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2. 情報理論の基礎事項
情報源とはある確率法則に従って文字列を生成するメカニズムであり、数学的にはすべての12
有限シンボル列に確率が割り当てられた確率空間である: (Σ∗, P )。ここでΣ はシンボルの集
合。
記憶のない情報源 (定常)ではΣ∗の元は iid変数列である:15

P (XN) = p(XN) · · · p(X1). (1)

もちろんMarkov的情報源などが考えられる。

通信路: あるシンボル列を入れたとき別のシンボル列 (シンボルも違っていていい)をある確17
率で出力するデバイス。P (Y N |XN)などを考え得る。無記憶通信路とは一字一字拾い読みし
て送る通信路である。記憶のある通信路や隠れマルコフ的な通信路もある (ノイズのある状18
態とない状態がマルコフ的に変わる)。
符号化: 符号語間の間隔をうまくとればノイズに強くなりうる。23
Kraftの不等式。25 ∑

2−li ≤ 1. (2)

これを証明するのは枝の統合と剪定を使えばいい。平均符号長は 〈i〉 =
∑

pili。li = − log2 Qi

であるとすると
〈l〉 =

∑
pi log2(1/Qi). (3)

Kullback-Leibler情報量が正であることから∑
pi log2(1/Qi) −

∑
pi log2(1/pi) ≥ 0 (4)

したがって、最も能率のよい符号はQi = pi、つまり28

li = − log2 pi (5)

これを文字 iの情報と呼ぶ。公理的には、その文字の出る確率を pとするとき情報量 f(p)は29
1. 非負性: f(p) ≥ 0、2. 単調減少性: f(p)は pが大きいと小さい、3. 加法性: 独立事象の担
う情報量は和になる (f(pq) = f(p) + f(q))。

3. Mode of thinking of information geometry
S is the space of the totality of probability measures. A parameter family of measures31
defines a subspace called a model manifold M. Our problem is to choose p on M closest to
an empirical measure.

To this end we need a metric. Let

D(p, q) =
∑

p log(p/q). (6)

This is called the Kullback-Leibler divergence. Notice that

D(p, q) − [D(p, r) + D(r, q)] =
∑

(pi − ri)(log2 ri − log2 qi) (7)
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Therefore, if p − r and log r − log q are orthogonal, then we have

D(p, q) = D(p, r) + D(r, q). (8)
35

m-geodesic (this is an interpolation point of distributions, so no extra normalization is
needed)

R = {(1 − t)p + tq, t ∈ [0, 1]}, (9)

e-geodesic (this is an interpolation of log of distribution so it is not a distribution. Conse-
quently, we need an extra normalization)

R = {(1 − t) log p + t log q − φ, t ∈ [0, 1]}, (10)

where φ is a normalization factor. These geodesics can introduce flat surfaces, so we can
foliate S. If a model manifold is e-flat, then minimizing D(p, r) wrt r gives the best model;
if a model manifold is m-flat, then minimizing D(r, p) wrt r gives the best model. Here,
‘best’ means the ‘orthogonal’ projection
Remark Minimizing D(p, r) wrt r to choose the optimal model is natural from the large-
deviation point of view: Suppose r is the true distribution. Then, p maximizing D is the
most probably observable distribution empirically. Therefore, if p is actually observed to
choose r is rational. This is the max likelihood estimate. If the model manifold is e-flat, ML
estimate is unique. Otherwise, there is no guarantee of uniqueness.

4. Coding and various information quantity
Since KL information is not symmetric, we can consider two projections.42

Bm
ϵ (p) = {q|D(p, q) ≤ ϵ}, (11)

Be
ϵ (p) = {q|D(q, p) ≤ ϵ}. (12)

When we say ‘coding,’ we are creating an information source (the ‘true distribution’). There-
fore, Bm

ϵ (p) is to create an optimum coding scheme q, On the other hand, Be
ϵ (p) is the set

of sources that is approximated by the coding scheme p. Therefore, if the best coding is
needed for the source p, we find q that minimize D(p, q). If the best source q is needed for
the coding scheme p, we minimize D(q, p).

Shannon’s first theorem: The optimal average code length Lm satisfies43

H(X) ≤ Lm ≤ H(X) + 1, (13)

Shannon-Fano coding is explained.

Asymptotic equipartition property: This is the SMB theorem.

