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1. Mean-Field Theory of Phase Transitions

Mean field Theory:
Mean field Hamiltonian: In terms of spin fluctuation δSi the Ising Hamiltonian can be5
rewritten as

H = −J
∑
〈i,j〉

(m + δSi)(m + δSj) − h
∑

Si, (1)

∼ −Jm2NB − Jm
∑

(δSi + δSj) − h
∑

Si, (2)

= −Jm2NB − Jmz
∑

δSi − h
∑

Si, (3)

where NB is the number of bonds, and z is the coordination number (NB = zN/2). The
third line is due to the number of times δSi appears in the sum (number of bonds connected
to j). Replacing δS with S − m, we get

H = NBJm2 − (Jmz = +h)]
∑

Si. (4)

The free energy may be obtained as6

F = −NkBT log{2 cosh β(Jmz+h)}+NBJm2 ≅ −NkBT log 2+
JzN

2
(1−βJz)m2+

N

12
(Jzm)4β3.

(5)
This is the starting point of the Landau theory.

Infinite-range model:7
Its Hamiltonian is given by

H = − J

2N

∑
i ̸=j

SjSj − h
∑

Si = − J

2N

(∑
Si

)2
+

J

2
− h

∑
Si, (6)

where the second term came from
∑

S2
i = N . This term is of O[1], so we may ignore it.8

Using the Gaussian trick, we compute the partition function as

Z = Tr exp

(
βJ

2N

(∑
Si

)2
+ βh

∑
Si

)
, (7)

= Tr

√
βJN

2π

∫ ∞

−∞
dm exp

(
−βJm2

2N
+ β(Jm + h)

∑
Si

)
, (8)

= Tr

√
βJN

2π

∫ ∞

−∞
dm exp

(
−βJm2

2N
+ N log{2 cosh β(Jm + h)}

)
. (9)

This integral is evaluated by Laplace’s method: the peak is at

∂

∂m

(
−βJm2

2N
+ N log{2 cosh β(Jm + h)}

)
= 0; (10)
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or
m = tanh β(Jm + h). (11)

This is the usual mean field equation with J → J/N and z → N replacement. The mean-
field theory is the exact solution for the infinite range model. The saddle condition (11) can
be written as (see (8))

m =
1

N

∑
Si. (12)

If LLN applies this equality is almost surely correct. That is, in the thermodynamic limit
fluctuations disappear and the mean-field theory becomes exact.

Variational approach:9
The sum of the Ising partition function is difficult, because Si’s couple, and we need a
simultaneous distribution. Let us decouple as

P ({Si}) =
∏

Pi(Si) (13)

and determine P to give the best approximation: the minimum free energy: F = E − TS

F = −J
∑
〈i,j〉

TrSiSjPi(Si)Pj(Sj) − h
∑

TrSiPi(Si) + kBT
∑

TrPi(Si) log Pi(Si). (14)

Minimizing this wrt P

δF

δPi(Si)
= −J

∑
j

mjSi − hSi + kBT log Pi(Si) + kBT + λ = 0, (15)

where λ is the Lagrange coefficient taking into account the normalization of P . Thus, we
obtain

Pi(Si) =
1

ZMF

exp

βJ
∑
j

Simj + βhSi

 . (16)

Notice that the mean-field Hamiltonian (4) appears in the exp factor.11
For Ising spins Si = ±1, we may write

Pi(Si) =
1

2
(1 + miSi), (17)

which is compatible with mi = TrSiPi(Si). Putting this into (14) we can write F in terms
of mi. Minimizing this wrt mi we obtain

mi = tanh β

J
∑
j

mj + h

 . (18)

2. Mean-Field Theory of Spin Glasses

Edwards-Anderson model:12

H = −
∑
〈i,j〉

JijSiSj, (19)
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where Jij is an iid obeying N(J0, J) or ±J Bernoulli B(p, 1 − p). The randomness in the
model may come from the random composition. For each system {Jij} is given (quenched
system) so the free energy observed is obtained by the configurational average

[F ] = −kBT [log Z] = −kBT
∫ ∏

ij

P (Jij) log Z, (20)

where Z is the partition function for a given {Jij}.
The free energy per spin f = F ({J})/N is almost surely identical to the its average [f ]13

in the thermodynamic limit (self-averaging property of the free energy), so we may sue f and
[f ] interchangeablly. The man is easier to compute.

