Statistical Physics of Spin Glasses and Information Processing

H Nishimori
Oxford 2001

1. Mean-Field Theory of Phase Transitions

Mean field Theory:

The free energy may be obtained as
$F=-N k_{B} T \log \{2 \cosh \beta(J m z+h)\}+N_{B} J m^{2} \simeq-N k_{B} T \log 2+\frac{J z N}{2}(1-\beta J z) m^{2}+\frac{N}{12}(J z m)^{4} \beta^{3}$.
This is the starting point of the Landau theory.
Infinite-range model:
Its Hamiltonian is given by

$$
\begin{equation*}
H=-\frac{J}{2 N} \sum_{i \neq j} S_{j} S_{j}-h \sum S_{i}=-\frac{J}{2 N}\left(\sum S_{i}\right)^{2}+\frac{J}{2}-h \sum S_{i}, \tag{6}
\end{equation*}
$$

where the second term came from $\sum S_{i}^{2}=N$. This term is of $O[1]$, so we may ignore it. Using the Gaussian trick, we compute the partition function as

$$
\begin{align*}
Z & =\operatorname{Tr} \exp \left(\frac{\beta J}{2 N}\left(\sum S_{i}\right)^{2}+\beta h \sum S_{i}\right) \tag{7}\\
& =\operatorname{Tr} \sqrt{\frac{\beta J N}{2 \pi}} \int_{-\infty}^{\infty} d m \exp \left(-\frac{\beta J m^{2}}{2 N}+\beta(J m+h) \sum S_{i}\right) \tag{8}\\
& =\operatorname{Tr} \sqrt{\frac{\beta J N}{2 \pi}} \int_{-\infty}^{\infty} d m \exp \left(-\frac{\beta J m^{2}}{2 N}+N \log \{2 \cosh \beta(J m+h)\}\right) . \tag{9}
\end{align*}
$$

This integral is evaluated by Laplace's method: the peak is at

$$
\begin{equation*}
\frac{\partial}{\partial m}\left(-\frac{\beta J m^{2}}{2 N}+N \log \{2 \cosh \beta(J m+h)\}\right)=0 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
m=\tanh \beta(J m+h) \tag{11}
\end{equation*}
$$

This is the usual mean field equation with $J \rightarrow J / N$ and $z \rightarrow N$ replacement. The meanfield theory is the exact solution for the infinite range model. The saddle condition (11) can be written as (see (8))

$$
\begin{equation*}
m=\frac{1}{N} \sum S_{i} \tag{12}
\end{equation*}
$$

If LLN applies this equality is almost surely correct. That is, in the thermodynamic limit fluctuations disappear and the mean-field theory becomes exact.

Variational approach:
The sum of the Ising partition function is difficult, because S_{i} 's couple, and we need a simultaneous distribution. Let us decouple as

$$
\begin{equation*}
P\left(\left\{S_{i}\right\}\right)=\prod P_{i}\left(S_{i}\right) \tag{13}
\end{equation*}
$$

and determine P to give the best approximation: the minimum free energy: $F=E-T S$

$$
\begin{equation*}
F=-J \sum_{\langle i, j\rangle} \operatorname{Tr} S_{i} S_{j} P_{i}\left(S_{i}\right) P_{j}\left(S_{j}\right)-h \sum \operatorname{Tr} S_{i} P_{i}\left(S_{i}\right)+k_{B} T \sum \operatorname{Tr} P_{i}\left(S_{i}\right) \log P_{i}\left(S_{i}\right) . \tag{14}
\end{equation*}
$$

Minimizing this wrt P

$$
\begin{equation*}
\frac{\delta F}{\delta P_{i}\left(S_{i}\right)}=-J \sum_{j} m_{j} S_{i}-h S_{i}+k_{B} T \log P_{i}\left(S_{i}\right)+k_{B} T+\lambda=0 \tag{15}
\end{equation*}
$$

where λ is the Lagrange coefficient taking into account the normalization of P. Thus, we obtain

$$
\begin{equation*}
P_{i}\left(S_{i}\right)=\frac{1}{Z_{M F}} \exp \left(\beta J \sum_{j} S_{i} m_{j}+\beta h S_{i}\right) . \tag{16}
\end{equation*}
$$