Mutual information I(X,Y ): intuitively, this is the information about X that Y has (and51
vice versa). H(Y |x) measures how x is blurred when it is sent. This implies that on the
average 2nH(Y |X) sequences are obtained by sending a single sequence. Therefore, the totality
of n Y symbol sequences 2nH(Y ) can carry

2nH(Y )−nH(Y |X) = 2nI(Y ;X) (14)
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distinguishable sequences. That is, without being corrupted, we can send this much of n
symbol sequences.

C = max
p(X)

I(Y ; X) (15)

is called the channel capacity. Here p(X) is determined by coding. Shannon’s second theorem
guarantees the existence of p that realizes C. The rate R is defined by

R =
# of actually transmitted letters

# of letters put into the channel
(16)

If I = 0, X and Y are independent.

If I is large, then from Y we can guess X. To this end, Blahut-Arimoto algorithm to
determine p that realizes C.

5. Selecting models
To choose the best parameteric model is the model selection problem. If the true model
with parameter θ exists in the search set, then the accuracy of the estimated parameter is
bounded by the Cramér-Rao inequality. Let θ̂ be the unbiased estimator of θ. Then,

V (θ̂) ≥ 1/nJ, (17)

where n is the number of data, and J is the Fisher information

J = Eθ

(
∂

∂θ
log p(X; θ)

)2
 = −Eθ

(
∂2

∂θ2
log p

)
(18)

Here, p is the model distribution with parameter θ.
[Demo] First let us check the equality (18). Since

∑
pi(θ) = 1,

Eθ

(
∂

∂θ
p

)
= 0. (19)

Here Eθ is the expectation wrt pi(θ). Differentiating this again72

Eθ

(
∂2

∂θ2
p

)
+ Eθ

[
∂

∂θ
p

]2
 = 0. (20)

The estimation of the parameter is given by (θ̂ is unbiased)∑
θ̂(X1, X2, · · ·Xn)p(X1, θ)p(X2, θ) · · · p(Xn, θ) = θ. (21)

Therefore, ∑
θ̂

∂

∂θ

∏
pk(θ) = 1. (22)

On the other hand
∑ ∏

k pk = 1 implies

∑ ∂

∂θ

∏
pk(θ) = 0. (23)
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Therefore, ∑
(θ̂ − θ)

∂

∂θ

∏
k

pk(θ) = 1. (24)

We know
∂

∂θ

∏
k

pk(θ) =

(∑ ∂

∂θ
log pk

) ∏
pk(θ). (25)

Combining the above two, we get

∑
(θ̂ − θ)

(∑ ∂

∂θ
log pk

) ∏
pk(θ) = 1. (26)

Using Cauchy-Schwarz, we get

{∑
(θ̂ − θ)2

∏
pk(θ)

} ∑ (∑ ∂

∂θ
log pk

)2 ∏
pk(θ)

 ≥ 1. (27)

Since the average of the log likelihood

∑ (∑ ∂

∂θ
log pk

) ∏
pk(θ) = 0, (28)

the crossterms in (27) vanish, so

Eθ

(∑ ∂

∂θ
log pk

)2
 = Eθ

∑ (
∂

∂θ
log pk

)2
 = nEθ

(
∂

∂θ
log p(θ)

)2
 (29)

That is,
V (θ̂)nJ ≥ 1. (30)

The inequality implies that the best estimator is the one that attains the minimum 1/nJ .
It can be shown as follows that if a model is smooth in θ, the model with KL information
minimum is in this sense the best.
C Large deviation or using Sanov’s theorem, minimizing the KL
If θ̂ is estimated by the log-likelihood maximization, then it obeys N(θ, 1/NJ).

∑ ∂

∂θ
log p(Xi, θ) = 0 (31)

Taylor-expanding this around the true value we obtain

∑ ∂

∂θ
log p(Xi; θ) + (θ̂ − θ)

∑ ∂2

∂θ2
log p(Xi; θ) = 0. (32)

The central limit theorem tell us that

1√
N

∑ ∂

∂θ
log p(Xi, θ) (33)
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obeys asymptotically the normal distribution with average zero and the variation J according
to (18). Combining this and (32), the desired result is obtained.

