
Statistical Mecahcnis in a Nutshell
A Cognilio (Priceton UP, 2003)1

1. Introduction

Working knowledge of methods for solving interaction-free systems is the foundation needed219
to introduce the most important method to, explore the behavior of systems with interaction—
in other words, mean-field theory. ...

The microscopic structure of systems examined by statistical mechanics can be described290
by means of mechanical models. ... The models to be examined can be, and recently in-
creasingly are, more abstract, however, and exhibit only a faint resemblance to the basic
mechanical description (more specifically, to the quantum nature of matter). The explana-
tion of the success of such abstract models is itself the topic of one of the more interesting
chapters of statistical mechanics: the theory of universality and its foundation in the renor-
malization group.

1.2 Statistical Postulates326
Statistical postulates are for initial conditions. The Maxwell is iintroduced by indepndence338
assumtions
Marcus and McFee experiment to measure the Maxwell distribution.415
[C] Is this really the measurement of the distribution of the gas itself?

Figure 0.0.1: Marcus and McFee experiment [Fig. 1.2]

2 Thermodynamics

A thermodynamic system is a macroscopic system whose behavior is identified thanks to a458
small and finite number of quantities- the thermodynamic properties.

Thermodynamics is a “miracle’: the system has ∼ 1023 degrees of freedom and yet it can
be sell described by a mush smaller number of variables.
[C] Becasue we observes are the product of mircle.
If the state of a thermodynamic system can be fully characterized by the values of the ther-
modynamic variables, and if these values are invariant over time, one says that it is in a

1The English translation is not good; 5012 fixed pointsare confused, etc.
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state of thermodynamic equilibrium. Thermodynamic equilibrium, as R. Feynman [Feyn72]
says, occurs when all fast processes have already occurred, while the slow ones have yet
to take place. Clearly the distinction between fast and slow processes is dependent on the
observation time x that is being considered. This property has been emphasized especially
by S.-K. Ma [MaSs, p. 3]:

As thermodynamics is usually formulated, the observation time x is not explicitly mentioned;497
we would, however, do well to remain aware of the fact that the set of thermodynamic vari-
ables (and therefore the relations that govern them) is implicitly determined by x. It is the
physicist’s task (guided each time by the experiment) to determine on each occasion the
most appropriate thermodynamic description of the specific system under examination.

2.2 Extensive variable:
counter example: microemulsions510
The fundamental hypothesis of thermodynamics is that it should be possible to characterize
the state of a thermodynamic system by specifying the values of a certain set of extensive
variables.

2.3 Cetral problem of thermodynamics
Given the initial state of equilibrium of several thermodynamic systems that are allowed to535
interact, determine the final thermodynamic state of equilibrium.

2.4 Entropy
Callen style characterizetion: extensivity, convexity and monotonicity.574
Adiabatic and movable piston: no unique state available.628
Then, Lieb-Yngvasson system is instroduced.

2.8 Energy scheme
Max S is translated into min E. The proof uses the monotone concave fundamental surface.832
Notice that thatnks to max entropy principle, we have

∆S = S(E, Xeq + ∆X)− S(E, Xeq) ≤ 0. (0.0.1)

Since S is monotone-increasing function of E, tehre must be E ′ ≥ E such that

S(E ′, Xeq + ∆X) = S(E, Xeq). (0.0.2)

Therefoe, if S is kept constant and X deviates from the equilibrium value, then E increases.
TdS = δQ for reversible change. [C] where does this come from? Unclear.

2.9 Intensive variables and theremodynamic potentials
This is defined as the derivative.869
density is mentioned.
Maxwell’s relation is systematized with the aid of the Koenig-Born diagram.1072
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2.16 Magnetic systems
The sample is a thin cylinder inside a solenoid, identified by a number n of coils per unit
length with a current I. The magnetic field (magnitude) is H = nI in teh solenoid. If
the cylinder is homogeneous, it develops a uniform magnetization, with a certain value m
of magnetic moment density per unit of volume. As a consequence, the magnetic induction
vector B is uniform, parallel to H , and takes the form B = µ0(H+m), where µ0 = 4πx10−7

Wb/m·A is the magnetic permeability of the vacuum.
Now, let us suppose that we vary the current circulating in the solenoid by δI. The work

performed by the system and associated with this variation is given by

δW = −
∫ tf

ti

dt I(t)Vind(t), (0.0.3)

where Vind is the induced electromotive force, which can be expressed in terms of the flux Φ
of the magnetic induction vector B in the solenoid as

Vind =
dΦ

dt
. (0.0.4)

We thus obtain to order δ1149

δW =

∫ tf

ti

dt I(t)
dΦ(t)

dt
= IδΦ. (0.0.5)

The flux is
Φ = ABn`, (0.0.6)

where A is the solenoid cross section and ` its length. We arrive at

δΦ = nV δB = nV µ0(δH + δm) = nV µ0H + µ0δM. (0.0.7)

As a consequence, the work δW can be expressed as

δW = nV µ0IδH + nµ0IδM = µ0V FδH + µ0HδM. (0.0.8)

The first term represents the variation in the energy of the magnetic field due to variations
in the magnetic field itself. In fact, this energy is equal to

δEmag = d
1

2

∫
ddrµ0H

2. (0.0.9)

The second term represents the work performed on the sample in order to change its mag-
netization.

The contribution of the extensive variable M to “mechanical” work is therefore given by

δW = µ0H · δM . (0.0.10)

We can see that the variable conjugated to magnetization (in other words, to the total mag-
netic dipole) is the magnetic field.
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Since the dipolar interactions (which occur between regions that are magnetically polar-1175
ized) are long range, a certain caution is necessary when dealing with the magnetization M
as an ordinary thermodynamic variable. More specifically, given equal amounts of material
and volume, samples with different shapes possess different energies even if immersed in the
same magnetic field. One usually accounts for this effect by introducing a demagnetization
factor, which is dependent on shapes.

Cx ≥ CX .1232

Planar interface1415

Theory of elasticity1467

3. The Fundamental Postulate

The key to the relation between mechanical and thermodynamic properties is the microscopic1511
expression of entropy. This expression was found by Ludwig Boltzmann, and it has such
an important role that we have decided to call it the fundamental postulate of statistical
mechanics. Since we are dealing with a postulate, it cannot be proven- we can, however,
make it plausible by showing that the properties of entropy that derive from it agree with
the properties that we postulated in thermodynamics.
The book start with CM.1521

Let us call observables in statistical mechanics those functions, defined on the phase space,1546
that vary smoothly enough when the representative point varies.

The fundamental postulate of statistical mechanics expresses entropy as a function of the1567
accessible volume in phase space— in other words, of the volume |Γ| of the phase space in
which the thermodynamic observables have values compatible with a specific thermodynamic
state. Then the fundamental postulate states that

S = kB log |Γ|. (0.0.11)

In this formula, This relation cannot be proven.Also microcanonical expression is possible.

Liouville’s theorem tells us |Γ0| = |Γt|. From this Liouville’s equation is derived (1691).1643

The fundamental postulate in its quantum version stipulates that1737

S = kB logN , (0.0.12)

where N is the number of state with eigenvalues compatible with thermodynamic observ-
ables.

The variational principle for the entropy states that the equilibrium values ξ∗ correspond to1792
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the maximum value of the entropy.

Gibbs formula of entropy.2176

4. Interaction-free system

Sound wave equation for fluid2448
Second sound:
Conservation of energy: ∂t +∇ · jε.
Conservaion of momentum: ∂tp +∇p, Newton’sequation of motion
Let P be the total momentum, and regard it as a new extensive variable:

S(Etot, P ) = S(Etot − P 2/2M, 0). (0.0.13)

Then,2492 (
∂S

∂P

)
Etot

=
∂S

∂E
(−P /M) = −v/T. (0.0.14)

Having established these premises, it becomes obvious that the average number of phonons
characterized by the polarization state a and the wave vector k in a system endowed with
an average velocity v is given by the Bose factor fB = 1/(eβε − 1) in terms of the phonon
energy at rest, which is given by

ε(k, v) = ~ωtot − ~k · v, (0.0.15)

where ωtot = c|k|. In what follows, we will assume that the speed of sound does not depend
on the polarization. We can now formulate the following expressions for energy density,
momentum, and energy flow:

ε =
3

(2π)3

∫
dk fB(~ωk − ~k · v)~ωk, (0.0.16)

p =
3

(2π)3

∫
dk fB(~ωk − ~k · v)~k, 2 (0.0.17)

jε =
3

(2π)3

∫
dk fB(~ωk − ~k · v)~ωkc

k

|k|
. (0.0.18)

The factor 3 in these equations comes from the sum over the three polarization states.
Expanding these to first order in v, we get ε(v) = ε.

p =
3

(2π)3

∫
dk fB(~ωk)~k − 3

(2π)3

∫
dk (−k · v)

∂fB(ε)

∂ε
~k, (0.0.19)

Here, isotropic average of 3(−k · v)k = k2v, so

p = ρv, (0.0.20)

where ρ is the mass density of the phono gas given by

ρ =
1

(2π)3

∫
dk k2∂fB

∂ω
. (0.0.21)
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Similarly, we obtain (ωk = c|k| is used)

jε =
3

(2π)3

∫
dk

(
−k · v∂fB

∂ε

)
~ωkck = c2ρv. (0.0.22)

On the other hand, we have2527

∂ε

∂t
=

∂ε

∂T

∂T

∂t
, ∇P =

1

3
∇ε =

1

3

∂ε

∂T
∇T. (0.0.23)

where PV = E/3 has been used. Also

∂ε

∂T
=

3

(2π)3

∫
dk

∂fB

∂T
~ωk = − 3

(2π)3

∫
dk

∂fB

∂E

(~ωk)2

kBT
=

3c2

kBT
ρ. (0.0.24)

Thus, we have obtaine
∂T

∂t
=

1

3
T∇ · v,

∂v

∂t
= −c2∇T, (0.0.25)

or
∂2T

∂t2
= c2

H∆T (0.0.26)

with cH = c/
√

3, the speed of the second sound. Such a temperature wave may be obtained
if
(i) The variation in momentum due to phonons changes only because of pressure gradients.2538
(ii) The interaction between phonons and between phonons and the lattice is fairly weak, to
the extent that one can consider phonon gas to be an ideal gas.
These hypotheses are satisfied if the sample is fairly pure (the interaction with impurities
does not conserve momentum) and the temperature is fairly low (low enough that one can
disregard those interactions among phonons that do not conserve momentum). If the tem-
perature is too low, however, the phonon gas becomes too dilute and will not be able to
reach equilibrium.

Polylog function expression of fermi and bose averages. It is interesting to note that the2607
2671 Fermi energy is inversely proportional to the fermions’ mass- and this is the reason that

phenomena related to the Fermi distribution are more obvious in electrons.

At high density electrons satisfy PV ∝ V 2/3, so PV 5/3 = const. Derive CP /CV = 1 + d/2718
g, where g is the exponent for the dispersion relation ε ∝ |p|γ.
Combinatorial derivation of FD and BE.2744

Einstein condensation.2769

Langmuir isotherm.2835

Ortho and para hydrogen: coparison with experiment Fig 4.11 (Wannier Staitical Physics).2943
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5. Phase Transitions

The first critical point to be discovered was in carbon dioxide.3027

Group discussion: Order parameter is introduced following the symmetry breaking after3252
Landau and Lifshitz.

Peierls argument3289

The introduction is fairly close to the rigorous version.
1D correlation length is obtained. ξ = a/ log tanh K.3393
Lifson method: JCP 40 3705 (1964). This is based on the block sequence representation of
the chain configuration.

Simplified Pererl is called Landau argument.3418
Duality
Mean field

Variational principle: Bogolubov ineq etc. are used.3526

Landau theory3659
The mean field theory requires that we look for the minimum of an effective free energy
defined by

F(h, T,m) = N [f(T, m)− hm]. (0.0.27)

Near CP m is small. so we expand f into series and truncate it.

Einstein theory of fluctuations: If, as usually occurs, entropy is a regular function of its3740
arguments around the equilibrium values, then it is possible to deduce a certain number of
important relations for the fluctuations.
We have so far considered the fluctuations of extensive quantities in a finite region of the3799
system, which are in contact with a much larger system, and therefore characterized by
well-defined values of the corresponding intensive quantities (generalized forces and tem-
perature). If we consider an isolated system, we can ask ourselves whether it is possible to
observe analogous fluctuations in the intensive quantities. This problem is still the subject of
discussion. One can formally associate corresponding fluctuations of the intensive variables
with the fluctuations of the extensive variables by means of the equations of state. This
procedure is fairly arbitrary however and, above all, does not allow one to obtain further
physical insights.
Ginzburg criterion:

Scaling laws: Relations of this type (known as scaling laws) can be written between any3899
three exponents, and follow from the homogeneity of the free energy and from the fact that
only two independent exponents appear in it. They are well satisfied by the experimen-
tally measured exponents, and currently there are few doubts that they are valid for the
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asymptotic exponents. Another relation of this type connects β,γand δ:

γ = β(δ − 1). (0.0.28)

It is enlightening to consider the implication of these relations for the coherence length and
for the correlation function. The lines of reasoning we have followed show that the coher-
ence length must itself also satisfy a general homogeneity relation, etc. γ/ν = 2−η isdereived.

