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3. Mode of thinking of information geometry

S is the space of the totality of probability measures. A parameter family of measures
defines a subspace called a model manifold M. Our problem is to choose p on M closest to
an empirical measure.

To this end we need a metric. Let

D(p,q) =Y plog(p/q). (6)

This is called the Kullback-Leibler divergence. Notice that
D(p,q) = [D(p,r) + D(r,q)] = > _(pi — r:)(logy 1; — log, ¢;) (7)

1
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Therefore, if p — r and logr — log q are orthogonal, then we have

D(p,q) = D(p,r) + D(r,q). (8)

m-geodesic (this is an interpolation point of distributions, so no extra normalization is
needed)
R={(1-1t)p+tq,tel01]}, (9)

e-geodesic (this is an interpolation of log of distribution so it is not a distribution. Conse-
quently, we need an extra normalization)

R={(1—-t)logp+tlogq— ¢,t €0,1]}, (10)

where ¢ is a normalization factor. These geodesics can introduce flat surfaces, so we can
foliate S. If a model manifold is e-flat, then minimizing D(p,r) wrt r gives the best model;
if a model manifold is m-flat, then minimizing D(r,p) wrt r gives the best model. Here,
‘best” means the ‘orthogonal’ projection

Remark Minimizing D(p,r) wrt r to choose the optimal model is natural from the large-
deviation point of view: Suppose r is the true distribution. Then, p maximizing D is the
most probably observable distribution empirically. Therefore, if p is actually observed to
choose r is rational. This is the max likelihood estimate. If the model manifold is e-flat, ML
estimate is unique. Otherwise, there is no guarantee of uniqueness.

4. Coding and various information quantity
Since KL information is not symmetric, we can consider two projections.

B(p) = {4dlD(p,q) < e}, (11)
Bi(p) = {alD(q,p) < e} (12)

When we say ‘coding,” we are creating an information source (the ‘true distribution’). There-
fore, B(p) is to create an optimum coding scheme ¢, On the other hand, B¢(p) is the set
of sources that is approximated by the coding scheme p. Therefore, if the best coding is
needed for the source p, we find ¢ that minimize D(p, q). If the best source ¢ is needed for
the coding scheme p, we minimize D(q, p).

Shannon’s first theorem: The optimal average code length L,, satisfies
H(X) <L, <HX)+1, (13)
Shannon-Fano coding is explained.

Asymptotic equipartition property: This is the SMB theorem.

Mutual information I(X,Y): intuitively, this is the information about X that Y has (and
vice versa). H(Y|x) measures how z is blurred when it is sent. This implies that on the
average 27 (V1X) sequences are obtained by sending a single sequence. Therefore, the totality
of n 'Y symbol sequences 2(Y) can carry

onH(Y)=nH(Y|X) _ onlI(Y;X) (14)
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distinguishable sequences. That is, without being corrupted, we can send this much of n

symbol sequences.
C=maxI(Y; X) (15)

p(X)

is called the channel capacity. Here p(X) is determined by coding. Shannon’s second theorem
guarantees the existence of p that realizes C. The rate R is defined by

# of actually transmitted letters

= 16
# of letters put into the channel (16)

If I =0, X and Y are independent.

If I is large, then from Y we can guess X. To this end, Blahut-Arimoto algorithm to
determine p that realizes C.

5. Selecting models
To choose the best parameteric model is the model selection problem. If the true model
with parameter  exists in the search set, then the accuracy of the estimated parameter is

bounded by the Cramér-Rao inequality. Let 6 be the unbiased estimator of . Then,
V(0) = 1/nJ, (17)

where n is the number of data, and J is the Fisher information

(aaelogp(X 9))1 — <8892210gp> (18)

Here, p is the model distribution with parameter 6.
[Demo] First let us check the equality (18). Since > p;(0) = 1,

E, (;p) 0. (19)

Here Ej is the expectation wrt p;(#). Differentiating this again

E, (aa;p) LB, ([; r) _0. (20)

The estimation of the parameter is given by (é is unbiased)

J = FEy

> 0(X1, Xo, -+ Xo)p(X1,0)p(X2,0) - - p(X,, 0) = 0. (21)

Therefore,

Z 9 H pi(6 . (22)

On the other hand Y [], pr = 1 implies

Z(%Hpk(e) =0. (23)

3



Therefore,

- 0
>0~ 0) 5 TTwe() = 1. (24
k
We know 5 5
% Hpk(e) = (Z 90 10%]%) Hpk (25)
k
Combining the above two, we get
- 0
2.(0-9) (Z By, 10gpk> [Ipn(0) =1. (26)

Using Cauchy-Schwarz, we get

0

{300 -02TIp:(0)} {Z (Z logpk> [1pu(0 }_ . (27)

Since the average of the log likelihood

> (Z 889 1ngk> [Ip:(6) =0, (28)

the crossterms in (27) vanish, so

a 2
<Z 00 log pk)

Ep

(3 logp<9>>2] (29)

That is, A
V(@)nJ > 1. (30)

The inequality implies that the best estimator is the one that attains the minimum 1/n.J.
It can be shown as follows that if a model is smooth in 6, the model with KL information
minimum is in this sense the best.
C Large deviation or using Sanov’s theorem, minimizing the KL

If § is estimated by the log-likelihood maximization, then it obeys N(6,1/N.J).