Resampling (bootsrap) method86
If we know the true distribution P , then the best model should be the one minimizing
D(P, P (θ̂)). If we can have many empirical distributions, then the average of D(Pi, P (θ̂))
should be minimized.75

AIC
The best model is the one that minimizes D(P, P (θ̂)) for the true P . However, we do not

know P ; we only no the empirical result P̂ , so the distribution estimated by the data is the
one that minimizes D(P̂ , P (θ̂)). Akaike’s idea is to estimate the average of D(P, P (θ̂)) with

the aid of the asymptotic normality of θ̂.
Remark Suppose an empirical distribution P̂ is given. Then, θ̂ minimizing D(P̂ , P (θ̂))
should be the best empirical result. However, if we assume that the true distribution P
is known, then θ̂ minimizing D(P, P (θ̂)) should be the best model. If we replace this P

with the best estimate from P̂ , this should be the estimate we should use to optimize the
parameters.

A bootstrap version is to minimize the bootstrap average of D(P ′, P (θ)), where the
primes denote bootstrap results.

Multidimensional case:

Jij = EXEθ

(
∂

∂θi

log p(Y |X; θ
∂

∂θj

log p(Y |X; θ)

)
, (34)

where EX is the average over X and Eθ is the average over p(y|x, θ). Let P be the true
distribution, P (θ) be a model, and θ∗ is the closest model to the truth:

θ∗ = argminD(P, P (θ)). (35)

Gij = EP

(
∂

∂θi

log p(X; θ∗)
∂

∂θj

log p(X; θ∗)

)
, (36)

Qij = −EP

(
∂2

∂θi∂θj

log p(X; θ∗)

)
. (37)

The asymptotic normality of the estimate reads

θ̂ ∈ N(θ, (1/N)Q−1GQ−1). (38)

We know
∂

∂θi

D(P, P (θ∗)) = 0. (39)

Noting that
∂2

∂θi∂θj

D(P, P (θ∗)) = −EP

(
∂2

∂θi∂θj

log p(X; θ∗)

)
, (40)
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we have

D(P, P (θ̂) = D(P, P (θ∗)) +
1

2

∑
Qij(θ̂ − θ∗)i(θ̂ − θ∗)j. (41)

Therfore, using

E[(θ̂ − θ∗)i(θ̂ − θ∗)j] =
1

N
(Q−1GQ−1)ij, (42)

we have

E[D(P, P (θ̂)] = D(P, P (θ∗)) +
1

2N
Tr(GQ−1). (43)

The first term cannot be computed, so E(D(P̂ , P (θ̂)) is estimated. P̂ is closest to θ̂, and P
to θ∗, so we can expand in two ways as

D(P̂ , P (θ∗)) = D(P, P (θ∗)) + scatter around true P, (44)

= D(P̂ , P (θ̂) +
1

2

∑
Q̂ij(θ̂ − θ∗)i(θ̂ − θ∗)j (45)

The average of the first line should be

E(D(P̂ , P (θ∗))] = D(P, P (θ∗)). (46)

The second line

D(P̂ , P (θ∗)) = D(P̂ , P (θ̂)) +
1

2

∑
Q̂ij(θ̂ − θ∗)i(θ̂ − θ∗)j + XXX (47)

where XXX is the scattering perpendicular to the model manifold. Therefore,

E(D(P̂ , P (θ∗)) = E(D(P̂ , P (θ̂)) +
1

2N
Tr(GQ−1). (48)

Therefore,

E(D(P̂ , P (θ̂)) = E(D(P̂ , P (θ∗)) − 1

2N
Tr(GQ−1). (49)

Combining all

E(D(P̂ , P (θ̂)) = E(D(P, P (θ∗)) − 1

2N
Tr(GQ−1). (50)

That is

E(D(P, P (θ̂)) = E(D(P̂ , P (θ̂)) +
1

N
Tr(GQ−1). (51)

Now, G and Q are estimated with the aid of the emprical distribution. Usually G = Q = J ,
so the last term becomes m/N , where m is the number of parameters.

(51) reads

E(D(P, P (θ̂)) = E(D(P̂ , P (θ̂)) +
m

N
, (52)

where E(D(P̂ , P (θ̂)) = 1
N

∑
i log[1/Np(Xi, θ̂)], where N is the number of data, so ignoring

the constant term the standard AIC

AIC = −2
∑

log p(Xi; θ̂) + 2m. (53)

becomes a measure of goodness.
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