Notice that the mean-field Hamiltonian (4) appears in the exp factor.
For Ising spins $S_{i}= \pm 1$, we may write

$$
\begin{equation*}
P_{i}\left(S_{i}\right)=\frac{1}{2}\left(1+m_{i} S_{i}\right), \tag{17}
\end{equation*}
$$

which is compatible with $m_{i}=\operatorname{Tr} S_{i} P_{i}\left(S_{i}\right)$. Putting this into (14) we can write F in terms of m_{i}. Minimizing this wrt m_{i} we obtain

$$
\begin{equation*}
m_{i}=\tanh \beta\left(J \sum_{j} m_{j}+h\right) . \tag{18}
\end{equation*}
$$

2. Mean-Field Theory of Spin Glasses

Edwards-Anderson model:

$$
\begin{equation*}
H=-\sum_{\langle i, j\rangle} J_{i j} S_{i} S_{j}, \tag{19}
\end{equation*}
$$

where $J_{i j}$ is an iid obeying $N\left(J_{0}, J\right)$ or $\pm J$ Bernoulli $B(p, 1-p)$. The randomness in the model may come from the random composition. For each system $\left\{J_{i j}\right\}$ is given (quenched system) so the free energy observed is obtained by the configurational average

$$
\begin{equation*}
[F]=-k_{B} T[\log Z]=-k_{B} T \int \prod_{i j} P\left(J_{i j}\right) \log Z, \tag{20}
\end{equation*}
$$

where Z is the partition function for a given $\left\{J_{i j}\right\}$.

The free energy per spin $f=F(\{J\}) / N$ is almost surely identical to the its average $[f]$ in the thermodynamic limit (self-averaging property of the free energy), so we may sue f and $[f]$ interchangeablly. The man is easier to compute.

Sherrington-Kirkpatrick model:
This is an infinite range version of the Edwards-Anderson model. Now, $\left\{J_{i j}\right\}$ is a set of iid obeying $N\left(J_{0} / N, J / \sqrt{N}\right)$.

We use the replica trick.

$$
\begin{equation*}
\left[Z^{n}\right]=\left[\operatorname{Tr} \exp \left(\beta \sum_{i<j} J_{i j} \sum_{\alpha=i}^{n} S_{i}^{\alpha} S_{j}^{\alpha}+\beta h \sum_{i} \sum_{\alpha} S_{i}^{\alpha}\right)\right], \tag{21}
\end{equation*}
$$

where α is the replica index. The average over J can be done as

$$
\begin{equation*}
\operatorname{Tr} \exp \left\{\frac{1}{N} \sum_{i<j}\left(\frac{1}{2} \beta^{2} J^{2} \sum_{\alpha, \beta} S_{i}^{\alpha} S_{j}^{\alpha} S_{i}^{\beta} S_{j}^{\beta}+\beta J_{0} \sum_{\alpha} S_{i}^{\alpha} S_{j}^{\alpha}\right)+\beta h \sum_{i} \sum_{\alpha} S_{i}^{\alpha}\right\}, \tag{22}
\end{equation*}
$$

This can be rewritten as

$$
\begin{equation*}
\left[Z^{n}\right]=\exp \left(\frac{N \beta^{2} J^{2} n}{4}\right) \operatorname{Tr} \exp \left\{\frac{\beta^{2} J^{2}}{2 N} \sum_{\alpha<\beta}\left(\sum_{i} S_{i}^{a} S_{j}^{\beta}\right)^{2}+\frac{\beta J_{0}}{2 N} \sum_{a}\left(\sum_{i} S_{i}^{\alpha}\right)^{2}+\beta h \sum_{i} \sum_{\alpha} S_{i}^{\alpha}\right\} \tag{23}
\end{equation*}
$$

