
1 Preliminaries

Prefix codes
Prefix If y = xz, x is a prefix of y.
Prefix free A set A is prefix-free, if any x ∈ A is never a prefix of any of y ∈ A.
Prefix code The code whose domain is prefix-free.
Self-delimiting code Let x be a binary string, and �(x) be its length. Then,

x = 1�(x)0x

is called the self-delimiting version of the string x.
Example: xy = 110011110010 implies x = 01 and y = 010.

Primitive recursive function[S8]
Church’s lambda notation: Let [· · ·x · · ·] be an expression such that for any
integer in place of x the expression has at most one corresponding value. Then,
λx[· · ·x · · ·] denotes the associated partial function.
The class of primitive recursive functions is the smallest class C closed under
the following schemata:
(I) The successor function: λx[x+ 1] is in C.
(II) The constant function: λx1 · · ·xn[m]are in C for all n,m ∈ N .
(III) The identity function (projections) λx1 · · ·xn[xi] are in C for n ∈ N and
i ∈ {1, · · · , n}.
(IV) (Composition) If g1, · · · , gm, h ∈ C, then

f(x1, · · · , xn) = h(g1(x1, · · · , xn), · · · , gm(x1, · · · , xn)) (1.1)

is in C.
(V) (Primitive recursion) If g, h ∈ C and n ≥ 1, then f ∈ C where

f (0, x2, · · · , xn) = g(x2, · · · , xn), (1.2)

f (x1 + 1, x2, · · · , xn) = h(x1, f(x1, x2, · · · , xn), x2, · · · , xn). (1.3)

Partial recursive and recursive functions
The class of partial recursive functions is the least class obtained by closing
under (I)-(V) above and
(VI) (Unbounded search) If θ(x1, · · · , sn, y) is partial recursive and total1

ψ(x1, · · · , xn) = µy[θ(x1, · · · , xn, y)], (1.4)

where µ implies the minimalization.
A total partial function is called a recursive function.

1 A more precise definition is in [S10].

1

Turing machine
Two states suffice to make a Turing machine (p79; however, the number of
tape symbols must be increased). Therefore, state × symbol complexity could
classify Turing machines (or algorithms).
Turing’s thesis: an effective procedure is realized by a Turing machine.
Church’s thesis: The class of algorithmically computable numerical functions
(in the intuitive sense) coincides with the class of partial recursive functions.

Gödel numbering: (or effective enumeration)

Enumeration theorem: n-variable partial recursive functions φi(x1, · · · , xn)
there is a n+1-variable partial recursive function ψ(i, x1, · · · , xn) = φi(x1, · · · , xn).
(ψ is the universal function for n-variables.)

Recursiveness
Recursively enumerable set: a set which is a domain of some total recursive
function.
Recursive set: a set whose indicator is a total recursive function. In other
words, a set is recursive if it is accepted by a Turing machine that surely halts.
Examples of recursive sets:
(1) The set of primes
(2) Any finite set or any set with a finite complement.
(3) The set of all {e, x, y : φe,<s(x) = y} is a recursive set, where φe,<s the
Turing machine e (< s) and φe,<s(x) is defined if it stops with the program x
by s steps. {e, x, y, s : φe,<s(x) = y} is also recursive.
Examples of recursively enumerable sets
(1) any recursive set.
(2) The set of partial recursive functions whose range is nonempty.
(3) The set of x such that x consecutive 1’s appear in π.

Lemma 1.3
(i) A set A is recursive if A and Ac are both recursively enumerable.
(ii) An infinite set A is recursive, iff it is recursively enumerable in the increas-
ing order.
[Demo of (ii)] (Only if) we have only to order A.
(If) Let A be ordered as a1 < a2 < · · ·. Given x we have only to check i
elements satisfying ai ≥ x.
Lemma 1.4 Every infinite recursively enumerable set contains an infinite re-
cursive set.
[Demo] Let f enumerate an infinite recursive set A. Order f according to its
value, and define a recursive function g that gives these values in the increasing
order as g(1), g(2), · · ·. This sequence does not end, so g is a total recursive
function. [(ii) above is enough.] [Intuitively, collect all the inputs on which

2

the TM halts. Even though we cannot effectively find such set, there is such
a set any way.]