Sherrington-Kirkpatrick model:
This is an infinite range version of the Edwards-Anderson model. Now, {Jij} is a set of iid

obeying N(J0/N, J/
√

N).
We use the replica trick.14

[Zn] =

Tr exp

β
∑
i<j

Jij

n∑
α=i

Sα
i Sα

j + βh
∑

i

∑
α

Sα
i

 , (21)

where α is the replica index. The average over J can be done as

Tr exp

 1

N

∑
i<j

1

2
β2J2

∑
α,β

Sα
i Sα

j Sβ
i Sβ

j + βJ0

∑
α

Sα
i Sα

j

 + βh
∑

i

∑
α

Sα
i

 , (22)

This can be rewritten as

[Zn] = exp

(
Nβ2J2n

4

)
Tr exp

β2J2

2N

∑
α<β

(∑
i

Sa
i Sβ

j

)2

+
βJ0

2N

∑
a

(∑
i

Sα
i

)2

+ βh
∑

i

∑
α

Sα
i

 .

(23)
This can be decoupled with the aid of the Gaussian integrals as15

[Zn] = exp

(
Nβ2J2n

4

) ∫
D[q]

∫
D[m] exp

−Nβ2J2

2

∑
α<β

q2
αβ − NβJ0

2

∑
α

m2
α

 ×

×Tr exp

β2J2
∑
α<β

qαβ

∑
i

Sα
i Sβ

i + β
∑
α

(J0mα + h)
∑

i

Sα
i

 . (24)

We may write

Tr exp

β2J2
∑
α<β

qαβ

∑
i

Sα
i Sβ

i + β
∑
α

(J0mα + h)
∑

i

Sα
i


=

〈
exp

β2J2
∑
α<β

qαβSα
i Sβ

i + β
∑
α

(J0mα + h)Sα
i

〉N

≡ 〈eL〉N . (25)

We thus have16
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[Zn] = exp

(
Nβ2J2n

4

) ∫
D[q]

∫
D[m] exp

−Nβ2J2

2

∑
α<β

q2
αβ − NβJ0

2

∑
α

m2
α + N log〈eL〉

 .

(26)
We apply Laplace’s method

[Zn] = exp

−Nβ2J2

2

∑
α<β

q2
αβ − βJ0

2n

∑
α

m2
α + N log〈eL〉 +

N

4
β2J2n

 , (27)

≅ 1 + Nn

−β2J2

2n

∑
α<β

q2
αβ − NβJ0

2

∑
α

m2
α +

1

n
log〈eL〉 +

1

4
β2J2

 . (28)

Here, we take the thermodynamic limit later. Thus,

−β[f ] = lim
n→0

[Zn] − 1

nN
= lim

n→0

−β2J2

2n

∑
α<β

q2
αβ − NβJ0

2

∑
α

m2
α +

1

n
log〈eL〉 +

1

4
β2J2

 . (29)

The minimum position is

qαβ =
1

β2J2

∂

∂qαβ

log〈eL〉 = 〈SαSβ〉L, (30)

and

ma =
1

βJ0

∂

∂mα

log〈eL〉 = 〈Sα〉L, (31)

Thus q and m become the order parameters. q is the spin glass order parameter.

Replication-symmetric solution:
If qαβ and mα are independent of the replica indices, (29) reads18

−β[f ] =
β2J2

4n
(−n(n − 1)q2) − βJ0

2n
nm2 +

1

n
log〈eL〉 +

1

4
β2J2. (32)

We need 〈eL〉 that can be computed with the Gaussian trick:

〈eL〉 =

〈√
β2J2q

2π

∫
dz exp

(
−β2J2q

2
z2 + β2J2qz

∑
α

Sα − n

2
b2J2q + β(J0m + h) − n

2
b2J2q

)〉
,

= 1 + n〈log 2 cosh βĤ(z)〉z −
n

2
β2J2q + O[n2], (33)

where z obeys N(0, 1) and

Ĥ(z) = J
√

qz + J0m + h. (34)

Thus, we have obtained

−β[f ] =
β2J2

45
(1 − q)2 − 1

2
βJ0m

2 + 〈log 2 cosh βĤ(z)〉z. (35)

The extremization condition reads

m = 〈tanh βĤ(z)〉z, q = 〈tanh2 βĤ(z)〉z. (36)
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The formula for m tells that the mean field is Gaussian distributed.
If the distribution of J is symmetric J0 = 0) and h = 0, then Ĥ is odd, so m = 0.19

Therefore,

−β[f ] =
1

4
β2J2(1 − q)2 + 〈log 2 cosh βĤ(z)〉z. (37)

Near the critical point q should be small, so

β[f ] = −1

4
β2J2 − log 2 − β2J2

4
(1 − β2J2)q2 + O[q3]. (38)

Thus, the spin-glass transition exists at Tf = J/kB. However, free energy is not minimized.
Therefore, we cannot discuss phase transition properly. The pathological nature of the result
can be seen from the negative entropy in the T → 0 limit.21

3. Replica Symmetry Breaking

To study the replica symmetry solution we expand the free energy around this solution and24
check the Hessian. The calculation is straightforward. The stability boundary is the de
Almeida-Thouless line.27

Parisi solution:
This is beyond my understanding and taste, so I will ignore this topic.