> (960 log p(X;,0) =0 (31)

Taylor-expanding this around the true value we obtain

0 0?
> - log p(Xi;0) + (0 — 0) > — —log p(X;50) = 0. (32)
00 00
The central limit theorem tell us that
L5 0 e p(x,0) (33)
\/N ae gp 19

4



86

75

obeys asymptotically the normal distribution with average zero and the variation J according
o (18). Combining this and (32), the desired result is obtained.

Resampling (bootsrap) method
It we know the true distribution P, then the best model should be the one minimizing

D(P,P(0)). If we can have many empirical distributions, then the average of D(P;, P(6))
should be minimized.

AIC
The best model is the one that minimizes D(P, P(0)) for the true P. However, we do not
know P; we only no the empirical result p, so the distribution estimated by the data is the
one that minimizes D(P, P(f)). Akaike’s idea is to estimate the average of D(P, P(0)) with
the aid of the asymptotic normality of 0.
Remark Suppose an empirical distribution P is given. Then, § minimizing D(P,P(é))
should be the best empirical result. However, if we assume that the true distribution P

~

is known, then # minimizing D(P, P(#)) should be the best model. If we replace this P

with the best estimate from P, this should be the estimate we should use to optimize the
parameters.

A bootstrap version is to minimize the bootstrap average of D(P’, P(#)), where the
primes denote bootstrap results.

Multidimensional case:

0 0
A 7.4 o .
Jij = E7 Fy <89i logp(Y|X,980j log p(Y|X; 0)) , (34)

where E¥ is the average over X and Ejy is the average over p(y|z,6). Let P be the true
distribution, P(f) be a model, and 6* is the closest model to the truth:

0" = argminD(P, P(0)). (35)
Gy =FE 0 lo (X'@*)ilo (X;67) (36)
ig — P aez gp ) 80] gp ) )
2

Qij = —Ep (aeiaej log p(X; 6 )) : (37)

The asymptotic normality of the estimate reads
6eN@O,(1/N)Q'GQ™). (38)

We know 5
80Z-D(P7 P(67)) = 0. (39)
Noting that

5 PP PO = ~Ep (50 owp(Xi07)) (a0

5



we have

D(P, P() = D(P,P()) + 5 3 Qu (6 — )6 — 7). (41)
Therfore, using )
E[(0—07):(0 - 07),] = ~ (@GR, (42)
we have
E[D(P, P(0)] = D(P, P(6%)) + JVTT(GQ”). (43)

The first term cannot be computed, so E(D(P, P(0)) is estimated. P is closest to 0, and P
to 6%, so we can expand in two ways as

D(P,P(0*)) = D(P,P(6*)) + scatter around true P, (44)
® N 1 A N * 2 *
= D(P,P(0) + 52 Qu(0 — 67):(0 — 07); (45)
The average of the first line should be
E(D(P, P(6"))] = D(P, P(6)). (46)
The second line
. . . 1 A .
D(P,P(6*)) = D(P, P(0)) + 3 > Qi (0 —07),(0—07); + XXX (47)
where X X X is the scattering perpendicular to the model manifold. Therefore,
. A - 1
E(D(P,P(0")) = E(D(P,P(0)) + ﬁTr(GQ’l). (48)
Therefore,
. . . 1
B(D(P, P(§)) = B(D(P, P(0")) — 5o Tr(GQ™). (49)
Combining all
E(D(P, P(8)) = B(D(P, P(8")) — 5 Tr(CQ ™). (50)
That is 1
E(D(P, P(0)) = E(D(P, P(0)) + - Tr(GQ™). (51)

Now, G and @) are estimated with the aid of the emprical distribution. Usually G = @ = J,
so the last term becomes m/N, where m is the number of parameters.

(51) reads
A S, m

E(D(P,P(0)) = E(D(P,P(0)) + N

where E(D(P, P(0)) = =2 log[1/Np(X;,8)], where N is the number of data, so ignoring
the constant term the standard AIC

AIC = =23 log p(X;; ) + 2m. (53)

(52)

becomes a measure of goodness.