This can be decoupled with the aid of the Gaussian integrals as

$$
\begin{align*}
{\left[Z^{n}\right]=} & \exp \left(\frac{N \beta^{2} J^{2} n}{4}\right) \int \mathcal{D}[q] \int \mathcal{D}[m] \exp \left(-\frac{N \beta^{2} J^{2}}{2} \sum_{\alpha<\beta} q_{\alpha \beta}^{2}-\frac{N \beta J_{0}}{2} \sum_{\alpha} m_{\alpha}^{2}\right) \times \\
& \times \operatorname{Tr} \exp \left(\beta^{2} J^{2} \sum_{\alpha<\beta} q_{\alpha \beta} \sum_{i} S_{i}^{\alpha} S_{i}^{\beta}+\beta \sum_{\alpha}\left(J_{0} m_{\alpha}+h\right) \sum_{i} S_{i}^{\alpha}\right) \tag{24}
\end{align*}
$$

We may write

$$
\begin{align*}
& \operatorname{Tr} \exp \left(\beta^{2} J^{2} \sum_{\alpha<\beta} q_{\alpha \beta} \sum_{i} S_{i}^{\alpha} S_{i}^{\beta}+\beta \sum_{\alpha}\left(J_{0} m_{\alpha}+h\right) \sum_{i} S_{i}^{\alpha}\right) \\
= & \left\langle\exp \left(\beta^{2} J^{2} \sum_{\alpha<\beta} q_{\alpha \beta} S_{i}^{\alpha} S_{i}^{\beta}+\beta \sum_{\alpha}\left(J_{0} m_{\alpha}+h\right) S_{i}^{\alpha}\right)\right\rangle^{N} \equiv\left\langle e^{L}\right\rangle^{N} . \tag{25}
\end{align*}
$$

We thus have

$$
\begin{equation*}
\left[Z^{n}\right]=\exp \left(\frac{N \beta^{2} J^{2} n}{4}\right) \int \mathcal{D}[q] \int \mathcal{D}[m] \exp \left(-\frac{N \beta^{2} J^{2}}{2} \sum_{\alpha<\beta} q_{\alpha \beta}^{2}-\frac{N \beta J_{0}}{2} \sum_{\alpha} m_{\alpha}^{2}+N \log \left\langle e^{L}\right\rangle\right) \tag{26}
\end{equation*}
$$

We apply Laplace's method

$$
\begin{align*}
{\left[Z^{n}\right] } & =\exp \left(-\frac{N \beta^{2} J^{2}}{2} \sum_{\alpha<\beta} q_{\alpha \beta}^{2}-\frac{\beta J_{0}}{2 n} \sum_{\alpha} m_{\alpha}^{2}+N \log \left\langle e^{L}\right\rangle+\frac{N}{4} \beta^{2} J^{2} n\right) \tag{27}\\
& \simeq 1+N n\left\{-\frac{\beta^{2} J^{2}}{2 n} \sum_{\alpha<\beta} q_{\alpha \beta}^{2}-\frac{N \beta J_{0}}{2} \sum_{\alpha} m_{\alpha}^{2}+\frac{1}{n} \log \left\langle e^{L}\right\rangle+\frac{1}{4} \beta^{2} J^{2}\right\} \tag{28}
\end{align*}
$$

Here, we take the thermodynamic limit later. Thus,

$$
\begin{equation*}
-\beta[f]=\lim _{n \rightarrow 0} \frac{\left[Z^{n}\right]-1}{n N}=\lim _{n \rightarrow 0}\left\{-\frac{\beta^{2} J^{2}}{2 n} \sum_{\alpha<\beta} q_{\alpha \beta}^{2}-\frac{N \beta J_{0}}{2} \sum_{\alpha} m_{\alpha}^{2}+\frac{1}{n} \log \left\langle e^{L}\right\rangle+\frac{1}{4} \beta^{2} J^{2}\right\} . \tag{29}
\end{equation*}
$$

The minimum position is

$$
\begin{equation*}
q_{\alpha \beta}=\frac{1}{\beta^{2} J^{2}} \frac{\partial}{\partial q_{\alpha \beta}} \log \left\langle e^{L}\right\rangle=\left\langle S^{\alpha} S^{\beta}\right\rangle_{L}, \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{a}=\frac{1}{\beta J_{0}} \frac{\partial}{\partial m_{\alpha}} \log \left\langle e^{L}\right\rangle=\left\langle S^{\alpha}\right\rangle_{L}, \tag{31}
\end{equation*}
$$

