Let

φ(r) = − 1
4π

∫
V

divF

r
dτ, (3.50)

A(r) =
1
4π

∫
V

curlF

r
dτ, (3.51)

where r is the distance between the volume element dτ and r. Furthermore, V is
the finite domain containing the supports of curlF and divF . Then

F = grad φ+ curlA. (3.52)

3.20 Formulas of vector calculus.
(1) gradA ·B = (B · ∇)A+ (A · ∇)B +B × curlA+A× curlB.
(2) div (A×B) = curlA ·B − curlB ·A.
(3) curl(A×B) = (divB)A− (divA)B + (B · ∇)A− (A · ∇)B.

51 We need a condition to control the ‘size’ of F near infinity: For example,
|F | ∼ 1/r2 is a good condition. Such a condition is needed because we must solve
the Poisson equation to find φ and A (cf. ??).
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In particular, curl(A× r/2) = A, if A is constant.
(4) (C · ∇)(A×B) = A× (C · ∇)B −B × (C · ∇)A.
(5) C · grad (A ·B) = A · (C · ∇)B +B · (C · ∇)A.
(6) div(grad f × grad g) = 0.

Exercise.
Demonstrate all the formulas. In curl(A× r/2) = A, A must be constant. If not,
what is the result? [Perhaps, the componentwise demonstration is the easiest.]

3.B Curvilinear Coordinates

3.21 Curvilinear coordinates, metric tensor. The role of a co-
ordinate system in 3-space is to assign uniquely a numerical vector
(q1, q2, q3) to each point in R3. Thus the Cartesian coordinates of the
point x1, x2, x3 are unique functions of (q1, q2, q3). Let (q1 + dq1, q2 +
dq2, q3+dq3) be a point an infinitesimal distance away from (q1, q2, q3).
The distance between these two points ds can be written as the follow-
ing quadratic form:

ds2 =
∑
i,j

gijdq
idqj, (3.53)

where

gij ↽==
∑
k

∂xk

∂qi

∂xk

∂qj
, (3.54)

which is called the metric tensor.

3.22 Riemann geometry. The Riemann geometry (→3.23) is the
geometry determined by the metric tensor. M. Spivac, Comprehensive
Introduction to Differential Geometry (Publish or Perish, Inc., Berkeley,
1979), vol. II, Chapter 4 contains Riemann’s epoch-making inaugural
lecture (English translation) with a detailed mathematical paraphrase
of the lecture, “What did Riemann say?”. According to Dedekind,52

Gauss (→3.14) sat at the lecture which surpassed all his expectations,
in the greatest astonishment, and on the way back from the faculty
meeting he spoke to Wilhelm Weber (Riemann‘s lifelong patron), with
the greatest appreciation, and with an excitement rare for him, about
the depth of the idea presented by Riemann.

Read for a nice introduction to Riemann geometry an overview by
Kazdan in Bull. Amer. Math. Soc. 33, 339 (1996).

52 Julius Wilhelm Richard Dedekind, 1831-1916.
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3.23 Who was Riemann?53 Georg Friedrich Bernhard Riemann
was born on September 17, 1826 in a small village on the Elbe near
Lüneburg. He was the second of six children of a poor pastor. He was
educated by his father before he entered the gymnasium. When he was
fourteen, he lived with his grandmother in Hanover and entered the
third grade of the gymnasium there. After his grandmother died, he
transferred to the second grade of a gymnasium in Lüneburg in April,
1842. The principal of the school recognized his mathematical genius
and lent his math books. Riemann always returned the books within a
couple of days, so the principal was surprised but found that Rieman
understood them. He became familiar with Euler’s work in those days.

He entered University of Göttingen in April, 1846 as a Linguis-
tics and Theology major to get a job as quickly as possible to support
his parents and siblings. He also attended Gauss’ (→3.14) lectures
on the least square method. His desire to study mathematics became
irrepressible, and he finally asked for his father’s permission to switch
his major. In those days Gauss was about 70, and gave only a few
applied mathematics courses, so he was disappointed and moved to the
University of Berlin in 1847.

In Berlin, Jacobi (algebra and analytical mechanics), Dirichlet
(number theory, integration theory, PDE), Steiner, and other professors
gave lectures on their new results. Dirichlet aimed at logical rigor and
avoided calculations as much as possible. This style met Riemann’s
taste.

In the spring of 1849, he returned to Göttingen, and was attracted
to Weber’s experimental physics course. Weber recognized his genius
and became his patron. Riemann did not get any direct instruction
from Gauss, but was strongly influenced by the atmosphere created by
the great mathematician. For example, Riemann accepted the idea of
‘ether’ which Gauss also had.

In November 1851, he submitted his thesis entitled, The founda-
tion of general theory of functions of one complex variable. He defined
holomorphic functions in terms of the Cauchy-Riemann equation. The
idea of conformal maps was also conceived. He also introduced Rie-
mann surfaces. Gauss praised the thesis: Mr. Riemann’s thesis clearly
tells us that his study is thorough, that he has a sharp brain, and that
he has a magnificent and rich creativity. From every point, the thesis
is a precious accompishment and far surpasses the standard of doctoral
theses. When Riemann visited Gauss after the exam, Gauss told him
that he had similar thoughts (→3.14), and that he had a similar aim.

He next started preparation for the Habilitation paper. He chose
to study Fourier series (→9), but this was not an easy task. Fortu-

53 Mainly based on K. Kobori, Great Mathematicians of the 19th Century (Kobun-
don, 1940).
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nately, Dirichlet visited Göttingen, who checked Riemann’s manuscript
together, and “Professor Dirichlet gave me detailed suggestions with
kindness I could not imagine when I took into account the difference of
our social statuses. I pray Professor will remember me forever.”(from
a letter to his father). He submitted his paper, The expressibility of
functions by trigonometric series, in December 1853. The Riemann
integration appeared for the first time in this paper (→10.22(3)). In
those days he was an assistant of Weber.

The famous Habilitations exam was held on June 10, 1854. He
introduced (1) the concept of manifold, (2) a new definition of distance
through the quadratic form, and (3) the concept of curvature.54

He became a lecturer in 1854. His first lecture was on PDE and
its applications to physics. He had eight students (“I am glad that I
have so many students.”(from a letter to his father)). In 1855, Dirichlet
succeeded Gauss. Dirichlet made effort to make Riemann an associate
professor, but failed. He finished his study of elliptic functions which
was started in ca. 1851. His lecture on elliptic functions attracted only
three participants including Dedekind. He became an associate profes-
sor on January 9, 1857.

In 1857 he completed “On the number of prime numbers less than
a given number.” He introduced the zeta function

ζ(s) =
∞∑
i=1

1

ns
, (3.55)

and conjectured that all the zeros in the strip 0 < Re s < 1 are
on Re s = 1/2 (the Riemann conjecture). With Dedekind, he is the
founder of analytic number theory. Dirichlet died on March 9, 1859.
Riemann became a full professor on July 30, 1859. He got married
on June 3, 1863 with his sister’s friend Elise Koch, but this was his
last happy period. He became ill in August. Weber persuaded the
government to support his stay in Italy to recover his health. He had
a wonderful time in Italy, befriending Italian mathematicians, Betti,
Beltrami, and others.

His health never recovered fully, and in June 15, 1866, he went on
his third Italian trip to rest at Selasca on Lake Maggiore. He died there
in July, 1866.

3.24 Orthogonal curvilinear coordinate system. At each point
(q1, q2, q3), call the direction of the tangent to the i-th coordinate the
i-th coordinate direction at (q1, q2, q3) [e.g., the direction of the tangent

54 This is a generalization of Gauss’s curvature, but the new aspect was to write
it in terms of the metric tensor.
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to the second coordinate is the direction parallel to (q1, q2 + dq2, q3)−
(q1, q2, q3)]. If at every point all the coordinate directions are orthogonal
to each other, we call the coordinate system an orthogonal curvilinear
coordinate system. In this case, the metric tensor is always diagonal at
every point:

gij =


h2

1 0 0
0 h2

2 0
0 0 h2

3


 , (3.56)

where

hi =

√√√√∑
k

(
∂xk

∂qi

)2

. (3.57)

3.25 Cylindrical coordinates. (q1, q2, q3) = (r, ϕ, z), and

x = r cosϕ,
y = r sinϕ,
z = z.

(3.58)

From (3.57) we have h1 = 1, h2 = r, and h3 = 1.

3.26 Spherical coordinates. (q1, q2, q3) = (r, θ, ϕ), and

x = r sin θ cosϕ,
y = r sin θ sinϕ,
z = r cos θ.

(3.59)

From (3.57) we have h1 = 1, h2 = r, and h3 = r sin θ.

3.27 Elliptic cylindrical coordinates.55 (q1, q2, q3) = (ξ, η, ϕ),
and for some positive real c

x = c
√
(ξ2 − 1)(1− η2) cosϕ,

y = c
√
(ξ2 − 1)(1− η2) sinϕ,

z = cξη.

(3.60)

55 This is a natural coordinate system for the Schrödinger equation for H+
2 molec-

ular ion.
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From (3.57) we have

h1 = c

√
ξ2 − η2

ξ2 − 1 , h2 = c

√
ξ2 − η2

1− η2
, h3 = c

√
(ξ2 − 1)(1− η2), (3.61)

where ξ and η can also be defined as

ξ =
r1 + r2

2c
, η =

r1 − r2

2c
. (3.62)

Discussion.
(A) Compute hi (→3.24) for the toroidal coordinates (α, β, ϕ) where

x =
c sinhα cosϕ

coshα− cosh β
, y =

c sinhα sinϕ
coshα− cosh β

, z =
c sinβ

coshα− cosh β
. (3.63)

Here α ∈ [0,∞), β, ϕ ∈ (−π, π]. What is the general shape of β = constant surface?
(B) Introduce u and v variables that are related to ρ and z as

ρ = F1(u, v), z = F2(u, v) (3.64)

such that u =const. and v =const. curves are orthogonal on the (ρ, z)-plane, and
ρ = 0 is among such curves. Rotating the plane around the z-axis, we can make
surfaces orthogonal to each other. Therefore, if we introduce the rotation angle ϕ,
(u, v, ϕ) is a orthogonal curvilinear coordinate system in 3-space. Its relation to the
usual Cartesian system is given by ρ =

√
x2 + y2 and ϕ = tan−1(x/y).

x = F1(u, v) cosϕ, (3.65)
y = F1(u, v) sinϕ, (3.66)
z = F2(u, v). (3.67)

(1) For this system show that

h1 =

√(
∂F1

∂u

)2

+
(
∂F2

∂u

)2

, h2 =

√(
∂F1

∂v

)2

+
(
∂F2

∂v

)2

, h3 = ρ. (3.68)

(2) For elliptic cylindrical coordinates, the choice is

ρ = a
√
(u2 − 1)(1− v2), z = auv (3.69)

3.28 Gradient in orthogonal curvilinear coordinates. Consider
an infinitesimal cube whose apices are at (q1 + θ1dq

1, q2 + θ2dq
2, q3 +

θ3dq
3), where θi = 0 or 1. The lengths of the edges of the cube are
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|h1dq
1|, |h2dq

2|, and |h3dq
3|. From the geometrical definition of grad

(→3.1), we have

(grad φ)1 =
1

h1

∂φ

∂q1
, (grad φ)2 =

1

h2

∂φ

∂q2
, (grad φ)3 =

1

h3

∂φ

∂q3
. (3.70)

Here, 1, 2 and 3 denote the components of the vector in the 1, 2 and 3
coordinate directions, respectively.

Exercise.
(A) Find the velocity and acceleration components along the coordinate directions
of a particle in
(1) spherical coordinates,
(2) elliptical cylindrical coordinates.
[Hint. Find the relation between the unit vectors of the curvilinear and Cartesian
coordinates.]
(B) Demonstrate for the spherical coordinate system

∂

∂x
= sin θ cosϕ

∂

∂r
+ cos θ cosϕ

1
r

∂

∂θ
− sinϕ
r sin θ

∂

∂ϕ
, (3.71)

∂

∂y
= sin θ sinϕ

∂

∂r
+ cos θ sinϕ

1
r

∂

∂θ
− cosϕ
r sin θ

∂

∂ϕ
, (3.72)

∂

∂z
= cos θ

∂

∂r
− sin θ

1
r

∂

∂θ
. (3.73)

3.29 Volume element in orthogonal curvilinear coordinates.
From the consideration above obviously the volume element dτ is given
by

dτ = h1h2h3dq
1dq2dq3. (3.74)

Exercise. Compute the volume element for the elliptic cylindrical coordinates.

3.30 Divergence and curl in orthogonal curvilinear coordi-
nates. From the geometrical definitions of these quantities (→3.5,
3.8), we get

divA =
1

h1h2h2

[
∂

∂q1
(h2h3A1) +

∂

∂q2
(h3h1A2) +

∂

∂q3
(h1h2A3)

]
,

(3.75)

(curlA)1 =
1

h2h3

[
∂

∂q2
(h3A3)− ∂

∂q3
(h2A2)

]
. (3.76)
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(curlA)2 and (curlA)3 are obtained from (3.76) by cyclic permutations
of the indices. Notice that in these formulas Ai are the actual projection
of the vector A on the i-th coordinate direction.

Exercise.
(1) Compute curl and div of A = r2er, where er is the unit coordinate vector
parallel to the radius in the spherical coordinates. How about if er is the unit
vector parallel to the radius in the cylindrical coordinates?
(2) Show in the spherical coordinates that

curl

(
cot θeϕ
r

)
= −er

r2
. (3.77)

3.31 Laplacian in orthogonal curvilinear coordinates. Combin-
ing (3.70) and (3.75), we get for the Laplacian (∆ ≡ div grad)

∆ =
1

h1h2h3

[
∂

∂q1

h2h3

h1

∂

∂q1
+

∂

∂q2

h3h1

h2

∂

∂q2
+

∂

∂q3

h1h2

h3

∂

∂q3

]
. (3.78)

For the cylindrical coordinates, we have

∆ =
1

r

∂

∂r
r
∂

∂r
+
1

r2

∂2

∂ϕ2
+

∂2

∂z2
. (3.79)

Notice that
1

r

∂

∂r
r
∂

∂r
=

∂2

∂r2
+
1

r

∂

∂r
. (3.80)

For the spherical coordinates, we have

∆ =
1

r2

∂

∂r
r2 ∂

∂r
+
1

r2
L2 (3.81)

with

L2
↽==

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
. (3.82)

Notice that
1

r2

∂

∂r
r2 ∂

∂r
=

∂2

∂r2
+
2

r

∂

∂r
=
1

r

∂2

∂r2
r. (3.83)

Exercise. Derive the formula for the Laplacian in the elliptic cylindrical coordi-
nates.
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4 Ordinary Differential Equation: Gen-

eral

The general theory of ordinary differential equations (ODE)
is outlined with precise statements. In the second half of
the section, elementary analytical techniques to solve ODE
are summarized for convenience.

Key words: general solution, particular solution, singular
solution, normal form, Cauchy-Peano’s theorem, Lipshitz
condition, Cauchy-Lipshitz’ theorem, separation of variables,
perfect differential equation, integrating factor, Bernoulli
equation, Riccati equation, Lagrange’s method.

Summary
(1) Any (normal form) ODE can be converted to a first order vector
ODE (4.4-4.6).
(2) For simple first order ODE, look up representative examples first.
Some representative examples are in 7B.
(3) For linear ODE, although a general theory will be given in the
following sections (8, XX), simple second order constant coefficient
equations can be solved without any difficulty (4.26-4.28).

4.A General Theory

4.1 Practical advice. See, for example, Schaum’s outline series Dif-
ferential Equations by R. Bronson for elementary methods and practice.
To learn the theoretical side, V. I. Arnold, Ordinary differential equa-
tions (MIT Press 1973; there is a new version from Springer) is highly
recommended. E. A. Coddington and N. Levinson, Theory of Ordi-
nary Differential Equations, (McGraw-Hill, 1955) is a standard classic
reference. I cannot recommend D. Zwillinger, Handbook of Differential
Equations (Academic Press, 1989). This book may be useful, but the
organization should be more intelligent.

Exercise. If you do not have any problem with the following ODE, then you can
skip Subsection B.
Find the general solutions of the following ODE.
(1) (→4.20)

x
dy

dx
+ 2y = sinx. (4.1)
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(2) (→4.21)
dy

dx
+
y

x
= x2y3. (4.2)

(3) (→4.22, y = x is a solution.)

dy

dx
= y2 − xy + 1. (4.3)

(4) (→4.25-4.28)
d2y

dx2
+ 2
dy

dx
+ 2y = xe−2x. (4.4)

Discussion [Calogero-Moser equation]. Let

dqi
dt

= pi,
dpi
dt

= −
∑
j �=i

(qi − qj)−3, (4.5)

where i ∈ {1, · · · , n}. For a solution to these equations, define a s quare matrix
L = Matr(Lij) as follows:

Lii = pi, Lij = (qi − qj)−1 for i �= j. (4.6)

(1) Show that if for some square matrix B,

dL

dt
= BL− LB = [B,L], (4.7)

which is called a Lax relation, then tr(Lm) is independent of t for all positive integers
m.
(2) Let the square matrix B be defined as

bii =
∑
k �=i

(qk − qi)−2, bij = (qi − qj)−2, (4.8)

then show (1) holds.
Hence, we have proved that for all positive integers m, tr(Lm) are constants of
motion. Lax relation implies that the system is completely integrable (that is, the
flow is on a 2n-dimensional torus).✷

4.2 Ordinary differential equation. Let y be a n-times differen-
tiable function of x ∈ R. A functional relation

f(x, y(x), y′(x), · · · , y(n)(x)) = 0 (4.9)

among x, y(x), y′(x), · · ·, y(n)(x) is called an ordinary differential equa-
tion (ODE) for y(x), and n is called its order, where the domain of f
is assumed to be appropriate. Such y(x) that satisfies f = 0 is called a
solution to the ODE.
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Discussion.
Which is more general (or more powerful as a descriptive means), (normal form→4.5)
ODE or (normal form) difference equations:

yk+n = F (x, yk, yk+1, · · · , yk+n−1) (4.10)

?56

[Hint: look up the following technical terms, suspension, and Poincaré section in a
standard dynamical systems textbook.]

4.3 General solution, particular solution, singular solution.
The solution y = ϕ(x, c1, c2, · · · , cn) to f = 0 in 4.2 which contains n
arbitrary constants c1, · · ·, cn (which are called integral constants) is
called the general solution of f = 0. A solution which can be obtained
from this by specifying finite values for the arbitrary constants is called
a particular solution. A solution which cannot be obtained as a partic-
ular solution is called a singular solution. For example, the envelope
curve57 of the general solutions is a singular solution.

Discussion.
(A) Consider the following equation called Clairaut’s equation:

y = x
dy

dx
+ f
(
dy

dx

)
. (4.11)

(1) Show that its general solution is

y = Cx+ f(C), (4.12)

where C is a constant. [Hint. Differentiate (4.11) and factor out the second deriva-
tive. See 4.31.]
(2) The envelope curve of the family of lines defined by (4.12) is also a solution of
(4.11). This is a singular solution.
(B) In 4.12 x ≡ 0 is a singular solution to (4.33).

4.4 Normal form. If the highest order derivative of y is explicitly
solved as

y(n)(x) = F (x, y, y′, · · · , y(n−1)) (4.13)

from f = 0, we say the ODE is in the normal form.58

56 This can alway be written in terms of differences ∆1(k) ≡ yk+1 − yk, and
higher order differences ∆2(k) = ∆1(k + 1) − ∆1(k), etc. Therefore, (4.10) may
be considered as an n-th order difference equation. If the equation is linear with
constant coefficients, then there is a general method to solve it (→XX ).

57 The envelop curve of a smooth family of curves {F (x,α) = 0}, where α is a
parameter, is a curve tangent to all the members of the family, and is given by the
conditions F (x,α) = 0 and ∂F (x, α)/∂α = 0.

58 Notice that not normal ODE’s may have many pathological phenomena, but
we will not pay any attention to the non-normal form case henceforth in this book.
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4.5 Normal form ODE is essentially first order. Let yj ≡ y(j−1)

(j = 1, · · · , n). Then (4.13) can be rewritten as
dy1

dx
= y2, (4.14)

dy2

dx
= y3, (4.15)

· · · (4.16)

dyn−1

dx
= yn, (4.17)

dyn

dx
= F (x, y1, y2, · · · , yn). (4.18)

That is, (4.13) has been converted into a first order ODE for a vector
y = (y1, y2, · · · , yn)

T . Any normal form n-th order scalar ODE can be
converted into the n-vector first order ODE of the form

dy

dx
= v(x,y). (4.19)

Any solution y(x) can be understood as an orbit parametrized with
‘time’ x in the n-space (= phase space) in which y lives.

4.6 Nonautonomous equation is not special. In (4.13) if F does
not depend on x explicitly, we say the ODE is autonomous. If not, it is
called nonautonomous. Parallelly, if v does not depend on x explicitly,
we say (4.19) is autonomous; otherwise, nonautonomous. If we intro-
duce one more variable t such that dx/dt = 1, then the set of equations
in 4.5 becomes autonomous:

dy

dt
= v(x,y),

dx

dt
= 1. (4.20)

Hence, there is no fundamental difference as to the basic theory between
autonomous and nonautonomous cases.59 Thus to understand ODE,
we have only to understand first order autonomous vector ODE.

4.7 Initial value problem for first order ODE. To solve

dy

dx
= v(y) (4.21)

59 Of course, the dimension of the phase space is increased by one, and this could
cause a tremendous qualitative difference.
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under the condition that y(0) = y0 is called an initial value problem,
where y(0) is called the initial data. The vector field v defining an ODE
may be considered to be a flow velocity field on an n-space. Hence, the
initial value problem is geometrically a problem to find an orbit passing
through y0 at ‘time’ x = 0.

We summarize the standard theorems in the following. The general
idea can be understood intuitively. A point where v = 0 is called
a critical point. Not near a critical point, the essence of the unique
existence of the solution is given by the rectification. That is, the flow
can be transformed to a constant flow parallel to the first coordinate
(by a one-to-one continuous map ≡ homeomorphism):

dy

dx
= e1. (4.22)

This should be ituitively easy to understand through imagining the
vector field being drawn on a rubber sheet.60 From (4.22) the unique
existence of a local solution is obvious.

Discussion
(1) [Glass patterns]. An interesting method to make and visualize simple vector
field is the Glass patterns. Make a random dot pattern more or less uniformly
distributed on a sheet of paper, and make its transparency copy (it could be slightly
scaled, or warped, so generating the points on computer may be advantageous).
Then, superpose it on the original. If the displacements of the points are small,
the reader will recognize a clear pattern, because her brain is a good detector of
spatial correlation. The random dot moiré patterns are called Glass patterns after
its discoverer L. Glass.61 Applications of dynamical systems (= qualitative studies
of differential equations) to cognitive psychology can be found in J. A. Scott Kelso,
Dynamic Patterns, the self-organization of brain and behavior (MIT Press, 1995).
(2) [Time change]. Let a be a continuous vector field on Rd, and µ be a nonzero

60 Read the introductory part of the book review by P. Holmes, Bull. Amer. Math.
Soc. 22, 339 (1990).

61 L. Glass, Nature, 223, 578 (1960); L. Glass and R. Perez, Nature 246, 3603
(1971).
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continuous real function. Let the flows determined by the following ODEs be Tt
and St, respectively:

dx

dt
= a,

dx

dt
= µa. (4.23)

Then, there is a function τ(t,x) such that

Stx = Tτ(t,x)x. (4.24)

Furthermore,
τ(t+ s,x) = τ(t,x) + τ (s, Ttx). (4.25)

St is called a time change of Tt. The above equality guarantees that St is a semigroup
when Tt is, and is called the cocyle condition.

4.8 Theorem [Cauchy-Peano]. If for (4.21) v is continuous on a
region D ⊂ Rn, then for any y0 ∈ D there is a solution y(x) of (4.21)
passing through this point whose domain is an open interval (α, ω)
(−∞ ≤ α < ω ≤ ∞). ✷

4.9 Who was Cauchy?62 Augustin-Louis Cauchy was born in Paris
in the year the Revolution began (Aug. 21, 1789). His father, a bar-
rister and police lieutenant escaped the Reign of Terror (1793-4) to
live in Arceuil, as the neighbors of Laplace (→13.3) and Berthollet.
Lagrange (→2.7) reportedly forecast the scientific genius of the boy.
Cauchy thought pure mathematics was over, and the remaining task
was applied mathematics. He worked as a military engineer at Cher-
bourg for two years from 1811, but resigned due to ill-health. Lagrange
and Laplace persuaded him to leave engineering and to turn exclusively
to mathematics in 1813.

Cauchy was a politically ultraconservative royalist, and after Restora-
tion in 1814, he was appointed a member of the Paris Academy after
Monge and ‘regicide’ Carnot (father of Sadi Carnot) were expelled.

Spurred by Fourier’s work on Fourier series (→10.22), Cauchy
tried to rationalize analysis. His results were published in Cour d’Analyse
(1821) and Résumé des Lecons sur le Calcul infinitésimal (1823). In the
former, he introduced the concept of functions as maps. He proved for
the first time that continuous functions have primitive functions. The
proof itself is important, but the recognition that a proof is needed was
novel and more important. His course is almost the same as we teach
now in the introductory calculus courses (for example, ε-δ).63

62 See also B. Belhost, Augustin-Louis Cauchy, a biography (Springer, 1991).
63 It is a famous story that Lagrange hurried home, and checked his celestial

mechanics book, when Cauchy published his work on convergence in 1820, which he
started around 1814, but after 1818 when he knew Fourier’s work (→3.4) he was
convinced that his program to rationalize calculus was meaningful.
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He tried to unify methods to calculate definite integrals in 1825 (14
years after Gauss’s letter to Bessel revealing Gauss’ full knowledge of
complex analysis.). Even in the proof of the residue theorem, Cauchy
did not denote complex numbers with single letters, but always wrote
in the two real number form, x + iy. Although this paper of 1825 is
now regarded as the historic starting point of complex function theory,
Cauchy did not recognize so at least for a very long time, because his
main purpose was to unify and streamline the methods of calculating
definite integrals (→8) with the aid of the changing of the order of
double integration used extensively by Laplace, Legendre, and others.

His life was quiet until the July Revolution of 1830. He refused
to take the oath of allegiance to the new king who replaced a Bour-
bon king, and went into a self-imposed exile of 8 years. In 1832 he
realized the relation between complex analysis and power series. Espe-
cially, he realized the relation between the radius of convergence and
the singularity (published in 1837). Now, there was a chance to relate
his integration theory and the Taylor expansion theory, but it took for
him for about 20 years to clearly recognize as a mathematical object
‘analytic function.’

He returned to Paris in 1838 to resume his work at the Academy.
In 1851, he introduced the concept of differentiability (strong differen-
tiability in our terminology→1.4), which was Riemann’s starting point
in his thesis (1851) (→3.23).

Devoutly catholic, he was a social worker in the town of Sceaux (his
house is still there on the corner next to Mary-Curie High School), and
occasionally criticized scientists for research that he considered dan-
gerous to religion – he was absolutely correct in this respect, because
institutionalized religions and science cannot be compatible in a con-
scientious and at the same time intelligent person. Cauchy published
789 papers, and died in 1857.

Cauchy provided the first phase of rigorous foundation of calculus.
He also gave an important contribution to group theory.

4.10 Lipschitz condition. Let v be a continuous vector function
whose domain is a region D ⊂ Rn. For any compact64 set K ⊂ D, if
for any y1 and y2 both in K there is a positive constant LK (which is
usually dependent on K) such that

|v(y1)− v(y2)| ≤ LK |y1 − y2|, (4.26)

then v is said to satisfy a Lipschitz condition on D.
If a vector field is C1, then it is Lipshitz.

Discussion.

64 ‘Compact’ means in a finite dimensional space ‘closed and bounded’.
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(A) [Hölder continuity].
If a function f satisfies

|f(x)− f(y)| ≤ L|x− y|α (4.27)

on its domain for constants L and α ∈ (0, 1), f is said to be Hölder continuous of
order α. In particular, if α = 1, f is said to be Lipschitz continuous. A C1 function
is Lipschitz continuous due to the mean value theorem.
(B) Cantor set and Cantor function (devil’s staircase). Let x ∈ [0, 1] be
written as

x =
∞∑
n=1

an
3n
, (4.28)

where an ∈ {0, 1, 2}. The function f is defined as follows:
(a) If a1, · · · , ar−1 are not 1, but ar = 1

f(x) =
r−1∑
n=1

an
2n+1

+
1
2n
. (4.29)

(b) Otherwise

f(x) =
∞∑
n=1

an
2n+1

. (4.30)

That is, f(x) has the binary expansion a1/2 · · ·an/2 (ai = 0 or 2).
Sketch the function.

The function increases on the classical Cantor (→10.23) set:65

C ≡
{
x =

∞∑
n=1

an
3n

∣∣∣∣∣ an ∈ {0, 2}
}
. (4.31)

(3) The Cantor function is Hölder continuous (see (A) above) of order log 2/ log 3.
(4) What is the total length of C?
(5) Is C countable or uncountable? Is [0, 1]\C countable or uncountable? (→10.22(4)).

65 More generally, a perfect (that is, there is no isolated point) nowhere dense set
is called a Cantor set.
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4.11 Theorem [Cauchy-Lipschitz uniqueness theorem]. For
(4.21), if v satisfies a Lipschitz condition on D, and if there is a solution
passing through y0 ∈ D, it is unique. ✷

Discussion.
(A) Why is the unique existence theorem important? Physicists almost
always ignore the existence theorem and the uniqueness theorem. However, they
are very crucial even from the physics point of view. According to the Newton-
Laplace determinacy (an empitrical fact), the motion of a point mass is completely
determined by its initial position and velocity. Therefore, if the motion obeys a
differential equation at all, it is easy to guess that the equation must be a second
order equation. If we demand that there must be time reversal symmetry, we arrive
at Newton’s equation of motion (without the first order derivatives).66 Is this guess
really correct? If f is reasonable, yes. This affirmative answer is supplied by the
unique existence theorem.
(B) Even if the Lipshitz condition is not satisfied: If the variables are separable as

dy

dx
=
Y (y)
X(x)

, (4.32)

and X and Y are continuous and not zero near (x0, y0), then the solution near this
point is unique. However, the condition is important as we see in the next.

4.12 Importance of being more than continuous. If the initial
condition is given at a critical point of the vector field (i.e., where v =
0), then the solution need not be unique. However, if the vector field
is differentiable, then uniqueness still holds in this case. Consider for
some positive integer n the following equation with the initial condition
x = 0:

dx

dt
= x1−1/n. (4.33)

x ≡ 0 is obviously a solution, but this is not the unique solution (Find
the other). However, if we consider dx/dt = x, then x ≡ 0 is the only
solution.

Exercise.
Find all the solutions such that x = 0 at t = 0 for (4.33). [Hint. Infinitely many].

4.13 Continuous dependence on initial conditions. If the vec-
tor field is Lipschitz continuous (→4.10), then the solution at time t
depends on the initial condition continuously.

66 This is the way Arnold introduces Newton’s equation of motion in his book,
Mathematical Methods of Classical Mechanics (Springer, 1979).
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4.14 Smooth dependence on parameter. If the vector field is
smooth, then the solution at finite time is as smooth as the vector field.
If the vector field is holomorphic, then the solution is also holomorphic.
Then, we can use perturbation theory to obtain the solution in powers
of the parameter. This was the idea of Poincaré.

4.B Elementary Solution Methods

4.15 Method of quadrature. To solve an ODE by a finite number
of indefinite integrals is called the method of quadrature. Representa-
tive examples are given in this subsection. In practice, consult any
elementary textbook of ODE or outline series.

4.16 Separation of variables. The first order equation of the fol-
lowing form

dy

dx
= p(x)q(y), (4.34)

where p and q are continuous functions, is solvable by the separation
of variables: Let Q(y) be a primitive function of 1/q(y) and P that
of p. Then Q(y) = P (x) + C is the general solution, where C is the
integration constant (→4.11 Discussion (A)).

Exercise.
Show that

dy

dx
= f(ax+ by + c) (4.35)

can be separated with the new dependent variable u = ax+ by + c.

4.17 Perfect differential equation. Consider the first order ODE
of the following form

dy

dx
= −P (x, y)

Q(x, y)
, (4.36)

where Q �= 0. If there is a function Φ such that Φx = P and Φy = Q,
then (4.36) is equivalent to

dΦ = Φxdx+ Φydy = 0, (4.37)

so that Φ(x, y) = C, C being the integral constant, is the general
solution.

Exercise.
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(A) Show that the separable case (→4.16) is a special case of perfect differential
equations.
(B) Solve the following differential equation:
(1) (x2 + log y)dx+ x

y dy = 0.
(2)

dy

dx
=

2+ yexy

2y − xexy .

4.18 Integrating factor. Even if P and Q may not have such a
‘potential’ Φ, P and Q times some common function factor I(x, y)
called integrating factor may have a ‘potential’ Ψ:

dΨ = IPdx + IQdy. (4.38)

Then Ψ = C, C being the integral constant, is the general solution to
(4.36).

It is generally not easy to find an integrating factor. However, we
can easily check whether there is an integrating factor dependent on x
alone or y alone. In such cases we can explicitly construct an integrat-
ing factor.

A necessary and sufficient condition for (4.36) to have an integrat-
ing factor dependent only on x is that

1

Q

(
∂P

∂y
− ∂Q

∂x

)
(4.39)

is a function of x alone. An integrating factor can be obtained in this
case as

I(x) = exp

(∫ x

x0

1

Q

(
∂P

∂y
− ∂Q

∂x

)
dx

)
. (4.40)

Exercise.
(1) Guess a necessary and sufficient condtion for (4.36) to have an integraing factor
depedent only on y, and demonstrate your guess.
(2) Show that

I(x) = exp
(∫ x

x0

p(s)ds
)

(4.41)

is an integrating factor for (4.36) in 4.17.

The existence problem of the integrating factor is crucial to ther-
modynamics. The second law, in essence, asserts that the heat form
ω = dE −∑ xidXi, where E is the internal energy, Xi is an extensive
variable, and xi its conjugate intensive quantity, has an integrating fac-
tor called the absolute temperature (or its reciprocal).
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Notice that if the number of independent variables (x and y in
(4.36), E and Xi in thermodynamics) is two, then locally always inter-
grating factors do exist. See Discussion in (B) below.

Discussion.
(A) If there is one integrating factor, then there are infinitely many. Suppose λ is
an integrating factor of Pdx+Qdy such that du = λ(Pdx+Qdy). Show that any
µ = λψ(u), where ψ(u) is any differentiable function of u, is an integrating factor.
(B) Incompleteness of elementary exposition of thermodynamics. Born67

pointed out that
dQ = Xdx+ Y dy (4.42)

always has an integrating factor. His argument is as follows. dQ = 0 means

dy

dx
= −X

Y
(4.43)

so that it has (at least locally) a solution ϕ(x, y) = C (Notice that this integration
is generally impossible, if there are more than two variables). Hence,

ϕxdx+ ϕydy =
(
ϕx − ϕyX

Y

)
dx = 0. (4.44)

for any dx. This implies that ϕx/ϕy = X/Y , so that there must be an integrating
factor.

This observation has a grave consequence on elementary exposition of thermo-
dynamics, because if a system is described in terms of E and V (as is customarily
done in the Carnot cycle), then we do not need the second law to assert that there
is an integrating factor for the heat form ω = dE + pdV . The elementary introduc-
tion is, if not incorrect, grossly incomplete. This was first recognized by Born and
motivated Caratheodory to study the mathematical foundation of thermodynamics.
(C)Notice that the proposition that any 2 dimensional 1-form has an integrating
factor is equivalent to the proposition that 2-dimensional space time is always con-
formally flat.
(D) Demonstrate that

dQ = −ydx+ zdy + kdz, (4.45)

where k is a constant, has no integrating factor.[Hint. This is related to a perfect
differential.]

4.19 Homogeneous equation. The following type of ODE is called
a homogeneous equation:

dy

dx
= f

(
y

x

)
. (4.46)

67 Read M. Born, Physik Z. 22, 218, 249, 282 (1922), if you can read German.
The lecturer recommends this review article to every serious (statistical) physicist.
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If we introduce w = y/x, this reduces to the separable case 4.16:

dw

dx
=

f(w)− w

x
. (4.47)

Exercise.
(1)

dy

dx
= f
(
ax+ by + c
a′x+ b′y + c′

)
(4.48)

can be converted to the homogeneous form (a′b − ab′ �= 0 is assumed). How can
you do this? What happens if a′b− ab′ = 0?
(2) Solve

dy

dx
=
y4 + x4

xy3
. (4.49)

(3) Solve
dy

dx
=
x2 + y2

xy
(4.50)

4.20 Linear first order equation, variation of constants. The
first order equation

dy

dx
= p(x)y + q(x) (4.51)

is called a linear equation. The equation can be solved by the method
of variation of constants. Let

y(x) = C(x)e
∫ x

p(s)ds. (4.52)

Then, the equation for C can be integrated easily. As we will see
in 4.28, the method of variation of constants always works for linear
equations (Lagrange’s method).

Exercise. Solve
dy

dx
= x(x+ y). (4.53)

4.21 Bernoulli equation. The first order equation of the following
form is called a Bernoulli equation:

dy

dx
= P (x)y +Q(x)yn, (4.54)
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where n is a real number. Introducing the new variable z(x) = y(x)1−n,
we can reduce this equation to the case 4.20 for z(x).

Exercise.
Solve
(1)

dy

dx
+ xy − xy2 = 0. (4.55)

(2)
dy

dx
+ y − y−2 = 0. (4.56)

4.22 Riccati’s equation. The first order equation of the following
form is called a Riccati’s equation:

dy

dx
= R(x)y2 + P (x)y +Q(x). (4.57)

If R = 0, then it is linear (→4.20); if Q = 0, then it is a Bernoulli
equation (→4.21). Otherwise, there is no general way to solve this
equation by quadrature. However, if we know one solution y = y1(x)
for this equation, the function v(x) = y(x)− y1(x) obeys the following
Bernoulli equation,

dv

dx
= [P (x) + 2R(x)y1(x)]v(x) +R(x)u2(x), (4.58)

so we can obtain the general solution for (4.57) as v + y1 in terms of
the general solution v to this Bernoulli equation.

Exercise. Let (x(t), y(t)) be a parametric representation of a plane smooth curve
(say, C2). The differential equation dp(t)/dt, where p(t) is the slope of the tan-
gent(i.e., p(t) = dy/dx), has the form of Riccati’ s equation. Demonstrate this
claim and determine R, P and Q.
Discussion.68

Riccati discussed
dy

dx
+ ay2 = bxα, (4.59)

where a, b and α are constant. To avoid trivial cases, we assume all of them
are non-zero. Liouville demonstrated that this equation can be solved in terms
of elementray functions (trigonometric, exponetial, algebraic functions and their
elementary combinations) only in the following cases:

68 K Yosida,Solution Methods for Differential Equations , second ed. (Iwanami,
1978) p20–.
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(i) α = −2,
(ii) α = −4n/(2n− 1) for n = 1, 2, · · ·.
(iii) α = −4n/(2n+ 1) for n = 1, 2, · · ·.

4.23 Second order ODE. This has the following form69

d2y

dx2
= f

(
x,

dy

dx

)
. (4.60)

If it is autonomous (→4.6), it can be reduced to a first order PDE
by introducing p = dy/dx as the new unknown function, and y as the
independent variable:

p
dp

dy
= f(y, p). (4.61)

If f does not depend on p, then this is 4.16, so p can be obtained. The
resultant solution is interpreted as the first order ODE for y

1

2

(
dy

dx

)2

=
∫ y

dz f(z) + const., (4.62)

which is again separable. This is a well-known method to solve 1D
autonomous classical mechanical system.

4.24 Method of reducing of order.

d2y

dx2
+ a(x)

dy

dx
+ b(x)y = 0 (4.63)

can be converted to Riccati’s equation by introducing

z =
1

y

dy

dx
. (4.64)

The result is
dz

dx
+ z2 + a(x)z + b(x) = 0. (4.65)

This method is due to d’Alembert (→1.13) and is called the method of
lowering the order. (4.64) is called d’Alembert’s transformation. This
technique allows us to reduce n-th order linear ODE to n− 1-th order
(generally nonlinear) ODE in general.

69 We consider only the normal forms (→4.4).
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4.25 Standard form of linear second order ODE. If a = 0 in
(4.63), the equation is said to be in the standard form. If a �= 0, then
we introduce

z = y exp
(
1

2

∫ x

a(x′)dx′
)
. (4.66)

We have
d2z

dx2
= −

(
b− a2

4
− a′(x)

2

)
z. (4.67)

This form is a useful starting point for approximate solutions.

Discussion.
The following equation:

LSTu ≡
[
d

dx
p(x)

d

dx
+ q(x)

]
u = 0 (4.68)

is called a Sturm-Liouville equation (→8.4), and

1
w(x)

LSTu = λu (4.69)

with appropriate boundary conditions is called a Sturm-Liouville eigenvalue problem
(→XX). Any second order linear ODE can be converted to the Sturm-Liouville
form.
(1) Demonstrate that

p2(x)
d2u

dx2
+ p1(x)

du

dx
+ p0(x)u− λu = 0 (4.70)

can be converted to the Sturm-Liouville form with the following relations

w(x) =
1
p2(x)

exp
[∫ x p1(t)

p2(t)
dt

]
, (4.71)

p(x) = w(x)p2(x), (4.72)
q(x) = w(x)p0(x). (4.73)

(2) Convert Bessel’s equation (→(1.18)) to the Sturm-Liouville form:

d

dx

(
x
du

dx

)
+
(
1− m

2

x2

)
u = 0. (4.74)

(3) By the following Liouville transformation

u(x) = v(t)[p(x)w(x)]−1/4 (4.75)

with

t =
∫ x
√
w(s)
p(s)

ds (4.76)
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the above Sturm-Liouville equation can be converted to the Schrödinger form:

−d
2v

dt2
+ V (t)v = λv, (4.77)

where the potential is given by70

V (t) =
q(x)
w(x)

+ [p(x)w(x)]−1/4 d
2

dt2
[p(x)w(x)]1/4. (4.78)

In this formula x is understood as the function of t as defined by (4.76). This form
is a good starting point to study asymptotic behaviors of the solutions.
(4) Convert Bessel’s equation into the Schrödinger form:

d2v

dt2
+
[
k2 − m

2 − 1/4
t2

]
v = 0. (4.79)

Compare this result with (4.67).

4.26 Linear second order ODE with constant coefficients. Con-
sider

d2y

dx2
+ a

dy

dx
+ by = 0, (4.80)

where a and b are constants.

P (λ) = λ2 + aλ+ b (4.81)

is called its characteristic polynomial, and its roots are called charac-
teristic roots. We will discuss the general theory in the next section
(→5.5), but in this simple second order case the general conclusion is
the following:

4.27 Theorem [General solution to (4.80)]. If the characteristic
roots of (4.80) are α and β (�= α), then its general solution is the linear
combination of ϕ1(x) = eαx and ϕ2(x) = eβx. If α = β, then the gen-
eral solution is the linear combination of ϕ1(x) = eαx and ϕ2(x) = xeαx

(the characteristic roots need not be real.) ✷
ϕ1(x) and ϕ2(x) are called fundamental solutions and {ϕ1(x), ϕ2(x)} is
called a system of fundamental solutions for (4.80). A set of solutions
is a fundamental system, if it spans (is a basis set of) the totality of
the solution set of the ODE. See XX for more general statements.

Exercise.

70 d/dt in the following formula acts only in V (t); it is NOT an operator acting
even outside the formula.
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Study the qualitative behavior of the following equation when the (bifurcation pa-
rameter) ε changes its sign:

d2x

dt2
+ 2ε

dx

dt
+ ω2x = 0. (4.82)

4.28 Inhomogeneous equation, Lagrange’s method of varia-
tion of constants. An ODE

d2y

dx2
+ a

dy

dx
+ by = f (x) (4.83)

with nonzero f is called an inhomogeneous ODE (the one without f is
called a homogeneous equation). The general solution is given by the
sum of the general solution to the corresponding homogeneous equation
and one particular solution to the inhomogeneous problem. A method
to find a particular solution to (4.83) is Lagrange’s method of variation
of constants. Let ϕi(x) be the fundamental solutions. We determine
the functions Ci(x) to satisfy (4.83):

u(x) = C1(x)ϕ1(x) + C2(x)ϕ2(x). (4.84)

One solution can be obtained from

dC1

dx
= −f(x)ϕ2(x)

W (x)
,

dC2

dx
=

f(x)ϕ1(x)

W (x)
, (4.85)

where W (x) = ϕ1(x)ϕ
′
2(x)− ϕ2(x)ϕ

′
1(x), the Wronskian (→??) of the

fundamental system {ϕ1, ϕ2}. ✷
If the two characteristic roots (→4.26) α and β are distinct, then such
a u is given by

u(x) =
1

α− β

(∫ t

0
dsf (s)eα(t−s) −

∫ t

0
dsf(s)eβ(t−s)

)
. (4.86)

Lagrange’s method can be generalized to n-th order linear ODEs.

Discussion
Consider the relation of Lagrange’s method and Green’s function (→X15). Rie-
mann introduced Green’s functions to solve linear ODE, so it is often called Rie-
mann’s function as well.

Exercise.
Solve
(1)

d2y

dt2
− 2
dy

dt
+ 2y = sin t. (4.87)
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(2)
d2x

dt2
+ 4x = cos2 2t, (4.88)

(3)
d2x

dt2
+ x = sin t. (4.89)

4.29 Equidimensional equation: invariance under scaling. If
an ODE is invariant under the scaling of the independent variable
x → ax, then we call the equation an equidimensional equation (in
x). Explicit appearance of x in the equation can be removed by intro-
ducing t = ln x as the new independent variable. That is, the equation
becomes an autonomous equation (→4.6) in t (→4.30 Discussion).

If the equation is linear, then the general solution is given by the
linear combination of the power of x, whose exponent can be deter-
mined by introducing xµ (this is understood as log x if µ = 0) into the
equation. For example, the general solution to

d2

dr2
rR =

R

r
I(1 + I) (4.90)

is given by R(r) = Ar + Br− −1. The equation appears when we
separate the variable of the Laplace equation (or, e.g., the Schrödinger
equation in spherical infinite potential well) in the spherical coordinates
(→??).

Exercise.
Show that the following Euler’s differential equation

xn
dny

dxn
+ a1xn−1 d

n−1y

dxn−1
+ · · ·+ any = 0 (4.91)

can be transformed to a constant coefficient linear ODE with the introduction of
new independent variable t as x = et.

4.30 Scale invariant equation. If an ODE is invariant under the
scaling x → ax and y → apy for some p, we call the equation scale
invariant. In this case, v ≡ y/xp obeys an equidimensional ODE, so
that we can use the trick in 4.29.

Discussion.
The following equation is called the Thomas-Fermi equation

d2ϕ

dx2
=

1√
x
ϕ3/2. (4.92)
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This is a scale invariant equation under x → ax and ϕ → a−3ϕ. In the physi-
cal situation, the equation is solved under the boundary condition ϕ(0) = 1 and
limx→∞ ϕ(x) = 0, so that such a simple scaling invariance does not hold. Still, if
one wishes to get an asymptotic form for large x, this should be a good strategy.
(1) Show that in this asymptotic limit

ϕ(x) � 144
x3

(4.93)

is a reasonable approximation.
(2) To obtain the correction to this solution, let us write

ϕ(x) =
144
x3

+ ψ, (4.94)

and solve the equation to first order in ψ. The equation for ψ to this order becomes

d2ψ

dx2
=

18
x2
ψ, (4.95)

(3) This is an equidimensional equation (→??), so we can obtain the solution in
the power form. The result is

ψ ∝ x−β (4.96)

with β = (−1 + √
73)/2 � 3.77. If we obey the instruction above, we introduce

t = lnx to convert the equation into(
d2

dt2
− d
dt

)
ψ = 18ψ. (4.97)

This is easy to solve (→5.5(A))).
(4) In this case the following amazing solution can be constructed. Using both the
asymptotic solution and the correction we computed, we can construct

ϕ =
144

x3(1 + Cx−0.77)n
, (4.98)

where C and n are adjustable parameters. To make ϕ(0) finite, we must choose
3 − 0.77n = 0 or n = 3.9. Now, we can impose the boundary condition at 0.
C = 1440.77/3. Hence,

ϕ(x) =
[
1 +
( x

122/3

)0.77
]−3.90

. (4.99)

According to Migdal, this solution agrees well with the numerical result.

4.31 Clairaut’s differential equation. The following differential
equation is called Clairaut’s differential equation

y = px+ f(p), (4.100)
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where p = dy/dx and f is a C1-function. Its general solution is

y = Cx+ f(C), (4.101)

where C is a constant. The equation has a singular solution (→4.3),
which is the envelop curve of (4.101).
Let us assume that (4.100) has a solution y = y(x) which is not exhausted by
(4.101). Put this in (4.100), and differentiate it with x. We obtain

dp

dx

(
x+
df(p)
dp

)
= 0. (4.102)

This implies p = C, or

x+
df(p)
dp

= 0. (4.103)

This is the equation obtained from the derivative of (4.101) with respect to C and
(4.100).

Exercise.
Solve

y = px+ p− p2. (4.104)
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5 Constant Coefficient Linear ODE

A practical method is outlined to solve constant coefficient
linear ODE explicitly (constructively). A method to ana-
lyze the stability of a fixed point is also explained. A useful
theorem to locate eigenvalues of a matrix is Gershgorin’s
theorem.

Key words: Exponential of matrix, stability, hyperbolic
fixed point, Hartman-Grobman theorem, Gershgorin’s the-
orem.

Summary
(1) Practice calculating eA when A is not diagonalizable (5.2, 5.5).
(2) Linear stability analysis: the stability around a hyperbolic fixed
point is completely determined by the linearized equation (5.8-5.10).
(3) There is a useful theorem to restrict the locations of eigenvalues of a
(complex) square matrix on the complex plane (Gershgorin’s theorem)
(5.10).

5.1 General form. n-th order ODE with constant coefficients can
always be written in the form (→4.4-4.6)

du

dx
= Au, (5.1)

whereA is a n×n constant matrix, and u consists of u, u1 ≡ du/dx, u2 ≡
d2u/dx2, · · · , un−1 ≡ dn−1u/dxn−1. We have only to solve the constant
coefficient first order equation (5.1). For non-constant coefficient cases,
see X.

5.2 Exponential function of matrix. Consider the following for-
mal series

f(t) = 1 + At+
1

2!
A2t2 +

1

3!
A3t3 + · · ·+ 1

n!
Antn + · · · , (5.2)

where 1 is the n × n unit matrix. If this series is truncated at some
finite order, the result should be an n × n matrix. We say the series
converges if f(t) applied to any finite vector v converges.71 We define
the norm of the matrix by

‖A‖ ≡ sup
v

|Av|/|v|. (5.3)

71 This is equivalent to the componentwise convergence of the matrix series.
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We can obtain
‖f(t)‖ ≤ exp(‖A‖t). (5.4)

Hence, if the components of A are finite, then the series is absolutely
convergent and consequently f(t) is well defined.72 The series is also
uniformly (in t) convergent. Therefore, we may termwisely differentiate
it to get a matrix relation

df(t)

dt
= Af(t). (5.5)

Hence, f(t) is written as f(t) = etA (f(0) = I is the initial condition,
where I is the unit matrix).

5.3 General solution to (5.1). The general solution to (5.1) is

u(t) = etAu0, (5.6)

where u0 is a constant n-vector (the initial condition vector). For
an orthonormal basis {e1, · · · , en}, {eAte1, · · · , eAten} is a fundamental
system of solutions of (5.1). Since eAt is nonsingular for any A, the
dimension of the space spanned by the initial data and that of the
solutions at any time t are identical. That is, u(0) and u(t) are one-to-
one correspondent. Theoretically, the formal solution may be enough,
but we must be able to calculate the matrix etA explicitly.

5 5

5.4 Diagonalizable cases. Since our equation is linear, complexifi-
cation is always helpful. That is, we interpret the equation to be on
Cn instead of Rn, and take the real part of the solution to obtain the
real solution to the original problem. If the matrix A is normal (i.e.,
A∗A = AA∗), thenA is diagonalizable by a similarity transformation.73

In this case there is a unitary matrix U such that U ∗AU = Λ, which is
a diagonal matrix λ1 ⊕ λ2 ⊕ · · · ⊕ λn. It is easy to demonstrate (return
to the definitioin 5.2) that

U∗etAU = eΛt. (5.7)

Therefore, the general solution74 to (5.1) reads

u(t) = c1p1e
λ1t + c2p2e

λ2t + · · ·+ cnpne
λnt, (5.8)

72 If we interpret |v| to be the ordinary Euclidean length, then the norm defined
here is equal to the maximum of the square root of the eigenvalues of A∗A.

73 This is only true in general when the vector space is considered on the field C.
This is why we need complexification.

74 Here, ‘general’ means that a solution from any initial data can be obtained.
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where ci are arbitrary constants and pi is a normalized eigenvector
belonging to the eigenvalue λi (here all the eigenvalues are multiply
taken into account according to their multiplicity). This should be
obvious from (5.6), (5.7) and the structure of the unitary matrix U =
(p1,p2, · · · ,pn), if we interpret pi to be column vectors.
If the matrix cannot be diagonalized by a similarity transformation,
then polynomials of t appears in place of constants. All the cases
including this nondiagonalizable case can be solved constructively75 as
follows:

5.5 Practical procedure.
(A) In the above the most general approach is described to solve (5.1).
To solve a constant coefficient n-th order linear ODE

an
dnu

dtn
+ an−1

dn−1u

dtn−1
+ · · ·+ a1

du

dt
+ a0u = 0, (5.9)

we need not consider the general matrix, but a very special form which
can be guessed from 4.5. Let its characteristic roots, i.e., the roots of

anλ
n + an−1λ

n−1 + · · ·+ a1λ + a0 = 0, (5.10)

be λ1, · · · , λr with the multiplicity m1, · · · , mr, respectively. Then, the
general solution for (5.9) is given by a linear combination of

{eλ1t, teλ1t, · · · , tm1−1eλ1t, eλ2t, · · · , tm2−1eλ2t, · · · , tmr−1eλrt}. (5.11)

A set of solutions which can span the totality of the solution space of
an ODE is called its fundamental system of solutions. (5.11) is a fun-
damental system for (5.9).
(B) A general procedure to compute etA is as follows:
(1) Find the characteristic polynomial f(x) = det(xI − A), and eigen-
values (the zeros of f). Let

f(x) = (x− λ1)
µ1(x− λ2)

µ2 · · · (x− λk)
µk (5.12)

(2) Compute the partial fraction expansion

1

f(x)
=

g1(x)

(x− λ1)µ1
+

g2(x)

(x− λ2)µ2
+ · · ·+ gk(x)

(x− λk)µk
. (5.13)

(3) Compute
fj(x)↽== f(x)/(x− λj)

µj . (5.14)

75 ‘Constructive’ means that an explicit procedure to obtain a solution is given.
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Then make the following matrix (this is a projection operator →??)

Pj = fj(A)gj(A). (5.15)

(4) eAt is given by

eAt = eAt(P1 + P2 + · · ·+ Pk). (5.16)

Each term can be computed as follows:

eAtPj = eλjte(A−λjI)tPj, (5.17)

= eλjt
νj−1∑
m=0

tm

m!
(A− λjI)

mPj. (5.18)

In this calculation, we need not actually know what νj are. Simply
calculate (5.18) until one gets the vanishing factor. Notice that νj does
not exceed the multiplicity µj.

76

A theoretical explanation why this procedure works is given in
Appendix 8A.77

Exercise.
(A) Solve the following linear ODEs:
(1)

du

dt
=


 1 1 0
0 1 0
0 0 2


u. (5.19)

(2)

du

dt
=



1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1


u. (5.20)

(3)

du

dt
=


 0 1 0
0 −2 −5
0 1 2


u. (5.21)

In this case the matrix can be diagonalized, but still the general method is useful.
(B) Construct the projection operators for eigenspaces of the following matrices

A =
(
1 9
1 1

)
, A =


 0 1 1
0 0 1
0 −1 2


 . (5.22)

76 µj is the usual multiplicity (=algebraic multiplicity) of the eigenvalue λj . The
number of eigenvectors (i.e., the dimension of the eigenspace for λj) need not be
the same as µj . This dimension is the number νj .

77 Y. Takahashi, Dynamical systems and differential equation (Iwanami, 1996)
Section 2.3 contains a complete proof.
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5.6 Inhomogeneous case. The general solution to the following
inhomogeneous equation

du

dx
= Au+ f (5.23)

is given by (use the method of variation of constants →4.20, 4.28)

u(x) = exAu0 +
∫ x

0
e(x−y)Af (y)dy. (5.24)

This has the usual form (→4.28): sum of the general solution to the
homogeneous equation (the first term) and a special solution for the
inhomogeneous equation (the second term).

The equation of motion of a charged particle whose charge-mass ratio is unity may
be written as

dv

ddt
= v ×B +E, (5.25)

where B is the magnetic field and E is the electric field (the first term is the Lorentz
force).
(1) Rewrite this equation in the form of (5.23).
(2) Solve the eqution.
(3) What is the trajectory of the particle? Sketch it.

5.7 Stability question of fixed point. Suppose we have a vector
ODE

dx

dt
= v(x) (5.26)

for which x = 0 is a fixed point (i.e., v(0) = 0). An important question
is whether this solution is stable or not. That is, if we perturb the
solution slightly 0 → δx, does |δx| grow in time? If yes, then the
solution cannot be stable. On the other hand, if this quantity goes to
zero eventually for any small displacement, we may conclude that the
fixed point is stable. The following theorem is a fundamental theorem
(stated for the present case):

5.8 Theorem [Hartman-Grobman]. If 0 is a hyperbolic fixed point,
that is, dv/dx at x = 0 does not have any pure imaginary eigenvalue,
then for sufficiently small neighborhood of 0 the orbits of (5.26) and
those of

dx

dt
= Ax, (5.27)
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where A = dv/dx|x=0, can be related one to one.
78 In particular, the

stability (or instability) of 0 for (5.26) is equivalent to the stability (or
instability) of 0 for (5.27).

5.9 Stability analysis of fixed point. 5.8 tells us that the stability
of the fixed point of (5.26) is completely determined by the eigenvalues
of the derivative dv/dx evaluated at the fixed point, (if the fixed point is
hyperbolic; if not, we must pay attention to the higher order terms; that
is, linearization is not enough). If there is no eigenvalue whose real part
is non-negative, then the fixed point is linearly stable. Thus the linear
stability problem boils down to the eigenvalue problem. Sometimes
the following theorem 5.10 is useful, which can give some information
about the location of the eigenvalues on the complex plain.79

Discussion [Logical sloppiness].
Let

dx

dt
= Ax+ g(x),

where A is a constant matrix whose eigenvalues are all on the left half complex
plane, and g(0) = 0, and ‖g(x)‖ ≤ C‖x‖ for some positive constant C. Then, there
is a positive number δ such that

‖x(0)‖ < δ ⇒ lim
t→∞x(t) = 0.

Its proof is not very trivial.80

Physicists often argue as follows. “Linearize the equation around the point of inter-
est and make an equation for the small displacement δx. Since we find it shrinks to
zero, we conclude that the point is stable.” The reader might think what all the fuss
is about of the above proof. What we must demonstrate is that if the displacement
is small initially, then linearization is OK for all t > 0. If the reader assumes this,
then the argument is perfectly all right, but the argument sounds almost circular.

Exercise.
(1) Find the fixed point (equilibrium point) of

dx

dt
= x− xy, (5.28)

dy

dt
= −y + xy. (5.29)

78 More precisely, the orbits are homeomorphic. That is, there is a continuous
map which maps any orbit of (5.26) to that of (5.27) one to one continuously (but
not generally diffeomorphic) in both ways.

79 For the stability only, we do not need such a strong theorem as the Hartman-
Grobman theorem as can be seen in Takahashi, ibid., Section 4.2. However, practi-
cally to remember the Hartman-Gromman-theorem is useful.

80 See Takahashi, ibid., p110-111.
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Show that the fixed point is not hyperbolic. Change the local coordinates around
the fixed point to the polar coordinates, and demonstrate that the point is actually
stable (i.e., the perturbation does not grow indefinitely).
(2) Study the stability of the origin of the following Lorenz equation.81

ẋ = −10(x− y), (5.30)
ẏ = rx− y − xz, (5.31)

ż = −8
3
z + xy. (5.32)

Here r is a positive bifurcation parameter which controls the behavior of the system.
(3) Demonstrate that x = 0 is a stable solution (stable fixed point) of

dx

dt
= Ax, (5.33)

where

A =




−1 0 1/2 −1/3
1/4 −1/2 1/5 0
1/4 0 −1 1/2
1/4 1/3 4 −5


 . (5.34)

5.10 Gershgorin’s theorem. Let A =Matr{aij} be an n× n com-
plex matrix. Its eigenvalues are all in the union D = ∪n

i=1Ci, where Ci

are discs called Gershgorin’s disks:

Ci ≡ {z ∈ C| |z − aii| ≤
∑
j �=i

|aij|} (5.35)

for i = 1, · · · , n (here no summation convention). The number of eigen-
values contained in each connected component of D is equal to the
number of disks making each connected component. ✷

Remark. Since the eigenvalues of A and its transposition AT are iden-
tical, you can apply the theorem to columns. However, you cannot mix
both. That is, if you decide to use raws, then you must use summation
over j’s in (5.35).
[Demo] Let λ be an eigenvalue of A and x = (x1, · · · , xn)T a corresponding eigen-
vector. We have

n∑
j=1

aijxj = λxi, (i = 1, · · · , n). (5.36)

Since x �= 0, there must be xk such that |xk| = maxi |xi| �= 0. For i = k (5.36)
reads

(λ− akk)xk =
∑
j �=k
akjxj . (5.37)

81 See, for example, E. A. Jackson, Perspective of Nonlinear Dynamics, vol.2 Sec-
tions 7.3-5. M. Viana, “What’s new on Lorenz strange attractors?”, Math Intelli-
gencer, 22(3) 6 (2000).
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In other words,

|λ− akk| ≤
∑
j �=k

|akj | |xj ||xk| ≤
∑
j �=k

|akj | = rk. (5.38)

This implies that λ ∈ Ck which is obviously in D.
To prove the last part, we note the fact that the eigenvalues are continuously

dependent on the matrix components. Let us split A into its diagonal part AD and
the off-diagonal part A0: A = AD + AO. We make A(t) = AD + tAO. The second
part of the theorem is trivially true for A(0). The Gershgorin disks Ci(t) for A(t)
depends on t continuously. The eigenvalues of A(t) is also continuous functions of
t. Hence, for any t (particularly for t = 1) the theorem must be true.

Discussion.
Study the trajectories of the eigenvalues of the following matrix A(t) for t ∈ [0, 1],
and discuss their relation with the Gershgorin disks:82

A(t) =
(

0 3t
−7t 8

)
. (5.39)

Notice that the eigenvalues do not move under the similarity transfor-
mation, but the matrix elements are altered, so that the estimate can
be made better or worse with an application of a similarity transfor-
mation before applying the theorem. See the next example.

5.11 Application of Gershgorin’s theorem.83 Find the location
of the eigenvalues of A.

A =


 1 ε 0

ε 2 ε
0 ε 3


 . (5.40)

If we apply the similarity transformation A → D−1AD, where

D =


 1/4 0 0
0 ε 0
0 0 ε


 , (5.41)

then the eigenvalue close to 1 can be located within the order of ε2

instead of ε. This demonstrates the usefulness of similarity transfor-
mations applied before the estimation. It is not hard to find similar
transformations allowing us to estimate the other eigenvalues with the
same order of accuracy.

82 Iri 1995
83 From M. Iri, Linear Algebra II (Iwanami, 1994) p218. This is the best linear

algebra textbook currently available, but in Japanese.
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5.12 Linear difference equation. Our knowledge about linear ODE
allows us to guess the following theorem:
Theorem Any solution of the following constant (complex) coefficient
linear difference equation (of order p)

xn+p + c1xn+p−1 + · · ·+ cpxn = 0 (5.42)

has the following form

un =
k∑

j=1

mj−1∑
m=0

Cj,mnmλn
j , (5.43)

where Cj,m (j = 1, 2, · · · , k and m = 1, · · · , mj−1) are complex con-
stants, and λj is the mj-tuple zero of the characteristic polynomial of
the difference equation:

P (z) = zp + c1z
p−1 + · · ·+ cp. (5.44)

✷
The coefficients are determined by the auxiliary conditions such as the
boundary conditions. See the following examples.

Examples
(1) Fibonacci sequence.

xn+1 = xn + xn−1 (5.45)

with x0 = x1 = 1 determines the Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, · · ·. The
general solution to (5.45) is given by

xn = C1

(
1 +

√
5

2

)n
+ C2

(
1−√

5
2

)n
. (5.46)

Therefore, the Fibonacci sequence has the following general term

xn =
5 +

√
5

10

(
1 +

√
5

2

)n
+

5−√
5

10

(
1−√

5
2

)n
. (5.47)

(It is interesting to notice that to describe integer sequences we need irrational
numbers.)
(2) Polyenes in the Hückel molecular orbital approximation. Suppose a chain or a
ring of carbon atoms is made (through the so-called σ- bonds), and on this chain is
a single extra electron. Let the probability amplitude of the wave function of this
electron at the j-th carbon be cj . Then, the energy E of this wave function is given
by the following discrete version of the Schrödinger equation:

βci+1 + αci + βci−1 = Eci. (5.48)

(Here β, which is usually negative, is called the overlap integral describing how easily
an electron can jump from one carbon atom to its neighboring carbon atoms; α is
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called the Coulomb integral describing how strongly an atom attracts an electron.)
It is convenient to rewrite the equation with the aid of its linearity as

ci+1 + xci + ci−1 = 0, (5.49)

where x = (α− E)/β.
(i) Linear polyene. If the carbon chain consisting of N carbons is linear, then we
can use (5.49) for i = 1, · · · , N with the boundary conditions c0 = cN+1 = 0. The
characteristic equation is

λ2 + xλ+ 1 = 0. (5.50)

Let the roots be λ1 and λ2. Then λ1λ2 = 1, and λ1 + λ2 = −x. To satisfy
the boundary condition, cn should not exponentially grow in the increasing nor
decreasing direction of n. Hence, |λ1| = |λ2| = 1 is required (see the general form
of the solution in the theorem). That is, λ1 and λ2 must be complex conjugate and
must be on the unit circle. Let λ1 = e−θ. Then, x = −2 cos θ. The general solution
to (5.49) is given by

cn = Aeinθ +Be−inθ. (5.51)

Therefore, the boundary conditions imply

A+B = 0, Aei(N+1)θ +Be−i(N+1)θ = 0. (5.52)

That is,
e2i(N+1)θ = 1. (5.53)

From this we obtain θ = πk/(N + 1) and θ = πk/(N + 1) + π (k = 0, 1, · · · , N) .
However, k = 0 implies cn = 0. Furthermore, these two sets of angles give exactly
the same set of cosine values. Hence,

x = 2 cos
(
πk

N + 1

)
, k = 1, 2, · · · , N. (5.54)

In other words,

E = α+ 2β cos
(
πk

N + 1

)
, k = 1, 2, · · · , N. (5.55)

That is, the energy allowed to the electron on the carbon chain is determined as an
eigenvalue problem (as in the usual quantum mechanical problems).
(ii) Cyclic polyene. The difference equation for the coefficients (5.49) is the same.
The only difference from the linear case is the boundary condition. This time, we
must impose a cyclic boundary condition. If the ring contains N carbon atoms,
we extend the chain by one carbon at the ends and c0 = cN and c1 = cN+1 are
imposed. From (5.51), the boundary condition becomes

Aei(N+1)θ +Be−i(N+1)θ = Aeiθ +Be−iθ, (5.56)
AeiNθ +Be−iNθ = A+B. (5.57)

This requires
eiNθ = 1. (5.58)
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That is, the energies of the cyclic polyene orbitals are given by

E = α+ 2β cos
(
2πk
N

)
, k = 0, 1, · · · , N − 1. (5.59)

85



APPENDIX 8A Decomposition of eAt

A theoretical basis of the practical method ?? is outlined here. Conventionally, the
Jordan canonical form is used to compute eAt, but to make the Jordan canonical
form may not be very easy.84

(1) Let f(x) be the characteristic polynomial: f(x) = det (xI −A). If
f(x) = (x− λ1)µ1(x− λ2)µ2 · · · (x− λk)µk (5.60)

λj is an eigenvalue and µj is called its multiplicity.
(2) The lowest order polynomial ϕ(x) satisfying ϕ(A) = 0 is called the minimal
polynomial of A. ϕ must divide f and has the following form:

ϕ(x) = (x− λ1)ν1(x− λ2)ν2 · · · (x− λk)νk . (5.61)

0 < νj ≤ µj . A necessary and sufficient condition for A to be diagonalizable is
νj = 1 for all j.
(3) Theorem [Frobenius]. Let g(x) be the largest (highest order) common divisor
of all the (n− 1)-subdeterminant minors of xI −A. Then the minimal polynomial
ϕ is given by ϕ = f/g, where f is the characteristic polynomial.
(4) Wj↽== ker(λjI − A) (i.e., all the vectors satisfying Ap = λjp) is called the
eigenspace of A belonging to λj . W̃j↽== ker(λjI−A)νj (i.e., all the vectors satisfying
(λjI −A)νjp = 0) is called the generalized eigenspace of A belonging to λj . If A is
diagonalizable, then Wj = W̃j for all j.
(5) W̃1 ⊕ W̃2 ⊕ · · · ⊕ W̃k = Cn. That is, the vector space on which A is acting is
decomposed into the direct sum of generalized eigenspaces.
(6) The projection operator Pj for the generalized eigenspace W̃j can be constructed
as follows: Let f be the characteristic polynomial. Compute the partial fraction
expansion

1
f(x)

=
g1(x)

(x− λ1)µ1
+

g2(x)
(x− λ2)µ2

+ · · ·+ gk(x)
(x− λk)µk

. (5.62)

Here gj(x) is a polynomial of order not larger than µj − 1. Then

Pj = fj(A)gj(A), (5.63)

where
fj(x)↽== f(x)/(x− λj)µj . (5.64)

(7) (A− λjI)qPj = 0 for q ≥ νj .
(8) Now we can decompose eAt as follows: eAt(P1 + P2 + · · ·+ Pk). Here

eAtPj = eλjte(A−λjI)tPj , (5.65)

= eλjt

νj−1∑
m=0

tm

m!
(A− λjI)mPj , (5.66)

where we have used (7) after expanding the exponential function.

84 For this approach see M. W. Hirsch and S. Smale, Differential Equations, Dy-
namical Systems, and Linear Algebra (Academic Press 1974).
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6 Quasilinear First Order PDE

Quasilinear first order PDE has become increasingly impor-
tant in recent years in physics in conjunction to renormal-
ization group theory. Subsection A discusses how to solve
general quasilinear first order PDE analytically in terms
of characteristics. In Subsection B, as an application, we
discuss homogeneous functions that are important in sta-
tistical mechanics and mechanics. In the last subsection C,
the method outlined in A is applied to constant coefficient
linear PDE including wave and diffusion equations.

Key words: quasilinearity, characteristic equation, char-
acteristic curve, (generalized) homogeneous function

Summary:
(1) Quasilinear first order PDE can be solved with the aid of a system of
ODE called characteristic equations, which can be written down easily
(6.4).
(2) Homogeneous functions (6.8), their derivatives (6.10) and the PDE
they obey (6.9) must be clearly understood.
(3) Constant coefficient cases may be solved by several standard tricks
(6.16-6.19).

6.A General Theory

6.1 Quasilinear first order PDE. Let fi (i = 1, · · · , n) and g be
continuous functions of x1, · · · , xn and u.

n∑
i=1

fi
∂u

∂xi
= g (6.1)

is called a quasilinear first order partial differential equation. It is called
linear, because it is a linear combination of partial derivatives. It is
called ‘quasilinear’, because fi and g are allowed to depend on u. It is
clearly nonlinear in the physicists’ sense, if fi depends on u.

6.2 Typical example. Suppose a flow field (i.e., the velocity field v)
of an incompressible fluid is given. The continuity equation (the mass

87



conservation) reads (→2.33)

∂ρ

∂t
= −div ρv = −v · grad ρ. (6.2)

This is a typical quasilinear first order PDE. From its meaning, if
ρt=0(r) = f(r), then ρ(t, r) = f(r(t)), where r(t) is the particle tra-
jectory starting from r at t = 0; that is, the solution to

dr

dt
= v (6.3)

with the initial condition r(0) = r. This is an example of the charac-
teristic curve in the next entry.

6.3 Two variable case. Consider

f (x, y, z)
∂z

∂x
+ g(x, y, z)

∂z

∂y
= h(x, y, z), (6.4)

where f , g and h are well-behaved functions85 of x, y and z. To solve
the equation is to find a relation among x, y and z so that (6.4) is true.
We wish to find a 2-surface S given by z = H(x, y) on which (6.4)
holds. Suppose (x, y, z) and (x + dx, y + dy, z + dz) are both on this
surface. Then (

∂H

∂x
,
∂H

∂y
,−1
)
· (dx, dy, dz) = 0, (6.5)

i.e., n = (∂z/∂x, ∂z/∂y,−1) is a normal vector of the surface S. (6.4)
implies that n and the vector (f, g, h) are orthogonal. That is, to solve
(6.4) is to determine a surface z = H(x, y) whose tangent vectors are
(f, g, h). The equation of a curve whose tangent is (f, g, h) is given by

dx

f
=

dy

g
=

dz

h
. (6.6)

This is called the characteristic differential equation for (6.4) (cf. (6.3)).
The solutions to (6.6) are called characteristic curves.

In the present case (6.6) is actually two ODE so that the general
solution to (6.6) is given by two equations

F1(x, y, z) = c1, F2(x, y, z) = c2, (6.7)

85 ‘Well-behaved’ means that the relevant quantities are with sufficiently good
properties, say smoothness, to allow us to ignore inessential technical details.
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where c1 and c2 are integration constants. These equations describe
surfaces, so their intersection is generically a curve we are looking for.
It can be parametrized by these two parameters c1 and c2. If we change
c1 and c2, the curve moves in space. If there is a functional relation
between c1 and c2, then changing, say, c1 (c2 is slaved to c1) produces
a surface. Hence the general formula for the surface whose tangent
vectors are given by (f, g, h) is given by

G(F1, F2) = 0, (6.8)

where G is a (well-behaved) function which must be determined by
auxiliary conditions. This is the general solution we have been looking
for.

6.4 How to solve quasilinear first ODE: method of character-
istic equation. The characteristic equation for (6.1) is

dx1

f1

=
dx2

f2

= · · · = dxn

fn

=
du

g
. (6.9)

Solving this (actually n ordinary differential equations), we get n so-
lutions corresponding to (6.7) (any convenient combinations can be
chosen)

Fi(x1, x2, · · · , xn, u) = ci (i = 1, 2, · · · , n), (6.10)

from which we can get the general solution to (6.1) as

G(F1, F2, · · · , Fn) = 0, (6.11)

where G is a well-behaved function.
Historically, the method (and consequently the relation between

the PDE and the ODE) was stated for the first time by Leibniz in his
letter to l’Hospital in November, 1695.86

6.5 Homogeneous case. If g = 0 in (6.1), then du/g = du/0 in (6.9)
is interpreted as u = const. That is, one of the equations in (6.10) is
u = const. In this case the general solution can be written as

u = G(F1, F2, · · · , Fn−1), (6.12)

where F1, · · · , Fn−1 are the remaining n− 1 relations of (6.10).
Discussion. [Complete integral].
A solution of a first order PDE is called a complete integral, if it has the same number

86 K. Okamoto, Butsuri, Jan. 1996.
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of arbitrary constants as the number of independent variables.87 If we have such a
solution, we can make a solution which is dependent on a single arbitrary function
w as follows: Let an = w(a1, · · · , an−1), and construct the envelope surface of
u(x, a1, · · · , an−1, w(a1, · · · , an−1)): that is, we make the following equations:

ua1 + uanwa1 = 0, (6.13)
· · · , (6.14)

uan−1 + uanwan−1 = 0. (6.15)

From these equations we solve n− 1 parameters as a function of x. Then put these
solutions into u. This is the desired solution. However, there is NO guarantee that
the method can exhaust all the solutions constructed by the characteristic curve
method.
(2) For example,

u = ax+ by +
√
1− a2 − b2z + c (6.16)

is a complete integral of (grad u)2 = 1.

6.6 Examples.
(1) For (6.2), the characteristic equation reads

dt

1
=

dx

vx
=

dy

vy
=

dz

vz
=

dρ

0
, (6.17)

or (6.3) and dρ = 0 (→6.5). Hence, ρ(t, r) = f(r(t)) in 6.2 is justified.
(2)

(bx− ay)
∂f

∂x
+ (ax+ by − 1)∂f

∂y
= 0. (6.18)

The characteristic equation (→6.4) is

dx

bx− ay
=

dy

ax+ by − 1 =
df

0
. (6.19)

Solving this (→4.19), the general solution is given by (cf. 6.5)

f(x, y) = G


 b

a
arctan

y − β

x− α
− 1

2
log


1 +

(
y − β

x− α

)2

− log(x− α)




(6.20)
with α ≡ a/(a2 + b2) and β ≡ b/(a2 + b2).
(3)

∂f

∂x
− ∂f

∂y
= (x− y)f. (6.21)

87 More precisely, the matrix ∂2u/∂xi∂aj must be non-singular, where u(xi, aj) is
a complete solution.
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Its general solution is given by

f = e−xyG(x+ y). (6.22)

Exercise.
(A) Solve the following quasilinear first order PDE.
(1)

(y2 + z2 − x2)∂z
∂x

− 2xy
∂z

∂y
+ 2xz = 0. (6.23)

(2)

(bz − cy)∂z
∂x

+ (cx− az)∂z
∂y

= ay − bx. (6.24)

(3)88 [
L
∂

∂L
+
u

π2

(
επ2

2
− u
)
∂

∂u
+

u

(2π)2
N
∂

∂N

]
f = 0. (6.25)

(4) Demonstrate that the solution to

−y ∂u
∂x

+ x
∂u

∂y
= 0 (6.26)

is rotationary symmetric.
(B) Find the solution of z(∂z/∂x) + ∂z/∂y = 1 passing through the curves y = 2z
and x = z2.
(C) Solve

x
∂z

∂x
− y ∂z
∂y

= z, (6.27)

and
x2
∂z

∂x
− y2 ∂z

∂y
= y2 − x2. (6.28)

Find the particular solution to the above equations going through x = y = z.

6.7 Dilation parameter. It is often technically convenient to intro-
duce a parameter λ (called dilation parameter) to solve the character-
istic equation (6.9)

dx1

f1
=

dx2

f2
= · · · = dxn

fn
=

du

g
=

dλ

λ

This gives a parametric representation of characteristic curves.

88 This is the renormalization group equation for the mean square end-to-end
distance of a self-avoiding walk calculated by the ε-expansion method. What do
you expect to happen in the N →∞ limit? Here, N is the number of steps.
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6.B Homogeneous Functions

6.8 Homogeneous function of degree p. Let u be a well behaved
real-valued function defined on a region in Rn. If

u(λx1, λx2, · · · , λxn) = λpu(x1, x2, · · · , xn) (6.29)

for any real λ, u is called a homogeneous function of degree p, where
p can be any real number. Since λ can be any number, λ = x−1

1 is
admissible, for example. This implies that a homogeneous function of
degree p can be rewritten, for example, as

u(x1, · · · , xn) = xp
1f
(
x2

x1
, · · · , xn

x1

)
. (6.30)

Discussion.
More generally, a functional f(r) is called a homogeneous function, if

f(λr) = g(λ)f(r), (6.31)

where g is a function of λ only. Show that

g(λµ) = g(λ)g(µ). (6.32)

If g is continuous at a point, then the following form is the only nontrivial solution
to this functional equation: g(x) = xp. Its proof is not easy.

6.9 Theorem [Necessary and sufficient condition for homo-
geneity]. A necessary and sufficient condition for u to be a once-
differentiable homogeneous function of degree p is

n∑
i=1

xi
∂u

∂xi
= pu. (6.33)

[Demo] Necessity follows easily from the chain rule. To prove sufficiency, construct
the general solution of (6.33) (→6.4) and explicitly demonstrate that it is indeed
homogeneous of degree p. Actually, we can easily get the form like (6.30).

6.10 Theorem [Derivative of homogeneous functions are ho-
mogeneous]. Let u be a differentiable homogeneous function of degree
p ∈ R. Then, for any xi, ∂u/∂xi is a homogeneous function of degree
p− 1. ✷
This follows trivially from the definition of homogeneous functions.

92



6.11 Green’s theorem and homogeneous function. Let f(x, y)
be a continuously differentiable homogeneous function of order p on a
compact domain Ω ⊂ R2. Then,

(p+ 2)
∫
Ω
f(x, y)dxdy =

∫
∂Ω

f(x, y)(xdy − ydx). (6.34)

[Demo] Let u = −yf and v = xf .

∂v

∂x
− ∂u
∂y

= 2f + x
∂f

∂x
+ y
∂f

∂y
= (2 + p)f (6.35)

thanks to the homogeneity of order p of f (→6.9). Therefore, Green’s theorem
(→3.13) implies the above relation. ✷

This relation can be extended to Rn (n > 2):89

(n+ p)
∫
Ω
dτ =

∫
∂Ω

f(r)r · dS. (6.36)

6.12 Example from thermodynamics. Extensive quantities in
thermodynamics such as the Gibbs free energy, magnetization, entropy
are homogeneous functions of degree 1 of the masses of the constituents
(chemical species) of the system. 6.10 implies that intensive quanti-
ties such as temperature, chemical potential, pressure are homogeneous
functions of degree 0. From, for example, dE = TdS − pdV + µdN
E = TS − pV + µN follows according to Theorem 6.9.90

??.
Let x be the extensive quantity X per unit mass. Show

de = Tds− pdv + µdn. (6.37)

6.13 Kepler’s third law. Consider an n-body conservative system
with the potential energy given by U(r1, · · · , r2) which is a homoge-
neous function of degree p. This implies that the force is a homogeneous

89 See J. B. Lasserre, Integration and homogeneous functions, Proc. Amer. Math.
Soc. 127, 813 (1999). This contains much more general results.

90 The best thermodynamics textbook (introductory) for physicists is: H. B.
Callen, Thermodynamics (Wiley, 1960); R. Kubo, Thermodynamics (North-Holland;
translation of the first part of Daigaku Enshu: Netsugaku·Tokerikigaku, (Shokabo));
There recent books in Japanese by S. Sasa and H. Tazaki; these books are under the
influence of E. Lieb and J. Yngvason, The physics and mathematics of the second
law of thermodynamics, Phys. Rep., 340, 1-96 (1999).
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(vector-valued) function of degree p − 1 (→6.10). Newton’s equation
of motion

mi
d2ri

dt2
= −∂U

∂ri
, (6.38)

where mi is the math of the i-th body, has the following scaling prop-
erty: Scaling ri → λri and t → µt gives

mi
d2ri

dt2
= −λp−2µ2 ∂U

∂ri

. (6.39)

Therefore, if µ = λ1−p/2, the equation of motion is invariant. For
gravity, p = −1, so that this implies Kepler’s third law (T 2 = a3).91

6.14 Generalized homogeneous function. If a function f satisfies

f(λax, λby) = λpf(x, y) (6.40)

for any real λ and for some real numbers a, b and p, f is called a
generalized homogeneous function. This is important in understanding
critical phenomena. For example, the static scaling hypothesis (due
to Widom) asserts that the Helmholtz free energy F (T − Tc, H) of
a magnet, where Tc is the critical temperature, and H the magnetic
field, is a generalized homogeneous function for τ ≡ |T − Tc| � 0 and
H � 0:92

F = τ 2−αf(τ/H1/βδ), (6.41)

where α, β and δ are called critical exponents. These exponents and
the functional form of f are universal for a class of materials.93

6.C Application to Constant Coefficient Linear PDE

6.15 Constant coefficient linear PDE. Introduce the notation
∂i ≡ ∂/∂xi, and write collectively {∂i}. Let P ({xi}) be a constant
coefficient polynomial.

P ({∂i})u = g, (6.42)

91 For other examples, see J. M. Smith,Mathematical Ideas in Biology (Cambridge
UP).

92 See, for example, H. E. Stanley, Introduction to Phase Transition and Critical
Phenomena (Oxford UP, 1971), Chapter 11, 12 and 15.

93 See N. Goldenfeld, Lectures on Phase Transitions and the Renormalization
Group (Addison Wesley, 1992).
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where g is a function of {xi}, is called a constant coefficient linear
partial differential equation. The general solution to (6.42) is the sum
of the general solution94 to the homogeneous problem Pu = 0 and a
solution for Pu = g.

6.16 Theorem [Malgrange-Ehrenpreis]. If g is C∞ in a region
D ⊂ Rn, then (6.42) has a C∞ solution in D. ✷95

6.17 Factorization ‘theorem’. If P is factorized into two mutually
prime factors as P = P1P2, then the general solution to Pu = 0 is the
sum of the general solutions to P1u = 0 and P2u = 0. ✷96

This should be obvious from P (f1 + f2) = P2P1f1 + P1P2f2. Here
we assume the function f is sufficiently smooth.

Since P is a polynomial of many variables, there is no guarantee
that we can factorize this into distinct first order factors of the form∑

ai∂i. If we can, we can exploit our knowledge of first order linear
PDE (→6.5). If we cannot factorize P into first order operators, there
is no general way to solve the PDE (however, see 6.22).

From now on we study only two independent variable cases.

6.18 How to solve inhomogeneous equation. As is stated in 6.15
we have only to find one solution to Pu = g by whatever means we can
use. Useful observations are:
(1) If P = P1P2, then Pu = g can be solved step by step. First find u1

such that P1u1 = g, and then solve P2u = u1.
(2) P (∂x, ∂y)e

ax+byu = eax+byP (∂x+a, ∂y+b)u. [This can easily be seen
from, e.g., ∂n

xe
ax+byu = ∂n−1

x eax+by(∂x + a)u.]

6.19 Lemma. The general solution to

(a∂x + b∂y + c)nu = 0 (6.43)

is

u = e−cx/a
n−1∑
i=0

xiφi(bx− ay), (6.44)

94 By “general solution” we mean a solution containing m arbitrary functions for
a m-th order PDE in the linear case.

95 For a proof, see G. B. Folland, Introduction to Partial Differential Equation,
p84-7.

96 Practically, the ‘theorem’ is very useful as we see below, but precisely speaking,
the theorem cannot be true, because the smoothness of the solution to a lower order
PDE need not be as large as the original higher order PDE. Hence, the ‘theorem’
is useful only when we look for sufficiently smooth solutions.
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where φi are arbitrary functions. (If a = 0, then replace e−cx/a with
e−cy/b and xi with yi). ✷

To demonstrate this use (1) and (2) of 6.18. Also it is useful to
remember the following standard trick. Let L be a linear first order
differential operator and we wish to solve L2u = 0. If we know the
solution to Lv = 0, then introduce w as u = wv. The equation for w is
usually easier to solve.

6.20 Examples. Find the general solutions (Review 1.11).
(1) 1-space wave equation:

∂2u

∂t2
= c2∂

2u

∂x2
. (6.45)

For this equation

P (∂t, ∂x) = ∂2
t − c2∂2

x = (∂t − c∂x)(∂t + c∂x). (6.46)

Hence, the factorization theorem 6.17 implies that the general solution
to the wave equation is the sum of the general solution to (∂t−c∂x)u = 0
and (∂t+c∂x)u = 0. These can be solved easily by the standard method
6.18, so that the general solution to (6.45) is

u(t, x) = F (x− ct) +G(x+ ct), (6.47)

where F and G are arbitrary twice differentiable functions.97 That
is, the general solution is a superposition of right and left propagating
waves as we have already seen in 1.11.
(2) 2-space Laplace equation:

∂2u

∂x2
+

∂2u

∂y2
= 0. (6.48)

This is the case with c = i of (6.45). Hence, its general solution can
be written as F (x+ iy) +G(x− iy). We are looking for real solutions.
If F (z) + G(z) is real, then it must be a real part of some analytic
function.98 Hence, the general solution is a real part of any analytic
function.
(3)

∂2u

∂x∂y
+ 2

∂2u

∂y2
− ∂u

∂x
− 2∂u

∂y
= 0. (6.49)

97 See the footnote of 6.16.
98 Notice first that G(z) may be considered as the complex conjugate of some

analytic function H(z). Hence, F (z) +H(z) is real. We know F (z) + F (z) is also
real for all z, so that F (z)−H(z) must be real for all z. However, such an analytic
function must be a real constant. Hence, we may identify H and F .
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Its general solution reads

u(x, y) = F (2x− y) + eyG(x), (6.50)

where F and G are twice differentiable functions.

6.21 Examples of inhomogeneous equations. Find general solu-
tions:
(1)

∂2u

∂x2
+

∂2u

∂y2
= x. (6.51)

Use 6.18(1), or by inspection u = x3/6 is a solution. Thus the general
solution to this equation reads (→6.20)

u(x, y) = F (x+ iy) +G(x− iy) +
x3

6
. (6.52)

(2)
∂2u

∂t2
− ∂2u

∂x2
= sin(x+ at) (a �= ±1). (6.53)

We use 6.18(2). Use the linearity of the equation and the fact that
Im ei(x+at) = sin(x+at). That is, get a solution to (∂2

t −∂2
x)u = ei(x+at):

u =
1

2i(1− a2)
ei(x+at) (6.54)

Its imaginary part is the desired solution. Hence, the general solution
to (6.53) is (→6.20(1))

u = F (x− t) +G(x+ t) +
1

a2 − 1 sin(x+ at). (6.55)

If a = ±1 (resonant case), then introduce v as u = ei(x+at)v, and
make the equation for v. This is a standard method to solve resonant
problems.99

Exercise.
(1) Find the solution of z(∂z/∂x) + ∂z/∂y = 1 passing through the curves y = 2z
and x = z2.
(2) Consider the following telegraph equation:

∂2u

∂t2
− c2 ∂

2u

∂x2
+ (a+ b)

∂u

∂t
+ abu = 0, (6.56)

99 This is the general trick we considered in 6.19.
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where a and b are constants. The standard way to remove the first order derivative
term is to introduce

v = e(a+b)t/2u. (6.57)

We have
∂2v

∂t2
−
(
a− b
2

)2

v − c2 ∂
2v

∂x2
= 0. (6.58)

If a = b, then the cable can propagate a wave without distorting the wave form,
although the signal strength decays.

6.22 Application to diffusion equation. For a diffusion equation
in 1-space, the differential operator P = (∂t −D∂2

x), so that we cannot
factorize this into first order factors. However, if P (a, b) = 0, then
exp(at+ bx) is a solution. Hence, for example

eikx−Dk2t (6.59)

is a solution. Since the equation is linear, if the integral

u(x, t) =
∫ ∞

−∞
dkf (k)eikx−Dk2t (6.60)

converges, then this turns out to be the general solution, where f is
an appropriate function of k. For example, if f is in L2 (→??(2)), the
integral converges, and u(x, t) is at least meaningful as a weak solution
(a solution in the generalized function sense →10).

6.18(2) is also useful to find a special solution to inhomogeneous
diffusion equations. For example, consider

∂2
xu− ∂tu = sin(ax+ bt). (6.61)

ũ =
1

a4 + b2

[
−a2 sin(ax+ bt) + b cos(ax+ bt)

]
(6.62)

is a solution.
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7 Generalized Function

The δ-function is not an ordinary function, and is mean-
ingful only inside the integral. The theory of distribution
in the sense of Sobolev and Schwartz rationalizes such ob-
jects like the δ-function. Rudiments of the theory is out-
lined from the practitioner’s point of view. Calculation of
Green’s functions may be facilitated by the theory of gener-
alized functions which justifies apparent abuses of classical
analysis.

Key words: generalized function, distribution, test func-
tion, Schwartz class, regular distribution, convolution, δ-
function, differentiation of δ-function, Heaviside step func-
tion, Cauchy principal part.

Summary:
(1) Generalized functions are defined by their outcome when they are
applied to test functions (7.4, 7.8). Whenever, the reader feels intuition
is doubtful, use test functions.
(2) Understand the definition of differentiation of generalized functions
(7.14). All the elementary rules of calculus survive for generalized
functions; besides, the order of limit and differentiation can always be
exchanged (7.19).
(3) Change of the variables in δ-function should not cause any problem
(7.12-7.14).
(4) Be familiar with convolution (7.23).

7.1 Green’s function and delta-function. The fundamental idea
of Green was introduced at 3.6, where we realized that it is very con-
venient to introduce an object δa which has weight 1 at point a but
zero elsewhere. If we consider the mass density distribution ρ(x) cor-
responding to this weight distribution, then we need ρ(x) which is +∞
at x = a but zero elsewhere. The symbol δ(x − a) was introduced for
such an object in ?? in conjunction to functional derivative. Basically,
to implement Green’s idea we have to solve, for example,

−∆ψ = δ(x− a) (7.1)

under an appropriate boundary condition. We need a systematic theory
of such “density functions.”
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7.2 Green’s function and fundamental solution. Let L be a
linear differential operator.100 Any solution to

Lψ(x) = δ(x− y) (7.2)

is called a fundamental solution. If it satisfies, further, the auxiliary
conditions of the problem, we say the solution is the Green’s function
for the problem. As we will see later (→9.17 for an example), we
have only to consider homogeneous auxiliary conditions, so when we
say G(x|y) is the Green’s function of a problem which is described by
the linear differential operator L and linear auxiliary conditions (→3.3)
Aψ = f , we mean

LG(x|y) = δ(x− y) (7.3)

with the corresponding homogeneous auxiliary condition AG(x|y) = 0.

7.3 Motivation of theory: Delta function as linear functional.
Let D be a set of real-valued functions on R. Let us define a map
Tδ : D → R as Tδ(f) = f(0). Recall that Tδ is exactly the ‘integral’
of f times δ over R in the original ‘definition’ of δ (→??). The most
obvious and important property of Tδ is its linearity:

Tδ(af + bg) = aTδ(f) + bTδ(g), (7.4)

where a and b are reals. Therefore, we are tempted to write Tδ in terms
of integral with some integration kernel δ: Tδ(f) =

∫
dx δ(x)f(x) as in

the original ‘definition.’ However, for Tδ there is no ordinary function
δ satisfying this equality, because its ‘value’ at 0 cannot be finite. Still,
Tδ is well-defined. Therefore, we define δ through Tδ:

7.4 Generalized function. Let Tq be a linear functional defined on
a set D of real-valued functions on R. The formal symbol q(x) such
that for f ∈ D

Tq(f) =
∫

dx q(x)f(x) (7.5)

is called a generalized function. The following notation, reminding us
of the inner product (→??), is also often used for convenience:

Tq(f) = 〈q, f〉. (7.6)

The definition must include the following rule for changing the indepen-
dent variable. The rule is exactly the same as in the case of ordinary
functions: ∫

dxq(x)f(x) =
∫

dsϕ′(s)q(ϕ(s))f(ϕ(s)), (7.7)

100 A linear operator L is called a differential operator, if Lf (x) depends on f(x)
and its derivatives at x. For example, −d2/dx2 + V (x), where V is a function, is a
linear differential operator.
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where q is a generalized function, f is a test function, and x = ϕ(s)
defines the change of variable.

7.5 δ-function: an official definition.101 The symbol δ(x) such
that

Tδ(f) =
∫

δ(x)f(x)dx = f(0) (7.8)

is called the δ-function. Since the variable x in δ transforms as the
usual x in the ordinary functions, the symbol for the map f(x)→ f(a)
is written as δ(x− a) (as we already noted in 7.1):

∫
δ(x− a)f (x)dx =

∫
δ(y)f(y + a)dy = f(a). (7.9)

Exercise.
(A)
Evaluate
(1) ∫ 5

−5

cos x δ(x)dx. (7.10)

(2) ∫ 10

−5

δ(x) log Γ(x+ 5)dx. (7.11)

(B) A mass M is located at x = 0 on an infinite string: that is the density of the
string is ρ(x) = ρ+Mδ(x). Write down the equation of motion for the string under
uniform tension τ (→2.27). We wish to consider the effect of the point mass on the
incident wave. The wave F (t− x/c) is incident from x = −∞. The displacement is
written as

u(x, t) =
{
F (t− x/c) +R(t+ x/c) for x < 0,

T (t− x/c) for x > 0. (7.12)

Show that
T ′′ + γT ′ = γF, (7.13)

where γ = τ/Mc. Find T in terms of F .102

7.6 Value of generalized function at each point is meaningless.
The value of a generalized function at a point is totally meaningless,
because changing the value of a function at a point does not affect its

101 It is often called the Dirac δ-function, ignoring the fact that this type of func-
tions have been used for well over a hundred years.
102 See G L Lamb, Jr. Introductory Applications of Parital Differential Equations
(Wiley, 1995).
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integral (→??, ??). Therefore, although δ-function was originally ‘de-
fined’ such that δ(x) = 0 for x �= 0, according to our official definition,
we cannot mention anything about the value of δ(x) for any x ∈ R.
Consequently, the product of delta functions containing common vari-
ables is a very dangerous concept.

Discussion.
However,
(A) Localization theorem of generalized functions. The value of a general-
ized function g at each point does not make sense, but it is possible to make such
statement as g = 0 meaningful in a neighborhood of a point. To this end, we must
define g = 0 on an open set U .

We say g = 0 on U , if 〈φ, g〉 = 0 for any φ ∈ C∞
0 (U) (= the set of all the

C∞ functions whose support is in U , that is, φ = 0 outside U). Two generalized
functions f and g are equal on U if f − g = 0 on U .
Theorem [Localization theorem]. For any x if there is its neighborhood on
which g = 0, then g = 0 in the sense of generalized functions.
Theorem[Localization of derivatives]. If f = g on U , then their derivatives are
identical on U .
About the local properties, Section 3.2 of R. D. Richtmeyer, Principles of Advanced
Mathematical Physics vol.1 (Springer, 1978) may be accessible.
(B) Of course, f(g) does not usually make any sense for generalized functions f and
g.

7.7 Multidimensional delta funcion. The definition of general-
ized functions on multidimensional space should be obvious (→?? for
curvilinear coordinate cases).

Exercise.
Let dτ be the volume element in 3-space, and r be the radial coordinate of the
spherical coordinates. r is the position vector. Evaluate∫

dτe−r
2
δ(r). (7.14)

Here r must be considered as a function of r. What is its difference from∫
dτe−r

2
δ(r) ? (7.15)

7.8 Test functions. Since we cannot evaluate generalized functions
pointwisely, the only way to study the property of a generalized function
is to apply it to functions in an appropriate function set D. The set D
is called the set of test functions.
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Discussion.
The choice of the test function set D is a matter of convenience, but the set must
satisfy some obvious conditions such as its closedness: if fn → f and fn ∈ D,
then f should also be in D. If the set D is very poor, then many generalized
functions become indistinguishable. On the other hand, if D is too large, then
we must meticulously pay attention to minute details of the generalized functions.
From the practitioner’s point of view, we need not pay much attention to D, but
should remember that very often D is the set of all the C∞-functions with compact
domains (i.e., C∞

0 ) or the set of all the functions of rapid decay (or rapidly decreasing
functions, Schwartz-class functions):

D = {f : R→ C, C∞ such that xnf (r)(x) → 0 as |x| → ∞ for ∀n, r ∈N}.

(In words, D consists of infinite times differentiable functions whose any derivative
decays faster than any inverse power.) The generalized functions defined on this D
is called generalized functions of slow growth.

7.9 Equality of generalized functions. Two generalized functions
p and q are said to be equal,103 if no test function can discriminate
them:

Tp(f) = Tq(f) for all the test functions f ⇐⇒ p = q. (7.16)

7.10 Regular distribution. Let D be an appropriate test function
set (see the footnote in 7.8). If a generalized function q is equal to
some ordinary function, we say q is a regular distribution.

7.11 δ(ax) = |a| 1δ(x). To demonstrate an equality of generalized
functions, the surest way is to return to the definition of the equality
7.9.∫

δ(ax)f(x)d(x) =
∫

δ(y)f(y/a)|a|−1dy = |a|−1f (0/a) =
∫
|a|−1δ(x)f(x)dx

(7.17)
for any test function, so that we may conclude the desired relation.

7.12 δ(g(x)). Let g be a differentiable function. If g �= 0 at x, then a
sufficiently small neighborhood of x does not contribute to

∫
dxδ(g)f .

If g(x0) = 0, then g(x) � g′(x0)(x − x0) locally, so we may replace

103 This equality is consistent with the equality discussed in 7.6 Discussion (A).
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δ(g(x)) with |g′(x0)|−1δ(x − x0) locally (→7.11). In this way we have
the following general formula for differentiable g:

δ(g(x)) =
∑
i

|g′(xi)|−1δ(x− xi), (7.18)

where the summation is over all the real zeros {xi} of g.
Exercise.
Evaluate
(1) ∫ 5

−5

δ(3x) cos xdx, (7.19)

(2) ∫ 4

0

δ(1− 5x) sinxdx, (7.20)

(3) ∫ ∞

−∞
δ(x2 − 5x+ 6)x2dx, (7.21)

(4) ∫ ∞

−∞
δ(sin 2πx)2−|x|dx (7.22)

7.13 Convergence of generalized function. A sequence of gener-
alized functions qn is said to converge to q, if

〈qn, f〉 → 〈q, f〉 for all f ∈ D, (7.23)

and is written as limn→∞ qn = q. If we use the integral form, we have

lim
n→∞

∫
dxqn(x)f(x) =

∫
dx lim

n→∞ qn(x)f(x). (7.24)

That is, limit and integration can be freely interchanged, if we interpret
an ordinary function as a regular distribution (→7.10). Consequently,
termwise integration of series can be performed freely. If we never take
the result outside the integral symbol, then we need not worry whether
the final result is again a regular distribution or not. Recall that Green’s
functions (→3.6, 7.1, X) always appear inside the integral symbol in
practice. Hence, calculus of generalized function becomes a powerful
tool especially when we construct and use Green’s functions.