TAP equation:
The local magnetization of the SK model satisfies the following TAP equation for the random
coupling {J}:

mi = tanh β

∑
j

Jijmj + hi − β
∑
j

J2
ij(1 − m2

j)mi

 . (39)

The third terms is called the reaction field of Onsager and is added to remove the effects of39
self-response: the magnetization mi affects site j through internal field Jijmi that changes
mj by the amount χjjJijmi,

χjj =
∂mj

∂hj hj→0

= β(1 − m2
j) (40)

This increases the internal field at i be

JijχjjJijm = βJ2
ij(1 − m2

j)mi (41)

The TAP equation can be obtained from the following free energy:40

fTAP = −1

2

∑
i̸=j

Jijmimj −
∑

i

himi −
β

4

∑
i ̸=j

J2
ij(1 − m2

i )(1 − m2
j),

+ kBT
∑

i

{
1 + mi

2
log

1 + mi

2
+

1 − mi

2
log

1 − mi

2

}
. (42)

Here, the third term corresponds to the reaction field. This free energy may be derived from
the SK Hamiltonian via Plefka expansion.
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There is another method t derive the TAP equation—cavity method. The local magnetic41
field (h = 0) is h̃i =

∑
j JijSj. The energy may be written as

H = −h̃iSi −
′∑

JkjSkSj, (43)

where
∑′ is the sum over the magnet without Si. Since h̃i contains only Sj (j ̸= i), the

simultaneous distribution of Si and h̃i may be written as

P (Si, h̃i) ∝ eβh̃iSiP (h̃i), (44)

where P (h̃i) is the distribution of h̃i for the magnet without Si. h̃i is called the cavity field.
For the SK model, we may assume that the correlation between different sites are weak,42
so we may assume that P (h̃i) obeys N(〈h〉i, Vi). 〈 〉i implies the average over the magnet
without Si.

In this case, we obtain by a straightforward calculation

mi = tanh β〈h〉i (45)

Thus, we need 〈h〉i, the average of the field at i without Si. If we write the true average of
hi as 〈h〉, then

〈h〉 = 〈h〉i + Vi〈Si〉. (46)

This can be obtained by the honest averaging of h̃i over P (Si, h̃i). In other words,

〈h〉i =
∑
j

Jijmj − Vimi. (47)

Here,
Vi =

∑
jk

JijJik(〈SjSk〉i − 〈Sj〉i〈Sk〉i). (48)

The off-diagonal terms cannot contribute due to the clustering property, so

Vi =
∑
j

J2
ij(1 − 〈Sj〉2i ) ≅

∑
j

J2
ij(1 − m2

j). (49)

Thus, we have recovered the TAP equation.
From the TAP equation RSB as well as RS results may be recovered.43

The transition point may be obtained by the eigenvalue analysis of the random matrix {J}.44
It is expected that the TAP equation has very many solutions of O[eaN ] (a > 0); only a
fraction of the solutions correspond to minimum free energy solutions.

5. Gauge Theory of Spin Glasses

Consider the symmetric Edwards-Anderson model

H = −
∑
〈i,j〉

JijS)iSj. (50)
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Here we asssume Jij to be ±J , The gauge transformation of spins is defined by

Si → Siσi, Jij → Jijσiσj. (51)

H is invariant. Let p be the probabilty for Jij = J . Then,

P (Jij) =
eKpτij

2 cosh Kp

, (52)

where τij = sgn(Jij), Jij = Jτij and48

e2Kp =
p

1 = p
. (53)

The following argument applies to the coupling constant obeying the distribution of the form

P (Jij) = P0(|Jij|)eaJij , (54)

where a is a constant. The Gaussian model satisfies thei with a = J0/J
2. The gaus trans-

formation does not keep the distribution fucntion

P (Jij) → P (Jij)e
aJij−aJijσiσj . (55)

Internal energy:

[E] = [〈H〉] =
∑
τ

exp
(
Kp

∑
〈ij〉 τij

)
(2 cosh Kp)NB

TrS

(
−J

∑
〈ij〉 τijSiSj

)
exp

(
K

∑
〈ij〉 τijSiSj

)
TrS exp

(
K

∑
〈ij〉 τijSiSj

) . (56)

Applying the gauge transformation, we have49

[E] =
∑
τ

exp
(
Kp

∑
〈ij〉 τijσiσj

)
(2 cosh Kp)NB

TrS

(
−J

∑
〈ij〉 τijSiSj

)
exp

(
K

∑
〈ij〉 τijSiSj

)
TrS exp

(
K

∑
〈ij〉 τijSiSj

) . (57)

This is invariant under the choice of {σi}. Therefore, we may average the above formula
over all the choices of {σi}:

[E] =
1

2N(2 cosh Kp)NB

∑
τ

Trσ exp

Kp

∑
〈ij〉

τijσiσj

 TrS

(
−J

∑
〈ij〉 τijSiSj

)
exp

(
K

∑
〈ij〉 τijSiSj

)
TrS exp

(
K

∑
〈ij〉 τijSiSj

) .