Thus q and m become the order parameters. q is the spin glass order parameter.
Replication-symmetric solution:
If $q_{\alpha \beta}$ and m_{α} are independent of the replica indices, (29) reads

$$
\begin{equation*}
-\beta[f]=\frac{\beta^{2} J^{2}}{4 n}\left(-n(n-1) q^{2}\right)-\frac{\beta J_{0}}{2 n} n m^{2}+\frac{1}{n} \log \left\langle e^{L}\right\rangle+\frac{1}{4} \beta^{2} J^{2} . \tag{32}
\end{equation*}
$$

We need $\left\langle e^{L}\right\rangle$ that can be computed with the Gaussian trick:

$$
\begin{align*}
\left\langle e^{L}\right\rangle & =\left\langle\sqrt{\frac{\beta^{2} J^{2} q}{2 \pi}} \int d z \exp \left(-\frac{\beta^{2} J^{2} q}{2} z^{2}+\beta^{2} J^{2} q z \sum_{\alpha} S^{\alpha}-\frac{n}{2} b^{2} J^{2} q+\beta\left(J_{0} m+h\right)-\frac{n}{2} b^{2} J^{2} q\right)\right\rangle \\
& =1+n\langle\log 2 \cosh \beta \hat{H}(z)\rangle_{z}-\frac{n}{2} \beta^{2} J^{2} q+O\left[n^{2}\right] \tag{33}
\end{align*}
$$

where z obeys $N(0,1)$ and

$$
\begin{equation*}
\hat{H}(z)=J \sqrt{q} z+J_{0} m+h . \tag{34}
\end{equation*}
$$

Thus, we have obtained

$$
\begin{equation*}
-\beta[f]=\frac{\beta^{2} J^{2}}{45}(1-q)^{2}-\frac{1}{2} \beta J_{0} m^{2}+\langle\log 2 \cosh \beta \hat{H}(z)\rangle_{z} . \tag{35}
\end{equation*}
$$

The extremization condition reads

$$
\begin{equation*}
m=\langle\tanh \beta \hat{H}(z)\rangle_{z}, q=\left\langle\tanh ^{2} \beta \hat{H}(z)\right\rangle_{z} . \tag{36}
\end{equation*}
$$

The formula for m tells that the mean field is Gaussian distributed.
If the distribution of J is symmetric $J_{0}=0$) and $h=0$, then \hat{H} is odd, so $m=0$. Therefore,

$$
\begin{equation*}
-\beta[f]=\frac{1}{4} \beta^{2} J^{2}(1-q)^{2}+\langle\log 2 \cosh \beta \hat{H}(z)\rangle_{z} . \tag{37}
\end{equation*}
$$

Near the critical point q should be small, so

$$
\begin{equation*}
\beta[f]=-\frac{1}{4} \beta^{2} J^{2}-\log 2-\frac{\beta^{2} J^{2}}{4}\left(1-\beta^{2} J^{2}\right) q^{2}+O\left[q^{3}\right] . \tag{38}
\end{equation*}
$$

Thus, the spin-glass transition exists at $T_{f}=J / k_{B}$. However, free energy is not minimized. Therefore, we cannot discuss phase transition properly. The pathological nature of the result can be seen from the negative entropy in the $T \rightarrow 0$ limit.

3. Replica Symmetry Breaking

To study the replica symmetry solution we expand the free energy around this solution and check the Hessian. The calculation is straightforward. The stability boundary is the de Almeida-Thouless line.

Parisi solution:
This is beyond my understanding and taste, so I will ignore this topic.
TAP equation:
The local magnetization of the SK model satisfies the following TAP equation for the random coupling $\{J\}$:

$$
\begin{equation*}
m_{i}=\tanh \beta\left\{\sum_{j} J_{i j} m_{j}+h_{i}-\beta \sum_{j} J_{i j}^{2}\left(1-m_{j}^{2}\right) m_{i}\right\} . \tag{39}
\end{equation*}
$$

The third terms is called the reaction field of Onsager and is added to remove the effects of self-response: the magnetization m_{i} affects site j through internal field $J_{i j} m_{i}$ that changes m_{j} by the amount $\chi_{j j} J_{i j} m_{i}$,

$$
\begin{equation*}
\chi_{j j}=\frac{\partial m_{j}}{\partial h_{j}}=\beta\left(1-m_{j}^{2}\right) \tag{40}
\end{equation*}
$$