Discussion.
We have learned that if the limit of a sequence {ϕn} converges weakly, then the
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limit is a generalized function.
(A) Let G(x, t|y, 0) be the Green’s function for the diffusion equation in the free
space (→??) Show that for a continuous f

lim
t→0

∫
R3
dyG(x, t|y, 0)f(y) = f(x). (7.25)

We write this as
w- lim

t→0
G(x, t|y) = δ(x− y), (7.26)

where w-lim denotes the weak limit which is meaningful only inside the integration.
This is a possible definition of Dirac’s δ-function.
(B) This observation allows us to introduce generalized functions in a different
way (due to Korevaar). We prepare a weakly convergent104 sequence (called D-
fundamental series105 ) of sufficiently smooth functions {ϕn} and declare its weak
limit to be a generalized function.106

Take a positive number sequence εn such that limn εn = 0. Consider an
arbitrary sequence of non-negative continuous functions {ϕn} such that ϕn(x) = 0
for |x| ≥ εn and ∫ ∞

−∞
ϕn(x)dx = 1. (7.27)

The D-fundamental sequence {ϕn} defines the δ(x).
(C) Demonstrate that indeed the sequence in (B) weakly converges to the δ-function
in the n→∞ limit.
(D) The following sequences are examples of D-fundamental sequences for the delta
function:

ϕn(x) =
n√
π
e−n

2x2
, (7.28)

ϕn(x) =
n

π

1
1 + n2x2

=
1
2π

∫ ∞

−∞
eikx−|k|/ndk, (7.29)

ϕn(x) =
sinnx
πx

=
1
2π

∫ n

−n
eikxdk =

1
π

∫ n

0

cos(xk)dk, (7.30)

ϕn(x) =
1
2π

sin[(n+ 1/2)x]
sin(x/2)

(the Dirichlet kernel), (7.31)

ϕn(x) = n[Θ(x+ 1/2n)−Θ(x− 1/2n)], (Θ is the Heaviside step function),
(7.32)

ϕn(x) = 0 for |x| ≥ 1/n and n− n2|x|, otherwise , (7.33)

ϕn(x) =
1

2nπ

[
sin(nx/2)
sin(x/2)

]2
(due to Fejer →??) (7.34)

104 w.r.t. a test function set
105 D for distribution.
106 A precise definition in the original paper: J. Korevaar, Indagationes Math., 17,
1955, is much more elaborate, because he wished to construct a theory equivalent
to the one due to Schwartz. Here, the lecturer only wishes to make a subclass, so
only a grossly simplified version of the original is given.
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ϕn(x) =
n∑

j=−n
e2jπix for x ∈ (−2π, 2π). (7.35)

7.14 Differentiation of generalized functions. If q is an ordinary
differentiable function, then for f ∈ D

∫
q′(x)f (x)dx = −

∫
q(x)f ′(x)dx. (7.36)

The right hand side makes sense, if f is differentiable. Our test function
(→7.8) is always infinite times differentiable, so that we may regard
(7.36) as the definition of q′: the derivative q′ of a generalized function
q is defined as the generalized function satisfying

〈q′, f〉 = −〈q, f ′〉. (7.37)

By definition, generalized functions are infinite times differentiable.

Discussion.
(1) Derivatives of generalized functions are given by the derivatives of its D-fundamental
sequence (if it is differentiable →7.19). As we can see in 8.7 some are differentiable
many or infinite times but some are not. We may choose convenient differentiable
sequences without any contradiction.
(2) Lp-derivative. (T220)

Exercise.
(A) Show

xδ′(x) = −δ(x). (7.38)

(B) Let Θ(x, y) be 1 when x > 0 and y > 0, and 0, otherwise. Then,

∂2Θ(x, y)
∂x∂y

= δ(x)δ(y). (7.39)

(C) Evaluate
(1) ∫ 5

−5

δ′(5x) cosh xdx. (7.40)

(Here δ′(f(x)) is interpreted as the δ′(z) whose variable z is replaced by f(x).) (2)∫ ∞

−∞
δ′(x2 − 1) cos xdx. (7.41)
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7.15 Structural theorem. A version of the structural theorem of
generalized functions: A generalized function is obtained by differentia
ting a continuous function finitely many times.

7.16 Examples.
(1)

d|x|
dx

= sgn(x)↽==

{
1 for x ≥ 0,
−1 for x < 0.

(7.42)

The reader may conclude this by intuition.107 A standard demonstra-
tion may be to start with, for a test function f ,

−
∫

dx|x|f ′(x) = −
∫ ∞

0
dx xf ′(x) +

∫ 0

−∞
dx xf ′(x)

=
∫ ∞

0
dxf(x)−

∫ 0

−∞
dxf(x) =

∫
sgn(x)f(x)dx.

(7.43)

(2)
dsgn(x)

dx
= 2δ(x). (7.44)

(3) TheHeaviside step functionΘ(x) is defined by Θ(x) = (1+sgn(x))/2.

dΘ(x)

dx
= δ(x). (7.45)

7.17 All the ordinary rules for differentiation survive. For ex-
ample, the chain rule is applicable.
When the reader feels uneasy in some use or abuse of generalized func-
tions, always return to the definition 7.4: operate the generalized func-
tion to test functions. See the next example.

7.18 Cauchy principal value P (1/x). P (1/x) is defined by

∫ ∞

−∞
P
1

x
f(x)dx↽==P

∫ ∞

−∞
f(x)

x
dx, (7.46)

where P is defined as limε→0(
∫−ε
−∞+

∫∞
ε ).

(1) We have
dln |x|
dx

= P
1

x
. (7.47)

107 The value at x = 0 does not matter.
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(2) Note that

xf = 1⇒ f = P
1

x
+ cδ(x), (7.48)

where c is a constant. A demonstration follows. Note that obviously
xP (1/x) = 1. Let φ ∈ D.

∫
f (x)φ(x)dx =

∫
f(x)

[
P
1

x
(φ(x)− φ(0))x+ φ(0)

]
dx

=
∫ [

P
1

x
(φ(x)− φ(0)) + f(x)φ(0)

]
dx

=
∫

P
1

x
φ(x)dx+

∫ (
f(x)− P

1

x

)
φ(0)dx

= P
∫

φ

x
dx+ const.× φ(0). (7.49)

Exercise.
Compute

P

∫ 1

−1

cosec xdx. (7.50)

7.19 Theorem [Differentiation and limit always commute].

qn → q ⇒ q′n → q′. (7.51)

✷
This is a remarkably simple result. Termwise differentiation of series is
allowed. To demonstrate the theorem is easy: For f ∈ D

〈q′n, f〉 = −〈qn, f ′〉 → −〈q, f ′〉 = 〈q′, f〉. (7.52)

Compare this with the situation of the ordinary calculus (→??(4)); we
need uniform convergence of termwisely differentiated series.

Exercise.
From

tanh
(x
ε

)
→ sgnx (7.53)

show
1/
[
ε cosh2(x/ε)

]→ 2δ(x). (7.54)
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7.20 Example.

n

π(1 + n2x2)
→ δ(x)⇒ − 2n3x

π(1 + n2x2)2
→ δ′(x). (7.55)

7.21 Example: Coulomb potential. In 3-space we have

∆
1

|x| = −4πδ(x). (7.56)

Let us take a test function (→??) f and compute

〈
∆
1

|x| , f
〉
=

〈
1

|x| ,∆f

〉
= 4π

∫ ∞

0
dr r21

r
∆f = 4π

∫ ∞

0
r∆fdr, (7.57)

where overline implies the average over directions (over θ and ϕ). Since
(→??) f is spherically symmetric, we have ∆f = r−1d2(rf)/dr2 (→??).
Hence,〈

∆
1

|x| , f
〉
= 4π

∫ ∞

0

d2

dr2
rfdr = 4π[rf

′
+ f ]∞0 = −4πf(0). (7.58)

7.22 Integral of generalized functions. A generalized function
F is an integral of f , if F ′ = f . That is, 〈F, φ〉 = −〈f,Φ〉, where
Φ′ = φ ∈ D.108 Just as the ordinary calculus, we have a
Theorem. The integral of a generalized function is unique up to an
additive constant. ✷
In summary, all the ordinary calculus rules survive.

Discussion.
The following integrals are sometimes useful (→32C also):

|u| =
1
π

∫ ∞

−∞

1− cos ku
k2

dk, (7.59)

πδ(x)± iP 1
x

=
∫ ∞

0

e±ixkdx, (7.60)

π

2
min(a, b) =

∫ ∞

0

sin ax sin bx
x2

dx. (7.61)

108 There is a technical difficulty in this definition, since Φ may not be in D. This
problem can be overcome. See, for example, D. H. Griffel, Applied Functional
Analysis (Ellis Harwood LTD, 1981), p. 38 Theorem 2.2.
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7.23 Convolution. The convolution p∗q of two generalized functions
p and q is defined as

〈p ∗ q, f〉↽==
∫

dx
∫

dy p(x)q(y)f(x+ y). (7.62)

We use the following notation as well which is consistent with the above
formula.

p ∗ q(x) =
∫

p(y)q(x− y)dy. (7.63)

Notice that ∗ is commutative, that is, p∗q = q∗p, and associative, that
is, q1 ∗ (q2 ∗ q3) = (q1 ∗ q2)∗ q3. Therefore, we may define q1 ∗ q2 ∗ q3 ∗ · · ·.
Exercise.
Compute δ′ ∗ |x|. See 7.24(2).

7.24 Example.
(1) δ ∗ q = q. That is, the delta function serves as the unit element for
∗-product.
(2) δ′∗q = q′. More generally, δ(n)∗q = q(n). For example, (∆δ)∗q = ∆q.
(3) (p ∗ q)′ = p′ ∗ q = p ∗ q′. This can be demonstrated easily with the
aid of (2) and associativity of ∗-product.
(4) The solution to Poisson’s equation (→1.7)

∆φ = − ρ

ε0
with φ → 0 (|x| → ∞) (7.64)

is given by ρ ∗ (1/4πε0|x|) (→7.21). This is an implementation of
Green’s idea (→3.6).
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8 Green’s Functions for ODE

Green’s functions for second order linear ODE are con-
structed explicitly. Symmetry of the Green’s function can
be demonstrated clearly.

Key words: δ-function, Green’s operator, fundamental so-
lution, Green’s function, Sturm-Liouville problem.

Summary:
(1) Understand the method to construct a fundamental solution in 8.2.
(2) If we can obtain a fundamental system of solutions, we can construct
the Green’s function for a regular Sturm-Liouville problem (8.6-8.7).

8.1 Fundamental solution exists for ODE. Let

L ≡
n∑

i=0

ai(x)

(
d

dx

)n−i

, (8.1)

where a0(x) �= 0 and a0, · · · , an are smooth functions. Then Lu = 0 has
a fundamental solution (→7.2). The difference of any two fundamental
solutions is a solution to the homogeneous equation Lu = 0 (→4.28).
✷
We will demonstrate this for n = 2 below through explicitly construct-
ing a fundamental solution.

8.2 Proof of 8.1 for n = 2. We wish to find a solution to(
a0

d2

dx2
+ a1

d

dx
+ a2

)
w(x|y) = δ(x− y). (8.2)

Regard x as the time variable. and assume that w(x|y) → 0 as x →
−∞. Then, causality implies that w(x|y) = 0 for x < y. d2w/dx2

cannot have a singularity worse than δ(x − y), so that dw/dx is at
worst discontinuous at x = y, and w is continuous at x = y (→??).
Hence, we may assume w(y + 0|y) = 0. Since (8.2) is a second order
ODE, we can construct its solution uniquely with one more condition.
Integrate (8.2) from x = y − ε to y + ε for infinitesimal ε > 0. We get
(w(1) ≡ dw/dx)

a0(y)[w
(1)(y + 0|y)− w(1)(y − 0|y)] = 1. (8.3)
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Here we have used the continuity of a0 and w. We have already assumed
that w is zero for x < y, so that this equation implies

a0(y)w
(1)(y + 0|y) = 1. (8.4)

This is the needed second condition. In this way, we can construct a
solution to (8.2).

8.3 Example: damped oscillator under impact. Find a funda-
mental solution to109

d2x

dt2
+ 2k

dx

dt
+ ω2x = δ(t− s). (8.5)

The fundamental solution constructed in ?? reads for this case

w(t|s) = (ω2 − k2)−1/2e−k(t−s) sin
[√

ω2 − k2(t− s)
]
Θ(t− s). (8.6)

8.4 Regular Sturm-Liouville problem.

LSTu↽==

[
d

dx
p(x)

d

dx
+ q(x)

]
u = 0 (8.7)

under the following boundary condition is called a regular Sturm-Liouville
problem (cf. 17.7), if p is of constant sign:

Ba[u] ≡ Ap(a)u′(a)− Bu(a) = 0, (8.8)

Bb[u] ≡ Cp(b)u′(b)−Du(b) = 0, (8.9)

where A, B, C and D are constants (cf. ??).

8.5 Theorem [Green’s function exists for recular Sturm-Liouville
problem]. The Green’s function for a regular Sturm-Liouville problem

LSTu = δ(x− y) (8.10)

under the above boundary condition exists, if the operator does not
possess zero eigenvalue. The Green’s function, when it exists, is a
symmetric function of x and y. ✷

109 The best way to solve this under the condition x = 0 for t < s and x′(s+0) = 1
(this corresponds to (8.4)) is to use the Laplace transformation (→33).
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Exercise.
Under what condition does the following operator with the boundary condition:
u(0) bounded and u(a) = 0, not have the Green’s function?

Lu = u′′ +
1
x
u′ +
(
k2 − 16

x2

)
u. (8.11)

The symmetry of the Green’s function is proved by explicitly con-
structing the required Green’s function as follows:

8.6 Explicit form of Green’s function. The Green’s function for
a regular Sturm-Liouville problem in ?? is given by

G(x|y) =
{

Ku1(x)u2(y) for x < y,
Ku2(x)u1(y) for x > y,

(8.12)

where K−1 = p(x)(u1u
′
2 − u2u

′
1) (which is actually a constant); u1 is a

nontrivial solution to LSTu = 0 with Ba[u] = 0, and u2 is a nontrivial
solution to LSTu = 0 with Bb[u] = 0.✷
Indeed, G(x|y) = G(y|x) (→??, cf. 9.16). As we will see soon, {u1, u2}
is a fundamental system of solutions (→??) for LSTu = 0.
Exercise. Demosntrate the symmetry G(x|y) = G(y|x).

8.7 Construction of Green’s function. From LSTG = δ(x − y),
we see that G(y + 0|y) = G(y − 0|y), and

p(y)

[
∂

∂x
G(x|y) |x=y+0 − ∂

∂x
G(x|y) |x=y−0

]
= 1. (8.13)

See (8.3) in 8.2. We can always construct u1 and u2 as stated above.
Let us construct G in the following form:

G(x|y) =
{

c1(y)u1(x) for x < y,
c2(y)u2(x) for x > y.

(8.14)

To satisfy the conditions at x = y, we get

c1(y)u1(y) = c2(y)u2(y), (8.15)

c1(y)u
′
1(y)− c2(y)u

′
2(y) = −1/p(y). (8.16)

We can solve this for c1 and c2 only if u1u
′
2 − u′

1u2 �= 0 (that is, the
Wronskian (→??) of u1 and u2 is nonzero), but this is guaranteed.

110

110 Notice that this condition is the condition that the Sturm-Liouville eigenvalue
problem (→??) does not have zero eigenvalues. u1u′2 − u′1u2 = 0 implies that
d(u1/u2)/dx = 0 or u1 ∝ u2. That is, u1 satisfies LSTu1 = 0 and Ba[u1] =
Bb[u1] = 0, and u1 �≡ 0. Hence, u1 is an eigenfunction belonging to 0.
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Since u1 and u2 satisfy LSTu = 0,

d

dx
[p(x)(u1u

′
2 − u′

1u2)] = u1LSTu2 − u2LSTu1 = 0. (8.17)

Hence
p(x)(u1u

′
2 − u2u

′
1) ≡ K−1 (8.18)

is a nonzero constant. Using this constant, we can solve as c1 = Ku2

and c2 = Ku1.

8.8 Remark. If we know a fundamental solution w(x|y) to Lu =
δ(x− y), then the general solution to this inhomogeneous equation can
be written as (→4.28)

G(x|y) = w(x|y) + A(y)u1(x) +B(y)u2(x). (8.19)

A and B can be determined to satisfy the boundary conditions (they
can depend on y).

8.9 Examples. The following examples can be solved either by the
method of 8.7 or 8.8.
(1) u′′ = 0 with the boundary conditions B0[u] = u′(0) − u(0) = 0
and B1[u] ≡ u′(1) = 0. The Green’s function for this is G(x|y) =
(x− y)Θ(x− y)− (x+ 1).111

(2) (d2/dx2 + k2)u = 0 with the boundary condition B0[u] ≡ u(0) = 0
and B1[u] ≡ u(1) = 0 (assume sink �= 0). The Green’s function for this
is

G(x|y) =
{
sin kx sin k(y − 1)/k sin k for x < y,
sin ky sin k(x− 1)/k sin k for x > y.

(8.20)

Exercise.
(A) Obtain the Green’s function with a Dirichlet condition of the equation

√
x
d

dx

(√
x
du

dx

)
+ a2u = 0 (8.21)

on [0, L], knowing that the general solution to this equation is given by

u(x) = A sin(2a
√
x) +B cos(2a

√
x). (8.22)

(Calculation of K is messy, so you may forget about it.)
(B) Determine the Green’s function for

L =
d

dx
x
d

dx
− 1
x

(8.23)

111 The definition of Θ(x− y) at x = y does not matter. That is, we may interpret
Θ as a generalized function (→7.4).
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with the homogeneous boundary conditions u(0) = u(1) = 0.112

(C) Consider the following 1-Schrödinger problem

(−∆+ V )ψ = Eψ, (8.24)

where V vanishes at infinity. If this equation has a bound state (i.e., a solution in L2-
space →??, in otherwise normalizable as a wave function), it cannot be degenerate.
In particular, the lowest energy bound state (ground state) cannot be degenerate.
Prove this showing or answering the following:
(1) Degeneracy implies that there are two independent solutions for a given energy.
What must be their Wronskian?
(2) The Wronskian for localized state is zero.

(D) Show that the Green’s function for the following operator[
d

dx
(1− x2) d

dx
− n2

1− x2
]

(8.25)

with the boundary condition that the solution is bounded at x = ±1, where n ∈N ,
is given by

G(x|y) = 1
2n

(
1 + x)(1− y)
(1− x)(1 + y)

)n/2
(8.26)

for x ≤ y.

8.10 Theorem [Inhomogeneous boundary condition]. The so-
lution to the following inhomogeneous boundary value problem:

Lu(x) = ϕ(x), (8.27)

Ba[u] = α, Bb[u] = β, (8.28)

where L, Ba and Bb are the same as in 8.4, and BD �= 0, is given by

u(x) =
∫ b

a
dyG(x|y)ϕ(y) + p(a)B−1α

(
∂G

∂y

)
y=a

− p(b)D−1β

(
∂G

∂y

)
y=b

.

(8.29)
[Demo] First, we note an analogue of Green’s formula (→??, cf. ??)

∫ b

a
dxuLv −

∫ b

a
dxvLu = p(uv′ − u′v)|ba. (8.30)

Let v(x) ≡ G(x|y), and u be the solution to the problem. Then, (8.30)
implies

u(y) =
∫ b

a
dxG(x|y)ϕ(x) +

{
p(x)[u(x)

∂G

∂x
−Gu′(x)]

}x=b

x=a

. (8.31)

112 Hint: The equation is equidimensional (→??).
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Exchanging x and y in this formula, and using the symmetry of the
Green’s function (→8.6, ??), we get (note Bb[u] = β and Bb[G] = 0)

Du(b)∂yG(x|y)|y=b −Du′(b)G(x|b) = −β∂yG(x|b) (8.32)

An analogous formula holds at the other end of the region. These
relations allow us to rewrite the second term of (8.31) as desired.
Exercise.
Use the Green’s function to solve(

d2

dx2
+ k2

)
u = sin kx (8.33)

on [0, 1] with the boundary condition u(0) = u(1) = 1.

8.11 Another method to solve inhomogeneous case. Practi-
cally, the following (usual) splitting method is also very useful: Sepa-
rate the problem (8.27) + (8.28) as
(I) Lu1 = 0 with the inhomogeneous boundary condition Ba[u1] = α,
Bb[u1] = β.
(II) Lu2 = ϕ with the homogeneous boundary condition Ba[u2] = 0,
Bb[u2] = 0.
The solution we want is given by u1 + u2. (I) can be solved as usual
(→XX), and (II) can be solved with the aid of the Green’s function as
u2 =

∫
dyG(x|y)ϕ(y).
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9 Green’s Function for PDE – Elemen-

tary Approach

Green’s idea is illustrated with simple (but representative)
examples. We first construct free space Green’s functions.
With the aid of the image source method, we construct
Green’s functions for simple domains as well. Dirichlet
boundary value problems for the Laplacian are discussed
toward the end.

Key words: free space Green’s function, method of de-
scent, method of images, reflection principle, image source,
conformal map, Green’s theorem

Summary:
(1) Free space Green’s functions can be constructed as spherically sym-
metric solutions (??-??, 9.22, ??).
(2) Inhomogeneous equations can be solved with the aid of Green’s
functions (9.17, 9.39).
(3) Green’s functions for simple domains may be constructed with the
aid of the method of images (9.3-9.13, 9.27, 9.34).
(4) In 2-space, conformal maps can be fully exploited to construct
Green’s function for the Laplace equation. Neumann problems can
be reduced to Dirichlet problems (→??), and the latter can be mapped
on a Dirichlet problem on the unit disk (??, 9.41, 9.42). Look up
‘stylebooks’ of conformal maps.

9.1 Method of descent. In d-space, if we assume that the system
is translationally symmetric along one coordinate direction, then the
cross-section of this solution perpendicular to this direction should be
indistinguishable from the (d− 1)-space result. That is, averaging over
one direction of d-space results gives (d−1)-space results. This method
to obtain lower dimensional results is called the method of descent.

Since

−∆dϕ = −
(
∆(d−1) − d2

dx2
d

)
ϕ = δd−1(x

′ − y′)δ(xd − yd), (9.1)

Integrating this w.r.t. xd, we get from the d-problem the desired (d−1)-
problem. If we integrate the d-Coulomb potential (??) over xd,
then we should get the (d−1)-Coulomb potential, because ∫ dxdδd(x−
y) = δd−1(x

′ − y′), where x′ is x with its xd-component suppressed.
The best way to demonstrate this is to use the exponentiation trick
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explained in 14.9 and to integrate over xd:

∫ +∞

−∞
dxd

1

(a2 + x2
d)

(d−2)/2
=
∫ +∞

0
dt
∫ +∞

−∞
dxd

1

Γ((d− 2)/2)t
(d−2)/2−1e−(a2+x2

d)t,

(9.2)

=

√
π

Γ((d− 2)/2)
∫ +∞

0
dt t(d−3)/2−1e−a2t (9.3)

=

√
π

Γ((d− 2)/2)Γ
(
d− 3
2

)
1

ad−3
, (9.4)

where a2 = x2
1 + · · ·+ x2

d−1. With the aid of this and the fundamental
functional relation ?? of the Gamma function, we eventually obtain the
(d− 1)-Coulomb potential. This is a good exercise.

9.2 Green’s function in (semi)bounded space. If the domain of
the equation is (semi)bounded, then to satisfy the boundary conditions
is nontrivial in general. However, if the domain enjoys nice symmetries,
there is a clever way – method of image sources. Basically, we tessellate
the space by the copy of the domain with appropriate sign change of
the source terms (called image sources).

9.3 Method of images I. Half space. The Green’s functionG(x, y, z|x′, y′, z′)
for 3-Laplace equation is the electrostatic potential at (x, y, z) due to a
point charge at (x′, y′, z′) with a suitable potential values specified on
the boundary of the region. The Green’s function for the Laplace equa-
tion on the x > 0 half space with a (homogeneous) Dirichlet boundary
condition is given by

GD(x, y, z; x
′, y′, z′) =

1

4π


 1√

(x− x′)2 + (y − y′)2 + (z − z′)2

− 1√
(x+ x′)2 + (y − y′)2 + (z − z′)2


 . (9.5)

Here the source term is at (x′, y′, z′), and its image source is at (−x′, y′, z′).
To maintain the zero potential condition at x = 0, the effects of the
both sources must cancel exactly on the yz-plane. Hence, the image
source must be −1.
If the boundary condition is the homogeneous Neumann condition at
x = 0, then to kill the gradient on the yz-plane, the image charge
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must be +1. Hence, the Neumann function (= Green’s function with a
Neumann condition) for semiinfinite space reads

GN(x, y, z; x
′, y′, z′) =

1

4π


 1√

(x− x′)2 + (y − y′)2 + (z − z′)2

+
1√

(x+ x′)2 + (y − y′)2 + (z − z′)2


 . (9.6)

9.4 Method of images II. More complicated cases. As we have
seen the locations of image sources and their signs are what we need.
Several examples are illustrated.

Warning. If the region under consideration is bounded (i.e., enclosed
in a finite sphere whose center is located at the origin), then the Neu-
mann condition Green’s function ( Neumann’s function) for the Laplace
equation requires an extra care (→1.22(3)), so we will NOT discuss this
case here. See ?? and ??.

Exercise.
(1) Find the Green’s function for the Laplace equation on the infinite strip (−∞,+∞)×
[0, π] with a homogeneous Dirichlet condition. [The reader must impose a further
condition to single out the solution (→1.22 Discussion (2)).
(2) Find the Green’s function for the Laplace equation on the half 3-space defined
by x > a, where a is a constant.
(3) Find the electric potential in 3-space with x = 0 and y = 0 maintained at zero
potential and the charge Q placed at (x′, y′, 0).

9.5 Harmonicity and symmetry. Green’s functions for the Laplace
equation are harmonic (→3.11) except at their singularities. If we
study the method of images, the keys are
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(1) harmonicity is preserved by reflection,
(2) charges are mirrored onto charges.
Hence, the essence of the method of images is that there are special
symmetry operations preserving harmonicity.

9.6 Reflection principle. LetD be a region such that if (x1, x2, · · · , xd−1, xd) ∈
D , then (x1, x2, · · · , xd−1,−xd) ∈ D. Write D+ for the subset of D for
xd > 0 and D− = D \D+. If u is harmonic (→3.11) on D+ and u = 0
for xd = 0 (that is, on the boundary between D+ and D−), then the
function g defined as

g(x1, · · ·xd−1, xd) = u(x1, · · ·xd−1, xd) on D+ (9.7)

= −u(x1, · · ·xd−1,−xd) on D− (9.8)

is a harmonic function on the whole D. ✷
[Demo] Inside D− g is obviously harmonic. Therefore, we have only to take care
of g near the boundary between D+ and D−. This is easy to show if we use the
converse of the mean-value theorem ??.

9.7 Conformal mapping. A conformal transform (Kelvin trans-
form) û of a function u is given in d-space by

û(x) = |x− a|2−du((x− a)/|x− a|2), (9.9)

where a is a constant. This is the composition of translation x→ x−a
and inversion x → x/|x|2. Notice that this transformation makes
the universe ‘inside out’; big scales become small and vice versa, and
keeps the unit sphere centered at a intact.113 That is, the Kelvin
transformation makes the universe inside out.

9.8 Harmonicity is conformal invariant. Let D̂ ⊂ Rd \ {a} and
D = {x |x = (y − a)/|y − a|2,y ∈ D̂}. If u is harmonic on D, then û

given by (9.9) is again harmonic on D̂ . ✷
Note that the Kelvin transformation transforms a harmonic function
on a ball centered at a to a harmonic function defined on the domain
outside the ball. Remember that a half space can be interpreted as a
sphere with an infinite radius.

113 Actually, the definition of conformal maps should be more general, but if n is not
even, then the combination of the Kelvin transformation and affine transformations
exhaust the conformal transformation.
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9.9 Demonstration of conformal invariance of harmonicity.
To show 9.8 we have only to demonstrate ∆û(x) = 0 honestly. How-
ever, a clever organization of calculation is desirable. We may set a = 0
without any loss of generality. First, notice that

∂2

∂x2
i

fg =
∂2f

∂x2
i

g + 2
∂f

∂xi

∂g

∂xi
+ f

∂2g

∂x2
i

, (9.10)

and
∂

∂xi
u

(
x

|x|2
)
= uj

(
x

|x|2
)(

δij
|x|2 − 2

xixj

|x|4
)
, (9.11)

where uj = ∂u/∂xj. We have only to show the formula for x �= 0. Note
that ∂2

i |x|2−d = 0. The rest is left for the reader.

9.10 Method of images III General case. The conformal invari-
ance 9.8 and the reflection principle 9.7 provide a special method to
solve Poisson’s equation; actually, we have already used the reflection
principle repeatedly (→9.25, 9.4). It is often easier to solve a prob-
lem without boundary conditions at finite distance. Use 9.7 and ?? to
extend the domain with boundary conditions to the whole space. An
important point is that a singularity is conformally mapped to a singu-
larity. That is, the images of charges must be charges (image charge).

9.11 Sphere, Dirichlet condition. Physically this is the problem
of finding electric potential in the sphere surrounded by a grounded
conducting sphere. A charge of q is at (r, 0, 0) (a > r > 0, that is,
inside the sphere) and a grounded sphere of radius a is centered at
the origin. We use the conformal invariance of harmonicity (→9.8).
Consider the conformal map which makes the sphere inside out:

r → a2r/r2. (9.12)

The image of (r, 0, 0) due to this map is at (a2/r, 0, 0). Therefore the
mapped field must have a singularity at this point. This means that
there is a charge (image charge) q′ there. This is determined by the
fact that at (a, 0, 0) the field must be zero:

q

a2/r − a
+

q′

a− r
= 0. (9.13)

That is, q′ = −aq/r. Thus, we have, inside the sphere

φ =
q

4πε0


 1√

(x− r)2 + y2 + z2
− a

r
√
(x− a/r)2 + y2 + z2


 . (9.14)
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From this the Green’s function for the sphere under the Dirichlet con-
dition is obtained.

Exercise.
Construct the Green’s function for a disk with a Dirichlet condition. Then, compare
the result with the one obtained with the aid of conformal maps (→??, 9.41).

9.12 Charge outside conducting sphere, not grounded. Sup-
pose the charge is outside the sphere. In this case the net charge induced
on the sphere must be zero due to charge conservation. If we put q′
given in 9.11 at a2/r and −q′ at the origin, all the boundary conditions
are satisfied (See also Jackson, Section 2.6).

9.13 Method of images for dielectric materials. Method of im-
ages can be generalized to the cases with dielectric materials, but only
for the cases with plane surfaces (not applicable to dielectric spheres).
See Jackson.

9.14 How to use Green’s function (homogeneous Laplace case).
If the boundary condition is homogeneous, then linear inhomogeneous
PDE can be solved in terms of its Green’s function as outlined in 3.6.
A typical problem is to solve Poisson’s equation under homogeneous
boundary condition

−∆ψ = f(x), (9.15)

which is solved as

ψ(x) =
∫
D
dyG(x|y)f(y), (9.16)

where D is the domain of the problem.

9.15 Green’s formula. Let D ⊂ Rd be a bounded region, and u
and v be C2-functions defined on the closure of D. Then,∫

D
(v∆u+ grad u · grad v)dτ =

∫
∂D

v grad u · dS, (9.17)

and ∫
D
(v∆u− u∆v)dτ =

∫
∂D
(v grad u− u grad v) · dS. (9.18)

[Demo] (9.17) follows immediately from div(u grad v) = grad u · grad v + u∆v, and
Gauss’ theorem (→3.13). The second formula (9.18) is obvious from (9.17).
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Exercise.
Let D ⊂ Rd be a region on which u is harmonic. Show∫

∂D

grad u · dS = 0. (9.19)

9.16 Symmetry of Green’s function. (See ?? and 6.17 also) Let
G(x|y) be the Green’s function on the domainD with the homogeneous
Dirichlet condition. Then,

G(x|y) = G(y|x). (9.20)

To demonstrate this set u = G(z|x) and v = G(z|y) in Green’s formula
(the integration is over

9.17 Solution to Dirichlet problem in terms of Green’s func-
tion. (See the warning in 9.4.) The solution to the following Dirichlet
problem on an open region D

−∆u = ϕ, u|∂D = f, (9.21)

where ϕ and f are integrable functions, is given by

u(x) =
∫
D
G(x|y)ϕ(y)dy −

∫
∂D

f(y)∂n(y)G(x|y)dσ(y). (9.22)

Here ∂n(y) is the outward normal derivative at y, τ is the volume ele-
ment, and σ is the surface volume element.

The formula easily follows from Green’s formula in 9.15 with u
being the solution and v being the Green’s function for the problem.
In this way with the Green’s functions we can solve inhomogeneous
boundary condition problems.

Discussion.
(A) The second term in (9.22) is understood as the electric potential made by an
electrical double layer.
(B) The surface integral in (9.22) can be written in the following remarkable form

1
2π

∫
∂Ω

dωf(y), (9.23)

where ω is the solid angle of the surface element (at y) seen from x.114

(C) Derive the following Kirchhoff’s formula: For x ∈ D

u(x) =
∫
D

G0(x|y)ϕ(y)dy −
∫
∂D

dσ(y)
[
u(y)∂n(y)G(x|y)− ∂n(y)u(y)G0(x|y)

]
,

(9.24)
114 B130.
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where G0 is the free space Green’s function given in ??. This formula is meaningful
even when x is outside D. Show that this is zero if x �∈ D. Because the first term
in the formula is smooth, the discontinuity comes from the surface integral. The
formula cannot be used to obtain the solution because we usually do not know u
and its derivative on the surface simultaneously. Recall that the Cauchy problem
of the Laplace equation is generally not well posed (→?? for well-posedness).

9.18 Green’s function for more general domain. We will discuss
this in XX and XX.

9.A Green’s Function for Diffusion Equation

9.19 Fundamental solution of diffusion equation. A fundamen-
tal solution (→7.2) of a diffusion equation is a solution to

∂ψ

∂t
−D∆ψ = δ(t− s)δ(x− y). (9.25)

It is easy to check by explicit calculation that in d-space

G(x, t|y, s) =
(

1

4πD(t− s)

)d/2

exp

(
− |x− y|2
4D(t− s)

)
(9.26)

is a solution. Hence, this is a fundamental solution of a diffusion equa-
tion (→9.22). This is also the Green’s function (→7.2) for the diffusion
equation (9.25) under the condition that the solution vanishes at infin-
ity. This is often called the diffusion kernel. We can demonstrate (cf.
8.7) that

w- lim
t→s

G(x, t|y, s) = δ(x− y). (9.27)

Discussion.
(1) It is important to use the formal solution, or the integral equation form of PDE
in terms of the Green’s function, because it allows us to apply various approximation
methods (→??). The formal solution of

∂u

∂t
= D∆u+ f(x, t)u (9.28)

with an appropriate homogeneous boundary condition can be written as

u(x, t) =
∫
dyG(x, t|y, 0)u0(y) +

∫ t

0

ds

∫
dyG(x, t|y, s)u(y, s)f(y, s), (9.29)
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where u0 is the initial conditon, and G is the Green’s function.
(2) Find the partial differential equation governing u satisfying the following integral
equation

u(x, t) =
∫
dye−AtG(x, t|y, 0)f(y)−

∫ t

0

ds

∫
dye−A(t−s)G(x, t|y, s){u(y, s)}3,

(9.30)
where G is given by (16.38), and f is a continuous function on the whole space. A
is a constant, and the spatial integration range is the whole 3-space.

9.20 Scaling invariant solution of diffusion equation. Looking
at the diffusion equation, we realize that the equation is invariant under
the scaling transformation (x, t) → (λx, λ2t).115 If we demand that
the solution keeps its total mass after scaling (we know the diffusion
equation conserves the total mass →2.9)

∫
ψ(x)dx = 1, (9.31)

then, we conclude in d-space

ψ(x, t) = λdψ(λx, λ2t). (9.32)

9.21 Dimensional analysis. Another way to obtain the scale invari-
ant solution is to perform dimensional analysis. Dimensional analysis is
a way to find combinations of variables that are invariant under change
of units (i.e., change of scales). The dimension of a quantity Q is often
denoted by [Q]. Let the dimension of length be L: [x] = L, and that
of time be T : [t] = T . Then [D] = L2/T . Also from

∫
dx u = 1, we get

[u] = L−d. We can construct two dimensionless quantities (i.e., scale
invariant quantities):

[x/
√
Dt] = 1, [(tD)d/2u] = 1. (9.33)

Therefore, u(Dt)d/2 must be a function of x/
√
Dt:

u(x, t) = (Dt)−d/2f(x/
√
Dt). (9.34)

115 This is actually the idea of dimensional analysis. See the next entry.
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9.22 Scaling invariant spherically symmetric solution to diffu-
sion equation. If we assume that the solution is spherically symmetric
around x = 0, then f in 9.21 depends on r ≡ |x|. That is, there is a
function h such that

ψ(x, t) = t−d/2h(r/
√
Dt). (9.35)

Putting this into the diffusion equation, we get an ODE for h as a
function of x = r/

√
Dt:

h′′ +

(
d− 1
x

+
x

2

)
h′ +

d

2
h = 0. (9.36)

Since the solution must be smooth at the origin, actually h must be
a well-behaved function of x2: h(x) = g(x2). g obeys the following
equation:

d

2
(g + 4g′) + x2 d

dx
(g + 4g′) = 0. (9.37)

If we demand the boundedness of the solution, g + 4g′ = 0 is the only
choice. That is,

ψ(x, t) =
C

t−d/2
e−x2/4Dt (9.38)

C is a constant determined by the normalization condition. We see
(9.26) is obtained after shifting the source position in space time with
the aid of the translational symmetry of the equation.

9.23 Initial trick for diffusion equation. Consider the following
initial-boundary value problem for the diffusion equation on a region
D:

∂ψ

∂t
= D∆ψ, ψt=0 = ψ0, ψ|∂D = ϕ. (9.39)

This problem can be converted to

∂ψ

∂t
= D∆ψ + δ(t)ψ0, ψ = 0 for t ≤ 0, ψ|∂D = ϕ. (9.40)

That is, the inhomogeneous initial condition is always converted to
the source term (→2.7) of the equation. This can be demonstrated
by integrating the both sides of the equation (9.40) from t = −ε to
t = +ε (cf. 8.2), where ε > 0 is taken to be 0 after integration with the
assumption of the smoothness of the solution.

Exercise.
(A) Consider a uniform rod of length l with the thermal diffusion constantD (placed
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along the x axis as [0, l]). The rod is thermally insulated except at the ends. The
end temperatures are specified as

T (0, t) = g(t), T (l, t) = h(t) (9.41)

for t > 0,116 and the initial condition is

T (x, 0) = f(x). (9.42)

Here f , g and h are assumed to be C1 for simplicity.
(B) Consider a uniform rod of length l as above, but now the rod is not insulated.
Heat is lost according to Newton’s radiation law (→1.21) with the ambient tem-
perature T0. The end at x = 0 is maintained at the temperature A, and the other
end is insulated. Let the initial temperature be uniform and A. The equation has
the following form

∂T

∂t
= D

∂2T

∂x2
− c(T − T0). (9.43)

The standard trick to solve this is to introduce the new dependent variable τ =
e−ct(T − T0).

9.24 Method of descent. Analogously to 9.1 we can obtain (d−1)-
space Green’s function from the d-space version. In the present case,
this demonstration is easy with the aid of the Gaussian integral (→??).

9.25 Markovian property of diffusion kernel. The diffusion ker-
nel (9.26) enjoys the following remarkable property called the Marko-
vian property:

G(x, t|y, s) =
∫

dzG(x, t|z, s′)G(z, s′|y, s) (9.44)

for any s′ ∈ (s, t). Notice that there is NO integration over the in-
termediate time s′. This can be demonstrated by direct integration.
This can be more elegantly shown with the aid of Fourier and Laplace
transform as we will see later (→??). A clever way may be touse the
initial condition trick (9.40). This is the key to the Feynman-Kac path
integral formula (→??, ??).

9.26 —bf Random walk and heat kernel. Consider a walker whose n-
th step is a vector an. After N -steps, the position of the walker starting
from the origin is R =

∑N
n=1 an. Each step vector is ei or −ei with

equal probability 1/2d, where ei is the i-th the unit vector parallel to

116 These conditions are compatible with any initial condition so long as t = 0 is
excluded.
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the i-th coordinate. The trajectory of the walker is a stochastic process
called the random walk (on the simple cubic lattice, in this case). Let
us compute the distribution function of the end position R after N
steps. The density distribution is given by

f(R, N) =

〈
δ

(
R−

N∑
n=1

an

)〉
, (9.45)

where 〈 〉 is the average over all the possible choices of all the steps.
The best way to compute this average is to use its Fourier transform
(→??), or the generating function of R:

∫ +∞

−∞
f(R, N)eiR·kddR =

〈
exp

[
N∑

n=1

ik · an

]〉
, (9.46)

= 〈exp [ik · a1]〉N . (9.47)

Here the fact that all the steps obey the identical probability law has
been used. From now on a physicist’s approach is used.117 We are
interested in the large scale distribution, so we have only to study the
above integral for small k only. We can approximate as

∫ +∞

−∞
f(R, N)eiR···kddR =

(
1− 1

2
k2 + · · ·

)N

� e−Nk2/2. (9.48)

Inverting this Fourier transform, we get

f(R, N) =

√
d

2πN
e−dR2/2N . (9.49)

This is essentially the heat kernel. This implies that the diffusion equa-
tion describes the average behavior of the random walk, or the behavior
of the ensemble of random walkers.

The Markovian property 9.25 can be interpreted as the sum of all
the gate probabilities as shown in the figure.

117 For a more respectable approach, see W Feller, Introduction to Probability The-
ory and Its Applications (Academic Press), for example.
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9.27 Method of images for diffusion equation – image sources.
We know the Green’s function (9.26) for the diffusion equation in the
infinite space R3 (→16B.1). Now, consider the equation on the half
space x > 0 with the boundary condition that u = 0 on the yz-plane.
(1) Dirichlet case. The unit impulsive source is placed at time t = 0
at x = x′ > 0. Let G− be the Green’s function whose unit impulsive
source at time t = 0 is placed at x = −x′. Then, H ≡ G−G− satisfies
all the conditions of the problem. That is, H is the desired Green’s
function for the half space with a homogeneous Dirichlet condition at
x = 0. This means that H is the solution to the whole space problem
with +source at x′ and −source at −x′. The latter is the image source
for the current problem.
(2)Neumann case. If the boundary condition at the origin is a homo-
geneous Neumann condition, then G+G− should be the desired Green’s
function in the half space. That is, +source at −x0 is the needed image
source to make the problem a whole space problem. More complicated
cases discussed in 9.4 can be treated analogously. In the case of dif-
fusion equation, there is no difficulty for the Neumann problem on a
bounded region.

Exercise.
(A) Find the solution of the diffusion equation on [0, 1] with a homogeneous Dirich-
let condition at x = 0 and a homogeneous Neumann condition at x = 1 with a unit
impulsive source placed at x = x0 at time t = 0.
(B) Diffusion equation to defend God? Kelvin accepted organic evolution ad-
vocated by Darwin, but he could not swallow the logical consequence of Darwinism:
no design or in this case no divine intervention at the beginning of life. He used
heat conduction to destroy Darwinism:
The temperature gradient in the Earth near its surface is roughly v = 0.035K/m at
the present time. He assumed that the Earth was a homogeneous sphere of radius
R � 6400km. The evolution of the temperature T (r, t) at position r at time t obeys
Fourier’s law

∂T

∂t
= κ∇2T.

At time t = 0 he assumed that the Earth was at its melting temperature which was
T0 = 3000K above the surface temperature for |r| < R. Its surface temperature
must have been close to the present temperature for all t > 0 to allow life. Let us
choose this to be the zero point of temperature for all t > 0.
(1) Using the numbers v, T0 and R, give an argument that the thickness of the
transition layer over which the temperature differs significantly from T0 is much
smaller than the Earth’s radius at the present time.
(2) Hence, the full sphere problem simplifies to the 1-d problem:

∂T

∂t
= κ
∂2T

∂x2

under the condition that T (x, 0) = T0 for all x > 0, and T (0, t) = 0 for all t > 0.
Find the solution.
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(3) Using the value of v, compute the age (in years) of the Earth, assuming that
the thermal diffusivity is κ = 0.7× 10−6m2/s.118

(4) Read the following to be a bit wiser as a physicist:
C. Darwin, The Origin of Species (Sixth edition Jan, 1872) Chapter X, “ Sir W
Thompson concludes that the consolidation of the crust can hardly have occurred
less than 20 or more than 400 millions years ago, but probably not less than 98 or
more than 200 millions years.”
Ibid., Chapter XV, “· · · and this objection, as urged by Sir William Thompson, is
probably one of the gravest as yet advanced, I can only say firstly, that we do not
know at what rate species change as measured by years, and secondly, that many
philosophers are not as yet willing to admit that we know enough of the constitution
of the universe · · ·”

Now we know Darwin was perfectly right. Thompson did not know the ra-
dioactivity. In a certain sense, in retrospect at least, Darwin pointed out the exis-
tence of unknown physics.

Later, Huxley commented: Mathematics may be compared to a mill of exquisite
workmanship, which grinds your stuff of any degree of fineness; but nevertheless.
what you get out depends what you put in; and as the grandest mill in the world
will not extract wheat-flour from peascods, so pages of formulae will not get a def-
inite result out of loose data. However, in this case the defect of the theory was
much more serious. In any case Darwin did not have much respect of mathemat-
ics; Boltzmann was strongly influenced by Darwin, and he suggested that the 19th
century may be called the century of Darwin.

It is said that Fourier had a dream to explore the interior of the earth thr
ough the studyof heat conduction, and then to study the formation process of the
earth and the solar system. Kelvin seems to have realized a nightmare.

9.28 How to use Green’s function: homogeneous boundary
problems. In the case of the diffusion equation (with a source term),

∂ψ

∂t
−D∆ψ = σ(x, t), (9.50)

even if the boundary condition is homogeneous, we must take into ac-
count the initial condition (→??):

ψ(x, 0) = f(x). (9.51)

We already know that the nitial condition can be absorbed into the
source term (→9.23), so that

∂ψ

∂t
−D∆ψ = σ(x, t) + f(x)δ(t). (9.52)

118 The number obtained here is ridiculously short (although much longer than
some beliefs based on the wrong reading of the Bible).
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Thus the solution to (9.50) + (9.51) with a homogeneous boundary
condition can be written in terms of the Green’s function as

ψ(x, t) =
∫
D
dy
∫ t

0
dsG(x, t|y, s)σ(y, s) +

∫
D
dyG(x, t|y, 0)f(y).

(9.53)
Here D is the domain of the problem (cf. ??).

To solve inhomogeneous boundary value problems, we can use
9.29, but there is a clever trick. See ??.

Discussion.
Solve the following semilinear parabolic equation to order ε in free 1-space:

∂u

∂t
=

1
2
∂2u

∂x2
− εu3 (9.54)

with the initial condition
u(0) =

1√
2πδ
e−x

2/2δ. (9.55)

Here δ is a small positive constant. Demonstrate that the order ε term is asymp-
totically (for t/δ # 1) proportional to ln(t/δ).119

9.29 Analogue of Green’s formula for diffusion equation. We
have a formula analogous to Green’s formula (→9.15) for diffusion
equation. This generalization will be postponed to XX.

9.B Green’s Function for Wave Equation

9.30 Free-space Green’s function for 3-wave equation. We wish
to solve (

∂2

∂t2
− c2∆

)
ψ = δ(t)δ(x). (9.56)

It is not hard to guess (from physics) a spherical symmetric solution as

ψ(x, t) =
δ(|x| − ct)

4πc|x| Θ(t), (9.57)

where the step function Θ is put to satisfy the causality. Check that
this is indeed the solution.

119 If the reader is familiar with the renormalization group theory, it is immedi-
ate from this observation that the problem has a renormalization group structure
governing the long-time behavior.
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The following calculation may be helpful. Under spherical symmetry,
the wave equation reads for |x| > 0(

∂2

∂t2
− 1

r

∂2

∂r2
r

)
ψ = 0 (9.58)

It is worth remembering that if we introduce rψ = F , then F obeys a
1d wave equation.

The topic of this section naturally continues to section 39.Now with
the aid of space-time translational symmetry, we obtain the Green’s
function for the free space as

G(x, t|y, s) = δ(|x− y| − c(t− s))

4πc|x− y| Θ(t− s), (9.59)

(9.59) is called the retarded Green’s function.

Exercise.
(1) One way to obtain the Green’s function for the wave equation is to use its
temporal Fourier transformation (the Helmholtz equation):

(k2 −∆)ψω(x) = δ(x). (9.60)

Here k = ω/c. Obtain

ψω(x) =
i

2k
eik|x|. (9.61)

(2) There is a point source of wave at the origin. Describe the wave radiated from
this source (respecting causality). That is, solve

(c−2∂2
t −∆)u(x, t) = Q cosωtδ(x) (9.62)

in 3-space, respecting the radiation condition (i.e., there is no incoming wave).
(3) The same as (2) but with a point (oscillating) dipole at the origin. That is,
solve the wave equation with the source

ρ(x, t) = −p · ∇δ(x) cosωt, (9.63)

where p is the dipole strength. Again respect causality.

9.31 Retarded and advanced Green’s functions. Since the wave
equation is time reversal symmetric,

ψ(x, t) =
δ(|x|+ ct)

4πc|x| Θ(−t), (9.64)

must also be a solution. This is a strange ‘anti-causal’ solution, and is
called the advanced Green’s function in contrast to (9.59).
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9.32 Method of descent for wave equation. Applying this method
explained in 9.1 to the retarded Green’s function (9.59), we can con-
struct the retarded Green’s function for 2-space as

G(x|y) = Θ(ct− |x− y|)
2πc
√
c2t− |x− y|2

Θ(t). (9.65)

The reason why the step function shows up is that for the δ-function to
contribute,the function inside the delta-function must have real zeros.
The step function specifiesthe condition.
Exercise.
Apply the method of descent to the Green’s function (9.61) of the Helmholtz equa-
tion.

9.33 Afterglow. Notice that the 2-space Green’s function for the
wave equation is not zero for |x−y| < ct. This implies that for an ob-
server in 2-space a flash of a lamp at a distance brightens up the world
slightly even after the first pulse arrived to the observer (afterglow ef-
fect) (see also ??). We will see this is a feature of even dimensional
space (→12.51).

The difference between odd and even dimensional spaces also ap-
pears in the spherical wave as follows:

φ(r, t) = u(r)e−iωt. (9.66)

Then, u obeys the Helmholtz equation (→??, X)

∂2u

∂r2
+

d− 1
r

∂u

∂r
+ k2u = 0, (9.67)

where k = ω/c. The general solution for this can be written in terms
of

u(r) =
1

rd/2−1
J±(d/2−1)(kr). (9.68)

The Bessel functions with half odd orders are written in terms of
trigonometric functions, but not elementary otherwise (→??).

9.34 Method of images for wave equation. This is almost a
repetition of what we have seen in 9.25 and 9.27. If we assume that
the boundary condition is Dirichlet, then the corresponding Green’s
function reads

G(x, t|y, s) = δ(|x− y| − c(t− s))

4πc|x− y| Θ(t−s)−δ(|x− y | − c(t− s))

4πc|x− y | Θ(t−s),

(9.69)
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where y′ is the position mirror symmetric to y with respect to the yz-
plane. This is an idealized reflection from a hard wall. Consider the
Neumann case.

Exercise.
With the aid of the method of images, write down the solution to the 1 dimensional
wave equation (

∂2

∂t2
− c2 ∂

2

∂x2

)
u = 0 (9.70)

on the half line [0,+∞) with the fixed end condition at x = 0 and the initial
condition

u|t=0 = f(x),
∂u

∂t

∣∣∣∣
t=0

= g(x), (9.71)

where f(0) = g(0) = 0. [This is NOT a Green’s function problem.]

9.C Laplace Equation in 2-Space

9.35 What do we know from complex analysis?
(1) The real and imaginary parts of a holomorphic function are har-
monic functions. log |f | is harmonic on the region where f is holomor-
phic and nonzero.
(2) Let u be a harmonic function on a simply connected region D.
Then, there is a holomorphic function ψ on D such that its real part is
u. ψ is unique up to a pure imaginary additive constant.
The uniqueness follows from the Cauchy-Riemann equation; suppose
there are two holomorphic functions f1 and f2 such that $f1 = $f2 = u
and%f1 = v1 and $f2 = v2. Then partial derivatives of v1 − v2 vanish,
so it must be a constant. But since real part of f has no freedom of
choice, the constant must be real.
(3) Harmonicity is conformal invariant. ✷

9.36 Neumann problem can be reduced to Dirichlet problem:
The Neumann problem:

∆V = 0 (in D),
∂V

∂n
(s) = g(s) (on ∂D) (9.72)

is converted to the problem to solve its conjugate harmonic function U
(→??), which is the solution to the Dirichlet problem:

∆U = 0 (in D), U(s) = −
∫ s

a
g(s)ds ≡ h(s) (on ∂D), (9.73)
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where a is any point on ∂D. ✷
Notice that the Neumann problem (9.72) is meaningful only when

(→??) ∫
∂D

g(s)ds = 0. (9.74)

[Demo] Let U and V be conjugate harmonic functions. Then, we have

∂U

∂n
=

∂V

∂s
,

∂U

∂s
= −∂V

∂n
, (9.75)

where n is the outward normal and s is the arc length parameter (the
positive direction = orientation of s in the standard way. They are
disguised Cauchy-Riemann equations.

From the second equation in (9.75), we get the condition for the
Dirichlet problem (9.73). Thanks to (9.74) h(s) is a univalent function
on the boundary. ✷

9.37 Green’s function solves Dirichlet problem: Let D be a
region with ∂D being sufficiently smooth. LetG be the Green’s function
for this region, and u be a harmonic function on D and continuous on
the closure of D. Then, for z ∈ D

u(z) =
∫
∂D

u(ζ)
∂G(ζ, z)

∂n
ds. (9.76)

Here ∂/∂n is the outward normal derivative at ζ, and s is the contour
length coordinate of ζ along the boundary curve. ✷
This is a familiar formula (→9.17).

9.38 Poisson’s formula: If u is harmonic on |z| < R and continuous
on |z| ≤ R, then on |z| ≤ R

u(r, θ) =
1

2π

∫ 2π

0
u(R, φ)

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
dφ. (9.77)

✷
The formula can be obtained easily, if we use complex function the-
ory, but here we will derive it later with the aid of Fourier expansion
(→11.6).
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9.39 Solution to Dirichlet problem on disk: Schwarz’ theo-
rem: Let f(φ) (0 ≤ φ < 2π) be integrable.120 Then

u(r, θ) =
1

2π

∫ 2π

0
f(φ)

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
dφ (9.78)

is harmonic on |z| < R. ✷
The first half is essentially 9.38, but explicitly we can apply (→??) the Laplacian
to (9.78):

∆u(r, θ) =
1
2π

∫ 2π

0

dφf(φ)∆$
(
Reiφ + z
Reiφ − z

)
= 0. (9.79)

9.40 Fourier expansion of harmonic function on the disk: Un-
der the same assumptions in 9.38, u can be Fourier-expanded in |z| < R
as

u(r, θ) =
a0

2
+

∞∑
n=1

(an cosnθ + bn sinnθ)
(
r

R

)n

, (9.80)

where the coefficients are given by

an =
1

π

∫ 2π

0
u(R, θ) cosnθdθ, (for n = 0, 1, · · ·) (9.81)

bn =
1

π

∫ 2π

0
u(R, θ) sinnθdθ, (for n = 1, 2, · · ·). (9.82)

✷
[Demo] The integral kernel in the Poisson formula can be Fourier-expanded as

R2 − r2
R2 − 2Rr cos(θ − φ) + r2 = 1 + 2

∞∑
n=1

( r
R

)n
cosn(θ − φ). (9.83)

This follows easily from (ζ+z)/(ζ−z) = 1+2
∑

(z/ζ)n with ζ = Reiφ and z = reiθ.
This is uniformly convergent, so we may integrate the expansion of the integrand
of the Poisson integral formula termwisely. The result is the one we wanted. ✷
The 3-space version of this formula is the spherical harmonics expan-
sion.

9.41 Conformal mapping and Green’s function: Let ∆ be a
region on the w-plane whose Green’s function is G∆(w,w0). If a con-
formal map w = f (z) maps a region D on the z-plane onto ∆, then

GD(z, z0) ≡ G∆(f(z), f(z0)) (9.84)

120 i.e., Lebesgue integrable (→??), so this theorem is distinct from Poisson’s
formula.
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is the Green’s function for the region D with the pole at z0 such that
w0 = f(z0). ✷
This theorem with 9.39 and the Riemann mapping theorem together
demonstrate that for any singly connected region, there is a Green’s
function.
[Demo] We have only to check ??. Thanks to the mapping theorem GD(z, z0) is
harmonic on D except at z0. f is continuous on the closure of ∆,121 so GD vanishes
when z approaches ∂D from inside. Now we have

2πGD(z, z0)+log |z−z0| = 2πG∆(f(z), f(z0))+log |f(z)−f(z0)|−log
∣∣∣∣f(z)− f(z0)z − z0

∣∣∣∣ .
(9.85)

G∆(w,w0) + (1/2π) log |w−w0| is harmonic near w0 and f is holomorphic near z0,
so the last term is harmonic. ✷

9.42 Green’s function for a region D: Let w = f(z) be a confor-
mal map which maps the region D on the z-plane onto the unit disk.
Then the Green’s function of D with the pole at z0 ∈ D is given by
(→??)

G(z, z0) = log

∣∣∣∣∣1− f(z0)f(z)

f(z)− f(z0)

∣∣∣∣∣ . (9.86)

✷

9.43 Harmonic function on the half plane: Let f(x) (−∞ < x <
∞) be integrable. Then

u(x, y) =
1

π

∫ ∞

−∞
yf(η)

y2 + (x− η)2
dη (9.87)

is harmonic on the upper half plane. If x0 is a continuous point of
f , then u(x, y) → f(x0) when z approaches to x0 from above. If
f is uniformly continuous on x1 ≤ x ≤ x2, then the convergence of
u(x, y)→ f(x) is uniform. ✷
[Demo] The integral converges uniformly for y > 0, so we may exchange the or-
der of differentiation and integration. Notice that the imaginary part of 1/(z − η)
is harmonic, so the integral is also harmonic. The convergence result will not be
proved here. ✷

121 We must demonstrate this – Carathèodory’s theorem.
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10 Fourier Expansion

Fourier expansion and its salient features are summarized.
We should pay due attention to the relation between the
decay rate of the Fourier coefficients and the smoothness of
the function. Impacts of Fourier’s idea on Modern Mathe-
matics is also briefly outlined.

Key words: Fourier expansion, periodic extension, Gibbs
phenomenon, Riemann-Lebesgue lemma, countable.

Summary:
(1) Three basic facts (10.7) for piecewise smooth functions are worth
memorizing as well as the formal expansion formulas in 10.1.
(2) Fourier coefficients decay faster if the function is smoother. This is
due to the Riemann-Lebesgue lemma (10.13-10.15).
(3) To use Fourier expansion to solve a boundary problem, a problem-
adapted form should be looked for (10.17-10.19).
(4) Attempts to rationalize Fourier series almost dictated modern math-
ematics (10.22).

10.1 Fourier expansion of function with period 2I: A formal
statement. If f is a periodic function with period 2I, then

f (x) =
a0

2
+

∞∑
n=1

[
an cos

nπx

I
+ bn sin

nπx

I

]
for x ∈ [−I, I], (10.1)

where

an =
1

I

∫  

− 
f(x) cos

nπx

I
dx, bn =

1

I

∫  

− 
f(x) sin

nπx

I
dx. (10.2)

Or, we may write

f(x) =
+∞∑

n=−∞
cne

inπx/ , (10.3)

where

cn =
1

2I

∫  

− 
f(x)e−inπx/ . (10.4)

This is what Fourier asserted, but he could not convince mathemati-
cians he admired (→3.4, 3.5, 10.22). The formal series (10.1) or (10.3)
are called Fourier series. If we may freely exchange the order of sum-
mation and integration, then it is easy to check Fourier’s claim (see also
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??).
The real value condition of f in terms of its Fourier coefficients is
cn = c−n.
The best introductory book of Fourier analysis is E. Körner’s Fourier
Analysis (Cambridge, 1988). For solved problems, Schaum’s outline
series is useful as usual.

Discussion.
(A) Fourier expansion as least square approximation.
Let

g(x) =
a0
2

+
N∑
n=1

[
an cos

nπx

O
+ bn sin

nπx

O

]
, (10.5)

where an and bn are given by (10.3). The Fourier coefficients minimizes the following
integral: ∫ -

−-
|f(x)− g(x)|2dx. (10.6)

We say g is the closest to f in the L2-norm (→??). That is, the Fourier expansion is
understood as the least square approximation of a function in terms of trigonometric
functions up to a given wavelength (→??).
(B) Acceleration of convergence. The convergence of Fourier series can be
accelerated. Consider in (−π, π)

f(x) =
∞∑
n=2

(−1)n n3

n4 − 1
sinnx (10.7)

We know ∞∑
n=1

(−1)n sinnx
n

=
x

2
. (10.8)

Let us subtract this from f :

f(x)− x
2
= sinx+

∞∑
n=2

(−1)n sinnx
n5 − n. (10.9)

The series should be faster convergent than the original one, so this subtraction
trick is useful in numerical calculation.

Try a similar trick to
∞∑
n=1

cosnx
n+ a

, (10.10)

where a > 0.
(C) Crystal periodicity. Let f(r) be a function defined on R3 with the following
‘lattice structure’:

f(r + ai) = f(r) (10.11)

for three (linearly independent) vectors ai (i = 1, 2, 3) called the crystal lattice
vectors. The parallelepiped spanned by these vectors is called the unit cell. Such a
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function can be expanded as

f(r) =
∑
h

Ah exp(2πih · r), (10.12)

where the summation is over all the vectors h such that

h =
3∑
i=1

hibi (10.13)

for any integer hi. The vectors bi (i = 1, 2, 3) called reciprocal lattice vectors are
give by

b1 =
a2 × a3

Vc
. (10.14)

and cyclical permutations of the suffices, where Vc is the volume of the ‘uint cell’:

Vc = a1 · a2 × a3. (10.15)

The expansion coefficient can be obtained by

Ah =
1
Vc

∫
cell
dr f(r) exp(−2πih · r). (10.16)

Exercise.
(1) Fourier-expand the following functions of x (here a is a real such that a ∈ (−1, 1).

1− a2
1− 2a cos x+ a2

. (10.17)

and
a sinx

1− 2a cos x+ a2
. (10.18)

See 9.40.
(2) Fourier expand

f(x) = | cos ax|. (10.19)

(3) Find the Fourier expansions of the following graphically given periodic functions.
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(4) Let f(x) = Ax2 + Bx + C in (−π, π), where A,B,C are constants. Find its
Fourier expansion, or show

Ax2 +Bx+ C =
Aπ2

3
+ C + 4A

∞∑
n=1

(−1)n cosnx
n2

− 2B
∞∑
n=1

(−1)n sinnx
n
. (10.20)

If the range is (0, 2π), then

Ax2 +Bx+ C =
4Aπ2

3
+Bπ + C + 4A

∞∑
n=1

cosnx
n2

− 2B
∞∑
n=1

sinnx
n
. (10.21)

With the aid of these expansions, we can compute the following series

∞∑
n=1

sinnx
n
,

∞∑
n=1

(−1)n cosnx
n2

. (10.22)

(5) Exercise. Let f(t) be a periodic function. Show that the modul us of its
Fouriercoefficients cn does not change if f(t) is displaced along the time axis. That
is, the Fourier coefficients c′n of f(t + τ ) for any τ satisfies |cn| = |c′n|. [This is
trivial, but worth noting .]

10.2 Periodic extension of function. If f is defined only on [−I, I],
or one is interested in f on this interval, f can be extended to a periodic
function F defined on the whole R, and we may use 10.1. There are
many ways to define a function which is a periodic extension of f

As we will discuss in detail later (→10.17-) we should, in practice,
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make the extended function F to be as smooth as possible.
Any periodic function with period T can be written as a sum of

a periodic even function and a periodic odd function with the same
period T .

10.3 Theorem [Weierstrass]. Any continuous function on (a, b) can
be approximated in the sup-norm sense122 by a polynomial. More pre-
cisely, for a given continuous function f defined on (a, b), and for any
specified positive ε there is a polynomial P such that ‖f − P‖sup < ε.
✷

We say that the set of polynomials is complete in the set of con-
tinuous functions.

It is straightforward to generalize the theorem for multivariable
functions.

Discussion: Theorem [Hausdorff] on the moment problem.
Let [a, b] be a finite interval and let f , g be continuous functions. Then, if∫ b

a

xnf(x)dx =
∫ b

a

xng(x)dx (10.23)

for all n ∈N , f = g on [a, b]. ✷

The condition is equivalent to∫ b

a

P (x)(f − g)dx = 0 (10.24)

for any polynomial P . Weierstrass (→10.5) tells us that there is a sequence of
polynomials Pn uniformly converging to f−g on [a, b]. Hence, the condition implies∫
(f − g)2dx = 0. Hence, f = g follows.

If the domain is not bounded, then Hausdorff’s theorem does not hold. That
is, the knowledge about all the moments do not uniquely specify a distribution
function.

10.4 Bernstein polynomial. A constructive demonstration of Weier-
strass’ theorem is the following in terms of the Bernstein polynomial.
We study a continuous function f defined on [0, 1]. Let

Bn(x) =
n∑

k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
. (10.25)

This uniformly converges to f as n →∞.
This tells us that any continuous function is approximated as a

122 The sup-norm ‖ ‖sup is defined by ‖f(x)‖sup = supx∈(a,b) |f(x)|. That is, we
measure the distance between two functions f and g by the widest possible separa-
tion of their graphs. See ?? for ‘norm.’
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linear combination of monomials 1, x, x2, · · ·. The set of monomials
is complete in the space of continuous functions (= any continuous
function is in the closure of the totality of the linear combination of
monomials). 123

Exercise.
(1) Demonstrate that for f(t) = 1, t, and t2 Bn(t) converges to the respective target
functions uniformly.124 [Hint: Use a generating function.]
(2) {1, cosnt} is complete on [0, π] but not so on [−π, π]. The same is true for
{sinnt}.

Discussion. Here, a theoretical physicists’ formal demonstration of the convergence
of (10.25) is given. We first note that the Taylor expansion can be written as125

f(x+ y) = exp
(
y
d

dx

)
f(x). (10.26)

(10.25) can be rewritten as

Bn(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−k exp

(
k

n

d

dt

)
f(t)
∣∣∣∣
t=0

, (10.27)

=
(
1− x+ x exp

(
1
n

d

dt

))n
f(t)
∣∣∣∣
t=0

. (10.28)

Here, we have used the binomial theorem. Now n is extremely large, so the exponent
can be expanded to obtain

Bn(x) =
(
1− x+ x

(
1 +

1
n

d

dt
+ · · ·

))n
f(t)
∣∣∣∣
t=0

, (10.29)

=
(
1 +
x

n

d

dt
+ · · ·

)n
f(t)
∣∣∣∣
t=0

, (10.30)

→ exp
(
x
d

dt

)
f(t)
∣∣∣∣
t=0

, (10.31)

= f(x). (10.32)

123 The good function principle (→15.17) can be restated as follows: If a relation
among integrals on a finite closed interval is correct for polynomials, then it is
correct for any integrable functions.
124 This demonstrates that Bn converges uniformly to any continuous target func-
tion thanks to the Bohman-Korovin theorem:
Let Ln be a linear operator on C[a, b] (continuous functions on [a, b]) which is mono-
tonic (i.e., if f ≤ g, then Lnf ≤ Lng). The following two conditions are equivalent:
(A) Lnf → f is uniform for any f ∈ C[a, b],
(B) Lnf → f is uniform for f = 1, x and x2. ✷

The theorem is the shortest route to the Weierstrass approximation theorem.
125 If the reader knows that the momentum operator is the generator of translation
in quantum mechanics, the formula should be obvious.
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Mathematically, this is not a proof (note that this works only for analytic functions);
this is just the Euler style ‘algebraic formalism’ (→wweul Discussion), but it is not
empty.

10.5 Who was Weierstrass? Karl Theodor Wilhelm Weierstrass
was born on October 31, 1815 at Ostenfelde in Münsterland. His fam-
ily was rather poor, but a very cultivated one. He was a student cum
laude every year, good at German, Greek, Latin, and Math. His father
wished him to be a politician, so he studied law and economics at the
University of Bonn (from Fall of 1834). However, he soon realized that
these were not true scholarly disciplines but only for bread, and began
to feel them as a waste of his life. He studied Laplace’ Mechanique
celeste, Jacobi’s Fundamenta nova, etc., but he could never patiently
attend mathematics classes except the one by Plücker’s geometry.126

He studied only mathematics for four years without taking any exams
in any subject. He also loved taverns and became an expert in fencing
with his great physical strength and agility. Hence, when he returned
home after four years, naturally he was treated very coldly.

Since he knew he could not go to a good university to learn math-
ematics, he decided to be a teacher, and enrolled in the Theologi-
cal and Philosophical Academy at Münster on May 22, 1839, where
Gudermann127 was teaching mathematics. Weierstrass quit the Academy
in the same Fall, and prepared for the exam to be a teacher. In the
exam in 1840, he gave a new result on elliptic functions.

He became a teacher of Münster gymnasium in 1841. He wished to
complete his work submitted as a part of the exam, but thought that
he should first clarify the foundation of the theory of general functions.
He completed a paper proving Cauchy’s theorem without using double
integrals (note that Gauss’ letter (→?? Discussion (A)) was not known
until 1880). The paper also contained Laurent’s theorem (??). In 1842,
he completed a fundamental paper on analytic functions. There he in-
troduced the idea of function elements (→7.7), analytic continuation

126 Plücker was a professor of physics concentrating on analytical geometry. How-
ever, it was said that a non-physicist occupying a physics position was inappropriate,
so after 1846 for about twenty years he concentrated on physics. However, he could
not stop studying mathematics, so that he decided to return to math, and started
to construct a new geometry (introducing the Plücker coordinate), but could not
finish it.
127 C. Gudermann (1798-1851). He stressed the importance of power series, and
this gave a profound influence on Weierstrass, who always appreciated Gudermann
in every possible opportunity (e.g., on his (=KW) seventieth and eightieth birth-
days). Weierstrass never attended any class but Gudermann’s. There were 13
students in the first class, but in the second class Weierstrass was the only student.
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(→??), singularities (→??), natural boundary (→??), etc.128 In the
Fall of 1842, he moved to the Royal Catholic Gymnasium at Deutsch-
Krone (West Prussia). He had to teach calligraphy, geography, and
gymnastics. He published his first paper on the gamma function (→9,
the infinite product formula) in the proceedings of the gymnasium. Of
course, no one read it who could understand it. For the next six years,
he stayed in the position without becoming desperate.

In 1848 fall, he was promoted to a teacher of an Obere-Gymnasium
(high school) at Braunsberg on the Baltic. Fortunately, the principal,
Mr F. Schurz, understood him. His research was at the second stage of
completing the theory of elliptic functions. His work on Abel functions
appeared in Crelle’s journal129 in 1854. It was a sensational paper,
making him famous instantly. University of Königsberg decided to give
him Doctor honoris causa, and they (including math Professor Richelot
who proposed this) went to Braunsberg to hand the doctorate.130

In 1856, he became a professor of Geverbe-Institute in Berlin from
July 1, and then from the Fall, thanks to the recommendation of Kum-
mer, he was also an associate professor of the University of Berlin.
Kronecker was also there. However, he had to give lectures 12 hours a
week at the Institute, and also had to give a lecture on Gauss’ theory
on the dispersion of light, so he did not have enough time to do re-
search. He and Kummer founded the first seminar in Germany devoted
exclusively to pure mathematics in 1861. After 1862 he could lecture
only while seated in a chair because of brain spasms and the onset of
recurrent attacks of bronchitis and phlebitis. During his classes an ad-
vanced student assisted him by writing on the blackboard.

He became a full professor in 1864, and was already very well
known all over the world (even in the US).131 By the 1870s as many
as 250 students attended his classes each year. This enrollment was
exceptionally high for advanced mathematics courses in his time. He
removed the requirement that doctoral dissertations be in Latin.

He tried hard to eliminate use of intuition as much as possible. He
analyzed intuitive concepts and wished to reconstruct everything on
the concept of integers. Also he made effort to find the shortest path
from the very basic.

128 The paper was not published for a few tens of years.
129 This is still the top-ranking mathematics journal.
130 According to Mittag-Leffler, at his 80th birthday, Weierstrass recollected with
tears in his eyes that it was his most delightful event that Professor Richelot came
over in person to hand him the degree. ‘However, I still regret that the day came
too late for me.’ He spent 15 years teaching boys.
131 When Mittag-Leffler went to Paris to learn with Hermite, Hermite said,“You
have made an error. You should have attended courses of Weierstrass in Berlin. He
is our master of all.” (in 1873 just after the Franco-Prussian war).
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Sonia Kowalevskaya132 became his private student from 1870 Fall,
because she had an excellent recommendation from Königsberger, his
former student. He became the Provost of University of Berlin in 1873,
but he continued to teach her. She received her PhD in 1874 with the
now famous work about PDE (Cauchy-Kowalevskaya theorem).

Kowalevskaya died in 1889; Kronecker died in the same year.133

He retired in 1892. He chose as his successor Frobenius (→24B). He
died on February 19, 1897 of aggravated influenza.

10.6 Set of trigonometric functions is complete.134 Let f(θ)
be a 2π-periodic function. Introduce

ϕ(x, y) = rf(θ), (10.33)

where x = r cos θ and y = r sin θ. This agrees with f(θ) on the unit
circle x2 + y2 = 1. ϕ can be uniformly approximated by a polynomial
of x and y on [0, 1]× [0, 1]. Setting r = 1 the resultant formula becomes
a polynomial of cos θ and sin θ. However, with the aid of the formulas
of trigonometric functions, this can always be reduced to the form of
the partial sum of Fourier series.

Discussion [Münz’ theorem].
The set of powers {xαi} with αi → ∞ is complete (w.r.t. the ordinary sup norm)
on [0, 1], if and only if

∑
i(αi)

−1 diverges. ✷135

From this we realize that {e−αit} is a complete set on a finite interval [0, s] for any
s > 0 under the same condition. Thus we can approximate correlation functions
c(t) (→12.22) on any large time interval [0, T ] with the linear combination of ex-
ponentially decaying functions.136

10.7 Three basic facts for piecewise smooth functions.137 Let
fN be the partial sum of (10.1) up to the n = N terms. We assume f
132 January 15, 1850 Moscow - February 10, 1889 Stockholm.
133 Kronecker did not like Weierstrass’ theory of irrational numbers. He aimed at
arithmetization of mathematics, saying “Die ganze Zahl schuf der liebe Gott, alles
Übriges is Menschenwerk.” Needless to say, Kronecker hated Cantor (→??), but
Weierstrass defended him.
134 This smart proof is found in Courant-Hilbert (Chapter 2, Section 5.4).
135 H. Münz, Festschrift H A Schwarz, p303 (1914); The lecturer has not read
the original. This is quoted in Courant-Hilbert Chapter 2, Section 10.6. See P
Borwein and T Erdelyi, “Polynomials and Polynomial Inequalities” (Springer, 1995)
for detailed information about the theorem and the related topics.
136 This implies that we can approximate any Gaussian process with a linear com-
bination of Gauss-Markov processes.
137 A function which is continuously differentiable except finitely many points (at
most countably many points) is called a piecewise smooth function.
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to be piecewisely smooth. Then, there are three basic facts:
(1) limN→∞ fN(x) = [f(x+ 0) + f(x− 0)]/2.
(2) On any closed interval [a, b] which is in an open region where f is
smooth,138 the convergence is uniform:
limN→∞maxx∈[a,b] |f(x)− fN(x)| = 0.
(3) At an isolated jump discontinuity at x0, Gibbs’ phenomenon139 oc-
curs: for sufficiently small δ > 0:
limN→∞[max|x−x0|<δ fN(x)−min|x−x0|<δ fN (x)] = C|f(x0+0)− f(x0 −
0)|, where C is a universal constant given by C = 2

π

∫ π
0

sin x
x

dx �
1.17897974 · · · (i.e., there is about 18% overshooting).

Discussion.
(A) Intuitive understanding of the fundamental theorem of Fourier expansion.
Let f be a periodic function with period 2π. We have

f(t) =
1
2π

∞∑
n=−∞

∫ π

−π
dsf(s)ein(t−s) (10.34)

Truncate the sum as

fN (t) =
1
2π

N∑
n=−N

∫ π

−π
dsf(s)ein(t−s). (10.35)

This can be rewritten as

fN (t) =
∫ π

−π
dsf(s)∆N (t− s), (10.36)

where

∆N (z) =
1
2π

sin
(
N + 1

2

)
z

sin z
2

(10.37)

This is called the Dirichlet kernel (→?? Discussion (D)). Its graph looks like the
ones in the figure below. The Gibbs phenomenon and the average value property
can be seen from the following figures.140

138 that is, f is continuous and piecewise C1 (the so-called strong Dini condition).
139 Read Körner, Section 17.
140 Ezawa
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(B) Dirichlet integral: Let a < 0 < b and f be piecewise monotonic in [a, b]. Then,

lim
λ→∞

∫ b

a

f(x)
sinλx
x
dx =

π

2
(f(+0) + f(−0)). (10.38)

Discuss the relation of this to (2) above.

LOCALIZATION of singularity must be clearly mentioned.10.8 Gibbs phenomenon. The pathology called Gibbs’ phenomenon
occurs near the jump. Any jump could be used to check the assertion
in 10.7(3).141 We may use the following sawtooth function

f(x) = x for x ∈ (−π, π) and f(±π) = 0. (10.39)

Let Sn be the partial sum up to the n-th term of its sine Fourier ex-
pansion formula (→10.15). Then, it is not hard to see

Sn(π − π/n)→ Cπ, (10.40)

where C is given in 10.7(3).

10.9 Dirichlet’s sufficient condition for expandability: prac-
tical condition. The basic facts in 10.7 are for piecewise smooth
functions. Much wilder functions can be written as Fourier series. A
sufficient condition for 10.7(1) is:
f is periodic with at most finite number of extremal points and discon-
tinuities.
This is sufficiently general for practitioners, but an ultimate version is:
141 However, this localization of pathology is only in 1-space. The multidimensional
pathology is explained in M. A. Pinsky, “Pointwise Fourier inversion in severeal
variables,” Notices Amer. Math. Soc. 42, 330 (1995). Anexample is:
Let f be the characteristic function of the unit ball centered at the orig in in the 3-
cube[−2, 2]3 (i.e., f(x) = 1 if |x| < 1, and zero, otherwise) . The Fourier expansion
of thisdoes not converge at the origin even though the function is smooth there.

148



10.10 Theorem [Riemann-Lebesgue].142 A necessary and suffi-
cient condition for (10.1) to converge to f at x is that

lim
λ→∞

∫ δ

0

1

2
[f(x+ t) + f(x− t)− 2f(x)]sinλt

t
dt = 0 (10.41)

for some δ ∈ (0, π). If this holds uniformly in [a, b], then (10.1) uni-
formly converges to f(x) on [a, b].
Corollary [Dini]. If |f(x+ t) + f (x− t)− 2f(x)|/t is integrable as a
function of t on (0, δ) for some δ ∈ (0, π), then (10.1) converges to f(x)
at x. In other words, if for any δ > 0

∫ δ

−δ

f(x+ t)− f(x− t)

t
dt (10.42)

exists, then (10.1) converges to f at x.

10.11 Advanced theorems.
Theorem[Dini]. If f(x) is L1 (Lebesgue integrable, →??), and is
Hölder continuous,143 then its Fourier series converges to f(x) at x.
Theorem[Carlson] (1966). For any L2-function (square Lebesgue
integrable,→??), there is a convergent subsequence of its Fourier finite
series such that it converges pointwisely to f for almost all (→??)
points.

10.12 Remark.
(1) Warning. There exists continuous functions whose Fourier ex-
pansions do not converge at some point [duBois-Reymond].144 Hence,
continuity is not enough to ensure the convergence, although we know
the Fourier series of a continuous function contains all the information
needed to recover the original continuous function if summed according
to Cesaro:145

142 See Y. Katznelson, An Introduction to Harmonic Analysis (Dover, 1968), Sec-
tion 5, II-2, p51-55.
143 That is, there are positive numbers α and C such that for any ε > 0 there is
δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < C|x− y|α.

144 Paul David Gustave du Bois Reymond, 1831-1889.
145 As seen here, even a divergent series can sometimes be used to reconstruct the
original function. We will come to another example later in asymptotic expansions
(→??-??).
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Fejer’stheorem.146 Let Sn be the partial sum of the Fourier series
(10.1) up to the n-th (both sine and cosine) term. Define

σn ≡ 1

n+ 1

n∑
k=0

Sk. (10.43)

If f is 2I-periodic continuous function, then σn uniformly converges to
f . ✷
Fejer’s theorem can be written as (→8.7 Discussion (D))

f(x) = lim
n→∞

2

π

∫ π

−π
f(y)


sin n(y−x)

2

2 sin y−x
2




2

dy. (10.44)

Note that the kernel of the integral does not change its sign in contrast
to the Dirichlet kernel in Discussion (A) of 10.7.
(2) There exists L1-functions (i.e., Lebesgue integrable functions→??)
whose Fourier series diverges everywhere.
(3) For any L2-function (i.e., square Lebesgue integrable functions→??),
the set on which its Fourier series diverges is measure zero (→??). This
explains partially why Lebesgue integral is the most natural framework
to treat Fourier analysis (→XX). See also 10.11.

10.13 Theorem [Riemann-Lebesgue lemma]. Let f be integrable
on [a, b]. Then,

lim
m→∞

∫ b

a
f(x)eimxdx = 0. (10.45)

Here m need not be an integer. ✷147

Of course, this implies that sine and cosine Fourier coefficients also
vanish in the m →∞ limit.

Physically, the essence of the lemma is that if the total energy
carried by the wave is finite, then the energy carried by every high
frequency modes must be sufficiently small to avoid any ‘ultraviolet
catastrophe,’ because the total energy ought to be the sum of the energy
carried by each mode.

10.14 Smoothness and decay rate. If f is a k-times differentiable
periodic function and f (k) is integrable, then∫ π

−π
f(x)einxdx = o[n−k] as |n| → ∞. (10.46)

146 Liót Fejér (1880-1959) proved this sensational theorem when he was 19.
147 See Katznelson p13.
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This follows easily from the Riemann-Lebesgue lemma through inte-
gration by parts (cf. ??).
(1) This supports our intuition that smoother functions have less high-
frequency components.
(2) If f ∈ C∞, then its Fourier coefficients must decay in the n → ∞
limit faster than any negative power of n.148

A precise statement is as follows:149

Theorem. Let k ∈ Z. If∑∞
n=−∞ |nkg(n)| < ∞, then f(x) = ∑∞

n=−∞ g(n)einx

is a Ck-function.
(3)Theorem [Paley-Wiener]. A necessary and sufficient condition for a
real analytic periodic function f(x) to be analytic on a strip |Im z| < σ
is that for any a ∈ (0, σ) there is a positive constant C (which may

depend on a) such that |f̂(n)| ≤ Ce−a|n|, where f̂(n) is the Fourier
coefficient.

Discussion.
Around a nonsmooth point the convergence is slow as shown in the figure.150

Exercise.
(1) Compute the Fourier expansion of x|x| on [−π, π]. Then, discuss the relation of
your result and the smoothness of the function.
(2) Let f be a periodic Cm function. Then, its cosine and sine Fourier coefficients
have the following asymptotic property:

|an|, |bn| = O[n−m]. (10.47)

148 This property turns out to be crucial for the definition of the Fourier transforms
of generalized functions (→12.34).
149 K. Tanishima, Buturisugaku nyumon (Univ. Tokyo Press, 1994).
150 Ezawa
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10.15 Smoothness examples. If a function f is such that f (k) is
continuous, but that f (k+1) is not, then an ∼ n−(k+2): on (−π, π):

x =
2

π

∞∑
n=1

(−1)n+1

n
sinnx, (10.48)

|x| =
π

2
− 4

π

∑ 1

(2n− 1)2 cos(2n− 1)x, (10.49)

x(π2 − x2) = 12
∑ (−1)n+1

n3
sinnx, (10.50)

x2(2π2 − x2) =
7π4

15
+ 48

∑ (−1)n)
n4

cosnx. (10.51)

10.16 Nontrivial numerical series obtained via Fourier expan-
sion. Fourier expansions could be used to get the following series re-
sults. From |x| we get

π2

8
= 1 +

1

32
+
1

52
+ · · · , (10.52)

π2

6
= 1 +

1

22
+
1

32
+ · · · , (10.53)

π2

12
= 1− 1

22
+
1

32
− · · · . (10.54)

From x3 we get, for example,

π3

12
= 1− 1

33
+
1

53
− · · · . (10.55)

10.17 Importance of smoothness. We wish to use Fourier expan-
sions to solve PDE. Therefore, the convergence property of the series is
very important. We should be able to differentiate the series termwisely.
For this to be allowed a sufficient condition is the uniform convergence
of the termwisely differentiated series. Hence, we wish to have the
Fourier coefficients to decay as fast as possible (see the next entry).
The previous entry explains why we must pay careful attention to the
smoothness of periodic extension (→10.2) of a function defined on an
interval.
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10.18 Sine and cosine Fourier expansion. If f is defined only on
[0, I], then f is extended periodically as a function of period I to use
Fourier expansion formulas (→10.2). It is often convenient to extend f
as an even or odd function of period 2I (or longer →10.19). When we
extend the function, it is advantageous to make the extended function
as smooth as possible to ensure the good converging property of the
series as discussed above.
(1) If f(0) = 0, then f defined on [0, I] should be sine-Fourier expanded
as

f(x) =
∞∑

n=1

bn sin
nπx

I
for x ∈ [0, I], (10.56)

where

bn =
2

I

∫  

0
f (x) sin

nπx

I
dx. (10.57)

(2) If f �= 0, then f defined on [0, I] can be cosine-Fourier expanded as

f(x) =
a0

2
+

∞∑
n=1

an cos
nπx

I
for x ∈ [0, I], (10.58)

where

an =
2

I

∫  

0
f(x) cos

nπx

I
dx. (10.59)

[In the latter case we can subtract f(0) from f to apply the sine-Fourier
expansion, too.]

Exercise.
Expand the following functions on [0, π] in Fourier cosine series:
(1)

f(x) = cos ax (10.60)

(2)
f(x) = Θ(b− x), (10.61)

where b ∈ (0, π).

10.19 More sophisticated extension. To pursue the smoothness
of the function to be expanded, for example, we can use the following
trick to extend the original function on [0, I] into a periodic function of
period 4I:
The following set could be used to expand any function on (0, I)

{
sin
(2n− 1)πx

2I

}
. (10.62)
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The formulas are

f (x) =
∞∑

n=1

an sin
(2n− 1)πx

2I
, (10.63)

with

an =
2

I

∫  

0
dx f(x) sin

(2n− 1)πx
2I

. (10.64)

This expansion is particularly useful when f (0) = 0 and f ′(I) = 0
Analogously, we could use the cosine counterpart.

10.20 Formal limit of Fourier expansion for infinite domain.
Let us define

f̂ (k) ≡
∫  

− 
f(x)e−ikxdx. (10.65)

The complex Fourier coefficient (10.4) in 10.1 may be written as

cn =
1

2I
f̂ (kn), (10.66)

where kn = πn/I. (10.3) reads

f (x) =
∞∑

n=−∞

1

2I
f̂ (kn)e

iknx. (10.67)

We wish to take the I →∞ limit. Let us assume that this limit exists
for (10.65):

f̂(k) = lim
 →∞

∫  

− 
f (x)e−ikxde =

∫ ∞

−∞
f (x)e−ikxdx. (10.68)

The summation over n may be written as (this sum may be understood
as a Riemann sum) (dk = πdn/I)

1

2I

∞∑
n=−∞

→ 1

2I

∫ ∞

−∞
dn =

1

2π

∫ ∞

−∞
dk (10.69)

so that (10.67) can be written in the I →∞ limit as

f(x) =
1

2π

∫ ∞

−∞
f̂(k)eikxdk. (10.70)

This heuristic result may be more formally summarized as follows (Fourier
used a similar logic).
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10.21 Fourier transform preview. Let f be an absolutely inte-
grable function on R. If the following integral exists

f̂(k) = F(f)(k) ≡
∫ ∞

−∞
dxf(x)e−ikx, (10.71)

it is called the Fourier transform of f . Multidimensional cases can be
treated similarly.
Theorem [Fourier inversion]. If f : R→ C is continuous, and both

f and f̂ are absolutely integrable, then the inversion formula holds

f(x) =
1

2π

∫ ∞

−∞
f̂(k)e+ikxdk ≡ F−1(f̂). (10.72)

✷
(12.12) appears so often that we have a fairly standard abbrevia-

tion ∫
k
≡ 1

2π

∫ ∞

−∞
dk,

∫
k
≡
(
1

2π

)d ∫
ddk. (10.73)

10.22 Impact of Fourier. The impact of Fourier’s general assertion
was not confined within applied mathematics. As we see below, it al-
most dictated Modern Mathematics.

In essence, if f is piecewise smooth function which can be Fourier-
expanded, then the series can be termwisely differentiated to make the
Fourier series for f ′.
(1) Function concept had to be clarified. Fourier claimed that
any function can be expanded into Fourier series (→3.4, 3.5). In those
days the idea of function was not very clear. For example, there was a
dispute between d’Alembert (→1.13) and Euler (→2.4): Euler thought
every hand-drawable function is a respectable function, but d’Alembert
thought only analytically expressible functions are respectable. There-
fore, to make sense out of Fourier’s claim, the concept of function had
to be clarified. Eventually, the modern concept of function as a map
culminated through the work of Cauchy (→??) and Dirichlet: if a value
f(x) is uniquely specified for a given value of the independent variable
x, then f is a respectable function. Then, inevitably, many strange
functions began to be found (see. e.g., 1.1 Discussion (B)). Now, we
know many examples such as fractal curves.151 Nowhere continuous
functions were also found. A famous example is the Dirichlet function:
D(x) = 1 if x is rational, and 0 otherwise (→??).
(2) Convergence condition. The convergence condition of infinite

151 B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, 1985).
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series had to be considered. This spurred Cauchy to construct his the-
ory of convergence.
(3) Concept of integration had to be sharpened. Fourier pro-
posed an integral formula for the Fourier coefficients as summarized in
10.1. However, if a function f is not continuous, then it was not clear
how to interpret the integral. To clarify this point, Riemann invented
the concept of Riemann integration with clear integrability condition
(in 1853 →3.23).
(4) Set theory became necessary. Cantor (→10.23) found that
even if the values of the function at infinitely many points were un-
known, still the Fourier series was determined uniquely. He studied very
carefully how large ‘sets’ of points could be removed without affecting
the Fourier coefficients. Soon he had to characterize these collections
of points. The first surprise he found was that infinity of the totality of
real numbers and that of rational numbers are distinct.152 To organize
his theory of infinity, Cantor attempted to introduce the concept of
‘set.’ However, many antinomies (‘paradoxes’) were found.153

(5) Securing foundation required axiomatic set theory. Even-
tually, to secure the foundation of set theory a set of axioms154 were in-
troduced by Zermelo.155 Hence, the currently most popular axiomatic
system of mathematics (ZFC) is under almost the direct impact of
Fourier’s idea.
(6) Further sharpening of integration concept was required.
According to Cantor the area of D(x) for x ∈ [0, 1] must be zero (→??),
but we cannot make any sense out of the Riemann integral of the Dirich-
let function D (→??). A more powerful integral was needed, which was
eventually provided by Lebesgue as the Lebesgue integration (→??).

Discussion.
The reader must know and be able to explain to her lay friend the argument showing

152 Cantor’s first important result (December, 1873). →??.
153 Perhaps the most famous antinomy is the Russel paradox (1902). The Russel
paradox is as follows. ‘Sets’ can be classified into two classes: ‘sets’ which contain
themselves as their elements (x ∈ x) and ‘sets’ which do not contain themselves
(x �∈ x). Make the ‘set’ Z of all the ‘sets’ x such that x �∈ x: Z↽== {x : x �∈ x}. Is Z
in Z or not? If Z �∈ Z, then Z ∈ Z, but if Z ∈ Z, then Z �∈ Z, a paradox.
154 Y N. Moschovakis, Notes on Set Theory (Springer, 1994) and J. Winfried and M
Weese, Discovering Modern Set Theory I. the basics (AMS, 1996) are recommended.
P. Maddy, Realism in Mathematics (Oxford, 1990) may be used to understand the
background of axiomatic set theories.
155 Ernst Friedrichs Ferdinand Zermelo, 1871-1953. For physicists, Zermelo is fa-
mous for his discussion against Boltzmann: the ‘Rückkehreinwand.’ He was an
assistant of Planck in those days and was against atomism (as his boss was). See
G. H. Moore, Zermelo’s Axiom of Choice, its origins, development, and influence
(Springer, 1982). Perhaps this is more entertaining than many novels.
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that Q is countable, but [0, 1] is not. Also she must be able to explain why [0, 1]n for
any n ∈N has the same density as [0, 1] (i.e., there is a one-to-one correspondence
between any dimensional cube and the interval [0, 1].

10.23 Who was Cantor? Georg Ferdinand Cantor was born in
1845 into a cosmopolitan merchant family in St. Petersburg. He was
an artistically inclined child (a dessin is reproduced in his biography
by Dauben156 ). He got his university education at Berlin (from 1863)
from Weierstrass (→10.5), Kummer, Kronecker and others. His thesis
solved a problem left unsettled by Gauss.

After briefly teaching at a Berlin’s girls’ school, he got his per-
manent job at Halle in 1869, where he became a junior colleague of
Heine,157 who urged Cantor to study the question about the unique-
ness of the Fourier coefficients. Cantor quickly found what is outlined
in (4) of 10.22. In 1891, Cantor invented an entirely different proof
of uncountability of reals, the so-called diagonal method (or method of
diagonalization). This allowed him to make an ascending hierarchy of
transfinite (=infinite) numbers. Cantor accepted the concept of actual
infinity through his study of Plato, Aquinas, Spinoza and Leibniz. This
put him at odds with a tradition stretching from Aristotle to Gauss that
accepted only potential infinity. Most of his first papers were published
in Acta Mathematica published by Mittag-Leffler.

To organize his theory of transfinite numbers, Cantor attempted
to introduce the concept of ‘set.’ By a “set” he meant any collection
M of definite, distinct objects m (called elements of M) which we can
perceive or think. Cantor published his famous Beiträge158 part I in
1895. This was the birth of set theory.

Cantor wished to move to a position more prestigious than Halle,
but Kronecker hated his theory of transfinite numbers and opposed
his appointment at Berlin. Mental illness afflicted his final decades
of his life. Beginning in 1884 he suffered sporadically from depres-
sion. Although his studies in other fields than mathematics may look
strange (to try to prove that Bacon wrote Shakespeare’s plays, Free-
masonry, etc), he continued to work actively in mathematics. In 1890
he founded the Association of German Mathematicians. He advocated
international congress of mathematicians and made arrangements for

156 J. W. Dauben, Georg Cantor, His Mathematics and Philosophy of the Infinite
(Princeton UP, 1979) is a very informative and enjoyable book.
157 Heinrich Eduard Heine, 1821-1881, well known for his covering theorem (Heine-
Borel).
158 which means ‘contributions.’ “Beiträge zur Begrundung der transfiniten Men-
genlehre” Math. Ann. 46, 481 (1895). A Dover translation is available: Contribu-
tion to the founding of the theory of transfinite numbers (Dover, 1955; the original
translation by P E B Jourdain in 1915).
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the first of these held in Zurich in 1897. He died in January 1918 at
the University of Halle mental hospital.
Cantor showed a unique ability in the art of asking questions that
opened vast new areas of mathematical inquiry, an ability that he con-
sidered more valuable than solving questions.
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11 Separation of Variables –Rectangular

Domain –

As the first section devoted to solve second order PDE ex-
plicitly, boundary value problems on rectangular regions are
considered. The essence of separation of variables is the ex-
pansion of the solution into Fourier series.

Key words: separation of variables, eigenvalue problem,
Poisson’s formula.

Summary:
(1) How to construct appropriate eigenvalue problems is the key to
separation of variable (11.1-11.2).

11.1 Separation of variables: general strategy.159 Suppose we
wish to solve a PDE of the form

(L1(x) + L2(y))u(x, y) = 0, (11.1)

where L1 and L2 are linear differential operators (→3.2) such that
L1(x)f(y) = L2(y)g(x) = 0 for any function f and g. If we assume

u(x, y) = X(x)Y (y), (11.2)

then
Y L1X +XL2Y = 0, (11.3)

or we conclude that

(L1X)/X = −(L2Y )/Y. (11.4)

(1) [Splitting step]. The LHS of (11.4) depends only on x and the
RHS only on y, so this equality implies that both sides must be con-
stant:

(L1X)/X = −(L2Y )/Y = λ (11.5)

where λ is a constant (Sometimes called a separation constant.
(2) [Eigenvalue problem]. We must split the auxiliary conditions

159 This method was first employed by Daniel Bernoulli around 1755 to solve the
wave equation. A more abstract setting and a general theory will be given later
(→XX).
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accordingly to obtain two problems which depend only on one of the
variables.
If the boundary condition is homogeneous for, say, x-direction, then
L1X = λX becomes an eigenvalue problem, because the nonzero solu-
tion usually exists only for very special values (eigenvalues) of λ. For
each eigenvalue, we have a nontrivial solution denoted by Xλ(x).
(3) [Inhomogeneous boundary problem]. For such λ, we must
solve the second problem L2Y = −λY under appropriate auxiliary
conditions, which are usually not homogeneous. Let us denote its solu-
tion by Yλ(y).
(4) [Superposition]. Since our problem is linear, the superposition
principle (→3.2) tells us that

∑
λ Xλ(x)Yλ(y) is also a solution.

If any smooth function can be expanded as a linear combination of Xλ

(i.e., if the set {Xλ} is complete), then we will be able to solve the
problem generally.160 If {Xλ} is the set of trigonometric functions, the
theory of Fourier series (→XX) can be fully exploited as Fourier ex-
pected (→3.4). In summary, the essence of the separation of variables
is to use a problem-adapted Fourier expansion.

5

11.2 Illustration: 2D Laplace, Dirichlet. Solve the following two-
dimensional Laplace equation on [0, 1]× [0, 1]:

∂2
xψ + ∂2

yψ = 0 on [0, 1]× [0, 1] (11.6)

with the inhomogeneous Dirichlet condition

ψ(0, y) = u0(y), ψ(1, y) = u1(y), ψ(x, 0) = v0(x), ψ(x, 1) = v1(x).
(11.7)

(1) [Separating step] We use the superposition principle (→3.2) to
split the problem as

∂2
xψ + ∂2

yψ = 0 on [0, 1]× [0, 1], (11.8)

ψ(0, y) = u0(y), ψ(1, y) = u1(y), ψ(x, 0) = 0, ψ(x, 1) = 0.

(11.9)

160 We must be able to show that the series converges uniformly, and we can freely
exchange the order of the infinite summation and differentiation, etc. A condition
for
∑∞

n=1 un(x) to be termwisely differentiable is:
(i) un(x) is C1,
(ii) the series is pointwise convergent,
(iii)
∑∞

n=1 u
′
n(x) is uniformly convergent.

Physicists usually do not care about these things, believing that their solutions
are always well-behaved (e.g., sufficiently smooth). Indeed, often they are right,
and that is why physicists do not pay much attention to mathematicians’ careful
statements.
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and

∂2
xψ + ∂2

yψ = 0 on [0, 1]× [0, 1], (11.10)

ψ(0, y) = 0, ψ(1, y) = 0, ψ(x, 0) = v0(x), ψ(x, 1) = v1(x).

(11.11)

The separation of boundary conditions expects eigenvalue problems in
all but one coordinate directions. (Further decomposition is possible,
but usually there is no need or no merit.) Here we only solve the first
set, since the second set is analogous. The solution to the original equa-
tion is the sum of the solutions to these split problems.
(2) [Eigenvalue problem] (11.8)+(11.9) has a homogeneous bound-
ary condition perpendicular to the y direction (i.e., ψ = 0 at y = 0 and
y = 1). Therefore, we should study the eigenvalue problem of ∂2

y under
the homogeneous boundary condition. Solving the eigenvalue problem

d2u

dy2
= −µu, u(0) = u(1) = 0, (11.12)

we get µ = π2n2 for n = 1, 2, · · · with the corresponding eigenfunction
sinnπy. We know the totality of such functions is a complete set ac-
cording to 10.18(1). Notice that the sign of the separation constant
µ is dictated by the requirement that (11.12) becomes an eigenvalue
problem (the solutions must be oscillatory).
(3) [Inhomogeneous boundary problem] Therefore, superposition
principle tells us that the solution must have the following form:

ψ =
∞∑

n=1

Qn(x) sinnπy, (11.13)

where An(x) satisfies

d2Qn(x)

dx2
= n2π2Qn(x). (11.14)

(4) [Superposition] The general solution to (11.14) is An sinhnπx +
Bn coshnπx, so that the general form of the solution to our problem
reads

ψ =
∞∑

n=1

(An sinhnπx+Bn coshnπx) sinnπy. (11.15)

The inhomogeneous boundary conditions at x = 0 and x = 1 requires
∞∑

n=1

Bn sinnπy = u0(y), (11.16)

∞∑
n=1

(An sinhnπ +Bn coshnπ) sinnπy = u1(y). (11.17)
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We can determineBn andAn from these equations, following 10.15(1).
161

Exercise.
(1) Consider

∂2u

∂t2
+ a2

∂4u

∂x4
= 0 (11.18)

for x ∈ [0, L] and t ≥ 0.
(i) Discuss possible boundary conditions to single out the solution.
(ii) Assume that on the boundary u and ∂2

xu vanish and the initial condition is
∂tu(x, 0) = 0 and u(x, 0) = f(x).
(2) Solve the Laplace equation for the following boundary conditions. Before solving
these problems, you must be able to guess the approximate shapes of the solutions.

11.3 Laplace equation: Dirichlet condition.

∆ψ = 0 on [0, ax]× [0, ay]× [0, az] (11.19)

with the Dirichlet boundary condition

ψ(0, y, z) = fx(y, z), ψ(ax, y, z) = gx(y, z),

ψ(x, 0, z) = fy(x, z), ψ(x, ay, z) = gy(x, z),

ψ(x, y, 0) = fz(x, y), ψ(x, y, az) = gz(x, y). (11.20)

Procedure 11.2(1) gives, for example, the problem

∆ψ = 0, on [0, ax]× [0, ay]× [0, az], (11.21)

ψ(0, y, z) = ψ(ax, y, z) = ψ(x, 0, z) = ψ(x, ay, z) = 0, (11.22)

ψ(x, y, 0) = fz(x, y), ψ(x, y, az) = gz(x, y). (11.23)
161 Of course, u0 and u1 must be Fourier-expandable.
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(x, y, z in the boundary conditions must be in the domain of the prob-
lem, of course.) Thus the relevant eigenvalue problem analogous to that
appearing in 11.2(2) is

(∂2
x + ∂2

y)u = −µ2u (11.24)

with the homogeneous Dirichlet boundary condition u(0, y) = u(ax, y) =
u(x, 0) = u(x, ay) = 0. This can be separated further, and the super-
position principle asserts

ψ =
∑
m,n

(Am,n sinhµm,nz +Bm,n coshµm,nz) sin
mπx

ax
sin

nπy

ay
. (11.25)

where µ2
m,n = (mπ)2/a2

x + (nπ)
2/a2

y. The unknown constants Am,n and
Bm,n are fixed with the aid of 10.18(1).

If, for example, ax is not finite, the summation over m in (11.25)
becomes an integral (Fourier sine transform) (→12.9).

The full solution to our problem is obtained by summing all three
solutions to inhomogeneous problems in the x, y and z directions re-
sulted from the splitting.