(58)
If K = Kp (NIshimori line), then

[E] =
1

2N(2 cosh Kp)NB

∑
τ

TrS

−J
∑
〈ij〉

τijSiSj

 exp

K
∑
〈ij〉

τijSiSj

 . (59)

This can be calculated as
[E] = −NBJ tanh K. (60)
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This depends only on the total number NB of bonds. Along the Nishimori line [E] is non-
singular as a function of temperature. The line connects T = J/K and p = (1/2)(tanh Kp +50
1). T = 0, p = 1 (ferro) and the high temperature limite T = ∞, p = 1/2.

As can be guessed from (59) the boond energies are statistically independent on the N
line.51

Upper bound of the specific heat can be estimated. The distributiojn of overlap q and52
that of magnetization are identical..59

Gauge glass (XY-model) is also discussed.67

5. Error-Correcting Codes

Let ξi = ±1 and78
J0

i1i2,···ir = ξi1 · · · ξir (61)

This is regarded as an input to a binary symmetric channel. The output of the chammel is
Ji1i2,···ir and is equal to ±J0

i1i2,···ir . The error probability is

P (Ji1i2,···ir |J0
i1i2,···ir) =

exp(βpJi1i2,···irξi1 · · · ξir)

2 cosh βp

. (62)

where βp is determined as

e2βp =
1 − p

p
. (63)

Notice that p is the error probability:

p =
1

1 + e2βp
=

e−βp

2 cosh βp

, 1 − p =
eβp

2 cosh βp

. (64)

Thus, the error probability reads79

P (J |ξ) =
1

(2 cosh βp)NB
exp

(
βP

∑
J · ξ

)
. (65)

Here, the summation in j · ξ =
∑

Ji1i2,···irξi1i2,···ir is take over all sets generated by (61) To
decipher the corrupted code, we use Bayes’ formula

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)∑
A P (B|A)P (A)

. (66)

Thus,

P (σ|J) =
P (J |σ)P (σ)

TrσP (J |σ)P (σ)
. (67)

If the message source produces all the message equally probably, we obtain

P (σ|J) =
exp(βp

∑
J · sigma)

Trσ exp(βp
∑

J · sigma)
. (68)
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This is nothing but the Boltzmann factor of an ising spin glass with randomly quenched
interactions J .

MAP decoding (maximum a posteriori probability) This maximizes P (J |σ) wrt to σ. This
is equivalent to maximizing P (σ|J) if P (σ) is constant.

Another strategy is to study P (σi|J).81

= ξ̂i = sgn(P (σi = 1|J) − P (σi = −1|J)) (69)

This is the estimate of decoded result and is called MPM (maximizer of posterior marginals).
This is clearly different from MAP. MAP is equivalent of the low temeratureMPM. The above
estimate may be understood as sgn(〈σi〉).

The quality of decoding may be meaured by ξiξ̂i We compute its average

M(β) = Trξ

∑
J

P (ξ)P (J |ξ)ξi〈σi〉β. (70)

This is called the overlap. This is bounded by M(βp). To know the performance of the code,82
it is desirable that M(β) may be estimated.

The infinite range model is solvable whose Hamiltonian is given by

H = −
∑

i1<···<ir

Ji1i2,···irξi1 · · · ξir . (71)

The sum is over all possible combination of r spins taken from N spins. This can be solved84
by the replica method. The replica symmetric solution is85

q = qαβ =
1

N
σα

i σβ
i , m = mα =

1

N

∑
σα

i . (72)

The equations governing q and m read87

q = 〈tanh2 βG〉,m = 〈tanh βG〉, (73)

with

G = J

√
rqr−1

2
u + j0rm

r−1. (74)

Here 〈 〉 is the average over u obeying N(0, 1).
We find

q = [〈σi〉2],m = [〈σi〉]. (75)

This suggests
[〈σi〉k] = 〈tanhk βG〉. (76)

This is indeed correct, leading to

M(β) = [sgn(〈σi〉)] = 〈sgn(G)〉. (77)

The replica symmetry broken solution is also discussed..88

Finite connectivity code.95

Convolution code:102
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