This increases the internal field at i be

$$
\begin{equation*}
J_{i j} \chi_{j j} J_{i j} m=\beta J_{i j}^{2}\left(1-m_{j}^{2}\right) m_{i} \tag{41}
\end{equation*}
$$

The TAP equation can be obtained from the following free energy:

$$
\begin{align*}
f_{\mathrm{TAP}}= & -\frac{1}{2} \sum_{i \neq j} J_{i j} m_{i} m_{j}-\sum_{i} h_{i} m_{i}-\frac{\beta}{4} \sum_{i \neq j} J_{i j}^{2}\left(1-m_{i}^{2}\right)\left(1-m_{j}^{2}\right), \\
& +k_{B} T \sum_{i}\left\{\frac{1+m_{i}}{2} \log \frac{1+m_{i}}{2}+\frac{1-m_{i}}{2} \log \frac{1-m_{i}}{2}\right\} . \tag{42}
\end{align*}
$$

Here, the third term corresponds to the reaction field. This free energy may be derived from the SK Hamiltonian via Plefka expansion.

There is another method t derive the TAP equation-cavity method. The local magnetic field $(h=0)$ is $\tilde{h}_{i}=\sum_{j} J_{i j} S_{j}$. The energy may be written as

$$
\begin{equation*}
H=-\tilde{h}_{i} S_{i}-\sum^{\prime} J_{k j} S_{k} S_{j} \tag{43}
\end{equation*}
$$

where \sum^{\prime} is the sum over the magnet without S_{i}. Since \tilde{h}_{i} contains only $S_{j}(j \neq i)$, the simultaneous distribution of S_{i} and \tilde{h}_{i} may be written as

$$
\begin{equation*}
P\left(S_{i}, \tilde{h}_{i}\right) \propto e^{\beta \tilde{h}_{i} S_{i}} P\left(\tilde{h}_{i}\right) \tag{44}
\end{equation*}
$$

where $P\left(\tilde{h}_{i}\right)$ is the distribution of \tilde{h}_{i} for the magnet without $S_{i} . \tilde{h}_{i}$ is called the cavity field. For the SK model, we may assume that the correlation between different sites are weak, so we may assume that $P\left(\tilde{h}_{i}\right)$ obeys $N\left(\langle h\rangle_{i}, V_{i}\right) .\langle \rangle_{i}$ implies the average over the magnet without S_{i}.

In this case, we obtain by a straightforward calculation

$$
\begin{equation*}
m_{i}=\tanh \beta\langle h\rangle_{i} \tag{45}
\end{equation*}
$$

Thus, we need $\langle h\rangle_{i}$, the average of the field at i without S_{i}. If we write the true average of h_{i} as $\langle h\rangle$, then

$$
\begin{equation*}
\langle h\rangle=\langle h\rangle_{i}+V_{i}\left\langle S_{i}\right\rangle . \tag{46}
\end{equation*}
$$

This can be obtained by the honest averaging of \tilde{h}_{i} over $P\left(S_{i}, \tilde{h}_{i}\right)$. In other words,

$$
\begin{equation*}
\langle h\rangle_{i}=\sum_{j} J_{i j} m_{j}-V_{i} m_{i} . \tag{47}
\end{equation*}
$$

Here,

$$
\begin{equation*}
V_{i}=\sum_{j k} J_{i j} J_{i k}\left(\left\langle S_{j} S_{k}\right\rangle_{i}-\left\langle S_{j}\right\rangle_{i}\left\langle S_{k}\right\rangle_{i}\right) \tag{48}
\end{equation*}
$$

The off-diagonal terms cannot contribute due to the clustering property, so

$$
\begin{equation*}
V_{i}=\sum_{j} J_{i j}^{2}\left(1-\left\langle S_{j}\right\rangle_{i}^{2}\right) \simeq \sum_{j} J_{i j}^{2}\left(1-m_{j}^{2}\right) . \tag{49}
\end{equation*}
$$

Thus, we have recovered the TAP equation.
From the TAP equation RSB as well as RS results may be recovered.
The transition point may be obtained by the eigenvalue analysis of the random matrix $\{J\}$. It is expected that the TAP equation has very many solutions of $O\left[e^{a} N\right](a>0)$; only a fraction of the solutions correspond to minimum free energy solutions.