Exercise.
Consider the Laplace equation on a square [0, L]× [0, L] with the boundary condi-
tions

u(0, y) = 0, u(L, y) = A sin(2πx/L), u(x, 0) = 0, u(x, L) = B sin(2πx/L).
(11.26)

11.4 Laplace equation: Neumann condition.

∆ψ = 0 on [0, ax]× [0, ay]× [0, az] (11.27)

with the Neumann boundary condition

∂xψ(0, y, z) = fx(y, z), ∂xψ(ax, y, z) = gx(y, z),

∂yψ(x, 0, z) = fy(x, z), ∂yψ(x, ay, z) = gy(x, z),

∂zψ(x, y, 0) = fz(x, y), ∂zψ(x, y, az) = gz(x, y). (11.28)

11.2(1) gives, for example, the problem

∆ψ = 0 on [0, ax]× [0, ay]× [0, az], (11.29)

∂xψ(0, y, z) = ∂xψ(ax, y, z) = ∂yψ(x, 0, z) = ∂yψ(x, ay, z) = 0,

(11.30)

∂zψ(x, y, 0) = fz(x, y), ∂zψ(x, y, az) = gz(x, y). (11.31)
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Thus the relevant eigenvalue problem is

(∂2
x + ∂2

y)u = −µ2u (11.32)

with the homogeneous Neumann boundary condition ∂xu(0, y) = ∂xu(ax, y) =
∂yu(x, 0) = ∂yu(x, ay) = 0. This can be separated further, and eventu-
ally we get

ψ =
∑
m,n

(Am,n sinhµm,nz +Bm,n coshµm,nz) cos
mπx

ax
cos

nπy

ay
. (11.33)

where µ2
m,n = (mπ)2/a2

x + (nπ)
2/a2

y. The unknown constants Am,n and
Bm,n are fixed with the aid of 10.18(2).

If the region is not bounded, then the summation over m and/or
n becomes integration (Fourier cosine transform→12.9).

11.5 Diffusion equation. Consider

∂u

∂t
= D

∂2u

∂x2
(11.34)

for x ∈ (0, l) and for t > 0 with the initial condition u(x, 0) = A for
x ∈ (0, l) and the boundary condition u(0, t) = B and u(l, t) = C for
t > 0, where A,B, C are constants.162

A clever (and standard) trick is to convert the problem to a homoge-
neous boundary value problem by introducing

v = u−
(
C − B

l
x+B

)
. (11.35)

We have
∂v

∂t
= D

∂2v

∂x2
(11.36)

for x ∈ (0, l) and for t > 0 with the initial condition v(x, 0) = (B −
C)x/l + A − B for x ∈ (0, l) and the boundary condition v(0, t) = 0
and v(l, t) = 0 for t > 0. Thus we may assume the following solution

v(x, t) =
∞∑

n=1

Tn(t) sin
nπ

l
x. (11.37)

Notice that the above method works even when A,B,C are time-
dependent.

162 With this delicate choice of the space-time positions to impose the auxiliary
conditions, we need not worry about the compatibility among A,B,C.
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Exercise.
(1) Find the solution of the 1d diffusion equation for x ∈ [0, π] and t ≥ 0 with a
homogeneous Neumann condition and the initial condition u(x, 0) = sin2 x.
(2) Find the solution of the 1d diffusion equation for x ∈ [0, π] and t ≥ 0 with the
initial condition u(x.0) = x, and a homogeneous Dirichlet boundary condition.
(3) Solve the diffusion equation

∂u

∂t
=
∂2u

∂x2
(11.38)

on [0, 1] with the initial condition u(x, 0) = sin(πx/2) and the boundary conditions
u(0, t) = 0 and

∂u

∂x

∣∣∣∣
x=1

= −1
ν
u(1, t), (11.39)

where ν is a constant (i.e., a homogeneous Robin condition).
[Hint: Let µn be the n-th zero of tanx + νx = 0 arranged in the increasing order.
Then, ∫ 1

0

sin(µnx) sin(µmx)dx = δm,n
1 + ν cos2 µn

2
. (11.40)

]
(4) There is a thermally isolated ring of radius O whose thermal diffusivity is D.
The initial temperature distribution is given by

T (0, x) = T0 cos
2x
O
, (11.41)

where x is the coordinate along the ring. Find T (t, x).
(5)There is a thin rod of length O occupying between x = 0 and x = O whose thermal
diffusivity is D. The temperature at one end, say, at x = 0 is given as a function of
time as T (x = 0, t) = T0e

−αt (α > 0, constant), and the other end is maintained at
T0 for all t > 0. Initially the temperature is given by T (x, 0) = T0 sin(3πx/O). Find
the temperature field for t > 0.

11.6 Obtaining Poisson’s formula. Consider the Laplace equation
on a disk of radius a centered at the origin (cf. 3.31):

∂2u

∂r2
+
1

r

∂u

∂r
+
1

r2

∂2u

∂θ2
= 0 (11.42)

The boundary condition is a Dirichlet condition: u(a, θ) = f(θ) which
is a smooth periodic function with period 2π.

We can of course follow the honest separation strategy, but we
may assume that u can be Fourier expanded (as the reader can guess
(→??), harmonic functions are very smooth (→??), so we can do this
with confidence) as

u(r, θ) =
A0(r)

2
+

∞∑
n=1

[An(r) cosnθ +Bn(r) sinnθ]. (11.43)
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Putting this into the equation, we obtain the following ODE for the
coefficients:

d2An

dr2
+
1

r

dAn(r)

dr
− n2

r2
An(r) = 0 (n = 0, 1, 2, · · ·), (11.44)

d2Bn

dr2
+
1

r

dBn(r)

dr
− n2

r2
Bn(r) = 0 (n = 1, 2, · · ·). (11.45)

From this we get the following solutions that are finite at the origin
(→??):

An(r) = Anr
n, Bn(r) = Bnr

n, (11.46)

whereAn and Bn are constants. With the aid of the boundary condition
at r = a, these coefficients are uniquely fixed as (→10.1)

An =
1

π

∫ 2π

0
f(φ) cosnφ dφ, Bn =

1

π

∫ 2π

0
f(φ) sinnφ dφ. (11.47)

Hnece, our solution (11.43) reads:

u(r, θ) =
1

2π

∫ 2π

0
f(φ)

(
1 + 2

∞∑
n=1

(
r

a

)n

cosn(φ− θ)

)
dφ (11.48)

or summing the series, we finally obtain Poisson’s formula (for r < a)
(→9.38):

u(r, θ) =
1

2

∫ 2π

0
f(φ)

a2 − r2

a2 − 2ar cos(φ− θ) + r2
dφ. (11.49)

11.7 1-space wave equation. Let us consider, as an example, the
following 1-wave equation

∂2u

∂t2
= c2∂

2u

∂x
(11.50)

for x ∈ [0, a] and t ≥ 0, where c is a positive constant. The auxiliary
conditions are:
the initial condition: u(x, 0) = f(x), ∂tu(x, 0) = 0 for x ∈ [0, a],
the boundary conditions: u(0, t) = u(a, t) = 0 for t ≥ 0.
We know that the solution, if exists, is unique for smooth initial con-
ditions (→1.22).
Again, we can immediately proceed as in 11.6 to assume the solution
in the following form (cf. 10.18(1), 3.4):

u(x, t) =
∞∑

n=1

an(t) sin
(
nπx

a

)
. (11.51)
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Now the boundary conditions have been taken into account. The initial
condition requires that

an(0) =
2

a

∫ a

0
f(x) sin

(
nπx

a

)
dx, (11.52)

and a′n(0) = 0. The wave equation is translated into a set of infinite
ODEs:

d2an(t)

dt2
= −c2n

2π2

a2
an(t). (11.53)

Thus, we get

an(t) = an(0) cos
(
cnπt

a

)
. (11.54)

Exercise.
(1) Find the solution for

∂2u

∂x2
=
∂2u

∂t2
+ 2
∂u

∂t
+ u (11.55)

for x ∈ [0, π] with a homogeneous Dirichlet boundary condition and the initial
condition u(x, 0) = sinx and ∂tu(x, 0) = 0.
(2) Solve 1-d wave equation with the wave speed c under the initial condition

u(0, x) = sin
3π
2O
x, ∂tu(0, x) = 0 (11.56)

with the boundary condition u(t, 0) = 0 and ∂xu(t, 0) = 0 for t > 0 (i.e., x = 0 is
fixed and x = O is open).
(3) There is a string of length l whose both ends are fixed. A concentrated force
A sinωt is applied at x = c on the string. Let the density of the string be ρ and its
tension T . Then, the speed is given by c2 = T/ρ (→??).
(4) A uniform flexible chain is hanging along the z-axis. Let u be the displacement
of the chain in the xz-plane, hanging from the origin. Then

∂2u

∂t2
=
∂

∂x

(
x
∂u

∂x

)
. (11.57)

Solve this with the aid of the separation of variables. The equation for the spatial
function becomes Bessel’s equation (→??) in this case.
Discussion.
The shape of the string of a violin at time t takes the form in the figure; it looks
like a ˆ . The breaking pont moves with a constant velocity and its trajectory is
on a parabola (see the photos). The formula for the shape is

φ(x, t) = C
∞∑
n=1

1
n2

sin knx sinωnt, (11.58)

where kn = πn/L and ωn = ckn with the wave speed c. C is a constant dependent
on the loudness of the sound. Demonstrate the statement about the shape (esp.

167



the motion of the breaking point) from this formula
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12 Fourier Transformation

Basics of Fourier transform including the principle of FFT,
major qualitative features like the uncertainty principle,
sampling theorem, Wiener-Khinchine theorem are discussed
in the first two subsections. Then, Fourier analysis of gen-
eralized functions and related topics such as Poisson’s sum
formula, the Plemelj formula are treated in the third sub-
section. As a related topic, Radon transform is discussed
in the last subsection, which underlies many tomographic
techniques.

12.A Basics

Fourier analysis is reviewed. The relation between smooth-
ness of the function and the decay rate of its Fourier trans-
form is important. As theoretical applications, uncertainty
principle, sampling theorem and the Wiener-Khinchin the-
orem about spectral analysis are discussed.

Key words: Fourier transform, deconvolution, inverse Fourier
transform, sine (cosine) transform, bra-ket notation, Plancherel’s
theorem, Riemann-Lebesgue lemma

Summary:
(1) Fix your convention of Fourier transform (12.2, 12.14). Deconvolu-
tion is often the place where Fourier transformation is effective (12.3).
Linear differential operators become multiplicative operators (12.4).
(2) The decay rate of the Fourier transform and the smoothness of its
original function are closely related just as in the Fourier expansion
cases (12.12).

12.1 Formal limit of Fourier expansion. T229

12.2 Fourier transform. Let f be an integrable function (→??) on
R. If the following integral exists

f̂(k) = F(f)(k) ≡
∫ ∞

−∞
dxf(x)e−ikx, (12.1)
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it is called the Fourier transform of f . Multidimensional cases can be
treated similarly.

Exercise.
(A) Consider the Fourier transform of a wave train of finite duration. Or, more
concretely, compute the Fourier transform of

f(t) = [Θ(t+ T )−Θ(t− T )] cos at, (12.2)

Sketch the Fourier transform.
(B)
(1) Demonstrate the Fourier transform of the following triangular function

is given by

X(ω) =
4 sin2(ωT/2)
Tω2

. (12.3)

(2) Demonstrate ∫ ∞

−∞

sin2 ax

πax2
dx = 1. (12.4)

for any a �= 0 with the aid of (1).

12.3 Deconvolution. As can be demonstrated with the aid of Fu-
bini’s theorem (→??).

F(f ∗ g) = F(f)F(g), (12.5)

This is a very useful relation.

Exercise.
In the following a and b are positive real numbers.
(i) Fourier transform

χ(x) = Θ(b− |x|). (12.6)

(ii) Fourier transform e−a|x|.
(iii) Fourier transform

f(x) = e−a|x|
sin bx
x
. (12.7)

12.4 Differentiation becomes multiplication. We have an im-
portant relation

f̂ ′ = +ikf̂ . (12.8)
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The sign in front of the formula depends on our choice of the definition
12.2. We have the following formulas (→3.7, 3.9, 3.11):

F(div v) = +ik · vk (12.9)

F(curl v) = +ik × vk (12.10)

F(−∆f) = k2fk. (12.11)

The last formula explains why −∆ is a natural combination – it is a
positive definite operator.
A fundamental reason why differentiation becomes multiplication is
this; spatial translation becomes phase change.

12.5 Theorem [Inverse Fourier transformation]. If f : R → C

is continuous (and bounded), and both f and f̂ are absolutely inte-
grable, then the inversion formula holds

f(x) =
1

2π

∫ ∞

−∞
f̂(k)e+ikxdk ≡ F−1(f̂). (12.12)

✷
The formula could be guessed from the Fourier expansion formula 10.1;
actually Fourier reached this result in this way. (12.12) appears so often
that we have fairly a standard abbreviation

∫
k
≡ 1

2π

∫ ∞

−∞
,
∫
k
≡
(
1

2π

)d ∫
dk. (12.13)

12.6 Theorem [Inversion formula for piecewise C1-function].
Let f be piecewise C1-function on R. Then (cf. ??)

1

2
[f(x0 − 0) + f(x0 + 0)] =

1

2π
P
∫ ∞

−∞
dkeikx0 f̂(k). (12.14)

P denotes the Cauchy principal value (→??). ✷
We can write the formula as

1

2
[f(x0 − 0) + f(x0 + 0)] = lim

λ→∞

∫ ∞

−∞
dξ
sin[λ(x0 − ξ)]

x0 − ξ
f̂(ξ). (12.15)

✷
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12.7 More general convergence conditions. As can easily be
imagined from 10.10 for a pointwise convergence of the Fourier trans-
form, we need some conditions. For example, if f is of bounded variation163

near x, then (12.12) holds with f (x) being replaced by [f(x+0)+f(x−
0)]/2. If f is continuous and of bounded variation in (a, b), then (12.12)
holds uniformly there.

12.8 Remark
(1) Mathematicians often multiply 1/

√
2π to the definition of Fourier

transform as

f̃ =
1√
2π

∫ ∞

−∞
dxf(x)e−ikx, (12.16)

to symmetrize the formulas (as we will see in 12.10 or 12.13 sometimes
this is very convenient), because

f(x) =
1√
2π

∫ ∞

−∞
f̃(k)eikxdk. (12.17)

However, this makes the convolution formula (12.5) awkward. For
physicists and practitioners, the definition in 12.2 (the sign choice may
be different) is the most convenient, because we wish to compute actual
numbers.
This notation makes explict the unitary property of Fourier transfor-
mation on the space of rapidly decaying functions. T236.
(2) The integral over k may be interpreted as a sum over n such that
k = 2πn/L, where L is the size of the space. The following approxima-
tion is very useful in solid-state physics

1

V

∑
k

fk � 1

2πd

∫
fkdk ≡

∫
k
fk. (12.18)

12.9 Sine and cosine transforms. If the space is limited to x ≥ 0,
then Fourier sine and Fourier cosine transformations may be useful (cf.
10.18). If f(0) = f(0+), then

g(k) =
∫ ∞

0
f(x) cos kxdx, f(x) =

2

π

∫ ∞

0
g(k) cos kxdk. (12.19)

If f(0) = 0, then

g(k) =
∫ ∞

0
f(x) sin kxdx, f(x) =

2

π

∫ ∞

0
g(k) sin kxdk. (12.20)

163 If a function can be written as a difference of two monotonically increasing
functions, we say the function is of bounded variation.
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These can also be written concisely as

2

π

∫ ∞

0
cos kx cos k′xdx = δ(k − k′), (12.21)

2

π

∫ ∞

0
sin kx sin k′xdx = δ(k − k′). (12.22)

They can be shown easily with the aid of the Fourier transform of 1
(→12.36); Put cos kx = (eikx + e−ikx)/2, etc. into (12.21) or (12.22).

Exercise.
There is an infinite medium whose thermal diffusivity is D. Its initial temperature
distribution is given by T |t=0 = T0(x. Find the physically meaningful solution
(→1.19 Warning). There are many ways to solve this. For example, we can use
the free space Green’s function (→?? and the initial condition trick 9.23. We can
also use the Fourier transformation as follows.
(1) Show that for any164 function g on R3

g(x, y, z) =
1
π3

∫
0

∞
∫ ∞

0

∫ ∞

0

dαdβdγ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dadbdc

g(a, b, c) cosα(x− a) cos β(y − β0 cos γ(z − c). (12.23)

(2) The integrands are linearly independent (no mode coupling, or super posi-
tion principle), so that each term must satisfy the diffusion equation. Introducing
A(t) cosα(x− a) cosβ(y − β0 cos γ(z − c) into the diffusion equation, show that

A(t) = f(a, b, c)e−D(α2+β2+γ2)t. (12.24)

(3) Combining (1) and (2), obtain the following formula, which can be obtained
directly with the use of the free space Greeen’s function.

T (x, y, x, t) = π−3/2

∫
−∞∞

∫
−∞∞

∫
−∞∞dηdξdζe−(η2+ξ2+ζ2)f(x+2

√
DTη, y+2

√
DTξ, z+2

√
DTζ).

(12.25)
[Perform the integration over Greek letters.]

12.10 Bra-ket notation of Fourier transform or momentum
(wave-vector) kets. 12.14 has the following symbolic representation
(→??-?? for notations).

f (x) = 〈x|f〉 =
∫ ∞

−∞
〈x|k〉dk〈k|f〉, (12.26)

〈x|k〉 =
1√
2π

e−ikx, (12.27)

f̃(k) = 〈k|f〉 =
∫ ∞

−∞
〈x|k〉dk〈k|f〉 = 1√

2π

∫ ∞

−∞
eikxf(x).(12.28)

164 If you wish to be within the ordinary calculus, it must be integrable, but we
may proceed formally.
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〈k|f〉 is the Fourier transform of f in this bra-ket symmetrized version
(12.14), and the normalization is different from that given in 12.2.
Notice that

〈x|y〉 = δ(x− y) =
∫
〈x|k〉dk〈k|y〉 = 1

2π

∫ ∞

∞
eik(x−y)dk. (12.29)

To rationalize this, we need the theory of Fourier transform of general-
ized functions (→12.36).

12.11 Plancherel’s theorem.

〈f |f〉 =
∫
〈f |k〉dk〈k|f〉 (12.30)

is called Plancherel’s formula. In our normalization (for physicists) in
12.2 this reads ∫ ∞

−∞
|f(x)|2dx = 1

2π

∫ ∞

−∞
|f̂(k)|2dk. (12.31)

The theorem tells us that if f is square integrable (that is, the total
energy of the wave is finite), then the total energy is equal to the energy
carried by individual harmonic modes. This is of course the counterpart
of Parseval’s equality (→??).

12.12 Theorem [Riemann-Lebesgue Lemma]. For an integrable
function f

lim
|k|→∞

f̂(k) = 0. (12.32)

If all the n-th derivatives are integrable, then f̂(k) = o[|k|−n].✷
There is an analogue of 10.13. There we have already discussed its
physical meaning.165

12.B Applications of Fourier Transform

Fundamental applications of Fourier transformation impor-
tant in practice are summarized: uncertainty principle, sam-
pling theorem, the Wiener-Khinchine theorem (the relation
between power spectrum and correlation function). Also

165 see Katznelson p123.
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the principle of FFT is outlined.

Key words: uncertainty principle, coherent state, band-
limited function, sampling theorem, sampling function, alias-
ing, time-correlation function, power spectrum, Wiener-Khinchine
theorem, fast Fourier transform

Summary:
(1) The uncertainty principle is a basic property of Fourier transforma-
tion. Its essence is the elementary Cauchy-Schwarz inequality (12.13).
(2) If the band width of a signal (function) is finite, then discrete sam-
pling with sufficiently frequent sampling points perfectly captures the
signal. This is the essence of the sampling theorem (12.18).
(3) Spectral analysis is a fundamental tool of experimental physics. Its
theoretical basis is the Wiener-Khinchine theorem – Fourier transform
of the time-correlation function is the power spectrum (12.23).
(4) Spectral analysis becomes practical after the popularization of fast
Fourier transform (FFT) (12.25-12.26).

12.13 Theorem [Uncertainty principle]. Let f be in L2(R) (→16.19).
Define the following averages

〈x〉 ≡
∫

x|f(x)|2dx/
∫
|f(x)|2dx, (12.33)

〈k〉 ≡
∫

k|f̂(k)|2dk/
∫
|f̂(k)|2dk, (12.34)

∆x2 ≡
∫
(x− 〈x〉)2|f (x)|2dx/

∫
|f(x)|2dx, (12.35)

∆k2 ≡
∫
(k − 〈k〉)2|f̂(k)|2dk/

∫
|f̂(k)|2dk. (12.36)

Then,
∆x∆k ≥ 1/2. (12.37)

[Demo] Without loss of generality, we may assume 〈x〉 = 0, and also assume that f
is already normalized. Define

f̃(k) =
1√
2π

∫
dxeikxf(x). (12.38)

Using Plancherel’s theorem (→12.11), we get (cf. 12.4)∫
dx|f ′(x)|2 =

∫
|kf̃(k)|2dk,

∫
dx|f(x)|2 =

∫
|f̃(k)|2dk, (12.39)

so that
∆k2 =

∫
|f ′(x)− 〈k〉f(x)|2dx. (12.40)
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The Cauchy-Schwarz inequality (→16.7) implies

∆k2∆x2 =
∫

|f ′(x)− 〈k〉f(x)|2dx
∫
x2|f(x)|2dx ≥

∣∣∣∣
∫
[f ′(x)− 〈k〉f(x)]xf(x)dx

∣∣∣∣
2

,

(12.41)
but since 〈x〉 = 0, the last formula reads

|f ′(x)xf(x)dx|2 ≥ |Re
∫
f ′(x)xf(x)dx|2 = 1/4. (12.42)

The last number comes from the following integration by parts∫
f ′(x)xf(x)dx = −

∫
f ′(x)xf(x)dx−

∫
|f(x)|2dx. (12.43)

12.14 Remark. As can be seen from the proof of 12.13, the uncer-
tainty principle is a disguised Cauchy-Schwarz inequality (→??) which
says that the modulus of cosine cannot be larger than 1. Note that
obvious mathematical theorems can have profound implication in real
life.

12.15 Coherent state. The equality in the uncertainty principle is
realized if the wave function f is Gaussian

f(x) =
1

π1/4σ1/2
e−x2/2σ2

. (12.44)

Check indeed ∆x∆k = 1/2. A state with this equality is called a
coherent state.

12.16 Hardy’s theorem. T289 (on coherence)

12.17 Band-limited function. If a function has a Fourier transform
which has a compact support (i.e., f̂(k) is zero if |k| > k0 for some
k0 > 0), then f is called a band-limited function.

12.18 Theorem [Sampling theorem]. Let f be a band-limited

function such that f̂(k) be zero if |k| > k0 > 0. Then,

f(x) =
∞∑

n=−∞
f(nπ/k0)

sin(k0x− nπ)

k0x− nπ
. (12.45)
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That is, f can be reconstructed from the discrete sample values {f(nπ/k0)}n∈Z .✷
The sampling theorem is extremely important in communication (mul-
tichannel communication, bandwidth compression, etc.), and informa-
tion storage (digitization as in CD).
[Demo] Since f̂(k) is non-zero only on [−k0, k0], we can Fourier expand this as a
function of period 2k0 (→10.2)

f̂(k) =
∑
n∈Z

cne
iknπ/k0 (12.46)

with
1
2k0

∫ k0

−k0
f̂(k)e−inπk/k0dk = cn. (12.47)

On the other hand due to the band-limitedness

f(x) =
1
2π

∫ k0

−k0
f̂(k)e−ikxdk. (12.48)

Comparing (12.47) and (12.48), we get

cn =
π

k0
f(nπ/k0). (12.49)

(12.46), (12.48) and (12.49) give the desired result.

Exercise.
Determine the minimum sampling rate (or frequency) for the signal 10 cosωt +
2 cos 3ωt. This is a trivial question, so do not think too much.

12.19 Sampling function. The function

ϕn(x) =
sin(k0x− nπ)

k0x− nπ
(12.50)

appearing in (12.45) is called the sampling function. {ϕn}n∈Z is an
orthogonal system. There is an orthogonality relation:∫ ∞

−∞
ϕn(x)ϕm(x)dx =

π

k0
δnm.[ (12.51)

Exercise.
Demonstrate that the sampling functions {ϕn} make an orthogonal system. That
is, demonstrate (12.51).

12.20 Band-limited periodic function. The sampling theorem
would naturally tell us the following. A band-limited periodic function
with no harmonics of order higher than N can be uniquely specified by
its values sampled at appropriate 2N + 1 points in a single period.
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12.21 Aliasing. If the function we sample is strictly band-limited,
then the above theorem of course works perfectly. However, often
the function has higher frequency components beyond the sample fre-
quency. Then, just as we watch fast rotating wheel in the movie, what
we sample is the actual frequency modulo the sample frequency (that
is, the beat between these frequencies). This phenomenon is called
aliasing. To avoid unwanted aliasing, often we filter the original signal
(through a low-pass filter) and remove excessively high frequency com-
ponents.

12.22 Time-correlation function. Let x(t) be a stochastic process
or time-dependent data which is statistically stationary. Here ‘stochas-
tic’ means that we have an ensemble of such signals (more precisely,
we have a set of signals {x(t;ω)}, where ω is the probability parameter
specifying each sample signal. That is, if the reader wishes to start an
observation, one ω is given (by God) and she will observe x(t;ω). The
word ‘stationary’ implies that the ensemble average of x(t, ω) does not
depend on t.166 Let us denote the ensemble average by 〈 〉ω. The time
correlation function is defined by

C(t) = 〈x(t)x(0)〉ω (12.52)

and is a fundamental observable in many practical cases.
The ensemble average of

σ(ν) = 〈|xν |2〉ω (12.53)

is called the power spectrum of the signal x(t), where xν is the Fourier
transform of x(t). Thanks to the advent of FFT (→12.26), it is easy to
obtain the power spectrum experimentally (easier than the correlation
function).

12.23 Theorem [Wiener-Khinchin]. The Fourier transform of the
power spectrum of a stationary stochastic process is its power spectrum.
That is,167

C(t) ∝
∫ ∞

−∞
e−iνtσ(ν)dν. (12.54)

166 Actually, in this case we only need the absolute time independence of the cor-
relation function. A process with this property is called a weak stationary process.
167 Actually, if we normalize C(t) so that C(0) = 1 (simply regard C(t)/C(0) as
C(t)), then we have probability measure σ such that

C(t) =
1
2π

∫ ∞

−∞
e−iνtdσ(ν).

However, in practice, the numerical constant and normalization are not crucial.
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Its demonstration is a straightforward calculation. We compute (→12.36)

〈xνx−µ〉 =
〈∫ ∞

−∞
dtx(t)eiνt

∫ ∞

−∞
dsx(s)e−iµs

〉

=
∫ ∞

−∞
dt

∫ ∞

−∞
dseiνte−iµs〈x(t− s)x(0)〉

= 2πδ(ν − µ)
∫ ∞

−∞
dteiνtC(t). (12.55)

That is, 〈xνx−µ〉 = δ(ν − µ)σ(ν) so that

σ(ν) = 2π
∫ ∞

−∞
dteiνtC(t). (12.56)

12.24 Bochner’s theorem. T275

12.25 Discrete Fourier transformation. Let X ≡ {Xn}N−1
n=0 be a

sequence of complex numbers, and

e(x) ≡ exp(−2πix). (12.57)

The following sequence X̂ ≡ {Xn} is called the discrete Fourier trans-
form of X:

Xk =
N−1∑
n=0

e

(
kn

N

)
Xn. (12.58)

Its inverse transform is given by

Xn =
1

N

N−1∑
k=0

e

(−kn

N

)
Xk. (12.59)

Notice that a straightforward calculation of these sums (N of them)
costs O[N2] operations and is costly.

Exercise.
Demonstrate the above inverse transform formula by showing

1
N

∼N−1
k=0 e

k(m−n)/N = δmn. (12.60)

179



12.26 Principle of fast Fourier transform.168 Let N = N1N2.
n, k ∈ {0, 1, · · · , N − 1} can be uniquely written as169

n = n1 + n2N1, k = k1N2 + k2, (12.61)

where ni, ki ∈ {0, 1, · · · , Ni − 1} (i = 1 or 2). Notice that
e(kn/N) = e(k1n1/N1)e(k2n2/N2)e(k2n1/N). (12.62)

ni and ki are uniquely determined, so we may write, e.g., (n1n2) instead
of n. Then, (12.58) can be calculated as

X(k1k2) =
N1N2−1∑

n=0

e(k1n1/N1)e(k2n2/N2)e(k2n1/N)X(n1n2),

=
N1−1∑
n1=0

e(k1n1/N1)


e(k2n1/N)


N2−1∑

n2=0

e(k2n2/N2)Xn1n2




 .

(12.63)

Consequently, the calculation of discrete Fourier transfrom can be de-
composed into the following three steps:
(1) Compute for any k2

Xn1

k2 =
N2−1∑
n2=0

e(k2n2/N2)Xn1n2. (12.64)

(2) Then, rotate the phase:

X̃n1

k2 = e(k2n1/N)Xn1

k2. (12.65)

(3) Finally compute for any k1

X̂k1k2 =
N1−1∑
n1=0

e(k1n1/N1)X̃n1

k2. (12.66)

Now the number of necessary operations is O[N1×N 2
2 ]+O[N2

1 ×N2]; if

N1 = N2 =
√
N , then O[2N 3/2]. If we can decompose N into m factors

of similar order, then the number of necessary operations is roughly
N1−1/mN2/m = N×N1/m. Hence, asymptotically, we can guess N lnN
is the best possibility for the discrete Fourier transform of N numbers.

Exercise.
Find the autocorrelation function of the signal

f(t) = Θ(t+ T )−Θ(t− T ). (12.67)

Then illustrate the Wiener-Khinchine theorem with the example.

168 The algorithm, known sometimes as the Cooley-Tukey algorithm (J W Cooley
and J W Tukey, Math. Comp. 19, 297 (1965)), was actually known to Gauss, but
the importance was widely recognized after this paper.
169 This is an example of the so-called Chinese remainder theorem.
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12.C Fourier Analysis of Generalized Function

Generalized functions can be Fourier transformed and physi-
cists’ favorite formulas like

∫
eikxdk = 2πδ(x) or the Plemelj

formula 1/(x+ i0) = P (1/x)− iπδ(x) can be demonstrated.
Fourier expansion of δ-function gives us the Poisson sum
formula which may be used to accelerate the convergence of
series.

Key words: Fourier expansion of unity, Poisson sum for-
mula, Euler-MacLaurin sum formula, Plemelj formula

Summary:
(1) Not convergent Fourier series may be interpreted as a generalized
function. A typical example is Poisson’s sum formula (12.28).
(2) Formal calculation of Fourier transform of generalized functions
often works, but whenever there is some doubt, return to the definition
(12.34, 12.36).

12.27 Delta function.

δ(x) =
∞∑

n=−∞
ei2nπx (12.68)

for x ∈ (−1, 1).
[Demo] We know as an ordinary Fourier series

1− 2x
2

=
∞∑
n=1

sin(2nπx)/nπ (12.69)

for x ∈ (0, 1). We may use the RHS to extend the LHS periodically for all R.
Differentiate this termwisely, interpreting this as a formula for generalized functions
(→7.14). We get

−1 + δ(x) = 2
∞∑
n=1

cos 2nπx (12.70)

for x ∈ (−1/2, 1/2).
The decomposition of unity (→??) can also be used to obtain (12.68).

12.28 Poisson’s sum formula.

∞∑
k=−∞

δ(x− k) =
∞∑

n=−∞
ei2nπx (12.71)
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for x ∈ R.
This can be obtained easily from (12.68) by ‘tessellating’ the for-

mula for (−1/2, 1/2) over the whole range of R. From (12.71) we get

|λ|
∞∑

k=−∞
δ(x− λk) =

∞∑
n=−∞

ei2πnx/λ (12.72)

(cf. 7.11). Applying a test function ϕ to this, we get the following
Poisson sum formula:

|λ|
∞∑

k=−∞
ϕ(λk) =

∞∑
n=−∞

ϕ̂(2nπ/λ). (12.73)

(Be careful with the normalization constant.) Also we can make a
cosine version of the Poisson sum formula

∞∑
k=−∞

δ(x− k) = 1 + 2
∞∑

n=1

cos(2nπx). (12.74)

If f(x) is a gently decaying function, then its Fourier transform decays
rapidly, and vice versa. The Poisson sum formula is useful because it
may help accelerating the convergence of the series.

Exercise.
(1) Demonstrate

∞∑
n=1

cosna
1 + n2

=
π

2
cosh(π − a)

sinhπ
− 1

2
.

(2) Similarly, show ∑ 1
n2 + t2

=
π

t

1− e−2πt

1− e−2πt
.

Then, take the limit t→ 0 to obtain

∑ 1
t2

=
π2

6
.

12.29 Applications of Poisson sum formula.
(1) ∑

n∈Z

1

1 + a2n2
=

π

a
coth

π

a
. (12.75)

The key formulas are

ϕ̂(k) =
1

1 + a2k2/4π2
, ϕ(x) =

π

a
e−2π|x|/a. (12.76)
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(2)
∞∑

n=1

cosna

1 + n2
=

π

2

cosh(π − a)

sinhπ
− 1

2
. (12.77)

12.30 Euler-MacLaurin sum formula.

∞∑
n=0

f(n) =
∫ ∞

0
f(x)dx+

1

2
f(0)− 1

12
f ′(0)+

1

720
f (3)(0)− 1

30240
f (5)(0)+· · · .

(12.78)
[Demo] Let f be a function defined on the positive real axis. Extend it to the whole
R as an even function (f(x) = f(−x)). Apply the cosine version of the Poisson sum
formula (12.74) and integrate from 0 to ∞. Using the evenness of the function, we
get

−1
2
f(0) +

∞∑
k=0

f(k) =
∫ ∞

0

f(x)dx+ 2
∞∑
n=1

∫ ∞

0

f(x) cos(2nπx)dx. (12.79)

Integrating by parts the last integrals containing cosines, we get

∞∑
k=0

f(k) =
1
2
f(0) +

∫ ∞

0

f(x)dx−
∞∑
n=1

∫ ∞

0

f ′(x)
sin 2nπx
2nπ

dx. (12.80)

Keep applying integration by parts to get

∞∑
n=1

∫ ∞

0

f ′(x)
sin 2nπx
2nπ

dx = −
∞∑
n=1

[
f ′(x)

cos 2nπx
2(nπ)2

]∞
0

+
∞∑
n=1

∫ ∞

0

f ′′(x)
cos 2nπx
2(nπ)2

dx.

(12.81)
Thus ∞∑

k=0

f(k) =
1
2
f(0) +

∫ ∞

0

f(x)dx− f ′(0)
∞∑
n=1

1
2n2π2

+ · · · . (12.82)

This gives the f ′(0) term of the formula.

12.31 Mulholland’s formula for canonical partition function
for the rotational motion of a heteronuclear diatomic molecule.
The rotational partition function r(T ) at temperature T is given by

r(T ) =
∞∑
 =0

(2I+ 1) exp

[
− h̄2I(I+ 1)

2IkBT

]
, (12.83)

where I is the moment of inertia of the molecule, and kB is the Boltz-
mann constant. Introduce σ ≡ h̄2/2IkBT , and let

f(x) = (2x+ 1) exp[−x(x+ 1)σ]. (12.84)
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Apply (12.78) to this function, we get the following Mulholland’s for-
mula

r(T ) =
1

σ
+
1

3
+

σ

15
+
4σ2

315
+O[σ3]. (12.85)

The first term on the RHS is the classical value.
Apply this to ... T282. Although the convergence is fast, if successful,
but do not forget that this is an asymptotic expansion, so conv ergence
does not guarantee the accuracy.

12.32 Central limit theorem. T282

12.33 Multidimensional Poisson formula.

12.34 Fourier transform of generalized functions. The crucial
observation is (forˆsee 12.2): if f and ϕ both have well-defined Fourier
transforms,

〈f̂ , ϕ〉 =
∫

dk
[∫

dxf(x)e−ikx
]
ϕ(k) = 〈f, ϕ̂〉 (12.86)

The Fourier transform τ̂ ≡ F [τ ] of a generalized function τ is defined
by

(τ̂ , ϕ) = (τ, ϕ̂), or (F [τ ], ϕ) = (τ,F [ϕ]), (12.87)

where ϕ ∈ D, a test function.
Exercise.
Demonstrate

lim
λ→∞

sinλx
x

= πδ(x). (12.88)

lim
λ→∞

∫ b

a

sinλx = 0. (12.89)

12.35 Convenient test function space. For this definition it is
desirable that the set of test functions D (→7.8) and the set of their

Fourier transforms D̂ are identical. For the set of Schwartz class func-
tions (→7.8 footnote) this holds (→12.12). [If we choose D to be the

set of all the functions with compact supports, then D̂ becomes very
large, so that the class of generalized functions (for which (τ, ϕ̂) must
be meaningful) must be severely restricted, and is not very convenient.]
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12.36 Fourier transform of unity = delta function.

1̂ = 2πδ(k). (12.90)

This is the true meaning of the physicists’ favorite

1

2π

∫ +∞

−∞
eikxdk = δ(x). (12.91)

Obviously, δ̂ = 1 (direct calculation). That is, F2 implies multiplication
of 2π as we know in 12.11.
[Demo] (1̂, ϕ) = (1, ϕ̂) =

∫
ϕ̂(k)dk = F2[ϕ](0). Here F [ϕ] is a function on the

configuration space (that is, a function of x) and is equal to 2πϕ(x). Therefore we
have obtained

(1̂, ϕ) = 2πϕ(0) =
∫

2πδ(x)ϕ(x)dx = (2πδ,ϕ). (12.92)

Exercise.
Show

δ(t) =
1
π

∫ ∞

0

cosωtdω. (12.93)

Cf. 12.9.

12.37 Translation of delta function. The following formulas should
be obvious

F [δ(x− a)] = e−iak, F [eiax] = 2πδ(a− k). (12.94)

12.38 Fourier transform of x, d/dx ↔ +ik. (→12.4)

x̂ = +2πiδ′(k). (12.95)

In other words, since F2 ≡ 2π,

δ̂′ = +ik. (12.96)

[Demo] Start with the definition (x̂, ϕ) = (x, ϕ̂) (→12.34) which is equal to
∫
dxxϕ̂(x) =

∫
dxx

[∫
e−ikxϕ(k)dk

]
=
∫
dx

∫
dk

(
− d
dik
e−ikx

)
ϕ(k). (12.97)
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Integrating this by parts, taking into account that the test function ϕ decays suffi-
ciently quickly, we get

−
∫
dx

∫
dkie−ikxϕ′(k) = −i

∫
dk1̂(k)ϕ′(k) = −2πi

∫
dkδ(k)ϕ′(k) = 2πi

∫
dkδ′(k)ϕ(k),

(12.98)
where we have used (12.90) in 12.36, and the definition of δ′ (→7.14).

A more formal and direct ‘demonstration’ is

x̂ =
∫
xe−ikxdx =

∫ (
i
d

dk

)
e−ikxdx = 2πi

d

dk
δ(k). (12.99)

Convolution of the derivative of delta function is differentiation (→7.24(2)), and
the Fourier transform of a convolution is the product of the Fourier transforms, i.e.,
F(f ∗ g) = F(f)F(g) (→12.3), so that we easily get )cf. 12.4)

f̂ ′ = +ikf̂ . (12.100)

12.39 Fourier transform of xn.

x̂n = 2π

(
+i

d

dk

)n

δ(k). (12.101)

In other words,
ˆδ(n) = (+ik)n. (12.102)

Since δ′∗f = f ′, δ(n) = δ′∗δ(n−1) = δ′∗δ′∗· · · δ′∗δ (n δ′ are convoluted)
(this is well defined →7.24(2)). This and (12.96) immediately imply
(12.102).

12.40 Fourier transform of sign function.

ˆsgn(k) =
2

i
P
1

k
, (12.103)

where P denotes the Cauchy principal value (→??).
[Demo] We have demonstrated (→??)

d

dx
sgn(x) = 2δ(x). (12.104)

Fourier-transforming this, we get (→(12.100) and δ̂ = 1)

+ikF(sgn)(k) = 2. (12.105)

With the aid of (2) in ??, we can solve this equation for ˆsgn as

ˆsgn(k) = 2iP
1
k
+ cδ(k), (12.106)
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where c is a constant not yet determined. To fix this constant we apply this equality
to an even test function, say e−k

2
. Since sgn is an odd generalized function, and

since the Fourier transform of a Gaussian function is again Gaussian,

( ˆsgn, e−k
2
) ∝ (sgn, e−x

2
) = 0. (12.107)

P (1/k) is also an odd function, so that this implies c = 0.

12.41 Plemelj formula.

w- lim
ε→+0

1

x± εi
= P

1

x
∓ iπδ(x), (12.108)

where w- limε→+0 is the weak limit, that is, the limit is taken after
integration in which the function appears is completed.
[Demo] Obviously,

lim
ε→0+

e−εxΘ(x) = Θ(x), (12.109)

If we interpret this equation as an equation for generalized functions, then integra-
tion and the limit can be freely exchanged. Therefore, we get

Θ̂(k) = w- lim
ε→0+

∫ ∞

0

e−(ik−ε)x = lim
ε→0+

1
ik + ε

. (12.110)

Since sgn(x) = 2Θ(x)− 1, (12.103), (12.90) and (12.110) imply

2iP
1
k
= lim

ε→0+

−2
ik − ε − 2πδ(k). (12.111)

12.D Radon Transformation

Radon transformation is a theoretical basis of various to-
mographies. Its inverse transformation is constructed with
the aid of Fourier transformation. Radon transformation
allows us to solve the Cauchy problem of the wave equa-
tion in any dimensional space. The explicit formula clearly
demonstrates the marked difference of even and odd dimen-
sional spaces.

Key words: Radon’s problem, Radon transform, modified
Radon transform, tomography, wave equation, afterglow.
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Summary:
(1) The mathematical principle of tomography is Radon transforma-
tion (12.44) whose inverse transformation is essentially calculable by
Fourier transformation (12.45-12.46).
(2) Radon transform gives a general method to solve d-wave equation
(12.50). The resultant solution clearly exhibits the afterglow effect in
even dimensional spaces (12.51).

NOTATION f# may be good.
12.42 Radon’s problem. Radon (1917) considered the following
problem: Reconstruct a function f(x, y) on the plane from its integral
along all lines in the plane. That is, the problem is to reconstruct the
shape of a hill from the areas of all its vertical cross-sections.

12.43 Radon transform. Let f be a function defined on a region in
R2.170

Rf (s,ω)↽==
∫
R2 dxδ(x · ω − s)f(x) (12.112)

is called the Radon transform of f , where ω is the directional vector
|ω| = 1 specifying a line normal to it, and s ∈ R is the (signed) dis-
tance between the line and the origin. The Radon problem 12.42 is to
find f from Rf .

That (12.112) is the integral of f along the line specified by ω·x = s
can easily be seen if we introduce the rotated Cartesian coordinate sys-
tem O-x1x2 such that the x2 axis is parallel to the line and x1 per-
pendicular to it. The integral now reads

∫
δ(x1 − s)f(x1, x2)dx1dx2 =∫

f(s, x2)dx2.

12.44 Some properties of Radon transform. Note that
(1) Rf(s,ω) is an even homogeneous function (→6.8) of s and ω of
degree −1:

Rf(λs, λω) = |λ|−1Rf(s,ω). (12.113)

(2) The Radon transform of a convolution (→7.23) is a convolution of
Radon transforms:(
R
[∫
R2 f1(y)f2(x− y)dy

])
(s,ω) =

∫ ∞

−∞
dt [Rf1(t,ω)] [Rf2(s− t,ω)] .

(12.114)

170 The definition given here can easily be extended to general d-space. See 12.48-
12.49. A good introduction to the topic may be found in I. M. Gel’fand, M. I.
Graev and N. Ya. Vilenkin, Generalized Functions, vol.5 Integral Geometry and
Representation Theory (Academic Press, 1966). See also R. S. Strichartz, Am.
Math. Month. 1982 June-July.
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12.45 Fourier transform of Radon transform.

f̂(ρω) = F(Rf)(ρ,ω)↽==
∫ ∞

−∞
Rf(s,ω)e−iρsds. (12.115)

That is, the Fourier transform of Rf(s,ω) with respect to s is the
Fourier transform of the function f itself with the ‘k-vector’ parallel to
ω.
[Demo] Using the definition (12.112), we have only to perform a straightforward
calculation:∫ ∞

−∞
Rf(sω)e−iρsds =

∫ ∞

−∞
ds

∫
dxf(x)δ(s− x · ω)e−iρs =

∫
dxf(x)e−iρω·x.

(12.116)
Thus f can be reconstructed by

f(r) =
1

(2π)d

∫
f̂(ρω)eiρω·rdρdω. (12.117)

12.46 Theorem [Radon inversion formula]. Let f be a piecewise
C1-function defined on a region in R2. Then

f(x) =
∫
R̃f(x · ω,ω)dσ(ω), (12.118)

where dσ is the arc length element of the unit circle, and R̃f is the
modified Radon transform defined by

R̃f(s,ω)↽==
1

8π2

∫ ∞

−∞
dρe−iρsρR̂f(ρ,ω). (12.119)

12.47 X-ray tomography. The Radon transformation is the the-
oretical underpinning of the particle beam tomographies. These are
applied not only medically, but also, e.g., to the anatomical study of
fossils such as trilobites.

12.48 d-space version. In d-space the Radon transform is defined
as

Rf(s,ω) =
∫
Rd f(x)δ(s− ω · x)dx, (12.120)

where ω is the position vector on the unit d− 1-sphere Sd−1 (the skin
of the d-unit ball). The d-dimensional version of 12.46 reads:
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12.49 Theorem [Recovering f from Radon trasnfrom].

f (x) =
∫
Sd−1

dσ(ω)R̃f(x · ω,ω), (12.121)

where

R̃f(s,ω) ↽==
1

2(2π)d

∫ ∞

−∞
e−iρs|ρ|d−1R̂f(ρ,ω)dρ, (12.122)

R̂f(ρ,ω) ↽==
∫ ∞

−∞
Rf(s,ω)eiρsds (= f̂(ρω) ) (12.123)

with σ being the area element of Sd−1.

12.50 Solving d-wave equation using Radon transform. Con-
sider a wave equation in the whole d-space

(∂2
t −∆)u = 0 (12.124)

with the initial condition u = f and ∂tu = g at t = 0. If the initial
data are constant on all the hyperplanes perpendicular to the direction
ω, i.e., f(x) = F (x · ω) and g(x) = G(x · ω), where F and G are
functions defined on R, then we can apply the method to solve the
1-space problem (→1.12) to get the solution as

u(x, t) =
1

2
[F (x ·ω + t) + F (x ·ω − t)] +

1

2

∫ x·ω+t

x·ω−t
G(s)ds. (12.125)

Therefore, if we can decompose the initial data into a superposition
of data depending only on x · ω, the superposition principle (→3.2)
allows us to reconstruct the solution from the pieces like (12.125). As
can be seen from (12.121), d-dimensional Radon transformation is the
very tool to accomplish the desired decomposition.
The strategy is as follows:
(1) Calculate the modified Radon transform (12.123) for f and g,
(2) Solve the wave equation for R̃u.
(3) Use (12.121) to reconstruct u:

u(x, t) =
∫
Sd−1

dσ(ω)
{
1

2
[R̃f(x · ω + t,ω) + R̃f(x · ω − t,ω)] +

1

2

∫ x·ω+t

x·ω−t
R̃g(s,ω)ds

}
.

(12.126)
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12.51 Waves in odd and even dimensional spaces behave very
differently. Let us calculate the modified Radon transform (12.123)
explicitly. If d is odd, then |ρ|d−1 = ρd−1, so that multiplying ρ can be
interpreted as differentiation with respect to s as

R̃f(s,ω) =
1

2
(−1)(q−1)/2

(
1

2π

)d−1 ∂d−1

∂sd−1
Rf(s,ω). (12.127)

In contrast, if d is even then the non-analyticity of |ρ| must be dealt
with as |ρ|d−1 = sgn(ρ)ρd−1, so that

R̃f(s,ω) =
1

2
(−1)(q−1)/2

(
1

2π

)d−1

H

[
∂d−1

∂sd−1
Rf(s,ω)

]
, (12.128)

where H is the Hilbert transform defined by

Hf(x) = P
∫

f(s)

x− s
ds, (12.129)

where P denotes the Cauchy principal value (→??). This can be ob-
tained from the convolution formula and the Fourier transform of sgn
(→??).

Look at the use of the modified Radon transform in the solution
(12.126) when the initial velocity is everywhere zero. This applies to
the case of an instantaneous flash of light emitted from a point (that

is, f = δ(x)). If R̃f(sω) is determined by Rf(s,ω) only, then the
observer at distance sees only a flash of light. That is, the wave is
localized in time in odd-dimensional (≥ 3) spaces. On the other hand,
if the spatial dimensionality is even, then the Hilbert transform implies
that the wave is not localized in time. Thus, after watching a flash,
the observer must feel that the world becomes brighter (the afterglow
effect in even dimensional spaces) (→9.33).
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APPENDIX XXA Bessel Transform

12.52 Theorem [Hankel]. Let f ∈ L1([0,∞), r) and be piecewise
continuous. Then

1

2
[f (r + 0) + f(r − 0)] =

∫ ∞

0
Jν(σr)σdσ

∫ ∞

0
f(ρ)Jν(σρ)ρdρ (12.130)

for ν ≥ 1/2. This may also be expressed as∫ ∞

0
Jν(σr)Jν(σr

′)σdσ = δ(r − r′)/r. (12.131)

Notice that the RHS is the delta function adapted to the weight r (i.e.,
δr(r − r′) →??).171 ✷
[Demo] Here (12.130) is proved for continuous L1 (→??) functions and integer
ν = n. Let

F (x, y) = f(r)einϕ, (12.132)

where x = r cosϕ and y = r sinϕ. With the aid of the Fourier expression of the
delta function (→12.36), we can write

F (x, y) =
1

(2π)2

∫
dkx

∫
dky

∫
dξ

∫
dηF (ξ, η)eikx(x−ξ)+iky(y−η). (12.133)

Introduce polar coordinates as

ξ = r′ cosψ, η = r′ sinψ, (12.134)
kx = k cos θ, ky = k sin θ. (12.135)

(12.133) is rewritten as (F (ξ, η) = f(r′)einψ)

f(r)einϕ =
∫ ∞

0

dkk

∫ ∞

0

dr′r′f(r′)
{

1
2π

∫ π

−π
dθeikr cos(θ−ϕ) 1

2π

∫ π

−π
dψeinψe−ikr

′ cos(ψ−θ)
}
.

(12.136)
Setting ψ − θ = t, we get

1
2π

∫ π

π

einψe−ikr
′ cos(ψ−θ)dψ =

1
2π

∫ π

−π
e−ikr

′ cos tein(t+θ)dt (12.137)

= einπ/2einθJn(−kr′) = einπ/2+inθ(−1)nJn(kr′). (12.138)

Here the generating function of Bessels functions (→??) has been used. Analo-
gously, we have

1
2π

∫ π

−π
eikr cos(θ−ϕ)einθdθ = einπ/2+inϕJn(kr). (12.139)

Hence, (12.136)–(12.139) implies (12.130) for ν = n.
A more convenient formulas may be
171 More generally, f may be of bounded variation. See G. N. Watson, A Treatise
on the Theory of Bessel Function (Cambridge UP, 1962) p456–.
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12.53 Bessel transform and its inverse.

g(r) =
∫ ∞

0
h(r′)Jν(r

′r)r′dr′, (12.140)

h(r) =
∫ ∞

0
g(r′)Jν(r

′r)r′dr′. (12.141)

Note that these are the formulas for the Fourier sine (or cosine) trans-
form (→12.9) for ν = ±1/2 (→??).

12.54 Examples. See ??.

∫ ∞

0
e−axJ0(xy)dx =

1√
a2 + y2

↔
∫ ∞

0

y√
a2 + y2

J0(xy)dy =
e−ax

x
.

(12.142)∫ ∞

0
cos axJ0(xy)dx =

1√
y2 − a2

↔
∫ ∞

0

y√
y2 − a2

J0(xy)dy =
cos ax

x
.

(12.143)∫ ∞

0
e−a2x2

xν+1Jν(xy)dx =
yν

(2a2)ν+1
e−y2/4a2 ↔

∫ ∞

0

yν+1

(2a2)ν+1
e−y2/4a2

Jν(xy)dy = ea
2x2

xν .

(12.144)

193



13 Laplace Transformation

Laplace transformation is a disguised Fourier transforma-
tion for causal functions (the functions that are zero in the
past), and is a very useful tool to study transient phenom-
ena. The inverse transformation is often not easy, but clever
numerical tricks may be used to invert the transforms. Ap-
pendix a33 discusses a disguised Laplace transformation,
Mellin transformation, which is useful when we wish to solve
problems on fan shaped domains.

Key words: Laplace transform, fundamental theorem, con-
volution, time-delay, fast inverse Laplace transform.

Summary:
(1) Laplace transformation 13.2 allows one to solve many ODE alge-
braically with the aid of tables (13.14).
(2) Basic formulas like the convolution theorem, delay theorem, etc
should be known to this end (13.7-13.10).

13.1 Motivation. Due to causality, we often encounter functions of
time t that are zero for t < 0 (or often so for t ≤ 0 due to continuity).
Then, the so-called one-sided Fourier transform

F [ω] =
∫ ∞

0
f(t)eiωtdt (13.1)

appears naturally. However, if f(t) grows as eat (a > 0), then this does
not make sense even in the sense of generalized functions (→7.4). Even
in this case, if we choose sufficiently large c > 0, the one-sided Fourier
transform of e−ctf(t) exists in the ordinary sense. If f(t)e−ctΘ(t) (Θ(t)
is the Heaviside step function →??(3)) is absolutely integrable, and f ′
is piecewise continuous for t > 0, then from the Fourier transform of
this function, f(t) for t > 0 can be recovered.

13.2 Definition of Laplace transform. The following transforma-
tion Ls is called the Laplace transformation:

Ls[u(t)] =
∫ ∞

0
e−stu(t)dt, (13.2)

where s = c− iω and c is chosen sufficiently large so that the integral
exists. Ls[u] is called the Laplace transform of u.172

172 For a history, see M. F. Gardner and J. L. Barnes, Transients in Linear Systems
vol.I (Wiley, 1942) Appendix C.
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Discussion.
(A) A discrete counterpart is the so-called z-transformation: The z-transform A(z)
of {an} is defined by

A(z) =
∞∑
n=0

anz
n. (13.3)

This is also called the generating function of the sequence {an}. The inverse trans-
form is given by

an =
1
2πi

∫
∂D

dz
A(z)
zn+1

, (13.4)

where D is a disc containing the origin but excluding all the singularities of A(z).
(B) z-transform is a convenient way to solve linear difference equation:

a0xn+r + a1xn+r−1 + · · ·+ ar−1xn+1 + arxn = 0. (13.5)

For example, let us solve
xn+2 − 2xn+1 + xn = 0 (13.6)

with the ‘initial conditions’ x0 = 1, and x1 = 0. The z-transform X(z) obeys

X(z)− 1 + 2z(X(z)− 1) + z2X(z) = 0. (13.7)

From this we can solve X(z). The inverse transform gives xn = 1− n.
(C) An inhomogeneous linear difference equation is given by

a0xn+r + a1xn+r−1 + · · ·+ ar−1xn+1 + arxn = fn (13.8)

The general solution to this equation is given by the sum of the general solution of
(13.5) and a special solution to (13.8) just as the linear differential equation. If we
can compute the z-transform of {fn}, then at least X(z) can be obtained. However,
to obtain xn from X may not be very easy.

13.3 Who was Laplace (1749-1827) ? The ‘Newton of France’
was born into a cultivated provincial bourgeois family in Normandy
(Beaumont-en-Auge) in 1749. After his secondary school education he
attended University of Caen n 1766 to study the liberal arts, but two
of his professors (Gadbled and LeCanu) urged this gifted student to
pursue mathematics. With LeCanu’s letter to d’Alembert (→1.13) he
left for Paris at age 18 in 1768. He impressed d’Alembert, who secured
a position for him at the Ecole Militaire. In 1773 he demonstrated that
the acceleration observed in Jupiter and Saturn was not cumulative but
periodic. This was the principal advance in dynamical astronomy since
Newton toward establishing the stability of the solar system. This work
won him election to the Paris Academy in 1773.

Between 1778 and 1789 he was at his scientific prime. Laplace in-
troduced his transformation in 1779, which was related to Euler’s work.
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In 1780 he worked together with Lavoisier to make a calorimeter to es-
tablish that respiration is a form of combustion. Although he played
a decisive role to design the metric system in 1790, he wisely avoided
Paris when the Jacobins dominated until 1794. In the late 1790s with
three well received books (one of which, Systéme du Monde, was not
only a fine science popularizer but also a model of French prose), he
became a European celebrity.

Laplace advanced applied mathematics and theory of probability
substantially. He based his theory on generating functions, and ex-
tended Jakobi Bernoulli’s work on the law of large numbers. He was
amply honored by Napoleon and by Louis XVIII. During his final years
he lived at his country home in Arceuil, next to his friend chemist
Berthollet, surrounded by the adopted children of his thoughts, Arago,
Poisson, Biot, Gay-Lussac, von Humboldt and others.

13.4 Fundamental theorem of Laplace transform.
(1) The Laplace transform of f (13.2) exists for s such that e−(Re s)tf(t) ∈
L1([0,∞)).
(2) There is a one-to-one correspondence between f (t) and its Laplace
transform Ls[f ]. More explicitly, we have

f(t) =
1

2πi

∫ c+i∞

c−i∞
estLs[f ]ds, (13.9)

where c is a real number larger than the convergence coordinate c∗ such
that all the singularities of Ls[f ] lie on the left side of z = c∗ in C.173
[Demo] (1) is obvious. At least formally, (2) follows from the motivation 13.1.
Fourier inverse transform of Ls[f ] gives

f(t) = ect
1
2π

∫ ∞

−∞
e−iωtLc−iω[u(t)]dω. (13.10)

Since dω = ids, (13.10) becomes

f(t) =
1
2πi

∫ c+i∞

c−i∞
Ls[f(t)]estds. (13.11)

For this integral to be meaningful, we need the following theorem:

Discussion.
(1) f(t) = exp(tσ) with σ > 1 does not have Laplace transforms.

173 This was formally shown by Riemann by 1859. Mellin proved this in Acta Soc.
Sci. Fenn. 21, 115 (1896). Hence, there is absolutely no justification to call this
integral the ‘Bromwitch integral.’ History must not be distorted due to national
interests.
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(2) The minimum real number r making f(t)e−rt ∈ L2([0,+∞)) is called the con-
vergence coordinate.
Exercise.
Although practically, there is almost no need (→13.14) of calculating the integral
(13.9), still it is a good exercise of complex integration. Demonstrate the following
inverse transform relations with the aid of the residue theorem.
(1)

L−1
s

1
(s+ α)n

=
tn−1

(n− 1)!
e−αt, (13.12)

where α > 0 and n is a positive integer.
(2) How can we do a similar thing, if n is not an integer? In this case, s = 0 is
a branch point. If n ∈ (0, 1), then a straightforward contour integration along the
contour in the figure works. The contribution from the small circle vanishes in the
small radius limit, and the contribution from the large circle is zero thanks to the
Jordan lemma. We need to streamline the formula. If n is larger, then probaly the
cleverest way is to use 13.7(5) and reduce the problem to the case of n ∈ (0, 1).

13.5 Theorem [Holomorphy of Laplace transform]. Ls[f ] is
holomorphic where Ls[f ] exists. ✷174

Therefore, if Ls[f ] exists for c > c∗, then Ls[f ] has no singularity on
the half plane Re z ≥ c.

This implies that
(1) Ls[f ] is differentiable with respect to s,
(2) Ls[f ] is determined by its behavior on the portion of the real axis
x > c∗ through analytic continuation.

13.6 Theorem [Limits for Laplace transform]. If s goes to s0

along a curve lying inside the convergence domain, then

lim
s→s0

Ls[f ] = Ls0[f ]. (13.13)

Especially,
lim
s→∞Ls[f ] = 0. (13.14)

[Demo] (13.14) follows from (13.13), which follows trivially from an elementary
property of the Lebesgue integral.
174 To prove this we need the following elementary theorem about Lebesgue inte-
gration
Theorem. Suppose
(1) f(x, s) is integrable (→??) for each s as a function of x,
(2) f(x, s) is holomorphic for almost all x as a function of s,
(3) There is an integrable function Φ such that |f(x, s)| ≤ Φ(x).
Then,

∫
dxf(x, s) is holomorphic as a function of s. ✷
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13.7 Some properties of Laplace transform.
(1) aLs[f (at)] = Ls/a[f(t)], where a is a positive constant. This can be
shown by a straightforward calculation.
(2) Ls[e

−btf(t)] = Ls+b[f(t)]. This is straightforward, too.
(3) Ls[t

nf(t)] = (−1)n(d/ds)nLs[f(t)]. In particular, Ls[tf(t)] = −d/dsLs[f(t)].
(4) Ls[f

(n)(t)] = snLs[f(t)]−sn−1f(0)−sn−2f ′(0)−· · ·−sn−kf (k−1)(0)−
· · · − sf (n−2)(0)− f (n−1)(0). In particular,

Ls[f
′(t)] = sLs[f(t)]− f(0). (13.15)

This is due to integration by parts.

(5) Ls

[∫ t
0 f(t

′)dt′
]
= s−1Ls[f (t)].

(6) Ls[t
−1f(t)] =

∫∞
s dsLs[f(t)].

(3) - (6) imply that calculus becomes algebra through the Laplace trans-
formation. This is the most important and useful property facilitating
the solution of linear ODE.

Discussion
The following equation is called the Airy equation (→?? Exercise (3))

d2y

dt2
− ty = 0. (13.16)

Since the coefficient is only a linear function of t, Laplace transformation is advan-
tageous. Let z be a function of s that is the Laplace transform of y with respect to
t. Then,

dz

ds
− s2z = 0, (13.17)

which can be solved easily as
z = es

3/3. (13.18)

Hence, a solution to can be written as

Ai(t) =
1
2πi

∫
C

exp
(
st− 1

3
t3
)
ds. (13.19)

Here C can be a path as shown in the figure. The integral is called the Airy integral
.
Show that

Ai(0) = 3−1/6Γ(1/3)/2π. (13.20)

13.8 Convolution. If we adapt the ordinary definition of convolution
7.23 to functions that are zero for t < 0, we get

(f1 ∗ f2)(t) =
∫ t

0
f1(t− u)f2(u)du. (13.21)

198



A straightforward calculation gives

Ls[f1 ∗ f2] = Ls[f1]Ls[f2]. (13.22)

Exercise. ∫ x

0

sin(x− y)u(y)dy + u(x) = cosx. (13.23)

13.9 Time-delay.

Ls[f(at− b)Θ(at− b)] =
1

a
e−bs/aLs/a[f(t)] (13.24)

This is also demonstrated by a simple calculation. e−τs is often called
a delay factor.

13.10 Periodic functions. If f is a function with period T , then

Ls[f(t)] = (1− e−sT )−1
∫ T

0
e−stf(t)dt. (13.25)

[Demo] Thanks to the periodicity, we get∫ ∞

0

e−stf(t)dt =
∫ ∞

0

e−stf(t+ T )dt =
∫ ∞

T

e−sτf(τ)dτesT , (13.26)

where t = τ − T . This implies that

Ls[f(t)] =
{
Ls[f(t)]−

∫ T

0

e−stf(t)dt

}
esT . (13.27)

Solving this equation for Ls[f ], we get the desired formula.

13.11 Examples.
(1) Ls[1] = 1/s is obvious by definition.
(2) This with (2) of 13.7 implies Ls[e

−bt] = 1/(s+ b).
(3) Linearity of the Laplace transformation and (2) give, for example,

Ls[cosωt] =
1

2
(Ls[e

iωt] + Ls[e
−iωt]) =

s

s2 + ω2
. (13.28)
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Analogously, we get Ls[coshat] = s/(s2 − a2), Ls[sinωt] = ω/(s2+ω2),
etc.
(4) (3) with (2) of 13.7 gives for example

Ls[e
−bt cosωt] =

s+ b

(s+ b)2 + ω2
. (13.29)

(5) (1) and (3) of 13.7 imply

Ls

[
tn

n!

]
=

1

sn+1
. (13.30)

More generally, for ν > −1

Ls

[
tν

Γ(ν + 1)

]
=

1

sν+1
. (13.31)

This can be shown immediately by the definition of the Gamma func-
tion (→X).
(6) Combining (13.30) and (2) of 13.7 gives

Ls[e
−bttn] =

n!

(s + b)n+1
. (13.32)

(7) An application of 13.10 is

Ls[| sin t|] = 1

s2 + 1
coth

πs

2
. (13.33)

(8) Applying the convolution theorem 13.8 we can demonstrate

∫ t

0
J0(τ)J0(t− τ)dτ = sin t (13.34)

This follows from (→??)

Ls[J0(t)] =
1√

s2 + 1
. (13.35)

Exercise.
(A) Show

Ls 1√
t
=

√
π√
s
. (13.36)

(B) Find
(1) Ls cos2 ωt.
(2) For τ > 0 and a > 0 Ls(t− t1)E−a(t−t2Θ(t− τ).
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13.12 Laplace transform of delta function. We can define Laplace
transforms of generalized functions. We will not discuss this, since the
relation between Fourier and Laplace transformations 13.1 explains
virtually everything we need practically. A subtlety may remain in the
definition of the Laplace transformation of δ(x), since the definition
13.2 requires an integration from 0. That is, we must consider the
product of δ(x) and Θ(x), which is meaningless (→7.6) as generalized
functions. Without any ambiguity for a > 0

Ls[δ(t− a)] = e−as. (13.37)

This means the Laplace transform of the weak limit limε→0+ δ(t− ε) is
1. Hence, as a generalized function it is sensible to define (→7.19)

Ls[δ(t)] = 1. (13.38)

From this (13.37) is obtained with the aid of the time delay formula
13.9.

13.13 Short time limit.

lim
t→0+

f (t) = lim
s→∞ sLs[f(t)]. (13.39)

[Demo] 13.7(4) with n = 1 reads Ls[f ′(t)] = sLs[f(t)] − f(0). Apply 13.6 to f ′,
and we get lims→∞ Ls[f ′(t)] = 0.

13.14 Practical calculation of Laplace inverse transformation:
Use of tables. Although the fundamental theorem 13.4(2) gives
a method to compute the inverse transforms, practically, an easier
method is to use a table of Laplace transforms of representative func-
tions. The uniqueness of the transforms (→13.4(2)) guarantees that
once we can find an inverse transform, that is the inverse transform of
a given function of s. Also numerical fast Laplace inverse transform is
available.
Exercise.
(1) Solve the following differential equation with the aid of Laplace transformation

d2y

dt2
+ 2a

dy

dt
+ (a2 + b2)y = e−at sin bt.

Here a and b are positive constants, and the initial condition is y(0) = y′(0) = 0.
(2) Using Laplace transformation, solve the following integrodifferential equation

y(t) = y′(t) + t+ 2
∫ t

0

(t− u)y(u)du

with the initial condition y(0) = 0.
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13.15 Heaviside’s expansion formula.175 Let F (s) be a rational
function176 F (s) = P (s)/Q(s), where P and Q are mutually prime
polynomials, and the order of Q is higher than that of P . If Q(s) =
A(s− a1) · · · (s− an) and a1, · · · , an are all distinct, then

P (s)

Q(s)
=

n∑
s=1

ck
s− ak

(13.40)

with ck = P (ak)/Q
′(ak). ✷

This is obvious, and implies that

L−1
s [P (s)/Q(s)] =

n∑
k=1

P (ak)e
akt/Q′(ak). (13.41)

13.16 Examples.

L−1
s

[
s2 + s+ 1

(s2 + 1)3

]
=
1

8
(4 + t) sin t− 1

8
(4t+ t2) cos t. (13.42)

L−1
s

[
2s+ 3

2s3 + 3s2 − 2s
]
= −3

2
− 1

10
e−2t +

8

5
et/2. (13.43)

L−1
s

[
s2 + 1

2(s4 + s2 + 1)

]
= 1−

√
3

3

[
et/2 cos

(√
3

2
t+

π

6

)
+ e−t/2 cos

(√
3

2
t− π

6

)]
.

(13.44)

Exercise.
(1) Find the inverse transform of

g(s) =
s2 − ωs+ ω2

s(s2 + ω2)
. (13.45)

(Answer: Θ(t)− sinωt).

g(s) =
1 + eπs

s(s2 + 1)
. (13.46)

175 Heaviside (1850-1925) introduced an algebraic method to solve ODEs, which
can be understood as the Laplace transform method explained below. The method,
which requires generalized functions like the Heaviside step function, and even the
delta function, was never accepted by mathematicians of his day. According to an
anecdote, he said that we could eat even though we did not know the mechanism of
digestion. This story is often told as a story of a triumph of a self-educated genius.
However, the method was actually invented by Cauchy long ago. Therefore the
story must be quoted as a failure of premature ossification of mathematics due to
mediocre mathematicians.
176 A rational function is a ratio of two polynomials.

202



13.17 Fast inverse Laplace transform. T. Hosono, “Numerical
inversion of Laplace transform and some applications to wave optics,”
Radio Science 16, 1015 (1981); Fast Laplace transform in Basic, (Ky-
oritsu Publ., 1984)
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Appendix XA Mellin Transformation

13.18 Mellin transformation. The Mellin transform f̆ of f(r) is defined as

f̆(p) =
∫ ∞

0

f(r)rp−1dr. (13.47)

This is well-defined for p satisfying σ1 < Re p < σ2, where∫ 1

0

rσ1−1|f(r)|dr < +∞,
∫ ∞

1

rσ2−1|f(r)|dr < +∞. (13.48)

13.19 Theorem [Fundamental theorem of Mellin transformation].
(1)

f̆(p) =
∫ ∞

0

f(r)rp−1dr (13.49)

is analytic in the strip σ1 < Rep < σ2.
(2) Inverse transformation:

f(r) =
1
2πi

∫
Γ

f̆(p)r−pdp, (13.50)

where Γ is a straight line in the above strip.✷
[Demo] (1) is shown just as the counterpart for the Laplace transformation (→). (2)
is also a disguised version of the inversion formula for the Laplace transformation
(→13.2). Introduce t as r = e−t. Then (13.47) reads

f̆(p) =
∫ ∞

0

e−ptf(e−t)dt (13.51)

This is the Laplace transformation (→13.2). Therefore, we can apply the inverse
transformation formula to obtain

f(e−t) =
1
2πi

∫ σ+i∞

σ−i∞
f̆(p)eptdp. (13.52)

In terms of r, this is just what we wanted.

13.20 Applications to PDE. If the region of the problem is fan-shaped, then the
Mellin transformation is particularly useful. 2-Laplace problem in the cylindrical
coordinates is

r2
(
∂2

∂r2
+

1
r

∂

∂r

)
u+

∂2

∂ϕ2
u = 0. (13.53)

Melling transforming this, we get

p2ŭ+
d2

dϕ2
ŭ = 0, (13.54)

which can be solved easily. The rest is to compute the inverse transform. To
calculate it as the Laplace transform (13.52) may be advantageous, since there is
the so-called fast Laplace transform algorithm (→13.17).

205



14 Γ-functions

The gamma function was introduced by Euler through his
integral; its analytic completion defines an analytic func-
tion called the Gamma function. Γ(m+1) = m! for m ∈N
makes this function very useful in theoretical physics. Ele-
mentary results are collected here.

Key words Gamma function, Euler’s integral, beta func-
tion, Schwinger-Feynman’s parameter formula, Stirling’s for-
mula,

Summary
(1) Remember the definition of Gamma function in terms of Euler’s
integral (14.1). This is practically important in calculating definite
integrals (14.9).
(2)N ! is roughly equal to (N/e)N for largeN (Stirling’s formula 14.10).
(3) Half integer values of Γ can be evaluated exactly (14.5).
14.1 Euler’s integral. For IRz > 0,

Γ(z) =
∫ ∞

0
e−ttz−1dt. (14.1)

This is called Euler’s integral. This integral is defined only for IRz > 0,
but the Gamma function is defined by the analytic completion (→??)
of (14.1). A rough idea is as follows. Note that

∫ m

0

(
1− t

m

)m

tz−1dt =
m!mz

z(z + 1) · · · (z +m)
. (14.2)

This can be shown by repeated integration by parts. Hence, (14.1) can
be written as

Γ(z) = lim
m→∞

m!mz

z(z + 1) · · · (z +m)
. (14.3)

The RHS is well defined for all z �∈ −N .177

Exercise.
Show that

H(z) =
∫
C

(−ζ)z−1e−ζdζ = −2i sinπzΓ(z). (14.4)

177 A rigorous version may be found in J. W. Dettman, Applied Complex Analysis,
p194 (Dover, 1965), or E.T. Whittaker and G.N. Watson, A Course of Modern
Analysis, Chapter XII, which is a convenient reference source of the Γ-function.
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From this we obtain the following Hankel’s formula

1
Γ(z)

=
i

2π

∫
C

(−ζ)ze−ζdζ. (14.5)

(2) Draw the graph of 1/Γ for the interval [−2, 4].

14.2 Γ(z + 1) = zΓ(z). This is for z �= 0,−1,−2, · · ·.
[Demo] From (14.3)

zΓ(z) = lim
m→∞

m!mz+1

(z + 1)(z + 2) · · · (z + 1 +m)

z + 1 +m

m
= Γ(z + 1).

(14.6)
We can compute the Laurent expansion (→??) of the Gamma function
around negative integers s

Γ(z) =
(−1)n
n!

1

z + n
+ · · · . (14.7)

The formula can be seen from

Γ(ζ − n) =
Γ(ζ)

(ζ − n)(ζ − n + 1) · · · . (14.8)

Exercise.
Laurent-expand Γ(−2 + ε) around ε = 0 and find its principal part. You may use
the Taylor expansion formula (→14.8), if needed.

14.3 Factorial. Obviously from 14.2, we have

Γ(m+ 1) = m! (14.9)

for m ∈N . 0! = 1 as usual.

9.4 9.2 directly from Euler’s integral. From (14.1) we get with the
aid of integration by parts

Γ(z + 1) = −
∫ ∞

0
(e−t)′tzdt = z

∫ ∞

0
(e−t)′tz−1dt. (14.10)

This is 14.2, which is demonstrated here for IRz > 0, but the principle
of invariance of functional relations ?? can be invoked to demonstrate
14.2 for all z �∈ −N .

However, notice that the functional relation 14.2 combined with
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Γ(1) = 1 is not enough to characterize the Γ-function.178

Discussion.
Thus

Γ(z) =
Γ(z + 1)
z

(14.11)

is true for z on the right half plane. However, the RHS is meaningful for Rez > −1
except z = 0. Continue this argument to show that Γ(z) is analytic except negative
integer values of z.
14.4 Formula of complementary arguments: For z �∈ Z

Γ(z)Γ(1− z) =
π

sinπz
. (14.12)

[Demo] We note Γ(1− z) = −zΓ(−z) from 14.1.

1
Γ(z)Γ(1− z) = z

∞∏
k=1

(
1− z

2

k2

)
. (14.13)

(→??). The RHS is an entire function (let us call it φ(z)) with simple zeros at
all Z, and φ(z)/z at z = 0 is 1. Actually, the product is sinπz/πz. An easier
demonstration will be given in 14.7 below. ✷
Analogously, we have

Γ(z + 1/2)Γ(z − 1/2) = π/ cosπz. (14.14)

Exercise.
Show that

Γ(z)Γ(−z) = π

z sinπz
. (14.15)

Using this, demonstrate
|Γ(iy)|2 = π

y sinhπy
. (14.16)

14.5 Γ for half integers: The formula of complementary arguments
allows us to compute Γ(1/2).179 Since this is positive as seen from the
definition (14.3),

Γ
(
1

2

)
=
√
π. (14.17)

178 However, there is a
Theorem [Wielandt] Let F (z) be a holomorphic function in the right half plane
having the following two properties:
(i) F (z + 1) = zF (z) on the right half plane.
(ii) F (z) is bounded in the strip {1 ≤ IRz < 2}.
Then, F (z) is proportional to Γ(z).
See R. Remmert, “Wielandt’s theorem about the Γ-function,” Am. Math. Month.
p214-220, March 1996.
179 This can be computed directly with the aid of the Gaussian integral as (1) In
Exercise.
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With 14.1 we get

Γ
(
n+

1

2

)
=
(2n− 1)!!

2n
√
π =

(2n)!

22nn!

√
π, (14.18)

and

Γ
(
−n+

1

2

)
=
(−1)n2n
(2n− 1)!!

√
π =

(−4)nn!
(2n)!

√
π. (14.19)

Exercise.
(1) Γ(1/2) can be computed directly as follows:

Γ(1/2) =
∫ ∞

0

e−t
1√
t
dt =

∫ ∞

−∞
e−x

2
dx. (14.20)

Hence, we have only to compute the Gaussian integral. The best method to compute
this integral is the following trick:{∫ ∞

−∞
e−x

2
dx

}2

=
∫
R2
dxdye−(x2+y2) = 2π

∫ ∞

0

e−r
2
rdr. (14.21)

Complete the calculation.
(2) Compute Γ(7.5) and Γ(−1.5).
(3) How fast does Γ(−n+ 1/2) converge to 0 in the n→∞ limit?
(4) Show

lim
n→∞

(2n− 1)!!
(2n)!!

n1/2 = π−1/2. (14.22)

14.6 Beta function. The beta function B(p, q) is an analytic func-
tion of two variables obtained by the analytic completion (→??) of the
following integral

B(p, q) =
∫ 1

0
tp−1(1− t)q−1dt, (14.23)

= 2
∫ π/2

0
dθ cos2p−1 θ sin2q−1 θ, (14.24)

=
∫ ∞

0
dx xp−1(1 + x)−(p+q), (14.25)

where $p and $q must be positive. The second line can be obtained by
setting t = sin2 θ, and the third line by t = x/(1+x). Assume p, q ∈ R
and positive. We get (t = x2 or y2 in (14.1))

Γ(p)Γ(q) = 4
∫ ∞

0
dx e−x2

x2u−1
∫ ∞

0
dy e−y2

y2u−1 (14.26)

= 4
∫ ∞

0
rdr e−r2

r2(p+q−1)
∫ π/2

0
dθ cos2p−1 θ sin2q−1 θ,

= Γ(p+ q)B(p, q). (14.27)
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Hence, we have

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (14.28)

The RHS is meaningful for all p, q except for negative integers, so that
we may define the beta function by this formula.

Exercise.
(1) Because

B(p, q) = B(q, p) =
∫ ∞

0

xq−1

(1 + x)p+q
dx, (14.29)

we obtain

B(p, q) =
1
2

∫ ∞

0

xp−1 + xq−1

(1 + x)p+q
dx (14.30)

and ∫ ∞

0

xp−1 − xq−1

(1 + x)p+q
dx = 0. (14.31)

(2)

I =
∫ π/2

0

sinp θ cosq θdθ =
1
2

∫ 1

0

x(p+1)/2−1(1−x)(q+1)/2−1dx =
1
2
B

(
p+ 1
2
,
q + 1
2

)
.

(14.32)
For example, ∫ π/2

0

sinp θdθ =
√
π

2
Γ((p+ 1)/2)/Γ(p/2 + 1). (14.33)

This is called Wallis’ formula, if p is a positive integer.
(3) Computing ∫ 1

−1

(1− x2)z−1dx (14.34)

with two different change of variables (t = x2 and t = (x+ 1)/2), show

Γ(2z) =
22z−1

√
π

Γ(z)Γ
(
z +

1
2

)
. (14.35)

More generally, it is known that

Γ(nz) = (2π)(1−n)/2nnz−1/2Γ(z)Γ
(
z +

1
n

)
· · ·Γ

(
z +
n1

n

)
. (14.36)

14.7 Proof of 9.5: From (14.28) and (14.25) we get for 0 < $z < 1

Γ(z)Γ(1− z) = Γ(1)B(z, 1− z) =
∫ ∞

0
dx

xz−1

1 + x
=

π

sinπz
. (14.37)

We can apply the principle of invariance of functional relation ?? to
complete the proof of 14.4.
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Exercise.
To compute the integral in (14.37) we can also use the transformation x = ey to
convert the integral to ∫ ∞

−∞

ezy

1 + ey
dy. (14.38)

This is the same problem in ??.

14.8 Taylor expansion:

Γ(1 + z) = 1− γz +
1

2

(
γ2 +

π2

6

)
z2 + · · · . (14.39)

Here γ is called Euler’s constant defined by

γ ≡ lim
n→∞

(
1 +

1

2
+
1

3
+ · · ·+ 1

n
− lnn

)
(14.40)

and γ = 0.577215664 · · ·.180 ✷
[Demo] Calculate the logarithmic derivative of (14.3) (Uniform convergence allows
termwise operations)

Γ′(z)
Γ(z)

= −γ − 1
z
+

∞∑
k=1

(
1
k
− 1
k + z

)
, (14.41)

so that

Γ′(1) = −γ − 1 +
∞∑
k=1

(
1
k
− 1
k + 1

)
= −γ. (14.42)

Differentiating (14.41) once more, we get

d2

dz2
log Γ(z) =

∞∑
k=0

1
(z + k)2

. (14.43)

Hence,

Γ′′(1)− Γ′(1)2 =
∞∑
k=1

1
k2

=
π2

6
. 181 (14.46)

180 Whether γ is irrational or not is not known; it is known that if it is rational,
both the denominator and the numerator must have at least 30,000 digits.
181 To compute this sum or the zeta function (→??)

ζ(z) ≡
∞∑
k=1

1
kz
, (14.45)

we use

ζ(z)Γ(z) =
∫ ∞

0

tz−1

et − 1
dt. (14.46)

See T. M. Apostol, Math. Intelligencer, 5(3), 59-60 (1983) “A proof the Euler
missed: evaluation of ζ(2) the easy way.” See ?? Discussion (1).
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This gives the desired second derivative. ✷

Exercise.
(1) Demonstrate that the Γ-function is a convex function (→?? Discussion) for
x > 0.
(2) Using the fact

Γ′(1)
Γ(1)

= −γ, (14.47)

demonstrate
γ = −

∫ ∞

0

e−t log t dt. (14.48)

14.9 Use in perturbative field theories:182

(1) When we compute (bare) perturbation series, we have to compute
integrals of the following type:

I ≡
∫

dq
1

(q2 + 2k · q +m2)α
= πd/2Γ(α− d/2)

Γ(α)
(m2 − k2)d/2−α.

(14.49)
Here the integral may not exist even when the RHS exists. In such
cases the integral is defined by the RHS (analytic continuation). This
formula can be demonstrated as follows: First we exponentiate the
denominator with the aid of Euler’s integral (14.1)

1

aα
=

1

Γ(α)

∫ ∞

0
dt tα−1e−at (14.50)

as

I =
∫

dq
∫ ∞

0
dt tα−1 exp[−t(q2 + 2k · q +m2)]. (14.51)

This is a standard trick. We can legitimately exchange the order of
the two integrations (Fubini’s theorem→15.15), and perform the d-
dimensional Gaussian integral183 (→15.20) to get

I =
1

Γ(α)

∫ ∞

0
dt tα−1

(
π

t

)d/2

e−(m2−k2)t. (14.52)

This gives the desired result. See also (D) below.
(2) We often need the integral of the product of the factors 1/(q2+m2).

182 J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, (Oxford, 1989);
D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena
(World Scientific, original from McGraw-Hill 1978).
183 ∫ ∞

−∞
dqde−a

2q2 =
(√
π

a

)d
.
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In this case the q-integral (momentum integral) can be reduced to (1)
by the so-called Schwinger-Feynman parameter formula:

1

aα1
1 aα2

2 · · · aαn
n

=
Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · ·Γ(an)

∫
V
dt1dt2 · · · dtn−1

tα1−1
1 · · · tαn−1

n

(t1a1 + · · ·+ tnan)α1+···+αn
,

(14.53)

where

V = {(t1, · · · , tn−1) : ti ∈ [0, 1], t1 + t2 + · · ·+ tn−1 ≤ 1}. (14.54)

To demonstrate this we start with (14.50). We have, using Fubini’s
theorem

n∏
i=1

a−αi
i =

∫ ∞

0
dx1dx2 · · · dxn

∏n
i=1 x

αi−1
i e−

∑
aixi∏n

i=1 Γ(αi)
. (14.55)

Now, introduce new variables (t1, t2, · · · , tn−1, y) as

xi = tiy, (i = 1, 2, · · · , n− 1), (14.56)

xn = (1− t1 − t2 − · · · − tn−1)y. (14.57)

The Jacobian for this transformation is yn−1, so that

n∏
i=1

a−αi
i =

∫ ∞

0
dy
∫
V
dt1 · · · dtn−1y

n−1y
∑

αi−n e−y
∑

aiti∏n
i=1 Γ(αi)

. (14.58)

This leads to the desired result. ✷

Exercise.
(A) Demonstrate

I =
∫ ∫

f(t1 + t2)ta1−1
1 ta2−1

2 dt1dt2 =
Γ(a1)Γ(a2)
Γ(a1 + a2)

∫ 1

0

f(t)ta1+a2−1dt, (14.59)

where the integration range is t1 + t2 ≤ 1 and t1 > 0, t2 > 0.

(B) From a similar calculation as (A), we get the following formula:∫ ∫
· · ·
∫
f(t1 + t2 + · · ·+ tn)ta1−1

1 ta2−1
2 · · · tan−1

n dt1dt2 · · ·dtn

=
Γ(a1)Γ(a2) · · ·Γ(an)
Γ(a1 + a2 + · · ·+ an)

∫ 1

0

f(t)ta1+a2+···+an−1dt

(14.60)
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where the integration range is ti > 0 and t1 + · · ·+ tn < 1 as in (A). You need not
demonstrate this formula (if you feel it is correct). Using this formula, demonstrate
that the volume V of the n-ball of radius r is given by

V =
2rnπn/2

nΓ(n/2)
. (14.61)

Compute the surface area of the n-ball (i.e., the volume of the (n− 1)-sphere).
Estimate the ratio of the volume of d-ball and that of its thin skin of thickness

ε * 1 for very large d.184 [Hint. Actually, dimensional analysis is enough. Look
at the ratio of the volume of n-sphere of radius r and that of radius r − ε.]
(C) This formula can be generalized to the following. Let D be a domain in n-space
defined by (

x1
a1

)b1
+ · · ·+

(
xn
an

)bn

≤ 1 (14.62)

and x1 ≥ 0, · · · , xn ≥ 0.

∫
· · ·
∫
D

dx1dx2 · · · dxnxl1−1
1 · · ·xln−1

n =
al11 · · · alnn
b1 · · · bn

Γ
(
l1
b1

)
· · ·Γ

(
ln
bn

)
Γ
(
l1
b1

+ · · ·+ ln
bn

+ 1
) . (14.63)

(D) Demonstrate (14.49). That is,∫
dq

1
(q2 + 2kq +m2)α

=
1
2
Sd−1

Γ(d/2)Γ(α− d/2)
Γ(α)

(m2 − k2)d/2−α. (14.64)

14.10 Stirling’s formula.185 Uniformly in | arg z| ≤ π − δ for any
small positive δ,

Γ(z) ∼
√
2πe−zzz−1/2

[
1 +

1

12z
+

1

288z2
− 139

51849z3
+ · · ·

]
. (14.65)

Here ∼ implies that the expansion is asymptotic (→21.3, 21.14).✷
A practical way to remember the salient feature is

n! ∼ (n/e)n. (14.66)

[Demo]186 We only demonstrate

Γ(n)en
√
n

nn
→

√
2π as n→∞. (14.67)

In Euler’s integral (14.1) set x =
√
t−√

n to find

Γ(n)en
√
n

nn
= 2
∫ ∞

−√
n

(
1 +

x√
n

)2n+1

e−2
√
nxe−x

2
dx (14.68)

184 In very high dimensional spaces, almost all the volume is always very close to
the skin. This is a very important fact for statistical mechanics, and coding theory.
185 James Stirling, 1692-1770.
186 J. M. Patin, Am. Math. Month. 96, 41-42 (1989).
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Now, the integrand is uniformly bounded in n by the integrable function e−x
2−1,

because(
1 +

x√
n

)2n−1

e−2
√
nx ≤ exp

{
x√
n
(2n− 1)

}
exp(−2√nx) = e−x/

√
n ≤ e.

(14.69)
Since for each x

lim
n→∞ log

{(
1 +

x√
n

)2n−1

e−2
√
nx

}
= −x2, (14.70)

the dominated convergence theorem187 tells us

Γ(n)en
√
n

nn
→ 2
∫ ∞

−∞
e−2x2

dx =
√
2π. (14.71)

✷

Discussion.188 The above proof does not tell us why the ratio (14.67) must be
considered. Let us give a more ‘constructive’ proof.
(1) Notice that for IRz > 0

Γ′(z) =
∫ ∞

0

e−ttz−1 ln t dt. (14.72)

(2) To rewrite ln t let us show that integration of

1
t
=
∫ ∞

0

e−xtdx (14.73)

implies for IRt > 0

ln t =
∫ ∞

0

e−x − e−xt
x

dx. (14.74)

This integral is called Frullani’s integral.189

(3) Combining the above results, we obtain

Γ′(z) =
∫ ∞

0

dx

x

[
e−xΓ(z)−

∫ ∞

0

e−t(x+1)tz−1dt

]
. (14.75)

(4) From this we obtain

d

dz
ln Γ(z + 1) =

∫ ∞

0

(
e−t

t
− e−zt

et − 1

)
dt, (14.76)

=
∫ ∞

0

e−t − e−tz
t

dt+
1
2

∫ ∞

0

e−tzdt−
∫ ∞

0

(
1
2
− 1
t
+

1
et − 1

)
e−tzdt,

(14.77)

= ln z +
1
2z

−
∫ ∞

0

(
1
2
− 1
t
+

1
et − 1

)
e−tzdt. (14.78)

187 Again, this is a rudimentary theorem of Lebesgue integral (→15.12).
188 This is adapted from Lebedev.
189 To justify the changing the order of integrations, we may rely on Fubini’s the-
orem (→15.15). The same is true for the exchange in (3).
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(5) Integrating this with z from 0 to z, we obtain

ln Γ(z) =
(
z − 1

2

)
ln z − z + 1

+
∫ ∞

0

(
1
2
− 1
t
+

1
et − 1

)
e−t − e−tz

t
dt. (14.79)

(6) This can be rewritten as

ln Γ(z) =
(
z − 1

2

)
ln z − z + ω(z)− ω(1), (14.80)

where
ω(z) =

∫ ∞

0

f(t)e−tzdt (14.81)

with

f(t) =
(
1
2
− 1
t
+

1
et − 1

)
1
t
. (14.82)

To compute ω(1), notice that

ω(1/2) − ω(1) =
∫ ∞

0

(
e−t/2

t
− 1
et − 1

)
dt (14.83)

but this can be obtained from the result of (5) with z = 1/2 (→9.6) as

ω(1/2)− ω(1) = 1
2
lnπ − 1

2
. (14.84)

On the other hand, we can compute ω(1/2) directly as

ω(1/2) =
1
2
+

1
2
ln

1
2
. (14.85)

Hence, ω(1) = −(1/2) ln 2π
(7) For large IRz > 0 we can expect that ω is small. Actually it is of order 1/z.
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15 Integration Revisited

Riemann can integrate piecewise continuous functions. How-
ever, there are many functions which cannot be integrated
by the Riemann integration, although the values of their
integrals are more or less obvious. In this section, the ba-
sic idea of the Lebesgue integral is given with a practical
summary. The theory is a natural prerequisite for under-
standing Hilbert space. The most natural integral concept
for Fourier expansion is the Lebesgue integral. In the Ap-
pendix, rudiments of measure theory is outlined.

Key words: measure zero, almost everywhere, Lebesgue
integral, dominated convergence theorem, Beppo-Levi’s the-
orem, Fubini’s theorem, Gaussian integral, Wick’s theorem.

Remember:
(1) Lebesgue integral is defined by the integral of simple functions (=
functions taking only countably many values) (15.8-15.9).
(2) There are several very powerful theorems for Lebesgue integration
(15.12-15.18). Basically, they justify what looks formally OK to physi-
cists.
(3) Lebesgue integral is the most natural framework to consider Fourier
analysis (15.19).
(4) Gaussian integrals should be very familiar (15.20-15.21).

15.1 Practical Check
Exercise. Before going into the discussion of the Lebesgue integration theory, let
us check our practical ability to compute Riemann integrals. (1) Compute the
following indefinite integrals: ∫

dx
ax+ b
cx+ d

. (15.1)

Here we assume that a, b, c( �= 0), d are constants.
(2) Let n ∈N . For

In ≡
∫ π/2

0

sinn xdx (15.2)

demonstrate that

In =
(
1− 1
n

)
In−2. (15.3)

Then, compute In.
(3) Find the range of α where ∫ ∞

0

sin2 x

xα
dx (15.4)
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exists.
(4) [Fresnel integral]. Show that ∫ ∞

0

sin(x2)dx (15.5)

exists (as a Riemann integral). cf ??(1).
(5) Does ∫ ∞

0

sin(cosh x)dx (15.6)

exist (as a Riemann integral)?
(6) Show ∫ ∞

0

(
sinx
x

)2

dx =
π

2
. (15.7)

Use (→??) ∫ ∞

0

e−αx
sinλx
x
dx =

α

α2 + λ2
. (15.8)

(7) Show that ∫ ∞

0

sin ax cos bx
x

=
π

2
, (15.9)

if a > b > 0. What happens otherwise?
(8) Show that ∫ π/2

0

log sin θdθ = −π
2
log 2. (15.10)

(9) Compute

lim
n→∞

1
n
[1 + cos

x

n
+ cos

2x
n

+ · · · cos (n− 1)x
n

+ cosx] (15.11)

(10) Compute
dn

dxn

∫ x

0

(x− y)n−1

(n− 1)!
f(y)dy. (15.12)

Discussion.
(1) Let

I(a, b) ≡
∫ ∞

0

dx√
(a2 + x2)(b2 + x2)

(15.13)

for positive a and b. Show that

I(an, bn) = I(a, b) (15.14)

for any n = 1, 2, · · ·, where an+1 = (an + bn)/2 and bn+1 =
√
anbn, where a1 = a

and b1 = b. an and bn converge to a common limit µ determined by a and b. Gauss
(→??) used the bove observation to compute µ = π/2I . Show this conclusion.
(2) Let f be integrable on [0, 1]. Then∫ 1

0

exp(f(t))dt ≥ exp
(∫ 1

0

f(t)dt
)
. (15.15)

Note that
∫ 1

0 f(t)dtmay be understood as the average of f on [0, 1] (→??, Discussion
(A)).
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15.2 Dirichlet function. The Dirichlet function is defined as190

D(x) =

{
0 for x �∈ Q,
1 for x ∈ Q.

(15.16)

∫ 1
0 dxD(x) must be zero, but obviously this function is not Riemann
integrable.

15.3 The area below D(x) must be zero. We know (→??(4), ??)
all the rational numbers can be counted, so we may write the totality
of rational numbers in [0, 1] as Q ≡ {yn}∞n=1 = Q ∩ [0, 1]. Let us
cover yn with an interval En of length ε/2n centered at yn. Obviously,
∪En ⊃ Q for any positive ε, but the total length of ∪En is not larger
than ε, because length(∪En) ≤ ∑( length En) = ε. This number is any
positive number, so it can be indefinitely small. Hence, the total area
occupied by Q must be zero. This must be the area below D(x) on
[0, 1]. Hence, ‘

∫ 1
0 dxD(x)’ = 0 (→15.8).

15.4 Measure zero. We have demonstrated that Q is measure zero.
A set U ⊂ R is called a measure zero set, if it can be covered by
countably many open intervals the totality of the length of which is
less than ε for any ε(> 0). 15.3 tells us that any countable set is
measure zero. See Appendix a19 for a general discussion about measure
(→15.26).

15.5 Lebesgue’s characterization of Riemann integrability. In
his thesis, Lebesgue showed the following theorem.
Theorem. A bounded function f is integrable in the sense of Riemann
on [a, b] if and only if the set of discontinuous points of f is measure
zero. ✷
Obviously, D(x) is not integrable in the sense of Riemann.

15.6 “Almost everywhere”. Lebesgue also introduced the concept
of almost everywhere: if a property ‘A’ is true for a function f except on
the measure zero set, we say f has the property ‘A’ almost everywhere.
Thus the theorem above can be restated as: A bounded function f is
Riemann integrable if f is almost everywhere continuous.

15.7 Simple function. A function which takes at most countably
many (→??(4), ??) values is called a simple function. The Dirichlet
function (→15.2) is a simple function, because it assumes only two
values, 0 and 1.

190 This is the characteristic function of the set of all the rational numbers.
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15.8 Lebesgue integral of simple functions. Let f be a real-
valued simple function defined on an interval I. If the right-hand-side
of the following formula converges absolutely, we say f is Lebesgue
integrable and the limit is denoted by just the same symbol as the
Riemann integral: ∫

I
f(x)dx↽==

∑
n

yn|In|, (15.17)

where |∗| is the total length of the set ∗, and In ↽== {x|x ∈ I, f(x) = yn}.
Cantor showed |Q| = 0 (→15.3). Hence, the Dirichlet function is
Lebesgue integrable and the value of the integral is zero.191

Note that the values of a function on measure zero sets are irrele-
vant to the value of the integral.

15.9 Lebesgue integral of general function: L1([a, b]). The
Lebesgue integral of a function f on an interval [a, b] is defined as
follows. Make a uniform approximation sequence of Lebesgue integrable
simple functions fi for f :

sup
x∈[a,b]

|fi(x)− f(x)| → 0 as i →∞. (15.18)

Then ∫ b

a
f(x)dx↽== lim

i→∞

∫ b

a
fi(x)dx. (15.19)

[Of course, if we cannot find such a sequence, f is not Lebesgue inte-
grable.]

The totality of functions Lebesgue integrable on the interval [a, b]
is denoted by L1([a, b]).

Discussion [Fundamental properties of integrals].
(I) Double Linearity. We know that the integral is linear with respect to the
integrand. There is one more linearity with respect to the domain as we already
noticed in ??: ∫ c

a

f(t)dt =
∫ b

a

f(t)dt+
∫ c

b

f(t)dt (15.20)

or ∫
[a,b]+[b,c]

f(t)dt =
∫

[a,b]

f(t)dt+
∫

[b,c]

f(t)dt. (15.21)

191 In this definition, it is very crucial that all In have lengths. Or more generally,
if we wish to define an integral of functions on a multidimensional space, then
In must have a definite volume. Therefore, Lebesgue had to contemplate on the
concept ‘volume.’ This led him to his measurable CHECK if all In have well-defined
volumes (→15.26). A function f is said to be measurable (more precisely, Borel
measurable), if the set {x | a < f(x) < b} has a definite length (measure) for any a
and b(> a).
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If we define ∫
α[a,b]

f(t)dt = α
∫

[a,b]

f(t)dt, (15.22)

then
∫
becomes a linear map on geometrical objects (in this case we discussed only

1D objects, but this can be generalized to general dimensional spaces). Notice that
the convention is meaningful if we interpret the integral over −[a, b] to be the inte-
gral on [a, b] from b to a instead of a to b (− is the reversing of orientation).
(II) Non-negativity and monotonicity. If the integrand is nonnegative, its inte-
gral is nonnegative. Consequently, if f ≥ g, then ∫ ba dtf(t) ≥ ∫ ba g(t)dt.
(III) Boundedness. If the integrand is bounded, then its integral over a bounded
set is bounded.

15.10 Remark. We must demonstrate that the limit in 15.9 does
not depend on the choice of the approximation sequences, but it is a
technical detail. An important difference between the Riemann and
the Lebesgue integrations is that the latter requires absolute conver-
gence. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis
(Revised English edition, Englewood Cliffs, 1970)192 is an excellent
self-study textbook for the measure theory and Lebesgue integration
(and standard functional analysis (say, spectral analysis)).

15.11 Relation between Riemann and Lebesgue integrals.
(1) If f is integrable in both the senses, their values are the same.
(2) If f is bounded and Riemann integrable, then it is Lebesgue inte-
grable. But
(3) There are Riemann integrable but not Lebesgue integrable func-
tions, and vice versa.

The practical merit of the Lebesgue integral is that the conditions
for exchanging the order of operations (say, limit and integral) can
be simpler than those for Riemann integrals (→15.12, 15.15, 15.18).
This simplicity is due to the absolute convergence in the definition
(→15.8).

15.12 Theorem [Lebesgue’s dominated convergence theorem].
Let I be an interval. If limn→∞ fn(x) = f(x) for almost all x ∈ I (i.e.,
except on a measure zero set (→15.4), fn converges to f), and if there is
a Lebesgue integrable function (→15.9) ϕ(x) such that |fn(x)| < ϕ(x)
on I , then

lim
n→∞

∫
I
fn(x)dx =

∫
I
f(x)dx. (15.23)

✷

192 Its original Russian version is an undergraduate textbook for Analysis III
(designed by Kolmogorov) of Dept of Engineering Mathematics of Moscow State
University.
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15.13 Theorem [Beppo-Levi]. Let fn be Lebesgue integrable on
an interval I,

∫
I fn(x)dx < K for some number K for all n, and f1 ≤

f2 ≤ · · · ≤ fn ≤ · · ·. Then

lim
n→∞

∫
I
fn(x)dx =

∫
I
lim
n→∞ fn(x)dx. (15.24)

✷

15.14 Example. Termwise integration of
∑

xn = (1 − x)−1. For
t ∈ [0, 1), we may apply Beppo-Levi’s theorem to the partial sums to
integrate this termwisely:

∫ t

0

∞∑
n=0

xndx =
∞∑

n=0

∫ t

0
xndx =

∞∑
n=1

tn

n
= − ln(1− t). (15.25)

Exercise.
Compute the following integrals in the n→∞ limit:
(1) ∫ 1

0

x

1 + nx
dx. (15.26)

(2) ∫ 1

0

1
1 + nx2

dx (15.27)

Notice that the exchange of the order of limit and integration does not work for
∫ 1

0

n

1 + n2x2
dx. (15.28)

See ??.

15.15 Theorem [Fubini]. If
∫
dx (
∫
dy|f(x, y)|) or ∫ dy (∫ dx|f(x, y)|)

is finite, then we may exchange the order of two integrations in
∫
dx
∫
dyf (x, y).

✷

Discussion.
(1) Using the integral of f(x, y) = xy on [0, 1] × [a, b] for 0 < a < b, demonstrate

∫ 1

0

xb − xa
log x

dx = log
1 + b
1 + a

. (15.29)

(2) Demonstrate that∫ ∫
x≥0,y≥0

dxdyf(a2x2 + b2y2) =
π

4ab

∫ ∞

0

xf(x)dx. (15.30)
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(3) Compute ∫ 2

1

dx

∫ x

1

dy
x2

y2
, (15.31)

∫ 1

0

dx

∫ √
1−x2

0

dy(1− y2)3/2, (15.32)
∫ 1

0

dx

∫ 1

√
x

dy
√
1 + y2. (15.33)

15.16 Pathological example. Do not think the order of integrations
can be freely changed:

∫ 1

0
dx
∫ 1

0
dy

x2 − y2

(x2 + y2)2
=

π

4
,
∫ 1

0
dy
∫ 1

0
dx

x2 − y2

(x2 + y2)2
= −π

4
. (15.34)

Demonstrate that the condition for 15.15 is violated.

Discussion
The reason for the pathology is explained by Legendre with the aid of the following
formula: ∫ 1

α

dx

∫ 1

β

dy
x2 − y2

(x2 + y2)2
=
π

2
− arctan

β

α
. (15.35)

Demonstrate the formula and complete the argument.

15.17 Good function principle. In short, if a relation is correct for
a simple function (→15.7), then it is correct for integrable functions.
This is sometimes called the good function principle.