2D Ising model.3926

6. Renormalization Group

Kadanoff argument.4102

Lower and upper critical dimensions: ε < 0 case the stability of Gaussian fixed point.4987
Note that all the nonclassical exponents satisfy hyperscaling. 2 − dν = α is not satisfied
by the classical exponents. At the upper critical dimension the nontrivial fixed point agrees
with the Gaussian and the classical exponent hterefore must satisfy the scaling law: αc = 0,
νc = 1/2.

dc =
1− αc

νc

= 4. (0.0.29)

(This can be applied to φ3 model with dc = 6.
In this case one would obtain the classical exponents α = −1, β = 0, γ = 1 and dc = 6. Since5012
strictly speaking these terms are present in the van der Waals equation, we can ask ourselves
why the Ising exponents that we obtained for n = 1 apply to the liquid-gas transition. The
answer is that if the order parameter is a scalar, it is always possible to eliminate these terms
by redefining φ by means of a translation: φ′ = φ − φ0. When this transformation is for-
bidden because of the problem’s symmetry, however, we are dealing with a new universality
class and we obtain some new exponents, which must be calculated in an expansion in d−6.
This is the case of percolation.

Another remarkable value of dimensionality is the one where symmetry breaking occurs
at zero temperature. This is called the lower critical dimension. For n = 1 (Ising), it is
equal to 1, while for n ≥ 2, it is equal to 2. In this case, it is possible to expand the critical
exponents into powers of d − 2. For n = 2 and d = 2, even though there is no symmetry
breakig, there is a peculiar phasde trnasition at finite temperature (BKT).

7. Classical Fluids

Pair distribution.5131
Compressibility equation5172
Rversible work theorem: how to measure g(r)5185
BBGKY and Kirkwood.5256
Direct correlation and OZ.5301
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Virical expansion; Mayer f . The convergence of the virial expansion and the fugacity ex-5315
5570 pansion of the equation of state can be analyzed by showing that the infinite sequence of

reduced densities ρ = {ρ(i)(x1, · · · , xi)} satisfies a system of linear nonhomogeneous integral
equations whose kernel is small if the fugacity (and therefore the density ρ) is small. This
allows for an explicit estimate of the convergence radius of the expansions.
Kirkwood-Salzburg euqation is iintroduced.5604
Convergence of virial expansion.5649

Perturbation around hard core (Zwanzig). However no discussion of hard-core fluid; no PY.5717

8. Numerical Simulation

Verlet algorithm5976

Umbrella sampling: We can sample the canonical distribution with a Hamiltonian H0, which6407
is not identical to the one H that we are interested in, if this is to our advantage, as long as
we are careful to take the correction into account:

〈A〉H =
〈Ae−b(H−H0)〉H0

〈e−b(H−H0)〉H0

. (0.0.30)

This technique is called umbrella sampling—in addition to being used for the study of per-
turbations with respect to a given Hamiltonian, it can be used for the study of rare events
by enhancing them with H0.

Discussion6443
One of the most interesting aspects of numerical simulation is the way in which it allows one
to clarify (not resolve!) the fundamental conceptual problems of statistical mechanics.

We have actually seen how a suitably defined Markov chain allows us to sample the canon-
ical ensemble, for example. The runs one can actually perform, however, will allow us to
evaluate the observables’ mean only over a ridiculously small number of configurations. For
N = 100, for instance, we have about 1030 possible configurations. You are therefore not
sampling the Boltzmann distribution in the same sense in which, for example, by throwing a
die 10,000 times you are checking whether it is “honest,” since the frequencies of the various
results are equal to 1/6 within 1%. The point is that we are not aiming to sample the
distribution in phase space, but only to evaluate the observables’ averages.

We will have to be careful not to squeeze our data too much—in other words, not to base6454
our conclusions on events that, in our run, occurred a small number of times. If we really
have to, we can use umbrella sampling to obtain a statistically significant sample.

Last, let us remark that we were able to obtain only the observables’ average. There are
important thermodynamic quantities that are not observable: first entropy, then free energy,
and so on.

So to obtain S integrating specific heat should be more advantageous.
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9. Dynamics

Random force: isotropy, no memory and Gaussian ness assumed.6501

〈f(t)fT (s)〉 = ΛIδ(t− s). (0.0.31)

The noise amplitude is fixed withthe aid of the equipartition of energy.6538

M
dv

dt
= −λv + f , (0.0.32)

which can be solved and after a long time

〈v2〉 =
Λ

2Mλ
(0.0.33)

This implies Λ = 2λkBT . Diffusion coefficient and Green-Kubo for it are given.6588

Fractal properties of Brownian trajectories. Covering dimension is introduced.6615

Onsager reciprocity, regression hypothesis

10. Complex Ssystems

Percolation7561
Relation to Potts7682
Real space RG for Percolation7775
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