5. Gauge Theory of Spin Glasses

Consider the symmetric Edwards-Anderson model

$$
\begin{equation*}
\left.H=-\sum_{\langle i, j\rangle} J_{i j} S\right) i S_{j} . \tag{50}
\end{equation*}
$$

Here we asssume $J_{i j}$ to be $\pm J$, The gauge transformation of spins is defined by

$$
\begin{equation*}
S_{i} \rightarrow S_{i} \sigma_{i}, \quad J_{i j} \rightarrow J_{i j} \sigma_{i} \sigma_{j} \tag{51}
\end{equation*}
$$

H is invariant. Let p be the probabilty for $J_{i j}=J$. Then,

$$
\begin{equation*}
P\left(J_{i j}\right)=\frac{e^{K_{p} \tau_{i j}}}{2 \cosh K_{p}}, \tag{52}
\end{equation*}
$$

where $\tau_{i j}=\operatorname{sgn}\left(J_{i j}\right), J_{i j}=J \tau_{i j}$ and

$$
\begin{equation*}
e^{2 K_{p}}=\frac{p}{1=p} . \tag{53}
\end{equation*}
$$

The following argument applies to the coupling constant obeying the distribution of the form

$$
\begin{equation*}
P\left(J_{i j}\right)=P_{0}\left(\left|J_{i j}\right|\right) e^{a J_{i j}}, \tag{54}
\end{equation*}
$$

where a is a constant. The Gaussian model satisfies thei with $a=J_{0} / J^{2}$. The gaus transformation does not keep the distribution fucntion

$$
\begin{equation*}
P\left(J_{i j}\right) \rightarrow P\left(J_{i j}\right) e^{a J_{i j}-a J_{i j} \sigma_{i} \sigma_{j}} . \tag{55}
\end{equation*}
$$

Internal energy:

$$
\begin{equation*}
[E]=[\langle H\rangle]=\sum_{\tau} \frac{\exp \left(K_{p} \sum_{\langle i j\rangle} \tau_{i j}\right)}{\left(2 \cosh K_{p}\right)^{N_{B}}} \frac{\operatorname{Tr}_{S}\left(-J \sum_{\langle i j\rangle} \tau_{i j} S_{i} S_{j}\right) \exp \left(K \sum_{\langle i j\rangle} \tau_{i j} S_{i} S_{j}\right)}{T r_{S} \exp \left(K \sum_{\langle i j\rangle} \tau_{i j} S_{i} S_{j}\right)} . \tag{56}
\end{equation*}
$$

Applying the gauge transformation, we have

$$
\begin{equation*}
[E]=\sum_{\tau} \frac{\exp \left(K_{p} \sum_{\langle i j} \tau_{i j} \sigma_{i} \sigma_{j}\right)}{\left(2 \cosh K_{p}\right)^{N_{B}}} \frac{\operatorname{Tr}_{S}\left(-J \sum_{\langle i j\rangle} \tau_{i j} S_{i} S_{j}\right) \exp \left(K \sum_{\langle i j\rangle} \tau_{i j} S_{i} S_{j}\right)}{\operatorname{Tr}_{S} \exp \left(K \sum_{\langle i j\rangle} \tau_{i j} S_{i} S_{j}\right)} \tag{57}
\end{equation*}
$$

This is invariant under the choice of $\left\{\sigma_{i}\right\}$. Therefore, we may average the above formula over all the choices of $\left\{\sigma_{i}\right\}$:
$[E]=\frac{1}{2^{N}\left(2 \cosh K_{p}\right)^{N_{B}}} \sum_{\tau} \operatorname{Tr}_{\sigma} \exp \left(K_{p} \sum_{\langle i j\rangle} \tau_{i j} \sigma_{i} \sigma_{j}\right) \frac{\operatorname{Tr}_{S}\left(-J \sum_{\langle i j\rangle} \tau_{i j} S_{i} S_{j}\right) \exp \left(K \sum_{\langle i j\rangle} \tau_{i j} S_{i} S_{j}\right)}{\operatorname{Tr}_{S} \exp \left(K \sum_{\langle i j\rangle} \tau_{i j} S_{i} S_{j}\right)}$.
If $K=K_{p}$ (NIshimori line), then