15.18 Exchanging differentiation and integration. Suppose f(x, α)
is integrable for any α in its range, and ∂αf is integrable, then

d

dα

∫
f (x, α)dx =

∫ ∂

∂α
f(x, α)dx. (15.36)

Very crudely peaking, for Lebesgue integration, if the formal result is
mathematically meaningful, then the result is (eventually) justifiable.

Discusiion.
(1) Let f be continuous. Demonstrate that g defined by

g(x) =
∫ x

0

(x− y)n−1

(n− 1)!
f(y)dy (15.37)

is Cn and g(n)(x) = f(x).
(2) Hadamard representation. Let f(x, y) be C1 in the ball of radius r centered
at (x0, y0). Then

f(x, y) = f(x0, y0) + f1(x, y)(x− x0) + f2(x, y)(y − y0), (15.38)
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where

f1(x, y) =
∫ 1

0

∂f

∂x
(xt, yt)dt, f2(x, y) =

∫ 1

0

∂f

∂y
(xt, yt)dt (15.39)

with xt = tx+ (1− t)x0 and yt = ty + (1− t)y0.
Exercise.
(1) Show that

F (x) =
∫ ∞

0

e−y
2
sin 2xy dy (15.40)

satisfies
F ′(x) + 2xF (x) = 1. (15.41)

(2) A similar question is: Let

I(a) =
∫ ∞

0

e−x
2
cos 2axdx. (15.42)

Show that
dI

da
= −2aI. (15.43)

Use this to demonstrate that

I =
√
π

2
e−a

2
. (15.44)

[Hint. The change of variables z = x+ a/x works.]
(3) Let

I(a) =
∫ ∞

0

exp
{
−b2
(
x2 +

a2

x2

)}
dx. (15.45)

Demonstrate that
dI

da
= −2b2I. (15.46)

Then, show

I(a) =
√
π

2|b|e
−2ab2 . (15.47)

15.19 Why is the Lebesgue integral most natural for Fourier
analysis? As we have already mentioned in ??(3) if f is square
Lebesgue integrable, then its Fourier series is almost everywhere con-
vergent to f . See also Carlson’s theorem (→??). Physicists know
that Fourier transform is a powerful tool to disentangle convolution
(→28.2). This can be done freely only when we integrate all integrals
as Lebesgue integrals. We can make a continuous and absolute inte-
grable function f such that its convolution to itself

∫
dxf(t − x)f(x)

is Lebesgue integrable, but diverges for all rational t (so that it is not
Riemann integrable).193 That is, if we use the Riemann integral, then
we cannot freely use Fourier transformation to disentangle the con-
volution. The Lebesgue integration theory is much more elegant and
fundamental in Fourier analysis than the Riemann integration.193 See Körner, Example C.6 on p570.

224



15.20 Gaussian integral, ‘Wick’s theorem’. The following in-
tegral (the generator of multidimensional Gaussian distribution) is of
vital importance in theoretical physics:

I(A, b) ≡
∫ ∞

−∞
· · ·
∫ ∞

−∞
dx1 · · · dxn exp


−1

2

n∑
i,j=1

Aijxixj +
n∑

i=1

xibi


 ,

(15.48)
where A =Matr(Aij) is an n× n symmetric non-singular matrix, and
b is an n-vector. We get

I(A, b) = (2π)n/2(detA)−1/2 exp


1
2

∑
i,j

Aijbibj


 . (15.49)

I(A, b)/I(A, 0) is called the generator (generating function) of the Gaus-
sian distribution with mean zero and covariance matrix given by A−1.
The standard method to compute this is to shift the origin to the minimum point
of the function in the parentheses as

yi = xi −
∑
j

(A−1)ijbj . (15.50)

This leads to

I(A, b) = exp


1
2

∑
i,j

(A−1)ijbibj


∫ ∞

−∞
· · ·
∫ ∞

−∞
dy1 · · ·dyn exp


− n∑

i,j=1

Aijyiyj




(15.51)
The integral can be computed by diagonalizing the matrix.

According to 15.18 we can freely change the order of differentiation
with respect to b and integration in (15.48). In this way we arrive at
the so-called Wick’s theorem: For b = 0

〈xaxb · · ·xz〉 =
∑
(A−1)k1k2(A

−1)k3k4 · · · (A−1)kn−1kn , (15.52)

where {k1, · · · , kn} = {a, · · · , z} and the sum is over all the possible
pairings of a, b, · · · , z. For example,
〈x1x2x3x4〉 = 〈x1x2〉 〈x3x4〉+ 〈x1x3〉 〈x2x4〉+ 〈x1x4〉 〈x2x3〉. (15.53)

Exercise.
(A) Compute the following integrals:
(1) ∫ ∫

x≥0,y≥0

dxdy e−(x2+2xy cos θ+y2). (15.54)

(2) ∫ ∫
R2
dxdy e−(x2+2xy cos θ+y2). (15.55)

225



(B) Using the spherical symmetry of the Gaussian integral, find the following inte-
grals in terms of

U ≡
∫
ddke−ak

2/2. (15.56)

(1)

I =
∫
ddk
k2x
k2
e−ak

2/2. (15.57)

(2)

J =
∫
ddk
k2xk

2
y

k4
e−ak

2/2. (15.58)

[Hint. (15.53) and 〈k4〉 = d〈k4
x〉+ d(d− 1)〈k2

xk
2
y〉. Also differentiation

and integration with respect to a (or −a/2) is useful.]

15.21 Gaussian integral: complex case. We have the following
analogous formula

I(A, b) ≡
∫ ∞

−∞
· · ·
∫ ∞

−∞
dz1dz1 · · · dzndzn exp


− n∑

i,j=1

Aijzizj +
n∑

i=1

(zibi + zibi)


 ,

(15.59)
where A is any nonsingular n × n matrix, b is a complex n-vector. In
terms of real variables xi and yi as

zi = (xi + iyi)/
√
2, (15.60)

we get dzidzi = dxidyi.
194 Integration is understood as the integration

with respect to these real variables. The result is

I(A, b) = (2π)n(detA)−1 exp


∑

i,j

(A−1)ijbibj


 . (15.61)

The cleverest proof of this relation is: (i) (if necessary) to slightly per-
turb A so that all the eigenvalues of A+δA are distinct (so that A+δA
is diagonalizable); (ii) compute the integral analogous to 15.20; then
(iii) use the continuity of the integral as a function of the components
of A to obtain the result for the unperturbed case.

194 although formally, the calculation here seems to justify the equality, it is better
to undersdand that dzdz is a shorthand notation of dxdy.
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APPENDIX a19 Measure

In this appendix the general theory of the Lebesgue measure is out-
lined. Without measure theory proper understanding of statistical me-
chanics and dynamical systems is impossible. However, just as all the
important topics, the essence of measure theory is not at all hard to
understand. The theory could be read as a very nice example of the
analysis of a concept that we seem to know intuitively. For a more
formal introduction Kolmogorov-Fomin is strongly recommended.

15.22 Reader’s guide to this appendix. (1) + (3) is the minimum
of this appendix:
(1) The ordinary Lebesgue measure = volume is explained up to a19.6.
These entries should be very easy to digest. Remember that Archimedes
reached this level of sophistication more than 2000 years ago.
(2) General Lebesgue measure is outlined in 15.31-15.33. This is an
abstract repetition of (1), so the essence should be already obvious.
(3) Lebesgue integral is redefined in terms of the Lebesgue measure
in 15.37 with a preparation in 15.36. This leads us naturally to the
concept of functional and path integrals (a19.16).
(4) Probability is a measure with total mass 1 (i.e., normalized) (15.41).
(5) If we read any probability book, we encounter the triplet (P,X,B).
The reason why we need such a nonintuitive device is explained in
15.42-15.43.

15.23 What is volume? For simplicity, we confine our discussion to
2-space, but our discussion can easily be extended to higher dimensional
spaces. The question is: what is ‘area’ ? It is not easy to answer this
question for an arbitrary shape.195 Therefore, we should start with a
seemingly obvious example. The area of a rectangle [0, a]×[0, b] inR2 is
ab. Do we actually know this? Why can we say the area of the rectangle
is ab without knowing what area is? To be logically conscientious we
must accept:
Definition. The area of a rectangle which is congruent196 to 〈0, a〉 ×
〈0, b〉 (Here 〈 is [ or ( and 〉 is ] or )) is defined to be ab. Notice that
area is defined so that it is not affected by whether the boundary is
included or not.

195 As we will see soon in 15.43, if we stick to our usual axiomatic system of
mathematics ZF+C (→?? for references), then there are figures without area.
196 This word is defined by the superposability. That is, if we move (translate,
rotate) a figure A and can exactly superpose it on B, we say A and B are congruent.
As Hilbert (→16.4) realized we must guarantee that the figure does not deform,
etc., while being moved, so that we need an axiom, which was never stated in Euclid,
although freely used by him (just as the Axiom of Choice in the early 20th century).
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15.24 Area of fundamental set. A set which is a direct sum (dis-
joint union) of finite number of rectangles is called a fundamental set.
The area of a fundamental set is defined by the sum of the areas of
constitutive rectangles.

It should be intuitively obvious that the join and the common set
of fundamental sets are again fundamental.

15.25 Heuristic consideration. For an arbitrary shape, the strat-
egy for defining its area should be to approximate the figure with a
sequence of fundamental sets. We should use the idea going back to
Archimedes; we must approximate the figure from the inside and from
the outside. If both sequences converge to the same area, we should
define the area to be the are of the figure.

15.26 Outer measure. Let A be a set. We consider a cover of A with
finite number of rectangles Pk (inclusion or exclusion of their boundaries
can be chosen conveniently →15.23), and call it a rectangular cover
P = {Pk} of A. Let us denote the area of a rectangle Pk by m(Pk).
The outer measure m∗(A) of A is defined by

m∗(A) ≡ inf
∑
k

m(Pk), (15.62)

where the infimum is taken over all the finite or countable rectangular
covers of A.
m∗(A) = 0 is equivalent to A being measure zero (→15.4 or a null set).

15.27 Inner measure. For simplicity, let us assume that A ∈ E ≡
[0, 1]× [0, 1]. Then, the inner measure m∗(A) of A is defined by

m∗(A) = 1−m∗(E \ A). (15.63)

Obviously,
m∗(A) ≥ m∗(A) (15.64)

for any figure A.

15.28 Measurable set, area = Lebesgue measure. Let A be a
bounded subset of E.197 If m∗(A) = m∗(A), then we say A is measur-
able (in the sense of Lebesgue), and m∗(A) written as µ(A) is called its
area (= Lebesgue measure).

197 It should be obvious how to generalize our argument to a more general bounded
set in R2.

228



15.29 Additivity. Assume that all the sets here are in a bounded
rectangle, say, E above. The join and the common set of finitely many
measurable sets are again measurable. This is true even for count-
ably many measurable sets. The second statement follows from the preceding
statement thanks to the finiteness of the outer measure of the join or the common
set.

15.30 σ-additivity. Let {An} be a family of measurable sets satis-
fying An ∩ Am = ∅ for n �= m. Let A = ∪nAn. Then,

µ(A) =
∑
n

µ(An). (15.65)

This is called the σ-additivity of the Lebesgue measure. ✷
[Demo] A is measurable due to 15.29. Since {An} covers A, µ(A) ≤∑µ(An). On
the other hand A ⊃ ∪Nn=1An, so that for any N µ(A) ≥∑N

n=1 µ(An).

15.31 Measure, general case. A map from a family of sets to R
is called a set function. A set function m satisfying the following three
conditions is called a measure.
(1) m is defined on a semiring198 S. [Note that the set of all the
rectangles is a semiring.]
(2) m(A) ≥ 0.
(3) m is an additive function: If A is direct-sum-decomposed in terms
of the elements of S as A = ∪n

k=1Ak, then m(A) =
∑n

k=1 m(Ak).
Therefroe, the area µ defined in 15.28 is a measure on the set of

all the rectangles. In the case of area, the definition of area is extended
from rectangles to fundamental sets (→15.24). This is the next step:

15.32 Minimum algebra on S, extension of measure. The to-
tality of sets A which is a finite join of the elements in S is called the
minimum algebra generated by S. Notice that the totality of funda-
mental sets in 15.24 is the minimum algebra of sets generated by the
totality of rectangles. Just as the concept of area could be generalized
to the area of a fundamental set, we can uniquely extend m defined on
S to the measure defined on the algebra generated by S.
15.33 Lebesgue extension. We can repeat the procedure to define
µ from m∗ and m∗ in ?? for any measure m on S (in an abstract
fashion). We define m∗ and m∗ with the aid of the covers made of the
elements in S. If m∗(A) = m∗(A), we define the Lebesgue extension µ
of m with µ(A) = m∗(A), and we say A is µ-measurable.198 If a family of sets S satisfies the following conditions, it is called a semiring of
sets:
(i) S contains ∅,
(ii) If A,B ∈ S, then A ∩B and A ∪B are in S,
(iii) if A1 and A are in S and A1 ⊂ A, then A \A1 can be written as a direct sum
(the join of disjoint sets) of elements in S.
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15.34 Remark. When we simply say the Lebesgue measure, we usu-
ally mean the volume (or area) defined as in ??. However, there is a
different usage of the word. µ constructed in 15.33 is also called a
Lebesgue measure. That is, a measure constructed by the Lebesgue ex-
tension is generally called a Lebesgue measure. This concept includes
the much narrower usage common to physicists.

15.35 σ-additivity. (3) in 15.31 is often replaced by the following
σ-additivity condition: Let A be a sum of countably many disjoint µ-
measurable sets A = ∪∞

n=1An. If

µ(A) =
∞∑

n=1

µ(An), (15.66)

we say µ is a σ-additive measure.
The Lebesgue measure defined in 15.28 is σ-additive. Actually,

if m is σ-additive on a semiring of sets, then its Lebesgue extension is
also σ-additive.

15.36 Measurable function. A real function defined on a set D is
called a µ-measurable function for a Lebesgue measure µ on the set, if
any ‘level set’ {x | f(x) ∈ [a, b]} ∩D is µ-measurable. When we simply
say a function is measurable, then it means that any level set has a well
defined volume in the ordinary sense.

15.37 Lebesgue integral with measure µ. Let µ be Lebesgue
measure onRn. Then the Lebesgue integral of a µ-measurable function
on U ⊂ Rn is defined as∫

U
f(x)dµ(x) = lim

ε→0

∑
a µ({x | f(x) ∈ [a− ε/2, a+ ε/2)}∩U), (15.67)

where the sum is over all the disjoint level sets of ‘thickness’ ε (> 0).199

15.38 Functional integral. As the reader has seen in a19.15, if we
can define a measure on a set, we can define an integral over the set.
The set need not be an ordinary finite-dimensional set, but can be a
function space. In this case the integral is called a functional integral.
If the set is the totality of paths from time t = 0 to T , that is, if the set
is the totality of continuous functions: [0, T ]→ Rd, we call the integral
over the set a path integral. The Feynman-Kac path integral (→26.12)
is an example.200199 The measures m satisfying µ(A) = 0 ⇒ m(A) = 0, where µ is the Lebesgue
measure (volume), is said to be absolutely continuous with respect to µ. Ifm is abso-
lutely continuous w.r.t. µ, then Lebesgue extension, Lebesgue integral, etc are easy
without any technical difficutly just as the volume. However, careful consideration
is needed because there are ‘singular’ measures.
200 However, the definition of the Feynman path integral is too delicate to be
discussed in the proper integration theory.
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15.39 Uniform measure. The Lebesgue measure defined in 15.28
is uniform in the sense that the volume of a set does not depend on its
absolute location in the space. That is, the measure is translationally
invariant (see 15.42 below for a further comment). However, there
is no useful uniform measure in infinite dimensional spaces (→16.2
Discussion (1)). Thus every measure on a function space or path space
must be non-uniform.

15.40 Borel measure. Usually, we mean by a Borel measure a mea-
sure which makes measurable all the elements of the smallest algebra
(→15.32) of sets containing all the rectangles.

15.41 Probability. A (Lebesgue) measure P with the total mass 1
is called a probability measure. To compute the expectation value with
respect to P is to compute the Lebesgue integral w.r.t. the measure P .

When we read mathematical probability books, we always en-
counter the ‘triplet’ (P,X,B), where P is a probability measure, X
is the totality of elementary events (the event space; P (X) = 1) and
B is the algebra of measurable events. This specification is needed,
because if we assume that every composite event has a probability, we
have paradoxes.201 This question arose from the characterization of
‘uniform measure’ in a finite dimensional Euclidean space:

15.42 Lebesgue’s measure problem. Consider d-Euclidean space
Rd. Is it possible to define a set function (→15.31) m defined on every
bounded set A ∈ Rd such that
(1) The d-unit cube has value 1.
(2) Congruent sets have the same value,
(3) m(A ∪B) = m(A) +m(B) if A ∩B = ∅, and
(4) σ-additive
?
This is called Lebesgue’s measure problem.

15.43 Hausdorff and non-measurable set. Hausdorff demon-
strated in 1914 for any d there is no such m satisfying (1)-(4) of 15.42.
Then, Hausdorff asked in 1914 what if we drop the condition (4). He
showed that m does not exist for d ≥ 3.202 He showed this by con-
structing a partition of 2-sphere into sets A,B,C,D such that A, B,

201 There is at least one problem in which the choice of B is crucial. This is the
first digit problem. The first significant digits of a table of natural phenomenon
such as the height of mountains do not distribute uniformly: 1 appears much more
often than 9. Why is this so? A conclusive mathematical explanation was given
recently: T P Hill, The Significant-digit Phenomenon, Am. Math. Month. April
1995, p322. If we apparently need a uniform probability on an infinite space (in
this case [0,∞)), the choice of B seems to be the key (→15.39).
202 Banach demonstrated in 1923 that there is a solution for d = 1 and for d = 2.
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C and B ∪ C are all congruent and D is countable (→??). Thus if
m existed, then we had to conclude 3 = 2. Therefore, we must admit
non-measurable sets.203

203 under the current popular axiomatic system ZF + C.
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16 Hilbert Space

Fourier expansion is quite parallel to the expansion of a
vector into a linear combination of basis vectors in a finite
dimensional vector space. However, function spaces are gen-
erally very different from finite dimensional vector spaces.
To understand Fourier expansion more intuitively, it is con-
venient to introduce an infinite dimensional vector space in
which our knowledge of finite dimensional vector spaces can
be used almost ‘freely.’ This is the Hilbert space.

Key words: Hilbert space, scalar product, completeness,
l2, L2, H

2, Cauchy-Schwartz inequality, bra-ket, dual space,
K-vector space, orthonormal basis, Gram-Schmidt orthonor-
malization, generalized Fourier expansion, orthogonal pro-
jection, Bessel’s inequality, Parseval’s equality

Remember:
(1) Hilbert space is an infinite dimensional vector space in which we
can define an angle between vectors (16.3).
(2) Understand Gram-Schmidt orthonormalization geometrically (16.16).
(3) Fourier expansion is a orthogonal decomposition in a Hilbert space
(16.14).
(4) Be familiar with the bra-ket notation (16.21-16.24).
(5) Understand the formal expression of Green’s functions (20.28).

16.1 Vector space. Let V be a set such that any (finite) linear
combination of its elements with coefficients taken from a field K is
again in V . V is called a K-vector space. K may be R or C. A R-
vector space is called a real vector space and a C-vector space is called
a complex vector space. For example, the set C0([0, 1]) of continuous
real functions on the interval [0, 1] is a real vector space. The set of
analytic functions on the unit disc is a complex vector space.
Examples.
(1) The set of all the real polynomials of degree n forms a real vector space.
(2) The totality of continuous functions on [a, b] is a vector space (with respect to
the ordinary + and ×).
(3) The totality of sequences {xi} converging to zero is a vector space, if we introduce
+ as {xi}+ {yi} = {xi + yi} and scalar multiplication by c{xi} = {cxi}.

16.2 Infinite dimensional space. Consider the set C0([0, 1]) of all
the continuous functions on [0, 1]. xn cannot be written as a linear
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combination of 1,x, x2, · · · , xn−1 for any n. Thus this function space
is obviously infinite dimensional, if we wish to define the ‘dimension’
of the space as in the ordinary vector space by counting the necessary
number of components to specify a vector uniquely. Another approach
may be to refer to the interpretation of f(x) as the x-component of a
vector f as in functional differentiation (→??, 16.21).204

Infinite dimensionality causes special difficulties in convergence.
For example, the boundedness of a sequence does not guarantee the
existence of a convergent subsequence. For example, consider,

(1, 0, · · · , ), (0, 1, 0, · · ·), (0, 0, 1, 0, · · ·), · · · . (16.1)

Discussion.
Infinite dimensional spaces have important peculiar features.
(1) We cannot define a ‘uniform volume.’ More precisely, there is no uniform mea-
sure (=volume) µ (→19a) such that for the unit cube C (of infinite dimension)
µ(C) = 1 with the translational symmetry (i.e., even if we translate an object, its
volume does not change), and the additivity (µ(A∪B) = µ(A)+µ(B), if A∩B = ∅).
If such a µ were to exists, then the volumes of most bounded sets are 0 or ∞.205

Therefore, we cannot define the concept of ‘almost everywhere’ (→19.5).206

(2) Compactness and boundedness are distinct. Compactness means (→??): if a
set A is covered by a family of open sets, then A can already be covered by a finite
subset of the family. If the space dimension is finite, this is equivalent to the open
boundedness (the Heine-Borel theorem). However, this is obviously untrue for infi-
nite dimensional space: to cover a unit open ball we need infinitely many open balls
of radius 1/2. This distinction of compactness and boundedness in infinite dimen-
sional space makes functional analysis much more difficult. A bounded operator
and a compact operator are distinct (→30.20).

16.3 Hilbert space. An infinite dimensional vector space V , which is
complete (see below) with respect to the norm (→?? footnote) defined
by the scalar product (see below) is called a Hilbert space.207

204 In this case one might feel that the dimension is uncountable (→??(3)). How-
ever, usually we do not pay the minute details of the functions, but pay attention
to the equivalence classes of functions as individual elements (for example, we ig-
nore the difference on measure zero sets (→15.4), so that often the dimension is
countable. See Weierstrass’ theorem ??.
205 Here, we are not discussing ‘non-measurable’ sets. We confine ourselves to the
Borel sets. That is, we discuss the sets which can be constructed as joins and
intersections of countable finite cubes. See 19a.
206 See B R Hunt, T Sauer, and J A Yorke, “Prevalence: a translational-invariant
“almost-every” on infinite dimensional spaces,” Bull. Amer. Math. Soc. 27, 217
(1992). Addendum 28, 306 (1993).
207 The definition of ‘Hilbert space’ can change slightly from book to book. Many
authors include finite dimensional vector spaces. Here, following Kolmogorov and
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A scalar product is a bilinear functional of two vectors f, g ∈ V denoted
by the bracket product 〈f |g〉 satisfying

〈f |f〉 ≥ 0, 〈f |f〉 = 0 ⇐⇒ f = 0, (16.2)

〈f1 + f2|g〉 = 〈f1|g〉+ 〈f2|g〉, (16.3)

〈f |g1 + g2〉 = 〈f |g1〉+ 〈f |g2〉, (16.4)

〈f |g〉 = 〈g|f〉, (16.5)

〈af |g〉 = a〈f |g〉, 〈f |ag〉 = a〈f |g〉. (16.6)

Here a is a constant scalr (i.e., an element in K). The norm in a

Hilbert space is defined by ‖f‖ =
√
〈f |f〉. ‘Complete’ means that all

the Cauchy sequences208 do converge: in particular, if ‖fn − g‖ → 0,
then actually fn → g.

Introduction of scalar product allows us to introduce the concept
of angle between two vectors. We may say that an infinite dimensional
space in which we can talk about not only lengths but also angles is a
Hilbert space. In other words, in any vector spaces we can define mag-
nitudes by a norm, but the concept of direction is not easy to visualize.
To this end, we need a scalar product to introduce the angle between
vectors.
Discussion.
(A) Banach space. A complete normed space is called a Banach space. It is more
important in the study of PDE than the Hilbert space. L1 (→15.9) is a typical
Banach space.
(B) Euclidean space. In these notes, Hilbert spaces are defined as infinite dimen-
sional spaces. Hilbert spaces and finite dimensional vector spaces (with the ordinary
scalar product) are sometimes called Euclidean spaces (written as Ed).

16.4 Who was Hilbert? David Hilbert was born in 1862. He stud-
ied mainly at Königsberg, where he befriended Minkowski (who was
already famous when he was a high school student. He died relatively
young due to appendicitis). From 1895 until his retirement in 1930
he was a named professor at Göttingen. At the Second International
Congress of Mathematicians in Paris in 1900, he presented the famous
23 problems for the mathematics of twentieth century. He had a char-
acteristic optimism that new discoveries would continuously be made
and that these discoveries were necessary for the vitality of mathemat-
ics.

Fomin, we understand that a Hilbert space is always infinite dimensional (need not
be countably so).
208 A Cauchy sequence for a given norm ‖ ‖ is a sequence {yn} such that ‖yn −
ym‖ → 0 as n and m go to infinity. If the sequence is a complex number sequence,
then the norm is the usual modulus. We know that C is complete.
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His scientific study covers vast area of mathematics, algebra, num-
ber theory, functional analysis (as one of the founders; the term ‘spec-
trum’ (→34B, 34C) is due to him). His Grundlagen der Geometrie
(based first on the lectures delivered in 1898-9; there are many versions,
because he continued to improve the work) made an epoch.209 He en-
deavored to make axiomatic systems more general; he believed that
fundamental terms should not have a single privileged interpretation.

Hilbert’s last two main scientific interests were theoretical physics
and foundation of mathematics. His study of the Boltzmann equation
was an important contribution.

He was the major proponent of Formalism, trying hard to prove
the consistency of the axiomatic systems on which the modern math-
ematics is based on (→??(5)). This was shown to be untenable by
Gödel. However, we must remember that Gödel’s sharp result was pos-
sible because the problem was posed (formulated) unambiguously by
the Hilbert school.

Hilbert died during the World War II (1943). The motto on his
grave in Göttingen reads, “Wir müssen wissen, wir werden wissen.”210

16.5 Examples.
(1) l2-space. Let V be the totality of infinite sequences {cn} =
{c1, · · · , cn, · · ·} such that ∑n c

2
n < +∞. If we introduce the natural

linear structure a{cn} = {acn} and {an} + {bn} = {an + bn} and the
scalar product {an} · {bn} = ∑ anbn, then V is a Hilbert space, which
is called the l2-space.
(2) L2([a, b]). Let V be the totality of square Lebesgue integrable
(→15.9) functions (complex valued) on the interval [a, b]. Then, with
the definition of the scalar product

〈f |g〉 ≡
∫ b

a
dxf(x)g(x) (16.7)

V becomes a Hilbert space called the L2([a, b])-space (→16.19).211

(3)H1([a, b]). Let V be the totality of Lebesgue square integrable func-
tions defined on [a, b] whose first derivatives are also square integrable.
If we introduce the following scalar product

〈f |g〉 ≡
∫ b

a
dx{f(x)g(x) + f ′(x)g′(x)}, (16.8)

then V becomes a Hilbert space called the H1-space.212 The norm
based on this scalar product is called in the context of wave equations
209 Hilbert’s axiomatization of Euclidean geometry is summarized in the book of
Mac Lane quoted in Book Guide (p63 and on of the book).
210 We must know; we will know.
211 Some authors use L2 and l2 for L2 and l2.
212 This is an example of the Sobolev space (Sergei L’vovich Sobolev, 1908-?).
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the energy norm (→??).

Discussion.
(A) Theorem[Riesz-Fischer]. Let {|n〉} be an orthonormal set (not necessarily
a basis →??) of a Hilbert space H . Then for any element c = {cn} of l2 (→??(1)),
there is |a〉 ∈ H such that 〈n|a〉 = cn. ✷

In this sense, any separable (→??) Hilbert space is isomorphic.
(B) {(2π(n2 + 1))−1/2einx} is a complete orthonormal basis of H1([−π, π]).
(C) Let u ∈ L2[(−π, π)]. A condition for u ∈ H1([−π, π]) is that ∑n∈Z n

2|cn|2 <
∞, where cn is the complex Fourier expansion coefficient (→??.

Exercise.
Set up the Gram-Schmidt orthonormalization scheme (→16.16) for theH1([−1, 1])-
space. Apply it to {1, x, x2, · · ·} and obtain the first three polynomials. Compare
them with the Legendre polynomials (→17.5, 17.16).

16.6 Parallelogram law and Pythagoras theorem. Let V be a
Hilbert space and x, y ∈ V .
(1) Parallelogram law. ‖x+ y‖+ ‖x− y‖ = 2(‖x‖2 + ‖y‖2).
(2) Pythagoras’ theorem. If 〈x|y〉 = 0, then ‖x+y‖2 = ‖x‖2+‖y‖2.

Discussion.
The parallelogram law is a necessary and sufficient condition that the vector space
is an Euclidean space (→16.3). To demonstrate this we have only to show that

〈x, y〉 ≡ 1
4
(‖x+ y‖ − ‖x− y‖)208 (16.9)

is a respectable scalar product (→16.3). Demonstrating the linearity (??) is not
very easy. See Kolmogorov-Fomin.

From this we can show that Op-space defined by
∑ |cn|p < ∞ is a Euclidean

space only when p = 2. Also the vector space C[a,b] can never be an Euclidean
space.

16.7 Cauchy-Schwartz inequality. Let V be a Hilbert space and
f, g ∈ V . Then

|〈f |g〉| ≤ ‖f‖ ‖g‖. (16.10)

To prove this assume g �= 0, and g is normalized (without loss of generality). Make
h↽== f − g〈g|f〉. 〈h|h〉 ≥ 0 implies the desired inequality.

This inequality tells us a very obvious fact that the modulus of
cosine cannot be larger than 1. As is often the case, very obvious things
tell us deep things. Heisenberg’s uncertainty principle is a disguised
version of | cos θ| ≤ 1 (→28.12).

From this it is easy to derive the
Triangle inequality: ‖f + g‖ ≤ ‖f‖+ ‖g‖.
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Discussion.
This inequality allows us to show that + and scalar product are continuous for a
Hilbert space. For example, 〈xn, yn〉 → 〈x, y〉).
16.8 Bracket notation.
(1) Ket. In elementary algebra, we regard an element of a vector space
a column vector a. Dirac introduced a symbol |f〉 to denote an element
f of a vector space, and called it a ket.
(2)Dual space. A map from a K-vector space (→16.1) V to a field K
is called a linear map, if it satisfies the superposition principle (→??):
f(α|a〉+β|b〉) = αf(|a〉)+βf(|b〉). The totality V ∗ of these linear maps
is again a K-vector space.
Exercise.
Demonstrate this statement.
This space V ∗ is called the dual space of V .
(3) Scalar product. In a finite dimensional vector space V , a scalar
product is introduced as 〈a, b〉 = a∗b.213 Any linear map f(a) from
a K-vector space to K can be uniquely described as a scalar product
f(a) = 〈b,a〉 by choosing an appropriate vector b.
Exercise.
Demonstrate the above statement. [It is convenient to use a basis vector set of V .]
This implies that if a ∈ V , then a∗ ∈ V ∗. That is, (at least for a
finite dimensional vector space) we may identify the dual space as the
vector space spanned by all the row vectors. We write the hermitian
conjugate of a ket |a〉 as 〈a|, which is called a bra. We regard V ∗ the
totality of bras.
Notation. The scalar product of |a〉 and |b〉 is written as 〈a|b〉.
16.9 How Dirac introduced brackets. The bra-ket notation was
introduced by Dirac. See P. A. M. Dirac, Principles of Quantum Me-
chanics (Oxford UP, 1958). The book is a good example to demonstrate
that mathematical depth and mathematical rigor can be different. In
this book he introduces kets to describe the states of a quantum me-
chanical system after explaining superposition of states is required to
understand the double slit interference experiment. What he claims is
that the state space of a quantum mechanical system is a vector space.
Then, he says that for a given vector space, there is always another
space, and introduces the space of bras as the dual vectors of kets.

16.10 Orthonormal basis, separability. A subset {ej} of a Hilbert
space V is said to be an orthonormal basis, if 〈ei|ej〉 = δij and the
subspace spanned by {ej} is dense214 in V . If a Hilbert space has a
213 ∗ implies the hermitian conjugate. That is, a∗ is the complex conjugate of the
transposition of a.
214 i.e., for any f ∈ V there is a sequence {ai} such that bN =

∑N
i=1 aiei converges

to f in the norm as N →∞. That is, {ei} is complete (→16.3).
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countable dense set, then we say the Hilbert space is separable. Sepa-
rable Hilbert spaces have countable orthonormal basis.

Discussion.
(A) L2(R3) is separable.
(B) An example of a non-separable Hilbert space is the totality of functions on [0, 1]
such that they are nonzero only on a countably many points, and the square sum
of these values is finite. The scalar product is defined by 〈x, y〉 =∑x(t)y(t), where
the sum is over all the countable points on which x(t)y(t) �= 0. (from Kolmogorov-
Fomin)
(C) Let en = {δnk}k∈N . Then, {en}∞n=0 is a complete orthonormal system of O2.

16.11 Bessel’s inequality. Let {|en〉} be an orthonormal set of a
separable Hilbert space V . Then for ∀|f〉 ∈ V

∞∑
n=1

|〈en|f〉|2 ≤ 〈f |f〉. (16.11)

[Demo]

‖f −
N∑
n=1

|en〉〈en|f〉‖2 = 〈f |f〉 −
N∑
n=1

|〈en|f〉|2 ≥ 0 (16.12)

for any positive integer N . Hence, (16.11).✷

16.12 Parseval’s equality. Let {|en〉} be an orthonormal basis of a
separable Hilbert space V . Then, for ∀|f〉 ∈ V

∞∑
n=1

|〈en|f〉|2 = 〈f |f〉. (16.13)

Conversely, if (16.13) holds for ∀|f〉 ∈ V , then {|en〉} is an orthonormal
basis of V . (This follows easily from |S[f ]〉 = |f〉 (see below 16.14).
This is a natural extension of Pythagoras’ theorem 16.6.)

Discussion.
(A) Let Q = {|n〉} be an orthonormal set of a Hilbert space. Q is an orthonormal
basis, iff215 |a〉 satisfying 〈n|a〉 = 0 for all n is actually zero.
[Demo] If Q is an orthonormal basis, vanishing of all the Fourier coefficients implies
that |a〉 = 0. Suppose Q is not a basis. Then due to Bessel’s inequality ?? and
Parseval’s equality ?? there is a nonzero vector |b〉 such that

〈b|b〉 >
∑
n

|〈n|b〉|2. (16.14)

215 i.e., if and only if.
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Thanks to the Riesz-Fischer theorem (→??), there is a ket |a〉 such that

|a〉 =
∑
n

|n〉〈n|b〉. (16.15)

Since 〈b|b〉 > 〈a|a〉, |b〉 − |a〉 �= 0. However, 〈n|b − a〉 = 0 for any n. That is, there
is a ket |c〉 satisfying 〈n|c〉 = 0 for all n but not zero. Hence, if there is no such ket
|c〉, then Q must be a basis.
(B) Rademacher functions. Define rn(x) as r0(x) = 1 and

rn(x) ≡ 1− 2xn (16.16)

where xn is the number of the n-th binary place of x. R′ = {rn(x)}n∈N is called
the Rademacher orthogonal function system.
(1) Show that it is an orthonormal system for L2([0, 1]).
(2) Show, however, the system is not complete.
(3) Let R be the totality of functions made by multiplying finite number of functions
in R′. Then, R is a complete orthonormal system for L2([0, 1]).

16.13 Generalized Fourier expansion. Let {|en〉} be an orthonor-
mal basis (→16.10) of a Hilbert space V . The following sum for
|f〉 ∈ V

|S[f ]〉 =
∞∑

n=1

|en〉〈en|f〉 (16.17)

is called the generalized Fourier expansion of f (cf. 16.24). Due to
the definition of the orthonormal basis, actually |S[f ]〉 = |f 〉.216 The
expansion allows us to make a one to one map between any separa-
ble Hilbert space (→16.8) and the I2-space (→16.3). Hence, all the
separable Hilbert spaces are isomorphic.217

16.14 Least square approximation and Fourier expansion. 16.11
tells us that the Fourier coefficients can be determined by the following
minimization problem:

min ‖f −
N∑

n=0

cnen‖. (16.18)

That is, the generalized Fourier series gives the best approximation in
the L2-sense. This gives another reason why L2 is a natural space to
consider Fourier series (Fourier analysis in general) (→15.19).

216 This equality is in the L2 sense (→16.5). When this equality is in the ordinary
sense is a non-trivial question as we have seen in 17.
217 In these notes, we use the terminology ‘Hilbert space’ for infinite dimensional
cases only.
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16.15 Decomposition of unity. The main result of 16.12 can be
abstracted as

1 ≡∑
n

|en〉〈en| (16.19)

for an orthonormal basis {|en〉} of a Hilbert space V . This formula is
called a decomposition of unity.

16.16 Gram-Schmidt orthonormalization. Let V be a Hilbert
space, and {|1′〉, |2′〉, · · ·} be a set of linearly independent kets in V
whose linear hull is dense in V (i.e., complete →16.3). Then, we can
construct an orthonormal basis {|1〉, |2〉, · · ·} of V out of these kets as
follows. The procedure is called the Gram-Schmidt orthonormalization.

(1) |1〉 = |1′〉/|1′|, where |a| will denote
√
〈a|a〉 in this entry.

(2) |2〉 = |2′′〉/|2′′|, where |2′′〉 = (1− |1〉〈1|)|2′〉.
(3) |3〉 = |3′′〉/|3′′|, where |3′′〉 = (1− |1〉〈1| − |2〉〈2|)|3′〉, etc.
This is a method to construct orthogonal polynomials from 1, x, x2, x3, · · ·
(→17.2).

16.17 Respect the order in the basis. Hilbert spaces may almost
be treated as finite dimensional vector space. However, we must respect
the ordering of the basis set. The (generalized) Fourier expansion is not
absolutely convergent usually, so this is a very natural thing to respect.

16.18 Orthogonal projection. Let the k-th summand in (16.19) be
Pk ↽== |ek〉〈ek|. Then we have PiPj = PjPi = δijPi. Especially, PiPi =
Pi. These operators are hermitian, P

∗
k = Pk.

If a linear operator P satisfies the idempotency, i.e., P 2 = P , then
P is called a projection (or a projection operator).
If it is hermitian, then it is called an orthogonal projection: For a non-
zero ket |a〉, let |p〉↽==P |a〉 and |q〉↽== (1 − P )|a〉. 〈p|q〉 = 〈a|P ∗(1 −
P )|a〉 = 〈a|(P ∗−P ∗P )|a〉. If P is hermitian, this vanishes. That is, |p〉
and |q〉 are orthogonal.
Discussion.
(A) [What is P1P2?] Let P1 and P2 be orthogonal projection operators. A
necessary and sufficient condition for P1P2 to be a projection operator is that P1

and P2 commute. Let PiV = Vi, where V is a vector space on which these projection
operators are defined. What is P1P2V ?
(B) [System reduction]. We wish to study a nonlinear equation

du

dt
= N (u). (16.20)

Here N is a nonliner functional (a map). Formally, orthogonal projections are used
to reduce a complicated system. Suppose P is a projection to a space spanned by
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‘important variables’ (say, slow variables). Let us write Q = 1−P . We can formally
rewrite

dPu

dt
= PN (Pu+Qu), (16.21)

∂Qu

∂t
= QN (Pu+Qu). (16.22)

If we could solve the second equation for Qu for any Pu as Qu = F (Pu), then the
first member becomes

dPu

dt
= PN (Pu+ F (Pu)). (16.23)

In this way we can get rid of unwanted variables, and reduce the number of variables
or the dimension of the space we work. The procedure is only formal, and the crucial
point is how to choose P , and how to obtain F . This is a very active field of research
now.

16.19 Space L2([a, b], w). Let L2([a, b], w) be the totality of the func-
tions which are square integrable218 with the weight w on the interval
[a, b]:

L2([a, b], w)↽== {f |
∫ b

a
|f(x)|2w(x)dx < ∞}. (16.24)

This set is a Hilbert space with the following definition of the scalar
product

〈f |g〉↽==
∫ b

a
f(x)g(x)w(x)dx. (16.25)

Whenw(x) ≡ 1 we omit w and write L2([a, b]) as in 16.5. L2((−∞,+∞))
is often written as L2 or L2(R). The convergence with respect to the

norm (called the L2-norm) defined by ‖f‖ =
√
〈f |f〉 is called the

L2-convergence. As we know from the theory of Lebesgue integrals
(→15.9), we may freely change the values of the function on a measure
zero set (→15.4), so that the convergence in this sense could be quite
different from the ordinary sense of convergence (w.r.t the sup norm).

Discussion.
(A) measure (→19a). Mathematicians usually avoid to discuss the weight func-
tions w, because w need not be an ordinary function (i.e., the density need not be
well-behaved). Hence, instead of writing wdx we usually write dµ, introducing a
measure µ. Hence, more officially, it is better to call L2([a, b], w) as L2([a, b], µ):

L2([a, b], µ)↽== {f |
∫ b

a

|f(x)|2dµ(x) <∞}. (16.26)

218 Usually, ‘integrable’ means ‘Lebesgue integrable’ (→15.9).
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(B) Lp-space. The Lp-space (p ≥ 1) is defined by the completion219 of the follow-
ing function set

{ϕ | ‖ϕ‖p < +∞}, (16.27)

where ‖ ‖p is the Lp-norm defined a

‖f‖p ≡
(∫

|f |pdx
)1/p

. (16.28)

Lp-space is a Banach space (→16.3 Discussion), but not a Hilbert space except for
p = 2, because the parallelogram law (→16.6) does not hold.

16.20 Dirac’s “abuse” of symbols. As we have seen, in a Hilbert
space220 Dirac’s bra-ket notation causes no mathematical problem and
is quite useful. However, Dirac wished to unify not only the linear space
spanned by normalizable states (physically, localized states→30.19(4);
this part is a Hilbert space) but also the space containing ‘plane wave
states’ which cannot be normalized in the usual way.221 The start-
ing point of his formal approach is the following interpretation of an
ordinary function as a vector with uncountably many components.

16.21 f(x) as an x-component of a vector. It is not an unnatural
idea to regard the i-th component of a vector |v〉 as a ‘value’ v(i) of
a function v defined on {1, 2, · · · , n}, where n is the dimension of the
vector space. Then, as we have already used the idea (→??), it is not
outrageous to regard f(x) as the ‘x-component’ of a vector |f〉. We
know the i-th component of a vector v may be written as vi = 〈i|v〉
using the basis vecor |i〉. Analogously, we write

f(x) = 〈x|f〉, f(x) = 〈f |x〉. (16.29)

[We Thus we may regard a function as a vector in an infinite dimen-
sional vector space spanned by position kets {|x〉 : x ∈ [a, b]}. These
position kets may be regarded as orthonormal vectors (→20.10).

16.22 Inner product of functions. It is natural to interpret sum-
mations over the coordinate indices as integrations (weighted with a
function w as in 16.19) over the independent variable x. Thus, it is
natural to define the scalar product or inner product of two functions
f and g defined on the same domain as

〈f |g〉↽==
∫

dxw(x)〈f |x〉〈x|g〉 =
∫

dxw(x)f(x)g(x). (16.30)219 Completion means to add elements to make all the Cauchy sequences have
unique limits.
220 assuming separability (→16.10)
221 Dirac wished to use the Hilbert space notation in a much wider class of spaces
now called rigged Hilbert space.

243



16.23 Decomposition of unity. The formula (16.30) suggests that
we can decompose unity (cf. 16.15) as∫

|x〉w(x)dx〈x| ≡ 1. (16.31)

This suggests that we may interpret {|x〉} as an “orthonormal basis.”
Often unity is written as the following operator:

1 = |x〉
∫

dxw(x)〈x|. (16.32)

16.24 Trigonometric expansion revisited. Let V = L2([−π, π])
(→16.5). Let us introduce the kets |0〉, |n, c〉, |n, s〉 such that

〈x|0〉 = 1√
2π

, 〈x|n, c〉 = 1√
π
cosnx, 〈x|n, s〉 = 1√

π
sinnx. (16.33)

Then {|0〉, |1, c〉, |1, s〉, |2, c〉, |2, s〉, · · ·} is an orthonormal basis, because
it is a complete set for C0-functions on [−π, π], (→??). The standard
Fourier expansion 17.1 is

|f〉 = |0〉〈0|f〉+
∞∑

n=1

{|n, c〉〈n, c|f〉+ |n, s〉〈n, s|f〉} . (16.34)

[Here, the equality is in the L2-sense.] Notice, again, that the equality
in this formula is in the L2-sense. Bessel’s inequality (→16.11) and
Parseval’s equality (→20.12) adapted to the trigonometric function
set are their original forms.

16.25 δ-function (with weight). We can formally write (→16.23)

f(x) = 〈x|1|f〉 =
∫
〈x|y〉w(y)dy〈y|f〉 =

∫
f(y)〈x|y〉w(y)dy. (16.35)

Therefore, it is natural to introduce

〈x|y〉 = δw(x− y) (16.36)

such that ∫
δw(x− y)w(y)dy = 1,

δw(x− y) = 0 x �= y.
(16.37)

Obviously, δw is a generalization of δ (→??). We should identify as

δw(x− y) = δ(x− y)/w(x). (16.38)

Exercise.
Show (for r′ > 0)

δ(x− x′)δ(y − y′)δ(z − z′) = δ(r − r′)δ(θ − θ′)δ(ϕ− ϕ′)/r2 sin θ. (16.39)
244



16.26 δ-function for curvilinear coordinates. (16.38) tells us that
if we wish to use functions defined in terms of the O-q1q2q3 coordinates
which are orthogonal curvilinear (→2D.3), then it is natural to choose
the function space whose scalar product uses the weight function w =
h1h2h3 (→??). Thus it is convenient to define the position bra-ket with
the normalization

〈q1, q2, q3|q′1, q′2, q′3〉 = δ(q1− q′1)δ(q2−q′2)δ(q3−q′3)/h1h2h3. (16.40)

For example, for the spherical coordinate system (→??)

〈r, θ, ϕ|r′, θ′, ϕ′〉 = δ(r − r′)δ(θ − θ′)δ(ϕ− ϕ′)
r2 sin θ

. (16.41)

Exercise.
Write down the δ-function adapted to the elliptic cylindrical coordinates.

16.27 Delta function in terms of orthonormal basis. Since
δ(x − y) = 〈x|y〉 may be interpreted as 〈x|1|y〉, we may introduce
the decomposition of unity 16.15 into this formula to obtain

δ(x− y) =
∑
n

en(x)
∗en(y), (16.42)

where {|en〉} is an orthonormal basis, and en(x) ≡ 〈x|en〉.
16.28 Green’s operator and Green’s function – a formal ap-
proach. We have already seen the fundamental idea of Green in ??,
and know several examples of Green’s functions (→15, 16). We wish
to solve the following linear equation:

[Lu](z) = f(z) (16.43)

with the homogeneous boundary condition. Let {|x〉} be the position
kets w.r.t. the Cartesian coordinates (→16.21). With the aid of the
decomposition of unity (→16.23), we rewrite (16.43) as

〈z|L|y〉
∫

dy〈y|u〉 = 〈z|f〉 (16.44)

or ∫
dyL(z, y)u(y) = f(z), (16.45)

where L(x, y) ≡ 〈x|L|y〉 (a sort of matrix element). If we can invert
the ‘matrix’ L(x, y), then we can solve this equation. In other words,
if we can solve

LG = 1 (16.46)

for G, then u = Gf tanks to superposition (linearity). (16.46) reads∫
dyL(x, y)〈y|G|z〉 = 〈x|z〉 = δ(x− z). (16.47)

G is called a Green’s operator, and G(x|y) ≡ 〈x|G|y〉 is called a Green’s
function. Formally, G = L−1, so that G(x|y) = 〈x|L−1|y〉.
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16.29 Eigenfunction expansion of Green’s function – a formal
approach. Suppose we know the eigenkets {|n〉} of the operator L:

L|n〉 = λn|n〉 (16.48)

If all the eigenvalues are non-zero, then formally

G(x, y) = 〈x|L−1|y〉 =∑
n

un(x)λ
−1
n un(y), (16.49)

where 〈x|n〉 = un(x). Here we have assumed that the eigenkets of L
make a complete orthonormal set. This is the Fourier decomposition
formula for the Green’s function. We can immediately see the symmetry
of the Green’s function: G(x|y) = G(y|x) (→??, 31.2, 32.4, 33.7). We
will later return to a more careful discussion (→37).
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17 Orthogonal Polynomials

We can construct a polynomial orthonormal basis of a Hilbert
space. They are called orthogonal polynomials, which have
a beautiful general theory and many important numerical
applications (→22).

Key words: generalized Fourier expansion, generalized Ro-
drigues’ formula, generating function, three term recursion
relation, zeros, Sturm’s theorem, Legendre polynomial, Her-
mite polynomial, Chebychev polynomial

Summary:
(1) Recognize that there is a set of relations and formulas common to
many (all classical) orthogonal polynomials (17.3-17.11).
(2) Generating function is a useful tool to derive recursion relations
(17.18, for example).
(3) Remember where the representative polynomials – Legendre, Her-
mite, and Chebychev – appear (21B).

17.A General Theory

17.1 Existence of general theory. The most important fact about
orthonormal polynomials is that there is a general theory shared by all
the families of (classical→17.6 Discussion (A) ) orthogonal polynomi-
als. The general theory includes generalized Rodrigues’ formula, associ-
ating (Sturm-Liouville type) eigenvalue problems, generating functions,
three term recursion formulas, etc.

17.2 Orthogonal polynomials for L2([a, b], w) via Gram-Schmidt.
{1, x, x2, · · ·}makes a complete set of functions for L2([a, b], w) (→16.19):
notice first that C0([a, b]) (the totality of continuous functions on [a, b])
is dense in this space. Weierstrass’ theorem (→??) tells us that any con-
tinuous function on a finite interval can be uniformly approximated by a
polynomial. Hence, the totality of polynomials is dense in L2([a, b], w).
Therefore, the set of kets {|n〉} such that 〈x|n〉 = xn222 is a complete

222 For the notational convention see 16.21.
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set (→16.3) of the Hilbert space L2([a, b], w). In this space the scalar
product (→16.5) is defined by

〈f |g〉 ≡
∫ b

a
f(x)g(x)w(x)dx, (17.1)

and the norm ‖f‖w ≡
√
〈f |f〉. We apply the Gram-Schmidt orthonor-

malization (→16.16) to {|n〉} as follows:
(1) We define |p0〉 = |0〉/

√
〈0|0〉.

(2) Normalizing |1〉 − |p0〉〈p0|1〉, we construct |p1〉.
(3) More generally, normalizing

|n〉 −
n−1∑
k=0

|pk〉〈pk|n〉, (17.2)

we obtain |pn〉.
{|pn〉} is an orthonormal basis of L2([a, b], w).

The family of orthogonal polynomials of L2([a, b], w) is defined by
〈x|pn〉 times appropriate n-dependent numerical multiplicative factor
as seen in 17.5.

Exercise.
Apply the Gram-Schmidt orthonormalization method to {xn}∞n=0 and make an ON
basis for L2([0, 1]). Compute the basis up to the third member of the set.

17.3 Theorem.
(1) pn(x) = 〈x|pn〉 is orthogonal to any (n− 1)-order polynomial.
(2) The orthonormal polynomials for L2([a, b], w) are unique, if the
coefficients of the highest order terms are chosen to be positive.223

These assertions are obviously true by construction, but practically
important.

17.4 Least square approximation and generalized Fourier ex-
pansion. Let Pn be the totality of the polynomials order less than or
equal to n. The polynomial P ∈ Pn which minimizes

‖f − P‖w (17.3)

for f ∈ L2([a, b], w) is called the n-th order least square approximation
of f (→16.13). The ket |P 〉 satisfying this condition is given by

|P 〉 =
n∑

j=0

|pj〉〈pj|f〉, (17.4)

223 Here, it is not meant that the orthonormal basis in terms of polynomials is
unique (of course, not). If we demand that there are no two polynomials of the
same order in the basis, the choice is unique.
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where |pi〉 are calculated in 17.2 with respect to w. That is, |P 〉 is
the n-th partial sum of the following generalized Fourier expansion
(→16.14) of |f〉

|f〉 =
∞∑
j=0

|pj〉〈pj |f〉. (17.5)

Notice that all the general properties of the Fourier series ?? apply here
as well.

Exercise.
(1) Consider the step function 〈x|a〉 = Θ(x − a) on [−1, 1] (a ∈ (−1, 1)). Expand
this in terms of Legendre polynomials (→17.5).

〈pn|a〉 =
√

1
2(2n+ 1)

(Pn−1(a)− Pn+1(a)). (17.6)

〈p0|a〉 = (1− a)/√2 as easily seen. Hence,

Θ(x− a) = 1
2
(1− a) + 1

2

∞∑
n=1

[Pn−1(a)− Pn+1(a)]Pn(x). (17.7)

(2) Expand x5 into the generalized Fourier series in terms of Legendre polynomials.

17.5 Example: Legendre polynomials. A family of orthogonal
polynomials of L2([−1, 1]) called the Legendre polynomials is defined
as

Pn(x) =

√
2

2n + 1
〈x|pn〉 (17.8)

in terms of orthonormal kets {|pn〉} constructed for a = −1, b = 1 and
w = 1 in 17.2. The coefficient

√
2/(2n+ 1) is the multiplicative factor

mentioned in 17.2. Pn(x) is called the n-th order Legendre polynomial.
According to our notational rule (→20.22)

〈pn|f〉 =
∫ 1

−1
dx

√
2n + 1

2
Pn(x)f(x). (17.9)

Hence, the corresponding generalized Fourier expansion (17.5) in terms
of the Legendre polynomials reads

f(x) =
∞∑

n=0

2n + 1

2
Pn(x)

[∫ 1

−1
dxPn(x)f (x)

]
. (17.10)

17.6 Generalized Rodrigues’ formula. Let Fn(x) be defined on
(a, b) ⊂ R as

Fn(x) = w(x)−1 dn

dxn
[w(x)s(x)n], (17.11)

249



where w and s are chosen as

a b w(x) s(x)
a b (b− x)α(x− a)β α, β > −1 (b− x)(x− a)
a +∞ e−x(x− a)β β > −1 x− a

−∞ +∞ e−x2
1

As can easily be seen Fn is an n-th order polynomial (→?? Exer-
cise (D)). {Fn(x)} is a orthogonal polynomial system for L2((a, b), w)
(→16.17),224 because

∫ b

a
dxw(x)Fn(x)Fm(x) = 0 for n �= m. (17.12)

(Demonstrate this.) If the interval (a, b) and the weight function w
are given, the orthogonal polynomial set225 is uniquely fixed as seen
from the Gram-Schmidt construction (up to multiplicative constants)
(→17.2).

For example, with w = 1 (that is, α = β = 0), a = −1 and
b = 1, Fn must (→17.3) be proportional to the Legendre polynomial
Pn. Indeed, from (17.11)

Pn(x) =
(−2)−n

n!
Fn(x) =

1

2nn!

dn

dxn
(x2 − 1)n. (17.13)

This is called Rodrigues’ formula.
With a suitable n-dependent numerical coefficient Kn a set of or-

thogonal polynomials {fn} is defined by

fn(x) =
1

Knw(x)

dn

dxn
[w(x)s(x)n] (17.14)

which is called the generalized Rodrigues formula (→21B.1).226

Discussion.
(A)Classical polynomials. The generalized Rodrigues’ formula can be introduced
in a slightly more abstract fashion as follows:
Consider

Fn(x) = w(x)−1 d
n

dxn
[w(x)s(x)n], (17.15)

where the following conditions are required:
(1) F1(x) is a first order polynomial.

224 If a and b are finite, then L2((a, b), w) = L2([a, b], w).
225 We assume that the polynomials are ordered according to their order (→16.19).
226 Not all the orthogonal polynomials can be obtained from the formula; only the
so-called classical polynomials.
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(2) s(x) is a polynomial in x of degree less than or equal to 2 with real roots.
(3) w(x) is real, positive and integrable on [a, b] and satisfies the boundary conditions
w(a)s(a) = w(b)s(b) = 0.
It turns out that (i)-(iii) implies that we can only have the cases in the table in
18.6 (apart from trivial linear transformations, and multiplicative constants).227

These polynomials are called classical polynomials.
(B) Demonstrate with the aid of Rolle’s theorem that all the zeros of Pn(x) are in
[−1, 1].

17.7 Relation to the Sturm-Liouville problem. fn(x) defined
by (17.14) obeys the following equation generally called the Sturm-
Liouville equation (→??, 31.1)

− d

dx

(
w(x)s(x)

d

dx
fn(x)

)
= λw(x)fn(x), (17.16)

where λ is a pure number given by

λ = −n

(
K1

df1(0)

dx
+

n− 1
2

d2s(x)

dx2

)
. (17.17)

This can be demonstrated by a tedious but straightforward calculation.
See 31.3 Discussion.

17.8 Generating functions. In general, the following power series
of ζ is called the generating function of the orthogonal polynomial set
{pn(x)}

Q(ζ, x) =
∞∑

n=0

Anpn(x)ζ
n, (17.18)

where An is a numerical constant introduced to streamline the formula.
That there is such a function for any orthogonal polynomial family can
be seen from the rewriting of generalized Rodrigues’ formula (17.11).
Using Cauchy’s theorem (→??), we have

fn(z) =
1

Knw(z)

∮
∂D

dt
n!

2πi(t− z)n+1
w(t)s(t)n, (17.19)

where D ⊂ C is a small disk centered at z. We define a new variable
ζ as

1

ζ
= a

s(t)

t− z
, (17.20)

227 See P Dennery and A Krzywicki, Mathematics for Physicists (Harper and Row,
1967), Section 10.3.
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where a is a numerical factor introduced to streamline the final out-
come. In terms of this variable (17.19) can be rewritten generally as

fn(z) =
ann!

2πiKnw(z)

∮
∂D′

dζ
1

ζn+1
Q(ζ, z), (17.21)

where Q is an appropriate function resulted from the intergrand in
(17.19) through the change of variables. This implies

Q(ζ, z) =
∞∑

n=0

fn(z)
Knw(z)ζ

n

ann!
. (17.22)

17.9 Generating function for Legendre polynomials. For ex-
ample, for the Legendre polynomials, Kn = (−2)nn! and w(x) = 1.
(17.19) reads (or directly from (17.13))

Pn(z) =
1

2πi

∮
∂D

(t2 − 1)n
[2(t− z)]n

dt

t− z
, (17.23)

which is called Schläfli’s integral. We choose a = −1/2 in (17.21) to
get

Pn(z) =
1

2πi

∮
∂D′

1

ζn+1

dζ√
1− 2zζ + ζ2

, (17.24)

so that (→??(i))

w(z, ζ) =
1√

1− 2zζ + ζ2
=

∞∑
n=0

Pn(z)ζ
n. (17.25)

This is the generating function for the Legendre polynomials.

Exercise.
Derive (17.24). Use the new variable (following (17.20)) ζ as

1
ζ
=
t2 − 1
2(t− z) . (17.26)

[Hint. When the reader solves for t, she must choose the correct branch so that
t→ z corresponds to ζ → 0.]

17.10 Three term recursion formula. Let {|pn〉} be a complete set
of orthonormal polynomial kets, and kn be the highest order coefficient
of the polynomial pn(x) = 〈x|pn〉. Define

γn = kn+1/kn, βn = γn/γn−1, αn = γn〈pn|x|pn〉. (17.27)

Then,
pn+1(x) = (γnx− αn)pn(x)− βnpn−1(x). (17.28)
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this follows easily from (1) of 17.3.

Discussion.
Let us demonstrate the assertion.

〈x|
(
|pn〉 − x kn

kn−1
|pn−1〉

)
(17.29)

is a polynomial of degree at most n− 1. Therefore, it can be expressed as a sum of
{pn−1, · · · , p0}.
(1) Demonstrate, because of 17.3, that only pn−2 and pn−1 are needed to express
pn − xknpn−1/kn1 . Already we have the form of (21.24). [Hint. What happens if
there are other remaining terms?]
(2) Determine the coefficients.

17.11 Zeros of orthogonal polynomials. Let {|pn〉} be the or-
thogonal polynomial kets of L2([a, b], w) (→16.19). Then
(1) All the zeros of pn(x) = 〈x|pn〉 are in the interval (a, b). This is
practically very important (→18.3). For a proof see 31.3 Discussion.
(2) All the zeros of pn(x) are single and the zeros of pn+1(x) are sepa-
rated by those of pn(x).

Discussion.
The three term recurrence relation can be written as

xP (x) = AP (x) + q(x), (17.30)

where P = (p0, p1, · · · , pn−1)T , A is a symmetric matrix, and q = (0, · · · , 0, kn−1pn/kn).
Choose x to be a zero xi of pn, then we have

xiP (xi) = AP (xi) (17.31)

That is, the zeros of pn must be the eigenvalues of A, so that they must be real.

17.12 Remark: how to locate real zeros of polynomials. Draw-
ing graphs with the aid of Mathematica and zooming into the relevant
portion of the graphs may be the most practical method. Analytically,
there is a famous
Theorem [Sturm]. Assume that the n-th order polynomial P does
not have any multiple zero. Let p0 ≡ P and p1 ≡ P ′. Using the theo-
rem of division algorithm, construct pn as follows:

pi+1 = piqi − pi−1 (i = 1, 2, · · · , n− 1). (17.32)

Let V (c) be the number of changes of sign in the sequence p0(c), p1(c), · · · , pn(c).
228

The number of zeros in the interval [a, b] is given by V (a)− V (b).✷

228 Remove pi(c) if it is zero from the sequence.
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17.13 Example of Sturm’s theorem. Let us study f (x) = x(x2 −
1). We trivially know that 0,±1 are the real zeros. First we construct
pi in the theorem as follows:

p0 = x(x2 − 1); p1 = 3x
2 − 1; p2 = 2x/3; p3 = 1. (17.33)

Therefore, we can make, for example, the following table exhibiting the
signs and V .

a p0 p1 p2 p3 V (a)
+∞ + + + + 0
2 + + + + 0
1/2 − − + + 1
−1/2 + − − + 2
−∞ − + − + 3

For example, V (−1/2) − V (2) = 2, so there must be two zeros in
(−1/2, 2).
Discussion.
Find the number of positive real roots of the following polynomials.
(1) P (x) = 3x4 + 2x2 − x− 5,
(2) P (x) = 13x21 + 3x3 − 2,
(3) (Runge’s example)
P (x) = 3.22x6 + 4.12x4 + 3.11x3 − 7.25x2 + 1.88x− 7.84.

17.14 Descartes’ sign rule. Let

P (x) = a0x
n + a1x

n−1 + · · ·+ an (17.34)

be a real coefficient polynomial. Let W be the number of the sign
change in the sequence a0, a1, · · · , an (remove 0 from this sequence be-
fore counting). Then the number of strictly positive roots of P (x) = 0 is
given by W or W minus some even positive number. (Hence, if W = 1,
that is the answer.)

17.B Representative Examples

17.15 Table of orthogonal polynomials. (→?? Exercise (D)) 17.6
tells us that various orthogonal polynomial families can be obtained by
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choosing w and s appropriately and also by choosing appropriate mul-
tiplicative numerical factors Kn. Some common examples are given as
follows.

name symbol domain w(x) s(x) K−1
n

Legendre Pn [−1, 1] 1 1− x2 (−1)n2nn!
Chebychev Tn [−1, 1] 1/

√
1− x2 1− x2 (−1)n(2n− 1)!!

Jacobi P (α,β)
n [−1, 1] (1− x)α(x+ 1)β 1− x2 (−1)n2nn!

Laguerre Ln [0,∞) e−x x n!

Hermite Hn (−∞,∞) e−x2
1 (−1)n

Note that Ln is L
(0)
n of ??.

Exercise. Show Tn = n!
√
πP

(−1/2,1/2)
n /Γ(n+ 1/2).

17.16 Legendre polynomials. The Legendre polynomials have been
discussed above (→17.5). The orthonormal basis of L2([−1, 1]) (→16.19)
in terms of the Legendre polynomials is in 17.5 with the general-
ized Fourier expansion formula. The decomposition of unity (→16.15)
reads

δ(x− y) =
∞∑

n=0

2n + 1

2
Pn(x)Pn(y). (17.35)

Rodrigues’ formula is in 17.6, and the generating function is given in
17.9. We can write down the general formula starting from Rodrigues’
formula as

Pn(x) =
1

2n

[n/2]∑
j=0

(−1)j
j!

(2n− 2j)!
(n− j)!(n− 2j)!x

n−2j. (17.36)

([·] is Gauss’ symbol denoting the largest integer not exceeding ·.)
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Discussion.
Let Qn(x) be the n-th order polynomial with its highest order coefficient normalized
to be unity. If its L2-distance from 0 is the smallest among such polynomials, Qn
is proportional to Pn. That is, minimize∫ 1

−1

(xn + an−1x
n−1 + · · ·+ a0)2dx (17.37)

with respect to the coefficients. The resultant polynomial is proportional to Pn.

17.17 Sturm-Liouville equation for Legendre polynomials. The
differential equation corresponding to (17.16) reads (→20.26)

(1− x2)P ′′
n (x)− 2xP ′

n(x) + n(n+ 1)Pn(x) = 0, (17.38)

or
d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ n(n+ 1)Pn = 0. (17.39)

17.18 Recursion formulas for Legendre polynomials. The three
term recursion relation (→17.10) reads

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0 (17.40)

with P0(x) = 1 and P1(x) = x. This can also be obtained easily from
the generating function (17.25): expand

(1− 2xζ + ζ2)
∂w

∂ζ
+ (−ζ + x)w = 0. (17.41)

Similarly, we obtain

(1− 2xζ + ζ2)
∂w

∂x
− ζw = 0. (17.42)

This leads to
P ′

n+1 − 2xP ′
n + P ′

n−1 − Pn = 0. (17.43)

If we eliminate P ′
n−1 from (17.40) and (17.43), we get

P ′
n+1 − xP ′

n = (n+ 1)Pn. (17.44)

If we eliminate P ′
n+1 from (17.40) and (17.43), we get

xP ′
n − P ′

n−1 = nPn. (17.45)

Combining above two formulas, we obtain

P ′
n+1 − P ′

n−1 = (2n+ 1)Pn. (17.46)
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17.19 Legendre polynomials, some properties.
(1) Pn(x) is an odd (resp., even) function, if n is odd (resp., even):
Pn(x) = (−1)nPn(−x), Pn(1) = 1 and Pn(−1) = (−1)n. P2n(0) =(−1/2

n

)
(see Exercise below).

(2) |Pn(x)| ≤ 1.
(3) All the zeros of Pn are simple and in (−1, 1) (→17.11).
(4) If Πn is an n-th order polynomial satisfying∫ 1

−1
Πn(x)x

kdx = 0 (17.47)

for all k ∈ {0, 1, · · · , n− 1}, then Πn ∝ Pn (→21A.3(2)).
[Demo of (2)] This can be proved with the aid of Schläfli’s integral (17.23). We
choose for the intergration path to be

t = z +
√
z2 − 1eiφ (17.48)

for φ ∈ [−π, π). Note that dt/(t−z) = idφ. Changing the integration variable from
t to φ in (17.23), we get the following Laplace’s first integral

Pn(x) =
1
π

∫ π

0

[x+
√
x2 − 1 cos φ]ndφ. (17.49)

From this we get

|Pn(cos θ)| ≤ 1
π

∫ π

0

| cos θ + i sin θ cos φ|ndφ ≤ 1. (17.50)

Exercise
P2n(0) can be obtained from Rodrigues’ formula (21.11), which reads

P2n(0) = (−1)n Γ(n+ 1/2)√
πΓ(n+ 1)

. (17.51)

17.20 Hermite polynomials. The orthonormal basis {|hn〉} for
L2((−∞,∞), e−x2

) (→16.19) obtained by the Gram-Schmidt method
applied to monomials (→17.2) is written in terms of the Hermite poly-
nomials Hn(x) as

〈x|hn〉 =
√

1

2nn!
√
π
Hn(x), (17.52)

where

Hn(x) =
[(n+1)/2]∑

m=0

(−)n n!

m!(n+ 1− 2m)!(2x)
n+1−2m. (17.53)

([·] is Gauss’ symbol denoting the largest integer not exceeding ·.) The
generalized Rodrigues formula (→17.6) for the Hermite polynomials is

Hn(x) = (−1)nex2 dn

dxn
e−x2

. (17.54)
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The generating function (→17.8) is given by

WH(z, ζ) = e2zζ−ζ2

=
∞∑

n=0

Hn(z)

n!
ζn. (17.55)

Hn is an even (resp., odd) function, if n is even (resp., odd).

Warning. Many authors use the weight e−x2/2 instead of e−x2
. If we

write the Hermite polynomials defined for this weight as H∗
n(x), then

the generalized Rodrigues formula (→17.6) reads

H∗
n(x) = (−)nex

2/2 dn

dxn
e−x2/2, (17.56)

and

Hn(x) = 2
n/2H∗

n(
√
2x), H∗

n(x) = 2
−n/2Hn(x/

√
2). (17.57)

Discussion.
To demonstrate the completeness of the Hermite polynomials, Weierstrass’ theorem
17.3 is not enough, because the latter is about a finite interval. To show the
completeness with respect to the L2-norm we have only to show the completeness
of polynomials. This can be demonstrated with the aid of Weierstrass’ theorem on
increasingly large intervals.

Exercise.
(A) From the generating function show

ex
2/2Hn(x) =

1
in
√
2π

∫ ∞

−∞
eixy−y

2/2Hn(y)dy. (17.58)
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This can be split into real and imaginary part relations (Lebedev).
(B) From the generating function we obtain the following generalized Fourier ex-
pansion

eax = ea
2/4

∞∑
0

an

2nn!
Hn(x), (17.59)

which is good for all x ∈ R.
(C) Compute the generalized Fourier expansion of e−ax

2
in terms of Hermite poly-

nomials. The expansion coefficients can be written as

c2n =
1

22n(2n)!
√
π

∫ ∞

−∞
e−(a+1)x2

H2n(x)dx. (17.60)

To compute the integral use (17.69) below. The x-integration can be done and we
are left with

c2n =
(−1)nan√

π(2n)!(1 + a)n+1/2

∫ ∞

0

e−ssn−1/2ds. (17.61)

Use the Gamma function (→14.5) to obtain the final result (Lebedev)

c2n =
(−1)nan

22nn!(1 + a)n+1/2
. (17.62)

17.21 Sturm-Liouville equation for Hermite polynomials. The
formula corresponding to (17.16) reads

H ′′
n − 2xH ′

n + 2nHn = 0. (17.63)

17.22 Recurrence equations for Hermite polynomials. The
three term recurrence relation (→17.10) reads

Hn+1 + 2xHn + 2nHn−1 = 0, (17.64)

which can be obtained from

∂wH

∂ζ
= −2(z + ζ)w. (17.65)

From
∂wH

∂z
= 2ζw (17.66)

we obtain
H ′

n+1 = −2(n+ 1)Hn. (17.67)

Exercise.
An integral formula for Hermite polynomials can be obtained with the aid of

e−x
2
=

2√
π

∫ ∞

0

e−t
2
cos 2xt dt. (17.68)

[Hint. Note that the integrand is an even function.] Putting this into the generalized
Rodrigues’ formula (calculate the odd and even n cases separately, and unify the
results), we obtain

Hn(x) =
2n(−i)nex2

√
π

∫ ∞

−∞
e−t

2+2itxtndt. (17.69)
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17.23 Chebychev polynomials. These polynomials are best intro-
duced as

Tn(x) = cos(n cos
−1 x). (17.70)

The generalized Rodrigues formula (→17.6) is given by

Tn(x) =
(−1)n

(2n− 1)!!
√
1− x2

dn

dxn
(1− x2)n−1/2. (17.71)

This can be transformed into (17.70) with the aid of the binomial the-
orem: it is easy to demonstrate that this formula yields

1

2
[(x+ i

√
1− x2)n + (x− i

√
1− x2)n] (17.72)

which reduces to cosnθ with x = cos θ.
The orthonormal basis {|tn〉} of L2([−1, 1], 1/

√
1− x2)) (→16.19)

obtained by the Gram-Schmidt orthonormalization of monomials (→17.6)
can be written as

〈x|tn〉 =
√

π

2
Tn(x). (17.73)

The generating function (→17.8) is

1− z2

1− 2xz + z2
= T0(x) + 2

∞∑
n=1

Tn(x)z
n. (17.74)

The highest order coefficient of Tn is 2
n−1 for n ≥ 1. The three term

recursion formula (→17.10) is229

Tn+1(x) = 2xTn(x)− Tn−1(x) (17.75)

for n = 1, 2, · · · with T0 = 1, T1(x) = x.

229 This is nothing but cos(n + 1)x+ cos(n− 1)x = 2 cosx cosnx.
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Exercise.
(1) Demonstrate that

(1− x2)T ′′
n (x)− xT ′

n(x) + n
2Tn(x) = 0. (17.76)

(2) Demonstrate the generating function for Chebychev polynomials (17.74) as el-
egantly as possible. [Hint. Use (??).]

17.24 Remarkable properties of Chebychev polynomials.
(1) Theorem. Let pn(x) be a polynomial of order n(≥ 1) whose
coefficient of xn is unity. Then,

max
x∈[−1,1]

|pn(x)| ≥ 21−n, (17.77)

and the equality holds if and only if pn(x) = Tn(x)/2
n−1.✷

(2) The best (w.r.t. the sup norm) n-th order polynomial approximant
of xn+1 on [−1, 1] is given by Tn+1(x)/2

n − xn+1. This property makes
the Chebychev polynomial very important in approximation theory of
functions.
(3) xk+1 = Tn(xk) defines a sequence x0, x1, x2, · · · from the initial
condition x0. This is a typical chaotic sequence. Among any continuous
functions with n laps, Tn(x) gives the most chaotic sequences on the
average.

Discussion.
(A) (1) above implies that if the n-th order polynomial Qn defined on [−1, 1] with
its highest order coefficient normalized to be unity and if its maximum deviation
from zero is the smallest among such polynomials, then Qn is proportional to the
order n Chebychev polynomial.
(B) Take T2(x). Demonstrate that there are two intervals I and J in [−1, 1] which
share at most one point such that T2(I) ∩ T2(J) ⊃ I ∪ J . In general, if the reader
can find two positive integers and two intervals I and J sharing at most one point
such that fn(I) ∩ fm(J) ⊃ I ∪ J , then f exhibits chaos on the inteval containing
both I and J . That is, there is an invariant set Ω of fN for some positive integer
N such that fN restricted to Ω is isomorphic to the coin-tossing process. See the
sample Mid Term Report).

261



18 Numerical Integration

Most integrals cannot be computed analytically. Some of
the most important numerical integration algorithms are
inseparably connencted to the theory of orthogonal poly-
nomials. Also discussed are the effectiveness of the simple
trapezoidal rule and high-dimensional integrals.

Key words: Gauss schemes, IMT formula, DE formula,
quasi-Monte Carlo method, Monte Carlo method

Summary:
(1) Roughly speaking, Gauss formulas are versatile and useful. Prob-
ably, up to 4 or 5-tuple integrals, direct use of the scheme may be
practical. (→18.3, 18.5, 18.6).
(2) However, if a very accurate integration is needed, variable transfor-
mation schemes should be used, esp., the DE formula (→22B.2).
(3) If the integration is over a moderately high (∼ 10) dimensional re-
gion, then quasi-Monte Carlo method 18.18 should be considered first
with the conditioning of the function according to 18.15. I fhte di-
mension is higher, then currently no better versatile method than the
Monte Carlo method is known18.19.

18.A Gauss Formulas
18.1 Numerical integration. Simple numerical integration meth-
ods as the trapezoidal rule or Simpson’s rule has the following general
structure∫ 1

−1
f (x)dx �

N∑
v=1

Cvf(
v

N
) (the general Newton-Cotes formula).

(18.1)
We have N freedom to choose Cv. Hence, it is possible to choose them
so that the formula is exact for f(x) = 1, x, . . . , xN−1 ((cf. Weierstrass’
theorem ß??). Gauss pointed out that there is no necessity to choose
equidistant points v/N to sample the function values. See the following
example.
18.2 Simple demonstration. We choose N = 2:∫ 1

−1
f(x)dx ∼ C1f(x1) + C2f(x2) (18.2)
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We choose Ci and xi so that the formula is exact for f = 1, x, x
2 and

x3. We have four formulas

1 : 2 = C1 + C2,

x : 0 = C1x1 + C2x2,

x2 : 2/3 = C1x
2
1 + C2x

2
2,

x3 : 0 = C1x
3
1 + C2x

3
2.

From these equations, we solve as

C1 = C2 = 1,

x1 = −x2 = 1/
√
3.

Therefore, the N = 2 Gauss-formula (G2) is

∫ 1

−1
f(x)dx � f

(
1√
3

)
+ f

(
− 1√

3

)
. (18.3)

If we need the integration

I =
∫ b

a
φ(u)du, (18.4)

introduce the variable x running from −1 to 1 such that

u =
1

2
[(b− a)x+ a + b] (18.5)

and

I =
1

2
(b− a)

∫ 1

−1
φ([(b− a)x+ a + b]/2)dx. (18.6)

Examples for (18.3) are given as230

∫ π/2
0 sinxdx

∫ 1
0

√
xdx

∫ 1
0 x3/2dx

∫ 1
0

x
ex−1

dx
∫ 1
0 f ∗(x)dx

exact 1 2/3 0.4 0.77751164... 0.306853...
G2 0.99848... 0.6738... 0.3987... 0.77750464... 0.2261...
Here f ∗(x) = 1/(x+ 2) for x ∈ [0, e− 2], f ∗(x) = 0 for x ∈ [e− 2, 1].
As we see, for smooth functions the method is amazingly powerful. If

we choose the 4 point formula for I =
∫ π/2
0 sinxdx, I = 1.000000, cor-

rect to six decimal places. (The Simpson rule (→18.8) with 64 points

230 From P. J. Davis and P. Rabinowitz, Methods of Numerical Integration (Aca-
demic, 1975); not updated but still useful.
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produces 0.99999983).
Exercise.
(1) Compute the following integral analytically:∫ 1

−1

dx(x2 − 1)e−x
2/2. (18.7)

Prescribe a method to compute this numerically with the aid of (only) G2 with the
relative error of 10−5.
(2) Construct the N = 2 Gauss formula for the integral of range [−1, 1] with the
weight e−|x|. Apply it to cosx and compare the result with the ordinary Gauss-
Legendre formula with N = 2 applied to e−|x| cosx on [−1, 1].
(3) Compute ∫ π/2

0

cos x sgn(π/4− x)dx (18.8)

to the relative accuracy of 10−4 using only G2. In this case if G2 is naively used
for the whole inteval, the error is about 20%.

18.3 Fundamental theorem of Gauss quadrature. Let w(x) be
a weight function for the interval [a, b]. Then, there exist real numbers
x1, . . . , xN and C1, . . . , CN with the following properties
(i) a < x1 < x2 < · · · < xN < b,
(ii) Ck > 0 for k = 1, 2, · · · , N ,
(iii) ∫ b

a
f(x)w(x)dx =

N∑
k=1

Ckf(xk) (18.9)

is exact for every polynomial f(x) of degree not more than 2N − 1. ✷
Actually, x1 . . . , xN are the zeros of pN , the N -th member of the or-
thogonal polynomial family on [a, b] with the weight w(x) (→17.2),
and

Ck =
∫ b

a

pN (x)w(x)dx

p′N(x)(x− xk)
(k = 1, . . . , N).

✷

For example, for
∫ 1
−1 f(x)dx, pN(x) =

√
2N+1

2
PN(x) (→17.5) so that

the scheme is called the Gauss-Legendre formula.
[Demo] We demonstrate the theorem for L2([−1, 1]), the most important case. Let
f be an m-th order polynomial, and the desired integration formula is given by

∫ 1

−1

f(x)dx =
N∑
k=1

Ckf(xk), (18.10)

as in (iii). Here the fact (→17.11) that the zeros of orthogonal polynomials are all
in its domain has been fully utilized. Notice that f can be uniquely decomposed as

f = PnQ+R, (18.11)
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where Pn is the n-th order Legendre polynomial, and R is a polynomial of order
less than n. Since the order of Q is m−n, if m−n ≤ n− 1 (i.e., m ≤ 2n− 1), then
Pn is orthogonal to Q (→21A.3(1)). Hence, for m ≤ 2n− 1, we conclude∫ 1

−1

f(x)dx =
∫ 1

−1

R(x)dx. (18.12)

According to our formula (18.10), we have

∫ 1

−1

f(x)dx =
N∑
k=1

CkPn(xk)Q(xk) +
N∑
k=1

CkR(xk). (18.13)

Therefore, we immediately see that if we can choose xk to be the zeros of Pn, then
the first term on RHS vanishes. That is, (18.12) is true for our formula under
construction. For this to be true, we need to set n = N (→17.11) and m = 2N−1.
We have fixed the sampling point locations. If we can choose Ck so that (18.12)
holds exactly for all the N − 1 order polynomials, then we can integrate all the
polynomials up to the order 2N − 1 exactly by our integration formula. Therfore,
the remaining task is to determine Ck so that

∫ 1

−1

R(x)dx =
N∑
k=1

CkR(xk) (18.14)

is exact for any choice of N − 1 order polynomial R. Notice that generally we can
write

R(x) =
N∑
k=1

R(xk)lk(x), (18.15)

where231

lk(x) =
n∏
i �=k

(
x− xi
xk − xi

)
. (18.16)

Hence, the following choice solves our problem:

Ck =
∫ 1

−1

lk(x)dx. (18.17)

Since lk(x)(x− xk) is proportional to PN (all the zeros are common!),

Ck =
∫ 1

−1

PN (x)
(x− xk)P ′

N (xk)
dx =

2
NPN−1(xk)P ′

N (xk)
=

2(1− x2k)
[NPN−1(xk)]2

. (18.18)

Exercise.
Demonstrate the formula for the weight of the Gauss-Legendre formula:

Ck =
2(1− x2k)

[NPN−1(xk)]2
. (18.19)

[Hint.231 This is the standard Lagrange interpolation formula.
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18.4 Error estimate of Gauss formulas.
(1) If f is at least 2N times continuously differentiable (i.e., in C2N),
then the integration (on [−1, 1]) error is bounded by

|error| ≤ 22N+1(N !)4

(2N + 1)((2N)!)3
max

x∈[−1,1]
|f (2N)(x)|. (18.20)

(2) If f is holomorphic (→??) in Ω ≡ {z | |z + 1| + |z − 1| = ρ + ρ−1}
for ρ > 1, then

|error| ≤ π(ρ+ ρ−1)

ρ2N+1
max
z∈Ω

|f (z)|. (18.21)

Exercise.
Calculate the following three integrals:

(1)
∫ 1

−1

e−x
2
dx, (2)

∫ 1

−1

sin |x|dx, (3)
∫ 1

−1

cos x sgn(x2 − 1/2)dx (18.22)

with the aid of the Gauss-Legendre formulas for N = 2, 4, and 8 and discuss the
results. (The necessary table is on p916 of Abramowitz and Stegun).

18.5 How to get the weights. Abscissa and weight factors are tab-
ulated in, e.g., Abramowitz-Stegun, Handbook of Mathematical Func-
tions (Dover, 1972), but it is recommended to compute them to avoid
any transcription mistakes.

18.6 Many dimension. We can of course extend the formula for
many dimensional cases. [See Davis & Rabinowitz Chapter 5]. For
example, a singular integral like∫ 1

−1

∫ 1

−1
dxdy

1

1− xy

can be accurately calculated without any special considerations on the
singularities.

18.7 Integral equation solver. The Gauss method may be the best
general numerical method to solve integral equations.

18.8 Trapezoidal vs. Simpson rule232 Let

Ie = 2h

{
n−1∑
r=1

f(a+ 2rh) +
1

2
[f(a) + f (a+ 2nh)]

}
, (18.23)

Io = 2h

{
n−1∑
r=1

f(a+ (2r + 1)h)

}
. (18.24)

232 This section is based on an essay by H. Takahashi, ‘Superposition in numerical
integration,’ Sugaku Seminar, March 1971.
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To compute the following integral

I =
∫ a+2nh

a
f(x)dx, (18.25)

the trapezoidal rule uses

I � 1

2
(Ie + Io), (18.26)

and the Simpson rule uses

I � 1

3
(Ie + 2Io). (18.27)

Usually, it is believed that the Simpson rule is superior to the trape-
zoidal rule. However, this is not always the case. If

I =
∫ b

a
f(x)dx =

∫ b+h

a+h
f(x)dx, (18.28)

where h is the increment of integration, then the trapezoidal rule is
superior to the Simpson rule. If f vanishes or becomes very small (like
exp(−x2)) outside the domain sufficiently inside [a, b], or if f is a peri-
odic function and [a, b] is a period, then (18.28) hold. [See 18.9 for the
computation of Fourier coefficients.] The purpose of the modification in
the Simpson rule is to eliminate the end effect of the integration range.
This is why the trapezoidal rule can be better if there is no end effect.
Therefore, the Simpson rule is better than the trapezoidal rule, when
(18.28) does not hold.

18.9 Discrete Fourier transform I. Let

an =
1

N

2N∑
k=0

Xk cos

(
nkπ

N

)
, (18.29)

bn =
1

N

2N∑
k=0

Xk sin

(
nkπ

N

)
. (18.30)

Then,

Xk =
1

2
(a0 + aN cos kπ))

N−1∑
n=1

{
an cos

(
mnkπ

N

)
+ bn sin

(
mnkπ

N

)}
,

(18.31)
if Xk = f(kπ/N), then (18.30) is obtained from the standard formulas
for Fourier coefficients through ‘approximating’ the integrals with the
aid of the trapezoidal rule. However, notice that the formulas are exact.
This is an example of the merit of the trapezoidal rule for periodic
functions.
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18.10 Discrete Fourier transform II. Let X ≡ {Xn}N−1
n=0 be a

sequence of complex numbers, and

e(x) ≡ exp(−2πix). (18.32)

The following sequence X̂ ≡ {Xn} is called the discrete Fourier trans-
form of X:

Xk =
N−1∑
n=0

e

(
kn

N

)
Xn. (18.33)

Its inverse transformation is given by

Xn =
1

N

N−1∑
k=0

e

(−kn

N

)
Xk. (18.34)

Cf. 28.23.

18.B Variable Transformation Schemes

18.11 Functions of double exponential decay. If f is an analytic
function, then the trapezoidal rule gives an excellent result for the in-
tegral over R. This seems to be a well known fact. If the integrand
decays double exponentially, i.e., for some positive constants A, B and
C

|f | ∼ A exp(−B exp(Cx)) (18.35)

The error of the trapezoidal rule truncated at N

Th = h
N∑

k=−N

f(kh) (18.36)

for the integral of f from −∞ to +∞ is given by

|Th − I| ≤ const.‖f‖ exp(−C̃N/ lnN) (18.37)

for some positive C̃. This means that if N is doubled, then the number
of the significant digits doubles.

18.12 Double exponential (DE) formula. The DE formula was
proposed by Takahashi233 and Mori in 1974, and is regarded the most

233 This is the same person of the ‘Takahashi gas’, proving that there is no phase
transition in 1-space with short range interactions. He is the most creative statistical
physicist Japan has ever produced when he was young, but later became the leader
of computer research in Japan, saying physics was his hobby.
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effective integration formula currently. The essence is to change the
independent variable so that the function decays double-exponentially.
For example, for the integral of an analytic function f on [−1, 1]

x = φ(t) ≡ tanh
(
π

2
sinh t

)
(18.38)

and the DE formula reads234

∫ 1

−1
f(x)dx � h

N∑
k=−N

f(φ(hk))φ′(hk). (18.39)

However, the DE formula is not effective for the integrals of Fourier
transformation type.
Discussion.
The DE formula is powerful even for an integrand with end singularities:

I ≡
∫ +1

−1

dx(1− x2)−1/2 = π (18.40)

If we use the Gauss-Legendre formula to this, the error is never less than 10−2 for
n ≤ 30. The DE formula with 5 terms is already with only less then 1% error.
With 10 points, the error is about 10−6. With n = 30 the error is about 10−15.
The improvement is roughly exponential 10−n/2. [This is in conformity with the
theoretical error estimate.]

18.13 Numerical estimate of Fourier transform. For

∫ ∞

0
f(x) sin

(
π(x− α)

λ

)
dx (18.41)

the following transformation is effective:235

ψ(t) =
t

1− exp(−2π sinh t) . (18.42)

The formula reads

∫ ∞

0
f(x) sin

(
π(x− α)

λ

)
dx � λ

N∑
k=−N

g

(
λ

h
ψ

(
h(kλ+ α)

λ

))
ψ′
(
h(kλ + α)

λ

)
,

(18.43)
where g(x) = f(x) sin[π(x− α)/λ].

234 H Takahashi and M Mori, Publ. RIMS 9, 721 (1974).
235 T. Ooura and M. Mori, J. Comp. Appl. Math. 38, 353-360 (1991).
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18.C Multidimensional Integrals

18.14 Overview. An immediate idea is to use the one dimensional
formulas repeatedly (direct product scheme). Other interesting meth-
ods are the Monte Carlo or quasi-Monte Carlo methods. These latter
methods are characterized by the error estimate which is independent
of the spatial dimensionality but dependent only on the number of
sampling points. Here we discuss only two methods for very large di-
mensions. The quasi Monte Carlo method is becoming increasingly
important, because the error improves as 1/N instead of 1/

√
N . How-

ever, there seems to be no versatile general scheme applicable to all the
cases. This is a very active field of research esp., in relation to finance.

18.15 Polynomial variable transformation: recommended pre-
conditioning. Let p be an integer not less than 2. If a function f({xi})
has continuous partial derivatives

∂j1+···+jsf(x1, · · · , xs)

∂xj1
1 · · · ∂xjs

s

(18.44)

for all j1, · · · , js ∈ {0, 1, · · · , p}, then we can use the following transfor-
mation

xi = φ(yi) ≡ (2p+ 1)!

(p!)2

∫ yi

0
up(1− u)pdu (18.45)

to convert the integrand f to

f(φ(y1), · · · , φ(ys))φ
′(y1) · · ·φ′(ys) (18.46)

whose multidimensional Fourier coefficients have the following estimate:

ck ≤ const× |k|−p. (18.47)

With this smoothness condition (→??), many integration formulas be-
come more effective than without the transformation. Thus usually, it
is recommended to transform the integrand with the aid of this trans-
formation prior to application of integration schemes.

18.16 Weyl’s equidistribution theorem. If α is irrational, then
for any 0 ≤ a ≤ b ≤ 1 we have

1

N
#{n | {nα} ∈ [a, b], n ∈ {1, 2, · · · , N}} → |b− a|. (18.48)

Here {a} = a − [a] is the fractional part of a, and #A is the number
of members (the cardinality) of the set A. We will not give any proof
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for this,236 but this should be intuitively clear, if the reader imagines
a particle geodesically moving (i.e., going straight) on the 2-torus, and
[0, 1] is the coordinate of its section (the so-called Poincarè section in
the theory of dynamical systems). A multidimensional version should
not be hard to formulate and understand in a similar fashion. Thus we
get

18.17 Theorem [Weyl]. Let 1, α1, · · · , αs be rationally independent.
237

Then,

lim
N→∞

1

N

N∑
k=1

f({kα1}, · · · {kαs}) =
∫
[0,1]s

f({x})d{x}. (18.49)

18.18 Improved Haselgrove method.238

∫
[0,1]s

f({x})d{x} � 1

N

N∑
k=1

wq(k/N)f({kα1}, · · · {kαs}), (18.50)

where

wq(x) =
(2q + 1)!

(q!)2
xq(1− x)q. (18.51)

The representative irrational numbers α1, · · · , αs are chosen (semi-empirically)
as
(1) If s+ 3 is a prime, then αj = 2 cos(2jπ/(2s+ 3)),
(2) Otherwise, αj = 2

j/(s+1).
wq is introduced to reduce the error further. A detailed error estimate
is available, but the main features of the error is that it is bounded by
the number proportional to N−q.

18.19 Monte Carlo method. To compute

I ≡
∫
[0,1]s

f(x1, · · · , xs)dx1 · · · dxs (18.52)

the Monte Carlo method randomly and uniformly samples points in the
cube [0, 1]s as y1, y2, · · · and claim

SN =
1

N

N∑
k=1

f(yk)→ I. (18.53)

236 See Section 3 of Körner.
237 That is, there are no integers p0, p1, · · · , ps (not all of them are simultaneously
equal to 0) such that p0 +

∑
pkαk = 0

238 M. Sugihara and K. Murota, Math. Computation 39, 549-554 (1982).
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The principle should be understandable from the random analogue of
22C.3.
Its error can be estimated with the aid of Chebychev’s inequality239 as

Probability(|I − SN | ≥ 2/
√
εN) ≤ ε (18.54)

for f such that |f | ≤ 1.
For example, if N = 106, then with probability 99% we can get the an-
swer with 2% relative error independent of the dimension of the space!
However, the accuracy improves only as N−1/2.
Exercise.
(1) We wish to compute

∫ 1

−1

· · ·
∫ 1

−1

e−(x1+x2+···+xN )2/Ndx1 · · ·dxN (18.55)

with the aid of the Monte Carlo method. Now many samples do we need conserva-
tively to obtain the integral with 5% relative error with probability 99.9%?
(2) We wish to compute the following integral by the Monte Carlo method:

I =
∫
D

dx1 · · · dx100r(1− r), (18.56)

where r =
√∑100

i=1 x
4
i /5, and the domain D is the 100 dimensional hypercube

[0, 1]× · · · × [0, 1]. How many sample points are (conservatively) needed, if we wish
to get I with the error less than 2% with the probability more than 99.5%?
(3)Generalization of the Chebychev inequality. Let f be a positive function,240

and ϕA ≡ infx∈A ϕ(x). Then,

ϕAProbability(X ∈ A) ≤ 〈ϕ〉. (18.57)

The inequality we have used is a special case with ϕ = x2.

239 a2Probability(|x| ≥ a) ≤ 〈x2〉, which can be derived easily from the obvious
inequality x2 ≥ a2Θ(|x| ≤ a).
240 Measurable w.r.t. the probability measure under consideration (→19a).
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19 Separation of Variables – General Con-

sideration –

Separation of variables is probably the only systematic way
to solve linear PDEs. Its essence is the construction of the
problem-adapted orthogonal function system. We have al-
ready studied the method in 18 when the ordinary Fourier
expansion is applicable. The principles have been exhausted
there. Here the general features of the method are outlined
with a summary of prerequisites and limitations. Practi-
cally, if the reader wishes to solve a PDE boundary value
problem, consult a collection of worked-out problems. We
should not forget that if we need an exact method, it is a
sure sign of our ignorance about the problem.

Key words: special function, eigenvalue problem.

Summary:
(1) Practically, the method works only when the domain has a special
shape. Possible shapes are best seen in ‘style books,’ that is, books
collecting worked-out problems. If the reader cannot find any good ex-
ample in them, it may be wise to give up exact solutions (→23.2).
(2) The essence of separation is the problem-adapted Fourier-type ex-
pansion; consequently, in order to justify the method we need almost
all the machinery of functional analysis (→19.3).

19.1 Separation of variables: general idea. All our time-dependent
linear problems (→1) have the following form:

Ltψ(x, t) = Qψ(x, t), (19.1)

where the operator Lt acts only on the functions of time, and Q on the
functions of space coordinates. The time and space coordinates can be
separated trivially as

Ltψ1(t) = µψ1(t), (19.2)

Qψ2(x) = µψ2(x). (19.3)

Since the first equation is an ODE, it is easy to obtain its general
solution. If Q has a ‘good’ property, we can generalize the eigenvalue
expansion method for a finite dimensional vector space. Formally (19.1)
can be transformed into

Lt〈ϕµ(x)|ψ(x, t)〉 = µ〈ϕµ(x)|ψ(x, t)〉, (19.4)
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where ϕµ(x) is the eigenfunction of the operator Q (Qϕµ(x) = µϕµ(x))
and (consistently with the notation in 16.21)

〈ϕµ(x)|ψ(x, t)〉 ≡
∫
D
dxϕµ(x)ψ(x, t). (19.5)

This is an analogue of the integral to compute the Fourier coefficients
(→16.14, 16.24). The final solution is formally given by

ψ(x, t) =
∑
µ

〈ϕµ(x)|ψ(x, t)〉ϕµ(x), (19.6)

where the summation is over all the eigenvalues. Hence, the key prob-
lem of the separation of variables is to find a problem-adapted gener-
alized Fourier expansion.

19.2 Practical procedure via separation of variables. As we
have seen in 18 boundary conditions make the separation procedure
more complicated than stated above (→26B, 27B). We will see an
illustration in 23.9. A practical procedure to solve a PDE with in-
homogeneous boundary conditions by separation of variables can be
summarized as follows:
(A) If the domain shape is not regular (roughly speaking, if the bound-
ary does not consist of part of planes and conic surfaces), forget about
exact analytic methods (→19.4).
(B) If the domain is‘well-shaped,’ then consult a typical problem source
book of the boundary-value problem. For example, the lecturer find N.
N. Lebedev, I. P. Skalskaya and Y. S. Ufliand, Worked Problems in
Applied Mathematics (Dover 1965) very useful.241 If the reader cannot
find any similar problem, unless she wishes to be an expert of special
functions, it is wise for her to give up analytical methods to obtain
exact solutions.
(C) If the reader insists on analytical solutions:
(1) Decompose the problem into the problems with inhomogeneous
boundary conditions only in one coordinate direction with the aid of
superposition principle exactly as we did in ??. The remaining coordi-
nate directions become (generalized) eigenvalue problems.
(2) The (generalized) eigenfunctions of the separated homogeneous
problems dictate the form of the solution. (This is the step of con-
structing the problem-adapted generalized Fourier expansion scheme.)
(3) Fix the expansion coefficients with the aid of the inhomogeneous
boundary conditions and the orthogonality of the eigenfunctions as in
18. See 19.9 for an illustration

241 This is an accompanying workbook of N. N. Lebedev, Special Functions & Their
Applications (Dover, 1965), which is an excellent book.
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19.3 What do we need to justify and implement our proce-
dure? Here, we summarize the requirements.
(1) When can we justify the expansion (19.6)? To answer this ques-
tion, we need a rudimentary knowledge of Hilbert space (→20) and the
operators on it (→34). After a suitable preparation we can generalize
Fourier expansion and integral transformations (→30.11).
(2) We must be able to find explicitly the eigenfunctions of Q defined on
a linear space satisfying the auxiliary conditions. We use the method
of separation of variables to reduce the problems to lower dimensional
(hopefully 1-space) problems. Therefore, we need methods to solve
linear ODEs (→24) and associated eigenvalue problems (the Sturm-
Liouville problems 35).

Discussion: Fourier expansion of multivariable functions: addendum to
separation of variables.
We have claimed that the key element of the justification of the separation of vari-
ables is the (generalized) Fourier expansion of the function in terms of the ‘equation
adapted’ orthonormal basis.242 Generally, we have several variables and we need
multiple Fourier expansion. Then a natural question is whether the totality of the
tensor products constructed from ON bases for individual coordinates is indeed an
ON basis. The answer is in a certain sense affirmative, but somewhat delicate.
(1) The (generalized) Fourier expansion of f(x1, · · · , xn) is well defined if f is in-
tegrable thanks to Fubini’s theorem (→16.15). That is, the value of the Fourier
coefficients do not depend on the order of expansion.
(2) To reconstruct the original function from the Fourier coefficients, we can apply
the individual inverse transforms successively. This is allowed, but the Fourier co-
efficients may not be integrable, so to interpret the inverse transform as an n-tuple
integral (not as n successive one dimensional integrals) is delicate243 and some
extra condition on f is generally required.244

19.4 What problems can we solve by hand?. To have an analytic
solutions, we must be able to solve the eigenvalue problem by hand. To
this end almost always separation of variables is mandatory. As is men-
tioned in 19.2(A), this requires not only a special form of the operator,
but also a special shape of the domain.245 Therefore, problems we can
242 The reader might say any ON basis will do for our purpose. If we need not
worry about the (termwise) differentiability of the Fourier sum, then this is indeed
the case. However, we are solving differential equations, so that we must be sensitive
about the uniformity of the convergence of the resultant Fourier series (→??-??).
243 That is, we must in general inverse transform in the reverse order of the oper-
ation used in the calculation of the coefficients.
244 See Kolmogorov and Fomin, second ed. Chapter 8, Section 4. Perhaps not
available in English.
245 Wemust be able to employ the standard orthogonal curvilinear coordinates. For
example, for 3d Schrödinger equation, complete separation of variables is possible
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solve analytically are very limited even for the Laplace equation. For
situations frequently encountered in practice (e.g., the Laplacian in a
ball) eigenfunctions of separated operators are well known and called
special functions. In short, we can solve by hand only very standard
PDE under very standard auxiliary conditions. That is why the advice
in (B) of 19.2 “see a style book” is practical.

Eercise.
(A) Specify appropriate curvilinear coordinates to solve the following problems (if
the problems are separable at all):
(1) From a solid ball of radius a, another ball of radius b(< a) which is completely
inside the first ball is removed. Temperatures of inside and outside surfaces are
given. Find the steady temperature distribution in the solid.
(2) There are two osculating identical conducting balls. Compute the electric field
when the balls are maintained at V with respect to the infinity.
(3) A cylindrical hole of radius r is made through a solid conducting ball of radius
R(> r) slightly off the center. Find the electric field when the solid has the total
charge Q.
(4) A lens-shaped conductor is maintained at voltage V relative to infinity. Assume
that the surfaces are with the same radius of curvature R and the thickness of the
lens is 2d, where d < R.
(5) A conducting plane has a semicylindrical boss of radius a. The plane is main-
tained with the electric potential V . Find the electric field in the space.
(B) Two identical conducting spheres of radius a are placed with the separation of
2l between the centers. Both the spheres are maintained at voltage V relative to
infinity. Find the electrostatic potential due to these spheres.

Discussion: Lamè’s problem.
The most general case we can solve with the aid of separation of variables is the
confocal rectangular parallelepiped whose surfaces are made of confocal quadratic
surfaces given by

x2

s− e1 +
y2

s− e2 +
z2

s− e3 = 1. (19.7)

The necessary special functions are called Lamè functions which are not studied
very well.

19.5 What is a special function? The word ‘special function’ is
used to denote collectively (1) Γ-function (→9) and related functions
like polygamma functions,246 (2) functions described by indefinite in-

only when the potential function V has the following form:

V = h1V (q1) + h2V (q2) + h3V (q3),

where h’s are the ones given in ?? (H. P. Robertson, Math. Ann. 98, 749 (1928);
L. P. Eisenstein, Ann. Math. 35, 284 (1934)).
246 Polygamma functions: the nth-derivative of log Γ(z) is called the (n+1)-Gamma
function. In particular, n = 1 is called digamma function, n = 2 is called trigamma
function, etc.
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tegrals of elementary functions like the probability integral (→21.11),
(3) elliptic functions, (4) solutions of second order ODE obtained by
separating variables, and (5) solutions to special ODE like Painlevè
equations.247 Solutions to the second order linear ODE with 3 regu-
lar singular points (special functions of hypergeometric type) or with
1 irregular singular point resulting from the merging of two regular
singular points (→20.15) in the former (special functions of confluent
type) are called classical special functions.