Halting problem
Lemma 1.5 Let K0 = {(x, y) : φx(y) is defined}, where φx(y) is the Turing
machine x with input y. K0 is called the halting set. K0 is not recursive. [S19]
[Demo] K0 is recursively enumerable (if necessary, see [S18]). Let K = {x :
φx(x) halts}. If K0 is recursive, then its indicator χ(x, y) is recursive. There-
fore, g(x) ≡ χ(x, x) is also recursive, and K becomes a recursive set. Let
ψ(x) = φx(x) + 1 if φx(x) is computable, and ψ(x) = 0 if not. Since ψ(x) is
partially recursive function, so there must be z such that φz(x) = ψ(x) for all
x. This cannot, however, be correct for x = z; a contradiction.

The set K0 is the domain of a universal partial recursive function.

Reduction
A ≤m B (A is many-one reducible to B), if there is a recursive function such
that f(A) ⊂ B and Ac ⊂ Bc (.e., x ∈ A iff f(x) ∈ B).
If f is one-to-one, A ≤1 B (one=one reducible) [S19].
A ≡m B if A ≤m B and B ≤m A. If A ≤m B and B is recursive, then A is
recursive.
Theorem [S20] LetK = {x : φx(x) definable }, and Tot = {x : φx i a total function }.
Then, K ≤1 Tot.
[Demo] ✷.

Notice that whether φx is constant, or domφx �= ∅ is undecidable.

Index set and Rice’s theorem
A ⊂ N is an index set if for all x and y, x ∈ A, and φx = φy implies y ∈ A.
Theorem [S21]. If A is a nontrivial index set (i.e., A �= ∅, A �= N), then
either A ≤1 A or K ≤1 A

c.

Incompleteness
True formulas: formulas ‘true’ according to some (nonconstructive) criterion
of truth.
Provable formulas: formulas provable according to a syntactic notion of proof.

Theory T : a set T of formulas.
Axiomatizable theory: T is effectively enumerable.
Decidable theory: T is recursive.
Consistent theory: T that does not contain x and its negation. Soundness =
consistency.
Lemma 1.6 Let T be an axiomatizable theory that is sound and extends

3

Peano Arithmetic. Then, there is a recursively enumerable set K0 such that
n �∈ K0 and the formula “n �∈ K0” is true in T but not provable in T .
This is the Church-Kleene version of the incompleteness theorem.
[Demo] K0 introduced in Lemma 1.5 is a RENR set (Lemma 1.5). Suppose all
true formulas of the form n �∈ K0 are provable in T . This means that there is
a way to enumerate the complement of K0. This implies that K0 is a recursive
function, a contradiction.

Language
Language: a language over a finite alphabet Σ is a subset L of Σ∗.
We say a Turing machine T accepts a language L, if T computes the indicator
of L.

Computable complexity
Computable complexity: T has a time complexity t(n) if T halts after at most
t(n) steps for any length n inputs. T has a space complexity s(n) if T halts
after using at most s(n) cells for any length n inputs.
k-tape Turing machine with t(n) time complexity (s(n) space complexity) can
be emulated by a single tape TM with a time complexity t(n)2 (a space com-
plexity s(n)).
Thus complexity classes such as DTIME[t(n)], NSPACE[s(n)] may be consis-
tently defined.
P ⊂ NP ⊂ PSPACE.

Oracle
Oracle machine: If a TM has a special oracle state in which it can ask whether
x ∈ A or not for the temporal output x as many times as required, the TM
is called an oracle TM with a oracle set A. A TM T with an oracle set A is
denoted as TA.

Reduction of language: A language A is polynomial time Turing reducible to
a language B (denoted as A ≤P

T B), if TB accepts A in polynomial time.

NP-complete language: an NP-hard language A is said to be NP-complete, if
TA can reduce any NP problem to P.
Polynomial hierarchy:

∆p
1 = P , Σp

1 = NP .
Σp
n+1 = NPΣp

n, ∆p
n+1 = PΣp

n .

Randomness
Von Mises collective: LLN + place selection rule yielding sequences with thep48
same LLN.
According to Kolmogorov: “Generally speaking, there is no ground to believe
that random phenomena should possess any definite probability. Therefore, we

4

should distinguish between randomness proper (as absence of any regularity)
and stochastic randomness (which is the subject of probability theory). There
emerges the problem of finding reasons for the applicability of the mathemat-
ical theory of probability to the real world.”

Definitions in terms of initial segments are the effectively meaningful ap-
proaches.

Information theory
Shannon-Fano coding: Let the frequency of symbols be p1 ≥ p2 ≥ · · ·. The
code length �(r) for symbol r is chosen to satisfy

2−�(r) ≤ pr ≤ 21−�(r). (1.5)

In this case the entropy per symbol is asymptotically H.
Theorem 1.2 [noiseless coding theorem]. Let H be the entropy of thep71
source. Then, H ≤ L ≤ H + 1 for the optimal code, where L =

∑
x P (x)�(x).

[Demo is straightforward with the aid of the Shannon-Fano code and Kraft’s
inequality (Th 1.1).]

Codes
Prefix code: the code consisting of prefix free codewords. This is instanta-
neously decodable uniquely.
Unique decodability does not require the prefix property (cf. 0, 01, 011, 0111,
· · · for 0, 1, 2, · · ·, respectively). The prefix codes are characterized by the
property that the end of a code is always recognized as such.

In terms of the tree representation of the codes, a prefix code corresponds top69
the one without any internal node corresponding to a word.
Theorem 1.1 [Kraft’s inequality] A prefix code exists if and only if

∑

r

2−�(r) ≤ 1. (1.6)

Here, �(r) is the length of the binary code word encoding the r-th word.
[Demo] ‘Only if’ is easy, because the prefix codes are longer than the original
(a graphical way is to illustrate the code sequence as an subset of [0, 1); prefix
codes are a collection of disjoint such subsets). To demonstrate ‘If’ we have
only to construct a prefix code with the aid of the tree.
NB: The above theorem says that (1.6) implies there is a prefix code; Not all
the codes satisfying (1.6) are prefix. Example: {0, 00, 11}.
NB: Uniquely decodable codes must satisfy (1.6) (mentioned in Ex 1.35).

Optimal code: The code with the shortest codeword length expectation value.
Decoding procedures should be effective. If the number of words is finite, we

5

have only to make a table, but if there are infinitely many, we need a method
to recognize a code word.
Self-delimiting code If there is a Turing machine that can recognize code words
and decode them, then we call the code self-delimiting.
Universal code: The code such that there is a constant c satisfyingL/max(H, 1) ≤
c for any source. If c = 1 asymptotically in the H → ∞ limit, then the codep74
is said to be asymptotically optimal.
For any binary sequence x �(x)x gives asymptotically optimal universal coding.

2 Complexity

Complexity
Conditional complexity: Let φ be a partial recursive function, and x = φ(〈p, y〉),
where 〈p, y〉 is a bijection between the pair (p, y) and the singleton 〈p, y〉 (say,
= py). The complexity Cφ(x | y) of x conditional to y is defined by

Cφ(x | y) = min{�(p) : x = φ(〈p, y〉)}. (2.1)

(If there is no such p, Cφ is interpreted as ∞.)
As usual we can introduce a universal partial recursive function, and can

define the conditional Kolmogorov complexity, fixing a universal function:

C(x | y) = Cφ0(x | y). (2.2)

If y = ε, this defines the unconditional complexity.
Theorem 2.2. There is a constant c such that

C(x) ≤ �(x) + c, (2.3)

C(x | y) ≤ C(x) + c. (2.4)

[Demo] (2.3) follows from a copying machine. (2.4) follows because y need not
be used (or should be used only when printing x becomes easier).

It is easy to show

C(x, y) ≤ C(x) + C(y) +O[log(min{C(x), C(y)})]. (2.5)

[Demo] Use a TM to print x and y and separate them. To separate x and y
the TM must be able to tell when the program for x (or y) ends. Therefore,
the program length must be specified. This requires logC(x). This argument
tells us

C(x, y |C(x)) ≤ C(x) + C(y) +O[1]. (2.6)

6

Incompressibility
x is c-incompressible, if

C(x) ≥ �(x) − c. (2.7)

If �(x) = n, there are 2n such strings. It is very likely that C(x) ∼ n. Or more
precisely, the number of the strings of length n with C(x) ≤ n − c is about
2n−c. Therefore, c-compressible strings are very rare.
NB: Notice that here x is not an infinite sequence. If xn is the n-length prefix
of an infinite sequence x, then the above formula does not hold for all n (see
Theorem 2.10).
Notice that the very incompressibility of a sequence requires that it has com-
pressible substrings; if not, then the sequence is classified as a sequence without
certain set of subsequences. This allows the sequence to be compressed.

Theorem 2.4. Let A ⊂ N × N be recursively enumerable, and Y = {x :
(x, y) ∈ A} be finite. Then, for all x ∈ Y

C(x | y) ≤ �(Y ◦) + c (2.8)

for some constant c that depends only on A.
Randomness deficiency: Let x ∈ A. Then, we can define C(x |A). The ran-
domness deficiency of x relative to A is defined by

δ(x |A) ≡ �(A◦) − C(x |A). (2.9)

Th 2.4 implies that δ(x |A) ≥ −c. The deficiency measures the discrepancy of
maximal complexity of a string in A and the complexity of x.
If δ(x |n) = O[1] (A = {x : �(x) = n}), we say x is a random finite string (=
Martin-Löf’s notion of randomness). In this case δ(x |n) = n−C(x |n)+O[1].

Properties of C
Theorem 2.5. Let m(x) = miny≥x C(y) (We know that C is essentially
majorized by log x from C(x) ≤ �(x) + c).
(i) C is unbounded.
(ii) m is unbounded.
(iii) m is bounded by any unbounded monotone increasing recursive function
for all x ≥ x0 for some x0. That is, m increases slower than any unbounded
increasing recursive function).
NB: (ii) and (iii) do not hold for C(x | �(x)), because it drops to a constant
for infinitely many x. [This is because there is a special x = n2n−�(n) for each
positive integer n (called n-string).]
[Demo of (i) and (ii)] Since there are only finitely many programs of a given
length, m must increase without bound. Thus, (ii) that implies (i).
[Demo of (iii)] Assume the contrary. There must be a recursive function ψ such
that there are infinitely many x where ψ ≤ m. F (a) = max{a : ψ(x) ≤ a+ 1}

7

is a recursive function, so C(F (a)) ≤ �(a) + O[1] (use a universal recursive
function to emulate F). On the other hand, C(F (a)) > a by definition of F ,
we must conclude that a ≤ �(a)+c for infinitely many a, but this is impossible.
We can estimate the frequency of the dips in C. n-strings appear roughly log xp105
up to x, so there are at least log x dips.
Theorem 2.6.
(i) C is not computable.
(ii) There is no computable function that agrees with C at infinitely many
points.
A demo of (ii) is quite similar to the above (iii).
Theorem 2.7. There is a monotone decreasing sequence of total recursive
functions {ψn} such that limn ψn(x) = C(x).
NB: However, for a given x it is impossible to decide the needed n.
C is continuous in the sense that there is a constant c such that

|C(x) − C(x± h)| ≤ 2�(h) + c. (2.10)

C hugs log x. [This is due to Th2.2 and (2.7).]
C fluctuates rapidly. [By changing the last one half sequence of x (that is,
within ±√

x range of x) C can be changed by �(x)/2.]
For each c there is r such that there is no length r run of c-incompressible
numbers. [To show this, we use the fact that there are special x = p2q such
that C(p2q) ∼ �(p) + �(q) + c ∼ �(p2q) − r (that is, we can choose p and q for
each c and r. Here, precisely speaking ∼ should be interpreted as ≤.]
For each r there is c such that there is a length r run of c-incompressible num-
bers.

Test
If incompressible sequences have various properties or randomness known from
the theory of probability (= stochasticity), equating incompressibility and ran-
domness may be admissible. We invent statistical tests to reject non-random
numbers.
P-text or Martin Löf test: Let P be a recursive probability on N . If a total
recursively enumerable function δ satisfies

P ({x : δ(x) ≥ m, �(x) = n}) ≤ 2−m (2.11)

for all n, then δ is called a P -test.
Example: Uniform distribution Ln for length n string is Ln(x) = 2−n, if
�(x) = n and 0 otherwise. In this case (2.11) may be written as {x : δ(x) ≥
m, �(x) = n}◦ ≤ 2n−m.
Lemma P -tests are effectively enumerable.

Universal test
Universal P -text δP is a test such that

δP (x) ≥ δ(x) − c (2.12)

8

for some c for each δ. Its existence is a major result.
Theorem 2.8. max{δn(x) − n : n ∈ N+} is a universal P -test, if δn is an
enumeration of all the P -tests.
To demonstrate this, first we must show that all the P -tests are enumerable.
Theorem 2.9. For a uniform distribution δU(x) = �(x) − C(x | �(x) − 1 is a
universal test.
c-randomness: If δU(x) ≤ c, we say x is c-random.
Notice that if x is incompressible �(x) ∼ C(x) ∼ C(x | �(x)), so randomness is
related to incompressibility.
The fluctuation of the number of 1 in a Martin-Löf random number must bep111
O[

√
n].

Infinite random sequence
Let ω be an infinite binary sequence, and ωn be its length n prefix.
There is no ω such that for all n C(ωn) ≥ n− c for some constant c, because
C(ωn) can be far less than n = �(ωn):
Theorem 2.10. Let f be a total recursive function satisfying

∞∑

n=1

e−f(n) = ∞ (2.13)

(i.e., f should not grow too fast; logn satisfies the condition). Then, for
infinitely many n

C(ωn |n) ≤ n− f(n). (2.14)

If f satisfies C(n |n − f(n)) = O[1], then for infinitely many n C(ωn |n) ≤
n− f(n).
For highly random sequence we have C(ωn) ≥ n−2 logn log logn, so the above
estimate is very accurate, but to make this statement we must define highly
random sequences.

Let γ be a total enumerable function such that {(m,x) : γ(x) ≥ m} is a recur-p117
sively enumerable set. Let δ(ω) = supn γ(ωn) and µ be a recursive probability
measure on {0, 1}∞. δ is a sequential µ-test, if

µ({ω : δ(ω) ≥ m}) ≤ 2−m (2.15)

for each n ≥ 0. (In short, γ is a function that detect a regularity, and gives a
large number for rare regularity.) If δ(ω) = ∞ we say ω fails δ (δ rejects ω).
The set of δ-rejected sequences has µ-measure zero.
An infinite binary sequence ω is called µ-random, if ω passes all the sequential
µ-tests.
Theorem 2.11. There is a universal sequential µ-test δµ such that for any
sequential µ-test δ there is a constant c such that δµ(ω) ≥ δ(ω) − c.

9

ω is called µ-random in the sense of Martin-Löf (or simply random), if δµ(ω) <
∞.
Theorem 2.12. The totality of the µ-random sequences are µ-measure one.
Theorem 2.13. Let f be a recursive function and

∑
n 2−f(n) be a computable

convergent sequence. If ω is random, C(ωn |n) ≥ n−f(n) for all n larger than
some fixed number.
In this sense Theorem 2.10 is optimal.

Theorem 2.14. If C(ωn) ≥ n− c for some constant c infinitely often, then
(A) ω is random.
(B) ω is uniform measure one.
Let U be the set characterized by 2.13, and V by 2.14. Then,

U ⊂ {random sequences} ⊂ V. (2.16)

Statistical properties of finite sequences
This is more complicated than the infinite sequences.

Algorithmic property of C
Theorem 2.17.
(i) The set {(x, a) : C(x) ≤ a} is a RENR set.
(ii) Let f be a total recursive function such that it is bounded from below by a
monotone increasing unbounded function, but bounded from above with log x.
Then,

B = {x : C(x) ≤ f(x)} (2.17)

is recursively enumerable and Bc is infinite but does not contain an infinite
recursively enumerable subset (that is, B is simple).

Since an axiomatizable theory T is a set of formulas that can be a range of a
partially recursive function function, there is number k such that C(T) ≤ k.
T cannot be used to demonstrate the randomness of any number much longer
than k bits (demo on p135).
C2.5. There is a recursively enumerable set B ((Bc)◦ = ∞) such that for
every axiomatizable sound theory T only finitely many formulas outside B is
both true and provable in T .

Characteristic sequence
Let A ⊂ N . χ is the characteristic sequence of A, if χ(i) = 1 if i ∈ A;
otherwise χ(i) = 0.
If A is recursive, then C(χn |n) is bounded by a fixed constant.
Theorem 2.18 [Barzdin’s lemma]
(i) For any recursively enumerable set A, its characteristic sequence satisfies
C(χn |n) ≤ logn + c for all n and for somec.
(ii) There is a recursive enumerable set whose characteristic sequence satisfies

10

C(χn) ≥ logn for all n.

Algorithmic information theory
Algorithmic information IC(x; y) of y contained in x is defined as

IC(x : y) = C(y) − C(y | x). (2.18)

IC(x : x) = C(x), because C(x |x) = 0.
Theorem 2.19. Let yi be a binary sequence of length r, and x = y1y2 · · · ym.
pk be the empirical probability of k-th length r binary sequence appearing in
x. Then,

C(x) ≤ m(H + ε(m)), (2.19)

where H = −∑
k pk log pk and ε(m) = 2r+1�(m)/m.

A tighter result will be found in Section 4.

Deficiency of plain complexity
(1) Not subadditive: C(x, y) ≤ C(x) + C(y) is not always correct (cf. (2.5)).
(2) C(ωn) ≥ n− c cannot characterize an infinite random sequence.
(3) Algorithmic probability cannot be defined as P = 2−C , because it cannot
be normalized.
(3) Relation to Shannon’s formula has an additional term.

These deficiencies may be removed with the aid of prefix machines.

3 Prefix Complexity

φ : {0, 1}∗ → N is a Partial recursive prefix function if φ(x) and φ(y) are
defined, then x is not a proper prefix of y. Prefix functions are enumerable.
The TM computing a prefix function is called a prefix machine.
Theorem 3.1. There exists a universal prefix machine (universal partial
recursive prefix function).
Prefix complexity of x: K(x | y) = Cψ0(x | y), where ψ0 is a universal prefix
machine.
K is subadditive:

K(x, y) ≤ K(x) +K(y) +O[1]. (3.1)

C and K are asymptotically equal in the following sense:

C(x | y) ≤ K(x | y) ≤ C(x | y) + 2 logC(x | y). (3.2)

According to Solovay a more precise relation is

K(x) = C(x) + C(C(x) +O[C(C(C(x)))]. (3.3)

11

Therefore, there must be many K incompressible strings.
Theorem 3.2.
(i) For each n max{K(x) : �(x) = n} = n +K(n) +O[1].
(ii) For each r, the number of x of length n with K(x) ≤ n +K(n) − r does
not exceed 2n−r+O[1].

It is sensible to define x to be incompressible, if K(x) ≥ �(x).
Let x∗ be the shortest program for x. Then, K(x∗) = �(x∗) + O[1]. There-
fore, the fraction of the shortest programs among length n strings is at mostp177
2−K(n)+O[1], which goes to zero as n→ ∞.

As a function K and C behave similarly. However, K is co-enumerable; that
is,

{(m, x) : K(x) ≤ m} (3.4)

is recursively enumerable.

Random infinite sequence
K(ωn) is not monotonic in n: for a random sequence it oscillates in the wedge

n +O[1] ≤ K(ωn) ≤ n+K(n) +O[1] (3.5)

as seen in
Theorem 3.3. ω is random (defined in terms of C) with respect to the uniform
measure iff K(ωn) ≥ n− c for some constant c.
As to oscillation of K(ωn) see p184-5.

Halting probability
Let U be a universal prefix machine.

Ω =
∑

U(p)<∞
2−�(p) (3.6)

is the halting probability of U when the programs are sampled uniformly. Ω
is random. If we know Ωn, then for all programs of length not more than n,
we can decide the halting problem.p186

4 Algorithmic Probability

Simplicity = low K.
Ockam’s razor implies that we a priori consider objects with short descriptions
more plausible than the objects with only long descriptions. The probability
2−K seems to be in accord with this.

12