$$
\begin{equation*}
[E]=\frac{1}{2^{N}\left(2 \cosh K_{p}\right)^{N_{B}}} \sum_{\tau} \operatorname{Tr}_{S}\left(-J \sum_{\langle i j\rangle} \tau_{i j} S_{i} S_{j}\right) \exp \left(K \sum_{\langle i j\rangle} \tau_{i j} S_{i} S_{j}\right) \tag{59}
\end{equation*}
$$

This can be calculated as

$$
\begin{equation*}
[E]=-N_{B} J \tanh K \tag{60}
\end{equation*}
$$

This depends only on the total number N_{B} of bonds. Along the Nishimori line $[E]$ is nonsingular as a function of temperature. The line connects $T=J / K$ and $p=(1 / 2)\left(\tanh K_{p}+\right.$ 1). $T=0, p=1$ (ferro) and the high temperature limite $T=\infty, p=1 / 2$.

As can be guessed from (59) the boond energies are statistically independent on the N line.

Upper bound of the specific heat can be estimated. The distributiojn of overlap q and that of magnetization are identical..

Gauge glass (XY-model) is also discussed.

5. Error-Correcting Codes

Let $\xi_{i}= \pm 1$ and

$$
\begin{equation*}
J_{i_{1} i_{2}, \cdots i_{r}}^{0}=\xi_{i_{1}} \cdots \xi_{i_{r}} \tag{61}
\end{equation*}
$$

This is regarded as an input to a binary symmetric channel. The output of the chammel is $J_{i_{1} i_{2}, \cdots i_{r}}$ and is equal to $\pm J_{i_{1} i_{2}, \cdots i_{r}}^{0}$. The error probability is

$$
\begin{equation*}
P\left(J_{i_{1} i_{2}, \cdots i_{r}} \mid J_{i_{1} i_{2}, \cdots i_{r}}^{0}\right)=\frac{\exp \left(\beta_{p} J_{i_{1} i_{2}, \cdots i_{r}} \xi_{i_{1}} \cdots \xi_{i_{r}}\right)}{2 \cosh \beta_{p}} \tag{62}
\end{equation*}
$$

where β_{p} is determined as

$$
\begin{equation*}
e^{2 \beta_{p}}=\frac{1-p}{p} \tag{63}
\end{equation*}
$$

Notice that p is the error probability:

$$
\begin{equation*}
p=\frac{1}{1+e^{2 \beta_{p}}}=\frac{e^{-\beta_{p}}}{2 \cosh \beta_{p}}, 1-p=\frac{e^{\beta_{p}}}{2 \cosh \beta_{p}} . \tag{64}
\end{equation*}
$$

Thus, the error probability reads

$$
\begin{equation*}
P(\boldsymbol{J} \mid \boldsymbol{\xi})=\frac{1}{\left(2 \cosh \beta_{p}\right)^{N_{B}}} \exp \left(\beta_{P} \sum \boldsymbol{J} \cdot \boldsymbol{\xi}\right) \tag{65}
\end{equation*}
$$

Here, the summation in $\boldsymbol{j} \cdot \boldsymbol{\xi}=\sum J_{i_{1} i_{2}, \cdots i_{r}} \xi_{i_{1} i_{2}, \cdots i_{r}}$ is take over all sets generated by (61) To decipher the corrupted code, we use Bayes' formula

$$
\begin{equation*}
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{\sum_{A} P(B \mid A) P(A)} \tag{66}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
P(\boldsymbol{\sigma} \mid \boldsymbol{J})=\frac{P(\boldsymbol{J} \mid \boldsymbol{\sigma}) P(\boldsymbol{\sigma})}{\operatorname{Tr}_{\sigma} P(\boldsymbol{J} \mid \boldsymbol{\sigma}) P(\boldsymbol{\sigma})} \tag{67}
\end{equation*}
$$

If the message source produces all the message equally probably, we obtain

$$
\begin{equation*}
P(\boldsymbol{\sigma} \mid \boldsymbol{J})=\frac{\exp \left(\beta_{p} \sum \boldsymbol{J} \cdot \boldsymbol{\text { sigma }}\right)}{\operatorname{Tr}_{\sigma} \exp \left(\beta_{p} \sum \boldsymbol{J} \cdot \boldsymbol{s i g m a}\right)} . \tag{68}
\end{equation*}
$$

This is nothing but the Boltzmann factor of an ising spin glass with randomly quenched interactions \boldsymbol{J}.