19.6 Are the analytic solutions useful? It is not easy to say yes.
Often the obtained solutions are series solutions in terms of special
functions. Since special functions are mere symbols, one must look up
tables or use, e.g., Mathematica or Maple (even trigonometric functions
are no exceptions; we need a table or a pocket calculator). Hence, if
she wants a detailed behavior of the solution, a lot of numerical work
is needed anyway. One might say that in order to know qualitative or
asymptotic behaviors of a solution, analytic forms are useful. This is
true. However, to require a complete solution in order to get qualitative
or asymptotic behaviors does not sound elegant.

It should be clearly recognized that necessity of full analytic so-
lution is a clear sign of the sad fact that we do not understand the
problem.

19.7 Importance of qualitative understanding. It is important
to know how to solve the problems by hand: what special functions are
suitable, how they behave qualitatively, etc. To teach these has been the
main objective of the conventional math-phys courses.248 However, for
most scientists (esp. pure scientists) to juggle tons of special functions
is not important at all.249 It is much more important to acquire the
sense or feeling of correct physics and mathematics so that we will not
be outsmarted by computers, or not to be drowned in the flood of
numbers. The reader must be able to walk, but in order to go to the
Pacific coast she need not retrace the Oregon Trail on foot!

19.8 Use of symbol manipulation programs. Many standard
analytic methods, e.g., the series expansion method (→24B), are best
implemented with the aid of mathematics softwares like Mathematica
or Maple. Special functions are available in the standard mathemat-
ics softwares. For example, with Mathematica, if the reader types in

247 For Painlevè equations, see Ince.
248 See, e.g., H. W. Wyld, Mathematical Methods for Physics (Benjamin, 1976).
249 Perhaps more than 50 years ago there were one-year courses solely devoted to
trigonometrics in universities (remember that the universities in those days were
not remedial schools of the high school education). This sounds absurd now. To
realize that some topics are unimportant is an important progress.
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BesselJ[n,z], then she gets Jn(z) (→23.1). Hence, we need not be
extremely familiar with special functions, although we should know
their general features. Most analytical calculations can be mechanized,
so it is probably wiser to practice the use of these programs than to
experience lengthy practice sessions of analytical methods.

19.9 Case study of separation of variables: Laplace equation
with Dirichlet condition. The purpose of this entry is to provide
a show case with the aid of a fairly difficult problem. The region is
fan-shaped: z ∈ [0, h], ϕ ∈ [0, φ] and r ∈ [a, b]:

[
1

r

∂

∂r
r
∂

∂r
+
1

r2

∂2

∂ϕ2
+

∂2

∂z2

]
ψ = 0 (19.8)

(→??) with the boundary condition

ψ(r, ϕ, 0) = f0(r, ϕ), ψ(a, ϕ, h) = fh(r, ϕ), (19.9)

ψ(r, 0, z) = g0(r, z), ψ(r, φ, z) = gφ(r, z), (19.10)

ψ(a, ϕ, z) = ha(ϕ, z), ψ(b, ϕ, z) = hb(ϕ, z). (19.11)

First we perform the step (C)(1) of 19.2. The separation procedure
ψ = R(r)Φ(ϕ)Z(z) gives three distinct eigenvalue problems. The full
solution is the superposition of the solutions to all the following three
problems (1)-(3).
(1) With the boundary condition (r, ϕ homogeneous; z inhomoge-
neous):

ψ(r, ϕ, 0) = f0(r, ϕ), ψ(r, ϕ, h) = fh(r, ϕ), (19.12)

ψ(r, 0, z) = 0, ψ(r, ϕ, z) = 0, (19.13)

ψ(a, ϕ, z) = 0, ψ(b, ϕ, z) = 0. (19.14)

The separated equations are

d2Φ

dϕ2
= −m2Φ, (19.15)

d2Z

dz2
= α2Z, (19.16)

1

R

[
d2R

dr2
+
1

r

dR

dr

]
− m2

r2
+ α2 = 0. (19.17)

The eigenvalue problems are (19.15) and (19.17) with homogeneous
Dirichlet boundary conditions (Φ(0) = Φ(φ) = 0 and R(a) = R(b) = 0).
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The positivity of α2 and m2 follows from the negative definiteness of
the operators.250 The solution must have the following form:

ψ =
∑
m,α

(Am,αJm(αr)+Bm,αNm(αr))(Cm sinmϕ+Dm cosmϕ)(Em,α sinhαz+Fm,α coshαz).

(19.18)
Here Jm is the Bessel function (→??-23.3), and Nm is the Neumann
function (→23.16). m, Cm andDm are fixed by the Dirichlet condition:

Dm = 0; Cm sinmφ+Dm cosmφ = 0. (19.19)

We may choose Cm = 1 without any loss of generality. α, Am,α and
Bm,α are fixed by the Dirichlet condition

Am,αJm(αa) +Bm,αNm(αa) = 0, (19.20)

Am,αJm(αb) +Bm,αNm(αb) = 0. (19.21)

That is, Jm(αa)Nm(αb) = Jm(αb)Nm(αa) fixes α. E and F are deter-
mined from the inhomogeneous boundary condition (19.14) with the aid
of complete orthogonality (→30.10) of the eigenfunctions constructed
above (not easy or almost impossible bu hand for general a and b).
(2) With the boundary condition (r, z homogeneous; ϕ inhomogeneous)

ψ(r, ϕ, 0) = 0; ψ(a, ϕ, h) = 0, (19.22)

ψ(r, 0, z) = g0(r, z); ψ(r, φ, z) = gφ(r, z), (19.23)

ψ(a, ϕ, z) = 0; ψ(b, ϕ, z) = 0. (19.24)

The separated equations are

d2Φ

dϕ
= m2Φ, (19.25)

d2Z

dz2
= −α2Z, (19.26)

1

R

[
d2R

dr2
+
1

r

dR

dr

]
+

m2

r2
− α2 = 0. (19.27)

Here the positivity of α2 is obvious from the condition that (19.26) be-
comes an eigenvalue problem (it is is not elementary to see this→30.11
Discussion (B)). m2 also must be positive so that (19.27) becomes an
eigenvalue problem. Hence, we may assume

ψ =
∑
m,α

(Am,αIim(αr)+Bm,αKim(αr))(Cm sinhmϕ+Dm coshmϕ)(Eα sinαz+Fα cosαz),

(19.28)
250 Intuitively speaking, the eigenfunctions must be oscillatory functions to sat-
isfy the orthogonality condition. “Negative definiteness” of an operator L means
〈f |L|f〉 ≤ 0 for any ket |f〉. The Laplacian ∆ is a typical example.
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where I and K are modified Bessel functions (→23.23). Here α, Eα

and Fα are fixed by the Dirichlet condition

Fα = 0; Eα sinαh+ Fα cosαh = 0. (19.29)

Eα = 1 is admissible. m, Am,α and Bm,α are determined by the bound-
ary conditions

Am,αIim(αa) +Bm,αKim(αa) = 0, (19.30)

Am,αIim(αb) +Bm,αKim(αb) = 0. (19.31)

That is, Iim(αa)Kim(αb) = Iim(αb)Kim(αa) determines m. C and D
are determined from the inhomogeneous boundary condition (19.23)
with the aid of complete orthogonality of the eigenfunctions constructed
above.251

(3) With the boundary condition (ϕ, z homogeneous; r inhomogeneous)

ψ(r, ϕ, 0) = 0, ψ(r, ϕ, h) = 0, (19.32)

ψ(r, 0, z) = 0, , ψ(r, φ, z) = 0, (19.33)

ψ(a, ϕ, z) = ha(ϕ, z), ψ(b, ϕ, z) = hb(ϕ, z). (19.34)

The separated equations are252

d2Φ

dϕ
= −m2Φ, (19.35)

d2Z

dz2
= −α2Z, (19.36)

1

R

[
d2R

dr2
+
1

r

dR

dr

]
− m2

r2
− α2 = 0. (19.37)

The eigenvalue problems are easy ones: (19.35) and (19.36) with ho-
mogeneous Dirichlet conditions. We may thus assume

ψ =
∑
m,α

(Am,αIm(αr)+Bm,αKm(αr))(Cm sinmθ+Dm cosmθ)(Eα sinαz+Fα cosαz).

(19.38)
Here, Im and Km are modified Bessel functions (→23.23). A and B
must be fixed from the boundary condition (19.34).

251 This problem is nontrivial, since we need modified Bessel functions of imaginary
order. See N. N. Lebedev, Special Functions & Their Applications (Dover 1972)
Section 6.5.
252 In this case obviously m2 and α2 must be non-negative.
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19.10 Remarks to 19.9.
(1) If the region in the z-direction is not bounded, we need Fourier
transformations; if the region is not bounded in the r-direction, we
need the Fourier-Bessel(-Dini) transformation (→23.22).
(2) The boundary condition in the ϕ direction may be periodic.
(3) The Neumann condition case is analogous.
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20 General Linear ODE

The theory of general linear ODE is summarized, and then
a constructive solution method (Frobenius’ method) is out-
lined. This series method is best implemented with the aid
of symbol manipulation programs. The reader should prac-
tice the method for one or two representative examples by
hand or a step by step application of mathematics softwares.

Key words: analyticity of solution, fundamental system
of solutions, fundamental matrix, Wronskian, separation
theorem, Frobenius’ theory, (regular and irregular) singu-
lar point, indicial equation, index.

Summary:
(1) First-order n-vector continuous ODE preserves the linear indepen-
dence of the initial condition vectors (the existence of fundamental
systems 20.4, 20.11).
(2) If the coefficient functions are holomorphic around x, then the so-
lution around x is Taylor-expandable, so a series form fundamental
system can be constructed (20.14). Even if the coefficients are not
holomorphic, if their singularities are not very bad (regular 24B.2),
then still a series form fundamental system can be constructed (Frobe-
nius’ theory) (20.16-20.20).
(3) The Frobenius method is best implemented by a computer. See
24B.8 for a ‘practical Frobenius.’
(4) Separation of variables of the Laplace equation in the spherical co-
ordinates requires Legendre polynomials (20.26-20.27) and associate
Legendre functions (20.30, examples in 26B).

20.A General Theory

20.1 The problem. We must be able to solve separated equations
(→23) which are usually ODE. They are linear but with nonconstant
coefficients. We know we have only to consider (→11A.5)

du(x)

dx
= A(x)u(x), (20.1)
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where A(x) is a n × n matrix which is continuous253 on an interval
I ⊂ R.

20.2 Theorem [Unique existence of solution]. IfA(x) is continuous254

in an open interval I ⊂ R, then for any u0 ∈ Rn and x0 ∈ I, there is
a unique solution u(x) passing through (u0, x0) whose domain is I. ✷
This follows directly from the Cauchy-Peano and Cauchy-Lipschitz the-
orems (→??, ??).

20.3 Analyticity of solution. A(x) may be considered to be a ma-
trix consisting of functions on C as A(z).
Theorem. Assume A(z) to be analytic (i.e., all the components are
analytic functions →??, ??) in D ⊂ C. Then, a solution analytic
around a ∈ D can be analytically continued (→7) to any point in D
along any curve in D. ✷

This implies that the singular points of a solution, if any, appear
where there are singularities (→??-??) of A(z).

Discussion.
For 1D Schrödinger equation, the wave function is finite at a point which is not a
singularity of the potential. For example, the wave function of the harmonic oscil-
lator is finite for finite x. For the Coulomb potential, the singularity can exist only
at the origin.

20.4 Theorem [Fundamental system of solutions]. The totality
of solutions of (20.1) makes a n-vector space. Any basis set of this
space is called the fundamental system of solutions. ✷
[Demo] Let v1,v2, · · · ,vn be linearly independent vectors and x0 ∈ I.
Write the solution passing through (vj , x0) as φj(x) (j = 1, · · · , n). Let
u0 = c1v1 + c2v2 + · · ·+ cnvn, and

u(x) = c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x). (20.2)

It is obvious that the space cannot have a dimension larger than n. If
there is x such that u(x) = 0, then due to the uniqueness of the so-
lution (→20.2) it must agree with the solution starting from 0, which
is obviously identically zero, so that u(x) can never be 0. Hence, the
dimension of the solution space cannot be less than n. ✷
Notice that this theorem implies that φ1(x),φ2(x), · · · ,φn(x) are func-
tionally independent: the identity for x ∈ I

c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) ≡ 0 (20.3)

implies cj = 0 for all j.
255253 We say that A(x) is continuous, analytic, etc., if all its components are, as

functions, continuous, analytic, etc.
254 Our problem is a linear problem, so this is enough. A related discussion is in
?? Discussion (B).
255 This is of course a stronger condition that u �= 0.
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20.5 Fundamental matrix. The matrix Φ(x) = (φ1(x),φ2(x), · · · ,φn(x))
is called a fundamental matrix of (20.1), if {φ1(x),φ2(x), · · · ,φn(x)} is
a fundamental system of solutions (→20.4).256

20.6 Wronskian. Let u1(x),u2(x), · · · ,un(x) be n solutions to (20.1).
The determinant of the matrix (u1(x),u2(x), · · · ,un(x)) is called the
Wronskian of the set of solutions {u1(x),u2(x), · · · ,un(x)}.

If the Wronskian of the set {u1(x),u2(x), · · · ,un(x)} is nonzero,
then this set is a fundamental system of solutions.

The converse is also true according to 20.4. In other words:

20.7 Theorem. A regular matrix X(x) satisfying

dX(x)

dx
= A(x)X(x) (20.4)

is a fundamental matrix of (20.1).

20.8 Theorem. Let W (x) be the Wronskian of the set of (any) n
solutions to (20.1). Then,

dW (x)

dx
= [Tr A(x)]W (x). (20.5)

This should be obvious from

det[(1 + At)X] = detX + t T rAdetX +O[t2]. (20.6)

This formula follows from

detX = exp[Tr lnX], (20.7)

which is a very important formula and essentially follows from detX =∏
λi, where λi are eigenvalues of X.

20.9 . Let Φ(x) be a fundamental matrix (→20.5) of (20.1). Then,
for any non-singular matrix P , Φ(x)P is again a fundamental matrix
of (20.1). Conversely, if Φ(x) and Ψ(x) are two fundamental matri-
ces of (20.1), then there is a constant non-singular matrix P such that
Ψ(x) = Φ(x)P . ✷
[Demo] Obviously, Φ(x)P satisfies (20.4) and non-singular, so it is a fundamen-
tal matrix. Next, let P = Φ(x)−1Ψ(x), then a straightforward calculation shows
dP/dx = 0. Hence, P must be a constant matrix, and non-singular by definition.

256 The evolution operator T (x, y) such that u(x) = T (x, y)u(y) is given by
T (x, y) = Φ(x)Φ(y)−1.
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20.10 Second order linear ODE. Separation of variables (→23) of
linear second order PDE often gives second order linear ODE of the
following type:

d2u

dx2
+ P (x)

du

dx
+Q(x)u = 0, (20.8)

where P and Q are functions of x ∈ R. This can be transformed into
the first order ODE of the form discussed in 20.1:

du

dx
= A(x)u (20.9)

with u(x) = (u, du/dx)T and

A(x) =
(
0 1
−Q −P

)
. (20.10)

20.11 Fundamental system of solutions. Let u1 and u2 be two
solutions for (20.8). The Wronskian W (x) (→20.6) for these solutions
is defined as

W (x) =

∣∣∣∣ u1 u2

u′
1(x) u′

2(x)

∣∣∣∣ . (20.11)

Tha is, W is the Wronskian of (20.9). If we can find u1 and u2 with
W (x) �= 0, then the set {u1, u2} is called a fundamental system of
solutions. The general solution to (20.8) is c1u1 + c2u2 for arbitrary
constants c1 and c2 (cf. 20.4).

20.12 Theorem [Separation theorem]. Let u and v make a fun-
damental system of solutions of (20.8). Then
(1) The zeros of u and v are all of multiplicity one.
(2) The zeros of u and v separate each other.✷
[Demo] Suppose u has a zero of multiplicity larger than one. Then u and u′ can
vanish simultaneously, so that the Wronskian W (→20.6) of u and v can vanish.
This contradicts the assumption. Thus (1) must be true. To prove (2) note that
u and v cannot have a common zero, since W �= 0. Let a1 and a2 (> a1) be two
adjacent zeros of u, and assume that v does not vanish in the interval J = (a1, a2).
Then u/v is well defined in J , and is differentiable:

d(u/v)
dx

=
W (x)
v2
. (20.12)

This cannot vanish. However, u/v = 0 at the both ends of J , so Rolle’s theorem
asserts that (20.12) must vanish in J , a contradiction. We can exchange u and v to
complete the proof.

Exercise.
Consider the following 1-Schrödinger problem

(−∆+ V )ψ = Eψ, (20.13)
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where V vanishes at infinity. If this equation has a bound state, it cannot be
degenerate. In particular, the lowest energy bound state (ground state) cannot be
degenerate. Prove this showing or answering the following:
(1) Degeneracy implies that there are two independent solutions for a given energy.
What must be their Wronskian?
(2) The Wronskian for localized state is zero.

20.13 Making a partner. Suppose we have found one solution v
to (20.8). We wish to make u (a partner of v) so that {u, v} becomes
a fundamental system of solutions (→20.11). We use (20.12). To
compute the WronskianW we can use (20.5) (→20.8) with Tr A = −P
for (20.8). W can be solved as

W = W0 exp
(
−
∫ x

P (y)dy
)
. (20.14)

From (20.12) we obtain

u = v
[∫ z

dξv−2e−
∫ ξ

P (ξ′)dξ′ + c
]
, (20.15)

where c is a constant.

Exercise.
One solution of

d2y

dx2
−
(
1
x
+ 1
)
dy

dx
+

1
x
y = 0 (20.16)

is ex. Find its partner.

20.B Frobenius’ theory

20.14 Analiticity of solutions. 20.3 implies that if P and Q are
analytic in a region D, then the solution to (20.8) is unique and analytic
in D. Hence, a local solution can be assumed to be in the power series
form around a point where P and Q are holomorphic.

20.15 Singular points. If P or Q becomes singular (→8A.2) at a
point a, a is called a singular point of the ODE (20.8).
(1) At a singular point a, if the singularity of P is at worst a pole of
order one, and that of Q is at worst a pole of order two (→??(4)(ii)),
then a is called a regular singular point of the ODE.
(2) Otherwise, a is called an irregular singular point of the ODE.

Discussion.257

257 Yosida p86
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In general (in more standard pure math literatures) the definition of a regular
singular point is as follows. Let u be any solution of (20.8).
Definition. z0 is a regular singular point of (20.8), if there is a positive number ρ
such that for any of its solution u satisfies

lim
z→z0

(z − z0)ρu(zz) = 0 (20.17)

That is, if the singularity of the solution (remember 20.3, 24B.1) is at worst alge-
braic at z0, we say z0 is a regular singular point.
Theorem [Fuchs].A necessary and sufficient condition for z0 to be a regular sin-
gular point of (20.8) is that z0 is a regular singular point in the sense of 20.15. ✷

Its proof is not very simple (elementary but lengthy). An intuitive understand-
ing is the ‘balance condition’ of the singularities (divergences) around z0 in (20.8).
Consider only the most singular terms in (20.8) near z0. If the ‘magnification’ of
singularities by differentiation balances the singularities in the coefficients, then we
say the singularity is regular.

20.16 Expansion around regular singular point. Frobenius showed
that power series expansion can give a local solution around a regular
singular point as well. Around a regular singular point a, which we
may set to be 0 without any loss of generality, we expect the following
form

u(z) = zµ
∞∑

k=0

akz
k, (20.18)

where µ is an appropriate complex constant. We may expand P and Q
as (Laurent expansion →??)

zP (z) =
∞∑

k=0

pkz
k, (20.19)

z2Q(z) =
∞∑

k=0

qkz
k. (20.20)

Formally substituting these expansions into the differential equation
(20.8), we get conditions for the equation to be satisfied identically:

a0φ(µ) = 0, (20.21)

a1φ(µ+ 1) + a0θ1(µ) = 0 (20.22)

and generally for n = 1, 2, · · ·

φ(µ+ n)an +
n∑

k=1

an−kθk(µ+ n− k) = 0, (20.23)

where

φ(µ) = µ2 + (p0 − 1)µ+ q0, (20.24)

θi(µ) = µpi + qi. (20.25)
287



20.17 Indicial equation. We may assume a0 = 1 without any loss of
generality. However, if (20.23) couples only even coefficients {a2n with
each other (or only odd coefficients), then even and odd coefficients are
decoupled. Therefore, the choice a0 = 1, a1 = 0 and that a0 = 0, a1 = 1
both give different solutions (cf. 20.27). (20.21) or φ(µ) = 0 is called
the indicial equation. It determines two (possibly identical) values of
µ, µ1 and µ2 (Henceforth, we assume Reµ1 ≥ Reµ2).

Exercise.
Find the indicial equation for

d

dz

{
(1− z2) d

dz
u

}
+
{
l(l + 1)− m2

1− z2
}
u = 0. (20.26)

20.18 Use of symbol manipulation programs. Expanding and
regrouping expanded terms is performed by symbol manipulating pro-
grams very efficiently. In practice, Frobenius’ method will not be used
often, but if needed, the best way is to use computers to compute the
series.

20.19 Theorem. Assume that z = 0 is a regular singular point
(→20.15(1)) of (20.8) and µ1, µ2 are the roots of the indicial equation
φ(µ) = 0 (cf.(20.24)). Then
[1] If µ1−µ2 �∈N , there is a fundamental system of solutions (→20.11)
in the form of (20.18) converging in some neighborhood of 0.
[2] If µ1 −µ2 ∈N , generally only one solution in the form of (20.18) is
uniquely determined by the expansion method. See 20.20 for further
classification. ✷
[Demo] Choose µ = µ1. Then, φ(µ + n) cannot be zero for any n = 1, 2, · · ·, so
that an can be uniquely determined from (20.23). The resultant series is convergent
in some small neighborhood of z = 0. This can be demonstrated by constructing
a majorizing series.258 If µ1 − µ2 is not in N , then µ = µ2 also allows us to
determine an uniquely, and the resultant solution is distinct from the one obtained
for µ1. However, if µ1 − µ2 ∈ N , then there is m ∈ N such that µ2 +m = µ1 or
φ(µ2 +m) = 0. Therefore, we may not generally determine am for this µ2.

20.20 Theorem [For µ1 − µ2 ∈N ]. In case [2] of Theorem 20.19.
[21] If µ1 = µ2, then any partner u (to make a fundamental system)
of the solution v constructed for µ1 in the form (20.18) must contain a
logarithmic term and has the following general form

u(z) = Av(z) ln z + zµ1ψ(z), (20.27)

258 See, for example, H. S. Wilf, Mathematics for the Physical Sciences (Dover,
1962), or E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cam-
bridge UP, 1927), Sect. 10.31 for an explicit demonstration.
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where A is a nonzero constant, and ψ is analytic around z = 0. This
function can be determined by substituting the series expansion form
of (20.27) into (20.8).
[22] If µ1−µ2 ∈N \{0}, then a partner u of the solution v constructed
for µ1 in the form (20.18) has the following general form

u(z) = Av(z) ln z + zµ2ψ(z), (20.28)

where v is again the solution constructed for µ1 in the form (20.18),
A is a constant (can be zero), and ψ is analytic around z = 0. This
function can be determined by substituting the series expansion form
of (20.28) into (20.8).
✷
[Demo] According to (20.15) (→20.13) the ratio q(z) = u/v of v and its partner u
is given by (c1 and c0 are integration constants)

q(z) = c1 + c0
∫ z

dζv(ζ)−2 exp

[
−
∫ ζ

P (ζ′)dζ ′
]

= c1 + c0
∫ z

dζ
1

[ζµ1(1 + a1ζ + · · ·)]2 exp

[
−
∫ ζ (p0

ζ′
+ p1 + · · ·

)
dζ′
]

= c1 + c0
∫ z

ζ−(p0+2µ1)h(ζ)dζ, (20.29)

where h(z) is analytic around z = 0 as can be seen from

h(z) = exp
[
−
∫ z

dζ(p1 − p2ζ + · · ·)
]
/(1 + a1ζ + · · ·)2. (20.30)

Since from the indicial equation (→20.17) or φ(µ) = 0 (cf.(20.24))−p0+1 = µ1+µ2,
we know p0 + 2µ1 = 1 + µ1 − µ2 ∈ N \ {0}. Therefore, (20.29) has the following
form

q(z) = A ln z + zµ2−µ1ϕ(z), (20.31)

where A is a constant and ϕ is a function analytic around z = 0. Hence, u must have
the form (20.28). For µ1 = µ2 A cannot be zero to make u functionally independent
of v.✷.

20.21 Practical Frobenius.
(0) Check the expansion center is at worst regularly singular (→20.15).
(1) Compute the indices µ1 and µ2 according to 20.17.
(2) Choose the index with the larger real part µ1 and construct the
series solution following Frobenius (20.16).
(3) If µ2 is not equal to µ1, try to construct the second solution just as
before. If the obtained solution is different (functionally independent259

259 That is, their Wronskian (→24A.6) is not identically zero. Often, without
checking the Wronskian, we can recognize the independence by inspection.
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from the first one, we are done.
(4) If we obtain the same solution or µ1 = µ2, assume the form with
logarithm as in 20.20, and determine v in a power series form.

Exercise.260

(1) Show that two solutions of the equation

d2u

dx2
+ xu = 0 (20.32)

are given by

u1 = x− 1
12
x4 + · · · , (20.33)

u2 = 1− 1
6
x3 + · · · . (20.34)

(2) Show that two solutions of the equation

d2u

dx2
+

1
4x2

(1− x2)u = 0 (20.35)

are given by

u1 = x1/2
{
1 +

1
16
x2 +

1
1024

x4 + · · ·
}
, (20.36)

u2 = u1(x) log x− 1
16
x3/2 + · · · . (20.37)

20.22 Construction of the second solution by differentiation.
Let us write the solution obtained by Frobenius’ method with the index
λ as u(x;λ). If u(x, λ1) and u(x, λ2) are functionally independent, then
we can use u(x, λ1) and a linear combination of the two as a fundamen-
tal system of solutions. Consider

(λ1 − λ2)u(x, λ1)−mu(x, λ2)

λ1 − λ2 −m
. (20.38)

For the case (21), we choose m = 0 and compute the limit of λ1 → λ2

with the aid of l’Hospital’s rule. That is, we compute

∂

∂λ
u(x;λ)

∣∣∣∣∣
λ=λ1

. (20.39)

Computing this explicitly, we obtain the general form given in 24B.7[21].
When λ1 − λ2 = m ∈N , we perform a similar calculation:

∂

∂λ
[(λ− λ2)u(x;λ)]

∣∣∣∣∣
λ=λ1

. (20.40)

Again we recover the form asserted in 20.20.260 Watson-Whittaker p209.
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20.23 Examples.261

(1) Case [1]: µ1 − µ2 �=N .

x2y′′ +
(
x2 +

5

36

)
y = 0 (20.41)

with

v = x5/6
(
1− 3

16
x2 +

9

896
x4 + · · ·

)
, (20.42)

u = x1/6
(
1− 3

8
x2 + · · ·

)
. (20.43)

(2) Case [21]: µ1 = µ2

x(x− 1)y′′ + (3x− 1)y′ + y = 0 (20.44)

with
v = 1/(1− x), u = ln x/(1− x). (20.45)

(3) Case [22]: µ1 − µ2 ∈N \ {0} with a logarithmic term.
(x2 − 1)x2y′′ − (x2 + 1)xy′ + (x2 + 1)y = 0 (20.46)

with
v = x, u = x lnx+ 1/2x. (20.47)

(4) Case [22] µ1 − µ2 ∈ N \ {0} without any logarithmic term (cf.
23.19, 23.25).

x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0 (20.48)

with
v = sinx/

√
x, u = cosx/

√
x. (20.49)

See ?? also, for example.

20.24 Singularity at infinity. To study the singularity of the equa-
tion (20.8) at infinity, we introduce ζ = z−1 as usual in complex function
theory. The equation reads in terms of ζ

d2u

dζ2
+

[
2

ζ
− 1

ζ2
P (ζ−1)

]
du

dζ
+
1

ζ4
Q(ζ−1)u = 0. (20.50)

Therefore (→20.15),
(1) If 2z− z2P (z) and z4Q(z) is regular at ∞, z =∞ is a non-singular
point.
(2) If zP (z) and z2Q(z) are regular at ∞, then z = ∞ is a regular
singular point.
(3) Otherwise, z =∞ is an irregular singular point.261 They are taken from E. Kreyszig, Advanced Engineering Mathematics (Wiley,
1983 Fifth edition) p163.
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20.25 How to solve inhomogeneous problem. To solve the inho-
mogeneous version of (20.8)

d2u

dx2
+ P (x)

du

dx
+Q(x)u = f(x), (20.51)

where f is a piecewise continuous function, we have only to find one
special solution to this inhomogeneous equation; the general solution
is the sum of that for (20.8) and this special solution. If one cannot
get it by inspection, then perhaps the most systematic way is to use
Lagrange’s method of variation of constants described in ??.

20.C Representative Examples

20.26 Legendre equation. If the method of separation of variables
is used in the spherical coordinates for the Laplace equation (→??),
the angular part can further be split into the parts Θ(θ) and Φ(ϕ) as
(cf. 22.2)

d2Φ

dϕ2
+m2Φ = 0, (20.52)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

(
I(I+ 1)− m2

sin2 θ

)
Θ = 0. (20.53)

If there is no ϕ dependence, then m = 0, and (20.53) simplifies to
(→22.21)

d2P

dz2
− 2z

1− z2

dP

dz
+

I(I+ 1)

1− z2
P = 0, (20.54)

where z = cos θ and P (z) = Θ(θ). Or, we get

d

dz
(1− z2)

d

dz
P + I(I+ 1)P = 0, (20.55)

which is called the Legendre equation. z = ±1 are regular singular
points (→20.15) of (20.54). (z = ∞ is also a regular singular point.
See 20.24.)

20.27 Series expansion method applied to Legendre’s equa-
tion; around z = 0. Since z = 0 is a regular point, solutions can
be obtained in the series form P (z) =

∑∞
k=0 akz

k with the radius of
convergence at least unity (→20.14, ??).
(1) Introducing this into (20.55), we get

(n + 1)(n + 2)an+2 + (I− n)(I+ n+ 1)an = 0. (20.56)

292



(2) This implies that an can be expressed in terms of a0 and a1. The
choice a0 = 1, a1 = 0 gives an even power series

Peven = 1− I(I+ 1)

2!
z2 +

I(I+ 1)(I− 2)(I+ 3)
4!

− · · · , (20.57)

and a0 = 0, a1 = 1 gives an odd power series

Podd = z − (I− 1)(I+ 2)
3!

z3 +
(I− 1)(I+ 2)(I− 3)(I+ 4)

5!
z5 − · · · .

(20.58)
(3) Notice that these two solutions make a fundamental system of so-
lutions (→20.11). If I = n ∈ N \ {0}, then they become polynomials
called the Legendre polynomials Pn(z) (→17.16).

20.28 Series expansion method applied to Legendre’s equa-
tion; around z = 1. The indicial equation (20.24) is φ(µ) = µ2 = 0,
so this is the case [21] of Theorem 20.20. One solution in the series
form is

P (z) =
∞∑

k=0

(I+ 1)(I+ 2) · · · (I+ k)(−I)(−I+ 1) · · · (−I+ k − 1)
k!2

(
1− z

2

)k

.

(20.59)
This is called the Legendre function of degree I of the first kind. Its
partner in the fundamental system is obtained in the form of (20.28)
(→20.20). For a positive integer I = n

Qn(z) =
1

2
Pn(z) ln

1 + z

1− z
−

n∑
k=1

2n− 4k + 3
(2k − 1)(n− k + 1)

Pn−2k+1(z). (20.60)

This is called the Legendre function of degree I of the second kind. Since
Pn and Qn make a fundamental system of solutions (→20.11), their
zeros separate each other (→20.12(2)).

20.29 Gauss’ hypergeometric equation. The following equation
is called Gauss’ hypergeometric equation

z(1− z)
d2u

dz2
+ [γ − (α + β + 1)z]

du

dz
− αβu = 0, (20.61)

where α, β and γ are constants. z = 0, 1 and∞ are the regular singular
points (→20.15(1)). The indicial equation (→20.17) around z = 0 is

φ(µ) = µ(µ− 1 + γ) = 0. (20.62)
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For µ = 0 we can get (→20.19) for −γ �∈N

F (α, β, γ; z) ≡
∞∑

k=0

(α)k(β)k
k!(γ)k

zk, (20.63)

where
(λ)k = λ(λ+ 1) · · · (λ+ k − 1). (20.64)

F is called the hypergeometric function. For µ = 1− γ, if γ − 2 �∈ N ,
we get a partner of the above solution as

z1−γF (α + 1− γ, β + 1− γ, 2− γ; z). (20.65)

Notice that from (20.59)

Pν(z) = F (ν + 1,−ν, 1; (1− z)/2). (20.66)

Discussion.
If we scale z as kz in Gauss’s equation, we obtain the equation of the following
form:

z(1− kz)u′′ + (c− bz)u′ − au = 0. (20.67)

Its regular singular points are at 0, 1/k and ∞. There is no other singularities.
Take the k → 0 limit to make 1/k confluent to ∞. Then, we obtain

zu′′ + (c− bz)u′ − au = 0. (20.68)

If we set b = 0, the equation is Bessel’s equation (→23.1). Indeed, replacing az
with −t2/4, c = ν + 1, and v = tνu, then

t2v′′ + tv′ + (t2 − ν2)v = 0. (20.69)

It is obvious that ∞ is its irregular singularity (→20.15).

20.30 Associate Legendre functions. Consider the case with m �=
0 for (20.53) (→20.26). Using the same transformation of the variable
z = cos θ, (20.53) becomes

d

dz

(
(1− z2)

dΘ

dz

)
+

(
I(I+ 1)− m2

1− z2

)
Θ = 0. (20.70)

z = ±1 are regular singular points (→20.15). Instead of solving this
with the aid of the series expansion, introduce Z as

Θ = (1− z2)m/2Z(z). (20.71)
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Then, we have

(1− z2)
d2Z

dz2
− 2(m + 1)z

dZ

dz
+ (I−m)(I+m+ 1)Z = 0. (20.72)

Differentiate Legendre’s equation (20.55) m times, we get

(1−z2)
d2+mu

dz2+m
−2(m+1)zd

m+1u

dzm+1
+(I−m)(I+m+1)

dmu

dzm
= 0. (20.73)

Therefore, in terms of Legendre functions P and Q (→20.28)

Pm
 (z) = (1−z2)m/2 dm

dzm
P (z), Qm

 (z) = (1−z2)m/2 dm

dzm
Q (z) (20.74)

are the fundamental system of solutions (→20.11) of (20.70), and are
called associate Legendre functions (→22.5-22.6). Notice that Pm

 is
not a polynomial, if m is odd. Also

Pm
 (±1) = 0 for m ≥ 1. (20.75)

20.31 Confluent hypergeometric equation. Replace z in the hy-
pergeometric equation (20.61) with z/β and let β →∞. We get

z
d2u

dz2
+ (γ − z)

du

dz
− αu = 0 (20.76)

This is called the confluent hypergeometric equation or Kummer’s equa-
tion. z = 0 is a regular singular point (→20.15), but z = ∞ is an
irregular singular point (→20.15), which is created by the confluence
of two regular singular points 1 (which is scaled to β by the variable
change) and ∞ of the hypergeometric equation. The indicial equation
(20.24) is φ(µ) = µ(µ− 1) + γµ = 0. The series solution method gives

u1 = F (α, γ; z), u2 = z1−γF (α− γ + 1, 2− γ; z), (20.77)

where

F (α, γ; z)↽==
∞∑

k=0

(α)k
k!(γ)k

zk, γ �= 0, 1, 2, · · · . (20.78)

This function is called the confluent hypergeometric function.

Exercise.
Show that
(1) (1 + z)n = F (−n, β, β, z)
(2) (1/z) log(1 + z) = F (1, 1, 2,−z).
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APPENDIX a24 Floquet Theory

20.32 We consider (20.1) with periodic A(x), that is, there is ω > 0 such that

A(x+ ω) = A(x). (20.79)

20.33 Theorem [Floquet]. If A in (20.1) is periodic, then there is a fundamental
matrix such that

Φ(x) = F (x)exΛ, (20.80)

where F is a n× n matrix with period ω, and Λ is a constant n× n matrix. ✷

[Demo] Let Φ(x) be a fundamental matrix (→20.5) for (20.1). Then Φ(x + ω) is
also a fundamental matrix. Therefore, Theorem ?? tells us that there is a constant
non-singular matrix M such that Φ(x+ ω) = Φ(x)M . Since M is non-singular, its
logarithm lnM = N is well defined. Define Λ = N/ω, and set

F (x) = Φ(x)e−xΛ. (20.81)

We get with the aid of Φ(x+ ω) = Φ(x)M

Φ(x+ ω) = F (x+ ω)e(x+ω)Λ = F (x+ ω)exΛM = F (x)exΛM. (20.82)

Hence,
F (x+ ω) = F (x). (20.83)

In other words,

20.34 Theorem. A linear ordinary differential equation (20.1) with a periodic
matrix A can be converted into a constant coefficient ordinary differential equation

dv(x)
dx

= Λv(x) (20.84)

with u = F (x)v, where F is defined by (20.81).✷

20.35 Characteristic exponents. The eigenvalues of Λ in (20.81) are called the
characteristic exponents. There is no systematic way to obtain these exponents.
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21 Asymptotic Expansion

A formal expansion of a solution of a linear ODE discussed
in the previous section around an irregular singular point
gives generally a divergent series, but the series may still be
useful as asymptotic series. Almost all the expansion series
obtained by perturbation calculations in physics are diver-
gent but asymptotic series. The famous perturbation series
of QED are examples. We cannot uniquely reconstruct the
function from its asymptotic series expansion in general, but
we can with some auxiliary conditions. A famous example
is the Borel summability.

Key words: asymptotic sequence, asymptotic series, op-
timal truncation, Watson’s lemma, Laplace’s method, Stir-
ring’s formula, acceleration of convergence, Borel sum, Borel
transformation, Nevanlinna’s theorem.

Summary:
(1) If Frobenius’ method is blindly applied around an irregular singu-
lar point, we usually obtain divergent formal series, but they are often
asymptotic (21.1). Most perturbation series in physics are only asymp-
totic (21.17).
(2) Divergence does not automatically mean asymptoticity; A series is
an asymptotic expansion of a function, if the truncation error at the
n-th order is smaller than the n-th order term (21.3). Therefore, its
optimal truncation (21.5) is practically very useful.
(3) Computation involving asymptotic series can be performed termwisely
except differentiation (21.10).
(4) There are several standard methods to obtain the asymptotic ex-
pansion of functions and integrals (21.11-21.13, 21.15).
(5) The asymptotic expansion (in terms of a given asymptotic sequence)
of a function is unique (21.6), but an asymptotic series cannot uniquely
determine a function (21.7).
(6) However, if the function satisfies certain auxiliary conditions, then
it can be recovered from the asymptotic series. The most important
condition is the Borel summability (Nevanlinna’s theorem 21.20). In
this case the Borel summation allows us to reconstruct the function
(21.18-21.20).

21.1 Irregular singularity and divergence. Try to solve (20.8)
following Frobenius (24B) blindly, assuming that x = 0 is an irregular
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singular point (→20.15):

u(x) = xλ
∞∑

k=0

ckx
k. (21.1)

Formally, we get a set of formulas for ck and λ as in 20.16. If, fortu-
nately, cl = 0 for all l larger than some N , we can get a regular solution.
However, this is an accidental case, and usually we can prove that for
some k > 0

lim
n→∞

∣∣∣∣cn−k

cn

∣∣∣∣ = 0, (21.2)

that is, the series (21.1) is divergent.262 However, the resultant diver-
gent series may be used as an asymptotic series around x = 0.

21.2 Asymptotic sequence. Let {φn(x)} be an infinite sequence of
continuous functions. If φn+1(x) = o[φn(x)] around x0, i.e.,

lim
x→x0

φn+1(x)/φn(x) = 0, (21.3)

for all n > 0, the sequence is called an asymptotic sequence (around
x0).

21.3 Asymptotic series. Let {φn} be an asymptotic sequence around
x0. Then, the following formal series

a0φ0(x) + a1φ1(x) + · · ·+ anφn(x) + · · · (21.4)

is called an asymptotic series for a function f at x0, if for each fixed n

f(x) = a0φ0(x) + a1φ1(x) + · · ·+ anφn(x) + o[φn(x)] (21.5)

as x → x0. That is, if

lim
x→x0

f(x)−∑n
k=0 anφn(x)

φn(x)
= 0 (21.6)

for all n, we say (21.5) is an asymptotic expansion of f around x0 in
terms of asymptotic function sequence {φj}, and write

f(z) ∼ a0φ0(z) + a1φ1(z) + · · ·+ anφn(z) + · · · . (21.7)

262 See E L Ince, Ordinary Differential Equations (Dover, 1956; original 1926),
p422. Also see W RWasow, Asymptotic Expansions for Ordinary Differential Equa-
tions (Intescience, 1965).
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Discussion.
(A) Let Aa(α, β) denote the angular region

Aa(α, β) ≡ {z |α < Arg(z − a) < β, (21.8)

where Arg is the principal argument (→??). We say a function f is expanded in
the (generalized) asymptotic power series around a in the angular region Aa(α, β),
if (21.5) hold when z → a is taken inside the angular region. The boundary of the
maximal angular region where a given asymptotic expansion holds is called a Stokes
line (→21.8).
(B) The Stirling formula 14.10 is admissible in the angular region A0(−π, π). This
can be shown with the aid of

log Γ(z) =
(
z − 1

2

)
log z − z + log

√
2π − 1

π

∫ ∞

0

z

z2 + t2
log(1− e−2πt). (21.9)

21.4 Example. A typical example is:

F (x) =
∫ ∞

0

e−t/x

1 + t
dt ∼

∞∑
n=0

(−1)nn!xn+1. (21.10)

This is an asymptotic series around x = 0. If x = 1/2, then the series
read

1

2
− 1

4
+
1

4
− 3

8
+
3

4
+ · · · . (21.11)

This is hardly useful. However, if x is small, then the series should be
usable as a numerical tool:263

F (0.1) ∼ 1

10
− 1

100
+

2

1000
− 6

10000
+ · · · . (21.12)

21.5 Optimal truncation of asymptotic series. As is clear from
the definition 21.3, to evaluate f (ε), if we truncate the asymptotic se-
quence at the n-th order, then the error (i.e., the difference between the
true value and the estimate obtained from the truncated series) must
be smaller than anφn(ε). Hence, for a given ε we can find an optimal n
to truncate the series by looking for n which minimizes anφn(ε).

For example, for (21.10), with the aid of Stirling’s formula (→9.11,
also see 21.14)

n!xn+1 ∼ e(n+1) lnx+n ln(n/e). (21.13)

Hence, n ∼ 1/ε gives the optimal truncation position.

263 Read a conversation between a numerical analyst and an asymptotic analyst on
p19 of N. G. de Bruijn, Asymptotic Methods in Analysis (Dover, 1958, 1981).
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Discussion: How to efficiently compute series.
(1) Euler transformation. Let

f(x) =
∞∑
n=0

anx
n (21.14)

be a convergent series. Define the difference operator D as

Dan = an+1 − an. (21.15)

Then,

f(x) = (1− x)−1a0 + (1− x)−1
∞∑
n=0

Danxn+1. (21.16)

This transformation is called the Euler transformation. Practically it is wise to use
this beyond some finite terms.
(2) Subtraction trick. The above idea may be understood as subtracting the
expansion of (1− x)−1a0 from f(x). If we could find a function g which is close to
f and easily expandable analytically, then considering f − g may be a good idea to
compute the series for f . For example, to compute

f =
∞∑
n=0

1
(1 + n2)

, (21.17)

it is advantageous to use the knowledge

∞∑
n=0

1
n(n+ 1)

= 1. (21.18)

Hence,

f − 1 =
∞∑
n=0

n− 1
n(n+ 1)(n2 + 1)

. (21.19)

(3) We wish to compute

S =
∞∑
n=1

1
1 + n2

(21.20)

(i) The remainder satisfies the following inequalities

∫ ∞

N

dx

1 + x2
< SN ≡

∞∑
n=N

1
1 + n2

<

∫ ∞

N−1

dx

1 + x2
. (21.21)

Using this, find the necessary number of terms to obtain S within a 0.01% error.
(ii) Now we use the subtraction trick (→??) with the aid of

∞∑
n=1

1
n2

=
π2

6
,

∞∑
n=1

1
n4

=
π4

90
. (21.22)
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What N do you need to obtain the same accuracy?
(4) The same idea works for integrals as well. Consider

I(ε) =
∫ 1

0

1√
ε+ x

dx. (21.23)

In this case I(0) = 2 is easy, so let us subtract 1/
√
x:∫ 1

0

[
1√
ε+ x

− 1√
x

]
dx. (21.24)

Introducing u = x/ε (rescaling trick), we realize that this integral is of order ε1/2.
The integration range may be replaced by [0,∞) to the lowest nontrivial order.

21.6 Uniqueness of asymptotic expansion. The asymptotic ex-
pansion up to a given number of terms of a given function is unique if
an asymptotic sequence is specified. ✷
This follows from the explicit formula for the coefficients:

an = lim
x→x0

f(x)−∑n−1
k=0 akφk(x)

φn(x)
. (21.25)

21.7 Warning. However, an asymptotic series cannot uniquely de-
termine a function. (1+x)−1, (1+e−x)/(1+x) and (1+e−

√
x+x)−1 all

have the same asymptotic expansion
∑
(−1)n−1x−n (x →∞) (Demon-

strate this statement). If we try to asymptotically expand e−1/x in
terms of the asymptotic sequence {xn} (x → 0), all the coefficients
vanish, but obviously the function is not equal to 0. Hence, we can-
not generally recover a function from its asymptotic expansion, because
transcendentally small terms are ignored by asymptotic expansion.

21.8 Stokes line. The transcendentally small term e−1/x (x → +0)
cannot be seen through asymptotic expansions as seen in 25.7. How-
ever, obviously this is no more small for x < 0. Hence, if we consider
the function f (x) as a function f(z) of the complex variable z instead
of x, then its ‘expandability into asymptotic series’ should change dras-
tically according to the sectors or regions on the complex plane. The
occurrence of this drastic change is called Stokes’ phenomenon and the
boundary of these regions is called a Stokes line (curve). The existence
of this phenomenon signifies nonconvergent asymptotic series.

21.9 Convergent power series is asymptotic. If f(x) is Taylor-
expandable at x = a (i.e., is analytic (→7.1) around a), then the Taylor
series is an asymptotic series. Conversely, if f(x) is holomorphic (→??)
and single valued in 0 < |x − a| < r for some positive r, then a is a
removable singularity (→??(i)), and the asymptotic series is the Taylor
series of f around a.264264 Encyclopedic Dictionary of Mathematics vol I p124-6.
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21.10 Operations with asymptotic series.
(1) Termwise addition and subtraction of two asymptotic series (with
the same asymptotic sequence 21.2) is again an asymptotic series.
(2) In the case of power series f ∼ ∑ anx

n and g ∼ ∑ bnx
n, their prod-

uct fg has the asymptotic power series
∑

cnx
n with cn =

∑n
r=0 an−rbr.

(3) Also for power series the asymptotic series of f(g) is obtained from
that of f and g by substitution.
(4) The termwise integration of the power asymptotic series is the
asymptotic series of the integral:

∫ x

0
f(x)dx ∼

∞∑
n=0

an

n + 1
xn+1. (21.26)

(5) However, termwise differentiation may not be allowed. A famous
counter example is e−1/x sin(e1/x), which has 0 as its asymptotic power
series as guessed easily from 21.7, but its derivative cannot be expanded
in powers.
(6) Termwise differentiation is allowed if the derivative of the function
also has an asymptotic expansion. See the Discussion below.

Discussion.
In this case, if f is holomorphic near a in the angular region and has an asymptotic
power series, then termwise differentiation is allowed so long as a is reached within
Aa(α, β) (→21.3 Discussion (A)).

21.11 How to obtain expansion I: Integration by parts
(1) Let us estimate the tail of the normal distribution

G(x) =
1√
2π

∫ ∞

x
e−y2/2dy. (21.27)

Integrating by parts, we get

√
2πG(x) =

1

x
e−x2/2 −

∫ ∞

x
e−y2/2dy. (21.28)

From this we easily get

x

1 + x2
e−x2/2 ≤

√
2πG(x) ≤ 1

x
e−x2/2. (21.29)

This suggests that G(x) expx2/2 can be asymptotically expanded in
powers of x−1. See also 21.12.
(2)

−Ei(−t) ≡
∫ ∞

t

e−s

s
ds ∼ e−t

t
−
∫ ∞

t

e−s

s2
ds (21.30)
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etc., gives an asymptotic expansion.
(3) The decay rate of the Fourier expansion coefficients of a Ck- function
discussed in ?? is an application of this method thanks to the Riemann-
Lebesgue lemma (→??).
(4) Fourier expansion of piecewise Ck-functions. To compute

∫ ∞

−∞
f(x)eiωxdx (21.31)

we decompose the integration range into piecewise Ck sections, and
then estimate the integral asymptotically by integration by parts (again
thanks to the Riemann-Lebesgue lemma) in each section.

Exercise.
(A) Find the asymptotic expansion of Fresnel integrals

C(x) ≡
∫ x

0

cos
πu2

2
du; S(x) ≡

∫ x

0

sin
πu2

2
du; (21.32)

[Hint. Use
∫∞
0

→??.]
(B) Approximate estimation of integrals265

(1)

I(x) =
∫ x

0

et
2 dt√
x2 − t2 . (21.33)

For x* 1, we may replace et
2 � 1. For x# 1, we introduce ξ = x− t, and

I(x) = ex
2
∫ x

0

e−2ξx+ξ2 dξ√
2ξx− ξ2 . (21.34)

Plotting the exponent in the integrand, we realize that the exponential factor is the
largest when ξ = 0, so that

I(x) � ex2
∫ x

0

e−2ξx dξ√
2xξ

� e
x2

2x

∫ ∞

0

e−z
dz√
z
∼ e

x2

2x
. (21.35)

(2)

I(a, b) =
∫ ∞

0

e−ax
2
sin2 bxdx. (21.36)

This can be rewritten as

I(a, b) =
1√
a

∫ ∞

0

e−z
2
sin2

(
b√
a
z

)
dz. (21.37)

If b# √
a, then the sine factor oscillates very rapidly, so we may replace it with its

average value 1/2. Therefore, � 1/
√
a. Compare this with the exact value of I .

265 Migdal
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21.12 How to obtain asymptotic series II: Watson’s lemma.
Consider the following Laplace integral266

F (s) =
∫ ∞

0
e−stf(t)dt. (21.38)

Assume that f(t) has a power series expansion

f(t) =
∞∑

n=0

ant
n (21.39)

with the radius of convergence R. Replace f in the integral (21.38) with
its series expansion (21.39), and perform the integration termwisely.
Then we get the following formal result:

F (s) ‘ = ’
∞∑

n=0

an

sn+1
. (21.40)

Watson’s Lemma. If there is a > 0 such that |f(t)| = O[eat] for
sufficiently large t, then (21.40) is actually an asymptotic expansion of
F around s =∞. ✷267

Example. An asymptotic expansion of the error function may easily
be obtained with the help of Watson’s lemma:

Erfc(x) =
2√
π

∫ ∞

x
e−t2dt =

2√
π
e−x2

∫ ∞

0
e−2xt−t2dt. (21.41)

Now introduce u = xt and expand e−u2/x2
in power series.

Erfc(x) =
2e−x2

x
√
π

∫ ∞

0
e−2u

(
1− u2

x2
+

u4

2x4
− u6

6x6
+ · · ·

)
du. (21.42)

This lemma can be used to estimate the asymptotic form of Fourier
transforms as well.

Exercise.
(1) Show for x > 0 ∫ ∞

0

e−xt

1 + t2
dt =

1
x
− 2!
x2

+
4!
x4

− · · · . (21.43)

266 F is the Laplace transform of f (→33).
267 For a proof see B. Friedman, Lectures on Application-Oriented Mathematics
(Wiley, 1969), p78.
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[Hint. Use s = xt as a new integration variable.]
(2) Show ∫ ∞

0

e−xt

1 + t3
dt ∼

∑
+n = 0∞(−1)n (3n)!

x3n+1
. (21.44)

(3) The asymptotic expansion of Ci and si:

Ci(x) ≡
∫ ∞

x

cos t
t
dt, si(x) ≡

∫ ∞

x

sin t
t
dt. (21.45)

This is the real and imaginary parts of

J(x) =
∫ ∞

x

eit

t
dt =

∫ ∞

0

ei(x+u)

x+ u
du. (21.46)

Apply Watson’s theorem to obtain the asymptotic expansions of these functions.
Of course, repeated integration by parts should also work as can be guessed from
the example in 21.11.
(4) (This problem need not be here.) Find the asymptotic expansion in the x→∞
limit of

En(x) =
∫ ∞

1

t−ne−xtdt (21.47)

in powers of 1/x For n = 1, what is the optimum truncation of the resultant
asymptotic series to compute E1(N)?

21.13 How to obtain asymptotic series III: Laplace’s method.
Consider

F (θ) =
∫ +∞

−∞
eθh(x)dx, (21.48)

where h is a real C2-function with the following properties:
(i) h(0) = 0 is an absolute maximum of h, and h < 0 for any nonzero
x.
(ii) There are positive constant a and b such that h ≤ −a for |x| ≥ b.
We must of course assume that the integral converges for sufficiently
large θ. Then, in the θ →∞ limit, we get

F (θ) ∼
√
2π(−θh′′(0))−1/2. (21.49)

21.14 Gamma function and Stirling’s formula. Although we
can apply Watson’s lemma to get the asymptotic expansion of Gamma
function (→14.1), it is not very easy, so we use the Laplace method.
Substituting t = z(1 + x) in (14.3), we get

Γ(z + 1) = ezzz+1
∫ ∞

−1

[
e−x(1 + x)

]z
dx. (21.50)

h in 21.13 reads −x+ln(1+x), so it satisfies the condition of Laplace’s
method, and h′′(0) = −1. Hence, we get

n! ∼
√
2πe−nnn+1/2, (21.51)

which is the famous Stirling’s formula (→14.10) obtained by Laplace
in this way.
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21.15 How to obtain asymptotic series IV: Method of steep-
est descent. This is perhaps the most famous method to obtain
asymptotic expansions of integrals. The principle is explained as fol-
lows. We wish to compute the following contour integral on the complex
plane

I =
∫
C
G(z)etf(z)dz, (21.52)

where C is a contour from infinity to infinity on the complex plane such
that on both ends the holomorphic function (→??) f goes to −∞. G
is also assumed to be holomorphic and t is a large positive constant.
Let us split f into its real and imaginary parts as f = φ+ iψ. Since φ
is a harmonic function (→??), it can have a saddle point (→25.6) z∗,
which satisfies f ′(z∗) = 0. Modify the contour C to C∗ so that it can
pass through z∗ and parallel to grad φ near z∗. Along this pass

f (z) = f(z∗) +
1

2
(z − z∗)2f ′′(z∗) + · · · (21.53)

and ψ must be almost constant, because the Cauchy-Riemann equation
(→??) tells us that gradients of φ and ψ are orthogonal. Hence the
second term in the above expansion along C∗ near z∗ must be real
non-positive. We may introduce a real coordinate ζ such that f(z) =
f(z∗) − ζ2/2 + · · ·. Let α be the angle between the real axis and the
tangent of C∗ at z∗. Then

dζ

dz
= eiα

√
|f ′′(z)|. (21.54)

Changing the integration variable, we get

I = etf(z∗)G(z∗)e−iα

∣∣∣∣∣ 2π

tf ′′(z∗)

∣∣∣∣∣
1/2

. (21.55)

21.16 Acceleration or improvement of asymptotic series. If
we could convert the asymptotic series around 0 in powers of x into an-
other asymptotic sequence which is in terms of an asymptotic sequence
converging much more quickly to 0 than xn, then the asymptotic esti-
mate should become much more accurate. An example is given here.268

Consider (21.10)

F (x) =
1

x
− 1

x2
+
2

x3
+ · · · . (21.56)

268 See, for example, C. N. Moore, Summable Series and Convergence Factors
(Dover, 1966).
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We wish to convert this into the power series in y = φ(x). We assume
y/x → 1 in the x → ∞ limit, and the Taylor-expandability: x/y =
1 + a/y + b/y2 + · · ·. Substituting this into (21.56), we get

F (x) =
1

y + a+ b/y
− 1

(y + a)2
+ · · ·

=
1

y

(
1− a

y
+

a2

y2
− b

y2
+ · · ·

)
− 1

y2

(
1− 2a

y
+ · · ·

)
+ · · · .
(21.57)

Hence, choosing a = −1, we can kill the 1/y2 term. That is, we get

F (x) =
1

x+ 1
+O

[
1

(x+ 1)3

]
. (21.58)

This is much better than the original expansion for x # 1. Of course,
one should not believe that the improvement is increasingly better if we
continue this procedure indefinitely; the outcome is still an asymptotic
expansion.

Discussion.
Consider the summation

S =
∞∑
r=1

f(r), (21.59)

where f is well-behaved. Let S(n) be the partial sum up to the n-th term. Then,
often

S(n) = S +
B

n
+
C

n2
+ o[n−2]. (21.60)

This can be used to estimate S from partial sums.
A variant of this idea is the estimation of integral from numerical integration

with increment h. Let the integral be I and its approximately computed value with
the increment h be I(h). Then, often

I(h) = I +Bh+ Ch2 + o[h2]. (21.61)

21.17 Most perturbation series in physics are at best asymp-
totic. In field theory and statistical mechanics, in many cases we can
perform analytical work only with the aid of some sort of perturbation
techniques. The resultant perturbation series are usually divergent.
Physicists often claim that they are asymptotic, but divergence does
not automatically mean that the series is asymptotic. Hence, we have
two problems: (1) To show that the series is asymptotic and (2) To
recover the desired quantity from the asymptotic series. As we have
seen in 21.7, (2) is impossible without some auxiliary knowledge about
the function. Read Fejer’s theorem (→??) for Fourier series. A certain
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summation method may recover the original function from a divergent
series under an appropriate auxiliary conditions. (For Fejer’s theo-
rem the needed auxiliary condition is the continuity of the function.)
Thus, we may expect that a function satisfying certain auxiliary con-
dition could be recovered from its asymptotic series by a particular
summation method. A representative method is the Borel summation
(→21.18). Often the perturbation series in field theory are proved to
be Borel summable (i.e., the original quantity can be recovered from its
asymptotic series as a Borel sum).

21.18 Borel transform. Even if the RHS of

f(z) ∼
∞∑

n=0

anz
n (21.62)

diverges, its “Borel sum”

B(t) =
∞∑

n=0

an
tn

n!
(21.63)

may converge. B(t) is called the Borel transform of the series (21.62).

21.19 Heuristics. Consider

1

z

∫ ∞

0

tn

n!
e−t/zdt = zn. (21.64)

Inserting this into (21.62), and formally changing the order of intergra-
tion and summation, we obtain

f(z) =
1

z

∫ ∞

0
B(t)e−t/zdt =

∫ ∞

0
B(λz)e−λdλ. (21.65)

Essentially, the Laplace transform (→33) of B(t) is the desired func-
tion.

Exercise.
(1) Apply this to (1 + x)−1 ∼∑(−)nxn.
(2) We can asymptotically expand as

Erfc(x) =
2√
π

∫ ∞

x

e−t
2
dt ∼ 2√

π

e−x
2

x

∑
n

= 0∞
(−1)n(2n)!
n!(2x)2n

. (21.66)

Apply the Borel summation method to this series and recover the error function.
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21.20 Nevanlinna’s theorem. Let f(z) be analytic on the open
disc D in the figure, and its asymptotic expansion satisfies

f(z) =
n−1∑
k=0

akz
k +Rn(z) (21.67)

with
|Rn(z)| ≤ const.σnn!|z|n (21.68)

uniformly for all n and all z ∈ D for some positive σ. Then (21.67)
is Borel summable (→21.17). That is, the Borel transform B(t) of
the series converges for |t| < σ−1 and can be analytically continued to
an analytical function B(t) (→??) on the strip containing the entire
positive real axis. From this f can be recovered as269

f(z) =
1

z

∫ ∞

0
B(t)e−t/zdt. (21.69)

Exercise.
(1) Apply the Borel summation method to (25.8) (you must check the condition for
the possibility).
(2) Demonstrate the following asymptotic expansion for x→∞

ex
2/2

∫ ∞

x

e−y
2/2dy ∼ 1

x
− 1
x3

+ · · ·+ (−1)n (2n− 1)!!
x2n+1

+ · · · . (21.70)

Then, recover the integral from the series with the aid of the Borel summation
method (if possible).

269 For an elegant proof see A D Sokal, J. Math. Phys. 21, 261-3 (1980). However,
this is not the general form given by the original author. For applications, see, for
example, Itzykson and Zuber, Quantum Field Theory (McGraw-Hill, 1980), Section
9.4. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon
Press, 1989) Section 27.
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22 Spherical Harmonics

Separation of variables of the Laplace equation in the spher-
ical coordinates requires the spherical harmonic functions
which make a complete orthonormal set of functions of spa-
tial directions (i.e., functions on a unit sphere). Derivation
of functional forms, the orthonormal relation, addition theo-
rem related to the multipole expansion, and the application
to PDE boundary value problems (potential problems) are
discussed.

Key words: spherical harmonics, spherical harmonic func-
tion, addition theorem, multipole expansion, interior prob-
lem, exterior problem, annular problem

??:
(1) The angular part of the Laplacian in the spherical coordinates have
the orthonormal eigenfunctions called spherical harmonics Y m

n (22.8-
22.9). They are simultaneous eigenfunctions of the total and the z-
component of the quantum mechanical angular momentum (22.10).
(2) The addition theorem is used to decouple two spatial directions
(26A.12), and applied to the multipole expansion of the electrostatic
potential (22.14-22.15).
(3) Spherical potential problems have different general expansion forms
depending on the domain of the problem (22.17-22.20).

22.A Basic Theory
22.1 Separating variables in spherical coordinates. In the polar
coordinate system, the 3-Laplacian reads (→??)

∆ =
1

r

∂2

∂r2
r +

1

r2
L, (22.1)

where

L =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
. (22.2)

Separating the solution as u(r, θ, ϕ) = R(r)Y (θ, ϕ), we get

d2

dr2
rR(r) = l(l + 1)

R(r)

r
, (22.3)

LY (θ, ϕ) = −l(l + 1)Y (θ, ϕ). (22.4)
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L is essentially the Laplacian on the unit sphere, and is a negative
definite operator.

22.2 Further separation of angular variables. Let us further
assume Y (θ, ϕ) = Θ(θ)Φ(ϕ). The ϕ-direction must be the periodic
direction, so the equation for Φ must be an eigenvalue problem (cf.
19.9 or ??). Hence,

d2Φ

dϕ2
= −m2Φ, (22.5)

and the rest is

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

(
l(l + 1)− m2

sin2 θ

)
Θ = 0. (22.6)

22.3 Legendre’s equation. If we introduce x = cos θ, the (22.6)
reads

d

dx

(
(1− x2)

dΘ

dx

)
+

(
l(l + 1)− m2

1− x2

)
Θ = 0, (22.7)

which is called (modified) Legendre’s equation.

22.4 m = 0. For m = 0 Legendre’s equation reads (→24C.1)

d

dx

[
(1− x2)

dΘ

dx

]
+ l(l + 1)Θ = 0, (22.8)

The general solution to this can be written as (→20.28)

Θ = APl(x) +BQl(x), (22.9)

where Pl and Ql are Legendre functions of first and second kind, re-
spectively. Ql is divergent at x = ±1, so that for a sphere problem this
function should not appear. Furthermore, Pl is not finite at x = 1 if l is
not an integer. Hence, we need Pn (n ∈N ), the Legendre polynomials
(→17.16, 20.27(3)). That is, l must be a nonnegative integer (the
eigenvalue problem has been solved).

22.5 m �= 0. For convenience 20.30 is repeated here. If we define
Z(x) by

Θ = (1− x2)m/2Z(x), (22.10)

(22.7) becomes

(1− x2)
d2Z

dx2
− 2(m+ 1)x

dZ

dx
+ (n−m)(n+m+ 1)Z = 0. (22.11)
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This equation can be obtained by differentiating (22.7)m times. There-
fore, the general solution of (22.7) is given by (→20.30)

Pm
n (x) = (1− x2)m/2 dm

dxm
Pn(x), Qm

n (x) = (1− x2)m/2 dm

dxm
Qn(x).

(22.12)
These functions are called associate functions of Pn and Qn. If we
require that the solution is finite at x = 1, then Pm

n is the functions
appearing in the solution.

22.6 Associate Legendre functions. If m is odd, then Pm
n is not

a polynomial:

P 1
1 (x) = (1− x2)1/2 = sin θ, (22.13)

P 1
2 (x) = 3(1− x2)1/2x = 3 sin θ cos θ =

3

2
sin θ, (22.14)

P 2
2 (x) = 3(1− x2) = 3 sin2 θ

3

2
(1− cos 2θ), (22.15)

P 1
3 (x) =

3

2
(1− x2)1/2(5x2 − 1) = 3

8
(sin θ + 5 sin 3θ), (22.16)

P 2
3 (x) = 15(1− x2)x =

15

4
(cos θ − cos 3θ), (22.17)

P 3
3 (x) = 15(1− x2)3/2 = 15 sin3 θ =

15

4
(3 sin θ − sin 3θ),

(22.18)
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etc., where x = cos θ.

22.7 Orthonormalization of associate Legendre functions. We
have ∫ 1

−1
Pm

k (x)P
m
l (x)dx =

(l +m)!

(l −m)!

2

2l + 1
δk,l. (22.19)

[Demo]. The LHS is, for l > m, k > m

f(m) ≡
∫ 1

−1

(1− x2)m d
mPk
dxm

dmPl
dxm

dx (22.20)

= −
∫ 1

−1

dm−1Pk
dxm−1

d

dx

(
(1− x2)md

mPl
dxm

)
dx. (22.21)

On the other hand, replacing m with m−1 and n with l in (22.11) and multiplying
(1− x2)m−1, we get

d

dx
(1− x2)m d

mPl
dxm

= −(l +m)(l −m+ 1)(1− x2)m−1 d
m−1Pl
dxm−1

. (22.22)

Hence, (22.21) implies

f(m) = (l +m)(l −m+ 1)f(m− 1) = · · · = (l +m)!
(l −m)!f(0). (22.23)

f(0) = 2/(2l + 1) is obtained from 17.5.

22.8 Spherical harmonics. Now we can construct a complete or-
thonormal set of L2(S2, sin θ) (S2 is the unit 2-sphere) (→16.19). Let
us define the kets {|l, m〉} by (→16.21-)

〈θ, ϕ|l, m〉 = Y m
l (θ, ϕ)

= (−){1+(−1)m}/2
√√√√2l + 2

2

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)

1√
2π

eimϕ,

(22.24)

where the ket |θ, ϕ〉 satisfies (→16.23, 16.25)

∫ 2π

0
dϕ
∫ π

0
dθ|θ, ϕ〉 sin θ〈θ, ϕ| = 1. (22.25)

and

〈θ, ϕ|θ′, ϕ′〉 = δ(θ − θ′)δ(ϕ− ϕ′)/ sin θ. (22.26)
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22.9 Orthonormal relation for spherical harmonics. The de-
composition of unity (→16.15) reads

1 =
∞∑
l=0

l∑
m=−l

|l, m〉〈l, m| (22.27)

with the normalization

〈l, m|l′, m′〉 = δl,l′δm,m′ . (22.28)

In the ordinary notation these formulas read (→16.26-16.27)

δ(θ − θ′)δ(ϕ− ϕ′)
sin θ

=
∞∑
l=0

l∑
m=−l

Y m
l (θ, ϕ)Y

m
l (θ

′, ϕ′), (22.29)

and

∫ π

0
dθ
∫ 2π

0
dϕ sin θY m

l (θ, ϕ)Y
m′
l′ (θ, ϕ) = δl,l′δm,m′. (22.30)

22.10 Angular momentum. Quantum mechanically, −h̄2L2 is the
total angular momentum operator. |l, m〉 is the simultaneous eigenket
of the total angular momentum operator and the z-component of the
momentum Mz:

(ih̄)2L|l,m〉 = h̄2l(l + 1)|l, m〉, (22.31)

Mz|l, m〉 = m|l,m〉. (22.32)

22.11 Spherical harmonic function. A function X of angular co-
ordinates θ and ϕ is called a spherical harmonic function of order n, if
rnX becomes a harmonic function (→??). X satisfies

LX + n(n+ 1)X = 0, (22.33)

where L is in 22.1. Because of the completeness (→??) of the spherical
harmonics (essentially, its proof is in 33.1), any spherical harmonic
function of order n can be written as

X(θ, ϕ) =
n∑

m=−n

AmY n
m(θ, ϕ). (22.34)
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22.12 Addition theorem. Let γ be the angle between the directions
specified by the angular coordinates (θ, ϕ) and (θ′, ϕ′).270 Then,

Pn(cos γ) =
4π

2n + 1

n∑
m=−n

Y m
n (θ

′, ϕ′)Y m
n (θ, ϕ). (22.35)

This theorem allows us to decouple two directions.
[Demo]. Notice that Pn(cos γ) is a spherical harmonic function of order n (due to
spherical symmetry), so that we can expand it as

Pn(cos γ) =
n∑

m=−n
Y mn (θ, ϕ)Am(θ′, ϕ′). (22.36)

The coefficients are fixed immediately from the following formula and the orthogo-
nality of {Y mn }.

22.13 Lemma. Let X be a spherical harmonic function of order n,
and γ is the angle in 22.12. Then,

∫ 2π

0
dϕ
∫ π

0
dθ sin θX(θ, ϕ)Pn(cos γ) =

4π

2n+ 1
X(θ′, ϕ′). (22.37)

[Demo]. The integration is all over the sphere, so we can freely choose the θ = 0
direction. Let us choose it to be the direction of (θ′, ϕ′), and write the new angular
coordinates as (γ, ψ). The integral we wish to compute becomes

I =
∫ 2π

0

dψ

∫ π

0

dγ sin γX̂(γ, ψ)Pn(cos γ), (22.38)

where X̂ is X in new variables. X̂ is again a spherical harmonic function of order
n (look at the spherical symmetry of (22.33)), so that it can be expanded as

X̂(γ,ψ) =
n∑

m=−n
BmY

m
n (γ, ψ). (22.39)

Hence,

I =

√
4π

2n+ 1
B0. (22.40)

To calculate B0 note the fact that Y mn (0, ϕ) = 0 if m �= 0 (see the definition of
Pmn in 22.5), and Y 0

n (0, ϕ) =
√
(2n+ 1)/4π (Pn(1) = 1 →21B.5(1)). Hence, from

(22.39) we obtain

B0 = X̂n(0, ψ)

√
4π

2n+ 1
= X(θ′, ϕ′)

√
4π

2n+ 1
. (22.41)270 We have

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′).
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22.14 Multipole expansion. Let ρ(x) be the charge distribution.
Then the potential due to this charge distribution with respect to the
zero potential at infinity is given by

V (x) =
∫

dy
ρ(y)

4πε0|x− y| . (22.42)

If ρ(x) vanishes for |x| ≥ R, then

V (x) =
∞∑

n=0

1

ε0Rn+1

[
n∑

m=−n

1

2m + 1
qm
n Y m

n (θ, ϕ)

]
, (22.43)

where

qmn =
∫ R

0
dr
∫ π

0
dθ sin θ

∫ 2π

0
dϕ rnY m

n (θ, ϕ)ρ(r, θ, ϕ). (22.44)

The expansion (22.43) is called the multipole expansion. ✷
[Demo]. Let the angle between x and y be γ, R = |x| and r = |y|. Then

|x− y| = R
√
1− 2ζ cos γ + ζ2, (22.45)

where ζ = r/R (< 1). With the aid of the generating function of the Legendre
polynomials (→17.9), we get

1
|x− y| =

1
R

∞∑
n=0

Pn(cos γ)ζn. (22.46)

Now we use the addition theorem 22.12 to separate the x and y directions as

1
|x− y| =

1
R

∞∑
n=0

( r
R

)n [ n∑
m=−n

Y mn (θ′, ϕ′)Y mn (θ, ϕ)

]
. (22.47)

Putting this into (22.42) and exchanging the order of summation and integration
(→15.12), we get the desired formula.

22.15 Lower order multipole expansion coefficients. For low
order expansions, the Cartesian expression is much more popular. It
reads

V (R) =
q

R
+
p ·R
r3

+
1

2

∑
i,j QijRiRj

R5
+ · · · , (22.48)

where R is the position vector from the center of the charge distribu-
tion, q is the total charge, p is the dipole moment

p =
∫

dxρ(x)x, (22.49)
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and Qij is the quadrupole moment tensor

Qij =
∫

dx(3xixj − x2δij)ρ(x). (22.50)

In terms of these more familiar moments, we can write

q0
0 =

1√
4π

q, (22.51)

q1
1 = −

√
3

8π
(px − ipy), (22.52)

q0
1 =

√
3

4π
pz, (22.53)

q−1
1 =

√
3

8π
(px + ipy), (22.54)

q2
2 =

1

12

√
15

2π
(Q11 − 2iQ12 −Q22), (22.55)

q1
2 = −1

3

√
15

8π
(Q13 − iQ23), (22.56)

q0
2 =

1

2

√
5

4π
Q33, (22.57)

q−1
2 =

1

3

√
15

8π
(Q13 + iQ23), (22.58)

q−2
2 =

1

12

√
15

2π
(Q11 + 2iQ12 −Q22). (22.59)

Note that, generally
qmn = q−m

n . (22.60)

22.B Application to PDE

22.16 Formal expansion of harmonic function in 3-space. 22.1-
22.3 and 22.9 tell us that a harmonic function ψ (→??) can have the
following (formal)271 expansion in 3-space in terms of spherical har-
monic functions:

ψ =
∞∑
l=0

l∑
m=−l

Rlm(r)Y
m
l (θ, ϕ), (22.61)

271 If we wish, we could say an expansion as a generalized function (→14).
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where Rlm(r) obeys (→22.1)

d2

dr2
rRlm = l(l + 1)

R

r
. (22.62)

Hence, Rlm has the following general solution (→??)

Rlm(r) = Almrl +Blmr−l−1. (22.63)

That is, we get the following formal expansion:

ψ =
∞∑
l=0

l∑
m=−l

(Almrl +Blmr−l−1)Y m
l (θ, ϕ). (22.64)

22.17 Interior problem. A harmonic function on 3-ball of radius a
centered at the origin must be finite at the origin, so its general form
must be

ψ =
∞∑
l=0

l∑
m=−l

AlmrlY m
l (θ, ϕ). (22.65)

for r ∈ [0, a].
(1) Dirichlet condition on the sphere. The solution to the Lapalce
equation on the sphere with the boundary condition at the surface

ψ(a, θ, ϕ) = V (θ, ϕ) (22.66)

must have the form of (22.65). Hence we must have

V (θ, ϕ) =
∞∑
l=0

l∑
m=−l

AlmalY m
l (θ, ϕ). (22.67)

With the aid of the orthonormality in 22.9, we obtain

Almal =
∫ π

0
dθ sin θ

∫ 2π

0
dϕY l

m(θ, ϕ)V (θ, ϕ). (22.68)

(2) Neumann condition on the sphere. The solution to the Lapalce
equation on the sphere with the boundary condition at the surface

∂ψ

∂r

∣∣∣∣∣
r=a

= E(θ, ϕ). (22.69)

Differentiating (22.65), we obtain

∂ψ

∂r
=

∞∑
l=0

l∑
m=−l

lrl−1AlmY m
l (θ, ϕ). (22.70)

Hence, it is easy to obtain an explicit formula analogous to (1).
318



22.18 Exterior problem. If the harmonic function outside of a
sphere is bounded, then the solution must have the following form

ψ =
∞∑
l=0

l∑
m=−l

Blmr−l−1Y m
l (θ, ϕ). (22.71)

Blm are determined with the aid of orthonormality of spherical har-
monics just as the interior problem.

22.19 Uniqueness condition for exterior problem. We have
discussed that if the domain D is not bounded, then the uniqueness
condition is not trivial (→??, 25.9). To study this, first we study the
problem in the domain D∩V , where V is a sphere of radius R. Suppose
ψ1 and ψ2 are solutions to a given Dirichlet problem. Let ψ = ψ1 −ψ2.
Then, it is a solution to a homogeneous Dirichlet problem. Green’s
formula tells us that∫

D∩V
(grad ψ)2dτ =

∫
∂(D∩V )

ψ gradψ · dS =
∫
∂V ∩D

ψ grad ψ · dS.
(22.72)

Hence, for the integral to vanish a sufficient condition is

|ψ| < const.R−1/2−ε (22.73)

Boundedness of ψ is generally not enough to guarantee the unique so-
lution.

22.20 Annular problem. If the domain is a concentric sphere, the
problem is called an annular problem. In this case both terms in Rlm in
22.16 are needed. The boundary conditions on two spherical boundary
surfaces allow us to determine the coefficients uniquely.

Exercise.
Find the harmonic function on the annular region r ∈ [a, 3a] with the boundary
conditions u = cosφ on r = a and u = cos 3φ on r = 3a.

22.21 Cylindrically symmetric case. If the system under consid-
eration is independent of ϕ (→20.26), then the general solution has
the following formal expansion:

ψ(r, θ, ϕ) =
∞∑
l=0

(Alr
l +Blr

−l−1)Pl(cos θ). (22.74)

This is certainly a solution of the Laplace equation as can be seen from
the result in 22.16 (also ??). The uniqueness of the solution tells us
that this is the general solution.
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22.22 Examples.
(1) A conducting sphere of radius a is separated into the upper and
the lower halves. The upper half is maintained at potential V1, and the
lower at V0. The electric potential outside the sphere is given by

V +
V1 − V0

2

a

r
−(V1−V0)

∑
odd l

(−1)(l−1)/22l + 1√
2

(
a

r

)l+1 (l − 2)!!
(l + 1)!!

Pl(cos θ).

(22.75)
(2) The electric potential due to uniformly charged disk of radius a.
For r > a

V =
Q

2πε0r

∞∑
n=1

(−1)n−1 (2n− 3)!!
(2n)!!

(
a

r

)2n

P2n−1(cos θ). (22.76)

Here Q is the total charge on the disk. For r < a there is an extra
complication, because θ = π/2 is in the disk. However, for θ ∈ [0, π/2)
there is no problem, and the solution is

V =
Q

2πε0r

[
1− r

a
P1(cos θ) +

∞∑
n=1

(−1)n−1(2n− 2)!
22n−1(n− 1)!n!

(
r

a

)2n

P2n−1(cos θ)

]
.

(22.77)
For θ > π/2 we use the symmetry V (r, θ, ϕ) = V (r, π − θ, ϕ).
(3) The equilibrium temperature distribution of a half ball of radius a
with the surface temperature specified as T = f(cos θ) and the bottom
disk is maintained at T = 0. In this case we use the reflection prin-
ciple (→??) to extend the problem to the whole ball. The boundary
condition for the extended problems is given by Tr=a = g(cos θ), where
g(x) = sgn(x)f(x). From the symmetry, the boundary condition on
the bottom surface is automatically satisfied. The formal expansion of
the interior problem with cylindrical symmetry (→22.21) is given by
22.18, so the answer reads

T =
∞∑
l=0

Alr
lY 0

l (θ, ϕ) (22.78)

with

Ala
l =
√
(2l + 1)π{1− (−1)n}

∫ 1

0
dxPl(x)f(x). (22.79)

Exercise.
(1) Find the gravitational potential due to a sphere of radius R with the density
distribution given by

ρ = rkXm(θ, ϕ), (22.80)
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where Xm is a spherical harmonics of order m (→22.11).
In this case due to the superposition principle, the potential V is given by

V (x) =
∫
d3y

ρ(y)
|x− y| . (22.81)

Use (22.46) in 22.14 to expand the Green’s function. Then, use 22.13 to perform
the angular integral. In this way, we arrive at

V (x) =
4π

2m+ 1
Rm+k+3

m+ k + 3
Xm(θ, ϕ). (22.82)

(2) Discuss the waves in a thin spherical layer of radius R. The equation of motion
is the wave equation written in the spherical coordinates with r suppressed (r = R).
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23 Cylinder Functions

Separation of variables of the Laplace equation in the cylin-
drical coordinates requires Bessel and modified Bessel func-
tions, which may perhaps be the most representative special
functions. Bessel and Neumann functions make a funda-
mental system for the radial part of the separated equation
called the Bessel equation. Classical results about Bessel
and Neumann functions are summarized such as orthonor-
mal relations (Fourier-Bessel-Dini expansion), generating
functions, integrals containing Bessel functions. Bessel func-
tions with half odd integer parameter (or their streamlined
version: spherical Bessel functions) are required to solve the
Helmholtz equation in the spherical coordinates.

Key words: Bessel equation, Bessel function, Bessel’s in-
tegral, generating function, recurrence relations, cylinder
functions, zeros of Bessel functions, Neumann function, Han-
kel function, Fourier-Bessel-Dini expansion, Modified Bessel
function, spherical Bessel function, partial wave expansion.

Summary:
(1) The Laplace equation in the cylindrical coordinates requires Bessel
and Neumann functions (23.1, ??, 23.16). Pay attention to the gen-
eral shapes of these functions (??, 23.16).
(2) Bessel functions make an orthonormal eigenfunction set for the ra-
dial part of the Laplacian (23.21-23.22).
(3) The Helmholtz equation in the spherical cooridnates requires spher-
ical Bessel functions (23.25-23.26).
(4) Many second order linear ODE can be solved in terms of cylinder
functions (23.28).

23.A General Theory

23.1 Bessel’s equation. In terms of z = αr, the equation (19.17)
(→19.9(1)) becomes

d2u

dz2
+
1

z

du

dz
+

(
1− m2

z2

)
u = 0. (23.1)
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z = 0 is a regular singular point (→20.15(1)), and z =∞ is an irregular
singular point (→20.15(2)).272

23.2 Series solution to Bessel’s equation around z = 0. The
indicial equation (20.24) (→20.17) is φ(µ) = µ2 − m2 = 0. Choose
µ = m, a1 = 0, a0 = 1/2

mΓ(m+ 1) and follow 20.16. We get

Jm(z) =
(
z

2

)m ∞∑
k=0

(−1)k
k!Γ(m+ k + 1)

(
z

2

)2k

. (23.2)

This is called the Bessel function of order m (of the first kind). If µ1 −
µ2 = 2m is not an integer (→??[1]), then J−m is a partner (→20.13)
of Jm in a fundamental system of solutions (→20.11) of (23.1). If m is
a half odd integer, then Jm and J−m are still functionally independent
(that is, this is the case with no logarithmic term in ??).

If m is a positive integer, then Jm and J−m are not functionally
independent:

Jm = (−1)mJ−m. (23.3)

This can be demonstrated from (23.2) with the aid of Γ(−m+k+1) =
∞ for k < m (→14.1 or 23.7). In this case we need a different partner:
Neumann functions (→23.15).

Exercise.
(A)
(1) Show that

(−1)k
k!Γ(m+ k + 1)

(z
2

)m+2k

=
(z
2

)m (−1)k
Γ(m+ 1/2)Γ(1/2)

z2k

(2k)!
B

(
m+

1
2
k +

1
2

)
.

(23.4)
(2) With the aid of the integral expression of the Beta function (9.22), show that
formally273

Jm(z) =
1

Γ(1/2)Γ(m+ 1/2)

(z
2

)m ∫ 1

0

tm−1/2(1− t)−1/2 cos[z(1− t)1/2]dt (23.5)

for m+ 1/2 > 0.
(3) Now, changing the integration variable as t = sin2 θ, this formula can be rewrit-
ten as

Jm(z) =
1

Γ(1/2)Γ(m+ 1/2)

(z
2

)m ∫ π

0

cos(z cos θ)sin2mθdθ. (23.6)

Notice that the integration from 0 to π/2 and from π/2 to π are identical in this
case, so

∫ π
0 can be replaced by 2

∫ π/2
0 . This formula is called Poisson’s integral

272 Therefore, the Bessel function is a special function of confluent type (→19.5).
273 The exchange of the order of summation and integration can be justified.
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representation.
(4) If 1− t = x2 is introduced, then (23.5) can be rewritten as

Jm(z) =
1

Γ(1/2)Γ(m+ 1/2)

(z
2

)m ∫ 1

−1

(1− x2)m−1/2eizxdx. (23.7)

(B) Demonstrate the following Whittaker’s integral representation

Jn+1/2(z) = (−i)n
√
π

2z

∫ 1

−1

eizxPn(x)dx. (23.8)

Here Pn is the Legendre polynomial.
(C) Show ∫ π/2

0

J0(x cos θ) cos θdθ =
sinx
x
. (23.9)

[Hint. Use the integral of cosn θ.]

23.3 Definition. The Bessel function of order ν can also be defined
by

Jν(z) =
1

2πi

∫
C
e

z
2
(t− 1

t
)t−(ν+1)dt, (23.10)

where C can be a unit circle centered at the origin, and ν any real
number. Obviously,

J0(0) = 1, Jn(0) = 0 for positive integer n. (23.11)

For integer ν this definition and the result in 23.1 are identical as seen
in ??.

Discussion: Where did the Bessel functions appear first?
The position of the earth (x, y) on the rotation plane can be written as

x = a(cosφ− e), y = a
√
1− e2 sinφ, (23.12)

where e is eccentricity, a the and φ the angle of rotation measured from the peligy,
and

φ− e sinφ = vt, (23.13)

where t is the time since the earth passed the peligy, and v is the average angular
velocity. Hence, if we can write down φ as a function of t, then we can explicitly
obtain x(t) and y(t). Consider

dφ

dvt
=

1
1− e cosφ, (23.14)

which is an even periodic function of vt. Hence, we can Fourier-expand it as

dφ

dvt
= 1 +

∑
n=1∞

an cosnvt. (23.15)
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The coefficient can be computed as

an =
1
2π

(1− e cos φ)−1 cosnvtd(vt), (23.16)

=
2
π

∫ π

0

cos[n(φ− e cos φ)]dφ. (23.17)

Comparing this with the generating equation in 23.5, we obtain

an = 2Jn(ne) (23.18)

Exercise.
Demonstrate

Jn(z) =
1
πin

∫ π

0

eiz cos θ cosnθdθ. (23.19)

23.4 Series expansion. With the change of variables from t to u =
tz/2, we rewrite the RHS of (23.10) as

1

2πi

(
z

2

)ν ∫
C ′

eu−z2/4uu−(ν+1)du =
1

2πi

(
z

2

)ν ∞∑
m=0

(−1)m
m!

(
z

2

)m ∫
C′

euu−(ν+m+1)du.

(23.20)
The integral can be computed with the residue theorem (→??) as

Jν(z) =
(
z

2

)ν ∞∑
m=0

(−1)m
m!Γ(ν +m+ 1)

(
z

2

)2m

, (23.21)

which is in agreement with (23.2). The series is convergent on the whole
complex plane. Due to the factor (−1)m it is clear that Jν cannot have
any pure imaginary zero. From the formula, near the origin

Jν(z) ∼ zν . (23.22)
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Exercise.
(This problem need not be here.) Demonstrate∫ 1

0

tn+1Jn(t)dt = Jn+1(1). (23.23)

23.5 Generating function.

e
1
2
z(t− 1

t
) =

+∞∑
n=−∞

Jn(z)t
n. (23.24)

This is from (23.10). This equation implies that Jn for integer n is the
coefficients of the Laurent expansion (→??) of exp[z(t− t−1)/2] around
t = 0.

23.6 Bessel’s integral. Replacing t in (23.10) with eiθ, we have
Bessel’s integral

Jn(z) =
1

π

∫ π

0
cos(nθ − z sin θ)dθ. (23.25)

Exercise.
Show

J0(x) =
1
2π

∫ 2π

0

eix sin θdθ. (23.26)

23.7 J (z) = (−1) J (z). This can be obtained by replacing θ
with π − θ in (23.25). (We have already shown this in ??.)

23.8 Sine of sine → Bessel functions.

sin(z sin θ) = 2J1(z) sin θ + 2J3(z) sin 3θ + 2J5(z) sin 5θ + · · · . (23.27)
To show this rewrite (23.24) with the aid of 23.7 as

e
1
2 z(t− 1

t ) = J0(z) +
∞∑
n=1

Jn(z)[tn + (−)nt−n]. (23.28)

Now replace t with eiθ, and we get

eiz sin θ = J0(z) + 2iJ1(z) sin θ + 2J2(z) cos 2θ + 2iJ3(z) sin 3θ + · · · . (23.29)

Splitting this into real and imaginary part, we get (23.27) and

cos(z sin θ) = J0(z) + 2J2(z) cos 2θ + 2J4(z) cos 4θ + · · · .. (23.30)

Thus, when sine appears inside a trigonometric function, recall Jn.
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23.9 Recurrence relations. Differentiating (23.24) with respect to
z and comparing the coefficients of the power of t, we get

2J ′
m(z) = Jm−1(z)− Jm+1(z). (23.31)

In particular, with the aid of 23.7 we have

J ′
0(z) = −J1(z) (23.32)

If we differentiate (23.24) with respect to t and then compare the coef-
ficients of tn, we get

2m

z
Jm(z) = Jm−1(z) + Jm+1(z). (23.33)

23.10 Cylinder function. Any function f(z, ν) satisfying the fol-
lowing relations is called a cylinder function:

f(z, ν − 1) + f(z, ν + 1) = 2
ν

z
f(z, ν), (23.34)

f(z, ν − 1)− f(z, ν + 1) = 2
∂

∂z
f(z, ν). (23.35)

(23.31) and (23.33) thus imply that Bessel functions are cylinder func-
tions.

Exercise.
(1) These relations can be rewritten as

d

dz
[zνJν(z)] = zνJν−1(z), (23.36)

d

dz
[z−νJν(z)] = −z−νJν+1(z). (23.37)

(2) Derive

z−(ν+m)Jν+m(z) = (−1)m
(
1
z

d

dz

)m
[z−νJν ]. (23.38)

Similarly, we can obtain

zν−mJν−m(z) =
(
1
z

d

dz

)m
[zνJν ]. (23.39)

(3) Integral related to the Fraunhofer diffraction through a circular aperture:

J =
∫ a

0

∫ 2π

0

eibr cos θdθrdr =
2πa
b
J1(ab). (23.40)

[Hint. Use 23.6 and 23.10.]
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23.11 Zeros of Bessel functions.
(1) There are infinitely many zeros of Jn(z).
(2) All the zeros of Jn for n > −1 are real and of multiplicity one except
z = 0.
(3) z−nJn(z) has no zero of multiplicity larger than one.
(4) The zeros of Jn(z) separate the zeros of Jn±1(z).
[Demo] From the Bessel equation (23.1) by scaling with a constant α we get

d2Jn(αz)
dz2

+
1
z

dJn(αz)
dz

+
(
α2 − n

2

z2

)
Jn(αz) = 0. (23.41)

Hence,

1
z

d

dz

{
z
dJn(αz)
dz

Jn(βz)− z dJn(βz)
dz

Jn(αz)
}
= (β2 − α2)Jn(αz)Jn(βz), (23.42)

where β is another constant. Multiplying x and integrationg (23.42) gives

(β2 − α2)
∫ b

0

xJn(αx)Jn(βx)dx =
[
x
dJn(αx)
dx

Jn(βx)− xdJn(βx)
dx

Jn(αx)
]b
0

.

(23.43)
Since Jn(x) is of order xn near x = 0 (→(23.22)), if n > −1, the contribution
from x = 0 of the RHS of (23.43) vanishes. Choose α to satisfy Jn(αb) = 0, and set
β = α. Then Jn(βb) = 0 since all the coefficients in (23.21) are real (Jn(z) = Jn(z)).
For these choices, the RHS of (23.43) is zero, so we have

(β2 − α2)
∫ b

0

x|Jn(αx)|2dx = 0. (23.44)

This implies β2 = α2, that is α = α, since there is no pure imaginary zeros (→??).
That is, the zeros of Jn are all real if n > −1.

The multiplicity of the zeros is known from the general property of the fun-
damental system (→20.12). At z = 0 the coefficient function is not C1, so this
argument is not applicable to z = 0. Thus (2) and (3) have been demonstrated.
Bessel’s equation can be rewritten as

d2U

dz2
+HU = 0 (23.45)

with U(z) = Jn/
√
z and H(z) = 1 + (1/4− n2)/z2. Let x ∈ R be sufficiently large

to make H(x) > 0. Suppose U > 0. Then, irrespective of the sign of dU/dx (23.45)
tells d2U/dx2 < 0. Hence, as long as U > 0, dU/dx decreases with the increase of x.
This continues until U = 0, but there dU/dx < 0 so U becomes eventually U < 0.
This argument can be continued indefinitely. Thus, there must be infinitely many
zeros for Jn. This is (1). (4) follows from

d

dz
(z±νJν) = ±zνJν∓1, (23.46)

which can be derived from the nature of Jν as cylinder functions (→23.10).
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23.12 Proposition. For x ∈ R
|J0(x)| ≤ 1 (23.47)

|Jn(x)| ≤ 1/
√
2 for n = 1, 2, · · · . (23.48)

The first inequality follows from (23.25). The second inequality follows
from the Gegenbauer-Neumann formula (→23.14. Expand the LHS
and compare it with the RHS. cf. 23.15(2).).

23.13 Addition theorem.

Jn(x+ y) =
∞∑

s=−∞
Jn−s(x)Js(y), (23.49)

=
n∑

s=0

Js(x)Jn−s(y) +
∞∑
s=1

(−)s[Js(x)Jn+s(y) + Jn+s(x)Js(y)].

(23.50)

This follows from the generating function (23.24):

∞∑
n=−∞

Jn(x+ y)tn = e(x+y)(t−1/t)/2 =
∞∑

n=−∞
Jn(x)t

n
∞∑

n=−∞
Jn(y)t

n.

(23.51)

23.14 Gegenbauer-Neumann formula.

J0(
√
R2 + 2Rr cos γ + r2) = J0(R)J0(r) + 2

∞∑
m=1

(−1)mJm(R)Jm(r) cosmγ,

J0(
√
R2 − 2Rr cos γ + r2) = J0(R)J0(r) + 2

∞∑
m=1

Jm(R)Jm(r) cosmγ.

(23.52)

[Demo] The second formula can be obtained from the first by r → −r and 23.7.
With the aid of the generating function 23.5, we obtain

∞∑
n=−∞

λnJn(x)tn = exp
{
x

2t

(
λ− 1
λ

)} ∞∑
n=−∞

Jn(λx)tn. (23.53)

Setting λ = eiθ, this equation becomes

∞∑
n=−∞

Jn(eiθx)tn = e−(ix/t) sin θ
∞∑

n=−∞
einθJn(x)tn. (23.54)
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Following the demonstration of the addition theorem 23.13, we obtain

∞∑
n=−∞

Jn(eiθx+eiϕy)tn = e−(i/t)(x sin θ+y sinϕ)

[ ∞∑
n=−∞

einθJn(x)tn
][ ∞∑

n=−∞
einϕJn(y)tn

]
.

(23.55)
Let x, y, θ and ϕ be real and xeiθ + yeiϕ be real. Then, x sin θ + y sinϕ = 0.
Compare the coefficients of t0:

J0(x cos θ + y cosϕ) =
∞∑

m=−∞
eim(θ−ϕ)Jm(x)J−m(y) (23.56)

Notice that if the imaginary part of Reiθ + reiϕ vanishes, we can write√
R2 + 2Rr cos γ + r2 = Reiθ + reiϕ (23.57)

with γ = θ − ϕ. This concludes the proof. See ??.

Exercise.
Show

Jn(z)Jn(z′) =
1
π

∫ π

0

J0(
√
z2 + z′2 − 2zz′ cos θ) cosnθdθ (23.58)

for n = 0, 1, 2, · · · ..

23.15 Integrals containing Bessel functions.
(1) From Bessel’s integral 23.6 for a ≥ 0 and b > 0

∫ ∞

0
e−axJ0(bx)dx =

1√
a2 + b2

. (23.59)

Especially
∫∞
0 J0(bx)dx = 1/b. Replacing a in (23.59) with ia we get

(b > a assumed)

∫ ∞

0
J0(bx) cos axdx =

1√
b2 − a2

. (23.60)

Differentiating these equations w.r.t. a, we compute similar integrals
with insertions of powers of x. With the aid of (23.32) and integration
by parts, we obtain

∫ ∞

0
e−axJ1(bx)xdx =

b

(b2 + a2)3/2
. (23.61)

(2) From the Gegenbauer-Neumann formula 23.14 with the aid of the
orthogonality of {cos nγ} we obtain (→?? with l = π)

1

π

∫ ∞

0
J0(x

√
R2 − 2Rr cos γ + r2) cosnγdγ = Jn(Rx)Jn(rx). (23.62)
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From this and (23.59), we get∫ 2π

0
Jn(Rx)Jn(rx)dx =

1

π

∫ π

0

cos γ√
R2 − 2Rr cos γ + r2

dγ. (23.63)

Notice that this formula contains the generating function for the Leg-
endre polynomials (→17.9), so that expansion in terms of r/R can be
calculated with the aid of Pn(cos γ).
(3) [Weber’s integral] Expanding Jν(bx) as in ?? and termwise integra-
tion (→15.12) give for a > 0, b > 0 and for Re ν > −1∫ ∞

0
e−a2x2

Jν(bx)x
ν+1dx =

bν

(2a2)ν+1
eb

2/4a2

. (23.64)

(4) [Lommel’s integral]∫ x

0
Jn(αx)Jn(βx)xdx =

x

α2 − β2
{αJn(βx)Jn+1(αx)− βJn(αx)Jn+1(βx)} ,

(23.65)

=
x

α2 − β2
{βJn(αx)Jn−1(βx)− αJn(βx)Jn+1(αx)} .

(23.66)

This follows from (23.43) and recurrence relations (→23.9).

Exercise.
Show

J0(x) =
2
π

∫ ∞

0

cosxt√
1− t2 dt. (23.67)

23.16 Neumann function of order m. Whenm ∈N \{0}, we may
use the general theory or the procedure in 20.20[22], but traditionally,
the following partner is chosen:

Nm(z) = [Jm(z) cosmπ − J−m(z)]/ sinmπ, (23.68)

which is called the Neumann function of order m. For non-integer
m (23.68) is well defined and obviously a partner of Jm in 20.14. If
m ∈N , (23.68) becomes 0/0, so we interpret the formula with the aid
of l’Hospital’s rule:274

Nm(z) =
1

π

[
∂Jm(z)

∂m
− (−1)m∂J−m(z)

∂m

]
for m �∈N \ {0}. (23.69)

274 If we explicitly compute (23.69), we get

Nm(z) =
2
π
Jm(z) ln

(z
2

)
− 1
π

m−1∑
k=0

(m− k − 1)!
k!

(z
2

)−m+2k

− 1
π

∞∑
k=0

ψ(k + 1) + ψ(m+ k + 1)
k!(m+ k)!

(−1)m
(z
2

)m+2k

,

where ψ(z) = Γ′(z)/Γ(z). Thus this form is in conformity with the general theory
20.20[22].
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The general solution of Bessel’s equation (23.1) is given by

AJm(z) +BNm(z). (23.70)

Notice that Neumann functions are cylinder functions as easily explic-
itly checked (→23.10).

Exercise.
Demonstrate that

W (Jν(x),Nν(x)) =
2
πx
. (23.71)

23.17 Nn(z) is singular at z = 0. This follows from explicit for-
mulas in the z → 0 limit (see the footnote of the previous entry):

N0(z) ∼ (2/π) ln(z/2), (23.72)

Nn(z) ∼ −(n− 1)!(x/2)−n/π for n = 1, 2, · · ·. (23.73)

23.18 Lommels’ formula. Since Jν and Nν make a fundamental
system of Bessel’s equation (→23.16 and 24A.4), their Wronskian
(→20.6) W must satisfy 24A.13, i.e.,

W (x) =W0e
− ln x =

W0

x
. (23.74)

To calculateW0 we may use limx→0 xW (x) = W0. If ν is not an integer,
Jν and J−ν make a fundamental system (→??), so

lim
x→0

xW (Jν(x), J−ν(x)) = lim
x→0

x[Jν(x)J
′
−ν(x)−J ′

ν(x)J−ν(x)] = −2 sin νπ
π

,

(23.75)
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where we have used the formula of complementary arguments for the
Gamma function 14.4. Thus, we obtain

W (Jν(x), J−ν(x)) = −2 sin νπ
πx

. (23.76)

The result is correct even if ν is an integer due to continuity. With the
aid of this formula and the definition of Nn in 23.16, we obtain

W (Jn(x), Nn(x)) =
2

πx
. (23.77)

This is called Lommel’s formula.

Exercise.
Show
(1)

JnNn+1 − Jn+1Nn = − 2
πx
. (23.78)

(2)

JnJ−n+1 + J−nJn−1 =
2 sinnπ
πx

. (23.79)

23.19 Bessel function with half odd integer parameters (See
spherical Bessel functions in 23.25). The Bessel and Neumann func-
tions with half odd integer parameters can be written in terms of ele-
mentary functions:

J1/2(z) =

√
2

π

sin z√
z
, J−1/2(z) =

√
2

π

cos z√
z

(23.80)

J3/2 =

√
2

zπ

(
sin z

z
− cos z

)
, (23.81)

N1/2(z) = −
√
2

zπ
cos z, N−1/2(z) =

√
2

zπ
sin z, (23.82)

N3/2(z) = 1

√
1

zπ

(
sin z +

cos z

z

)
. (23.83)

Exercise.
Derive

Jm+1/2 = (−1)m z
m+1/2

√
2√

π

(
1
z

d

dz

)m( sin z
z

)
. (23.84)

23.20 Hankel functions. Hankel functions are defined as follows:

H(1)
n (z) ↽== Jn(z) + iNn(z), (23.85)

H(2)
n (z) ↽== Jn(z)− iNn(z). (23.86)
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H(1)
n and H(2)

n make a fundamental system of solutions (→20.11) for
the Bessel equation (→23.1).

Exercise.
Show

H(2)
n (x)H(1)

n+1(x)−H(1)
n (x)H(2)

n+1(x) =
4
πx
. (23.87)

23.21 Orthonormal basis in terms of Bessel functions. The set
of kets |i, ν〉 defined as follows is an orthonormal basis (→16.10) of
L2([0, a], x) (→16.19)

〈x|i, ν〉 =
√
2

aJν+1(r
(ν)
i )

Jν(r
(ν)
i x/a), (23.88)

where r
(ν)
i is the i-th zero of Jν(x) (→23.11). That {|i, ν〉} is a basis

follows from the corresponding eigenvalue problem and the general the-
ory (→32.3). That this is normalized (orthogonality follows from the
general theory) is seen with the aid of Lommel’s integral (→23.15(4)).
Using l’Hospital’s rule, we take the α → β limit to obtain

∫ α

0
xJν(r

(ν)
i x/a)2dx =

a2

2
[J ′

ν(r
(ν)
i )]2. (23.89)

This can be further transformed into the desired result with the aid of
a recurrence relation in 23.9.

The corresponding decomposition of unit operator 1 =
∑∞

i=1 |i, ν〉〈i, ν|
(16.15) implies (cf. 16.26 for the delta function with a weight)

δ(x− y)

x
=

∞∑
i=1

2

[aJν+1(r
(ν)
i )]2

Jν(r
(ν)
i x/a)Jν(r

(ν)
i y/a). (23.90)

23.22 Fourier-Bessel-Dini expansion. f ∈ L2([0, a], x) (→16.19)
can be expanded as

f(x) =
∞∑

m=1

CmJν(r
(ν)
m x/a), (23.91)

where

Cm =
2

[aJν+1(r
(ν)
i )]2

∫ a

0
f(x)Jν(r

(ν)
i x/a)xdx. (23.92)

Notice that this is nothing but a standard generalized Fourier expansion
with a special choice of the orthonormal basis. Hence the analogues of
three key facts (→??) holds.
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23.23 Modified Bessel functions. In terms of z = αr, the equation
(19.37) becomes (→19.9(3))

d2u

dz2
+
1

z

du

dz
−
(
1 +

m2

z2

)
u = 0. (23.93)

z = 0 is a regular singular point (→20.15(1)), and z =∞ is an irregular
singular point (→20.15(2)). If z in (23.1) is replaced with iz, we
get this equation. Hence, Jm(iz) and Nm(iz) are solutions. However,
with a suitable phase factor the following set is usually chosen as a
fundamental system of solutions (→20.11)

Im(z) = emπi/2Jm(iz) =
∞∑

n=0

1

n!Γ(n+m+ 1)

(
z

2

)2n+m

, (23.94)

Km(z) =
π

2

I−m(z)− Im(z)

sinmπ
=

π

2

emπi/2J−m(iz)− e−mπi/2Jm(iz)

sinmπ
.

(23.95)

I and K are called modified Bessel functions. They are not cylinder
functions.

Exercise.
(1) Show the leading singularities:

K0(x) = − lnx− γ + ln 2 + · · · , (23.96)

Kn(x) = 2n−1(n− 1)!x−n + · · · . (23.97)
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(2) Demonstrate

cosh x = I0(x) + 2
∞∑
n=1

I2n(x). (23.98)

(3) The solution to
u′′ − zu = 0 (23.99)

is called Airy functions. They become usful to study asymptotic behaviors of the
Bessel functions for large |z| and |ν|. We can easily find a fundamental system for
this equation, looking at the table in 23.28:

u1 = Ai(z) ≡ 1
π

(z
3

)1/2

K1/3

(
2z3/2

3

)
=
z1/2

3

[
I−1/3

(
2z3/2

3

)
− I1/3

(
2z3/2

3

)]

u2 = Bi(z) ≡ z
1/2

3

[
I−1/3

(
2z3/2

3

)
+ I1/3

(
2z3/2

3

)]
. (23.100)

Ai (resp., Bi) is called the Airy function of the first (resp., second) kind.

23.24 Helmholtz equation. For the equation of the type Ltψ =
∆ψ, where Lt is a differential operator with respect to time, the sepa-
ration of variables gives us the Helmholtz equation

∆ψ = −κ2ψ, (23.101)

where − is explicitly written, because the Laplacian is a non-positive
operator. The separation of variables in the spherical coordinates ψ =
R(r)Y (θ, ϕ) gives

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
Y (θ, ϕ) = −I(I+ 1)Y (θ, ϕ), (23.102)

and
1

r

d2

dr2
rR(r) =

(
−κ2 +

I(I+ 1)

r2

)
R(r). (23.103)

(23.102) with the periodic boundary condition on the sphere gives
eigenfunctions Y m

 (θ, ϕ) (→22.8) (I = 0, 1, 2, · · · and m = −I,−I +
1, · · · ,−1, 0, 1, · · · , I for each I). We may assume

ψ =
∞∑
 =0

 ∑
m=− 

Rlm(r)Y
m
 (θ, ϕ). (23.104)

Here Rlm obeys (23.103).
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23.25 Spherical Bessel functions. Introducing u =
√
κrR(r) and

z = κr, (23.103) becomes

d2u

dz2
+
1

z

du

dz
+

(
1− (I+ 1/2)2

z2

)
u = 0. (23.105)

This is Bessel’s equation (23.1) with m = I + 1/2. Therefore, the
fundamental system of solutions for (23.103) consists of J +1/2(κr)/

√
κr

andN +1/2κr)/
√
κr. Thus the following spherical Bessel function j and

spherical Neumann function n are defined:

j (z)↽==
√

π

2z
J +1/2(z), n (z)↽==

√
π

2z
N +1/2(z). (23.106)

The general solution to (23.103) is given by

Aj (z) +Bn (z). (23.107)

The spherical Hankel function is also defined analogously

h
(1,2)
l (x) =

√
π

2x
H

(1,2)
l+1/2(x). (23.108)

Exercise.
(1) Demonstrate

j0(x) =
sinx
x

(23.109)

with the aid of the series expansion of the Bessel function. Also demonstrate

n0(x) = −cos x
x

(23.110)

(2) Show

jn(x) = (−1)nxn
(
1
x

d

dx

)n( sinx
x

)
. (23.111)

(3) Show

jn(x)n′n(x)− j′n(x)nn(x) =
1
x2
. (23.112)

23.26 Orthonormal basis in terms of spherical Bessel func-
tions. There is nothing new in the present case, since we know the
corresponding result for the Bessel function (→23.17). Therefore,



√
2

a3

1

jl+1(ρ
(l)
i )

jl(ρ
(l)
i r/a)




∞

i=1

, (23.113)
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where ρ
(l)
i = r

(l+1/2)
i is the zeros of Jl+1/2 (→23.11), is an orthonormal

basis of L2([0, a], r
2) (→16.19). For example, the decomposition of

unit operator reads (cf. 16.27)

δ(x− y)

x2
=

∞∑
i=1

2

a3

1

jl+1(ρ
(l)
i )

2
jl


ρ

(l)
i x

a


 jl


ρ

(l)
i y

a


 . (23.114)

23.27 Partial wave expansion of plane wave.

eikr cos θ =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ). (23.115)

[Demo] eik·r satisfies the Helmholtz equation (∆+ k2)u(r) = 0 (→23.24). Hence,
we may assume

eikr cos θ =
∞∑
l=0

cljl(kr)Pl(cos θ). (23.116)

Therefore, the problem is to determine the coefficients cl. With the aid of the
orthogonality of the Legendre polynomial (→17.5), we obtain

cljl(kr) =
2l + 1
2

∫ 1

−1

dxeikrxPl(x). (23.117)

To evaluate the integral, integrate it by parts and ignore o[1/r]. We have

∫ 1

−1

dxeikrxPl(x) ∼ 1
ikr

[eikr − (−)le−ikr] = 2il

kr
sin
(
kr − lπ

2

)
. (23.118)

Comparing this with the asymptotic formula for r →∞, we arrive at cl = (2l+1)il.

338



23.28 ODE solvable in terms of Cylinder functions. Many sec-
ond order linear ODE can be solved in terms of cylinder functions. See
the table.
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Exercise.
Find the general solution to the following ODE

d2u

dz2
+
(
1
2
+ sinh2 z − 3

4
(tanh2 z + coth2 z)

)
u = 0. (23.119)

23.B Applications to Solving PDE

(1) A circular membrane of radius a is applied a uniform force b sinωt
over the membrane. Find the forced oscillation.275

(2)276 Consider a disc of radius a whose center is located at the origin
in the xy-plane. The boundary is maintained at T = 0, and the initial
temperature is given by

T (x, y, 0) = T0

(
1− x2 + y2

r2

)
. (23.120)

Assume that the thermal diffusivity is κ. Find T (x, y, t). The solution is
given in the form of Fourier-Bessel-Dini expansion (→23.22). Compute
the expansion coefficients explicitly with the aid of the following formula

∫ π/2

0
dφ sinµ+1 φ cos2ν+1 φJµ(z sinφ) =

2νΓ(ν + 1)

zν+1
Jµ+ν+1(z). (23.121)

(3) Circular wave guide: The equation for φ = Bz reads

(∆2 + k2)ψ = 0 (23.122)

on r = a with the boundary condition φ = 0. The field can be separated
as

φ(r, ϕ) = B(r)eimϕ, (23.123)

where m ∈ Z due to the univalency of the field. B(r) obeys

d2B

dr2
+
1

r

dB

dr
+

(
k2 − m2

r2

)
B = 0. (23.124)

Therefore, B = Jm(kr) is the eigenfunction.

275 LSU82.
276 L138.
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24 Diffusion Equation: How irreversibil-

ity is captured

Our discussion on the diffusion equation in 1 relied very
heavily on our physics intuition. We wish to see whether
our intuition is correctly captured by the diffusion equation.
The maximum principle tells us that the diffusion equation
captures well irreversible nature of diffusion processes. This
in turn implies that the diffusion problems are well-posed in
Hadamard’s sense. Diffusion equations allow infinite speed
of propagation of signals and matter, but adding second or-
der time derivative terms cure this unphysical nature.

Key words: maximum principle, well-posedness, preser-
vation of order, infinite propagation speed, telegrapher’s
(Maxwell-Cattaneo) equation.

Summary:
(1) The solution to the diffusion equation evolves in time generally
toward the more ‘featureless’ function. This is guaranteed by the max-
imum principle (24.2).
(2) When the solution of a problem is unique and depends on the aux-
iliary conditions continuously, the problems is said to be well-posed
in the sense of Hadamard (24.3). Diffusion problems are well-posed
(28.4).
(3) Diffusion equations allow infinite speed of propagation (28.9). Only
the addition of higher order time derivatives can cure this (24.10).

24.1 Elementary summary. We have learned where diffusion equa-
tions appear (→??, ??, ??, ??, ??). Some Green’s functions have been
constructed (→16B), and we physically argued that if they exist, it is
unique in the bounded domain in particular, under the following con-
dition with a given initial field (→??):
(1) Dirichlet condition: At the boundary all the values of ψ are spec-
ified. For the heat conduction problem, this is the condition with the
given wall temperature (i.e., thermostated).
(2) Neumann condition: At the boundary the normal derivative of ψ is
given. For the heat conduction problem, this is the condition with the
given heat flux through the wall.

We heavily relied on the zeroth law of thermodynamics: there is
a unique equilibrium state if we wait long enough. Our argument is,
however, in a certain sense circular, because we have shown that if the
diffusion equation is physically reasonable, then we can rely on physics
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argument. To break this circle, we must demonstrate that indeed dif-
fusion equation reflects thermodynamics correctly. This is equibvalent
to demonstrating that our intuition and our mathematics could be in
harmony (at least for the diffusion equation).

Exercise.
Solve

∂u

∂t
= ∆u+ b · ∇u+ et sin(x− bxt), (24.1)

with the initial condition u(r, 0) = |r|. Here b is a constant vector and bx is its
x-component.

24.2 Maximum principle. Let u be a solution277 of the diffusion
equation

ut = uxx (24.2)

on Ω↽== I × [0, T ], where I is an interval on the x-axis. Then, its maxi-
mum value is taken on the parabolic boundary Γ = ∂I× [0, T ]∪ I×{0}.
In particular, this means the maximum value of |u| on I is a decreasing
function of time.
[Demo] Let µ be the maximum value of u on the parabolic boundary Γ, and define

v = e−t(u− µ). (24.3)

v satisfies
vt + v = vxx (24.4)

in Ω◦.278 If we can prove that v ≤ 0 on Γ implies v ≤ 0 in I◦ × (0, T ], then we
are almost done. Suppose v has a maximum value v = v0 > 0 at (x0, t0) ∈ Ω◦. At
this point vxx ≤ 0 and vt = 0, so that (24.4) implies that v0 ≤ 0, a contradiction.
If there is a maximum at the boundary t = T , then vt ≥ and vxx ≤ 0, so v < 0. We
are done.
(1) This principle also holds in d-space. An analogous demonstration
works in any d-space, replacing I with a bounded region.
(2) As can be seen from the demonstration, if the solution may be
assumed to be bounded everywhere, then the principle holds even if
the problem is on an unbounded region.

Discussion.
(1) What can you say about the evolution of the number of peaks of a solution to
the diffusion equation (under, say, a time-independent Neumann condition)?
(2) A more general theorem can be obtained almost as easily as the maximum

277 There are actually several kinds of solutions. A solution in the ordinary sense of
the calculus (requiring necessary differentiability, etc.) is called a classical solution.
278 A◦ denotes the open kernel of the set A. That is, A◦ is the largest open set in
A.
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principle.
Gevrey’s uniqueness theorem. Consider

∂u

∂t
− ∂

2u

∂x2
+ a(x, t)u = 0. (24.5)

Here a is positive and continuous in the closed space time domain in the figure.279

Let u be a solution to (24.5) that is continuous in the closed domain U considered
above, satisfying (24.5) on the region Û = U subtracted its parabolic boundary, and
with continuous ∂tu and ∂2

xu there. Then, u cannot have any positive maximum
nor negative minimum in Û .✷
[Demo]. Suppose we have a positive maximum inside DABC. Then, at the point

u > 0
∂u

∂t
= 0,

∂2u

∂x2
≤ 0, (24.6)

so that this contradicts a > 0. If there is a positive maximum on the open segment
CD, then there,

u > 0
∂u

∂t
≥ 0,

∂2u

∂x2
≤ 0, (24.7)

This also contradicts a > 0. To show the statement about the minimum, consider
−u instead.

24.3 Well-posedness (in the sense of Hadamard).280 Even if
the unique solution exists, if the solution is extremely sensitive to the
auxiliary conditions such as boundary and initial data, then the PDE
may be useless for describing reproducible natural phenomena. A prob-
lem is said to be well-posed (in the sense of Hadamard), if
(1) there is a solution which is unique,
and
(2) the solution depends continuously on the data (initial and other
auxiliary conditions).

Otherwise, the problem is called ill-posed.281 Physically reason-
able problems are often well-posed as we will see later. For example, the
Dirichlet problem for the Laplace equation is well-posed (→25.9).282

The existence of a solution implies that the problem is not overde-
termined. The uniqueness of the solution implies that the problem is
not underdetermined.

279 A and B can be coincident. Furthermore, the side curves can wiggle wildly so
long as they do not cross the upper and lower lines.
280 Jacque Salomon Hadamard, 1865-1963. Read J. Hadamard, The Psychology of
Invention in the Mathematical Field (Dover, 1945) on creativity.
281 The condition (2) must be stated more precisely with the aid of some norm
(→?? footnote) to make the concept ‘continuous’ meaningful.
282 One might suggests that chaos is an example of the lack of well-posedness, but
most examples of chaos are well-posed, because the continuous dependence of the
solution on the initial condition is trivially satisfied for any finite time.
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24.4 Cauchy problem of diffusion equation with Dirichlet con-
dition is well-posed. That is, the solution is unique and depends con-
tinuously on the initial and boundary data. [This theorem is proved
for a bounded region here. Also we will not discuss the existence of a
solution.]
[Demo] Let u1 and u2 be two solutions of the same problem. Then, due to the lin-
earity of the problem, the difference u = u1 − u2 obeys the same diffusion equation
with a homogeneous Dirichlet boundary condition (i.e., u = 0 at the boundary of
the domain) and u = 0 initially as we have discussed (→??). From the maximum
principle u cannot be larger than 0, and −u cannot be larger than 0. Hence, u1 = u2.
That is, if there is a solution, it is unique. Now, we compare two different problems
1 and 2 with the auxiliary conditions which are different slightly. Let the solutions
of 1 and 2 be u1 and u2, respectively. Then, the maximum principle tells us that the
maximum value of |u1−u2| in the region cannot be larger than the differences in the
initial and boundary data. Hence, the solution depends on the auxiliary conditions
continuously.283 That is, the problem is well posed in Hadamard’s sense.

Exercise.
Show that

∫
u lnudx is non-increasing, if u obeys a diffusion equation. Assume the

initial u ≥ 0, and consider the problem in R2. (We define u lnu = 0 for u = 0.)

24.5 Anti-diffusion: violation of second law. Thermodynami-
cally destabilizing the world can produce ill-posed problems. A typical
example is the ‘anti’-diffusion equation.

∂u

∂y
+

∂2u

∂x2
= 0 (24.8)

Notice that the amplitude of the mode eikx is amplified as e+k2y, so
unless the initial data decay faster than this factor in k-space, a kind
of Hadamard instability occurs for any finite ‘time’ y > 0.284

Discussion.

∂u

∂t
+ t
∂2u

∂x2
= f(x, t) (24.9)

cannot make a well-posed problem. The reason should be obvious.285

283 That is, when the sup norm of the change in the auxiliary condition is made
small indefinitely, so does the sup norm of the corresponding change of the solution.
284 As we have seen, the ill-posedness of a problem is closely related to instability
in the ultraviolet limit (k →∞).
285 Y. Kannai, Israel J. Math. 9, 306 (1971).
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24.6 Preservation of order, positivity. Let u1 and u2 be two
solutions of the diffusion equation on the domain Ω as in 24.2. If
u1 ≤ u2 on the parabolic boundary (→24.2), then u1 ≤ u2 in Ω

◦.
Hence, for example, if u1 ≤ u2 at t = 0, then this relation holds forever.
In particular, if the initial condition is positive and the boundary value
is non-negative, then the solution is positive forever. This should be
obvious from the maximum principle.

24.7 Spatially inhomogeneous and/or anisotropic diffusion.
Physically, the consequences of irreversibility should not be affected by
the existence of spatial inhomogeneity and/or anisotropy (with time-
dependence). We encounter the following equation in such a case (with
the summation convention):

∂u

∂t
= aij(x, t)

∂2u

∂xi∂xj
+ bi(x, t)

∂u

∂xi
+ c(x, t)u (24.10)

or its divergence form (with different coefficient functions):

∂u

∂t
=

∂

∂xi
aij(x, t)

∂u

∂xj
+ bi(x, t)

∂u

∂xi
+ c(x, t)u. (24.11)

The second law requires the positive definiteness of the matrixMatr(aij).
Under this condition it is known that so long as c ≤ 0 the maximum
principle (→24.2) holds. Thus everything we can conclude intuitively
about diffusion based on thermodynamics should also be captured in
the spatially inhomogeneous diffusion equation. It is physically very
sensible that the existence of the advection (→??) term with b is irrel-
evant to the maximum principle.

24.8 Unbounded space. So far we have heavily relied on the bound-
edness of the domain of the problem. Note that the diffusion equation
can have a rapidly growing solution even if the initial data is zero
u(x, 0) = 0 as Tikhonov demonstrated.286 See also the warning in
??(5). In any case, this episode tells us a danger of mathematical mod-
eling: since diffusion equations are derived as a balance condition of
conserved quantities (→??), it is physically unthinkable that initially
everywhere 0 solution can grow. (However, if the growth rate of the so-
lution as a function of x is not too rapid, then the initial value problem
can be solved uniquely. In particular, a bounded solution is unique.)

286 F. John, p211-3.
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24.9 Infinite propagation speed. For a very short time, the solu-
tion of the diffusion equation is almost independent of the (bounded)
boundary condition away from the boundary, and is given by (3.6). In
particular, if the thermal energy is concentrated at the origin at t = 0
(i.e., T (x, 0) = δ(x) →??):

T (x, t) =
1√
4πt

d e
−x2/4t (24.12)

is an accurate solution of ∂tT = ∆T for short time in d-space (→??).
For any positive t, however small it may be, T (x, t) > 0 for any x.
Therefore, we must conclude that heat can travel at infinite speed.
This is true for the diffusion equation for chemical species as well, and
is physically unrealistic. However, for most applications of diffusion
equations, this is good enough because the tail part of T is much smaller
than exponentially small quantities, and because significant error could
occur only for extremely short times (when a collective description like
diffusion is not applicable).

24.10 Short-time modification of diffusion equation: the Maxwell-
Cattaneo equation.287 We must modify the diffusion equation, if we
wish to describe the short time behavior of the system more realisti-
cally. This is only possible by adding higher order time derivatives.288

Hence, the following modification has been proposed:

c
∂2T

∂t2
+

∂T

∂t
= DT∆T, (24.13)

where c is a positive constant. This is called, in the context of heat con-
duction, the Maxwell-Cattaneo equation. We have already come across
this type of equation in conjunction to the propagation of electromag-
netic wave in matter (e.g., the telegrapher’s equation→??). Therefore,
obviously, infinite speed of propagation is eliminated.289

287 cf. Compt. Rend. 247, 431 (1958).
288 In Newton’s equation of motion, the inertial effect is described by the second
order time derivative, and the dissipative effect by the first order time derivative
as in ẍ = −ηẋ + f , where η is the friction constant, and f an external driving
force. If we pay our attention only to the very short time behavior of the system,
we do not see the dissipation term. The effect of dissipation sets in only later. Such
an observation is also important in hydrodynamics. The Euler equation (→??)
accurately describes the initial motion of a body in a viscous fluid under impulsive
force.
289 The equation now becomes a hyperbolic equation (→??). One of the important
properties of hyperbolic equations is the finiteness of the propagation speed (→??).
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25 Laplace Equation: Consequence of spa-

tial moving average

A solution of the Laplace equation is called a harmonic func-
tion. This must be a function invariant under spatial mov-
ing averaging as we discussed in ??. This property almost
determines the important features of the solutions of the
Laplace equation and guarantees its well-posedness, etc.

key words: harmonic function, Green’s formula, mean-
value theorem, its converse, maximum principle, analyticity
of solution, Liouville’s theorem

Summary:
(1) Solutions to the Laplace equation must be invariant under spatial
moving average; a precise statement is the spherical mean-value theo-
rem and its converse (25.4-25.5). The resulting smoothness can also
be stated precisely (25.10).
(2) From this, we immediately know that harmonic functions cannot
have any local extremum inside the domain (25.6, 25.8). This denies
the existence of any stable electrostatic structure (25.7).
(3) Typical potential problems are well-posed (25.9).

25.1 Elementary summary. We have learned where the Laplace
equation appears (→??, ??, ??, ??), and physically argued what aux-
iliary conditions can ensure the uniqueness of the solution (→??). The
most important boundary conditions are Dirichlet conditions in which
the value of the function ψ on the boundary of the domain is fixed,
and Neumann conditions in which the normal derivative of ψ on the
boundary is given.

Discussion.
Cauchy problem of the Laplace equation is not well-posed. This was seen in Dis-
cussion ??(7). Physically, this is not surprising. To obtain the Laplace equation
instead of the wave equation for electromagnetic wave, we must change the sign
of Faraday’s law (→??). This implies that we replace Lenz’s law with ‘anti-Lenz’s
law’. Lenz’s law is a manifestation of the stability of the world, so there is no sur-
prise that the Laplace equation does not describe the well-behaved time evolution
in our world.

25.2 Laplace equation and harmonic functions. Any classical
solution to the Laplace equation is called a harmonic function. The
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electric potential due to point charges is a harmonic function where
there is no charge (→??), and charges correspond to the singularities
of the functions. The equilibrium drumhead is described by a harmonic
function. The real and imaginary parts of an analytic function are
harmonic functions (→??).

Discussion.
(1) There is no solution to the 3-Laplace equation on the unit ball centered at the
origin with the origin removed with the boundary condition u = 1 on the |x| = 1
and u(0) = 0.
(2) Consider the 2D Laplace equation ∆u = 0 on the half plane x > 0 with the
‘initial condition’ u(0, y) = 0 and ∂xu(0, y) = f(y). If f is analytic, then there is a
local analytic solution, but if it is not, then there is not even a local solution.

25.3 Green’s formula. Let D ⊂ Rn be a bounded region, and u
and v be C2-functions defined on the closure of D. Here, we record the
formulas again for convenience (→??).

∫
D
(v∆u+ grad u · grad v)dτ =

∫
∂D

v grad u · dS, (25.1)

and ∫
D
(v∆u− u∆v)dτ =

∫
∂D
(v grad u− u grad v) · dS. (25.2)

25.4 Spherical mean-value theorem. Let u be harmonic on a
region D ⊂ Rn, and Br(x) be a ball of radius r centered at x such that
Br(x) ⊂ D. Then, we have

u(x) =
1

Sn−1(r)

∫
∂Br(x)

u(y)dσ(y), (25.3)

where dσ(y) = |dS(y)|, the area of the surface element, and Sn−1(r) is
the surface area of (n− 1)-sphere (i.e., the skin of the n-ball) of radius
r.290 ✷

This should be intuitively expected from the interpretation of the
Laplacian (→??).
[Demo] Set v(y) = 1/|x − y|n−2 (n > 2) or ln |x − y| (n = 2) in (25.2), and
D = Br(x) \ Bε(x) (r > ε).291 Since v is harmonic in Rn \ {x} as a function
of y, v(y) is harmonic on D. To calculate the RHS of (25.2) we need the normal
derivatives on ∂Br(x):

∂v

∂n
= (2− n)r1−n. (25.4)

290 Sn−1(r) = 2πn/2rn−1/Γ(n/2).
291 A \B is the set of all the points in A but not in B: A \B ≡ {x|x ∈ A, x �∈ B}.

348



Since both u(y) and v(y) are harmonic on D, (25.2) reads

0 =
∫
∂D

(v∂nu− u∂nv)dσ(y)

=
∫
∂Br(x)

(v∂nu− u∂nv)dσ(y)−
∫
∂Bε(x)

(v∂nu− u∂nv)dσ(y). (25.5)

Using (25.4) and (9.19), we can rewrite this as

0 = −(2− n)
[
r1−n

∫
∂Br(x)

udσ(y)− ε1−n
∫
∂Bε(x)

udσ(y)

]
, (25.6)

which implies

lim
ε→0
ε1−n

∫
∂Bε(x)

udσ(y) = Sn−1(r)u(x). (25.7)

The converse of this theorem is also true:

25.5 Theorem [Converse of mean-value theorem]. Let u be a
continuous function on a region D. If the mean value theorem 25.4
holds for any r > 0 and x such that Br(x) ⊂ D, then u is C∞ and
harmonic on D. ✷292

25.6 Maximum principle. Let D be an open region and u be har-
monic (→25.2) there. Suppose supx∈D u(x) ≡ A < ∞. If u �≡ A for
∀x ∈ D, then u(x) < A for ∀x ∈ D. ✷
This should be obvious from the mean-value theorem 25.4. Also, since
a harmonic function is a steady solution of a diffusion equation, from
the maximum principle for the diffusion equation (→24.2), this should
be physically sensible. Changing u to −u gives the minimum counter-
part. This theorem implies:
Corollary. Let D be a compact set, and u be a harmonic function on
the open kernel of D and continuous on D, then the extremum of u on
D is achieved on ∂D. ✷
This implies that static electric potential cannot have its extreme val-
ues where there is no charge. A grave consequence is the collapse of
classical physics.

Discussion.
Consider

∆u = u− u3 (25.8)

in 3-space on a bounded region Ω. Assume u = 0 on ∂Ω. Show that −1 ≤ u ≤ 1.

25.7 Classical physics cannot explain atoms: Earnshaw’s the-
orem. It is impossible to have a stable static configuration of charges
in any static electric field. ✷
Unstable stationary configurations are not impossible (give an exam-
ple). This theorem and electromagnetic radiation inevitable from ac-
celerated charges conclusively killed the possibility of explaining atoms
within classical physics.292 For a proof, see Folland p91 (2.5).

349



25.8 Strong maximum principle. Let Ω be a bounded region in
Rn, and u be harmonic there. If u attains its maximum value M at an
inner point of Ω, then u is constant on Ω.

This is obvious from the mean value theorem.

25.9 Uniqueness and well-posedness. The solution of the Laplace
equation on a bounded domain D, if exists,293 is unique and depends
continuously on the boundary data (→25.11).✷
The proof is quite parallel to that for the diffusion equation (→24.4).
[Demo] Let u1 and u2 be two solutions of the same problem. Then, due to the
linearity of the problem, the difference u = u1 − u2 obeys the Laplace equation
with the homogeneous Dirichlet boundary condition (i.e., u = 0 at the boundary
of the domain). From the maximum principle (→25.6) u cannot be larger than 0,
and −u cannot be larger than 0. Hence, u1 = u2. That is, if there is a solution,
it is unique. Now, we compare two different problems 1 and 2 with the auxiliary
conditions different slightly. Let the solutions of 1 and 2 be u1 and u2, respectively.
Then, the maximum principle tells us that the maximum value of |u1 − u2| in the
region cannot be larger than the differences in the boundary data.

Discussion.
The existence of a solution in a domain in 3 or higher dimensional space is a very
difficult problem, even if the boundary condition is continuous.

25.10 Smoothness of the solution. Since a harmonic function is,
roughly speaking, invariant under spatial moving average, it must be
smooth. Actually,
Theorem. All the solutions of the Laplace equation are real analytic
(→?? for d = 2. Here the assertion is for all d ≥ 2. Analyticity means
the convergence of the Taylor series.). ✷

Discussion.
(1) A solution to ∆u = f is analytic if f is analytic (Courant-Hilbert).
(2) Hadamard’s example
Let D be a bounded region. There exists a continuous function F : ∂D → R

such that it becomes the boundary value of a harmonic function φ on D for which∫
D
|gradφ|2dσ is not bounded. In this case although φ is C∞, the derivatives of F

behave wilder and wilder as the point approaches the boundary of the domain.
If the boundary value is continuous, then the corresponding Dirichlet problem

of the Laplace equation on a bounded domain has at most one solution.

25.11 Well-posedness of Poisson’s equation. The general Pois-
son problem has the following form

∆u = F in Ω, u = f on ∂Ω. (25.9)
293 We have not yet constructed the solution!
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Here Ω is a bounded region. If we are interested in smooth solution
(for example, C2), then

‖u1 − u2‖Ω ≤ c1‖f1 − f2‖∂Ω + c2‖F1 = F2‖Ω, (25.10)

where ‖ ‖D is the L2-norm on D, and c1, c2 are positive constants. This
inequality clearly implies the well-posedness of our problem.

It is a good occasion to learn something about the so-called a priori
estimate.
The inequality can be demonstrated as follows.
(1) First, the problem is split into v and w: ∆v = F in Ω, v = 0 on ∂Ω and
∆w = 0 in Ω, w = f on ∂Ω.
(2) From the properties of the algebraic and geometric averages we get

2|(v,w)| = 2|(ε−1/2v, ε1/2w)| ≤ ε‖v‖+ (ε)−1‖w‖ (25.11)

for any positive ε.
(3) Therefore,

‖v + w‖2 ≤ (1 + ε)‖v‖+ (1 + ε−1)‖w‖. (25.12)

That is, we have only to find bounds for v and w, respectively.
(4) With the aid of the variational problem (→30.24) for the eigenvalue of the
Laplacian −∆:

0 < λ1 = inf
v|∂Ω=0

∫
Ω
v(−∆)vdx∫
Ω v

2dx
. (25.13)

Hence, with the aid of the Schwarz inequality (→16.7)

‖v‖2
Ω ≤ 1

λ

(∫
Ω

v(−∆)vdx
)
≤ 1
λ

(∫
Ω

v2dx

)1/2(∫
Ω

(∆v)2dx
)1/2

(25.14)

Hence,

‖v‖2 ≤ 1
λ21

∫
Ω

F 2dx. (25.15)

(5) Introduce an auxiliary function ϕ such that ∆ϕ = w on Ω and the homogeneous
Dirichlet condition on ∂Ω (the existence of the solutions w and ϕ is a prerequisite
of our argument). With the aid of Green’s formula (→25.3)∫

∂Ω

w
∂ϕ

∂n
dσ −

∫
∂Ω

ϕ
∂w

∂n
dσ =

∫
Ω

w∆ϕdx−
∫

Ω

ϕ∆wdx. (25.16)

Hence,

∫
Ω

w2dx =
∫
∂Ω

w
∂ϕ

∂n
dσ ≤

(∫
∂Ω

w2dx

)1/2
(∫

∂Ω

(
∂ϕ

∂n

)2

dσ

)1/2

. (25.17)

We have used the Schwarz inequality.
(6) For a function vanishing on the boundary∫

∂Ω

(
∂ϕ

∂n

)2

dσ ≤ C
∫

Ω

(∆ϕ)2dx. (25.18)
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Hence, ‖w‖2 is bounded by ‖F‖2. 294

Discussion.
Partial derivatives of a harmonic function with respect to the Cartesian coordinates
are again harmonic. However, the partial derivatives with respect to curvilinear
coordinates are not necessarily so.

25.12 Comparison theorem. Let u and v be harmonic functions
on a bounded domain Ω, and u ≥ v on ∂Ω. Then, u ≥ v throughout
Ω.

25.13 Liouville’s theorem.295 If u is a bounded harmonic function
on the whole space Rn, then u is a constant.✷296

25.14 More general elliptic equation. The essence of the Lapla-
cian is that it is an operator giving the deviation of the value of the
function from its local average. The Laplacian is obtained when we
assume that the weight for the average is everywhere uniform (→??).
We should be able to choose a weighted average. Then, a more general
equation like

aij
∂2u

∂xixj
+ bi

∂u

∂xi
+ c(x)u = 0 (25.20)

with the positive definite matrix Matr(aij) appears. We may expect
that the key properties of the Laplacian should be true even for aij∂i∂j ,
because they are due to the averaging principle. Indeed the maximum
principle is true if c ≤ 0 as intuitively expected. (The most statements
above hold if c ≤ 0297 ).

294 The following theorem is also relevant.
Aleksandrov’s theorem. The solution to Poisson’s equation smoothly depends
on the charge distribution. Or, more precisely: Let D be a bounded domain and
u be a solution of ∆u = f in D with a homogeneous Dirichlet condition and is
continuous up to the boundary of D. Then,

sup
D
u ≤ C||f ||d, (25.19)

where C is a constant dependent on the spatial dimensionality and the radius of
D, and || · ||d is the Ld-norm. [Lp-norm for any positive p is defined by ||f ||p ≡(∫ |f |pdx)1/p, where the integral is the Lebesgue integral (→19).] See Egorov-
Shubin, p93.
295 Joseph Liouville, 1809-1882.
296 Folland p94 (2.11).
297 See, Yu. V. Egorov and M. A. Shubin (eds) Partial Differential Equations III,
Chapter 2 (Springer, 1991)
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26 Wave Equation: Finiteness of propa-

gation speed

Wave equations are representative hyperbolic equations. With
the aid of energy conservation, we discuss the well-posedness
of wave equation problems. A general method to solve 3-
space wave equation is given (method of spherical means
due to Poisson), which clearly shows Huygens’ principle.
Finally, the characterization of hyperbolic equation with
constant coefficients due to G̊arding is summarized.

Key words: characteristic curve, domain of dependence
(influence), energy conservation, Huygens’ principle, method
of spherical means, focusing, hyperbolicity in G̊arding’s sense,
finiteness of propagation speed.

Summary:
(1) Wave equations have well-defined domains of dependence and in-
fluence: they are called the past and the future in relativity (30.3).
Huygens’ principle is correctly captured by the wave equation (26.8).
(2) Wave equations allow propagation of a solution which is not smooth
along a special curve (characteristic curve) (26.2).
(3) Wave equations preserve energy. This implies well-posedness of
wave equation problems (26.4, 26.6).
(4) All the general methods to solve d-space wave equations are based
on reducing them to 1D wave equations (??. For another, see 28.45).
In d(≥ 2)-space, the time evolution due to wave equations may reduce
the smoothness in the initial waves (26.10).
(5) G̊arding conclusively characterized hyperbolicity (26.12-26.14),
which implies finiteness of propagation speed (26.15).

26.1 Elementary summary. We have learned where the wave equa-
tions appear (→??, ??-??, ??), and physically argued what auxiliary
conditions can ensure the uniqueness of the solution (→??). We know
how to obtain the unique solution to the initial value problem in R as
d’Alembert’s formula (→??) for the 1-space problem

∂2u

∂t2
=

∂2u

∂x2
. (26.1)

We know from the telegrapher’s equation (→?? or the Maxwell-Cattaneo
equation→24.10) that the second order time derivative prohibits infi-
nite speed propagation of the signal.
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Exercise.
Solve

utt − uxx = e−|x−t| (26.2)

on R×R.

26.2 Characteristic curve. The solution method in ??(1) reduces
the 1-wave equation (26.1) to two first order PDEs whose characteristic
curves (→??) are x±ct = const. These curves (actually lines) are called
the characteristic curves of the wave equation (→(C) below). If u is a
solution to (26.1), then we can prove the following general identity:

u(A) + u(C) = u(B) + u(D), (26.3)

where A-D are the apices of any parallelogram ABCD in space-time
whose edges are parallel to the characteristic curves x ± ct = const.
This equality can be shown easily with the aid of d’Alembert’s solution
(→??). We may characterize a ‘generalized solution’ to (26.1) as any
function u satisfying (26.3).

Discussion.
(A) Hyperbolic equations allow propagation of discontinuity without smoothing.
Rewrite the wave equation (3.1) in the following form:

∂v

∂t
= c
∂u

∂x
,
∂u

∂t
= c
∂v

∂x
. (26.4)

Is there any curve φ(x, t) = 0 on which u and v are continuous but their derivatives
jump? [We have already discussed this in detail in ?? Discussion.]
(B) Try the same thing as above for the telegrapher’s equation.
(C) We have already discussed the meaning of the characteristic curve in (A). Let
us continue the discussion for more general cases. Consider

∂2u

∂t2
− c2(x)∂

2u

∂x2
= 0 (26.5)

where c(x) is a positive valued function. Suppose there is a discontinuity of the
solution of this equation along a curve ϕ(x, t) = 0. We assume the solution is
smooth except on this curve. We rewrite the equation with the new coordinate
X = ϕ(x, t) and Y = ψ(x, t), where ψ is chosen to make (X, Y ) a well-behaved
coordinate system.
(1) Show that the result can be written as

Q(ϕ,ϕ)
∂2u

∂X2
+ 2Q(ϕ,ψ)

∂2u

∂X∂Y
+Q(ψ, ψ)

∂2u

∂Y 2
+ L(ϕ)

∂u

∂X
+ L(ψ)

∂u

∂Y
= 0, (26.6)

where

Q(ϕ,ψ) =
∂ϕ

∂t

∂ψ

∂t
− c2(x)∂ϕ

∂x

∂ψ

∂x
, (26.7)

L(ϕ) =
∂2ϕ

∂t2
− c2(x)∂

2ϕ

∂x2
. (26.8)
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(2) Suppose ∂u/∂X has a discontinuity across ϕ(x, t) = 0. Then, show that

Q(ϕ,ϕ) = 0 (26.9)

must be satisfied. This equation is called the characteristic equation, and ϕ = const.
is called a characteristic curve.
(3) See that x = ±ct = const. are characteristic curves for the ordinary wave equa-
tion.
(4) There are two characteristic curves passing through a given point. The singu-
larity we are discussing is constrained on them, so its propagating speed should be
given by

dx

dt
= − ∂ϕ(x, t)

∂t

/
∂ϕ(x, t)
∂x

= ±c(x). (26.10)

(5) Notice that to solve the equation Q = 0 is equivalent to solving (6.9).

26.3 Domain of dependence, finite propagation speed. D’Alembert’s
solution (→??) clearly shows that u at x at time t is completely deter-
mined by the initial data in the interval [x − ct, x + ct]. This interval
is called the domain of dependence. Conversely, the initial data at ζ
can influence the interval [ζ − ct, ζ + ct] of the space at time t. This of
course means that the disturbance can propagate at fastest with speed
c in contradistinction to parabolic equations (→24.9).

Discussion: Characteristic initial value problem.
The light cone is a characteristic surface. If u is given on a characteristic surface
as is shown in figure, then the solution is uniquely determined within its domain
of influence. Hence, generally no boundary value problem in a closed domain has a
solution for wave equations.

26.4 Energy conservation. The energy integral

E(t) =
1

2

∫ l

0



(
∂u

∂t

)2

+ c2

(
∂u

∂x

)2

 (26.11)

is time independent for classical solutions (→??). A formal calculation
exchanging the order of differentiation with respect to time and inte-
gration is justifiable (→15.18).

Discussion.
Suppose that a vibrating string of length L with a fixed end condition is subjected
to a damping force −a∂ψ∂t . Discuss how the energy conservation is violated.

26.5 Uniqueness revisited. Although we already know the unique
existence of the solution to the initial value problem of (26.1) in R,
let us reconsider the problem in terms of the energy integral. Since the
equation is linear, to prove the uniqueness, we have only to consider that
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the homogeneous problem has only the zero solution: if v satisfies (26.1)
and the auxiliary conditions v(x, 0) = 0 for x ∈ D, and v(x, t) = 0 for
x ∈ ∂D for t ≥ 0, then v(x, t) = 0 in D× [0, t]. For this initial condition
the total energy (26.11) is zero, so that the constancy of energy integral
implies that ∂tv(x, t) = ∂xv(x, t) = 0. This implies (with the aid of the
mean value theorem) v is a constant. Since v is continuous, this implies
that v ≡ 0.
Discussion.
(1) Riemann’s method. Let

L ≡ ρ(x) ∂
2

∂t2
− ∂2

∂x2
. (26.12)

Find the solution satisfying

Lv = 0, (26.13)
v|t=t0,x=x0 = 1, (26.14)

2
√
ρ(x)

∂v

∂s
+
∂
√
ρ(x)
∂s

v = 0 on characteristic curves. (26.15)

The solution v is called the Riemann function (fundamental solution). In terms of
this function, the solution to the initial value problem can be obtained as

(
√
ρ(x)u)(P ) =

1
2

[
(
√
ρ(x)uv)(A) + (

√
ρ(x)uv)(B)

]
+
1
2

∫ xB

xA

ρ(x)
(
∂u

∂t
v − u∂v

∂t

)
dx,

(26.16)
wher A, B, P are the points in the figure. The formula is called Riemann’s formula,
and d’Alembert’s formula is its special case.
(2) How can we determine Riemann’s function? The problem is to solve v for which
the auxiliary conditions are given on the characteristic curves. Such a problem is
called a Goursa’s problem or characteristic boundary value problem. We change the
independent variables from x, t to ϕ+ and ϕ− (characteristic curves →26.2(C)).
The problem now reads

∂2v

∂ϕ−∂ϕ+
− a ∂v
∂ϕ−

− b ∂v
∂ϕ+

= 0 (26.17)

with the boundary conditions

v(ϕ−, 0) = f−, v(ϕ+, 0) = f+. (26.18)

Here a, b andf± are given functions. If we define

Ψ± =
∂v

∂ϕ±
, (26.19)

then, the PDE can be cast in the following simultaneous Volterra integral equation:

Ψ− = f ′− +
∫ ϕ+

0

[a(ϕ−, η)Ψ(ϕ−, η) + b(ϕ−, η)Ψ+(ϕ−, 0)]dη,
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(26.20)

Ψ+ = f ′+ +
∫ ϕ−

0

[a(ξ, ϕ+)Ψ−(ξ, ϕ+) + b(ξ, , ϕ+)Ψ+(ξ, ϕ+)]dξ.

(26.21)

This can be solved by an interative replacement method with the starting choice of
Ψ− = f ′−, Ψ+ = f ′+.

26.6 Well-posedness. We consider two problems (26.1) with u(x, 0) =
fi(x) and ∂tu(x, 0) = gi(x) in R (i = 1, 2). Denoting each solution as
ui, we can easily get

|u1(x, t)− u2(x, t)| ≤ ||f1 − f2||max + |t| ||g1 − g2||max (26.22)

from d’Alembert’s formula (→??). Hence, the solution depends on the
data continuously. That is, small changes of the data cause a small
change in the solution for any finite time.

26.7 Inhomogeneous wave equation. Consider

∂2u

∂t2
− c2∂

2u

∂x2
= F (x, t) (26.23)

in R × R with the initial condition u(x, 0) = f(x) and ∂tu(x, 0) =
g(x), where f is C2 and g is C1. The problem is a superposition of
the homogeneous equation with the inhomogeneous initial conditions
studied in ?? and the following problem of inhomogeneous equation
with homogeneous initial conditions:

∂2v

∂t2
− c2 ∂

2v

∂x2
= F (x, t) (26.24)

with v(x, 0) = 0 and ∂tv(x, 0) = 0. The problem can be solved easily
with the introduction of the new variables (a standard trick→??) x±ct
as in

v(x, t) =
1

2c

∫ t

0
dτ
∫ x+c(t−τ)

x−c(t−τ)
F (σ, τ)dσ. (26.25)

Notice that if F (x, t) is an odd function of x, then so is v for all t.

26.8 Wave equation in 3-space, Huygens’ principle. The initial
value problem

∂2
t u = c2∆u (26.26)

with the initial condition

u = f(x), ∂tu = g(x) for t = 0 (26.27)
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in 3-space has the following solution:

u(x, t) =
1

4πc2t

∫
|y−x|=ct

g(y)dσ(y) +
∂

∂t

(
1

4πc2t

∫
|y−x|=ct

f(y)dσ(y)

)
.

(26.28)
This is an explicit expression of Huygens’ principle. This equation can
be a starting point of a numerical scheme. A demonstration of the
equation follows.

Exercise.
Solve the following 3-wave equation:

utt = ∆u (26.29)

with the initial condition u = x2 + y2 + z2 and ut = z.
Needless to say, an inhomogeneous problem ✷u = q can be solved by linear de-

composition. The inhomogeneous problem with a homogeneous auxiliary conditions
can be solved easily in terms of Green’s functions (→40)

26.9 Method of spherical means [Poisson]. Define

Mh(x, r) =
1

4π2

∫
|y|=1

h(x+ ry)dσ(y), (26.30)

where h is a C2-function, and σ is the area element of the sphere. Mh

is an even function of r. Using Gauss’ theorem (→??), we get the
following Darboux’s equation

(
∂2

∂r2
+
2

r

∂

∂r

)
Mh(x, r) = ∆Mh(x, r). (26.31)

Here ∆ is the Laplacian acting on the function of x. (26.26) is converted
to

∂2

∂t2
(rMu) = c2 ∂2

∂r2
(rMu), (26.32)

where Mu is interpreted as a function of x, r and t as Mu(x, r, t), and
the initial condition becomes

Mu =Mf , ∂tMu =Mg for t = 0. (26.33)

Notice that Mu(x, 0, t) = u(x, t). (26.32) can be solved as (→??):

rMu(x, r, t) =
1

2
[(r+ct)Mf (x, r+ct)+(r−ct)Mf (x, r−ct)]+

1

2c

∫ r+ct

r−ct
yMg(x, y)dy.

(26.34)
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Using the fact that Mf and Mg are even functions of r, we can rewrite
this as

Mu(x, r, t) =
(ct+ r)Mf (x, ct+ r)− (ct− r)Mf(x, ct− r)

2r
+
1

2cr

∫ ct+r

ct−r
yMg(x, y)dy.

(26.35)
Now, take the r → 0 limit (l’Hospital’s rule is used) and we finally
arrive at (26.28)

26.10 Focusing effect. (26.28) implies that the smoothness of the
solution u can be less than that of the initial data due to the derivative
in the formula. This effect is called the focusing effect. This can happen
when the initial condition is focussed into a small set, making caustics.
This does not happen in 1-space.

26.11 What is the mathematical essence of the wave equa-
tion? Physically, that the singularity can be propagated without smooth-
ing (propagation of shock waves, for example) is a remarkable distinc-
tion from the diffusion equation (parabolic equation). Also the finite-
ness of the speed of propagation is in striking contrast to the diffusion
equation (→24.9). Since the wave equation is nothing but Newton’s
equation of motion of an idealized elastic body (→??), the Newton-
Laplace determinacy should apply. That is, the Cauchy problem must
be well-posed (→24.3). G̊arding298 answered the question decisively
at least for the constant coefficient linear partial differential equations
(of any order).

26.12 Hyperbolicity in G̊arding’s sense. Let L↽==L(∂t,∇) be a
N -th order linear PDE operator with constant coefficients. If L contains
∂N/∂tN 299 and if the real parts of the zeros λi(ξ) of the characteristic
equation L(λ, iξ) = 0300 considered as an equation for λ are bounded
as a function of ξ, then we say Lu = 0 is a hyperbolic equation in
G̊arding’s sense.

26.13 Example.
(1) Wave equation (∂2

t − c2∆)u = 0. L(λ, iξ) = λ2 + c2ξ2. Therefore,
λ(ξ) = ±ic|ξ|. That is, the characteristic roots are purely imaginary,
so obviously the equation is hyperbolic in G̊arding’s sense.

298 Gårding wrote a nice book on mathematics: L. G̊arding, Encounter with Math-
ematics (Springer, 1977). Those who are interested in mathematics as a part of the
modern culture will enjoy the book.
299 If the highest order derivative is not ∂Nt , then 26.15 below does not hold. That
is, the propagation of front has infinite speed.
300 Here not only the highest order terms but all the derivatives are taken into
account. Furthermore i accompanies with ξ.
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(2) Diffusion equation (∂t − D∆)u = 0. L(λ, iξ) = λ + Dξ2, so that
λ(ξ) = −Dξ2 is real and is not bounded as a function of ξ.
(3) However, if we add a second order time derivative term with a
small positive coefficient as (ε∂2

t + ∂t −D∆)u = 0, which is called the
telegrapher’s equation or Maxwell-Cattaneo equation (→??, 24.10),
the situation is drastically different from the diffusion equation. For this
L(λ, iξ) = ελ2+λ+Dξ2, so that λ(ξ) = (−1±√

1− 4εDξ2)/2ε. Hence
its real part is bounded as a function of ξ. That is, the telegrapher’s
equation is hyperbolic in G̊arding’s sense.
(4) Certainly, the Laplace equation ∆u = 0 is not hyperbolic.

Discussion.
The equation for transversal oscillations of a beam is given by

∂4u

∂x4
+ c−4 ∂

2u

∂t2
= f(x, t), (26.36)

where f is essentially the external load. This equation is hyperbolic.

26.14 Theorem [G̊arding]. The Cauchy problem Lu = 0 under the
Cauchy condition ∂kf/∂tk(0, x) = uk(x) (0 ≤ k ≤ N − 1) is well-posed
in the sense of Hadamard (→24.3) if and only if L is hyperbolic in
G̊arding’s sense. ✷301

Hence, the determinacy (and more) for the wave equation is vindicated.

26.15 Theorem [Finiteness of the propagation speed]. Let Ω be
the support of the Cauchy data for Lu = 0, where L is a linear partial
differential operator with constant coefficients, and is hyperbolic in the
sense of G̊arding (→26.12). Then the support of the solution at time
t > 0 is included in the set {x : ∪ξ∈Ω|x − ξ| ≤ ct}, where c is a finite
number such that

c ≥ max
i−1,···,m;|ξ|=1

λ̄i(ξ). (26.37)

Here λi are zeros of the symbol of the principal part of the differential
operator (and are real for hyperbolic equations).✷302

301 See John, Section 5.2.
302 S. Mizohata, Partial Differential Equations (Iwanami, 1965), Theorem 4.9.
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27 Numerical Solution of PDE

Although we have been discussing analytical methods to
solve PDE, most problems are intractable by exact meth-
ods. In this section elementary numerical methods to solve
PDE are outlined. We require a numerical scheme to be
stable and consistent (i.e., converging to the original prob-
lem in the continuum limit). This is a section for ABC of
numerical analysis.

Key words: discretization, consistency, stability, conver-
gence, von Neumann condition, Courant-Friedrichs-Lewy
condition

Summary:
(1) There are two major methods to discretize a continuum problem:
the Galerkin method and sampling at space-time lattice points (31.2).
There can be many unconventional discretization schemes (31.4).
(2) Any discrete scheme must recover the original problem in the con-
tinuum limit (consistency of the scheme). If the solution to a scheme
is bounded, then the scheme is said to be stable. For linear problems
Consistency and stability imply convergence of the scheme (i.e., the
solution to the scheme converges to the true solution in the continuum
limit) (27.7).
(3) Stability conditions for a scheme may be understood, roughly, by
the condition that physical propagation speed of the signal does not
outrun the numerical propagation speed (27.9, 27.11).

27.1 Discretization. To use computers to solve a differential equa-
tion, unless we use symbolic manipulation, we must discretize every-
thing and express quantities in a finite number of rational numbers.
Thus the fundamental question of numerical computations of differen-
tial equations is how faithful this map to the discrete world is.
Numerical analysis is a discipline to analyze numerical algorithms and
is as old as analysis itself. Already Newton discussed a series expansion
method to solve ODE in his first calculus paper (1669). Euler intro-
duced discretization methods in 1743.

Discussion.
Consider303

du

dt
= f(u), (27.1)

303 M. Yamaguti and H. Matano, Euler’s finite difference scheme and chaos, Proc.
Japan Acad. 55 Ser.A, 78-80 (1979).
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where f satisfies f(0) = f(1) = 0, f(u) > 0 for u ∈ (0, 1) and f(u) < 0 for 1 < u < κ
for some positive κ > 1. Then, its Euler differencing result

un+1 = un +∆tf(un) (27.2)

exhibits chaos for ∆t > c1 for some positive c1. Here ‘exhibiting chaos’ means that
the solution has a ‘natural’ relation to random numbers (or the outcome of coin-
tossing).304

(B) Consider the following logistic equation

du

dt
= u(1− u). (27.3)

(1) Solve this equation with the initial condition u = u0 ∈ (0, 1) analytically.
(2) Get the following type of difference equation with the aid of the center differ-
encing scheme:

un+1 = vn + αun(1− un), vn+1 = un, (27.4)

where α = 2∆t, un = u(n∆t) and vn = un−1.
(3) The equation (27.4) defines a map from R2 into itself. The map exhibits chaos
irrespective of the size of ∆t.305 A more careful statement is as follows. Let time T
be fixed and N ≡ T/∆t. If ∆t→ 0, then up to N there is no pathological behavior.
However, if ∆t is fixed, then for sufficiently large N (consequently for large T ),
pathological behavior will show up.
(4) The equation (27.4) converges to (more generally, see 27.3 Discussion)

du

dt
= v(1− v), dv

dt
= u(1− u). (27.5)

This equation does not exhibit chaos, but is unstable near u = v = 1.

27.2 Two major methods of discretization. There are two major
methods to map a continuous problem to a discrete problem. One is
the sampling method (recall Green’s approach →??), and the other is
the Fourier expansion method.

The sampling method tries to represent a function f(x) by a set of
function values sampled at appropriately located sampling points, and
is usually called “the discrete variable method.” We have already used
its primitive version in 1 (??, ??, ??).

The Fourier expansion method tries to describe a function f(x) as
a truncated generalized Fourier expansion fN (x) (→16.14). A typical
method is the one called theGalerkin method: Put fN(x) =

∑N
n=1 anφn(x),

where φn denotes orthonormal functions (→16.10), into the original
equation. Then, multiply φm(x) and integrate over x. This will give
a set of equations for the Fourier coefficients. This is a finite set of
algebraic equations, so there are many ways to solve it.306304 Y. Oono, Period �= 2n implies chaos, Prog. Theor. Phys. 59, 1029-1030 (1978).
305 S. Ushiki, Central differencing scheme and chaos, Physica D 4, 407-424 (1982).
306 The Galerkin method is often used to solve PDE. In this case the resultant set of
equations become a simultaneous set of ODEs. The method is also very important
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27.3 Consistency, stability and convergence. If the discretiza-
tion scheme recovers the original equation in the limit which recovers a
function from its discretized version, we say the method is consistent.
If the discretized solution is bounded in terms of the input data (initial
condition, etc), we say the method is stable. Consistency and stability
imply the convergence of the scheme. That is, if a numerical scheme
is consistent and stable, then the scheme gives the solution which con-
verges to the true solution of the original continuous problem in the
limit recovering a function from its discretized version. There are con-
sistent but unstable schemes.307

Discussion.
Probably the most famous example is the center differencing scheme:308

Since dx/dt � [x(tn+1)− x(tn−1)]/2h, where h is the time increment tn+1 − tn = h
for all n, we might be able to rewrite dx/dt = f(x) as

x(tn+1)− x(tn−1)
2h

= f(x(tn)). (27.6)

The scheme is called the center differencing scheme. It is known that this equation
converges to the following simultaneous equation:

dx

dt
= f(y),

dy

dt
= f(x). (27.7)

If x = y is stable, then there is no problem, but often this is not the case. The
method doubles the dimensionality of the phase space (= the space where the
trajectories are). Hence, even a two dimensional ODE could produce chaos as
artifact after center differencing discretization.

27.4 Discretization of PDE. The simplest method to discretize a
PDE is to use a regular mesh on its domain and use the values of the
functions sampled at the mesh points.309 As explained in 27.2 we
can also use the Galerkin method to discretize the PDE with the aid
of generalized Fourier expansion (in terms of an appropriate complete
set). Always the consistency and stability of the scheme are crucial.

as a tool to prove the existence of the solutions to PDEs like the Navier-Stokes
equation. See Ladyzhenskaya quoted in ?? Discussion.
307 One might think that if a scheme is not consistent, then the scheme is useless.
However, the situation is not this simple, because we do not take the h→ 0 limit in
practice. Hence, even if the limit may be different from the original equation, still
the numerical solution for a finite h may be a good solution.
308 M. Mizutani, T. Niwa and T. Ohno, Chaos and bifurcation phenomena in lim-
iting central difference scheme, J. Math. Kyoto Univ. 23, 39-54 (1983).
309 A. Iserles, A First Course in the Numerical Analysis of Differential Equations
(Cambridge UP, 1996) is an excellent introdution to the mathematical side of nu-
merical analysis. Although, as the author explicitly says, it is not for practitioners,
still the comments in the end of each chapter contain updated information and are
useful.
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An important point recognized explicitly in recent years is that good
modeling of physics on a discrete space can motivate a useful numerical
solver for PDE.

Discussion.
A typical example is the numerical schemes for the simple equation

∂u

∂t
+ c
∂u

∂x
= 0, (27.8)

where c is a constant. We can solve this equation analytically easily (→?? Dis-
cussion(2), ??, ??), e.g., for the initial condition u(x, 0) = 1 for x > 0 and 0,
otherwise. Ordinary discretization methods give miserable results (Try to solve this
with the simple Euler scheme). However, we know the essence of the equation is
the translational symmetry of space:

u(x, t+ δt) = u(x− cδt, t) (27.9)

for any δt (this is the equation for weak solutions, cf. 2B.3). The problem is that
if we discretize u, then we know only u(xi) at sampling points {xi}. Therefore, it
is very hard to describe the translational symmetry. The most natural idea is: (i)
first reconstruct the continuous u from the discrete sampled values by interpolation,
(ii) then translate the reconstructed continuous function according to (27.9), (iii)
Finally sample the values of the shifted function at the grid points (see Figure).
Actually, this reconstruction-resampling scheme is used in one of the best schemes
for (27.8). Thus, the reader should keep in mind that there is still an ample room
to devise unconventional numerical schemes for PDE.

27.5 Discretization of Poisson’s equation. Practically useful nu-
merical schemes use simple discretization to solve a Poisson’s equation:310

∆u = f (27.10)

on a region D with the boundary condition u = g on ∂D. Let us
consider this in 2-space. To discretize this, we follow Euler: Let h be
the lattice spacing of the sampling regular square lattice; the sampling
points are (ih, jh), where i and j are integers. Let us denote the value
of a function f at (ih, jh) as f [i, j]. The simplest scheme is

∆hu[i, j] ≡ u[i+ 1, j] + u[i, j + 1] + u[i− 1, j] + u[i, j − 1]− 4u[i, j]
h2

= f [i, j]

(27.11)
with u[i, j] = g[i, j] if (ih, jh) is on the discretized boundary. Let us
denote the set of grid points in the domain by Dh and the discretized
boundary by Γh.

310 If the domain is regular, say, a square, then, Fourier transform methods are
practical.
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27.6 CHECK algebraic equation, so that if the matrix defined by ∆h

is non-singular, then we can solve it. The non-singularity of the matrix
can be shown with the aid of the maximum principle (→25.6) which is
still true after discretization, because the mean value theorem is correct
as can be seen from the form of ∆h (→??). More precisely, we can show
easily that if

∆hv ≥ 0 on Dh and v ≥ 0 on Γh, (27.12)

then v ≥ 0 on Dh ∪ Γh. This implies that if v and −v both satisfy
(27.12), then v = 0 on Dh ∪ Γh. That is, if ∆hv = 0 on Dh and v = 0
on Γh, then its unique solution is v = 0 everywhere. Hence, the matrix
defining the simultaneous linear equation (27.11) is regular, and (27.11)
has a unique solution. The matrix is very sparse, so many sparse marix
solvers can be used.

27.7 Consistency and stability ⇒ convergence. Is this dis-
cretization scheme consistent? That is, in the h → 0 limit can we
claim that the discretized version converges to the original equation?
If u is C3 on the domain, we can demonstrate

max
x∈Dh

|∆hu−∆u| ≤ h

3
max
x∈D

{∣∣∣∣∣∂
3u

∂x3

∣∣∣∣∣ ,
∣∣∣∣∣∂

3u

∂y3

∣∣∣∣∣
}
. (27.13)

Since we know the solution to Poisson’s equation is very smooth (→25.10)
this is enough to demonstrate that indeed our scheme is consistent.

Our scheme is also stable: the solution to (27.11) is bounded by
the ‘magnitudes’ of f and g in the problem as

max
x∈Dh∪Γh

|u(x)| ≤ c(max
x∈Dh

|f |+max
x∈Γh

|g|), (27.14)

where c is a positive constant independent of h, f and g.311

Now we have
Theorem. The solution uh to (27.11) converges uniformly to the so-
lution to the original problem. More precisely,

max
x∈Dh∪Γh

|uh(x)− u(x)| ≤ chmax
x∈D

{∣∣∣∣∣∂
3u

∂x3

∣∣∣∣∣ ,
∣∣∣∣∣∂

3u

∂y3

∣∣∣∣∣ ,
∣∣∣∣∣∂u∂x
∣∣∣∣∣ ,
∣∣∣∣∣∂u∂y
∣∣∣∣∣
}
. (27.15)

✷
We thus know that uh converges to the true solution, but actually this
is shown only on the dense set that are limit points of the lattice points.
Since we know from the general theory that the true solution is very
smooth, this should be enough.311 In this case, we need not restrict the size of h, but usually the stability holds for
h up to some upper bound as we will see in the case of diffusion equation (→27.8).
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27.8 Discretizing diffusion equation: θ-method. Let us consider
1-space diffusion equation

∂u

∂t
=

∂2u

∂x2
+ f (27.16)

on QT = {(x, t); x ∈ (0, 1), t ∈ (0, T )}. We impose the initial condition
u(x, 0) = a(x) for x ∈ (0, 1). We must also specify a boundary condition
at x = 0 and 1, but we will not explicitly write it down. The 1-space
version of ∆h is given by

∆hu[i] =
u[i+ 1] + u[i− 1]− 2u[i]

h2
. (27.17)

We must discretize the time axis with the spacing τ . We introduce the
following notation

un[i] = u(ih, nτ), (27.18)

and
un+θ[i] = θun+1[i] + (1− θ)un[i]. (27.19)

We introduce the following scheme called the θ-method:

un+1[i]− un[i]

τ
= ∆hun+θ[i] + fn+θ[i]. (27.20)

For θ = 0 this is the standard Euler method; for θ = 1/2 it is called
the Cranck-Nicholson method; for θ = 1 it is called the backward Euler
method. The latter two methods are called implicit methods, because
we cannot immediately read off the updated data.

27.9 Stability analysis. A standard method to analyze the stability
of a scheme is to compute the so-called amplification factor A:

un[l] = Aneiklh. (27.21)

The basic idea is that we prepare spatially bounded ‘initial condition’
(that is why eikl) and study its time evolution. If |A| > 1, we are in
trouble.

27.10 Von Neumann’s stability condition.312 In our case the
scheme is stable if un[i] is bounded for all i and n by a number propor-
tional to the ‘magnitude’ of the initial condition a. Let us measure the
‘magnitude’ with the following ‘normalized I2-norm’:

||v||h ≡
{
1

N

N−1∑
i=0

v[i]2
}1/2

. (27.22)

312 John von Neumann, 1903-1957.
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The stability is defined by the inequality

||un||h ≤ c||a||h (27.23)

for all n with some positive constant c independent of a, h and τ (< 1).
Theorem [von Neumann]. A necessary and sufficient condition for the
scheme (27.20) to be stable is that there is a nonnegative constant b
such that for any k ∣∣∣∣∣h

2 − 4(1− θ) sin2 πk
4N

h2 + 4θτ sin2 πk
4N

∣∣∣∣∣ < 1 + bτ (27.24)

for any k ∈ Z. In particular, the scheme is stable for θ ∈ [1/2, 1]
unconditionally and for θ ∈ [0, 1/2] under the condition

τ

h2
≤ 1

2(1− 2θ) , (27.25)

which is called the stability condition.313 ✷
Generally speaking, implicit schemes are more stable as seen here. How-
ever, implicit schemes are usually computationally more time consum-
ing. The reader might think that exploiting the stability, we can choose
a large τ to compensate the complexity. Sometimes, this indeed works,
but stability does not mean that the obtained solution is accurate, so
that choosing a large τ is not usually wise.

Discussion.
(A) In (27.20) put θ = 0 and f = 0. Assume

un,j = λ(k)neik (jh). (27.26)

Then, this is a solution to (27.20), if

λ(k) = 1− 4
τ

h2
sin2(kh/2). (27.27)

This λ(k) is the amplification factor for the mode k. From this we conclude that

τ

h2
<

1
2

(27.28)

is required for the scheme to be stable. The condition can be rewritten as

D <
h2

2τ
. (27.29)

This may be interpreted as a condition for the numerical diffusion constant to be
larger than the physical diffusion constant.
313 The stability condition may depend on the norm used. If we use the O∞-norm,
then the RHS of (27.25) reads 1/2(1− θ) for θ ∈ [0, 1].
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If τ/h2 = 1/2, the scheme may violate the maximum principle.
(B) In 27.8 try the same and derive the formula for the amplification factor for the
θ method:

λ(k) =
1− 4(1− θ)(τ/h2) sin2(kh/2)

1 + 4θ(τ/h2) sin2(kh/2)
. (27.30)

From this the stability condition is given by (the von Neumann stability condition
27.9)

τ

h2
(1− 2θ) <

1
2
. (27.31)

For θ = 1/2, the method is called the Cranck-Nicolson scheme. In this case, if
τ/h2 = 1, the scheme is stable, but does not satisfy the maximum principle (the
number of peaks may increase).
(C) Consider the following diffusion-advection equation:

∂u

∂t
=
∂2u

∂x2
− b∂u
∂x
, (27.32)

where b is a continuous function of x and t with boundedness: |b| < B. Apply a
discretization scheme (not complicated one, please) and study its stability.

27.11 Consistency and convergence of θ-method. If u is smooth
enough,314 then we can show that the θ-method is consistent. Under
the stability condition discussed in 27.10, the solution uh to (27.20)
converges to the solution to the original PDE in the h → 0 limit. More
precisely,

max
n

||uhn−un||h ≤ T

{∣∣∣∣θ − 1

2

∣∣∣∣ τ max
∣∣∣∣∣∂

2u

∂t2

∣∣∣∣∣+ τ 2

12
max

∣∣∣∣∣∂
3u

∂t3

∣∣∣∣∣+ h2

12
max

∣∣∣∣∣∂
4u

∂t4

∣∣∣∣∣
}
.

(27.33)

27.12 Courant-Friedrichs-Lewy condition. Let us return to the
simple advection problem (27.8). Consider the following simple Euler
scheme

un[i]− un−1[i]

τ
+ c

un[i]− un[i− 1]
h

= 0. (27.34)

This is called the upstream approximation, because if c is interpreted
as the stream velocity, the scheme uses the upstream information only.
The scheme satisfies the stability condition, if

τ ≤ h

c
. (27.35)

The condition is called the Courant-Friedrichs-Lewy condition315 (CFL
condition). This implies that the numerical propagation speed h/τ

314 C4 in space and C3 in time, for example.
315 Richard Courant, 1888-1972; Kurt Otto Friedrichs, 1901-1983.

368



must not be smaller than the physical propagation speed c. In other
words, if physics outruns computation, the scheme becomes unstable.
A similar interpretation may be possible for 27.10.

Exercise.
(1) Compute the amplification factor for (13.28) and derive the Courant-Friedrichs-
Lewy condition.
(2) Show that the down stream scheme, which replaces un[i] − un[i − 1] in the
upstream scheme with un[i+ 1]− un[i] is always unstable.

27.13 Wave equation. A standard differencing practice to solve
1-space wave equation utt − c2uxx = 0 is the simple Euler scheme:

un+1(i) = 2un(i)− un−1(i)

+
(
c∆t

∆x

)2

{un(i+ 1) + un(i− 1)− 2un(i)}.(27.36)

It is easy to generalize this to d-space (The stability limit due to the

CFL condition is c∆t/∆x ≤ 1/
√
d). This is a very stable and simple

scheme, and is widely used. However, it suffers from the dispersion error
(The scheme conserves energy very well, but distorts initial conditions
with steep wave fronts.)

Discussion
The following scheme is called the angled derivative method:

un+2(i) =
(
1− 2

∆t
∆x

)
(un+1(i)− un+1(i− 1)) + hn(i− 1). (27.37)

Since the method intertwines space and time discretization, it cannot be derived by
the consideration of discretizing time evolution. The method is an excellent one to
propagate steep waves.
Exercise.
Study the stability condition of this simple scheme and demonstrate that we indeed
need the Courant-Friedrichs-Lewy condition (the numerical propagation speed must
be faster than the physical speed).
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28 Fourier Transformation

Basics of Fourier transform including the principle of FFT,
major qualitative features like the uncertainty principle,
sampling theorem, Wiener-Khinchine theorem are discussed
in the first two subsections. Then, Fourier analysis of gen-
eralized functions and related topics such as Poisson’s sum
formula, the Plemelj formula are treated in the third sub-
section. As a related topic, Radon transform is discussed
in the last subsection, which underlies many tomographic
techniques.

28.A Basics

Fourier analysis is reviewed. The relation between smooth-
ness of the function and the decay rate of its Fourier trans-
form is important. As theoretical applications, uncertainty
principle, sampling theorem and the Wiener-Khinchin the-
orem about spectral analysis are discussed.

Key words: Fourier transform, deconvolution, inverse Fourier
transform, sine (cosine) transform, bra-ket notation, Plancherel’s
theorem, Riemann-Lebesgue lemma

Summary:
(1) Fix your convention of Fourier transform (28.1, 28.7). Deconvolu-
tion is often the place where Fourier transformation is effective (28.2).
Linear differential operators become multiplicative operators (28.3).
(2) The decay rate of the Fourier transform and the smoothness of its
original function are closely related just as in the Fourier expansion
cases (28.11).

28.1 Fourier transform. Let f be an integrable function (→15.9)
on R. If the following integral exists

f̂(k) = F(f)(k) ≡
∫ ∞

−∞
dxf(x)e−ikx, (28.1)

it is called the Fourier transform of f . Multidimensional cases can be
treated similarly.
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Exercise.
(A) Consider the Fourier transform of a wave train of finite duration. Or, more
concretely, compute the Fourier transform of

f(t) = [Θ(t+ T )−Θ(t− T )] cos at, (28.2)

Sketch the Fourier transform.
(B)
(1) Demonstrate the Fourier transform of the following triangular function

is given by

X(ω) =
4 sin2(ωT/2)
Tω2

. (28.3)

(2) Demonstrate ∫ ∞

−∞

sin2 ax

πax2
dx = 1. (28.4)

for any a �= 0 with the aid of (1).

28.2 CHECK aid of Fubini’s theorem (→15.15).

F(f ∗ g) = F(f)F(g), (28.5)

This is a very useful relation.

Exercise.
In the following a and b are positive real numbers.
(i) Fourier transform

χ(x) = Θ(b− |x|). (28.6)

(ii) Fourier transform e−a|x|.
(iii) Fourier transform

f(x) = e−a|x|
sin bx
x
. (28.7)

28.3 Differentiation becomes multiplication. We have an im-
portant relation

f̂ ′ = +ikf̂ . (28.8)

The sign in front of the formula depends on our choice of the definition
28.1. We have the following formulas (→??, ??, ??):

F(div v) = +ik · vk (28.9)

F(curl v) = +ik × vk (28.10)

F(−∆f) = k2fk. (28.11)

The last formula explains why −∆ is a natural combination – it is a
positive definite operator.
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28.4 Theorem. If f : R→ C is continuous (and bounded), and both

f and f̂ are absolutely integrable, then the inversion formula holds

f(x) =
1

2π

∫ ∞

−∞
f̂(k)e+ikxdk ≡ F−1(f̂). (28.12)

✷
The formula could be guessed from the Fourier expansion formula ??;
actually Fourier reached this result in this way. (12.12) appears so often
that we have fairly a standard abbreviation

∫
k
≡ 1

2π

∫ ∞

−∞
,
∫
k
≡
(
1

2π

)d ∫
dk. (28.13)

28.5 Theorem [Inversion formula for piecewise C1-function].
Let f be piecewise C1-function on R. Then (cf. ??)

1

2
[f(x0 − 0) + f(x0 + 0)] =

1

2π
P
∫ ∞

−∞
dkeikx0 f̂(k). (28.14)

P denotes the Cauchy principal value (→??, ??). ✷
We can write the formula as

1

2
[f(x0 − 0) + f(x0 + 0)] = lim

λ→∞

∫ ∞

−∞
dξ
sin[λ(x0 − ξ)]

x0 − ξ
f̂(ξ). (28.15)

✷

28.6 More general convergence conditions. As can easily be
imagined from ?? for a pointwise convergence of the Fourier transform,
we need some conditions. For example, if f is of bounded variation316

near x, then (12.12) holds with f (x) being replaced by [f(x+0)+f(x−
0)]/2. If f is continuous and of bounded variation in (a, b), then (12.12)
holds uniformly there.

28.7 Remark
(1) Mathematicians often multiply 1/

√
2π to the definition of Fourier

transform as

f̃ =
1√
2π

∫ ∞

−∞
dxf(x)e−ikx, (28.16)

to symmetrize the formulas (as we will see in 28.9 or 28.12 sometimes
this is very convenient), because

f(x) =
1√
2π

∫ ∞

−∞
f̃(k)eikxdk. (28.17)

316 If a function can be written as a difference of two monotonically increasing
functions, we say the function is of bounded variation.
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However, this makes the convolution formula (12.5) awkward. For
physicists and practitioners, the definition in ?? (the sign choice may
be different) is the most convenient, because we wish to compute actual
numbers.
(2) The integral over k may be interpreted as a sum over n such that
k = 2πn/L, where L is the size of the space. The following approxima-
tion is very useful in solid-state physics

1

V

∑
k

fk � 1

2πd

∫
fkdk ≡

∫
k
fk. (28.18)

28.8 Sine and cosine transforms. If the space is limited to x ≥ 0,
then Fourier sine and Fourier cosine transformations may be useful (cf.
??). If f(0) = f(0+), then

g(k) =
∫ ∞

0
f(x) cos kxdx, f(x) =

2

π

∫ ∞

0
g(k) cos kxdk. (28.19)

If f(0) = 0, then

g(k) =
∫ ∞

0
f(x) sin kxdx, f(x) =

2

π

∫ ∞

0
g(k) sin kxdk. (28.20)

These can also be written concisely as

2

π

∫ ∞

0
cos kx cos k′xdx = δ(k − k′), (28.21)

2

π

∫ ∞

0
sin kx sin k′xdx = δ(k − k′). (28.22)

They can be shown easily with the aid of the Fourier transform of 1
(→??); Put cos kx = (eikx + e−ikx)/2, etc. into (12.21) or (12.22).

Exercise.
There is an infinite medium whose thermal diffusivity is D. Its initial temperature
distribution is given by T |t=0 = T0(x. Find the physically meaningful solution
(→??(5) Warning). There are many ways to solve this. For example, we can use
the free space Green’s function (→?? and the initial condition trick ??. We can
also use the Fourier transformation as follows.
(1) Show that for any317 function g on R3

g(x, y, z) =
1
π3

∫
0

∞
∫ ∞

0

∫ ∞

0

dαdβdγ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dadbdc

g(a, b, c) cosα(x− a) cos β(y − β0 cos γ(z − c). (28.23)

317 If you wish to be within the ordinary calculus, it must be integrable, but we
may proceed formally.
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(2) The integrands are linearly independent (no mode coupling, or super posi-
tion principle), so that each term must satisfy the diffusion equation. Introducing
A(t) cosα(x− a) cosβ(y − β0 cos γ(z − c) into the diffusion equation, show that

A(t) = f(a, b, c)e−D(α2+β2+γ2)t. (28.24)

(3) Combining (1) and (2), obtain the following formula, which can be obtained
directly with the use of the free space Greeen’s function.

T (x, y, x, t) = π−3/2

∫
−∞∞

∫
−∞∞

∫
−∞∞dηdξdζe−(η2+ξ2+ζ2)f(x+2

√
DTη, y+2

√
DTξ, z+2

√
DTζ)

(28.25)
[Perform the integration over Greek letters.]

28.9 Bra-ket notation of Fourier transform or momentum
(wave-vector) kets. 28.7 has the following symbolic representation
(→16.21-16.23 for notations).

f(x) = 〈x|f〉 =
∫ ∞

−∞
〈x|k〉dk〈k|f〉, (28.26)

〈x|k〉 =
1√
2π

e−ikx, (28.27)

f̃(k) = 〈k|f〉 =
∫ ∞

−∞
〈x|k〉dk〈k|f〉 = 1√

2π

∫ ∞

−∞
eikxf(x).(28.28)

〈k|f〉 is the Fourier transform of f in this bra-ket symmetrized ver-
sion (28.7), and the normalization is different from that given in 28.1.
Notice that

〈x|y〉 = δ(x− y) =
∫
〈x|k〉dk〈k|y〉 = 1

2π

∫ ∞

∞
eik(x−y)dk. (28.29)

To rationalize this, we need the theory of Fourier transform of general-
ized functions (→??).

28.10 Plancherel’s theorem.

〈f |f〉 =
∫
〈f |k〉dk〈k|f〉 (28.30)

is called Plancherel’s formula. In our normalization (for physicists) in
28.1 this reads ∫ ∞

−∞
|f(x)|2dx = 1

2π

∫ ∞

−∞
|f̂(k)|2dk. (28.31)

The theorem tells us that if f is square integrable (that is, the total
energy of the wave is finite), then the total energy is equal to the energy
carried by individual harmonic modes. This is of course the counterpart
of Parseval’s equality (→16.12).
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28.11 Theorem [Riemann-Lebesgue Lemma]. For an integrable
function f

lim
|k|→∞

f̂(k) = 0. (28.32)

If all the n-th derivatives are integrable, then f̂(k) = o[|k|−n].✷
There is an analogue of ??. There we have already discussed its physical
meaning.318

28.B Applications of Fourier Transform

Fundamental applications of Fourier transformation impor-
tant in practice are summarized: uncertainty principle, sam-
pling theorem, the Wiener-Khinchine theorem (the relation
between power spectrum and correlation function). Also
the principle of FFT is outlined.

Key words: uncertainty principle, coherent state, band-
limited function, sampling theorem, sampling function, alias-
ing, time-correlation function, power spectrum, Wiener-Khinchine
theorem, fast Fourier transform

Summary:
(1) The uncertainty principle is a basic property of Fourier transforma-
tion. Its essence is the elementary Cauchy-Schwarz inequality (28.12).
(2) If the band width of a signal (function) is finite, then discrete sam-
pling with sufficiently frequent sampling points perfectly captures the
signal. This is the essence of the sampling theorem (28.16).
(3) Spectral analysis is a fundamental tool of experimental physics. Its
theoretical basis is the Wiener-Khinchine theorem – Fourier transform
of the time-correlation function is the power spectrum (28.21).
(4) Spectral analysis becomes practical after the popularization of fast
Fourier transform (FFT) (28.22-??).

28.12 Theorem [Uncertainty principle]. Let f be in L2(R) (→16.19).
Define the following averages

〈x〉 ≡
∫

x|f(x)|2dx/
∫
|f(x)|2dx, (28.33)

318 see Katznelson p123.
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〈k〉 ≡
∫

k|f̂(k)|2dk/
∫
|f̂(k)|2dk, (28.34)

∆x2 ≡
∫
(x− 〈x〉)2|f(x)|2dx/

∫
|f(x)|2dx, (28.35)

∆k2 ≡
∫
(k − 〈k〉)2|f̂(k)|2dk/

∫
|f̂(k)|2dk. (28.36)

Then,
∆x∆k ≥ 1/2. (28.37)

[Demo] Without loss of generality, we may assume 〈x〉 = 0, and also assume that f
is already normalized. Define

f̃(k) =
1√
2π

∫
dxeikxf(x). (28.38)

Using Plancherel’s theorem (→28.10), we get (cf. 28.3)∫
dx|f ′(x)|2 =

∫
|kf̃(k)|2dk,

∫
dx|f(x)|2 =

∫
|f̃(k)|2dk, (28.39)

so that
∆k2 =

∫
|f ′(x)− 〈k〉f(x)|2dx. (28.40)

The Cauchy-Schwarz inequality (→16.7) implies

∆k2∆x2 =
∫

|f ′(x)− 〈k〉f(x)|2dx
∫
x2|f(x)|2dx ≥

∣∣∣∣
∫
[f ′(x)− 〈k〉f(x)]xf(x)dx

∣∣∣∣
2

,

(28.41)
but since 〈x〉 = 0, the last formula reads

|f ′(x)xf(x)dx|2 ≥ |Re
∫
f ′(x)xf(x)dx|2 = 1/4. (28.42)

The last number comes from the following integration by parts∫
f ′(x)xf(x)dx = −

∫
f ′(x)xf(x)dx−

∫
|f(x)|2dx. (28.43)

28.13 Remark. As can be seen from the proof of 28.12, the un-
certainty principle is a disguised Cauchy-Schwarz inequality (→16.7)
which says that the modulus of cosine cannot be larger than 1. Note
that obvious mathematical theorems can have profound implication in
real life.

28.14 Coherent state. The equality in the uncertainty principle is
realized if the wave function f is Gaussian

f(x) =
1

π1/4σ1/2
e−x2/2σ2

. (28.44)

Check indeed ∆x∆k = 1/2. A state with this equality is called a
coherent state.
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28.15 Band-limited function. If a function has a Fourier transform
which has a compact support (i.e., f̂(k) is zero if |k| > k0 for some
k0 > 0), then f is called a band-limited function.

28.16 Theorem [Sampling theorem]. Let f be a band-limited

function such that f̂(k) be zero if |k| > k0 > 0. Then,

f(x) =
∞∑

n=−∞
f(nπ/k0)

sin(k0x− nπ)

k0x− nπ
. (28.45)

That is, f can be reconstructed from the discrete sample values {f(nπ/k0)}n∈Z .✷
The sampling theorem is extremely important in communication (mul-
tichannel communication, bandwidth compression, etc.), and informa-
tion storage (digitization as in CD).
[Demo] Since f̂(k) is non-zero only on [−k0, k0], we can Fourier expand this as a
function of period 2k0 (→??)

f̂(k) =
∑
n∈Z

cne
iknπ/k0 (28.46)

with
1
2k0

∫ k0

−k0
f̂(k)e−inπk/k0dk = cn. (28.47)

On the other hand due to the band-limitedness

f(x) =
1
2π

∫ k0

−k0
f̂(k)e−ikxdk. (28.48)

Comparing (12.47) and (12.48), we get

cn =
π

k0
f(nπ/k0). (28.49)

(12.46), (12.48) and (12.49) give the desired result.

Exercise.
Determine the minimum sampling rate (or frequency) for the signal 10 cosωt +
2 cos 3ωt. This is a trivial question, so do not think too much.

28.17 Sampling function. The function

ϕn(x) =
sin(k0x− nπ)

k0x− nπ
(28.50)

appearing in (12.45) is called the sampling function. {ϕn}n∈Z is an
orthogonal system. There is an orthogonality relation:∫ ∞

−∞
ϕn(x)ϕm(x)dx =

π

k0
δnm. (28.51)

Exercise.
Demonstrate that the sampling functions {ϕn} make an orthogonal system.
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28.18 Band-limited periodic function. The sampling theorem
would naturally tell us the following. A band-limited periodic function
with no harmonics of order higher than N can be uniquely specified by
its values sampled at appropriate 2N + 1 points in a single period.

28.19 Aliasing. If the function we sample is strictly band-limited,
then the above theorem of course works perfectly. However, often
the function has higher frequency components beyond the sample fre-
quency. Then, just as we watch fast rotating wheel in the movie, what
we sample is the actual frequency modulo the sample frequency (that
is, the beat between these frequencies). This phenomenon is called
aliasing. To avoid unwanted aliasing, often we filter the original sig-
nal (through a low-pass filter) and remove excessively high frequency
components.

28.20 Time-correlation function. Let x(t) be a stochastic process
or time-dependent data which is statistically stationary. Here ‘stochas-
tic’ means that we have an ensemble of such signals (more precisely,
we have a set of signals {x(t;ω)}, where ω is the probability parameter
specifying each sample signal. That is, if the reader wishes to start an
observation, one ω is given (by God) and she will observe x(t;ω). The
word ‘stationary’ implies that the ensemble average of x(t, ω) does not
depend on t.319 Let us denote the ensemble average by 〈 〉ω. The time
correlation function is defined by

C(t) = 〈x(t)x(0)〉ω (28.52)

and is a fundamental observable in many practical cases.
The ensemble average of

σ(ν) = 〈|xν |2〉ω (28.53)

is called the power spectrum of the signal x(t), where xν is the Fourier
transform of x(t). Thanks to the advent of FFT (→28.23), it is easy to
obtain the power spectrum experimentally (easier than the correlation
function).

28.21 Theorem [Wiener-Khinchin]. The Fourier transform of the
power spectrum of a stationary stochastic process is its power spectrum.

319 Actually, in this case we only need the absolute time independence of the cor-
relation function. A process with this property is called a weak stationary process.
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That is,320

C(t) ∝
∫ ∞

−∞
e−iνtσ(ν)dν. (28.54)

Its demonstration is a straightforward calculation. We compute (→??)

〈xνx−µ〉 =
〈∫ ∞

−∞
dtx(t)eiνt

∫ ∞

−∞
dsx(s)e−iµs

〉

=
∫ ∞

−∞
dt

∫ ∞

−∞
dseiνte−iµs〈x(t− s)x(0)〉

= 2πδ(ν − µ)
∫ ∞

−∞
dteiνtC(t). (28.55)

That is, 〈xνx−µ〉 = δ(ν − µ)σ(ν) so that

σ(ν) = 2π
∫ ∞

−∞
dteiνtC(t). (28.56)

28.22 Discrete Fourier transformation. Let X ≡ {Xn}N−1
n=0 be a

sequence of complex numbers, and

e(x) ≡ exp(−2πix). (28.57)

The following sequence X̂ ≡ {Xn} is called the discrete Fourier trans-
form of X:

Xk =
N−1∑
n=0

e

(
kn

N

)
Xn. (28.58)

Its inverse transform is given by

Xn =
1

N

N−1∑
k=0

e

(−kn

N

)
Xk. (28.59)

Notice that a straightforward calculation of these sums (N of them)
costs O[N2] operations and is costly.

Exercise.
Demonstrate the above inverse transform formula by showing

1
N

∼N−1
k=0 e

k(m−n)/N = δmn. (28.60)320 Actually, if we normalize C(t) so that C(0) = 1 (simply regard C(t)/C(0) as
C(t)), then we have probability measure σ (→15.41) such that

C(t) =
1
2π

∫ ∞

−∞
e−iνtdσ(ν).

However, in practice, the numerical constant and normalization are not crucial.
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28.23 Principle of fast Fourier transform.321 Let N = N1N2.
n, k ∈ {0, 1, · · · , N − 1} can be uniquely written as322

n = n1 + n2N1, k = k1N2 + k2, (28.61)

where ni, ki ∈ {0, 1, · · · , Ni − 1} (i = 1 or 2). Notice that
e(kn/N) = e(k1n1/N1)e(k2n2/N2)e(k2n1/N). (28.62)

ni and ki are uniquely determined, so we may write, e.g., (n1n2) instead
of n. Then, (12.58) can be calculated as

X(k1k2) =
N1N2−1∑

n=0

e(k1n1/N1)e(k2n2/N2)e(k2n1/N)X(n1n2),

=
N1−1∑
n1=0

e(k1n1/N1)


e(k2n1/N)


N2−1∑

n2=0

e(k2n2/N2)Xn1n2




 .

(28.63)

Consequently, the calculation of discrete Fourier transfrom can be de-
composed into the following three steps:
(1) Compute for any k2

Xn1

k2 =
N2−1∑
n2=0

e(k2n2/N2)Xn1n2. (28.64)

(2) Then, rotate the phase:

X̃n1

k2 = e(k2n1/N)Xn1

k2. (28.65)

(3) Finally compute for any k1

X̂k1k2 =
N1−1∑
n1=0

e(k1n1/N1)X̃n1

k2. (28.66)

Now the number of necessary operations is O[N1×N 2
2 ]+O[N2

1 ×N2]; if

N1 = N2 =
√
N , then O[2N 3/2]. If we can decompose N into m factors

of similar order, then the number of necessary operations is roughly
N1−1/mN2/m = N×N1/m. Hence, asymptotically, we can guess N lnN

321 The algorithm, known sometimes as the Cooley-Tukey algorithm (J W Cooley
and J W Tukey, Math. Comp. 19, 297 (1965)), was actually known to Gauss, but
the importance was widely recognized after this paper.
322 This is an example of the so-called Chinese remainder theorem.
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is the best possibility for the discrete Fourier transform of N numbers.

Exercise.
Find the autocorrelation function of the signal

f(t) = Θ(t+ T )−Θ(t− T ). (28.67)

Then illustrate the Wiener-Khinchine theorem with the example.

28.C Fourier Analysis of Generalized Function

Generalized functions can be Fourier transformed and physi-
cists’ favorite formulas like

∫
eikxdk = 2πδ(x) or the Plemelj

formula 1/(x+ i0) = P (1/x)− iπδ(x) can be demonstrated.
Fourier expansion of δ-function gives us the Poisson sum
formula which may be used to accelerate the convergence of
series.

Key words: Fourier expansion of unity, Poisson sum for-
mula, Euler-MacLaurin sum formula, Plemelj formula

Summary:
(1) Not convergent Fourier series may be interpreted as a generalized
function. A typical example is Poisson’s sum formula (28.25).
(2) Formal calculation of Fourier transform of generalized functions
often works, but whenever there is some doubt, return to the definition
(28.29, ??).

28.24 Delta function.

δ(x) =
∞∑

n=−∞
ei2nπx (28.68)

for x ∈ (−1, 1).
[Demo] We know as an ordinary Fourier series

1− 2x
2

=
∞∑
n=1

sin(2nπx)/nπ (28.69)

for x ∈ (−1/2, 1/2). We may use the RHS to extend the LHS periodically for all R.
Differentiate this termwisely, interpreting this as a formula for generalized functions
(→??). We get

−1 + δ(x) = 2
∞∑
n=1

cos 2nπx (28.70)
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for x ∈ (−1/2, 1/2).
The decomposition of unity (→16.27) can also be used to obtain (12.68).

28.25 Poisson’s sum formula.

∞∑
k=−∞

δ(x− k) =
∞∑

n=−∞
ei2nπx (28.71)

for x ∈ R.
This can be obtained easily from (12.68) by ‘tessellating’ the for-

mula for (−1/2, 1/2) over the whole range of R. From (12.71) we get

|λ|
∞∑

k=−∞
δ(x− λk) =

∞∑
n=−∞

ei2πnx/λ (28.72)

(cf. ??). Applying a test function ϕ to this, we get the following Poisson
sum formula:

|λ|
∞∑

k=−∞
ϕ(λk) =

∞∑
n=−∞

ϕ̂(2nπ/λ). (28.73)

(Be careful with the normalization constant.) Also we can make a
cosine version of the Poisson sum formula

∞∑
k=−∞

δ(x− k) = 1 + 2
∞∑

n=1

cos(2nπx). (28.74)

If f(x) is a gently decaying function, then its Fourier transform decays
rapidly, and vice versa. The Poisson sum formula is useful because it
may help accelerating the convergence of the series.

Exercise.
Demonstrate ∞∑

n=1

cosna
1 + n2

=
π

2
cosh(π − a)

sinhπ
− 1

2
.

28.26 Applications of Poisson sum formula.
(1) ∑

n∈Z

1

1 + a2n2
=

π

a
coth

π

a
. (28.75)

The key formulas are

ϕ̂(k) =
1

1 + a2k2/4π2
, ϕ(x) =

π

a
e−2π|x|/a. (28.76)

(2)
∞∑

n=1

cosna

1 + n2
=

π

2

cosh(π − a)

sinhπ
− 1

2
. (28.77)
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28.27 Euler-MacLaurin sum formula.

∞∑
n=0

f(n) =
∫ ∞

0
f(x)dx+

1

2
f(0)− 1

12
f ′(0)+

1

720
f (3)(0)− 1

30240
f (5)(0)+· · · .

(28.78)
[Demo] Let f be a function defined on the positive real axis. Extend it to the whole
R as an even function (f(x) = f(−x)). Apply the cosine version of the Poisson sum
formula (12.74) and integrate from 0 to ∞. Using the evenness of the function, we
get

−1
2
f(0) +

∞∑
k=0

f(k) =
∫ ∞

0

f(x)dx+ 2
∞∑
n=1

∫ ∞

0

f(x) cos(2nπx)dx. (28.79)

Integrating by parts the last integrals containing cosines, we get

∞∑
k=0

f(k) =
1
2
f(0) +

∫ ∞

0

f(x)dx−
∞∑
n=1

∫ ∞

0

f ′(x)
sin 2nπx
2nπ

dx. (28.80)

Keep applying integration by parts to get

∞∑
n=1

∫ ∞

0

f ′(x)
sin 2nπx
2nπ

dx = −
∞∑
n=1

[
f ′(x)

cos 2nπx
2(nπ)2

]∞
0

+
∞∑
n=1

∫ ∞

0

f ′′(x)
cos 2nπx
2(nπ)2

dx.

(28.81)
Thus ∞∑

k=0

f(k) =
1
2
f(0) +

∫ ∞

0

f(x)dx− f ′(0)
∞∑
n=1

1
2n2π2

+ · · · . (28.82)

This gives the f ′(0) term of the formula.

28.28 Mulholland’s formula for the canonical partition func-
tion for the rotational motion of a heteronuclear diatomic
molecule. The rotational partition function r(T ) at temperature T
is given by

r(T ) =
∞∑
 =0

(2I+ 1) exp

[
− h̄2I(I+ 1)

2IkBT

]
, (28.83)

where I is the moment of inertia of the molecule, and kB is the Boltz-
mann constant. Introduce σ ≡ h̄2/2IkBT , and let

f(x) = (2x+ 1) exp[−x(x+ 1)σ]. (28.84)

Apply (12.78) to this function, we get the following Mulholland’s for-
mula

r(T ) =
1

σ
+
1

3
+

σ

15
+
4σ2

315
+O[σ3]. (28.85)

The first term on the RHS is the classical value.
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28.29 Fourier transform of generalized functions. The crucial
observation is (forˆsee 28.1): if f and ϕ both have well-defined Fourier
transforms,

〈f̂ , ϕ〉 =
∫

dk
[∫

dxf(x)e−ikx
]
ϕ(k) = 〈f, ϕ̂〉 (28.86)

The Fourier transform τ̂ ≡ F [τ ] of a generalized function τ is defined
by

(τ̂ , ϕ) = (τ, ϕ̂), or (F [τ ], ϕ) = (τ,F [ϕ]), (28.87)

where ϕ ∈ D, a test function.
Exercise.
Demonstrate

lim
λ→∞

sinλx
x

= πδ(x). (28.88)

lim
λ→∞

∫ b

a

sinλx = 0. (28.89)

28.30 Convenient test function space. For this definition it is
desirable that the set of test functions D (→??) and the set of their

Fourier transforms D̂ are identical. For the set of Schwartz class func-
tions (→?? footnote) this holds (→28.11). [If we choose D to be the

set of all the functions with compact supports, then D̂ becomes very
large, so that the class of generalized functions (for which (τ, ϕ̂) must
be meaningful) must be severely restricted, and is not very convenient.]

28.31 Fourier transform of unity = delta function.

1̂ = 2πδ(k). (28.90)

This is the true meaning of the physicists’ favorite

1

2π

∫ +∞

−∞
eikxdk = δ(x). (28.91)

Obviously, δ̂ = 1 (direct calculation). That is, F2 implies multiplication
of 2π as we know in 28.10.
[Demo] (1̂, ϕ) = (1, ϕ̂) =

∫
ϕ̂(k)dk = F2[ϕ](0). Here F [ϕ] is a function on the

configuration space (that is, a function of x) and is equal to 2πϕ(x). Therefore we
have obtained

(1̂, ϕ) = 2πϕ(0) =
∫

2πδ(x)ϕ(x)dx = (2πδ, ϕ). (28.92)

Exercise.
Show

δ(t) =
1
π

∫ ∞

0

cosωtdω. (28.93)

Cf. 28.8.
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28.32 Translation. The following formulas should be obvious

F [δ(x− a)] = e−iak, F [eiax] = 2πδ(a− k). (28.94)

28.33 Fourier transform of x, d/dx ↔ +ik. (→28.3)

x̂ = +2πiδ′(k). (28.95)

In other words, since F2 ≡ 2π,

δ̂′ = +ik. (28.96)

[Demo] Start with the definition (x̂, ϕ) = (x, ϕ̂) (→28.29) which is equal to

∫
dxxϕ̂(x) =

∫
dxx

[∫
e−ikxϕ(k)dk

]
=
∫
dx

∫
dk

(
− d
dik
e−ikx

)
ϕ(k). (28.97)

Integrating this by parts, taking into account that the test function ϕ decays suffi-
ciently quickly, we get

−
∫
dx

∫
dkie−ikxϕ′(k) = −i

∫
dk1̂(k)ϕ′(k) = −2πi

∫
dkδ(k)ϕ′(k) = 2πi

∫
dkδ′(k)ϕ(k),

(28.98)
where we have used (12.90) in 32C.8, and the definition of δ′ (→??).

A more formal and direct ‘demonstration’ is

x̂ =
∫
xe−ikxdx =

∫ (
i
d

dk

)
e−ikxdx = 2πi

d

dk
δ(k). (28.99)

Convolution of the derivative of delta function is differentiation (→??(2)), and the
Fourier transform of a convolution is the product of the Fourier transforms, i.e.,
F(f ∗ g) = F(f)F(g) (→28.2), so that we easily get )cf. 28.3)

f̂ ′ = +ikf̂ . (28.100)

28.34 Fourier transform of xn.

x̂n = 2π

(
+i

d

dk

)n

δ(k). (28.101)

In other words,
ˆδ(n) = (+ik)n. (28.102)

Since δ′∗f = f ′, δ(n) = δ′∗δ(n−1) = δ′∗δ′∗· · · δ′∗δ (n δ′ are convoluted)
(this is well defined →??(2)). This and (12.96) immediately imply
(12.102).
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28.35 Fourier transform of sign function.

ˆsgn(k) =
2

i
P
1

k
, (28.103)

where P denotes the Cauchy principal value (→??).
[Demo] We have demonstrated (→??)

d

dx
sgn(x) = 2δ(x). (28.104)

Fourier-transforming this, we get (→(12.100) and δ̂ = 1)

+ikF(sgn)(k) = 2. (28.105)

With the aid of (2) in ??, we can solve this equation for ˆsgn as

ˆsgn(k) = 2iP
1
k
+ cδ(k), (28.106)

where c is a constant not yet determined. To fix this constant we apply this equality
to an even test function, say e−k

2
. Since sgn is an odd generalized function, and

since the Fourier transform of a Gaussian function is again Gaussian,

( ˆsgn, e−k
2
) ∝ (sgn, e−x

2
) = 0. (28.107)

P (1/k) is also an odd function, so that this implies c = 0.

28.36 Plemelj formula.

w- lim
ε→+0

1

x± εi
= P

1

x
∓ iπδ(x), (28.108)

where w- limε→+0 is the weak limit, that is, the limit is taken after
integration in which the function appears is completed (→??).
[Demo] Obviously,

lim
ε→0+

e−εxΘ(x) = Θ(x), (28.109)

If we interpret this equation as an equation for generalized functions, then integra-
tion and the limit can be freely exchanged. Therefore, we get

Θ̂(k) = w- lim
ε→0+

∫ ∞

0

e−(ik−ε)x = lim
ε→0+

1
ik + ε

. (28.110)

Since sgn(x) = 2Θ(x)− 1, (12.103), (12.90) and (12.110) imply

2iP
1
k
= lim
ε→0+

−2
ik − ε − 2πδ(k). (28.111)
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28.D Radon Transformation

Radon transformation is a theoretical basis of various to-
mographies. Its inverse transformation is constructed with
the aid of Fourier transformation. Radon transformation
allows us to solve the Cauchy problem of the wave equa-
tion in any dimensional space. The explicit formula clearly
demonstrates the marked difference of even and odd dimen-
sional spaces.

Key words: Radon’s problem, Radon transform, modified
Radon transform, tomography, wave equation, afterglow.

Summary:
(1) The mathematical principle of tomography is Radon transforma-
tion (28.39) whose inverse transformation is essentially calculable by
Fourier transformation (28.40-28.41).
(2) Radon transform gives a general method to solve d-wave equation
(28.45). The resultant solution clearly exhibits the afterglow effect in
even dimensional spaces (28.46).

28.37 Radon’s problem. Radon (1917) considered the following
problem: Reconstruct a function f(x, y) on the plane from its integral
along all lines in the plane. That is, the problem is to reconstruct the
shape of a hill from the areas of all its vertical cross-sections.

28.38 Radon transform. Let f be a function defined on a region in
R2.323

Rf(s,ω)↽==
∫
R2 dxδ(x · ω − s)f(x) (28.112)

is called the Radon transform of f , where ω is the directional vector
|ω| = 1 specifying a line normal to it, and s ∈ R is the (signed) dis-
tance between the line and the origin. The Radon problem 28.37 is to
find f from Rf .

That (12.112) is the integral of f along the line specified by ω·x = s
can easily be seen if we introduce the rotated Cartesian coordinate sys-
tem O-x1x2 such that the x2 axis is parallel to the line and x1 per-
pendicular to it. The integral now reads

∫
δ(x1 − s)f(x1, x2)dx1dx2 =∫

f(s, x2)dx2.323 The definition given here can easily be extended to general d-space. See 28.43-
28.44. A good introduction to the topic may be found in I. M. Gel’fand, M. I.
Graev and N. Ya. Vilenkin, Generalized Functions, vol.5 Integral Geometry and
Representation Theory (Academic Press, 1966). See also R. S. Strichartz, Am.
Math. Month. 1982 June-July.
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28.39 Some properties of Radon transform. Note that
(1) Rf(s,ω) is an even homogeneous function (→??) of s and ω of
degree −1:

Rf(λs, λω) = |λ|−1Rf(s,ω). (28.113)

(2) The Radon transform of a convolution (→??) is a convolution of
Radon transforms:(
R
[∫
R2 f1(y)f2(x− y)dy

])
(s,ω) =

∫ ∞

−∞
dt [Rf1(t,ω)] [Rf2(s− t,ω)] .

(28.114)

28.40 Fourier transform of Radon transform.

f̂(ρω) = F(Rf)(ρ,ω)↽==
∫ ∞

−∞
Rf(s,ω)e−iρsds. (28.115)

That is, the Fourier transform of Rf(s,ω) with respect to s is the
Fourier transform of the function f itself with the ‘k-vector’ parallel to
ω.
[Demo] Using the definition (12.112), we have only to perform a straightforward
calculation:∫ ∞

−∞
Rf(sω)e−iρsds =

∫ ∞

−∞
ds

∫
dxf(x)δ(s− x · ω)e−iρs =

∫
dxf(x)e−iρω·x.

(28.116)
Thus f can be reconstructed by

f(r) =
1

(2π)d

∫
f̂(ρω)eiρω·rdρdω. (28.117)

28.41 Theorem [Radon inversion formula]. Let f be a piecewise
C1-function defined on a region in R2. Then

f(x) =
∫
R̃f(x · ω,ω)dσ(ω), (28.118)

where dσ is the arc length element of the unit circle, and R̃f is the
modified Radon transform defined by

R̃f(s,ω)↽==
1

8π2

∫ ∞

−∞
dρe−iρsρR̂f(ρ,ω). (28.119)

28.42 X-ray tomography. The Radon transformation is the the-
oretical underpinning of the particle beam tomographies. These are
applied not only medically, but also, e.g., to the anatomical study of
fossils such as trilobites.
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28.43 d-space version. In d-space the Radon transform is defined
as

Rf(s,ω) =
∫
Rd f(x)δ(s− ω · x)dx, (28.120)

where ω is the position vector on the unit d− 1-sphere Sd−1 (the skin
of the d-unit ball). The d-dimensional version of 28.41 reads:

28.44 Theorem.

f(x) =
∫
Sd−1

dσ(ω)R̃f(x · ω,ω), (28.121)

where

R̃f(s,ω) ↽==
1

2(2π)d

∫ ∞

−∞
e−iρs|ρ|d−1R̂f(ρ,ω)dρ, (28.122)

R̂f(ρ,ω) ↽==
∫ ∞

−∞
Rf(s,ω)eiρsds (= f̂(ρω) ) (28.123)

with σ being the area element of Sd−1.

28.45 Solving d-wave equation using Radon transform. Con-
sider a wave equation in the whole d-space

(∂2
t −∆)u = 0 (28.124)

with the initial condition u = f and ∂tu = g at t = 0. If the initial
data are constant on all the hyperplanes perpendicular to the direction
ω, i.e., f(x) = F (x · ω) and g(x) = G(x · ω), where F and G are
functions defined on R, then we can apply the method to solve the
1-space problem (→??) to get the solution as

u(x, t) =
1

2
[F (x ·ω + t) + F (x ·ω − t)] +

1

2

∫ x·ω+t

x·ω−t
G(s)ds. (28.125)

Therefore, if we can decompose the initial data into a superposition of
data depending only on x ·ω, the superposition principle (→??) allows
us to reconstruct the solution from the pieces like (12.125). As can
be seen from (12.121), d-dimensional Radon transformation is the very
tool to accomplish the desired decomposition.
The strategy is as follows:
(1) Calculate the modified Radon transform (12.123) for f and g,
(2) Solve the wave equation for R̃u.
(3) Use (12.121) to reconstruct u:

u(x, t) =
1

2

∫
Sd−1

dσ(ω)
{
1

2
[R̃f(x · ω + t,ω) + R̃f(x · ω − t,ω)] +

1

2

∫ x·ω+t

x·ω−t
R̃g(s,ω)

}
ds.

(28.126)
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28.46 Waves in odd and even dimensional spaces behave very
differently. Let us calculate the modified Radon transform (12.123)
explicitly. If d is odd, then |ρ|d−1 = ρd−1, so that multiplying ρ can be
interpreted as differentiation with respect to s as

R̃f(s,ω) =
1

2
(−1)(q−1)/2

(
1

2π

)d−1 ∂d−1

∂sd−1
Rf(s,ω). (28.127)

In contrast, if d is even then the non-analyticity of |ρ| must be dealt
with as |ρ|d−1 = sgn(ρ)ρd−1, so that

R̃f(s,ω) =
1

2
(−1)(q−1)/2

(
1

2π

)d−1

H

[
∂d−1

∂sd−1
Rf(s,ω)

]
, (28.128)

where H is the Hilbert transform (→??) defined by

Hf(x) = P
∫

f(s)

x− s
ds, (28.129)

where P denotes the Cauchy principal value (→??). This can be ob-
tained from the convolution formula and the Fourier transform of sgn
(→12.40).

Look at the use of the modified Radon transform in the solution
(12.126) when the initial velocity is everywhere zero. This applies to
the case of an instantaneous flash of light emitted from a point (that

is, f = δ(x)). If R̃f(sω) is determined by Rf(s,ω) only, then the
observer at distance sees only a flash of light. That is, the wave is
localized in time in odd-dimensional (≥ 3) spaces. On the other hand,
if the spatial dimensionality is even, then the Hilbert transform implies
that the wave is not localized in time. Thus, after watching a flash,
the observer must feel that the world becomes brighter (the afterglow
effect in even dimensional spaces) (→??).
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APPENDIX a32 Bessel Transform

28.47 Theorem [Hankel]. Let f ∈ L1([0,∞), r) and be piecewise
continuous. Then

1

2
[f(r + 0) + f(r − 0)] =

∫ ∞

0
Jν(σr)σdσ

∫ ∞

0
f(ρ)Jν(σρ)ρdρ (28.130)

for ν ≥ 1/2. This may also be expressed as
∫ ∞

0
Jν(σr)Jν(σr

′)σdσ = δ(r − r′)/r. (28.131)

Notice that the RHS is the delta function adapted to the weight r (i.e.,
δr(r − r′) →??).324 ✷
[Demo] Here (12.130) is proved for continuous L1 (→15.9) functions and integer
ν = n. Let

F (x, y) = f(r)einϕ, (28.132)

where x = r cosϕ and y = r sinϕ. With the aid of the Fourier expression of the
delta function (→??), we can write

F (x, y) =
1

(2π)2

∫
dkx

∫
dky

∫
dξ

∫
dηF (ξ, η)eikx(x−ξ)+iky(y−η). (28.133)

Introduce polar coordinates as

ξ = r′ cosψ, η = r′ sinψ, (28.134)
kx = k cos θ, ky = k sin θ. (28.135)

(12.133) is rewritten as (F (ξ, η) = f(r′)einψ)

f(r)einϕ =
∫ ∞

0

dkk

∫ ∞

0

dr′r′f(r′)
{

1
2π

∫ π

−π
dθeikr cos(θ−ϕ) 1

2π

∫ π

−π
dψeinψe−ikr

′ cos(ψ−θ)
}
.

(28.136)
Setting ψ − θ = t, we get

1
2π

∫ π

π

einψe−ikr
′ cos(ψ−θ)dψ =

1
2π

∫ π

−π
e−ikr

′ cos tein(t+θ)dt (28.137)

= einπ/2einθJn(−kr′) = einπ/2+inθ(−1)nJn(kr′). (28.138)

Here the generating function of Bessels functions (→23.5) has been used. Analo-
gously, we have

1
2π

∫ π

−π
eikr cos(θ−ϕ)einθdθ = einπ/2+inϕJn(kr). (28.139)

Hence, (12.136)–(12.139) implies (12.130) for ν = n.
A more convenient formulas may be324 More generally, f may be of bounded variation. See G. N. Watson, A Treatise
on the Theory of Bessel Function (Cambridge UP, 1962) p456–.
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28.48 Bessel transform and its inverse.

g(r) =
∫ ∞

0
h(r′)Jν(r

′r)r′dr′, (28.140)

h(r) =
∫ ∞

0
g(r′)Jν(r

′r)r′dr′. (28.141)

Note that these are the formulas for the Fourier sine (or cosine) trans-
form (→28.8) for ν = ±1/2 (→23.19).

28.49 Examples. See 23.15.

∫ ∞

0
e−axJ0(xy)dx =

1√
a2 + y2

↔
∫ ∞

0

y√
a2 + y2

J0(xy)dy =
e−ax

x
.

(28.142)∫ ∞

0
cos axJ0(xy)dx =

1√
y2 − a2

↔
∫ ∞

0

y√
y2 − a2

J0(xy)dy =
cos ax

x
.

(28.143)∫ ∞

0
e−a2x2

xν+1Jν(xy)dx =
yν

(2a2)ν+1
e−y2/4a2 ↔

∫ ∞

0

yν+1

(2a2)ν+1
e−y2/4a2

Jν(xy)dy = ea
2x2

xν .

(28.144)
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29 Laplace Transformation

Laplace transformation is a disguised Fourier transforma-
tion for causal functions (the functions that are zero in the
past), and is a very useful tool to study transient phenom-
ena. The inverse transformation is often not easy, but clever
numerical tricks may be used to invert the transforms. Ap-
pendix a33 discusses a disguised Laplace transformation,
Mellin transformation, which is useful when we wish to solve
problems on fan shaped domains.

Key words: Laplace transform, fundamental theorem, con-
volution, time-delay, fast inverse Laplace transform.

Summary:
(1) Laplace transformation 29.2 allows one to solve many ODE alge-
braically with the aid of tables (33.14).
(2) Basic formulas like the convolution theorem, delay theorem, etc
should be known to this end (29.7-29.10).

29.1 Motivation. Due to causality, we often encounter functions of
time t that are zero for t < 0 (or often so for t ≤ 0 due to continuity).
Then, the so-called one-sided Fourier transform

F [ω] =
∫ ∞

0
f(t)eiωtdt (29.1)

appears naturally. However, if f(t) grows as eat (a > 0), then this does
not make sense even in the sense of generalized functions (→??). Even
in this case, if we choose sufficiently large c > 0, the one-sided Fourier
transform of e−ctf(t) exists in the ordinary sense. If f(t)e−ctΘ(t) (Θ(t)
is the Heaviside step function →??) is absolutely integrable, and f ′ is
piecewise continuous for t > 0, then from the Fourier transform of this
function, f(t) for t > 0 can be recovered.

29.2 Definition of Laplace transform. The following transforma-
tion Ls is called the Laplace transformation:

Ls[u(t)] =
∫ ∞

0
e−stu(t)dt, (29.2)

where s = c− iω and c is chosen sufficiently large so that the integral
exists. Ls[u] is called the Laplace transform of u.325

325 For a history, see M. F. Gardner and J. L. Barnes, Transients in Linear Systems
vol.I (Wiley, 1942) Appendix C.
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Discussion.
(A) A discrete counterpart is the so-called z-transformation: The z-transform A(z)
of {an} is defined by

A(z) =
∞∑
n=0

anz
n. (29.3)

This is also called the generating function of the sequence {an}. The inverse trans-
form is given by

an =
1
2πi

∫
∂D

dz
A(z)
zn+1

, (29.4)

where D is a disc containing the origin but excluding all the singularities of A(z).
(B) z-transform is a convenient way to solve linear difference equation:

a0xn+r + a1xn+r−1 + · · ·+ ar−1xn+1 + arxn = 0. (29.5)

For example, let us solve
xn+2 − 2xn+1 + xn = 0 (29.6)

with the ‘initial conditions’ x0 = 1, and x1 = 0. The z-transform X(z) obeys

X(z)− 1 + 2z(X(z)− 1) + z2X(z) = 0. (29.7)

From this we can solve X(z). The inverse transform gives xn = 1− n.
(C) An inhomogeneous linear difference equation is given by

a0xn+r + a1xn+r−1 + · · ·+ ar−1xn+1 + arxn = fn (29.8)

The general solution to this equation is given by the sum of the general solution of
(13.5) and a special solution to (13.8) just as the linear differential equation. If we
can compute the z-transform of {fn}, then at least X(z) can be obtained. However,
to obtain xn from X may not be very easy.

29.3 Who was Laplace (1749-1827) ? The ‘Newton of France’
was born into a cultivated provincial bourgeois family in Normandy
(Beaumont-en-Auge) in 1749. After his secondary school education he
attended University of Caen n 1766 to study the liberal arts, but two
of his professors (Gadbled and LeCanu) urged this gifted student to
pursue mathematics. With LeCanu’s letter to d’Alembert (→??) he
left for Paris at age 18 in 1768. He impressed d’Alembert, who secured
a position for him at the Ecole Militaire. In 1773 he demonstrated that
the acceleration observed in Jupiter and Saturn was not cumulative but
periodic. This was the principal advance in dynamical astronomy since
Newton toward establishing the stability of the solar system. This work
won him election to the Paris Academy in 1773.

Between 1778 and 1789 he was at his scientific prime. Laplace in-
troduced his transformation in 1779, which was related to Euler’s work.
In 1780 he worked together with Lavoisier to make a calorimeter to es-
tablish that respiration is a form of combustion. Although he played
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a decisive role to design the metric system in 1790, he wisely avoided
Paris when the Jacobins dominated until 1794. In the late 1790s with
three well received books (one of which, Systéme du Monde, was not
only a fine science popularizer but also a model of French prose), he
became a European celebrity.

Laplace advanced applied mathematics and theory of probability
substantially. He based his theory on generating functions, and ex-
tended Jakobi Bernoulli’s work on the law of large numbers. He was
amply honored by Napoleon and by Louis XVIII. During his final years
he lived at his country home in Arceuil, next to his friend chemist
Berthollet, surrounded by the adopted children of his thoughts, Arago,
Poisson, Biot, Gay-Lussac, von Humboldt and others.

29.4 Fundamental theorem of Laplace transform.
(1) The Laplace transform of f (13.2) exists for s such that e−(Re s)tf(t) ∈
L1([0,∞)).
(2) There is a one-to-one correspondence between f(t) and its Laplace
transform Ls[f ]. More explicitly, we have

f(t) =
1

2πi

∫ c+i∞

c−i∞
estLs[f ]ds, (29.9)

where c is a real number larger than the convergence coordinate c∗ such
that all the singularities of Ls[f ] lie on the left side of z = c∗ in C.326

[Demo] (1) is obvious. At least formally, (2) follows from the motivation 29.1.
Fourier inverse transform of Ls[f ] gives

f(t) = ect
1
2π

∫ ∞

−∞
e−iωtLc−iω[u(t)]dω. (29.10)

Since dω = ids, (13.10) becomes

f(t) =
1
2πi

∫ c+i∞

c−i∞
Ls[f(t)]estds. (29.11)

For this integral to be meaningful, we need the following theorem:

Discussion.
(1) f(t) = exp(tσ) with σ > 1 does not have Laplace transforms.
(2) The minimum real number r making f(t)e−rt ∈ L2([0,+∞)) is called the con-
vergence coordinate.
Exercise.
Although practically, there is almost no need (→29.14) of calculating the integral

326 This was formally shown by Riemann by 1859. Mellin proved this in Acta Soc.
Sci. Fenn. 21, 115 (1896). Hence, there is absolutely no justification to call this
integral the ‘Bromwitch integral.’ History must not be distorted due to national
interests.
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(13.9), still it is a good exercise of complex integration. Demonstrate the following
inverse transform relations with the aid of the residue theorem (→8B).
(1)

L−1
s

1
(s+ α)n

=
tn−1

(n− 1)!
e−αt, (29.12)

where α > 0 and n is a positive integer.
(2) How can we do a similar thing, if n is not an integer? In this case, s = 0 is a
branch point (→??-??). If n ∈ (0, 1), then a straightforward contour integration
along the contour in the figure works. The contribution from the small circle van-
ishes in the small radius limit, and the contribution from the large circle is zero
thanks to the Jordan lemma ??. We need 14.4 to streamline the formula. If n is
larger, then probaly the cleverest way is to use 29.7(5) and reduce the problem to
the case of n ∈ (0, 1).

29.5 Theorem. Ls[f ] is holomorphic (→??) where Ls[f ] exists. ✷327

Therefore, if Ls[f ] exists for c > c∗, then Ls[f ] has no singularity on
the half plane Re z ≥ c.

This implies that
(1) Ls[f ] is differentiable with respect to s,
(2) Ls[f ] is determined by its behavior on the portion of the real axis
x > c∗ through analytic continuation (→??).

29.6 Theorem. If s goes to s0 along a curve lying inside the conver-
gence domain, then

lim
s→s0

Ls[f ] = Ls0 [f ]. (29.13)

Especially,
lim
s→∞Ls[f ] = 0. (29.14)

[Demo] (13.14) follows from (13.13), which follows trivially from an elementary
property of the Lebesgue integral.

29.7 Some properties of Laplace transform.
(1) aLs[f (at)] = Ls/a[f(t)], where a is a positive constant. This can be
shown by a straightforward calculation.
(2) Ls[e

−btf(t)] = Ls+b[f(t)]. This is straightforward, too.
(3) Ls[t

nf(t)] = (−1)n(d/ds)nLs[f(t)]. In particular, Ls[tf(t)] = −d/dsLs[f(t)].

327 To prove this we need the following elementary theorem about Lebesgue inte-
gration
Theorem. Suppose
(1) f(x, s) is integrable (→15.9) for each s as a function of x,
(2) f(x, s) is holomorphic for almost all x as a function of s,
(3) There is an integrable function Φ such that |f(x, s)| ≤ Φ(x).
Then,

∫
dxf(x, s) is holomorphic as a function of s. ✷
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(4) Ls[f
(n)(t)] = snLs[f(t)]−sn−1f(0)−sn−2f ′(0)−· · ·−sn−kf (k−1)(0)−

· · · − sf (n−2)(0)− f (n−1)(0). In particular,

Ls[f
′(t)] = sLs[f(t)]− f(0). (29.15)

This is due to integration by parts.

(5) Ls

[∫ t
0 f(t

′)dt′
]
= s−1Ls[f(t)].

(6) Ls[t
−1f(t)] =

∫∞
s dsLs[f(t)].

(3) - (6) imply that calculus becomes algebra through the Laplace trans-
formation. This is the most important and useful property facilitating
the solution of linear ODE.

Discussion
The following equation is called the Airy equation (→23.23 Exercise (3))

d2y

dt2
− ty = 0. (29.16)

Since the coefficient is only a linear function of t, Laplace transformation is advan-
tageous. Let z be a function of s that is the Laplace transform of y with respect to
t. Then,

dz

ds
− s2z = 0, (29.17)

which can be solved easily as
z = es

3/3. (29.18)

Hence, a solution to can be written as

Ai(t) =
1
2πi

∫
C

exp
(
st− 1

3
t3
)
ds. (29.19)

Here C can be a path as shown in the figure. The integral is called the Airy integral
.
Show that

Ai(0) = 3−1/6Γ(1/3)/2π. (29.20)

29.8 Convolution. If we adapt the ordinary definition of convolution
?? to functions that are zero for t < 0, we get

(f1 ∗ f2)(t) =
∫ t

0
f1(t− u)f2(u)du. (29.21)

A straightforward calculation gives

Ls[f1 ∗ f2] = Ls[f1]Ls[f2]. (29.22)

Exercise. ∫ x

0

sin(x− y)u(y)dy + u(x) = cosx. (29.23)
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29.9 Time-delay.

Ls[f (at− b)Θ(at− b)] =
1

a
e−bs/aLs/a[f(t)] (29.24)

This is also demonstrated by a simple calculation. e−τs is often called
a delay factor.

29.10 Periodic functions. If f is a function with period T , then

Ls[f(t)] = (1− e−sT )−1
∫ T

0
e−stf(t)dt. (29.25)

[Demo] Thanks to the periodicity, we get∫ ∞

0

e−stf(t)dt =
∫ ∞

0

e−stf(t+ T )dt =
∫ ∞

T

e−sτf(τ)dτesT , (29.26)

where t = τ − T . This implies that

Ls[f(t)] =
{
Ls[f(t)]−

∫ T

0

e−stf(t)dt

}
esT . (29.27)

Solving this equation for Ls[f ], we get the desired formula.

29.11 Examples.
(1) Ls[1] = 1/s is obvious by definition.
(2) This with (2) of 29.7 implies Ls[e

−bt] = 1/(s+ b).
(3) Linearity of the Laplace transformation and (2) give, for example,

Ls[cosωt] =
1

2
(Ls[e

iωt] + Ls[e
−iωt]) =

s

s2 + ω2
. (29.28)

Analogously, we get Ls[coshat] = s/(s2 − a2), Ls[sinωt] = ω/(s2+ω2),
etc.
(4) (3) with (2) of 29.7 gives for example

Ls[e
−bt cosωt] =

s+ b

(s+ b)2 + ω2
. (29.29)

(5) (1) and (3) of 29.7 imply

Ls

[
tn

n!

]
=

1

sn+1
. (29.30)

More generally, for ν > −1

Ls

[
tν

Γ(ν + 1)

]
=

1

sν+1
. (29.31)

398



This can be shown immediately by the definition of the Gamma func-
tion (→9).
(6) Combining (13.30) and (2) of 29.7 gives

Ls[e
−bttn] =

n!

(s+ b)n+1
. (29.32)

(7) An application of 29.10 is

Ls[| sin t|] = 1

s2 + 1
coth

πs

2
. (29.33)

(8) Applying the convolution theorem 29.8 we can demonstrate

∫ t

0
J0(τ )J0(t− τ)dτ = sin t (29.34)

This follows from (→23.15)

Ls[J0(t)] =
1√

s2 + 1
. (29.35)

Exercise.
(A) Show

Ls 1√
t
=

√
π√
s
. (29.36)

(B) Find
(1) Ls cos2 ωt.
(2) For τ > 0 and a > 0 Ls(t− t1)E−a(t−t2Θ(t− τ ).
29.12 Laplace transform of delta function. We can define Laplace
transforms of generalized functions. We will not discuss this, since the
relation between Fourier and Laplace transformations 29.1 explains
virtually everything we need practically. A subtlety may remain in the
definition of the Laplace transformation of δ(x), since the definition
29.2 requires an integration from 0. That is, we must consider the
product of δ(x) and Θ(x), which is meaningless (→??) as generalized
functions. Without any ambiguity for a > 0

Ls[δ(t− a)] = e−as. (29.37)

This means the Laplace transform of the weak limit limε→0+ δ(t− ε) is
1. Hence, as a generalized function it is sensible to define (→??)

Ls[δ(t)] = 1. (29.38)

From this (13.37) is obtained with the aid of the time delay formula
29.9.
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29.13 Short time limit.

lim
t→0+

f(t) = lim
s→∞ sLs[f(t)]. (29.39)

[Demo] 29.7(4) with n = 1 reads Ls[f ′(t)] = sLs[f(t)] − f(0). Apply 29.6 to f ′,
and we get lims→∞ Ls[f ′(t)] = 0.

29.14 Practical calculation of Laplace inverse transformation:
Use of tables. Although the fundamental theorem 29.4(2) gives
a method to compute the inverse transforms, practically, an easier
method is to use a table of Laplace transforms of representative func-
tions. The uniqueness of the transforms (→29.4(2)) guarantees that
once we can find an inverse transform, that is the inverse transform of
a given function of s. Also numerical fast Laplace inverse transform is
available.
Exercise.
(1) Solve the following differential equation with the aid of Laplace transformation

d2y

dt2
+ 2a

dy

dt
+ (a2 + b2)y = e−at sin bt.

Here a and b are positive constants, and the initial condition is y(0) = y′(0) = 0.
(2) Using Laplace transformation, solve the following integrodifferential equation

y(t) = y′(t) + t+ 2
∫ t

0

(t− u)y(u)du

with the initial condition y(0) = 0.

29.15 Heaviside’s expansion formula.328 Let F (s) be a rational
function329 F (s) = P (s)/Q(s), where P and Q are mutually prime
polynomials, and the order of Q is higher than that of P . If Q(s) =
A(s− a1) · · · (s− an) and a1, · · · , an are all distinct, then

P (s)

Q(s)
=

n∑
s=1

ck
s− ak

(29.40)

with ck = P (ak)/Q
′(ak). ✷

This is obvious, and implies that

L−1
s [P (s)/Q(s)] =

n∑
k=1

P (ak)e
akt/Q′(ak). (29.41)328 Heaviside (1850-1925) introduced an algebraic method to solve ODEs, which

can be understood as the Laplace transform method explained below. The method,
which requires generalized functions like the Heaviside step function, and even the
delta function, was never accepted by mathematicians of his day. According to an
anecdote, he said that we could eat even though we did not know the mechanism of
digestion. This story is often told as a story of a triumph of a self-educated genius.
However, the method was actually invented by Cauchy long ago. Therefore the
story must be quoted as a failure of premature ossification of mathematics due to
mediocre mathematicians.
329 A rational function is a ratio of two polynomials.
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29.16 Examples.

L−1
s

[
s2 + s+ 1

(s2 + 1)3

]
=
1

8
(4 + t) sin t− 1

8
(4t+ t2) cos t. (29.42)

L−1
s

[
2s+ 3

2s3 + 3s2 − 2s
]
= −3

2
− 1

10
e−2t +

8

5
et/2. (29.43)

L−1
s

[
s2 + 1

2(s4 + s2 + 1)

]
= 1−

√
3

3

[
et/2 cos

(√
3

2
t+

π

6

)
+ e−t/2 cos

(√
3

2
t− π

6

)]
.

(29.44)

Exercise.
(1) Find the inverse transform of

g(s) =
s2 − ωs+ ω2

s(s2 + ω2)
. (29.45)

(Answer: Θ(t)− sinωt).

g(s) =
1 + eπs

s(s2 + 1)
. (29.46)

29.17 Fast inverse Laplace transform. T. Hosono, “Numerical
inversion of Laplace transform and some applications to wave optics,”
Radio Science 16, 1015 (1981); Fast Laplace transform in Basic, (Ky-
oritsu Publ., 1984)

401



Table

402



Appendix a33 Mellin Transformation

29.18 Mellin transformation. The Mellin transform f̆ of f(r) is defined as

f̆(p) =
∫ ∞

0

f(r)rp−1dr. (29.47)

This is well-defined for p satisfying σ1 < Re p < σ2, where∫ 1

0

rσ1−1|f(r)|dr < +∞,
∫ ∞

1

rσ2−1|f(r)|dr < +∞. (29.48)

29.19 Theorem [Fundamental theorem of Mellin transformation].
(1)

f̆(p) =
∫ ∞

0

f(r)rp−1dr (29.49)

is analytic in the strip σ1 < Rep < σ2.
(2) Inverse transformation:

f(r) =
1
2πi

∫
Γ

f̆(p)r−pdp, (29.50)

where Γ is a straight line in the above strip.✷
[Demo] (1) is shown just as the counterpart for the Laplace transformation (→). (2)
is also a disguised version of the inversion formula for the Laplace transformation
(→29.2). Introduce t as r = e−t. Then (13.47) reads

f̆(p) =
∫ ∞

0

e−ptf(e−t)dt (29.51)

This is the Laplace transformation (→29.3). Therefore, we can apply the inverse
transformation formula to obtain

f(e−t) =
1
2πi

∫ σ+i∞

σ−i∞
f̆(p)eptdp. (29.52)

In terms of r, this is just what we wanted.

29.20 Applications to PDE. If the region of the problem is fan-shaped, then the
Mellin transformation is particularly useful. 2-Laplace problem in the cylindrical
coordinates is

r2
(
∂2

∂r2
+

1
r

∂

∂r

)
u+

∂2

∂ϕ2
u = 0. (29.53)

Melling transforming this, we get

p2ŭ+
d2

dϕ2
ŭ = 0, (29.54)

which can be solved easily. The rest is to compute the inverse transform. To
calculate it as the Laplace transform (13.52) may be advantageous, since there is
the so-called fast Laplace transform algorithm (→29.17).
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30 Linear Operators

A linear partial differential operator is understood as a lin-
ear map from a function space into another function space.
The most important case for physicists may be the linear
map on a Hilbert space. We will discuss the meaning of
self-adjointness of an operator in conjunction to quantum
mechanics in Part A. Part B discusses spectral decomposi-
tion of an operator. Part C is a short summary of spectrum
theory.

Key words: linear operator (symmetric, self-adjoint), op-
erator extension, observable, spectral decomposition, de-
composition of unity, spectral measure, semibound oper-
ator, spectrum (essential, point, discrete, absolute continu-
ous), compact operator, Hilbert-Schmidt theorem.

Summary:
(1) In quantum mechanics, self-adjoint linear operators are regarded
as observables. The reason why self-adjointness is required can be
glimpsed in 30.2-30.5. [Notice that the explanation is probably very
different from the one given in physics courses, because in the ordi-
nary quantum mechanics courses self-adjointness is never explained cor-
rectly.]
(2) Spectral decomposition is a generalization of diagonalization of ma-
trices, and is the theoretical underpinning of separation of variables
(30.8, 30.11).
(3) Whether we may apply the spectral decomposition to a partial dif-
ferential operator can be checked very formally (30.10).
(4) Spectrum of an operator is often directly related to physical observ-
ables as electronic and phonon spectra. A clear definition of spectrum
must be recognized (30.13). Physicists call absolutely continuous spec-
trum band spectrum, and point spectrum discrete spectrum (30.19).
Cantor-set like spectrum has also become relevant to physics, which is
the singular continuous spectrum.

30.A Self-Adjointness
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30.1 Linear operator.330 As discussed in ?? the superposition prin-
ciple requires that the quantum mechanical state is described by a vec-
tor in a vector space (→16.1) (Hilbert space →16.3) V . A linear
operator A is a linear map from a subspace D(A) of V into V . D(A) is
called the domain of A, and AD(A) ≡ {Az : z ∈ D(A)} is called the
range of A. In quantum mechanics it is assumed that a linear operator
(with appropriate properties) A corresponds to a dynamical variable
(observable), and that for a state |x〉, the expectation value of the ob-
servable A is given by 〈x|A|x〉.331
Example. The domain of d/dx in L2([a, b]) (→16.5(2)) is not the
whole space, because d/dx cannot be operated on non-differentiable
functions.332 However, since C1([a, b]) is dense in L2([a, b]), the do-
main of d/dx is dense in L2([a, b]).

30.2 When can a linear operator be an observable?
(1) Let A be a linear operator on a Hilbert space V (→16.3). If D(A)
is dense in V and Hermitian (i.e., 〈x|Ay〉 = 〈Ax|y〉333 ), we say A is
symmetric. Since this is a necessary and sufficient condition for 〈x|A|x〉
to be real, physical observables must at least be symmetric.
(2) However, this is not enough, because the extension of A may not
be symmetric. An operator Ã such that D(Ã) ⊃ D(A) and A = Ã on
D(A) is called an extension of A. Unfortunately, indeed some symmet-

330 The most authoritative (and accessible) reference is T. Kato, Perturbation The-
ory for Linear Operators (Springer, 1966).
331 Dirac explicitly assumes these, while Landau and Lifshitz use spectral decom-
position to justify the assumption. However, all the assumptions have come from
the observations based on finite dimensional linear algebra.
332 More precisely, df/dx ∈ L2([a, b]) is required.
333 Of course, this means

∫
x(t)(Ay)(t)dt =

∫
(Ax)(t)y(t)dt.
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ric operators are extended to non-symmetric operators.334 The whole
Hilbert space should be physically meaningful, so that symmetry is not
enough to characterize a respectable observable.
(3) It is important that a symmetric operator A which corresponds to a
‘physical observable’ should not be extended further. A condition is the
self-adjointness. To understand this statement, we need the following
entries.

30.3 Adjoint operator. Let A be an operator on a Hilbert space V
whose domain is dense. Let D(A∗) be the totality of x ∈ V such that

〈x|Ay〉 = 〈z|y〉 (30.3)

for all y ∈ D(A) for some z ∈ V . For x ∈ D(A∗) z is unique: if there
were two z1 and z2, then 〈z1 − z2|y〉 = 0 for ∀y ∈ D(A). Since D(A)
is dense, this implies z1 = z2. Thus there is a unique map x → z. We
will write this as z = A∗x, defining a linear map A∗. This is called the
adjoint of A.

For example −id/dx defined on C1
0
335 is self-adjoint:

∫
dτf (x)

(
− d

dx

)
g(x) =

∫
dτ


−i

(
d

dx

)
 g(x), (30.4)

so that indeed (−id/dx)∗ = −id/dx.

30.4 Self-adjoint operator. If A is a linear operator with a dense
domain and A = A∗ (i.e., D(A) = D(A∗) and symmetric), then A is
called a self-adjoint operator.

334 An example from H. Ezawa, Quantum Mechanics III (Iwanami, 1972) p26.
follows. Let V = L2(R). The operator Z is defined by

Zψ(x) = −i
(
x3
d

dx
+
d

dx
x3
)
ψ(x) (30.1)

with the dense domain spanned by {Hne−x2/2} (→17.20). It is easy to check that
Z is symmetric. However, if this is applied to

ϕ(x) = x−3/2e−1/4x2
, for x > 0; otherwise ϕ(x) = 0, (30.2)

we know Zϕ(x) = −iϕ(x) (except at x = 0; this exception may be ignored, be-
cause we are in a L2-space), so that 〈ϕ|Z|ϕ〉 = −i, the expectation value is purely
imaginary!
335 C1 functions with compact supports, i.e., they vanish outside sufficieintly large
sphere centeres at the origin.
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30.5 Observable should be at least self-adjoint. We know that
an observable must be a symmetric operator. However, A∗ is obviously
its extension, so it is natural to interpret that A∗ is ‘the’ observable.
However, we know that this may not be symmetric. This strongly
suggests that observables must be self-adjoint, so that we will never
encounter imaginary eigenvalues. Later, we will learn that for a self-
adjoint operator, we can unambiguously determine (define) the proba-
bility of observing a particular value (or a particular range of the values)
for any state in the state space thanks to the spectral decomposition
theorem (→34B.3). This justifies the identification.

30.B Spectral Decomposition

30.6 Spectral decomposition in finite dimensional space. Con-
sider a normal linear operator336 A on a finite dimensional vector space.
Let {λ} be its eigenvalues, and |λ〉 be the corresponding normalized
eigenkets. Then, we have the following spectral decomposition formula

A =
∑
λ

|λ〉λ〈λ| =∑
λ

λP (λ), (30.5)

where P (λ) is the orthogonal projection (→16.18) to the eigenspace
belonging to λ.

1 =
∑
λ

|λ〉〈λ| =∑
λ

P (λ) (30.6)

is called a decomposition of unity (→16.15). If we can have this de-
composition, we can spectral decompose the operator. How can we
generalize this to the operators on a Hilbert space (→16.3)?

30.7 Decomposition of unity in Hilbert space. This is, for physi-
cists, just (→16.23)

1 ≡
∫ ∞

−∞
|ν〉w(ν)dν〈ν|, (30.7)

where |ν〉 is an eigenket or improper eigenket (because it may not be
normalizable), and w is a weight function (let us call w(ν) a spectral
weight). To find improper eigenkets is called the generalized eigenvalue
problem (31.5 solves the problem.).336 If a linear operator A satisfies A∗A = AA∗, then we say A is a normal operator.
Its matrix representation is a normal matrix and is diagonalizable with a unitary
transformation. Actually, a necessary and sufficient condition for a matrix A to be
diagonalizable with a unitary transformation is that A is normal.
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30.8 Theorem. Let A be a self-adjoint operator (→30.4) on a
Hilbert space V . Then, there is a unique decomposition of unity

1 =
∫
|ν〉w(ν)〈ν| (30.8)

such that

A =
∫ ∞

−∞
ν |ν〉w(ν)dν〈ν|. (30.9)

30.9 Why do we pay attention to spectral decomposition? It
is a fundamental tool to understand operators, and is a very useful
tool for quantum mechanics. In our current partial differential equa-
tion context, the spectral decomposition is of superb importance with
respect to, as the reader should have already guessed, the separation
of variables (→18, 23). However, to understand the justification of
the method in general, we need almost all the machineries of elemen-
tary functional analysis. First of all, most partial differential operators
are not self-adjoint. For example, the Laplacian with a homogeneous
Dirichlet condition is only symmetric. Hence, to use the operator the-
ory, we must consider the self-adjoint extension (→30.2) of the differ-
ential operator. Rather heavy tools are required to obtain it, but the
result boils down to:

30.10 Practical conclusion. The following is a practical conclusion
about differential operators:
(1) If P (x,D) is formally self-adjoint, i.e.,

∫
Ω
f (x)P (x,D)g(x)dx =

∫ (
P T (x,D)f(x)

)
g(x)dx, (30.10)

where

P T (x,D)f(x) =
∑

|α|≤m

(−D)α(aα(x)f(x)), (30.11)

for

P (x,D)f (x) =
∑

|α|≤m

aα(x)D
α, (30.12)

(This guarantees that the operator is symmetric (→30.2)) and
(2) if P (x,D) is semibounded, i.e., for any sufficiently differentiable
f ∈ L2(Ω), there is a positive α such that

±
∫
Ω
f (x)P (x,D)f(x)dx ≤ α‖f‖2 (30.13)
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for + or −, then (thanks to Friedrichs-Freudenthal’s theorem337 ), then
P can be extended to a self-adjoint operator and,
(A) The totality of normalized eigenfunctions {un} of the operator:

P (x,D)un(x) = λnun(x), (30.14)

makes an orthonormal basis for L2(Ω),
and
(B) we may justify the separation of variables:

30.11 Justification of separation of variables. Let Ω be a region
and P be a partial differential operator (with appropriate boundary
conditions) on L2(Ω) satisfying the consitions (1) and (2) in 30.10.
Then there is an appropriate weight w (→30.8) such that the solution
to

Ltu = P (x,D)u, (30.15)

where Lt is a differential operator with respect to time, is given by ϕ
such that

Lt〈λ|ϕ〉 =
∫

µ〈λ|µ〉w(µ)dµ〈µ|ϕ〉 [= λ〈λ|ϕ〉]. (30.16)

The formula inside [ ] holds if the spectrum is discrete (if not, the
formula is not simple as we will see in 32.5).

Discussion.
(A) The extension may be understood formally as follows. Let L∗ be the formal
adjoint of L. Then the operator L̂ introduced as follows is the extension of L (that
is, L̂∗ = L̂ ⊃ L).

〈u|L̂v〉 = 〈L∗u|v〉. (30.17)

(B) We have encountered the following equation in 19.9 (2)[
d2

dr2
+

1
r

d

dr
+
m2

r2

]
R = −λ2R (30.18)

with the boundary conditions R(a) = R(b) = 0 (a < b). The eigenfunctions are
written in terms of the following ‘esoteric’ functions Iim(x) and Kim(x). We wish
to demonstrate that the eigenfunctions of this problem makes a complete system.
We wish to use the ‘high-tech’ functional analytic weapon. That is:
(1) Demonstrate that the operator is formally self-adjoint.
(2) Demonstrate that the operator is semibounded (→??).
(C) With the aid of the same argument as above demonstrate that the totality of
spherical harmonics makes a complete set of functions. That is, demonstrate that

L2 ≡ 1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2
(30.19)

337 See K. Yosida, Functional Analysis (Springer, 1980 Sixth edition), Chapter XI,
Section 7, Theorem 2.
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is formally self-adjoint and semibounded.338

30.C Spectrum

30.12 Introduction to spectrum. Physicists usually write for a
linear operator

L|λ〉 = λ|λ〉 (30.20)

and say that λ is an eigenvalue. However, if L is a linear operator
acting on a subset of a Hilbert space, then the equation makes sense,
strictly speaking, only when |λ〉 is in the Hilbert space (That is, |λ〉
is normalizable →16.3). We know this is not always the case. If we
rewrite (30.20) as

(L− λ)|λ〉 = 0, (30.21)

we realize that what we wish to mean by (30.20) is that (L−λ)−1 is not
a bounded operator: a linear operator A is a bounded operator, if its
operator norm (→??) is bounded: ‖A‖ ≡ supa∈D(A) ‖Aa‖/‖a‖ < +∞.
30.13 Resolvent, resolvent set. Let L be a linear operator on a
Hilbert space V with a dense domain (→30.1). The operator

R(λ) ≡ (L− λI)−1 (30.22)

is called the resolvent of L. If the domain of R(λ) is dense, and R(λ)
is bounded on its domain, then λ is called a regular point. The totality
of the regular points of L is called the resolvent set of L and is denoted
by ρ(L).

Notice that if λ, µ ∈ ρ(L), then

R(λ)−R(µ) = (λ− µ)R(λ)R(µ). (30.23)

This is called the resolvent equation.
Exercise.
(1) Demonstrate the resolvent equation.
(2) Construct the resolvent kernel (i.e., R(x, y;λ) ≡ 〈x|(L − λ)−1|y〉) for L =
−d2/dx2 with the boundary condition u′(0) = u′(1) = 0. Cf. 16.28, 16.29.

30.14 Spectrum. Let L be a linear operator whose domain is dense
in a Hilbert space V . Then σ(L) ≡ C \ ρ(L) is called the spectrum of
L. In other words, λ is a point in the spectrum of L, if (L−λ)−1 is not
defined, or even if it is defined, its domain is not dense in V , or even if
dense, it is not a bounded operator.338 Do not forget an appropriate weight when you perform integration. This also
applies to (B).
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30.15 Classification of spectrum. Let T be a linear operator whose
domain is dense in a Hilbert space V .
(1) If T −λ is not one to one, that is, there is a nonzero ket |u〉339 such
that A|u〉 = λ|u〉, we say λ is an eigenvalue. The totality of such λ is
called the point spectrum of T .
(2) If T −λ is one to one, but if R(λ) is not a bounded linear operator,
and
(21) if the domain of R(λ) is dense, then we say λ belongs to the
continuous spectrum.
[(22) if the domain of R(λ) is not dense, then we say λ belongs to the
residual spectrum. ]

30.16 Discrete and essential spectrum. The totality of eigen-
values is called the point spectrum σp. The union of the continuous
spectrum and the set of eigenvalues of infinite multiplicity is called the
essential spectrum and is denoted by σess(L). σ(L) \ σess(L) is called
the discrete spectrum and is denoted by σdisc(L).

30.17 Classification of continuous spectrum. Let L be a linear
operator whose domain is in a Hilbert space V with a continuous spec-
trum σc(L). It is classified as follows:

Let w(λ) be the spectral weight (→30.7). If for any set A ⊂ σc(L)
with measure zero (→15.4)

∫
A |λ〉w(λ)dλ〈λ|V = {0}, we say the spec-

trum is absolutely continuous, and the continuous spectrum is called
an absolutely continuous spectrum. The definition applies to a subset
of σc(L), so we may say the operator L has an absolutely continu-
ous spectrum in [a, b], if

∫ b
a |λ〉w(λ)dλ〈λ|V V is a nontrivial subspace

of the Hilbert space V , but for any measure zero subset Q of [a, b]∫
Q |λ〉w(λ)dλ〈λ|V = {0}. Otherwise, we say L has a singular continu-

ous spectrum (like the one concentrated on a Cantor set).

30.18 Pure point spectrum. Let L be a linear operator whose
domain is dense in a Hilbert space V . If the linear hull of the eigenspaces
for all λ ∈ σp(L) is dense in V , then we say L has a pure point spectrum.

30.19 Are the above classification relevant to physics?.
(1) The Hamiltonian of 1D harmonic oscillator has a pure point spec-
trum. σ = σp = σdisc.
(2) The Hamiltonian of a particle in a 1D periodic potential has an ab-
solutely continuous spectrum, which physicists call a band spectrum.
(3) Consider a random 1d harmonic lattice. For example, the value of
the spring constant is k or k′(�= k) chosen randomly for each spring,
or a harmonic lattice with a uniform spring constant but two kinds of

339 Of course, the ket must be in the Hilbert space. That is, it must be normalizable.
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mass points m and M(�= m) randomly placed on the lattice points. In
this case all the harmonic modes are localized (i.e., in l2 →16.5(1)) and
its spectrum is pure point (→30.18). The reason for the localization is
not very hard to understand intuitively; if there is a cluster of lighter
atoms, then they tend to behave differently from the rest. If the reader
solve a finite size lattice system, then the mode localization lengths
may be larger than the system size, so she would see clear localization
for higher frequency modes only as illustrated below:

(4) The problem in (3) is mathematically the same as the random
Frenkel model; that is, the discrete Schrödinger equation with random
hopping or with random site potential energy can be cast into the har-
monic lattice problem. In this case localization is called the Anderson
localization.
(5) If the spring constant or hopping probability above is chosen to be
almost periodic (that is, it behaves like sin kx with k being irrational),340

then the spectrum becomes self-similar.
In this case the eigenfunctions are not localized in the standard

sense (i.e., not in l2), but very different from the ordinary delocal-
ized wave functions. If the largest peak is normalized, then in many
cases the slow algebraic decay is observed. Experimentally, now we can
fabricate almost periodic layered structures on which we can perform
optical experiments. Numerically, the behavior above can be observed
most easily with the most irrational k = 1/(1 + 1/(1 + /(1 + 1/(· · ·.

340 Physicists say a function f(x) is almost periodic if f(x) is a sum of periodic
functions with incommensurate (not rationally related) periods.
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(6) If the system exhibits only a point spectrum, then there cannot be
any transport of phonons or electrons, because all the eigenfunctions
are spatially localized.

Discussion.
If the system exhibits only a point spectrum, then there cannot be any transport
of phonons or electrons, because all the eigenfunctions are spatially localized.

30.20 Compact operator. If a linear operator A has a sequence
of finite-dimensional operator341 converging342 to it, we say A is a
compact operator. If A is self-adjoint, then, roughly speaking, we can
write A ∼ ∑N

k=1 |k〉λk〈k|.
30.21 Integral operator, Fredholm integral equation. Formally
we can introduce a linear operator by the following integral343

(Γu)(x) =
∫ b

a
dy w(y)K(x, y)u(y), (30.24)

where we assume u ∈ L2([a, b], w) (→16.19), and K is an integrable
function. Γ is often called a Fredholm operator, and K is called its
kernel.

u = Γu+ f (30.25)

for some function f ∈ L2([a, b], w) is called a Fredholm integral equation.

30.22 Theorem [Hilbert-Schmidt]. Γ in 30.21 is a compact oper-
ator, if ∫ b

a
dxw(x)

∫ b

a
dy w(y)|K(x, y)|2 < ∞. (30.26)

Exercise.
The inverse operator of the regular Sturm-Liouville operator is compact. Demon-
strate this statement. Cf. ??.

30.23 Spectral theorem for compact self-adjoint operator [Hilbert-
Schmidt]. Let A be a compact self-adjoint operator (→30.15) on a
Hilbert space V . Then,
(1) V has an orthonormal basis {|en〉} consisting of eigenvectors of A.
(2) Let A|en〉 = λn|en〉. Then λn → 0 as n → ∞.
(3) If |x〉 = ∑ cn|en〉, then A|x〉 = ∑ cnλn|en〉. ✷
Thus, almost everything true for a finite dimensional Hermitian matrix
is true. The only caution we need is that we cannot freely change the
order of the vectors in the basis (→16.17). ✷

Compactness implies A ∼ ∑N
k=1 |k〉λk〈k|, so intuitively, the theorem is

plausible.341 A linear operator B is said to be finite dimensional, if its non-zero spectrum is
point (→34C.4) and the total dimension of its eigenspaces is finite.
342 with respect to the operator norm.
343 Mathematicians introduce a measure dµ instead of w. Cf. a19.
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30.24 Variational Principle for compact self-adjoint operator.
Let A be a compact (→28.32: do not forget that the theorem is NOT
for any self-adjoint operator) self-adjoint linear operator on a Hilbert
space V . The unit vector |f〉 which maximizes 〈f |A|f 〉 is an eigenvector
of A belonging to the eigenvalue with the largest modulus which is
identical to |〈f |A|f〉|. ✷

30.25 Finding eigenvalues with the aid of variational prin-
ciple. With the aid of 30.24 we can determine the largest modulus
eigenvalue λ1 of a compact self-adjoint linear operator A, and a vector
maximizing F (x) to be denoted by |λ1〉. Let V1 be the perpendicular
subspace to |λ1〉. Since

〈λ1|A|y〉 = λ1〈λ1|y〉 = 0, (30.27)

if |y〉 ∈ V1, so is A|y〉 ∈ V1. Hence we can apply the same argument
to A restricted to V1. In this way we can construct the nonincreasing
sequence (in modulus) of eigenvalues λ1, λ2, · · ·.
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31 Spectrum of Sturm-Liouville Problem

Eigenvalues for a regular Sturm-Liouville problem can be
studied more conveniently through its Green’s function which
is a Hilbert-Schmidt kernel. We need a more general theory
to go beyond the regular case – the Weyl-Stone-Titchmarsh-
Kodaira theorem, which is also briefly introduced.

Key words: Sturm-Liouville eigenvalue problem, funda-
mental theorem, Weyl-Stone-Titchmarsh-Kodaira theorem

Summary:

(1) Remember that the inverse operator of the regular Sturm-Liouville
operator is compact. All the fundamental properties of its spectrum
follows from this fact (→31.3).
(2) Details of the Weyl-Stone-Titchmarsh-Kodaira theorem 31.5 need
not be understood, but remember that there is a general way to expand
a function in terms of functions in a fundamental system of solutions
of a formally self-adjoint differential operator.

31.1 Rewriting of the eigenvalue problem as integral equa-
tion. The Sturm-Liouville eigenvalue problem is to find λ for

LSTu↽==

[
d

dx
p(x)

d

dx
+ q(x)

]
u = λw(x)u (31.1)

(with p > 0) under the following boundary condition:

Ba[u] ≡ Ap(a)u′(a)−Bu(a) = 0, (31.2)

Bb[u] ≡ Cp(b)u′(b)−Du(b) = 0, (31.3)

The problem can be rewritten with the aid of the Green’s function
(→??) as

u(x) = λ
∫

dy w(y)G(x|y)u(y) = λ(Gu)(x) (31.4)

G is called the kernel of the integral operator G.

31.2 Formal theory. [16.28 repeated] (31.4) can be written as

|u〉 = λG|u〉, (31.5)
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where bras and kets are defined with the weight function w (→16.22,
16.23). Let |i〉 be an eigenket belonging to the eigenvalue λi:

λiG|i〉 = |i〉. (31.6)

If {|i〉} is an orthonormal basis of L2([a, b], w) (→16.19), then from
(31.5) we get

G =∑
i

|i〉λ−1
i 〈i|. (31.7)

That is, the Green’s function can be written as

G(x|y) = 〈x|G|y〉 =∑
i

λ−1
i ui(x)ui(y). (31.8)

We must justify this result.

31.3 Theorem [Fundamental theorem of Sturm-Liouville eigen-
value problem]. The eigenfunctions of a regular Sturm-Liouville prob-
lem (→??) form an orthogonal basis of L2([a, b], w) (→16.19), and the
sequence of eigenvalues satisfies |λn| → ∞ as n →∞.✷
[Demo] We can explicitly construct the Green’s function for this problem as in ??,
which is a continuous function of x and y, so that G, whose kernel is given by ??,
is a compact operator (→30.20) thanks to Hilbert and Schmidt 30.22. Its self-
adjointness is also easy to demonstrate. Hence, we can apply 30.23. Note that the
eigenvalues here are the reciprocals of those in 30.23.

Discussion.
(A) Classical approach due to Prüfer.
Our demonstration heavily relied on functional analytic methods. The facts were
known before functional analytic methods were widely available. Here a classical
proof of the theorem due to Prüfer is given. The argument may seem more compli-
cated and more artful, but more delicate results than those obtained by a high-tech
functional analysis may be obtained.
(1) Suppose there is a solution u �≡ 0 to (31.1). Then, pu′ and u do not vanish
simultaneously.
Hence, we can introduce a polar coordinate system such as

u(x) = ρ(x) sin θ(x), (31.9)
p(x)u′(x) = ρ(x) cos θ(x). (31.10)

(2) Our eigenvalue problem can be rewritten as follows:

ρ′(x) = (p(x)−1 + q(x) + λw(x))ρ sin θ cos θ (31.11)
θ′ = p(x)−1 cos2 θ + (−λw(x)− q(x)) sin2 θ. (31.12)

The second equation does not contain ρ, so we can integrate this for θ(x) with an
arbitrary initial condtion θ(0) = α.
(3) A necessary and sufficient condition for λ to be an eigenvalue of 31.1 is that
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θ(x) with the initial condtion θ(a) = α satisfies θ(b) = β+nπ, where n is a positive
integer. Here the angles α and β are determined as

tanα = A/B, tanβ = C/D (31.13)

with α, β ∈ [0, π).
(4) Prüfer’s comparison theorem. Let θ(x, λ) be the solution of (2) with the
initial condition θ(a) = α. Then, for x ∈ (α, β]

λ1 < λ2 ⇒ θ(x, λ1) < θ(x, λ2). (31.14)

This tells us that the eigenfunction corresponding to a larger eigenvalue oscillates
faster. θ is monotonically increasing as a function of λ. In particular,
(5)

lim
λ→−∞

θ(b, λ) ≤ 0, (31.15)

lim
λ→+∞

θ(b, λ) = +∞. (31.16)

This implies
(6) The Sturm-Liouville eigenvalue problem has a discrete set of eigenvalues such
that

λ1 < λ2 < · · · < λn → +∞. (31.17)

(7) Furthermore, the eigenfunction corresponding to the n-th largest eigenvalue has
exactly n− 1 simple zeros in (a, b). See 20.13 (Discussion) for the simplicity of the
zeros (non-degeneracy of eigenstates). For nodal sets, see 33.4. Also note that this
proves the statement about the positions of the zeros of orthogonal polynomials
21A.11 (2) (see 17.7).
(8) Completeness of the eigenfunctions: If a continuous function h(x) satisfies∫ b

a

dxw(x)h(x)φn(x)dx = 0, (31.18)

for all n ∈N , then h ≡ 0, where φn is an eigenfunction belonging to λn.
Its proof depends on the fact that if (31.18) is true, then the solution to

LST y = w(x)h(x) (31.19)

with the homogeneous boundary condtion has a continuous solution for any real λ.
However, this cannot be true if h ≡ 0.
(9) (8) gives us a generalized Fourier expansion: If

f(x)
∑
fnφn(x) (31.20)

is uniformly and absolutely convergent, then the coefficient can be computed as a
Fourier coefficien.
(10) Let f be piecewisely C1. The formal series (31.20) is actually uniformly and
absolutely convergent.
(B) Prüfer’s technique allows us to prove the following theorem about the distribu-
tion of zeros of a Schödinger equation:

u′′ + q(x)u = 0. (31.21)
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Suppose
m2 ≤ q(x) ≤M2. (31.22)

Then, for any solution u �≡ 0, the spacing of the zeros δ satisfies

π

M
≤ δ ≤ π

m
. (31.23)

Exercise.
Suppose (31.21) is considered on [a, b] with the Dirichlet condition. Demonstrate
that the magnitude of the eigenvalue λn increases asymptotically as n2.
Discussion.
(C) Find the eigenvalues and eigenfunctions of the operator d2/dx2 + λ on [−1, 1]
with the following boundary conditions:
(1) du/dx(−1) = du/dx(1) = 0.
(2) u− du/dx = 0 at x = ±1.
(D) What happens if the regularity condition is dropped?344

Consider
d

dt

(
t2
d

dt
x

)
+ λx = 0, (31.24)

with the following boundary conditions.
(1) x(−1) + x′(−1) = x(1) + x′(1) = 0 (no eigenvalue).
(2) x(−1) + x′(−1) = 0 and x(1) − x′(1) = 0 (−2 is the only eigenvalue. The
corresponding eigenfunction is t.)
(C) Irrespective of the boundary conditions, the n-th eigenvalue of a Sturm-Liouville
problem is a continuous function of the coefficients of the equation (Courant-
Hilbert).

31.4 Justification of separation of variables. When the region
of the problem is finite, very often the separated problems are reg-
ular Sturm-Liouville eigenvalue problem. Hence, 31.3 is the key (if
the reader does not wish to use less elementary Friedrichs extension
(→30.10)). However, notice that 31.3 is not enough to justify what
we wish to do on unbounded regions. Friedrichs extensions work even
in such cases. Here, however, a more constructive theory is posted.

31.5 Theorem [Weyl-Stone-Titchmarsh-Kodaira]. Let L be a
second order linear differential operator which is formally self-adjoint:

L = − d

dx
p(x)

d

dx
+ q(x), (31.25)

where p and q are C∞ on (a, b).345 For λ ∈ R, consider
Lu = λu. (31.26)

344 N
345 a could be −∞ and b ∞.
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Let {ψ1(x;λ), ψ2(x; λ)} be a fundamental system of solutions (→20.11)
of this equation. Then, there is a matrix measure ρij (i, j ∈ {1, 2})346

such that we can make the following decomposition of unity

δ(x− y) =
∫ ∞

−∞

∑
i,j

ψi(x;λ)dρij(λ)ψj(y;λ). (31.27)

The equality here is in the L2-sense.
347 Here the so-called density

matrix ρij can be constructed from the resolvent (→30.13) of L.✷
(31.27) implies the following:

f(x) =
∫ ∞

−∞

∑
i,j

ψi(x;λ)dρij(λ)f̂j(λ), (31.28)

and

f̂j(λ) =
∫ b

a
dyψj(y;λ)f(y). (31.29)

Thus f̂i(λ) is a kind of generalized Fourier transform of f .

Discussion.
(A) Let us consider

Lu(x;λ) + λw(x)u(x;λ) = −f (x)w(x) (31.30)

with the standard homogeneous boundary conditions as in 31.1. If we may assume
that the homogeneous eigenvalue problem allows us to construct a complete set of
orthonormal eigenfunction set {ϕn}, then we can expand as

u(x;λ) =
∞∑
n=1

cn(λ)ϕn(x), (31.31)

when λ �= λn for any n.
(1) Putting this into (31.30), show that

∞∑
n=1

(λ− λn)w(x)ϕn(x) = −w(x)f(x), (31.32)

(2) Using the orthonormal relation, obtain

cn(λ) = − fn
λ− λn , (31.33)

where fn = 〈ϕn|f〉 (→16.19 for the notational convention). Thus,

u(x;λ) = −
∞∑
n=1

fn
λ− λnϕn(x). (31.34)

346 That is, any component of the matrix Matr{ρij(λ)} is a measure.
347 That is, when it is applied to a ket, the difference of RHS and LHS measured
in terms of the L2-norm is zero.
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(3) Hence,
1
2πi

∫
C

u(x;λ)dλ =
∞∑
n=1

ϕn(x)fn = −f (x), (31.35)

where C is a closed path encircling all the eigenvalues (which are all on the real
axis) (→??).
(4) This implies that if we could obtain u(x;λ) as a meromorphic function348

348 a
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32 Green’s Function: Laplace Equation

The Green’s function method to solve the general boundary
value problem for the Laplace equation is given. Neumann
conditions need special care.

Key words: fundamental solution, Kirchhoff’s formula,
Neumann function

Summary:
(1) The reader must be able to explain the general idea of Green to her
friend, and how to use Green’s formula (→32.6).
(2) The Neumann function needs a special care, because homogeneous
boundary conditions and the unit source are not compatible (→32.7,
33.9).

32.1 Summary up to this point. Definition of Green’s functions
and fundamental solutions can be found in ??. An intuitive idea was
explained in ??. Green’s formula is in ?? and some examples of Green’s
functions are in 16.

32.2 Fundamental solution. The fundamental solution of the Laplace
equation is a solution to

−∆ψ = δ(x− y). (32.1)

It is customary to put − in front of the Laplacian, because −∆ is a
positive definite operator (→28.3). In d-space the following w is a
fundamental solution. For d ≥ 3 the function vanishes at infinity, so it
is also a Green’s function for free spaceRd with the vanishing condition
at infinity (→??)

w(x|y) =
{

1
Sd−1(d−2)|x−y|d−2 for d ≥ 3,

− 1
2π
ln |x− y| for d = 2,

(32.2)

where Sd−1 is the surface volume of the (d− 1)-unit sphere.349
Notice that d-space function w can be obtained from the (d + 1)-

space counterpart through integrating along one coordinate direction
(→??).

Discussion Double layer.

349 Sd−1 = 2πd/2/Γ(d/2).
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(1) Consider two parallel surfaces with their spacing d. We assume that the surfaces
are orientable350 and let ν denote the outward normal direction. Let us assume
that the outer surface has a uniformly distributed charge of area density +ρ, and the
inner surface has the same distribution of the charge but of oppoisite sign. p = ρd
is the area density of the dipole moment. We take the limit of d→ 0 while keeping
p. The resultant double surface is called (electrical ) double layer.
(1) Show that the electrical potential (assuming 0 potential at infinity) is given by
(in 3-space) (ignore numerical coefficients)

V (P) =
∫
S

dσp
∂

∂ν

(
1
r

)
, (32.3)

where S is the surface, r is the distance between the point on the surface and the
point P where we measure the potential.
(2) Let us introduce the angle θ between the outward normal and the line connecting
the point on the surface and the point P. Then notice that

− cos θ =
dr

dν
, (32.4)

so that (32.3) can be written as

V (P) =
∫
S

p cos θ
r2

dσ. (32.5)

(3) Notice that the solid angle of dσ seen from P is given by

dΩ = ±dσ cos θ
r2

, (32.6)

where the sign convention is +, if P is on the positive side of the double layer,351

and −, if P is on the negative side. Hence, we have

V = ±
∫
S

pdΩ. (32.7)

(4) This implies that, when p = const., if P is outside a closed double layer S, then
V = 0. If P is inside, then V = −4πp.

32.3 Theorem [Unique existence of Dirichlet problem Green’s
function]. For any well behaved352 surface ∂Ω enclosing an open
region Ω, there exists the unique Green’s function GD(x|y) for −∆
which vanishes on ∂Ω.✷

350 that is, there are two sides unlike the Möbius strip.
351 This does not mean that P is located outside the layer even when the layer is
closed. Simply, we draw a tangent plane on the shell and we ask on which side P
exists.
352 This vague statement will not be made precise here to avoid the technicality.
Piecewise smooth surfaces are admissible. Cf. ??(2) Discussion.
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[Demo] The Green’s function for the homogeneous Dirichlet problem is the solution
to

−∆GD(x|y) = δ(x− y) (32.8)

with GD = 0 for x ∈ ∂Ω. Here y is in Ω.353 The problem can be rewritten
as GD(x|y) = w(x|y) + u(x|y), where w is a fundamental solution in 32.2 and u
satisfies

−∆u(x|y) = 0 (32.9)

with the Dirichlet boundary condition u(x|y) = −w(x|y) for x ∈ ∂Ω. We have
discussed that this problem has a unique solution at least informally (→??, 25.9).

32.4 Symmetry of Dirichlet Green’s function. In Green’s for-
mula (→??) set u(x) = GD(x|y) and v(x) = GD(x|z). Then, we get∫

[GD(x|y)∆GD(x|z)−GD(x|z)∆GD(x|y)]dx = 0. (32.10)

If we use (32.8), this immediately gives

GD(y|z) = GD(z|y), (32.11)

the symmetry of the Green’s function. We have already discussed this
(formally in 31.2, ??) (→33.7).

32.5 Free space Green’s function is the largest. Let GD(x|y) be
the Green’s function for a region D. Then,

GD(x|y) ≤ w(x|y). (32.12)

Here w is the fundamental solution given in 32.2, that is, the Coulomb
potential.
This follows easily from the maximum principle 25.6.

32.6 Solution to Dirichlet problem in terms of Green’s func-
tion (?? repeated). The solution to the following Dirichlet problem on
an open region Ω

−∆u = ϕ, u|∂Ω = f, (32.13)

where ϕ and f are integrable functions, is given by

u(x) =
∫
Ω
GD(x|y)ϕ(y)dy −

∫
∂Ω

f(y)∂n(y)GD(x|y)dσ(y). (32.14)

Here ∂n(y) is the outward normal derivative at y, τ is the volume ele-
ment, and σ is the surface volume element.

Discussion
The Discussion in 32.2 allows us to understand (??) in terms of the charge distribu-
tion in Ω and the double layer ∂Ω. That is, Dirichle conditions can be understood
as appropriate double layers.353 Inevitably, y is an internal point of Ω, since it is open.
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32.7 Special feature of homogeneous Neumann condition. For
a Neumann problem we do not know u but ∂nu on the boundary. We
need the Green’s function satisfying the homogeneous Neumann condi-
tion. However, we cannot impose a homogeneous boundary condition
on a closed surface ∂Ω as seen below. Let GN satisfy

−∆GN (x|y) = δ(x− y). (32.15)

Then, Gauss’ theorem (→??) tells us that∫
∂Ω

∂GN

∂n
dσ = −1. (32.16)

Therefore, the homogeneous Neumann condition cannot be imposed.354

The simplest boundary condition compatible with (32.15) is

∂GN

∂n
= −1

/∫
∂Ω

dσ =
−1

(surface area of Ω)
. (32.17)

32.8 Neumann function. The function satisfying (32.15) and (32.17)
is called the Neumann function. In terms of the Neumann function, the
solution to the following Neumann problem

−∆u = ϕ, u|∂Ω = h (32.18)

reads

u(x) =
∫
Ω
GN(x|y)ϕ(y)dy +

∫
∂Ω

GN(x|y)h(y)dσ(y). (32.19)

Note that the solution to a Neumann problem is unique only up to an
additive constant (→??(3)).
[Demo] In Green’s formula let u be the solution and v be the Neumann function
GN . Then we have

u(x) =
∫

Ω

GN(x|y)ϕ(y)dy +
∫
∂Ω

[
GN (x|y)h(y) + u(y)/

∫
∂Ω

dσ(y)
]
dσ(y),

=
∫

Ω

GN(x|y)ϕ(y)dy +
∫
∂Ω

GN (x|y)h(y)dσ(y) + const. (32.20)

The constant can be ignored, because we need the solution up to an additive con-
stant.

32.9 Method of images. (→??, ??, ??) With the aid of the su-
perposition principle and the conformal invariance (say, the reflection
principle) (→??), we can construct Green’s functions for special cases.
For example, the half 3-space Green’s function can be obtained by ??.
Analogous half 2-space Green’s function can be obtained. Notice that
this Green’s function vanishes at infinity in contrast to the free space
counterpart.

354 If we wish to keep the homogeneous Neumann boundary condition, we must
modify (32.15). This will be discussed in 33.9.
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33 Spectrum of Laplacian

The spectrum of Laplacian gives the energy level of quan-
tum mechanical billiards. It is important to grasp its gen-
eral feature to understand the general spectrum of a particle
in a potential well. One of the most interesting questions
was to determine the shape of the domain from the spec-
trum: Can you here the shape of the drum? Now, we know
that this is impossible even in 2-space.

Key words: Fundamental theorem, nodes, eigenfunction
expansion of Green’s function

Summary:
(1) Understand the eigenfunction expansion of Green’s functions (→33.7,
33.9).
(2) Remember the general features of the spectrum and eigenfunctions
of the Laplacian with the Dirichlet condition on a bounded domain
(→37.1). (Theoreticians) This is an example of the spectrum of com-
pact operators.
(3) We cannot hear the shape of the drum (→33.6).

33.1 Theorem [Fundamental theorem].355 Let Ω be a bounded
open region, and ∂Ω be smooth. Then, the following eigenvalue problem

−∆u = λu, u|∂Ω = 0 (33.1)

has the following properties:
(1) There are countably many eigenvalues {λn} such that 0 ≤ λ1 ≤
λ2 ≤ · · ·, and limn→∞ λn = +∞.
(2) There is no finite accumulation point for {λn}.
(3) Let ϕn be an eigenfunction belonging to λn. Then, {ϕn} is an
orthogonal basis of L2(Ω).✷

Physically, if we consider the eigenmodes of a drumhead, at least
(1) and (2) are understandable. There should not be any upper limit in
its frequency for an ideal continuum drumhead. For a finite frequency
there cannot be infinitely many independent modes.
[Demo for 3-space] With the aid of the Green’s function (→32.3), we can convert
(33.1) into an integral equation problem:

u(x) = λ
∫

Ω

G(x|y)u(y)dy ≡ λ(Gu)(x). (33.2)

355 Actually, much more general theorems are known, since the Laplacian can be
defined on any Riemann manifold.
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Since G(x|y)− w(x|y) is everywhere finite on Ω, if we can show∫
Ω

|w(x|y)|2dx < +∞ for ∀y ∈ Ω, (33.3)

the Hilbert-Schmidt theorem (→30.22) tells us that G is a compact (self-adjoint)
operator (→30.20). Let Bε be a ball of radius ε centered at y. On Ω \ Bε the
integral is finite, so we have only to consider∫

Bε

|w(x|y)|2dx. (33.4)

But this is finite as can be seen from the order w2 = O[|x− y|−2]. Hence, Theorem
30.23 tells us (1)-(3) except nonnegativity of the eigenvalue. We know −∆ is non-
negative, so eigenvalues cannot be negative.

Discussion.
According to the variational principle for the eigenvalues of self-adjoint operators,
30.24, we can say that the fundamental frequency of a drum goes up if the drum
head is constrained; in contrast, if the drum head is torn, then its fundamental
frequency goes down.

33.2 Theorem [Monotonicity]. Let there be two open regions such
that Ω ⊃ Ω′. Consider the eigenvalue problems −∆u = λu on Ω with
the condition u|∂Ω = 0, and that with Ω replaced by Ω

′. Let the n-th
eigenvalue (arranged in the increasing order) for the problem with the
region Ω be λn, and that for the region Ω

′ be λ′
n. Then, λn ≤ λ′

n.✷
[Demo] We use the variational principle for the eigenvalues of compact self-adjoint
operators 30.24. Notice, however, the eigenvalue there is the reciprocal of the
eigenvalues in our present context. That is, the variational principle gives us the
eigenvalue with the smallest modulus. Due to the non-negativity of the eigenvalues,
actually the variational principle gives us the smallest eigenvalue λ1. More generally,
the minimum of 〈ϕ| −∆|ϕ〉 under the condition 〈ϕ|ϕ〉 = 1 is λn in the orthogonal
complement Vn of the direct sum of the eigenspaces for λ1, · · · , λn−1. For any n the
minimum value of 〈ϕ|−∆|ϕ〉 on Vn with the condition ϕ|∂Ω = ϕ|∂Ω′ = 0 cannot be
smaller than that with the condition ϕ∂Ω = 0.

33.3 Theorem. Eigenvalues depend on Ω continuously.✷356

33.4 Theorem [Courant]. Let un be the eigenfunction belonging to
the n-th smallest eigenvalue of −∆ on Ω under the condition u|∂Ω = 0.
Then the nodal set:

N (un)↽== {x : un(x) = 0, x ∈ Ω} (33.5)

356 See Courant-Hilbert, vol. I Chapter 6, Section 2 Theorem 10.
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separates Ω into at most n disjoint components.✷357

Discussion.
Consider the Laplace eigenvalue problem in a bounded closed domain with a homo-
geneous Dirichlet boundary condition in 2-space. The curves on which the eigen-
function vanishes is called the nodal curve. Demonstrate that a nodal curve is
perpendicular to the boundary curve, when the former touches the latter where the
latter is smooth.

33.5 Vibrating drumhead. The eigenmodes of a 2-dimensional
drumhead of shape D obey

−∆u = ω2u, u|∂D = 0. (33.6)

If D is a disk of radius a, then the eigenfunctions (modes) are given by

umn =

{
Jm(r

(m)
n r/a) cosmϕ,

Jm(r
(m)
n r/a) sinmϕ,

(33.7)

where ω = r(m)
n /a with r(m)

n being the n-th zero of Jm (→??). Illustra-
tion of low frequency modes can be found in Wyld p164-5.358

33.6 Can one hear the shape of the drum? Suppose the set of
all the eigenvalues of −∆ on Ω1 and that on Ω2 are identical. Can we
conclude that the shapes of the domains are congruent: Ω1 ≡ Ω2? If
yes, we can hear the shape of a drum. Now, we know this is not true
even for 2-d drums.359 However, we can hear quite a lot. For example,
we can here the area of the drumhead: Let N(λ) be the number of
eigenvalues less than λ. Then,

N(λ)/(µ(Ω)λ/4π)→ 1 (33.8)

asymptotically for large λ, where µ(Ω) is the volume of Ω (conjectured
by Lorentz who gave a lecture on this at Göttingen. This was later
proved by Weyl). We can also here the number of holes.

357 See Courant-Hilbert, Chapter 6, Section 6 for a proof.
358 Excellent pictures of modes of a kettledrum can be found in T. D. Rossing,
“The Physics of Kettledrums,” Sci. Am. 247 (5) (1982) [November 1982].
359 A readable account can be found in M A Shubin (ed.) Partial Differential
Equations VII (Springer, 1994) Section 16.7 (p165-). However, the counter examples
are all on the domains with non-smooth boundaries. No smooth counterexample is
known. This is still a major problem. Historically, the first negative answer to the
question was given in 16-space by Smale.
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33.7 Eigenfunction expansion of Green’s function. The formal
theory in 31.2 can be justified exactly as in the regular Sturm-Liouville
problem (→31.3) thanks to 33.1. Hence we have:
Theorem. The Green’s function for the Laplacian in a compact do-
main Ω can be written as

G(x|y) =
∞∑
i=1

λ−1
i ui(x)ui(y), (33.9)

where ui is the normalized eigenvector belonging to the eigenvalue λi

of −∆.✷
From this, the symmetry of Green’s functions (→32.4) is obvious.

33.8 Examples.
(1) The Green’s function for a rectangular domain [0, a] × [0, b]. The
eigenvalues and the corresponding normalized eigenfunctions are given
by

umn =
2√
ab
sin

mπx

a
sin

nπy

b
, λmn =

(
mπ

a

)2

+
(
nπ

b

)2

(33.10)

for positive integers m and n. Hence, the Green’s function for the
present problem is, according to (33.9)

G(x, y|x′, y′) =
4

π2ab

∑
m,n>0

sin mπx
a
sin mπx′

a
sin nπy

b
sin nπy′

b

(m/a)2 + (n/b)2
. (33.11)

(2) Cylindrically symmetric Green’s function for 3-space. In this case
it is sensible to define the L2-space with weight r, because the volume
element is 2πrdrdz. Hence, the delta function with the same weight
(→16.25) is convenient (that is, δ(r − r′)δ(z − z′)/r →16.26). The
Green’s function is the solution to

−∆u = −
(

∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2

)
u = δ(z − z′)

δ(r − r′)
r

(33.12)

with the vanishing condition at infinity. We first solve the eigenvalue
problem

−
(

∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2

)
u = κ2u. (33.13)

We get the eigenvalues and the corresponding normalized eigenfunc-
tions as (→23.21)

uκ,k =
1√
2π

eiκzJ0(kr), λκ,k = κ2 + k2. (33.14)
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Here, κ ∈ R and k is any positive real. Thus 37.7 (or its natural
extension) tells us that the Green’s function for our problem is

G(r, z|r′, z′) = 1

2π

∫ +∞

−∞
dκ
∫ ∞

0
dk

eiκ(z−z′)J0(kr)J0(kr
′)

κ2 + k2
. (33.15)

Exercise.
Construct the Green’s functions for the Laplace equation with the following bound-
ary conditions:
(1) On [0, π]×[0, 2π] with a homogeneous Dirichlet boundary condition along x = 0,
x = π and y = 2π, and a homogeneous Neumann boundary condition on y = 0.
(2) On the same domain with a periodic boundary condition.

33.9 Neumann function in terms of eigenfunctions. Under the
homogeneous Neumann boundary condition any constant is an eigen-
function belonging to the zero eigenvalue. Hence, as can clearly be seen
in (33.9), we cannot construct the Green’s function. However, still the
following ‘generalized Green’s function’ works:

ĜN(x|y) =
′∑
i

λiui(x)ui(y), (33.16)

where ′ implies that zero eigenvalue is excluded from the summation,
and ui is the normalized eigenfunction belonging to the eigenvalue λi.
The solution to 33.8 can be written as

u(x) =
∫
Ω
ĜN(x|y)ϕ(y)dy +

∫
∂Ω

ĜN (x|y)h(y)dσ(y). (33.17)

(This is essentially (32.19). The difference is a constant which we may
ignore.)
[Demo] First we find the equation for ĜN

−∆ĜN (x|y) =
′∑
i

ui(x)ui(y) =
∑
i

ui(x)ui(y)− V −1, (33.18)

where V is the volume of Ω. We have used that the normalized eigenfunction
belonging to zero is 1/

√
V . Since the eigenfunctions are with the homogeneous

Neumann condition
∂ĜN
∂n

|x∈∂Ω = 0. (33.19)

This is compatible with the equation (33.18). Now put v = ĜN in Green’s formula
??, and we get (33.17), ignoring an additive constant.
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34 Green’s Function: Diffusion Equation

The Green’s function method to solve the general initial-
boundary value problem for diffusion equations is given.
The Markovian property of the free-space Green’s function
(= heat kernel) is the key to construct Feynman-Kac path
integral representation of Green’s functions.

Key words: reciprocity, general solution formula, eigen-
function expansion, Markovian property, Feynman-Kac for-
mula, path integral.

Summary:
(1) The reader should roughly remember the strategy for constructing
Green’s function, and its use (→34.9, 34.7).
(2) The relation between the heat kernel and random walk is extremely
important.360 Many important properties of the heat kernel can be
derived and/or understood with the aid of this interpretation.
(3) The Markovian property (→34.10) of the heat kernel is crucial in
developing path integrals (→34.11).
(4) Functional integrals are staple for theoreticians. Cf. Glimm and
Jaffe.361

34.1 Summary up to this point. We have constructed the free-
space Green’s function, and used it to solve the initial value-problem
in ??, ??. The image source method is explained in ?? to construct
Green’s functions for various simple regions.

34.2 The most general diffusion problem. The general form of
the problem on the region Ω is

(∂t −D∆)u(x, t) = ϕ(x, t) on Ω (34.1)

with the boundary condition, a Dirichlet or a Neumann condition on
∂Ω for t > 0, and the initial condition u(0, x) = f (x). It is a standard
trick that the initial condition can be written as a source term as (→??)

(∂t −D∆)u(x, t) = ϕ(x, t) + f(x)δ(t) on Ω. (34.2)

Hence, we have only to solve the homogeneous initial value problem.360 See ??. An elementary (and classic) introduction is: S. Chandrasekhar, Rev.
Mod. Phys. 15, 1 (1943). This does not use δ-function at all. If you use it, you
can rewrite the review in a more concise way. To make a modern version is a good
exercise (was good to the lecturer as an undergrad).
361 J. Glimm and A. Jaffe, Quantum Physics, a functional integral point of view,
(Springer, 1987). However, the book is not recommended to a casual reader.
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34.3 Green’s function. The solution to

(∂t −D∆)G(x, t|y, s) = δ(t− s)δ(x− y) (34.3)

with the homogeneous boundary condition is called the Green’s func-
tion.

34.4 Existence of Dirichlet Green’s function. We have con-
structed the Green’s function G0 for the free space in 16B.1. Now we
wish to determine the Green’s function for the homogeneous Dirichlet
problem. Note that u↽==G(x, t|x′, t′)−G0(x, t|x′, t′) obeys the diffusion
equation with the boundary condition

u(t, x|t′, x′) = −w(x, t|x′, t′) on ∂Ω, t > t′ (34.4)

and the initial condition u = 0 for t = t′ (or t ≤ t′). The unique
existence of the solution has been discussed (heuristically ??; 24.3).
Hence, the existence of Green’s functions is guaranteed at least for a
compact domain.

The Neumann condition can also be treated analogously.

34.5 Counterpart of Green’s formula. Let L ≡ ∂t − D∆ and
L+ ≡ −∂t−D∆. Then for u which is zero for t ≤ 0362 and also u → 0
in the t →∞ limit we have∫ ∞

0
dt
∫
Ω
dx[(Lu)v−uL+v] = −D

∫ ∞

0
dt
∫
∂Ω

dσ · (v∇u−u∇v). (34.5)

This is essentially Green’s theorem and can be proved quite analogously
(→??).

Exercise. Prove this.

34.6 Reciprocity relations. Notice that the Green’s function is a
function of t−s (time translational symmetry), so that G(x, t−τ |y, s−
τ) = G(x, t|y, s). If we choose τ = t+ s, we get

G(x, t|y, s) = G(x,−s|y,−t). (34.6)

We have(
− ∂

∂t
−D∆x

)
G(x,−t|y,−s) = δ(x− y)δ(t− s) (34.7)

362 Since the solution to the diffusion equation is very smooth, we may put the
initial condition at t = 0+ instead of t = 0.
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as can easily be seen from the change of variables t → −t and s → −s.
Hence, (34.6) implies

L+G =

(
− ∂

∂t
−D∆x

)
G(x, s|y, t) = δ(x− y)δ(t− s). (34.8)

If we set u = G(z, τ |y, s) and v = G(z, t|x, τ) in (34.5), we obtain,
regarding u and v as functions of z and τ∫ ∞

0
dτ
∫
Ω
dz[(LG(z, τ |y, s))G(z, t|x, τ)−G(z, τ |y, s)L+G(z, t|x, τ)] = 0.

(34.9)
(Here the operators act on the functions of z and τ .) That is, with the
aid of (34.8)

G(y, t|x, s) = G(x, t|y, s). (34.10)

34.7 Solution to general boundary value problem. In terms of
the Green’s function the solution to

(∂t −D∆)u(x, t) = ϕ(x, t) (34.11)

under the initial condition u(x, 0) = f(x) and an appropriate boundary
condition (inhomogeneous Dirichlet or Neumann that may depend on
time) reads

u(t, x) =
∫ t

0
ds
∫
Ω
dy G(x, t|y, s)ϕ(y, s) +

∫
Ω
dyG(x, t|y, 0)f(y)

+ D
∫ t

0
ds
∫
∂Ω

dσ(y)

[
G(x, t|y, s)∂u(y, s)

∂n(y)
− u(y, s)

∂

∂n(y)
G(x, t|y, s)

]
.

(34.12)

Here the surface term simplifies if we specialize the formula to Dirichlet
or Neumann cases.
[Demo] In the analogue of Green’s theorem 34.5 we set u to be the solution to
the problem, and G to be the Green’s function for the corresponding homogeneous
boundary condition. We know L+G(x, s|y, t) = L+G(y, s|x, t) = L+G(x, t|y, s) =
δ(x− y)(t− s) (→34.6).

34.8 Steady source problem, recurrence of random walk. Let
us assume that the source term ϕ(x, t) is time-independent point source
δ(x), and the problem is in the free space with 0 initial condition. Then,
(34.12) gives

u(x, t) =
∫ t

0
G(x, t|0, s)ds, (34.13)

which is increasing without limit for d ≤ 2 and finite for d > 2. This
distinct behaviors for d > 2 or not can be understood as the recurrence
property of the random walks.
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34.9 Eigenfunction expansion of Green’s function. (cf. ??) Let
λn be the n-th eigenvalue of −∆ on Ω with a homogeneous bound-
ary condition (Dirichlet or Neumann), and un be the corresponding
normalized eigenfunction. Then the Green’s function for the diffusion
equation with the same boundary condition G(x, t|x′, t′) reads

G(x, t|x′, t′) =
∑
n

un(x)un(x′)e−λn(t−t′)Θ(t− t′). (34.14)

Notice that in this case the zero eigenvalue existing for the Neumann
condition is not excluded (this is required by the conservation of the
total mass).

Exercise.
Find the Green’s function for the following equation on the unit 3-cube [0, 1] ×
[0, 1]× [0, 1]

∂u

∂t
=

1
2
∆u− cu, (34.15)

where c is a positive constant, with a homogeneous Dirichlet boundary condition.

34.10 Markov property revisited. (→??) For the heat kernel G0

(→??),

G0(x, t|x0, t0) =
∫
Rd dx1G0(x, t|x1, t1)G0(x1, t1|x0, t0), (34.16)

[Demo] Note the ‘translation symmetry’ (34.6) allows (34.16) to be rewritten with
the introduction of g(x, t) = G0(x, t|0, 0) as

g(x, t) =
∫
Rd
dy g(x− y, t− s)g(y, s). (34.17)

(There is NO integral with respect to time.) Introducing the Fourier transform ĝ of
g with respect to x, this reads ĝ(k, t) = ĝ(k, t− s)ĝ(k, s) (→29.8). This is obvious
from

ĝ(k, t) = e−Dk
2t. (34.18)

which is directly obtainable from (∂t −D∆)g(x, t) = δ(t)δ(x).363

34.11 Feynman-Kac formula for the heat kernel. Using (34.16)
repeatedly to divide the time axis into pieces, we get

g(x, t) =
N−1∏
i=1

∫
Rd

dxi

N∏
i=1

g(xi − xi−1, ti − ti−1), (34.19)

363 We can invert this to get

g(x, t) = (4πDt)−3/2e−x
2/4Dt.

.
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where tN ≡ t, t0 ≡ 0, xN ≡ x and x0 ≡ 0. Let us choose the equal
spacing of the time axis ∆t = ti− ti−1 for all i, and let ∆xi ↽== xi−xi−1.
Then (34.19) and (363) imply

g(x, t) =
N−1∏
i=1

∫
dxi(4πD∆t)−3/2 exp[−

N∑
i=1

(∆xi)
2/4D∆t]. (34.20)

If ∆t is sufficiently small, then, formally,

N∑
i=1

(∆xi)
2

∆t
→
∫ t

0
dt

(
dx

dt

)2

. (34.21)

Therefore, formally, (34.20) converges to

g(x, t) =
∫ x(t)=x

x(0)=0
D[x(·)] exp


− 1

4D

∫ t

0
dt

(
dx

dt

)2

 , (34.22)

where D is the ‘uniform measure’364 on the set of continuous functions
[0, t]→ R3. This is the Feynman-Kac formula for the heat kernel.

34.12 Feynman-Kac path integral. The Green’s function for

(∂t −D∆+ V ) u = 0 (34.23)

with u → 0 in the |x| → ∞ limit can be written as

g(x, t) =
∫ x(t)=x

x(0)=0
D[x(·)] exp


− ∫ t

0
dt


 1

4D

(
dx

dt

)2

+ V (x(t))




 ,
(34.24)

where V is a function bounded from below.365

364 This is a very delicate object, but is definable in a certain sense. However, in
these days. mathematicians seem to avoid this altogether. Cf. 16.2 Discussion (1).
365 A good introductory book on this subject may be R. P. Feynman, Statistical
Mechanics, Chapter 3 (Benjamin, 1972). This path integral is well defined as a
Lebesgue integral on the set of continuous functions. For Schrödinger equation, we
must replace t with it. This replacement completely destroys the currently available
justification of the formula as a Lebesgue integral.

434



35 Green’s Function: Helmholtz Equation

The Helmholtz equation results from diffusion and wave
equations. Its Green’s functions are constructed with the
aid of generalized function theory. To single out physically
meaningful solution, we need an extra condition (radiation
condition).

Key words: Helmholtz equation, radiation condition, ana-
logue of Green’s formula

Summary:
(1) If the region is finite, then there is no special difficulty compared
with the Laplace case (→35.2).
(2T) Juggling of generalized functions in 35.4-35.6 seems to be the
simplest way to obtain physically meaningful Green’s function. If the
reader can follow the logic, that is enough. However,
(3) She must understand that a special condition is needed to guar-
antee the causality in the solution (Sommerfeld’s radiation condition)
(→35.6).

35.1 Helmholtz equation. The Helmholtz equation (→23.24, ??)

−(∆ + κ2)ψ = 0 (35.1)

appears when we Laplace transform (→33) the diffusion equation, or
when we Fourier transform the wave equation (in this case κ2 = c2/ω2).
Convention. We will use the time Fourier transform with eiωt. That
is,

ψ(t) =
1

2π

∫ +∞

−∞
dωψ(ω)e−iωt. (35.2)

35.2 Green’s function for Helmholtz equation on bounded do-
main. The formal formula for the Green’s function is immediately
obtained from the formal solution in, say, 31.2 or 33.7. Let us solve

−(∆ + κ2)G = 1 (35.3)

on a regionD under the homogeneous boundary condition at the bound-
ary ∂D. We know that the Laplacian has a set of eigenkets {|λ〉} which
makes an orthonormal basis (→33.1

∑ |λ〉〈λ| = 1→16.15). Sandwich-
ing (35.3) with an eigenket and bra

(λ− κ2)〈λ|G|λ′〉 = δλ,λ′, (35.4)

so that we obtain
G =

∑ |λ〉(λ− κ2)−1〈λ|. (35.5)
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35.3 Example: Neumann condition on a rectangular region.
The Green’s function under a homogeneous Neumann condition (i.e.,
Neumann’s function) for the Helmholtz equation in the rectangular
domain [0, a]× [0, b] can be obtained as

N(x, y|x′, y′) =
4

ab

∑
n≥0,m≥0,nm�=0

cos(nπx/a) cos(nπx′/a) cos(mπy/b) cos(mπy′/b)
(nπ/a)2 + (mπ/b)2 − κ2

− 1

abκ2
.

(35.6)

35.4 Green’s function for the whole space. We wish to solve

−(∆ + κ2)G(r|r0) = δ(r − r0) (35.7)

with the boundary condition |u| → 0 as |r| → ∞. We interpret this
equation in the generalized function sense (→14). After Fourier trans-
forming this (→28.32), we obtain

(k2 − κ2)û = eikr0 . (35.8)

Recalling ??(2), we can solve this equation as

û = ĥ(k)eikr0 , (35.9)

ĥ(k) = P
1

k2 − κ2
+ Cδ(k2 − κ2), (35.10)

where C is a constant, but may depend on κ. This can be rewritten as
(→28.36, ??)

ĥ(k) =
1

2κ

{[
P
(

1

k − κ

)
+ Cδ(k − κ)

]
−
[
P
(

1

k + κ

)
− Cδ(k + κ)

]}
.

(35.11)
The Fourier inverse transform of u is given by the convolution of h(r)
and δ(r − r0) (→28.2),

h(r) =
1

4π2r

∂

∂r

∫ +∞

−∞
dk

eikr

2κ

{[
P
(

1

k − κ

)
+ Cδ(k − κ)

]
−
[
P
(

1

k + κ

)
− Cδ(k + κ)

]}
.

(35.12)
Here the angular integral has already been performed.

35.5 How to interpret the formal solution (35.11)? Using the
Plemelj formula (→28.36), we can rewrite

P
(

1

k − κ

)
+Cδ(k−κ) = lim

ε→+0

1

k − κ± iε
+(C± iπ)δ(k−κ), (35.13)

and

P
(

1

k − κ

)
−Cδ(k−κ) = lim

ε→+0

1

k − κ± iε
− (C∓ iπ)δ(k−κ). (35.14)

Thus, there are four combinations of + and − for (35.11). Conse-
quently, we need an extra condition to select a solution.
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35.6 Radiation condition (Ausstrahlungsbedingung). The ex-
tra condition to single out the physically meaningful solution from
(35.11) is ∣∣∣∣∣ ∂∂rh− iκh

∣∣∣∣∣→ 0. (35.15)

for r → ∞ This condition is called the Ausstrahlungsbedingung (out
radiating condition due to Sommerfeld). This requires that − must be
chosen in (35.13) and + in (35.14): the integrand in (35.11) now reads{

1

k − κ− iε
− 1

k + κ + iε
+ (C − iπ)[δ(k − κ) + δ(k + κ)]

}
eikr.

(35.16)
Choosing C = iπ, we can remove unwanted e−iκr. Thus, we can get

h(r) = − 2πi

8π2rκ

∂

∂r
eiκr =

eiκr

4πr
. (35.17)

That is,

G(r|r0) =
exp(iκ|r − r0|)
4π|r − r0| , (35.18)

which is called the retarded Green’s function (cf. 36.1, 9.30).

35.7 Green’s functions for 2 and 1-spaces. With the aid of an
analogous consideration, we can write down G in 2 and 1-space. For

2-space (→23.20 for H
(1)
0 )

G(r|r0) =
i

4
H

(1)
0 (κ|r − r0|). (35.19)

For 1-space

G(r|r0) =
i

2κ
exp(iκ|r − r0|). (35.20)

The difference comes only from the angular integration.

35.8 Analogue of Green’s formula. The equation corresponding
to Green’s formula ?? is immediately obtained from Green’s formula
for the Laplace equation as

∫
D
dτ [u(∆ + κ2)v − v(∆ + κ2)u] =

∫
∂D

dσ

(
u
∂v

∂n
− v

∂u

∂n

)
. (35.21)

How to use it should now also be obvious (→??).

6
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36 Green’s Function: Wave Equation

The Green’s functions of wave equations are constructed di-
rectly or from those of Helmholtz equation. The radiation
condition implies the specification of the time arrow.

Key words: retarded and advanced Green’s function, prop-
agator, afterglow effect, Helmholtz formula, causality, time
arrow

Summary:
(1) If we use the retarded Green’s function for the Helmholtz equation,
we can obtain the retarded Green’s function (→36.1).
(2) For wave equations the tiem arow is selected by the radiation con-
dition.

36.1 Fundamental solution. A fundamental solution to the wave
equation satisfies

✷w(t,x; t′,x′) = δ(t− t′)δ(x− x′), (36.1)

where
✷↽== c−2∂2

t −∆ (36.2)

is called the D’Alembertian. Fourier-transforming this with respect to
time, we obtain (→35.1, 23.24)

−(∆ + κ2)ŵ(ω,x; t′,x′) = e−iωt′δ(x− x′) (36.3)

with κ = ω/c. Thus basically this is the same as the problem of finding
a fundmental solution for the Helmholtz equation in the whole space.
If we use the retarded Green’s function for the Helmholtz equation
(→35.6), then inverse Fourier transformation gives

w(t,x; t′,x′) = w(t− t′,x− x′; 0, 0) =
1

2π

∫
dω

eiω|x−x′|/c−iω(t−t′)

4π|x− x′|
(36.4)

This can easily be integrated to give (→??)

w(t,x; t′,x′) =
1

4π|x− x′|δ(t− t′ − |x− x′|/c). (36.5)

Note that this is zero for any t < t′. This function is the Green function
for 3-space, and is called the retarded Green function.
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Discussion.
In terms of the retarded Green’s function, the inhomogeneous wave equation

✷u = q (36.6)

can be solved as

u(t,x) =
1
4π

∫
|x−y|≤ct

q(t,y)
|y − x|dy. (36.7)

The formula is called the Duhamel’s formula.

36.2 Advanced Green’s function. We see above that the radiation
condition (→35.6) imposes time reversal asymmetry (causality). Since
the wave equation itself is time-reversal symmetric, the time reversed
(36.5) should also be a solution to (36.1):

wA(t,x; t
′,x′) =

1

4π|x− x′|δ(t− t′ + |x− x′|/c). (36.8)

Note that this is zero for t > t′ everywhere. This is anti-causal, and is
called the advanced Green’s function.

36.3 Propagator. A fundamental solution K(t,x; t′,x′) satisfying
the boundary condition and symmetric in time is called the propaga-
tor of the problem. Its existence should be clear from the advanced
and retarded Green’s functions discussed above. The retarded Green’s
function is related to the propagator as

G(t,x; t′x′) = Θ(t− t′)K(t,x; t′,x′), (36.9)

The fundamental solution satisfying the boundary condition and causal-
ity is called the retarded Green’s function.

36.4 Symmetry of propagator.

K(t,x|t′,x′) = K(t− t′,x|0,x′). (36.10)

This time translation symmetry directly follows from ??. This formula
implies

K(t,x|t′,x′) = K(−t′,x| − t,x′). (36.11)

and consequently

∂tK(t,x|t′,x′) = −∂t′K(t,x|t′,x′). (36.12)

They imply that

K(t,x|t′,x′) = −K(t′,x|t,x′). (36.13)

Analogously
K(t,x|t′,x′) = K(t,x′|t′,x), (36.14)

so that we get
K(t,x|t′,x′) = −K(t′,x′|t,x). (36.15)
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36.5 Eigenfunction expansion of propagator. Introducing the
eigenfunction of the Laplacian with an appropriate homogeneous bound-
ary condition (Dirichlet, Robin or Neumann condition) {|λn〉} such that
−∆|λn〉 = λn|λn〉, we can separate the wave equation, to get

K(t,x|t′,x′) = 〈x|
{ ∞∑

n=0

|λn〉c sin[c
2
√
λn(t− t′)]√
λn

〈λn|
}
|x′〉. (36.16)

Here, if λ0 = 0 (this happens only when the Neumann condition is
imposed), the sine term is computed with the aid of l’Hospital’s rule.

36.6 Propagator in infinite space. From (38.4) and the symmetry
we can easily guess that366

K(t,x|0, 0) = 1

4πx
[δ(t− x/c)− δ(t+ x/c)]. (36.17)

This is indeed the right answer as can be computed from the continuum
version of (36.16) to obtain

K(t,x|0, 0) = c

(2π)3

∫
d3k

sin(ckt)

ck
eik·x =

c

(2π)3
4π

x

∫ ∞

0
dk sin(ckt) sin(kx).

(36.18)
See ?? Exercise.

36.7 Propagator in 2- and 1-spaces. For 2-space,

K(2)(t,x|0, 0) = sgn(t)
1

2π

Θ(|t| − x/c)

(t2 − x2/c2)1/2
, (36.19)

and for 1-space

K(1)(t,x|0, 0) = sgn(t)
c

2
Θ(t2 − x2/c2). (36.20)

Of course, they can be obtained by integrating unnecessary coordinates
out from the 3-space version (→??).

36.8 Afterglow revisited. We can see explicitly from G(2) obtain-
able from K(2) that for |x| < tc G(2) > 0, but this does not happen
for 3-space. This is the afterglow in even dimensional spaces. (→??,
28.46)

366 |x| = x.
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36.9 Helmholtz formula. The solution in 3-space to

✷ψ(t,x) = ϕ(t,x) (36.21)

can be written as

ψ(t,x) =
∫ t

T1

dt′
∫
Ω
dxG(t,x; t′,x′)ϕ(t′,x′)

−
∫ t

T1

dt′
∫
∂Ω

dσ(x′)

[
G(t,x; t′,x′)

∂ψ

∂n(x′)
− ψ

∂

∂n(x′)
G(t,x; t′,x′)

]

+
1

c2

∫
Ω
dx′[G∂tψ − ψ∂tG]t=T1 . (36.22)

Just as in the case of the Helmholtz equation (→35.8), this is not the
formula describing ψ in terms of the initial and boundary values.
[Demo] Just as a proof of Green’s formula (→??), we get

∫ T2

T1

dt
∫
Ω
dx[(✷f)g−f✷g] = −

∫ T2

T1

dt
∫
∂Ω

dS·[f∇g−g∇f ]+
∫
Ω
dx
1

c2
[f∂tg+g∂tf ]

t=T2
t=T1

.

(36.23)
Take f to be the retarded Green’s function (→36.1), and g to be the
solution to (36.21), then this can be rewritten as the desired formula.

36.10 General causal solution. In (36.22) the surface integrals of
the 4-volume Ω× [T1, t] describes the effects of the incoming waves into
Ω from the past. Hence this can be rewritten as

ψ(t,x) = ψin(t,x) +
∫ t

T1

dt′
∫
Ω
dx′G(t,x; t′,x′)ϕ(t′,x′). (36.24)

Here ψin denotes the incoming wave. The Ausstrahlungsbedingung
(→35.6) on ψ implies that ψin → 0 when Ω→ R3 and T1 → −∞.
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37 Colloquium: What Is Computation?

The section contains several deep examples of conceptual
analysis – of computer, computation, algorithm, random-
ness, etc. In A Church’s idea on computation is outlined.
Turing’s idea in B made this idea convincing. Here Turing
machines are outlined. With these preparations, decision
problems are briefly discussed in C. With the aid of one
of the main results of this part, computability and non-
computability in elementary calculus is outlined in D. Part
E explains the basic idea of the algorithmic randomness. In
the final part F, the algorithmic randomness is reconsidered
from a more fundamental point of view. The concepts in
A-C and E at least must be a part of elementary knowledge
of any civilized person.

Keywords: computer, algorithm, recursive function, Church’s
thesis, Turing machine, universal Turing machine, Turing
computability, decision problem, halting problem, recursive
set, recursively enumerable set, effectiveness, computable
real, computable function, Myhill’s theorem (on differentia-
bility).

Summary
(1) The basic content of this section should be a rudimentary knowl-
edge of every intellectual person.
(2) The reader must be able to explain to her lay friends what compu-
tation is (37.11-37.12) and Turing machines 37.16.
(2) The concept of effectiveness must be understood (??).
(3) The reader must be able to explain algorithmic randomness (37.49).

37.A Recursive Functions and Church Thesis

37.1 What is a computer? It is a device to perform computation.
Then, what do we mean by ‘computation’? Intuitively, a computation
is a transformation of a finite sequence of symbols by a finite number
of applications of finitely many well-defined rules (algorithms). This
aspect does not change even if we wish to consider the so-called quan-
tum computation. Since we consider precise computations only, i.e.,
computations without any roundoff errors, we have only to consider
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procedures to transform a nonnegative integer into another nonnega-
tive integer (i.e., N into itself).367

37.2 Arithmetic function. A function which maps N into itself is
called an arithmetic function or a number theoretic function. Thus we
have only to consider the computation of arithmetic functions.

37.3 Remark. A trivial fact should be kept in mind that we can-
not understand the crucial concept ‘computer’ by analyzing the ma-
terial basis of an actual computer. There are important things about
the physical world on which materialistic physics cannot say anything
meaningful.

37.4 Obviously computable functions. To characterize precisely
the procedure we call ‘computation’,368 we must start with intuitively
obviously computable arithmetic functions S, U and C:
(A) S(x) = x+ 1,
(B) Un

i (x1, · · · , xn) = xi,
(C) Cn

m(x1, · · · , xn) = m.
S is the function giving the successor (in N) to x, and Un

i is the pro-
jection operator selecting the i-th coordinate out of n coordinates. Cn

m
assigns a constant m(∈ N) to {x1, · · · , xn}. These are the functions
probably everybody thinks computable.

37.5 Basic operations on functions. Combining these elementary
functions, we can produce more complicated functions. What kind
of procedures should we allow as obviously doable?369 The follow-
ing three 37.6-?? procedures are regarded unambiguously doable and
elementary:367 When we consider the computability of, e.g., irrational numbers, we must care-
fully treat the computational errors. Roughly speaking, something is computable if
there is an algorithm which gives it within any specified error bar (→37.36). See
M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics (Springer,
1989). Recently, Blum et al. have developed a theory of computation over reals: L.
Blum, M. Shub and S. Smale, “On a theory of computation and complexity over
the real numbers: NP -completeness, recursive functions and universal machines,”
Bull. Amer. Math. Soc., 21, 1-46 (1989). In the theory of computation we use here,
that is, in the traditional theory of computation, a real number is considered as a
string of bits. In contrast, in the new theory a real number is not viewed as its
decimal or binary expansion, but rather as a mathematical entity.
368 An extremely efficient exposition can be found in the beginning part of R. I.
Soare, Recursively Enumerable Sets and Degrees – a study of computable functions
and computability generated sets – (Springer, 1987). A classic may be M. Davis,
Computability and Unsolvability (Dover, 1982).
369 In the following, in contrast to the ordinary definition of functions in analysis,
they are partial functions, i.e., f(x1, · · · , xn) need not make sense (need not be
defined) for all n-tuples {(x1, · · · , xn)}. We simply stop assigning a value to f when
it is not defined. If f is defined for all (x1, · · · , xn), we say the function is a total
function.
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37.6 Composition. The first admissible procedure (I) is: Suppose
we already have functions g1, · · · , gm and h. From this we can make

f(x1, · · · , xn) = h(g1(x1, · · · , xn), · · · , gm(x1, · · · , xn)), (37.1)

where h is a function of m variables, and gi are functions of n variables.
There should not be any difficulty to accept this.

37.7 (Primitive) Recursion (II). Suppose we have functions of n+1
variables f and a function of n variables such that

f(x1, · · · , xn, 0) = g(x1, · · · , xn). (37.2)

Then, starting with this function we can recursively construct f(x1, · · · , xn, m)
for m ∈N as follows:

f(x1, · · · , xn, m) = h(x1, · · · , xn, m− 1, f(x1, · · · , xn, m− 1)), (37.3)

where functions h is a function of n + 2 variables.
This is allowed for any m ∈ N . This may cause some practical

problem, but if we are patient enough, for any fixed m there should not
be a problem.

37.8 Minimalization (or unbounded search) (III). Let f(x1, · · · , xn)
be a total function.370 Then, we can make a function h(x1, · · · , xn−1)
which gives the smallest xn satisfying f (x1, · · · , xn) = 0 for each {x1, · · · , xn−1}.
(Here f being a total function is crucial.)

(I)-(II) and (III) are markedly different, because while it is guar-
anteed that the procedures (I) and (II) end within finite number of
procedures, (III) is not guaranteed to end; there may not be any solu-
tion (→37.10).

37.9 Partial recursive functions. The functions generated by ap-
plying the basic operations I−III finite times on the basic functions
[A]−[C] are called partial recursive functions.

37.10 Algorithm and partial recursive functions. Algorithms is
a finite set of well defined finite means. We may say partial recursive
functions are the functions we have algorithms to compute them (dis-
regarding whether we can complete the procedure).

The operation III (minimalization) is a very tricky procedure. Cer-
tainly, we can compute the value of f(x1, · · · , xn−1, m) for a fixed choice
of the set {x1, · · · , xn−1} for any m, because f is a total function.
Puttingm into f one by one in the increasing order starting fromm = 0,

370 That is, it is defined for any x1, · · ·xn ∈N .
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we can ask whether f(x1, · · · , xn−1, m) vanishes or not. If f vanishes
for the first time with m = q, then we know h(x1, · · · , xn−1) = q.

However, we do not know whether such integer ever exists. Thus.
although we have an algorithm to perform the recursive procedures (we
explicitly know each step), we do not know whether we can ever finish
it, since there is no guarantee of the existence of the solution. For par-
tial recursive functions, the fact that the procedure has not yet been
completed can imply either that the function is not defined for the given
instance of variables (that is, no solution exists for f(x1, · · · , xn−1, m) =
0) or that the function has a value for the given instance but further
computation is required to obtain it.

37.11 Recursive functions. More convenient functions should be
the ones for which not only each step of construction is explicitly known,
but also there is a guarantee that its construction (computation) ends
with finite number of steps. They are the recursive functions:
Definition. Total partial recursive functions are called recursive func-
tions.

Notice that there are only countably many recursive functions, but
of course uncountably many non-recursive functions.

37.12 Church’s Thesis. Church proposed: Computable functions
are recursive functions. ✷371

We may say that Church proposed a definition of the word ‘com-
putable.’

37.13 Remark. The crucial elements of the thesis is an explicit de-
scription of construction procedures,372 and the guarantee that the
procedure always ends with finite steps (‘finitary dogma’).

37.14 The thesis was not well accepted initially. Church’s the-
sis was not recognized as a really convincing definition of computability
when it was first proposed. The reason for this is that there was no clear
feeling about explicitly describable construction procedures. There may
be a completely novel type of algorithm which is not recursive, so that
the thesis may be under the limitation of the contemporary mathemat-
ics. A more general objection was: even apparently intuitively obvious
concepts such as ‘continuity’ requires its definitive characterization by

371 Some people identifies computable functions and partial recursive functions,
and call this identification Church’s thesis. For example, M. Li and P. Vitànyi, An
Introduction to Kolmogorov Complexity and Its Applications (Springer, 1993); J.
E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and
Computation (Addison Wesley, 1979) are among them.
372 Church’s thesis implies that logical inference is possible only when the procedure
can be made purely syntactic. It is a sort of ultimate reductionism.
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the axioms of topological spaces; one must be cautious when one says
‘so-and-so’ is intuitively obvious.373

37.15 Turing machine was crucial. The thesis became really con-
vincing after the work of Turing (Turing machine, see the next subsec-
tion), who started with the analysis of the limitations of our sensory and
mental apparatus. Church himself wrote that Turing-computability has
the advantage of making the identification with effectiveness in the or-
dinary sense evident immediately without any preliminary theorems.

37.B Turing Machine

37.16 Turing machine. A Turing machine consists of a two-way
infinite tape divided into cells, a read-write head which can scan one
cell of the tape at a time, and a ‘black box’ with finite number of
internal states. A Turing machine may essentially be identified with its
program:

37.17 Turing program. A Turing program is a finite set of the
following four-tuples, (q, S, ∗, q′). Here
(1) q and q′ are the internal states of the (black box of the) Turing
machine,
(2) S is the symbol in the cell currently being scanned by the head, and
(3) ∗ is R, L or S ′: R (L) implies that at the next step the head moves
one cell to the right (resp. left), and S ′ implies that the head replaces
the tape symbol S with S ′ without moving.

Thus (q, S, ∗, q′) implies that if the Turing machine reads S when
its internal state is q, then the head does ∗ and the internal state
becomes q′. Usually the symbol in a cell is either blank B or 1. ✷

37.18 Turing’s motivation. Turing arrived at the concept of Turing
machine, analyzing the limitations of our sensory and mental appara-
tus. The restrictions required are:
(i) finite symbols are allowed to each cell,
(ii) the computer can see only a finite number of cells at a time,
(iii) at each time step the computer may alter the contents of a single
cell,
(iv) scan can be finite range,
(v) there is an upper bound to the number of states of mind, only fixed
finite set of instructions can be performed.

In short, Turing conceived our brains as finite machine (finite num-
ber of distinguishable symbols, finite number of rules or procedures,
finite number of distinguishable internal states, etc.).373 R. Gandy, “The Confluence of Ideas in 1936,” in The Universal Turing Machine,
a half-century survey (Oxford UP, 1988) : Gödel as well as Post did not accept the
thesis.
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37.19 How to operate Turing machine. We begin with the ma-
chine in its starting state qI with its head at the leftmost 1 on the tape
where x is coded374 . There is a special state qH called the halting
state. The number y of 1’s left on the tape when the Turing machine
comes to qH is the output of the Turing machine. That is, the Turing
machine defines a function x → y.

37.20 Turing computable function. The Turing machine operated
as in the previous entry may never halt, so that a Turing machine
generally defines a partial function. If a Turing machine always halts
for any input, the Turing machine defines a total function. In this case
we say the total function is a Turing computable function.

37.21 Turing computability ≡ Church computability. A Tur-
ing machine which halts for all the inputs defines a recursive function,
and any recursive function can be realized as a Turing machine which
halts for all the inputs.✷.375

That is, the set of all the functions computable by Turing machine
is the totality of recursive functions.

37.22 Remark. The identity of the Turing computability and com-
putability due to Church made the Church’s thesis convincing to many
(→37.14-37.15). However, one might not accept all five restrictions
for the human thinking ability stated by Turing (→41B.3). Gödel and
Post always believed that a true account – an acceptable theory – of
human mathematical intelligence must be nonmechanical. In particular
Gödel has argued that in our ability to handle abstract concepts we are
not subject to the restrictions described by Turing. These only apply
when we are dealing with (potentially) concrete objects such as strings
or symbols; they believed that satisfactory theory of mathematical in-
telligence must take account of nonfinitary creative reasoning.

37.23 Universal Turing machine. As is clear from the definition
of Turing machines, each machine which halts for all the inputs defines
a single recursive function. Turing machines are, so to speak, single-
function computers. Notice, however, that any Turing program can be
coded in terms of positive integers (the Gödel number of the Turing
machine program 37.17). Hence we can imagine a ‘master’ computer
which compiles the program in Gödel numbers into a set of (Turing
executable) four-tuples to emulate the corresponding particular Turing
machine. That is, there is a Turing machine which can emulate all the
Turing machine. Such a Turing machine is called a universal Turing
machines. Universal Turing machines may be regarded as idealized
digital computers with infinite memory space.374 There are many different ways to code x. Choose one and fix it.
375 A proof may be found in Davis or Soare op. cit.
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37.24 Universality of universal Turing machine. Universal Tur-
ing machines are not unique, but the following theorem guarantees that
in essence all the universal Turing machines have the same computa-
tional power:
Theorem [Kolmogorov-Solomonov]. LetM andM ′ be two univer-
sal Turing machines, and IM(x) be the length (in bits) of the shortest
program for M to print out the output x. Then

IM(x) 2 IM ′(x), (37.4)

where A(x) 2 B(x) implies that there is an x-independent positive
constant c such that A(x) ≤ B(x) + c for all x. ✷

37.25 Absoluteness of Turing machine. What is impossible for a
universal Turing machine cannot be done by any computer (or brain, if
we accept Turing’s analysis 37.18). This statement is unaltered even
if we consider quantum computation. However, if a computer or a
machine can have an access to a large oracle set (solution sets), the
situation could be very different. This may be the reason for Gödel’s
and Post’s objection to Turing’s characterization of our brain function.

37.C Decision Problem

37.26 Decision problem. Given a set of problems (or a set of in-
stances of a problem, e.g., whether a polynomial has 0 as its root or
not), we ask whether there is an algorithm to answer all the problems
in the set. This problem is called a decision problem. If there is such
an algorithm, we say the set (or the problem) is decidable. If not, we
say it is undecidable. The word ‘algorithm’ was unclear before Turing,
but now we can clearly state that ‘algorithm = existence of Turing
program.’

37.27 Remark. If a set is finite, or the problem has only finite in-
stances, then it is trivially decidable, because we can check all of them
one by one blindly. The decision problem becomes nontrivial only
if the problem has infinite instances like the one due to Diophantus
(37.28(1)).

37.28 Examples.
(1) Hilbert’s 10th problem. Decide whether a polynomial P (x1, x2, · · · , xn)
with integer coefficients (Diophantine equations) has an integer root.
This is decidable if n = 2,376 but is undecidable for general n.377

376 A. Baker, Phil. Trans. Roy. Soc. London A 263 (1968).
377 Ju. V. Matyasevich, 1970.
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(2) Is ∃x1∃x2∃x3∀y1 · · · ∀ymU true (m ∈ N)? Here, U is any logical
formula within the first order logic378 without including ∃, ∀ and free
object variables. This is undecidable.

37.29 Halting problem of Turing machine. Suppose we have
a Turing machine T . We feed programs to it, and ask whether it
ever stops (that is, the solution is given within a finite time or not
(→37.19)). Certainly, we can run the program on T , but that the
machine has not yet stopped does not mean anything about its final
result. Is there any algorithm to judge that a program α ever gives a
solution when run on T ? This is called the halting problem.

37.30 Halting problem is undecidable. Suppose there is a desired
algorithm which works on a universal Turing machine (→37.23) X.
The meaning of the statement is this. In order to decide (T, α) (α is
run on T ) halts or not, we feed the Gödel number of T (or a code for
the Turing program of T ) and α to X. X stops after printing 1, if
(T, α) halts.379 Otherwise, X stops after printing 0 (or B). Now we
demonstrate that the existence of such UT leads us to absurdity.
(1) We construct another universal Turing machine Y as follows: if X
halts after printing 1, Y keeps moving its head to the right; otherwise
Y stops after printing 0.
(2) Now we make the third universal Turing machine Z such that if Z
is fed a program β, Z make (β, β) and then does what Y does.
(3) Suppose Z stops with a program Z. Then Y must halt with the
input (Z, Z). That is, X halts with (Z, Z), printing 0. However, this
means that Z does not halt with the program Z.
(4) Suppose Z does not stop with the program Z. Then Y keeps running
with the input (Z, Z). Hence X halts after printing 0 when fed (Z,Z),
but then Y must halt after printing 0. That is Z must halt with the
program Z.
Hence, we cannot decide whether (T, α) halts or not.

37.31 Recursive set. A set whose characteristic function is a recur-
sive function (→37.11) is called a recursive set.

What this means is: if a set is a recursive set, then we have an
algorithm to tell whether a given number is in the set or not. In this
sense, we can tell the member of the set without referring to how to
generate the set.

378 I recommend H. D. Ebbinghaus, J. Flum and W. Thomas, Mathematical Logic
(Springer Undergraduate Texts in Mathematics, 1984; there is a new edition).
379 Here we identify T with its program or its Gödel number, so program (T, α) on a
universal Turing machine means that the machine reads the program and emulates
the machine T and then interpret α as T does.
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In other words, if we can construct a Turing machine (or a pro-
gram for a universal Turing machine) such that it can print 1 if the
element380 is in the set and 0 otherwise with finite steps.

37.32 Recursively enumerable set. A set which is a range of a
recursive function is called a recursively enumerable set.

Hence, if a set is a recursively enumerable set, we know how to
produce the set (there is a computer program which generates the set).
We simply feed the elements of N one by one to the recursive function,
and collect its outcomes.381

In other words, we feed all the possible Turing programs into a
Turing machine (we must demand that the machine surely stops for all
the programs) and collect all the outputs.

37.33 Theorem: There exists a recursively enumerable but
not recursive (RENR) set. This is important, so a demonstration
is given here.

Let φx(y) be the output (if any) of the Turing machine whose
Gödel number is x (remeber that there are only countably many Turing
machines), when its input is y. Here, both x and y are in N . Make a
set

K ≡ { x : φx(x) is defined}. (37.5)

That is, K is the set of all the numbers x such that the corresponding
Turing machine halts with the input x. Certainly, this is a recursively
enumerable set, because we know how to perform each step needed to
compute φx(x), although we do not know whether it actually gives a
number or not. Now define a function f such that

f(x) ≡
{

φx(x) + 1, if φx(x) is defined,
0, otherwise.

(37.6)

That is,

f(x) ≡
{

φx(x) + χK(x), if φx(x) is defined,
χK(x), otherwise,

(37.7)

where χK is the characteristic function of K. If K is recursive, then
χK is recursive, so there must be a Turing machine which reproduces
f . However, there cannot be such a Turing machine; if any, there must
be an x such that f (z) = φx(z) for any z ∈ N , but obviously this
is untrue for z = x. Thus we cannot assume that χK is a recursive
function. (This is an example of the famous diagonal argument.)380 Of course, this must be suitably encoded so that the machine can understand
it.
381 In this case it is known that the enumeration can be done without repetition.
See e.g., Zvonkin and Levine, op. cit. Theorem 0.4.
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37.34 Theorem. A set Q is recursive if and only if both Q and Qc

are recursively enumerable. ✷
This should be obvious from the explanation in 37.31.

37.D Computable Analysis

37.35 Computable rational sequence. We say a rational number
sequence {rk} is a computable rational number sequence, if for any k ∈
N there are recursive functions (→37.11) a, b and s (b �= 0) such that

rk = (−1)s(k)a(k)

b(k)
. (37.8)

37.36 Effective convergence. Let {rk} be a computable rational
sequence. We say it converges effectively to x ∈ R, if there is a recursive
function e(N) such that

k ≥ e(N)⇒ |rk − x| ≤ 2−N . (37.9)

That is, if {rk} converges to x in the ordinary sense of this word and if
there is an algorithm to estimate error, we say {rk} converges effectively
to x.

37.37 Computable real number. x is a computable real number, if
there is a computable rational number sequence effectively converging
to x.

37.38 Remark: Effectiveness. We say we can do something effec-
tively, if we have an algorithm. We say a concept is effective, if we can
define it with an algorithm (for example, whether it is correct or not
can be decided). An asymptotic object such as irrational numbers is
said to be an effective object when its construction and the distance
(error) from the asymptotic limit can be estimated effectively. Thus,
‘effectiveness’ is a precise formalization of ‘constructibility.’

37.39 How to destroy effectiveness. Let A = {a(n)} be a RENR
set without repetition (i.e., a(n) �= a(m), if n �= m). We can compute
each a(n), but we cannot effectively tell whether, say, 10 appears in A
or not. Hence, if we can construct a procedure whose error estimate is
bounded by 2−a(m), then effective estimation is destroyed.

37.40 Waiting lemma. Let A = {a(n)} be a RENR set (→37.33)
without repetition (i.e., a(n) �= a(m) if n �= m). Let

w(n) ≡ max{m|a(m) ≤ n}. (37.10)
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Then, there is no recursive function (→37.11) c(n) such that

w(n) ≤ c(n). (37.11)

That is, there is no algorithm to estimate the neededm so that {1, · · · , n} ⊂
{a(1), · · · , a(m)}. ✷

If c(n) were recursive, then we could tell whether n ∈ A or not
with a finite number of steps. First, compute c(n) = m, then check all
a(m′) for m′ up to m. If we could find n among the output, certainly
n ∈ A; if we could not, then n �= A. Hence, A would be a recursive set,
a contradiction.

37.41 Theorem. There is a bounded monotone increasing series
consisting of computable rational numbers that does not converge ef-
fectively (that is, although its convergence is guaranteed, we have no
means to compute its value for sure). ✷.

Take A in the above and construct

S =
∞∑

n=0

2−a(n). (37.12)

This is a desired example of the series claimed in the theorem. Since,
for example, we do not know whether 2 is in A or not effectively, we
cannot estimate S (which must be less than 2) better than the error of
1/4.

37.42 Computable function. We say a function from R into itself
is computable, if its values at computable reals are computable reals.
Pour-El and Richards impose further the following effective uniform
continuity. There is a recursive function d such that for any n ∈N

|x− y| ≤ 1/d(n)⇒ |f(x)− f(y)| < 2−n. (37.13)

37.43 ‘Ordinary functions’ are computable. sin, cos, exp, Jn,
etc., are computable. Behind this statement lies the following ‘effective
Weierstrass’ theorem.’

If we can find a recursive function D(n) such that

pn(x) =
D(n)∑
i=0

rnjx
j, (37.14)

where rnj are computable rationals, we say {pn} is a computable se-
quence of rational polynomials.
Effective Weierstrass. If we can find a recursive function e(n) such
that

m ≥ e(N)⇒ |f(x)− pn(x)| < 2−N , (37.15)

then f is a computable function.382382 See Pour-El and Richards, Chapter 0, Section 5 and 7.
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37.44 Computable operations on functions. Composition f ◦
g, sum f ± g, multiplication fg, and many other elementary opera-
tions preserve computability. Integration also preserves computability.
Hence, it is not hard to guess that the derivatives of computable ana-
lytic functions are again computable. However,

37.45 Theorem [Myhill]. Even if f is a computable C1 function,
f ′ may not be computable. ✷

The following is the counterexample. Let

ϕ(x) =

{
exp(−x2/(1− x2)) for |x| < 1,

0 otherwise,
(37.16)

which is a C∞ function. Let A = {a(n)} be the RENR set mentioned
before. Define

ϕn(x) = ϕ[2n+a(n)+2(x− 2−a(n))]. (37.17)

Construct

f(x) =
∞∑

k=0

4−a(k)ϕk(x). (37.18)

This is computable, but

f ′(2−m) = 4−mχA(m), (37.19)

where χA is the characteristic function of A, which cannot be computed.

37.46 PDE and computabilty.
(1) Laplace and diffusion equations preserve the computability of the
auxiliary conditions.
(2) In d(≥ 2)-space, the wave equation cannot preserve computability.
More explicitly, even if the initial data is computable, the solution at
time, say, t = 1 is not computable. It is not hard to understand this, if
we notice that the Radon transformation formula (→?? d ≥ 2) involves
differentiation (cf. 37.45).

37.E Algorithmic Randomness

37.47 Regularity in sequence. If something (e.g., a sequence) is
‘random’, then we would not discern any feature in it. Therefore, to
communicate it to someone else, the simplest way is to send its faithful
copy. If we could discern a certain characteristic feature or regularity
in the sequence, we can exploit the feature to shorten its description.
For example, the sequence 1123583145943707741561785... is produced
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by the rule an = an−1 + an−2 (mod 10) with a1 = a2 = 1. Thus to send
million numbers a1, · · · , a106 , we send the rule, the initial two numbers,
and the total number of digits N = 106. If one has to send extremely
many terms, the length of the message is dominated by the length
of N . Hence, we may expect the message length is asymptotically
proportional to logN .

37.48 Another example. Consdier another example: 33057270365759
591953092186117381932611793105118548074462379962749567351885752724.
This may look random, but this is the 1001st to 1100th digits from the
decimal expansion of π. Hence, the statement “the 1001st to 1100th
digits in the decimal expansion of π” is already shorter than the se-
quence itself. Certainly, this would be the case if one wishes to send
million digits from the decimal expansion of π starting from the one
millionth digit. Again, in this example, the length of the message would
be dominated by the number specifying the total number of digits as
in the preceding example. This example gives us another important
lesson. It is almost impossible to compress the length of the message
by only looking at the message (in this case a sequence). This implies
that there is no general fool-proof method to compress the message (to
tell whether the sequence is random or not) (→37.52).

37.49 Intuitive introduction to algorithmic randomness. A
formalization of the above idea of randomness = information incom-
pressibility is the intuitive essence of algorithmic randomness due to
Solomonov, Kolmogorov and Chaitin. If there is a much shorter pro-
gram for a computer to print out the sequence than the printout itself,
then the sequence cannot be random, because some order or discernible
structure must have been used to information compress the sequence.
Thus the idea seems to capture our intuition about the ‘lawlessness’ of
the random sequence383 (but see41E.2).

37.50 A definition of randomness. The randomness K(ω) of a

binary sequence ω ∈ {0, 1}N is defined by

K(ω) ≡ lim sup
n→∞

IM(ω[n])/n, (37.20)

where ω[n] denotes the first n letters of ω. ✷
Notice that this does not depend on the choice of the universal Turing
machine M thanks to Kolmogorov and Solomonov (→37.24).383 To clearly define ‘lawlessness’ itself is a challenging endeavor. Within the or-
dinary classical logic it is impossible, because due to the exclusion of middle, if a
sequence does not have some property, then it can be characterized by the lack of
the same property. Thus excluding one law implies admitting the negation of that
law.
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37.51 Random sequence. A binary sequence ω is (algorithmically)
random if K(ω) > 0. ✷

37.52 Noncomputability of randomness. Notice thatK(ω) is not
computable as can easily be guessed from the appearance of the words
such as the shortest program for a machines, etc. This is the difficulty we
have already encountered with π. It is usually extremely hard (virtually
impossible) to discern an order even if it exists which can be exploited to
compress the sequence. Thus except for very obvious cases we may not
be able to tell whether a given sequence is random or not. It is generally
impossible to quantify the randomness of a particular sequence in terms
of K.384

37.53 Examples.
(1) There are only countably many algorithmically non-random se-
quences, so the 01 sequences obtained from the binary expansion of
almost all numbers in [0,1] with respect to the Lebesgue measure are
algorithmically random.
(2) All the binary expansions of algebraic numbers are nonrandom.
(3) π is not random algorithmically, although its decimal expansion
sequence exhibits all the good characteristics of a random sequence
statistically.385 Such a fact will be crucial in trying to understand
what complexity is.386

37.54 Randomness and chaos. Chaos in dynamical systems can
be characterized by the algorithmic random trajectories.387

37.F Randomness as a Fundamental Concept

37.55 Why do we discuss randomness further? A mathematical
reason is stated below. Here a physical motivation is given. Every one

384 My math mentor told me, “A random number is like God. If you are told that
this is God, you would be extremely suspicious.”
385 In practice, random number evolves. The random number of today is the se-
quence which passes all the statistical test available today.
386 There are attempts to make a measure of randomness which is actually com-
putable. One approach is to use finite automatons instead of universal Turing
machine. However, these approaches may be fundamentally flawed, because the
concept ‘random’ may naturally be transcendental. That is, whether a given instant
is random or not cannot be judged within the mathematical (or logical) framework
we are working in (→37.50).
387 A. A. Brudno, “Entropy and the complexity of the trajectories of a dynamical
system,” Trans. Moscow Math. Soc. Issue 2, 127-151 (1983).
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knows that the basic principle of statistical mechanics is the principle
of equal probability. That is, the sampling measure for the equilibrium
state is the Liouville measure (or the Riemann volume of the phase
space). It is in principle impossible to justify this with the aid of me-
chanics, because this is a statement about the initial condition of the
closed systems. Hence, this is a principle beyond any physical law,388

and dictates how we observe Nature. When we sample randomly, sta-
tistical mechanics holds. Thus at the heart of statistical mechanics
and thermodynamics, which are the only means to relate microscopic
and macroscopic observables, there is a characterization of randomness.
Thus randomness is of central importance in physics.

37.56 Mathematization of ‘randomness’. In the algorithmic char-
acterization of randomness, ‘randomness,’ which is an intuitive concept,
is mathematized by identifying it with ‘the lack of computable regular-
ity.’ One may well argue that there is no guarantee that all the regular-
ities are ‘computable regularities’; some inspiration or revelation might
tell us the existence of a different kind of regularity in the sequence.
This is not an outrageous statement, if mathematical intelligence is,
as supposed by Gödel and Post, nonfinitary (→37.22). Furthermore,
‘random sampling’ may be done by Nature herself. In this case, why
do we have to assume that Her capability is restricted to computation?

37.57 Why Axiomatization of Randomness? Fundamental con-
cepts should not have unique and privileged interpretations. That is, if
X is very fundamental, we should not be able to answer the question,
“What is X?”, because we need understanding of more fundamental
concepts to answer the question. Thus, axiomatization in which X
appears as primitive is the only way to formalize our thought on fun-
damental objects or foundational issues.

37.58 Van Lambargen Axioms. Van Lambalgen’s independence
axioms are informally as follows. He introduces a relation R such that
R(x, y) may be interpreted as ‘y has no information about x,’ or ‘x
cannot be information-compressed even with the extra information y
(or ‘oracle y’). This relation R is specified by the following axioms,
which are put informally here:389

R1. There is a sequence which cannot be information-compressed with-
out any ‘external information (or oracle). [ ∃xR(x, ∅). ]
388 However, you could imagine that a special initial condition was imposed as time
t = 0 of the Universe.
389 There are slightly different versions of axioms given in van Lambalgen’s papers.
Also here the exposition is informal, so the numbering of the axioms are different
from the original versions. Probably the latest paper is, “Independence, randomness
and the axiom of choice,” J. Symbolic Logic 57, 1274-1304 (1992).
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R2. If x cannot be information-compressed with the information of y
and z, then it cannot be done so with the information of z alone. [
R(x, yz)⇒ R(x, z).] (Here y and z may be understood as sets, and yz
their joint set.)
R3. If x cannot be information-compressed by the information of y,
then x and y are different. [R(x, y)⇒ x �= y.]
R4. If there ia a φ-relation between y and x, and x cannot be in-
formation -compressed with the aid of y, then there is a more ran-
dom sequence w such that there is a φ-relation between w and y,
and w cannot be information-compressed with th aid of not only y
but of z. [ ∃x(R(x, y)∧φ(x, y)) ⇒ ∃w(R(w, zy)

∧
φ(w, y)). Here φ

should not have any parameters other than listed in y.] (In a certain
sense, w satisfying R(w, y) is ‘more random (lawless)’ than x satis-
fying R(x, ∅), because R2 implies that w satisfies R(w, ∅). That is,
w is not only information-incompressible without any extra informa-
tion, but also incompressible even with the extra-information y. Thus
this axiom demands that there always exists a ‘more’ random sequence
than a given one; Indeed, R4 implies, when no relation φ is chosen,
∃xR(x, y) ⇒ ∃w(R(w, zy). Hence, xR(x, ∅) implies that x is in a cer-
tain sense with the lowest level randomness.
R5. If y cannot be information-compressed with the information z,
and, simultaneously, x cannot be information-compressed with the aid
of y, then y cannot be information-compressed with the aid of x. [
R(y, z)

∧
R(x, yz)⇒ R(y, xz). ]390 ,391

37.59 Grave consequences of R. There is a very grave consequence
of van Lambalgen’s axioms of randomness. If we add these axioms R
to the usual Zermelo-Fraenkel axioms of sets, then Axiom of Choice
does not hold.

390 The following axiom is also sometimes required. R6. In the ordinals, there is
no element of randomness. [R(x, y) ⇒ R(x, αy), where α is an ordinal.]
391 The axioms of independence and Friedman’s quantifier ‘almost all’ Q have an
intimate relation. Qxφ(x) can be interpreted as: if x is randomly generated, then
it is practically certain that φ(x). Thus we can translate Qxφ(x) as ∀x(R(x, ∅) ⇒
φ(x)).
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APPENDIX A.
Rudiments of Analysis

Warning. This is not a substitute of a standard textbook of elementary
calculus, but covers most topics every undergraduate analysis course
must cover. This is only a summary or a check list of the reader’s
knowledge. Scan the titles of the numbered entries, and if she finds
a somewhat unfamiliar concept, read the entry. Try to form vivid
mental image of defined concepts. Try to be able to explain why the
statements are plausible intuitively. If you feel a theorem to be obvious,
you need not prove it. The following material heavily relies on K.
Kodaira, Introductory Calculus I-IV (Iwanami 1986), and Encyclopedic
Dictionary of Mathematics (Iwanami 1985, 3rd edition). J. D. DePree
and C. W. Swartz, Introduction to Real Analysis (Wiley, 1988) may be
recommended as an introductory textbook.

Table of Standard Symbols
I. Point sets and limits
II. Functions
III. Differentiation
IV. Integration
V. Infinite Series
VI. Functions of two variables
VII. Fourier series and Fourier transform
VIII. Ordinary differential equations
IX. Vector analysis
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Table of Standard Symbols

∀ all, any, arbitrary.
∃ there exist(s)
⇒ A ⇒ B means A implies B.
⇐⇒ if and only if (iff)

↽== A↽==B means “A is defined by B.”
∈ a ∈ A implies that a is an element of A.

C the set of all complex numbers.
N the set of all nonnegative integers
Q the set of all rational numbers
R the set of all real numbers.
Z the set of all the integers
Cr the set of all the Cr-class functions (r-times continuously differentiable functions).
C0 the set of all the continuous functions
C∞ the set of all the infinite times differentiable functions.
Cω the set of all (real) analytic functions
L1(A, ρ) Lebesgue integrable functions on A with weight ρ.
L2(A, ρ) Square Lebesgue integrable functions on A with weight ρ.

inf infimum
sup supremum
supp support

L(R)HS Left (right) hand side

38 Point Set and Limit

The properties of reals (=real numbers) such as their continuity are
assumed to be known.

A1.1 Sequence. Let a1, a2, · · · be reals. a1, a2, a3, · · · is called a
sequence and is denoted as {an}. Each real in the sequence {an} is
called a term.
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A1.2 Convergence, limit. A sequence is said to converge to α if for
any positive ε, there is a positive integer N(ε) such that

n > N(ε)⇒ |an − α| < ε. (38.1)

α is called the limit of the sequence {an}, and is often written as an → α.

A1.3 Theorem [Cauchy]. A necessary and sufficient condition for a
(real) sequence {an} to converge is that for any positive number ε there
is a positive integer N(ε) such that

n > N(ε), m > N(ε)⇒ |an − am| < ε. (38.2)

✷
Such a sequence is called a Cauchy sequence. [In an infinite dimensional
space, a Cauchy sequence may not converge.]

A1.4 Symbol ‘O’ and ‘o’.
(1) f = O[g] means that the quantity f is of order g in the appropriate
limit in the context. That is lim f/g is not divergent. For example,
1− cosx = O[x2] in the x → 0 limit. That is, limx→0(1 − cosx)/x2 <
+∞, which is, of course, correct.
(2) f = o[g] means that the quantity f is ‘much smaller’ than g in the
appropriate limit in the context. For example, sin(x2) = o[x] in the
x → 0 limit.

A1.5 Limit and arithmetic operations commute. Let an → α
and bn → β. Then,
(i) If an ≥ bn for infinitely many n, then α ≥ β.
(ii) an ± bn → α± β.
(iii) anbn → αβ.
(iv) If an �= 0 and α �= 0, then bn/an → β/α.

A1.6 Lower and upper bound, supremum and infimum. Let
S ⊂ R. If any element in S does not exceed a real µ (i.e., s ≤ µ for any
s ∈ S) [resp., is not exceeded by a real number µ (i.e., s ≥ µ for any
s ∈ S)], we say S is bounded to the above [resp., bounded to the below]
and µ is called an upper bound [resp., lower bound] of S. The smallest
upper bound [resp., the largest lower bound] of S is called the supreme
[resp., infimum] of S, and is written as sups∈S s [resp., infs∈S s]. If S is
bounded to the above and to the below, S is said to be bounded.

A1.7 Monotone sequences. If a1 < a2 < · · · < an < · · · [resp.,
a1 > a2 > · · · > an > · · ·], {an} is called a monotone increasing [resp.,
monotone decreasing] sequence. If a1 ≥ a2 ≥ · · · ≥ an ≥ · · · [resp.,
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a1 ≤ a2 ≤ · · · ≤ an ≤ · · ·], {an} is called a monotone non-decreasing
[resp., monotone non-increasing] sequence.

A1.8 Theorem [Bounded monotone sequences converge].
A monotone non-decreasing [resp., non-increasing] sequence bounded
to the above [resp., to the below] converges to its supremum [resp., its
infimum]. ✷

A1.9 Divergence to ± infinity. If a monotone non-decreasing se-
quence [resp., non-increasing sequence] is not bounded to the above
[resp., to the below], we say it diverges to positive infinity [resp., neg-
ative infinity] and write limn→∞ an = +∞ [resp., limn→∞ an = −∞].
A1.10 Limsup and liminf. Suppose {an} is a bounded sequence. Let
supn an+m = αm for m = 1, 2, 3, · · ·. Then {αn} is a bounded monotone
non-increasing sequence. Hence, TheoremA1.8 tells us that limn→∞ αn

exists. This is called the superior limit of the sequence {an}, and is writ-
ten as lim supn→∞ an. Analogously, the limit limm→∞ infn an+m exists,
which is called the inferior limit of the sequence {an}, and is written
as lim infn→∞ an.
(i) For any positive ε there are only finitely many an larger than lim supn→∞ an+
ε, but there are infinitely many an larger than lim supn→∞ an − ε.
(ii) For any positive ε there are only finitely many an smaller than
lim infn→∞ an−ε, but there are infinitely many an smaller than lim infn→∞ an+
ε.
(iii) A necessary and sufficient condition for {an} to converge is lim sup an =
lim inf an.

A1.11 Infinite series. For a sequence {an}, a1+a2+a3+· · ·+an+ · · ·
is called an infinite series, and is often written as

∑∞
n=1 an. The conver-

gence of the series is defined by the convergence of the sequence {sn}
consisting of its partial sums: sn ↽== a1 + · · ·+ an. limn→∞ sn, if it con-
verges, is called the sum of the infinite series

∑∞
n=1 an. If {sn} does not

converge, the series is said to be divergent.
If
∑∞

n=1 an converges, then an converges to zero.

A1.12 Absolute convergence. If
∑∞

n=1 |an| converges, ∑∞
n=1 an is

said to be absolutely convergent.
(i) If {an} converges absolutely, {an} converges.
(ii) Suppose

∑∞
n=1 rn is convergent and rn ≥ 0. If |an| ≤ rn for all n

larger than some integer m, then
∑∞

n=1 an converges absolutely.

A1.13 Power series. A series of the form
∑∞

n=0 an(x− b)n is called a
power series, where b is a constant.
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A1.14 Conditional convergence, alternating series. If a conver-
gent series is not absolutely convergent, it is said to converge condition-
ally. If positive and negative terms appear alternatingly, the series is
called an alternating series.
If {an} (an > 0) is a monotone decreasing sequence converging to zero,
then the alternating series a1 − a2 + a3 − a4 + · · · converges (→[AV7]).
A1.15 Theorem [Nested sequence of intervals shrinking to a
point share the point]. If a sequence of closed intervals {In} such
that In = [an, bn] satisfies (i) I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · · and (ii)
limn→∞(bn − an) = 0, then there is a unique real c which is in all
In.✷
For this theorem it is crucial that In are closed intervals.

A1.16 Denumerability. An infnite set for which we can make a one-
to-one correspondence with nonnegative integersN is called a countable
set or denumerable set. An infinite set which is not countable is called
an uncountable set or nondenumerable set.
The set of rational numbers Q is countable.

A1.17 Cantor’s Theorem [Continuum is not denumerable]. A
closed interval I = [a, b] is nondenumerable. ✷

A1.18 n-space, distance, ε-neighborhood. The totality of the n-
tuples (x1, x2, · · · , xn) is a direct product set R × · · · × R ≡ Rn and
is called the n-space. The (Euclidean) distance between two points
(x1, · · · , xn) and (y1, · · · , yn) is defined by [(x1−y1)

2+· · ·+(xn−yn)
2]1/2.

The (Euclidean) distance between point P and Q is denoted by |PQ|.
The totality of the points which are within the distance ε of point P is
called the ε-neighborhood (ε-nbh) of P (and is denoted by Uε(P ) in this
Appendix).

A1.19 Inner point, boundary, accumulating point, closure,
open kernel. Let S be a subset of Rn.
Inner point: P is an inner point of S if there is ε > 0 such that
Uε(P ) ⊂ S.
Boundary point: If for any ε > 0 Uε(P ) ⊂�= S and Uε(P ) ∩ S �= ∅, P is
called a boundary point of S.
Boundary: The totality of the boundary points of S is called the bound-
ary of S and is denoted by ∂S.
Closure: S ∪ ∂S is called the closure of S and is denoted by [S]. If
T ⊂ S, then [T ] ⊂ [S].
Open kernel: S \ ∂S is called the open kernel of S and is denoted by
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S◦.
Dense: Let T be a subset of S. If [T ] ⊃ S, T is said to be dense in S.
Accumulating point: If Uε(P ) ∩ S contains infinitely many points of S
for any positive ε, we say P is an accumulating point of S.
Isolated point: If a point in S is not an accumulating point of S, the
point is called an isolated point.
(i) A necessary and sufficient condition for a point Q to be in [S] is
that for any positive ε Uε(Q) ∩ S �= ∅.
(ii) The totality of rational numbersQ has no inner point and [Q] = R.
(iii) All the inner points of S are accumulating points of S. An accumu-
lating point of S is its inner point or its boundary point. If a boundary
point of S is not in S, it is an accumulating point of S.
(iv) A necessary and sufficient condition for a point P to be an isolated
point of S is that there is a positive ε such that Uε(P ) ∩ S = ∅.
A1.20 Open set, closed set. If S contains only its inner points, that
is, if S = S◦, then S is called an open set. If all the boundary points
are included in S, that is, if S = [S], S is called a closed set. The empty
set ∅ is simultaneously open and closed, so is R.
(i) The intersection of finite or infinite closed sets is a closed set.
(ii) The union of finite or infinite open sets is an open set.
(iii) The intersection of finitely many open sets is an open set.
(iv) The union of finitely many closed sets is a closed set.

A1.21 Limit of point sequence. A sequence of points {Pn} (Pn ∈
Rn) is called a point sequence. If there is a pointA such that limn→∞ |PnA| =
0, we say the point sequence {Pn} converges toA. and write limn→∞ Pn =
A.

A1.22 Bounded set, diameter. If the distance between any point
P ∈ S and the origin O is bounded to the above (→A1.6), then the set
S is called a bounded set. When S is a bounded set we can define its
diameter δ(S) as δ(S) ≡ supP,Q∈S |PQ|. There is a theorem analogous
to A1.15:

A1.23 Theorem [Shrinking nested sequence of bounded closed
sets]. If a sequence of nonempty bounded closed sets {Sn} satisfies the
following two conditions (i) and (ii), then there is a unique point P
shared by all of the closed sets Sn: (i) S1 ⊃ S2 ⊃ · · · ⊃ Sn ⊃ · · ·, (ii)
limn→∞ δ(Sn) = 0.

A1.24 Covering. Let U be a set of sets. The joint set of all the mem-
bers of U is written as ∪U∈UU . If a set S satisfies S ⊂ ∪U∈UU , then U
is called a covering of S. If all the elements of U is open, it is called
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an open covering of S. If a covering U contains only a finite number
of elements, U is called a finite covering. If a subset V of U is also a
covering of S, V is called a subcovering of U .
A1.25 Compact set. If any open covering of S has a finite subcover-
ing, S is called a compact set.

A1.26 Theorem [Compactness is equivalent to bounded closed-
ness]. S is compact if and only if S is a bounded closed set.✷
The only-if part is called the Heine-Borel covering theorem. This is
true only if the space is finite dimensional.

[27] Theorem [Bolzano and Weierstrass]. A bounded infinite set
must have an accumulating point(→A1.19).✷
Theorem. A bounded point sequence has a converging subsequence.✷392

39 Function

A2.1 Function, domain, range, independent and dependent
variables. Let D ⊂ R. A rule f corresponding a single real η to each
ξ ∈ D is called a function f .393 η = f(ξ) is called the value of f at
ξ. D is called its domain and f(D) ≡ {f(ξ)|ξ ∈ D} is called the range
of f . Usually, f is described as f (x), and x is called the variable, and
f(x) is called a function of x. When we write y = f(x), x is called the
independent variable and y the dependent variable.

A2.2 Limit of function. Let f(x) be a function whose domain is D.
We say f(x) converges to α in the limit x → a, if for any positive ε,
there is a positive number δ(ε) such that

|x− a| < δ(ε), x ∈ D ⇒ |f(x)− α| < ε.

and we write limx→a f(x) = α. limx→a and arithmetic operations are
commutative as A1.5. We have a theorem analogous to A1.3:

392 These theorems assume that we can always choose one point from each member
of a family of infinitely many sets. From the constructive point of view, this is not
always possible. That is, we may not be able to write a computer program to do
so. In the usual mathematics, we postulate this possibility as an axiom called the
Axiom of Choice.
393 This is often called a map as well.
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A2.3 Cauchy’s criterion. Let f be a function whose domain is D. A
necessary and sufficient condition for f to be convergent in the x → a
limit is: For any positive ε there is a positive δ(ε) such that for x, y ∈ D

|x− a| < δ(ε), |y − a| < δ(ε)⇒ |f(x)− f(y)| < ε.

✷

A2.4 Graph of a function. The graph Gf of a function f is a set
Gf = {(x, f(x))|x ∈ D}.
A2.5 Continuity. A function f is continuous at a, if limx→a f(x) =
f(a).
If the definition of the limit is spelled out completely as in A2.2, we
say: f is continuous at a, if for x ∈ D and for any positive ε there is a
positive δ(ε) such that

|x− a| < δ(ε)⇒ |f (x)− f(a)| < ε.

Theorem. If the domain of a continuous function f is a closed interval,
then its range is again a closed interval. ✷

A2.6 Left and right continuity. When taking the x → a limit, if x is
always smaller (resp., larger) than a, we write this limiting procedure
as limx→a−0 (resp., limx→a+0) and is called the left limit (resp., right
limit). If limx→a−0 f(x) = f(a) (resp., limx→a−0 f(x) = f(a)), we say f
is left (resp., right) continuous at a.

A2.7 Theorem of middle value. Let a function f be continuous in
a closed interval [a, b], and f(a) �= f(b). There is a real c such that
a < c < b and f(c) = µ for any µ between f (a) and f (b). ✷
The image of a finite interval by a continuous map is again a finite
interval.

A2.8 Uniform continuity. A function f is uniformly continuous in
D if for any positive ε, there is a positive constant δ(ε) such that

|x− y| < δ(ε), x ∈ D, y ∈ D ⇒ |f(x)− f(y)| < ε.

Theorem. A continuous function defined on a closed interval is uni-
formly continuous on the interval. ✷

A2.9 Maximum and minimum. Let f be a function whose domain
is D. If f(D) is bounded, we say f is bounded. If there is a maximum
(resp., minimum) value in f(D), then it is called the maximum (resp.,
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minimum) of f .
Theorem [Maximum value theorem]. A continuous function de-
fined on a closed interval has a maximum and minimum values. ✷

A2.10 Composite function. Let f be a function whose domain is
D, and g is a function whose domain is in the range of f , f (D). Then
h(x) = g(f(x)) is called the composite function of f and g, and is de-
noted by g ◦ f .

A2.11 Monotone function. Let f be a function whose domain is D.
If for any x, y ∈ D x < y implies f(x) < f(y) (resp., f (x) > f(y)),
f is called a monotone increasing function (resp., monotone decreas-
ing function). If for any x, y ∈ D x < y implies f(x) ≤ f(y) (resp.,
f(x) ≥ f(y)), f is called a monotone non-decreasing function (resp.,
monotone non-increasing function).

A2.12 Inverse function. Let f be a function whose domain is D. If
there is only one x such that f(x) = y for each y ∈ f(D), the corre-
spondence y → x defines a function. This function, denoted by f−1, is
called the inverse function of f .
The symbol f−1 is used generally to denote the preimage of a point.
Thus f−1(x) = {y|f(y) = x, y ∈ D}, where D is the domain of f . f−1

becomes the inverse function, if f−1(x) is a single point for all x in the
range of f .
Theorem. If f is a monotone increasing (resp., decreasing) function
defined on an interval, then f has the inverse function which is mono-
tone increasing (resp., decreasing). ✷

A2.13 Even and odd functions. If a function f has a domain in-
variant under x → −x, and
(i) f(x) = f(−x), we say f is an even function,
(ii) f(x) = −f(−x), we say f is an odd function.

40 Differentiation

A3.1 Differentiability, derivative. Let f be a function defined on
an interval I, and a ∈ I. If the following limit, denoted by f ′(a), exists,
we say f is differentiable at a:

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.
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f ′(a) is called the differential coefficient of f at a. If f is differentiable
for any x ∈ I, we say that f is differentiable in I, and f ′(x) becomes a
function on I. f ′ is called the derivative of f . To obtain f ′ from f is
said to differentiate f . Recognize that the existence of the limit implies
that the limit does not depend on how the point a is reached.

A3.2 Theorem [Differentiability implies continuity]. If f is dif-
ferentiable at a, then f is continuous there. If f is differentiable in an
interval I, it is continuous in the interval. ✷
Warning. However, continuity does not guarantee differentiability.
See A3.12.

A3.3 Increment, differential quotient]. Let f be as in A3.1 and
write y = f(x), and ∆y ≡ f(x + ∆x) − f(x). ∆x and ∆y are called
increments. Then

f ′(x) = lim
∆x→0

∆y

∆x
,

so that the derivative is also called the differential quotient and is de-
noted by dy/dx. If f is differentiable, then we may write

∆y =
dy

dx
∆x+ o[∆x],

For o see A1.4.

A3.4 Right or left differentiable. If the right limit (→A2.6) limx→a+0(f(x)−
f(a))/(x− a) exists, then we say f is right differentiable at a, and the
limit, called right differential coefficient at a, is denoted by D+f(a).
Analogously the left differential coefficient D−f(a) can be defined.

A3.5 Differentiation and arithmetic operations commute. Let
f , g be differentiable in some interval, and c1, c2 be constants. Then
‘arithmetic operations do not destroy differentiability’:
(i) d

dx
(c1f(x) + c2g(x)) = c1f

′(x) + c2g
′(x).

(ii) d
dx
(f (x)g(x)) = f ′(x)g(x) + f(x)g′(x).

(iii) If g is not zero, then d
dx

f(x)
g(x)

= f ′(x)g(x)−f(x)g′(x)
g(x)2

.

A3.6 Derivative of composite function. Let f be a differentiable
function on an interval I, and g be a differentiable function on an in-
terval J containing f(I). Then, g ◦ f (→A2.10) is differentiable and

d

dx
g(f(x)) = g′(f(x))f ′(x).

A3.7 Derivative of inverse function. Let f be a differentiable
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monotone function on an interval I. Then its inverse function (→A2.12)
is differentiable and

d

dx
f−1(x) = 1/f ′(f−1(x)).

A3.8 Theorem [Mean-value theorem]. Let f be a continuous func-
tion on the closed interval [a, b]. If f is differentiable in (a, b), then there
is ξ ∈ (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a
.

✷
A special case of this theorem is:

A3.9 Theorem [Rolle’s theorem]. Let f be continuous in [a, b]. If
f is differentiable in (a, b) and f(a) = f(b), then there is ξ ∈ (a, b) such
that f ′(ξ) = 0. ✷

A3.10 Theorem [Generalization of mean-value theorem]. Let
f and g be continuous functions on a closed interval [a, b], and are
differentiable on (a, b). If f ′ and g′ do not simultaneously vanish in
(a, b) and g(a) �= g(b), then there is ξ ∈ (a, b) such that

f ′(ξ)
g′(ξ)

=
f(b)− f(a)

g(b)− g(a)
.

✷

A3.11 Theorem [Condition for monotonicity]. A necessary and
sufficient condition for a differentiable function defined on an interval I
is monotone increasing (→A2.11) is that f ′(x) ≥ 0 on I and f ′(x) > 0
on a dense (→A1.19) subset of I. ✷

A3.12 Counterexamples.
(i) f(x) = x sin(1/x) is continuous at x = 0 but not differentiable there.
(ii) f(x) =

∑∞
n=1 2

−n| sin(πn!x)| is continuous on R, but not differen-
tiable on Q.
(iii) f(x) =

∑∞
n=1 2

−n cos(knπx) (k is an odd integer larger than 13) is
continuous on R, but is nowhere differentiable.

A3.13 Higher order derivatives. Suppose f is a differentiable func-
tion on an interval I. If f ′ is again differentiable on I, then we can define
the second derivative df ′/dx. If the function f is sufficiently smooth,
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then we can define higher-order derivatives like the n-th derivative,
which is denoted by f (n)(x), dnf/dxn, Dnf(x) or (d/dx)nf(x). Arith-
metic operations do not destroy higher order differentiability as A3.5.
The composite function of n-times differentiable functions is n-times
differentiable as [6].

A3.14 Leibniz’ formula.

dn

dxn
(f(x)g(x)) = f (n)(x)g(x) +

(
n

1

)
f (n−1)(x)g′(x) + · · ·

+

(
n

k

)
f (n−k)(x)g(k)(x) + · · ·+ f(x)g(n)(x).

A3.15 Taylor’s formula, remainder. Let f be a n-times differen-
tiable function on an interval I, and a ∈ I. Then for any x ∈ I there
is a point ξ between a and x such that

f(x) = f(a) +
n−1∑
k=1

f (k)(a)

k!
(x− a)k +

f (n)(ξ)

n!
(x− a)n. (40.1)

The last term is called the remainder, and is written as Rn. ✷
For n = 1 this is the mean-value theorem (→A3.8), and this theorem
is regarded as an extension of the mean-value theorem.
The remainder can be written as follows: Let ξ = a + θ(x − a) (0 <
θ < 1).
(i) Schlömilch’s remainder: Choosing an integer q (0 ≤ q ≤ n− 1),

Rn =
f (n)(ξ)(1− θ)q

(n− 1)!(n− q)
(x− a)n.

(ii) Cauchy’s remainder. This is a special case of (i) with q = n− 1:

Rn =
f (n)(ξ)

(n− 1)!(1− θ)n−1(x− a)n.

(iii) The remainder in (40.1) is another special case of (i) with q = 0,
and is called Lagrange’s remainder.

A3.16 Taylor’s series. If f is infinite times differentiable, and {Rn}
in A3.15 converges to zero, then f can be expanded in a Taylor series
about a:

f(x) = f(a) +
∞∑

k=1

f (k)(a)

k!
(x− a)k.
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A3.17 Convex and concave function. Let f be a function whose
domain is I. Let x1, x2 ∈ I and λ and µ be positive reals satisfying
λ+ µ = 1. If

f (λx1 + µx2) ≤ λf(x1) + µf(x2), (40.2)

we say f is convex on I, and f is called a convex function. If there is
no equality in (40.2), then we say f is strictly convex, and f is called a
strictly convex function. If −f is (strictly) convex, we say f is (strictly)
concave, and f is called a (strictly) concave function.

A3.18 Theorem [Convexity and second derivative]. Let f be a
twice differentiable function on an interval I.
(i) A necessary and sufficient condition that f is convex on I is that
f ′′(x) ≥ 0 for all the inner points of I.
(ii) If f ′′(x) > 0 for all the inner points of I, then f is strictly convex.
✷
An analogous theorem for concave functions should be self-evident.
Simply switch f to −f .
Remark. (i) assumes that f is twice differentiable. Convex functions
must be continuous, but need not even be differentiable once.

A3.19 Local maximum, minimum. Let f be a continuous function
on an interval I, and a be an inner point of I. f(a) is a local maximum
(resp., local minimum), if for some positive number ε 0 < |x − a| < ε
implies f(x) < f(a) (resp., f(x) > f(a)). These are collectively called
local extrema.
Theorem. If f is a differentiable function on an interval I, and has a
local extremum at a ∈ I◦,394 then f ′(a) = 0.✷
Theorem. Let f be a function which is n-times (n ≥ 2) differentiable
and f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0 at some inner point of I.
(i) If n is odd, then f(a) is not an extremum of f .
(ii) If n is even, and f (n)(a) > 0, then f(a) is a local minimum of f(x).
(iii) If n is even, and f (n)(a) < 0, then f(a) is a local maximum of
f(x).✷

A3.20 Stationary value. Suppose f is n-times differentiable in an
interval I, and for some inner point a of I f ′(a) = f ′′(a) = · · · =
f (n−1)(a) = 0 but f (n)(a) �= 0. If n ≥ 3 and odd, f(a) is called a
stationary value of f , and a is called a stationary point of f .
Theorem. For the f in this item,
(i) If f (n)(a) > 0, then there is a positive number ε such that f is
strictly convex in [a, a+ ε] and strictly concave in [a− ε, a].

394 For ◦ see A1.19.
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(ii) If f (n)(a) < 0, then there is a positive number ε such that f is
strictly concave in [a, a+ ε] and strictly convex in [a− ε, a].✷

A3.21 Class Cn. Let f be a function defined on an interval I. If f
is n-times differentiable and f (n) is continuous on I, then f is called a
function of class Cn (or a Cn-function). If f is infinite-times differen-
tiable, it is called a C∞-function.
Theorem. Let f and g be Cn-functions on an interval I.
(i) Arithmetic operations do not destroy Cn-functions.
(ii) g ◦ f is again a Cn-function.
(iii) If for all x ∈ I f ′(x) �= 0, and f is monotone, then its inverse
function f−1 is a monotone Cn-function.✷
These statements hold for C∞ functions as well.

A3.22 Class Cω. Let f be a C∞-function in an open interval I. If f
can be Taylor-expanded (→A3.16) in the neighborhood of each a ∈ I,
then f is said to be real analytic in I and is called a real analytic func-
tion or a Cω-function.
Warning. A C∞-function need not be a real analytic function. A
typical example is

ψ(x) = 0 for x ≤ 0,
= e−1/x for x > 0.

Its derivatives at x = 0 all vanish, so that Taylor series formally con-
structed becomes identically zero, but this contradicts the fact that
ψ(x) > 0 for positive x. Hence, this function is not real analytic.
This is an important function to be used to ‘mollify’ functions through
convolution.

A3.23 Theorem [Existence of mollifier]. Let a and b be two arbi-
trary points (a < b) in R. There is a C∞-function ρ(x) on R such that
ρ(x) = 0 for x ≤ a, ρ(x) = 1 for x ≥ b and 0 ≤ ρ(x) ≤ 1.✷
Corollary. Let f and g be C∞-functions on R, and a and b are the
same as in the theorem. There is a C∞-function h such that h(x) = f(x)
for x ≤ a, h(x) = g(x) for x ≥ b (and h interpolates f and g between
a and b). ✷
Thus C∞-functions can be deformed freely. In contradistinction, Cω-
functions cannot be deformed freely as shown in the following

A3.24 Theorem [Identity theorem]. Let f and g be Cω-functions
defined on an open set I. If f and g coincide in some neighborhood of
a point a ∈ I, then f and g are identical on I.✷

A3.25 Complex analysis. Real analytic functions are best under-
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stood as special complex-valued functions defined on the complex plain.
“The shortest path between two truths in the real domain passes through
the complex domain.” (J. Hadamard). H. A. Priestley, Introduction to
Complex Analysis (Oxford UP, 1990, revised edition) is a convenient
introduction to the topic. See also my notes for Physics 413, which is
much more complete than the book with a sizable chapter on conformal
mapping and its application to boundary value problems.

41 Integration

A4.1 Definite integral (Riemann integral). Let f be a continuous
function defined on a closed interval I = [a, b]. Let a = x0 < x1 <
x2 < · · · < xk < · · · < xm−1 < xm = b, and partition [a, b] into m
intervals [xk−1, xk] (k = 1, 2, · · · , m). The partion determined by the
set ∆ ≡ {x0, x1, · · · , xm} is called the partition ∆. Let the maximum
of |xk − xk−1| (k = 1, 2, · · · , m) be δ(∆). The following limit exists
(remember that f is assumed to be continuous) and called the definite
integral of f on [a, b]:∫ b

a
f(x)dx ≡ lim

δ(∆)→0

∑
k

f(ξk)(xk − xk−1),

where ξk ∈ [xk−1, xk]. The limit does not depend on the choice of ξk. f
is called the integrand, x the integration variable, and b (resp., a) the
upper limit (resp., lower limit) of integration. The integration variable
x is a dummy variable in the sense that we may freely replace it with
any letter.
We define for b > a

∫ a
b f(x)dx ≡ − ∫ ba f(x)dx, and

∫ a
a f(x)dx = 0.

Sometimes, the definite integral is written as∫ b

a
dx f(x).

This notation clearly shows that integration is an operation applied to
f .

A4.2 Riemann-integrability. Integration can be defined even if f is
not continuous. Let f be a bounded function on [a, b]. For the partition
∆ in A4.1, define

S∆ ≡
m∑

k=1

Mk(xk − xk−1), s∆ ≡
m∑

k=1

mk(xk − xk−1),
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where Mk (resp., mk) is the maximum (resp., minimum) value of f
in [xk−1, xk]. Let S ≡ sup∆ S∆ and s ≡ inf∆ s∆ (Here the supremum
(infimum) is looked for over all the possible finite partitions of [a, b]. If
S = s, we say f is Riemann integrable on [a, b]. In this case, S = s is
the definition of

∫ b
a f(x)dx. Even if f has finitely many discontinuous

points in I, f is Riemann-integrable.

A4.3 Basic properties of definite integral. Let f and g be Riemann-
integrable on the closed interval [a, b].
(i) For c ∈ (a, b)

∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx.

(ii) For arbitrary constant c1 and c2,

∫ b

a
[c1f(x) + c2g(x)]dx = c1

∫ b

a
f(x)dx+ c2

∫ b

a
g(x)dx.

(iii) If f ≥ 0 on [a, b], then ∫ ba f(x)dx ≥ 0. If, furthermore, f is contin-
uous and is not identically zero, then the integral is strictly positive.
(iv) ∣∣∣∣∣

∫ b

a
f(x)dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)|dx.

A4.4 Theorem [Mean value theorem].
(1) If f is a continuous function defined on a closed interval [a, b], there
exists a point ξ ∈ (a, b) such that

1

b− a

∫ b

a
f(x)dx = f(ξ).

(2) If f and g are continuous on the closed interval [a,b], and if g > 0
on the open interval (a, b), then there exists ξ ∈ (a, b) such that

∫ b

a
f(x)g(x)dx = f(ξ)

∫ b

a
g(x)dx.

✷

A4.5 Fundamental theorem of calculus, primitive function, in-
definite integral. If f is integrable on a closed interval I = [a, b], then
for x ∈ [a, b], we can define the definite integral of f on [a, x]:

F (x) =
∫ x

a
f (t)dt
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which is a function of x on I.
Theorem [Fundamental theorem of calculus].

∫ b

a
f(x) = F (b)− F (a)

or F ′(x) = f(x).✷
Any function such that F ′(x) = f(x) on I is called a primitive function
of f . A primitive function for f , if any, is not unique; it is unique up
to an additive constant. Thus any primitive function of f , if any, can
be written as

F (x) =
∫ x

a
f(t)dx + C,

where C is called the integration constant.
The indefinite integral of f is defined as a primitive function of f , and
is denoted by ∫

f(x)dx.

A4.6 Integration by parts. Let f and g be C1-functions (→A3.21)
on an interval I. Then

∫ b

a
f(x)g′(x)dx = f(x)g(x)|ba −

∫ b

a
f ′(x)g(x)dx,

where h(x)|ba ≡ h(b)− h(a).

A4.7 Improper integral. When

lim
c→b

∫ c

a
f(x)dx

exists, we write this
∫ b
a f(x)dx even if f is not integrable on [a, b) in the

sense of A4.2, and call it an improper integral. b may be a discontinu-
ous point of f or ±∞. It is easy to construct the Cauchy convergence
criterion (→A1.3) for improper integrals.
Improper integrals satisfy A4.3 (i) and (ii), and if the improper in-
tegral of |f | is definable (we say f is absolutely integrable; absolutely
integrable functions are integrable.), (iii) holds as well.
Also the fundamental theorem of calculus (→A4.5), and the mean
value theorem (→A4.4) are valid.

A4.8 Change of integration variables. Let f be a continuous func-
tion on an interval I = [a, b], ϕ(t) be a continuous function defined on
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an interval J whose range is in I. α, β ∈ J (α �= β), a = ϕ(α) and
b = ϕ(β). Then

∫ b

a
f (x)dx =

∫ β

α
f(ϕ(t))ϕ′(t)dt.

If f is an even function (→[AII13]), then
∫ b

a
f(x)dx =

∫ −a

−b
f(x)dx.

If f is an odd function (→AII13]), then
∫ b

a
f(x)dx = −

∫ −a

−b
f(x)dx.

42 Infinite Series

A5.1 Changing the order of summation in infinite series. Abso-
lutely convergent series and conditionally convergent series (→A1.12,
A1.14) have diametrically different properties with respect to the re-
arrangement of the terms in the summation:
Theorem.
(i) The sum of an absolutely convergent series does not depend on the
order of summation of the terms in the series.
(ii) If a series

∑∞
n=1 an is conditionally convergent, then for any given

real ξ there is a reordering of the series {aγ(n)} such that
∞∑

n=1

aγ(n) = ξ.

There is also a reordering to make the series divergent to ±∞. ✷

A5.2 Product of two series. The product of two absolutely con-
vergent series (→A1.12) can be computed via distributive law: Let
s =

∑
an and t =

∑
bn, and both are absolutely convergent. Then

st = a1b1 + a2b1 + a1b2 + a3b1 + a2b2 + a1b3 + · · · .
This is not necessarily true for conditionally convergent series, e.g., con-
sider an = bn = (−1)n/√n.
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A5.3 Theorem [Comparison theorem I. comparison with im-
proper integral]. Let r(x) > 0 be a continuous monotone decreasing
function (→A2.11) on [k,+∞) with k being a positive integer such
that limx→∞ r(x) = 0. Let rn ≡ r(n).

∑∞
n=k rn converges (resp., di-

verges), if
∫∞
k r(x)dx converges (resp., diverges). ✷

Examples:
(i)
∑∞

n=1 n
−s (s > 0) converges for s > 1 and diverges for s ≥ 1.

(ii)
∑∞

n=2{1/[n(log n)s]} (s > 0) converges for s > 1 and diverges for
s ≥ 1.
(iii)

∑∞
n=3{1/[n log n(log log n)s]} (s > 0) converges for s > 1 and di-

verges for s ≥ 1.
A5.4 Theorem [Comparison theorem II. comparison of series].
Let
∑∞

n=1 un and
∑∞

n=1 vn be positive term series, and there is a positive
integer n0 such that for n > n0

un/un+1 ≥ vn/vn+1.

Then
(i) If

∑
vn converges, then so is

∑
un.

(ii) If
∑

un diverges, then so is
∑

vn. ✷
From this theorem, we get useful convergence criteria:

A5.5 Cauchy’s convergence criterion. Let
∑

an be a positive term
series. Suppose the limit ρ = limn→∞(an/an+1) exists. If ρ < 1, then
the series converges, and if ρ ≥ 1, the series diverges.
A5.6 Gauss’ convergence criterion. For a positive term series

∑
an

with
an

an+1
= 1 +

σ

n
+O

[
1

n1+δ

]
,

where δ is positive.395 Then the series converges if σ > 1, and diverges
if σ ≤ 1.
A5.7 Abel’s formula. Let the partial sums sm =

∑m
n=1 an and tm =∑m

n=1 bn. Then

m∑
n=k

antn = [smtm − sk−1tk]−
m∑

n=k

snbn+1.

This is a discrete analogue of integration by parts (→A4.6).
This transformation implies the following criteria:
(i) If

∑∞
n=1 an converges and

∑∞
n=2(tn− tn−1) converges absolutely, then

395 For the symbol O see A1.4.
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∑∞
n=1 antn converges.

(ii) The sequence {sn} is bounded and {tn} is a monotone decreasing
positive sequence converging to zero, then

∑
antn converges.

For example, (ii) implies that
∑

tn cos(nx) and
∑

tn sin(nx) converge,
if {tn} is a monotone decreasing positive sequence converging to zero.
This is an extension of [AI14] on alternating series.

A5.8 Function sequence, convergence. A sequence of functions
{fn(x)} is called a function sequence defined on I, if the domains of all
the functions in the sequence are identically I. For a fixed x = ξ ∈ I, if
the sequence {fn(ξ)} converges, we say the function sequence converges
at x = ξ. If the function sequence converges at every point of I, we
say that the sequence converges on I. The limit for each x may be
written as f(x), which is regarded as the limit function of the function
sequence, and we say the function sequence {fn(x)} converges to f(x).
More formally, we say that the function sequence {fn(x)} converges to
f(x) if for each x ∈ I and for any positive number ε, there is a positive
integer n0(ε, x) such that

n > n0(ε, x)⇒ |fn(x)− f (x)| < ε. (42.1)

A5.9 Uniform convergence. Let {fn(x)} be a function sequence
defined on an interval I. If in (42.1) n0(ε, x) is independent of x ∈ I,
we say the function sequence {fn} is uniformly convergent to f on I.
That {fn} is uniformly convergent to f on I is equivalent to

lim
n→∞ supx∈I

|fn(x)− f(x)| = 0.

A5.10 Theorem [Cauchy’s criterion for uniform convergence].
Let {fn(x)} be a function sequence defined on an interval I. A necessary
and sufficient condition for the sequence to be uniformly convergent is
that there is a positive integer n0(ε) such that for any x ∈ I

n > n0(ε), m > n0(ε)⇒ |fn(x)− fm(x)| < ε.

✷

A5.11 Function series, convergence, uniform convergence, max-
imal convergence.

∑∞
n=1 fn(x) is called a function series. Let its

partial sum be sm(x) ≡ ∑m
n=1 fn(x). If the function sequence {sn(x)}

(uniformly) converges to s(x), we say the series
∑∞

n=1 fn(x) (uniformly)
converges to s(x), which is called the sum of the series. If

∑∞
n=1 fn(x)

is uniformly and absolutely convergent, we say the series is maximally
convergent.
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A5.12 Theorem [Uniform convergence preserves continuity].
Let {fn(x)} be a function sequence of continuous functions defined on
an interval I.
(i) If the sequence uniformly converges to f on I, then f is continuous
in I.
(ii) If the series

∑∞
n=1 fn(x) converges uniformly, then its sum is a con-

tinuous function on I.✷

A5.13 Theorem [Dini’s theorem]. Let {fn(x)} be a sequence of
continuous functions defined on the closed interval [a, b]. Suppose the
sequence is monotonically decreasing: for any x ∈ [a, b] f1(x) ≥ f2(x) ≥
· · · ≥ fn(x) ≥ · · ·. If the sequence {fn(x)} converges on [a, b] to a con-
tinuous function f(x), then the sequence uniformly converges to f on
[a, b]. ✷.
A5.14 Theorem [Comparison theorem]. Let

∑∞
n=1 an be a conver-

gent positive term series. For a sequence of {fn(x)}, suppose |fn(x)| ≤
an for all n on an interval I. Then the infinite sum

∑∞
n=1 fn(x) is max-

imally convergent.✷

A5.15 Theorem [Exchange of limit and integration]. Let {fn(x)}
be a sequence of continuous functions defined on [a, b], uniformly con-
vergent to f(x) there. Then

∫ b

a
f(x)dx = lim

n→∞

∫ b

a
fn(x)dx.

✷
A more general theorem (Arzelá’s theorem) will be given in A5.17.
The theorem implies that a uniformly convergent series of continuous
functions is termwisely integrable:

∫ x

c

∞∑
n=1

fn(x)dx =
∞∑

n=1

∫ x

c
fn(x)dx.

A5.16 Theorem [Exchange of limit and differentiation]. Let
fn(x) be a C1-function (→A3.21). If

∑∞
n=1 fn(x) converges on I, and∑∞

n=1 f
′
n(x) converges uniformly on I, then the sum of the series is

differentiable and
d

dx

∞∑
n=1

fn(x) =
∞∑

n=1

f ′
n(x)

✷

A5.17 Theorem [Arzelá’s theorem]. Let fn(x) be a continuous
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function defined on a closed set [a,b] (actually this need not be a closed
interval) and uniformly bounded, i.e., there is a positive number M
independent of n such that |fn(x)| < M on the interval. If the function
sequence {fn(x)} converges to a continuous function f(x) on [a,b], then

∫ b

a
f(x)dx = lim

n→∞

∫ b

a
fn(x)dx.

✷

A5.18 Majorant. For a function sequence {fn(x)} defined on an
interval I, a function σ(x) such that |fn(x)| < σ(x) is called a majorant
of the sequence.
Theorem. If a majorant σ(x) is integrable on the interval, then the
order of integration and limn→∞ can be exchanged.✷

A5.19 Convergence radius of power series. For a power series∑∞
n=0 anx

n,

r ≡ 1

lim supn→∞ |an|1/n
is called the convergence radius of the power series (the reason for the
name is seen from the following theorem A5.20. The formula is called
the Cauchy-Hadamard formula). Here, if the lim sup diverges to +∞,
then we define r = 0, and if lim sup converges to zero, then we define
r = +∞.
A5.20 Theorem [Power series is termwisely differentiable]. The
power series

∑∞
n=0 anx

n is absolutely convergent for |x| < r, and is di-
vergent for |x| > r, where r is the convergence radius (→A5.19). For
any 0 < ρ < r, the series is uniformly convergent (→A5.11) in [−ρ, ρ]
to a continuous function (cf. A5.12), so that the series is termwisely
differentiable there. ✷

A5.21 Theorem [Power series defines a real analytic function].
The power series

∑∞
n=0 anx

n whose convergence radius is r uniquely
determines a Cω-function (→A3.22) f in the open interval (−r, r).
Actually, the power series is the Taylor series (→A3.16) for f . ✷

A5.22 Theorem [Continuity at x = r or −r]. Let r be the con-
vergence radius of the power series

∑∞
n=0 anx

n = f(x). If
∑∞

n=0 anr
n

is convergent, then f(x) is continuous in (−r, r]. If
∑∞

n=0 an(−r)n is
convergent, then f(x) is continuous in [−r, r). ✷

A5.23 Infinite product. For a sequence {an} (an �= 0) a1a2 · · · an · · ·
is called an infinite product, and is denoted by

∏∞
n=1 an. pn = a1a2 · · · an

479



is called the partial product.

A5.24 Convergence of infinite product. Let
∏∞

n=1 an be an infi-
nite product and its partial product sequence be {pn}. If this sequence
converges, and p = limn→∞ pn is not zero, we say the infinite product
converges to p: p =

∏∞
n=1 an. Else, we say the infinite product is diver-

gent.

A5.25 Theorem [Convergence condition for infinite product].
(i) A necessary and sufficient condition for the infinite product

∏∞
n=1(1+

un) (un > −1) to be convergent is that the infinite series ∑∞
n=1 log(1 +

un) converges.
(ii) If

∑∞
n=1 un (un > −1) converge absolutely, then ∏∞

n=1(1 + un) con-
verges. (In this case we say the infinite product converges absolutely,
and the product does not depend on the order of its terms.)
(iii) If

∑
un (un > −1) and∑ u2

n both converges, then the infinite prod-
uct
∏∞

n=1(1 + un) converges. ✷

A5.26 Conditional convergence of infinite product. If an infi-
nite product

∏∞
n=1(1 + un) converges but does not converge absolutely

(→A5.25(ii)), we can reorder the product to converge to any positive
number. ✷
This is quite parallel to a similar theorem for conditionally convergent
series (→A5.1(ii)).

43 Function of Two Variables

Since real valued-functions of two variables illustrate complications due
to the existence of many independent variables, in this rudimentary
part, we discuss only a function defined on a point set D in R2.

A6.1 Rudiments of topology.
(i) If an open set U ∈ R2 is not a join of two open sets, U is said to be
connected.
(ii) Theorem. A necessary and sufficient condition for an open set U
to be connected is that any points P,Q ∈ U can be connected by a
piecewise straight curve in U . ✷
(iii) A connected open set is called a region, and its closure (→A1.19)
is called a closed region.
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(iv) Distance ρ(x, y) of two points x and y in R2 is defined as

ρ(x, y) = |x− y| =
√
(x1 − y1)2 + (x2 − y2)2,

where x (or y) is identified with its coordinate expression, say, (x1, x2).

A6.2 Function, domain, range. Let D be a point set in R2. A rule
which defines a correspondence of each x ∈ D to some real is called a
function from D ⊂ R2 to R. D is called its domain and f(D) ⊂ R is
called its range.396 We write f : D → R.

A6.3 Limit. Let D be a point set in R2. For f : D → R, we say
limP→A f(P ) = α ∈ R, if for any positive number ε there is a positive
number δ(ε) such that

ρ(P,A) < δ(ε)⇒ |f(P )− α| < ε.

Notice that the limit should not depend on how P approaches A.
It is easy to write down Cauchy’s criterion for the convergence (cf.
A1.3).

A6.4 Continuity. Let D be a point set in R2. A function f :
D → R is continuous at an accumulation point (→A1.19) P ∈ D,
if limQ→P f(Q) = f(P ). (To discuss the continuity on the point of D
which are not accumulating points of D is uninteresting.)
Uniform continuity can also be defined quite analogously as in the one-
variable function case (cf. A2.8).

A6.5 Theorem [Maximum value theorem]. A real-valued contin-
uous function defined on a bounded closed set D ⊂ R2 has a maximum
and minimum values on D. The range of f is a closed interval. ✷
(cf. [AII9]).

A6.6 Partial differentiation. Let f(x, y) be a real-valued function
defined in a region D ⊂ R2, and (a, b) ∈ D. If f(x, b) is differentiable
at a with respect to x, we say that f(x, y) is partially differentiable with
respect to x at (a, b), and the derivative is denoted by fx(a, b). More
generally, if f is partial differentiable in D with respect to x, we may
define fx(x, y):

fx(x, y) = lim
h→0

f(x+ h)− f(x)

h
.

If we write z = f(x, y), fx(x, y) is written as ∂z/∂x. fx(x, y) is called
the partial derivative of f with respect to x. We say that we partial-
differentiate f with respect to x to obtain fx(x, y). Similarly, we can
396 The set {f(x) : x ∈ D} is often written as f(D).
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define the partial derivative with respect to y of f . Analogously, we
can define higher-order (mixed) partial derivatives like fxxy.
Warning. Even if fx and fy exists at a point, f need not be continuous
at the point. ✷
This implies that the ‘differentiability’ of f must be defined separately
from its partial differentiability.

A6.7 Differentiability, total differential. Let f(x, y) be a real-
valued function defined in a region D ⊂ R2, and (a, b) ∈ D. We say f
is differentiable at (a, b) if there is constants A and B such that

f(x, y) = f(a, b) + A(x− a) +B(y − b) + o[
√
(x− a)2 + (y − b)2].

Theorem. If f above is differentiable at (a, b), then f is continu-
ous there, and is partially differentiable with respect to x and y with
A = fx(a, b), B = fy(a, b). ✷.
dz = fxdx + fydy is called the total differential of f .
We say that f is differentiable in D, if f is differentiable at every point
in D.
Intuitively, if a local linear approximation is reliable, we say the func-
tion is differentiable.
A6.8 Theorem [Partial differentiability and differentiability].
Let f be a function defined in a region D ⊂ R2. If fx and fy exist and
are continuous in D, then f is differentiable in D. ✷

A6.9 Theorem [Order of partial differentiation]. Let f be a func-
tion defined in a region D ⊂ R2. If partial derivatives fx, fy, fxy and
fyx exist and if fxy and fyx are continuous, then fxy = fyx. ✷

A6.10 Theorem [Young’s theorem]. Let f be a function defined
in a region D ⊂ R2. If fx and fy exist and f is differentiable, then
fxy = fyx. ✷

A6.11 Theorem [Schwarz’ theorem]. Let f be a function defined
in a region D ⊂ R2. If partial derivatives fx, fy and fxy exist and if
fxy is continuous, then fyx exists and fxy = fyx. ✷

A6.12 f = f is not always correct. Let f(x, y) = xy(x2 −
y2)/(x2 + y2) except for (0, 0), where f is defined to be 0. Then
fxy(0, 0) �= fyx(0, 0); the left-hand-side is −1, and the right-hand-side
is 1.

A6.13 C -class function. If f has all the partial derivatives of order
n, which are all continuous, we say that f is a Cn-function. If deriva-
tives of any order exists, we say that the function is a C∞-function.
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A6.14 Composite function. Let ϕ(t) and ψ(t) be continuous func-
tions defined on an interval I such that (ϕ(t), ψ(t)) ∈ D for all t ∈ I.
If f(x, y) is a continuous function defined on D, then f(ϕ(t), ψ(t)) is
continuous.
If ϕ(t) and ψ(t) are differentiable with respect to t, and f(x, y) is dif-
ferentiable in D, then f(ϕ(t), ψ(t)) is differentiable with respect to t,
and

d

dt
f(ϕ(t), ψ(t)) = fx(ϕ(t), ψ(t))ϕ

′(t) + fy(ϕ(t), ψ(t))ψ
′(t).

If ϕ(t) and ψ(t) are Cn-functions of t, and f(x, y) is Cn in D, then
f(ϕ(t), ψ(t)) is again Cn.
These propositions hold even if we replace the function of t with func-
tions of s and t. For example, If ϕ(s, t) and ψ(s, t) are Cn-functions of
s and t in a domain D1, (ϕ(s, t), ψ(t, s)) ∈ D, and f(x, y) is Cn in D,
then f(ϕ(s, t), ψ(s, t)) is again Cn in D1.

A6.15 Taylor’s formula. Let f(x, y) be a Cn-class function defined on
a region D, (a, b) ∈ D, and the line segment AP with P = (a+h, b+k)
be in D. Then

f(a+ f, b+ k) = f(a, b) +
n−1∑
m=1

1

m!

(
f

∂

∂x
+ k

∂

∂y

)m

f(a, b) +Rn

with

Rn ≡ 1

n!

(
f

∂

∂x
+ k

∂

∂y

)n

f(a+ θh, b+ θk)

for some θ ∈ (0, 1). Rn is called the residue.
If f is a C∞-function (→[13]) in a region D and if in some subregion
DA of D limn→∞ Rn = 0, then we say f is Taylor-expandable in DA:

f(x, y) = f(a, b) =
∞∑

n=1

∑
p+q=n

∂p+qf(a, b)

∂xp∂yq
(x− a)p(y − b)q.

If f is Taylor-expandable, we say f is a real analytic function (Cω-
function) of two variables.
This is a double series, so we need some general theory of double series
and double sequences.

A6.16 Limit of double sequence. Let {anm} be a double sequence.
If for any positive ε, there is a positive integer N(ε) such that

m > N(ε), n > N(ε)⇒ |amn − α| < ε,
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then we say the double sequence converges to α, and write limm,n→∞ amn =
α. It is easy to state Cauchy’s convergence criterion (→A1.3) for a dou-
ble series.

A6.17 Warning. limm,n→∞ and limm→∞ limn→∞ or limm→∞ limn→∞
are distinct. For example, if amn = 2mn/(m2+n2), limm→∞ limn→∞ amn =
0 and limn→∞ limm→∞ amn = 0, but limm,n→∞ amn does not exist. If
amn = (−1)n/m+ (−1)m/n, then limm,n→∞ amn = 0 but the other lim-
its do not exist.

A6.18 Theorem [Exchange of limits]. Suppose limm,n→∞ amn = α
exists. If for each n limm→∞ amn exists, then limn→∞ limm→∞ amn = α.
If for each m limn→∞ amn exists, then limm→∞ limn→∞ amn = α. ✷

A6.19 Double series, convergence. For a double sequence {amn},∑∞
m,n=1 amn is called a double series. We say that the double series

converges if the double sequence {smn} of its partial sums smn =∑m
p=1

∑n
q=1 apq converges. Its absolute convergence can also be defined

analogously as in the ordinary series case (→A1.12).
Theorem. If a double sequence

∑∞
m,n=1 amn converges absolutely, then∑∞

m=1

∑∞
n=1 amn =

∑∞
m,n=1 amn. ✷

A6.20 Power series of two variables. The setG such that
∑∞

m,n=0 amnx
myn

for ∀(x, y) ∈ G is absolutely convergent is called the convergence do-
main of the double power series.
Theorem. If for (ξ, η) �= (0, 0) the double series∑ amnξ

mηn is bounded,
then for |x| < |ξ| and |y| < |η| the double power series∑∞

m,n=0 amnxmyn

is absolutely convergent.✷

A6.21 Exchange of order of limits, uniform convergence. If for
any positive ε there is N(ε) independent of m such that

n > N(ε)⇒ |amn − αm| < ε,

we say {amn} converges to αm uniformly with respect to m.
Theorem. If {amn} converges to αm uniformly with respect to m in
the n → ∞ limit, and if αm converges to α in the m → ∞ limit, then
limm,n→∞ amn = α. ✷
Theorem. If limn→∞ limm→∞ amn exists, {amn} converges to αm uni-
formly with respect to m in the n →∞ limit, and if αm converges to α
in them →∞ limit, then limm→∞ limn→∞ amn = limn→∞ limm→∞ amn =
α. ✷
In contrast to A6.18 here the existence of limm,n→∞ amn is not as-
sumed.
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A6.22 Counterexample.
(i) For amn = (−1)nm/(m+n), limm→∞ limn→∞ amn = 0, limn→∞ limm→∞ amn

does not exist.
(ii) For amn = m/(m+ n) both limits exist but not identical.

A6.23 Theorem [Differentiation and integration within inte-
gration]. Let f(x, y) be a bounded function defined on a rectangle
K = {(x, y)|x ∈ [a, b], y ∈ [c, d]}. Assume that f is continuous as a
function of x (resp., y) for each y (resp., x). Then
(i)
∫ b
a dxf(x, y) is a continuous function of y in [c, d].

(ii) If f(x, y) is partially differentiable with respect to y, and if fy(x, y)
is bounded on K, and continuous as a function of x for each y, then

d

dy

∫ b

a
dxf(x, y) =

∫ b

a
dx

∂

∂y
f(x, y).

(iii)
d

du

∫ u

a
dxf(x, y) = f(u, y).

(iv) ∫ d

c
dy
∫ b

a
dxf(x, y) =

∫ b

a
dx
∫ d

c
dyf (x, y).

✷

A6.24 Theorem [Differentiation and integration within im-
proper integration]. Let f(x, y) be a bounded function defined on a
rectangle K = {(x, y)|x > a, y ∈ [c, d]}. Assume that f is continuous
as a function of x (resp., y) for each y (resp., x). Assume, further-
more, that there is a nonnegative continuous function σ(x) such that
|f(x, y)| ≤ σ(x) and

∫+∞
a dxσ(x) < +∞. Then

(i)
∫ +∞
a dxf(x, y) is a continuous function of y in [c, d].

(ii) If f(x, y) is partially differentiable with respect to y and if there
is a nonnegative continuous function σ(x) such that |fy(x, y)| ≤ σ1(x)
and

∫+∞
a dxσ1(x) < +∞, then

d

dy

∫ +∞

a
dxf(x, y) =

∫ +∞

a
dx

∂

∂y
f(x, y).

(iii) ∫ d

c
dy
∫ +∞

a
dxf(x, y) =

∫ +∞

a
dx
∫ d

c
dyf (x, y).

✷

485



44 Fourier Series and Fourier Transform

In this section all the integrals are Riemann integrals [AIV1]. Thus
integrable or absolutely integrable means Riemann-integrable and ab-
solutely Riemann integrable.

A7.1 Fourier series.{Fourier series Let f be a function on R with
period 2π.397 Assume that the following integrals exist398

an =
1

π

∫ 2π

0
dxf(x) cosnx for n = 0, 1, 2, · · · ,

bn =
1

π

∫ 2π

0
dxf (x) sinnx for n = 1, 2, 3, · · · .

Then

S[f ] =
1

2
a0 +

∞∑
n+1

(an cosnx+ bn sinnx)

is called the Fourier series of f . To construct S[f ] is said to Fourier-
expand f .
Notice that the Fourier series converges uniformly (→[AV11]) if∑∞

n=0 |an|
and

∑∞
n=0 |bn| both converge.

A7.2 Theorem. Let f be a 2π periodic function which has at most
finitely many discontinuities, and is absolutely integrable on [0, 2π]. If
S[f ] converges uniformly, then S[f ](x0) converges to f(x0) if f is con-
tinuous at x0. Specifically, if f is 2π-periodic continuous function, then
S[f ] = f .✷
This theorem uses the property of the Fourier series (its uniform con-
vergence), so it is not very satisfactory. A7.8 below tells us that we
cannot remove of this extra condition from this theorem.

A7.3 Complex Fourier series. Let f be a function on R with period
2π. Assume that the following integrals exist

cn =
1

2π

∫ 2π

0
dxf(x)e−ikx for k = · · · ,−2,−1, 0, 1, 2, · · · .

Then

S[f ]↽==
∞∑

k=−∞
cne

ikx

397 That is, f(x+ 2π) = f(x) for any x ∈ R.
398 The integration range can be [−π, π].
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is called the complex Fourier series of f .
Needless to say, a theorem corresponding to A7.2 holds.

A7.4 Theorem [Bessel’s inequality]. If f is 2π-periodic and square
integrable on [0, 2π], then

2π
∞∑

k=−∞
|ck|2 ≤

∫ π

−π
dx|f(x)|2.

✷

A7.5 Theorem [Parseval’s equality]. If f is a 2π-periodic continu-
ous function, and f ′ is square integrable (especially f is a 2π-periodic
C1-function (→A3.21)), then S[f ] uniformly converges to f . In this
case the following equality holds

2π
∞∑

k=−∞
|ck|2 =

∫ π

−π
dx|f(x)|2,

which is called Parseval’s equality.✷
Warning. The continuity of f is not sufficient even for pointwise con-
vergence of S[f ] to f . See A7.8.

A7.6 L2-convergence. A function sequence fn defined on (−π, π) is
said to L2-converge to f (or to converge in the square mean), if

∫ π

−π
dx|fn(x)− f(x)|2 → 0

as n →∞.
A7.7 Theorem. If f is a 2π-periodic continuous function, then S[f ]
L2-converges to f , and Parceval’s equality (→A7.5) holds. ✷

A7.8 Theorem [duBois-Reymond]. For a 2π-periodic function f ,
its continuity does not guarantee the pointwise convergence of S[f ] to
f . [Counterexamples exist.] ✷
However,

A7.9 Theorem [Fejér]. Let Sn be the partial sum of the Fourier
series up to the n-th term. Define

σn ≡ 1

n + 1

n∑
k=0

Sk.

487



If f is a 2π-periodic continuous function, then σn uniformly converges
to f . ✷

A7.10 Piecewise C1-function. A function f is said to be piecewise
C1, if there are finitely many points γ1 < γ2 < · · · < γm such that on
each open interval (γl, γl+1) f and f ′ are continuous and bounded.
Notice that at each γl right and left limits (→A2.6) of f (denoted by
f(γl + 0) and f(γl − 0)) exist.
A7.11 Theorem. If f is piecewisely C1, then S[f ] converges to
[f(x + 0) + f(x − 0)]/2 for all x. The same holds if f ′ is piecewise
continuous and square-integrable (i.e., its boundedness need not be as-
sumed). The convergence is uniform except in the arbitrarily small
neighborhood of the discontinuities of f . ✷

A7.12 Theorem. If f is a 2π-periodic function, integrable on (−π, π)
and is of bounded variation,399 then the conclusion of A7.11 holds. ✷

A7.13 Theorem [Locality of convergence]. Let f1 and f2 be piece-
wise 2π-periodic functions integrable on (−π, π). If there is a neighbor-
hood of x0 such that f1 ≡ f2 on it, then S[f1] converges (resp., diverges)
at x0 if and only if S[f2] converges (resp., diverges) at x0. When they
converge, the limits are identical. ✷

A7.14 Fourier transform. Let f be an integrable function on R. If
the following integral exists

f̂ =
∫ ∞

−∞
dxf(x)e−ikx,

it is called the Fourier transform of f . Mathematicians often multiply
1/
√
2π to this definition to symmetrize the formulas. However, this

makes the convolution formula A7.20(iv) awkward. For physicists and
practitioners, the definition here is the most convenient.
If a function f : R → C is continuous except for finitely many points,
and absolutely integrable, then its Fourier transform f̂ : R → C is a
bounded continuous function such that limk→∞ f(±k) = 0.
Also we have an important relation

f̂ ′ = ikf̂ .

A7.15 Rapidly decreasing function. A function f : R → C is

399 That is, f can be written as a difference of two monotone increasing functions
(→A2.11).
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called a rapidly decreasing function, if the following two conditions hold:
(i) f is a C∞-function (→A3.21).
(ii) For any k, l ∈N , xlf (k) → 0 in the |x| → ∞ limit.
The function is also called a Schwartz-class function (or S-function).
A7.16 Inverse Fourier transform. If f is a rapidly decreasing func-
tion, then the following inversion formula holds:

f(x) =
1

2π

∫ ∞

−∞
dkf̂(k)eikx.

✷

A7.17 Theorem. If f : R → C is continuous (and bounded), and

both f and f̂ are absolutely integrable, then the inversion formula holds.
✷

A7.18 Parseval’s equality. If the inversion formula holds and if f is
square integrable, we have∫ ∞

−∞
dx|f(x)|2 = 2π

∫ ∞

−∞
dk|f̂(k)|2.

✷

A7.19 Convolution. Let f and g be integrable function defined onR.
The following h(x) is called the convolution of f and g and is denoted
by f ∗ g:

h(x) = (f ∗ g)(x)↽==
∫ ∞

−∞
dyf(x− y)g(y).

A7.20 Properties of convolution.
(i) The definition is symmetric with respect to f and g, that is, f ∗ g =
g ∗ f .
(ii) If f and g are rapidly decreasing, then so is h.
(iii) h(k) = f (k) ∗ g

(iv) ˆf ∗ g = f̂ ĝ.

A7.21 Theorem [Inversion formula for piecewise C1-function].
Let f be piecewise C1-function (→A7.10) on R. Then

1

2
[f(x0 − 0) + f(x0 + 0)] =

1

2π
p.v.

∫ ∞

−∞
dkeikx0 f̂(k).

Here p.v. implies Cauchy’s principal value of the integral. ✷
We can write the formula as

1

2
[f(x0 − 0) + f(x0 + 0)] = lim

λ→∞

∫ ∞

−∞
dξ
sin(λ(x0 − ξ))

x0 − ξ
f(ξ).
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✷

A7.22 Multidimensional case. It is easy to generalize the rapidly
decreasing property to multidimensional cases. If a function is rapidly
decreasing, then formal generalization of the above results to multidi-
mensional cases are legitimate.

45 Ordinary Differential Equation

Practical advice. See Schaum’s outline series Differential Equations
by R. Bronson for elementary methods and practice. To learn the the-
oretical side, V. I. Arnold, Ordinary differential equations (MIT Press
1973; there is a new version from Springer) is highly recommended.

A8.1 Ordinary differential equation. Let y be a n-times differen-
tiable function of x ∈ R. A funcitonal relation f(x, y, y′, · · · , y(n)) = 0
among x,y, y′, · · ·, y(n) is called an ordinary differential equation (ODE)
for y(x), and n is called its order, where the domain of f is assumed
to be appropriate. Such y(x) that satisfies f = 0 is called a solution to
the ODE.

A8.2 General solution, singular solution. The solution y = ϕ(x, c1, c2, · · · , cn)
to f = 0 in A8.1 which contains n arbitrary constants c1, · · ·, cn (which
are called integral constants) is called the general solution of f = 0. A
solution which can be obtained from this by specifying the arbitrary
constants is called a particular solution. A solution which cannot be
obtained as a particular solution is called a singular solution.

A8.3 Normal form. If the highest order derivative of y is explicitly
solved as y(n)(x) = F (x, y′, · · · , y(n−1)), we say the ODE is in the nor-
mal form. Notice that not normal ODE’s may have many pathological
phenomena.

A8.4 Initial value problem of first order ODE. Consider the fol-
lowing first order ODE

dy

dx
= f (x, y), (45.1)
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where f is defined in a region D ⊂ R2. To solve this under the condi-
tion that y(x0) = y0 ((x0, y0) ∈ D) is called a initial value problem.

A8.5 Theorem [Cauchy-Peano]. If for (45.1) f is continuous on
a region D ⊂ R2, then for any (x0, y0) ∈ D there is a solution y(x)
of (45.1) passing through this point whose domain is an open interval
(α, ω) (−∞ ≤ α < ω ≤ ∞), and in the limits x → α and x → ω y(x)
approaches the boundary of D or the solution becomes unbounded. ✷

A8.6 Lipschitz condition. Let f(x, y) be a continuous function
whose domain is a region D ⊂ R2. For any compact set (→[AI25])
K ⊂ D, if for any (x, y), (x′, y′) ∈ K there is a positive constant LK

(which is usually dependent on K) such that

|f(x, y)− f(x′, y′)| ≤ LK |y − y′|,
then f is said to satisfy a Lipschitz condition on D for y.
If f and fy are both continuous in D, then f satisfies a Lipschitz con-
dition on D.

A8.7 Theorem [Cauchy-Lipschitz uniqueness theorem]. For
(45.1), if f satisfies a Lipschitz condition on D for y, then if there
is a solution passing through (x0, y0) ∈ D, it is unique. ✷

A8.8 Theorem. Let f : R → R be a continuous and monotone de-
creasing function. Then the initial value problem dy/dx = f(y) (for
x > x0) with y(x0) = y0 has a unique solution for x ≥ x0. ✷

A8.9 Method of quadrature. To solve an ODE by a finite number of
indefinite integrals is called the method of quadrature. Representative
examples are given in A8.10-A8.13.

A8.10 Separation of variables. The first order equation of the fol-
lowing form

dy

dx
= p(x)q(y),

where p and q are continuous functions, is solvable by the separation
of variables: Let Q(y) be a primitive function (→[AIV5]) of 1/q(y) and
P that of p. Then Q(y) = P (x) +C is the general solution, where C is
the integration constant.

A8.11 Perfect differential equation, integrating factor. The first
order ODE of the following form

dy

dx
= −P (x, y)

Q(x, y)
,
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where Q �= 0. If there is a function Φ such that Φx = P and Φy = Q,
then Φ(x, y) = C, C being the integral constant, is the general solution.
Even if P and Qmay not have such a ‘potential’ Φ, P and Q times some
function I called integrating factor may have a ‘potential.’ However, it
is generally not easy to find such a factor except for some special cases.

A8.12 Linear first order equation, variation of parameter. The
first order equation

dy

dx
= p(x)y + q(x)

is called a linear equation. The equation can be solved by the method of

variation of parameters. Let y(x) = C(x)e
∫ x

p(s)ds. Then the equation
for C can be integrated easily. As we will see in A8.14, the method of
variation of parameters always works for linear equations.

A8.13 Bernoulli equation. The first order equation of the following
form is called a Bernoulli equation:

dy

dx
= p(x)y +Q(x)yn,

where n is a real number. Introducing the new variable z(x) = y(x)1−n,
we can reduce this equation to the case [12] for z(x).

A8.14 Linear ODE with constant coefficients, characteristic
equation. Consider

d2y

dx2
+ a

dy

dx
+ by = 0, (45.2)

where a and b are constants.

P (λ) = λ2 + aλ+ b

is called its characteristic equation, and its roots are called character-
istic roots.

A8.15 Theorem [General solution to (4.80)]. If the characteristic
roots of (4.80) are α and β (�= α), then its general solution is the linear
combination of ϕ1(x) = eαx and ϕ2(x) = eβx. If α = β, then the gen-
eral solution is the linear combination of ϕ1(x) = eαx and ϕ2(x) = xeαx

(the characteristic roots need not be real.) ✷
ϕ1(x) and ϕ2(x) are called fundamental solutions and {ϕ1(x), ϕ2(x)} is
called the system of fundamental solutions for (4.80).
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A8.16 Inhomogeneous equation, Lagrange’s method of varia-
tion of constants. An ODE

d2y

dx2
+ a

dy

dx
+ by = f (x) (45.3)

with nonzero f is called an inhomogeneous ODE (the one without
nonzero f is called a homogeneous equation). The general solution
is given by the sum of the general solution to the corresponding ho-
mogeneous equation and one particular solution to the inhomogeneous
problem. A method to find one solution to (4.83) is the Lagrange’s
method of variation of constants. Let ϕi(x) be the fundamental solu-
tions and determine the functions Ci(x) to satisfy (4.83):

u(x) = C1(x)ϕ1(x) + C2(x)ϕ2(x).

One solution can be obtained from

dC1

dx
= −f(x)ϕ2(x)

W (x)
,

dC2

dx
=

f(x)ϕ1(x)

W (x)
,

where W (x) = ϕ1(x)ϕ
′
2(x)− ϕ2(x)ϕ

′
1(x), the Wronskian of the funda-

mental system. ✷
If the two characteristic roots α and β are distinct, then such a u is
given by

u(x) =
1

α− β

(∫ t

0
dsf(s)eα(t−s) −

∫ t

0
dsf(s)eβ(t−s)

)
.

46 Vector Analysis

A9.1 Gradient. Suppose we have a sufficiently smooth function f :
D → R, where D ⊂ R2 is a region. We may imagine that f(P ) for
P ∈ D is the altitude of the point P on the island D. Since we assume
the landscape to be sufficiently smooth, at each point on D there is a
well defined direction n of the steepest ascent and the slope (magni-
tude) s(≥ 0). That is, at each point on D, we may define the gradient
vector sn, which will be denoted by a vector field grad f .
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A9.2 Coordinate expression of grad f . Although grad f is mean-
ingful without any specific coordinate system, in actual calculations,
introduction of a coordinate system is often useful. Choose a Cartesian
coordinate system O-xy. Then the vector has the following representa-
tion:

grad f =

(
∂f

∂x
,
∂f

∂y

)
,

or

grad f = i
∂f

∂x
+ j

∂f

∂y
. (46.1)

A9.3 Remark. Note that to represent grad f in terms of numbers, we
need two devices: one is the coordinate system to specify the point in
D with two numbers, which allow us to describe f as a function of two
independent variables, and two vectors to span the two dimensional
vector ‘grad f ’ at each point on D. In principle any choice is fine,
but practically, it is wise to choose these base vectors to be parallel
to the coordinate directions at each point. In the choice A9.2, the
coordinate system has globally the same coordinate direction at every
point on D, and the basis vectors are chosen to be parallel to these
directions, so again globally uniformly chosen. Nonuniformity in space
of representation schemes may cause complications. Especially when
we formally use operators as explained below, we must be very careful
(→A9.7,A9.9 for a warning).

A9.4 Nabla or del. (3.2) suggests that grad is a map which maps f
to the gradient vector at each point in its domain (if f is once partially
differentiable). We often write this linear operator as ∇, which is called
nabla,400 but is often read ‘del’ in the US. We write grad f = ∇f . ∇
has the following expression if we use the Cartesian coordinates (read
[3])

∇↽==
n∑

k=1

ik
∂

∂xk
, (46.2)

where xk is the k-th coordinate and ik is the unit directional vector in
the k-th coordinate direction.

A9.5 Divergence. Suppose we have a flow field (velocity field) u on
a domain D ∈ R3. Let us consider a convex domain401 V ⊂ R3 which
may be imagined to be covered by area elements dS whose area is |dS|,
and whose outward normal unit vector is dS/|dS|. Then u · dS is the
400 ‘Nabla’ is a kind of harp (Assyrian harp).
401 A set is said to be convex if the segment connecting any two points in the set
is entirely included in the same set.
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rate of the volume of fluid going out through the area element in the
unit time. Hence the area integral

∫
∂V

dS · u

is the total amount of the volume of the fluid lost from the domain V .
The following limit, if exists, is called the divergence of the vector field
u at point P and is written as div u:

divu ≡ lim
|V |→0

∫
∂V u · dS
|V | , (46.3)

where the limit is taken over a nested sequence of convex volumes con-
verging to a unique point P . Thus its meaning is clear: divu is the
rate of loss of the quantity carried by the flow field u per unit volume.

A9.6 Cartesian expression of div. From (3.5) assuming the exis-
tence of the limit, we may easily derive the Cartesian expression for
div. Choose as V a tiny cube whose surfaces are perpendicular to the
Cartesian coordinates of O-xyz. We immediately get

divu =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
. (46.4)

A9.7 Operator div. (3.10) again suggests that div is an operator
which maps a vector field to a scalar field. Comparing (3.3) and (3.10)
allows us to write

divu = ∇ · u.
This ‘abuse’ of the symbol is allowed only in the Cartesian coordinates.
Generalization to n-space is straightforward.

A9.8 Curl. Let u be a vector field as inA9.5. Take a singly connected
compact surface S in R3 whose boundary is smooth. The boundary
closed curve with the orientation according to the right-hand rule is
denoted by ∂S (see Fig.). Consider the following line integral along
∂S: ∫

∂S
u · dl,

where dl is the line element along the boundary curve. Ket us imagine
a straight vortex line and take S to be a disc perpendicular to the line
and its center is on the line. Immediately we see that the integral is
the strength of the vortex whose center (singular point) goes through
S. Thus the following limit, if exists, describes the ‘area’ density of
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the n-component of the vortex (as in the case of angular velocity, the
direction of vortex is the direction of the axis of rotation with the right-
hand rule):

n · curlu = lim
|S|→0

∫
∂S u · dl
|S| , (46.5)

where the limit is over the sequence of smooth surfaces which converges
to point P with its orientation in the n-direction. If the limit exists,
then obviously there is a vector curlu called curl of the vector filed u.

A9.9 Cartesian expression of curl. If we assume the existence of
the limit (3.14), we can easily derive the Cartesian expression for curlu.
We have

curlu =

(
∂uz

∂y
− ∂uy

∂z
,
∂ux

∂z
− ∂uz

∂x
,
∂ux

∂y
− ∂uy

∂x

)
, (46.6)

or

curlu =

∣∣∣∣∣∣∣
i j k
∂x ∂y ∂z

ux uy uz

∣∣∣∣∣∣∣ = ∇× u. (46.7)

This ‘abuse’ of the nabla symbol is admissible only with the Cartesian
coordinates.

A9.10 Potential field, potential, solenoidal field, irrotational
field. If a vector field u allows an expression u = grad φ, then the field
is called a potential field and φ is called its potential. A field without
divergence divu = 0 is called a divergenceless or solenoidal field. The
field without curl curlu = 0 is called an irrotational field.

A9.11.
(i) curl grad φ = 0 (Potential fields are irrotational).
(ii) div curlu = 0.
(iii) If a vector field is irrotational on a singly connected domain,402

then the field is a potential field.
(iv) If a vector field u is solenoidal in a singly connected domain, then
there is a vector field A on the domain such that u = curlA. A is
called a vector potential.

A9.12 Theorem [Gauss-Stokes-Green’s theorem]. From our def-
initions of divergence and curl, we have

402 A domain is singly connected, if, for any given pair of points in the domain,
any two curves connecting them are homotopic. That is, they can be smoothly
deformed into each other without going out of the domain.
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(i) Gauss’ theorem.

∫
∂V
u · dS =

∫
V
divudτ, (46.8)

where V is a domain in the 3-space and dτ is the volume element.
(ii) Stokes’ theorem.

∫
∂S
u · dl =

∫
S
curlu · dS, (46.9)

where S is a compact surface in 3-space.

A9.13 Laplacian. The operator ∆ defined by ∆f ≡ div grad f is
called the Laplacian, and is often written as ∇2. ∆ is defined for a
scalar function.

A9.14 Laplacian for vector fields. If we formally calculate curl curlu
in the Cartesian coordinates, then we have

curl curlu = grad divu−∇2u.

Since the formal calculation treating ∇ as a vector is legitimate only
in the Cartesian coordinate system, this calculation is meaningful only
in the Cartesian system. Thus, in particular ∇2u = (∆ux,∆uy,∆uz)
is meaningful only in this coordinate system. However, the other two
terms are coordinate-free expressions. Hence, we define ∆u as

∆u ≡ grad divu− curl curlu. (46.10)
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