MAP decoding (maximum a posteriori probability) This maximizes $P(\boldsymbol{J} \mid \boldsymbol{\sigma})$ wrt to $\boldsymbol{\sigma}$. This is equivalent to maximizing $P(\boldsymbol{\sigma} \mid \boldsymbol{J})$ if $P(\boldsymbol{\sigma})$ is constant.

Another strategy is to study $P\left(\sigma_{i} \mid \boldsymbol{J}\right)$.

$$
\begin{equation*}
=\hat{\xi}_{i}=\operatorname{sgn}\left(P\left(\sigma_{i}=1 \mid \boldsymbol{J}\right)-P\left(\sigma_{i}=-1 \mid \boldsymbol{J}\right)\right) \tag{69}
\end{equation*}
$$

This is the estimate of decoded result and is called MPM (maximizer of posterior marginals). This is clearly different from MAP. MAP is equivalent of the low temeratureMPM. The above estimate may be understood as $\operatorname{sgn}\left(\left\langle\sigma_{i}\right\rangle\right)$.

The quality of decoding may be meaured by $\xi_{i} \hat{\xi}_{i}$ We compute its average

$$
\begin{equation*}
M(\beta)=\operatorname{Tr}_{\xi} \sum_{J} P(\boldsymbol{\xi}) P(\boldsymbol{J} \mid \boldsymbol{\xi}) \xi_{i}\left\langle\sigma_{i}\right\rangle_{\beta} \tag{70}
\end{equation*}
$$

This is called the overlap. This is bounded by $M\left(\beta_{p}\right)$. To know the performance of the code, it is desirable that $M(\beta)$ may be estimated.

The infinite range model is solvable whose Hamiltonian is given by

$$
\begin{equation*}
H=-\sum_{i_{1}<\cdots<i_{r}} J_{i_{1} i_{2}, \cdots i_{r}} \xi_{i_{1}} \cdots \xi_{i_{r}} \tag{71}
\end{equation*}
$$

The sum is over all possible combination of r spins taken from N spins. This can be solved by the replica method. The replica symmetric solution is

$$
\begin{equation*}
q=q_{\alpha \beta}=\frac{1}{N} \sigma_{i}^{\alpha} \sigma_{i}^{\beta}, m=m_{\alpha}=\frac{1}{N} \sum \sigma_{i}^{\alpha} . \tag{72}
\end{equation*}
$$

The equations governing q and m read

$$
\begin{equation*}
q=\left\langle\tanh ^{2} \beta G\right\rangle, m=\langle\tanh \beta G\rangle \tag{73}
\end{equation*}
$$

with

$$
\begin{equation*}
G=J \sqrt{\frac{r q^{r-1}}{2}} u+j_{0} r m^{r-1} \tag{74}
\end{equation*}
$$

Here \rangle is the average over u obeying $N(0,1)$.
We find

$$
\begin{equation*}
q=\left[\left\langle\sigma_{i}\right\rangle^{2}\right], m=\left[\left\langle\sigma_{i}\right\rangle\right] . \tag{75}
\end{equation*}
$$

This suggests

$$
\begin{equation*}
\left[\left\langle\sigma_{i}\right\rangle^{k}\right]=\left\langle\tanh ^{k} \beta G\right\rangle \tag{76}
\end{equation*}
$$

This is indeed correct, leading to

$$
\begin{equation*}
M(\beta)=\left[\operatorname{sgn}\left(\left\langle\sigma_{i}\right\rangle\right)\right]=\langle\operatorname{sgn}(G)\rangle \tag{77}
\end{equation*}
$$

The replica symmetry broken solution is also discussed..
Finite connectivity code.
Convolution code:

