
Probability and Finance
Its only a game!
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(Wiley-Interscience, 2001)

1 Introduction

Two fundamental ideas:p2
(1) Principle of pricing by dynamical hedging: when simple gambles are
combined over time to produce a more complex gamble, prices for the simple
gambles determine the prices for the complex one.
(2) Hypothesis of Impossibility of a gambling system: There is no way
to select gambles to avoid bankruptcy while to give a reasonable chance of
making us rich.

Probability becomes game-theoretic as soon as we treat the expected values
as prices in a game.
Defining a probability measure means recommendation of prices for uncertain
payoffs on the sample space.
In contrast to the measure-theoretical framework, the game-theoretical frame-p3
work can model open processes = processes open to influences we cannot model
even probabilistically.

Game considered: Player I = Skeptic bets on what will happen and Player II
= Reality decides what will happen. The moves are made alternatively.

Protocol for a probability game
The protocol for a probability game specifies moves available to each player:
(1) For Reality it is the sample space Ω (but sample = path, so this should
better be called the path space). A cylinder set is called a situation.
Skeptics’s bets do not affect what is possible in the world, although Reality
may consider them in deciding what to do next.
The game is called terminating if every path is finite; the game has a finite
horizon.
Real valued function on Ω is called simply a variable (to avoid the word ‘ran-
dom’). Any subset of Ω is called an event.
(2) For Skeptic each move is a gamble, defined by a price to be paid immedi-
ately and by a payoff that depends on Reality’s following move. Skeptic can
borrow money freely without interest.
Skeptic can combine (linearly average) available gambles.
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The protocol is symmetric if Skeptic is allowed to take either side of any avail-p11
able gamble: if he can buy the payoff x at the price m, he can also sell x at
m (i.e., buying −x at −m). In this case the available gambles make a linear
space.
A strategy P is a plan for how to gamble in each nonterminal situation. For
P and a situation t, KP(t) is the capital of Skeptic

Upper and lower pricesp12
A strategy simulates a transaction satisfactorily if it produces at least as good
net payoff x− α. We say P simulates buying x at α satisfactorily, if

KP(ξ) ≥ x(ξ)− α (1.1)

for every path ξ in Ω.

Ex = inf{α | there is some strategy P such that KP ≥ x− α} (1.2)

is called the upper price of x or the cost of x. It is the lowest price Skeptic can
buy x (the lowest price of x Skeptic can hedge)..

Ex = sup{α | there is some strategy P such that KP ≥ α− x} (1.3)

is called the lower price of x or the scrap value of x (the highest price at which
Skeptic can sell x).

Ex = −E(−x). (1.4)

Etx is the upper price in the situation t, etc.

Hedging
We say P hedges the obligation y if for every path ξ

KP(ξ) ≥ y(ξ). (1.5)

We say P hedges selling x at price α, if P hedges x − α. Thus, Ex is the
lowest selling price for x Skeptic can hedge.
(Notice that these definitions may not make sense if the game is not terminat-
ing.)

Game theoretic expectation and variance
If Skeptic cannot make money for sure, then the protocol is said to be coherent.1p14
In this case

Etx ≤ Etx (1.6)

1 For example, the range of x is [−c, c] and the mean m is outside this range, then
M(x − m) > 0 by appropriate choice of M independent of x.
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for every x and they are zero for the variable whose value is always 0 for any
path.
If Etx = Etx, the common value is called the (exact) price, and is designated
by Etx. This is the expected price.
variance is defined as

V tx = Et(x− Etx)
2, (1.7)

(upper variance), etc.

Interpretative hypothesis
The Principle of ‘no risk no gain’ is not a mathematical statement; it is neither
an axiom nor a theorem. An event is unlikely if it violates this principle.

Game theoretic probability
Upper probability P of an event is the upper price of its indicator, PE = EχE ,
where χE is the indicator of the event E, etc.

The upper probability of an event E measures the degree to which a strategyp126
for betting on E can multiply one’s capital without risk of bakruptcy:

PE = {α | there is a strategy that begins with α

and ends up with at least 1 if E happens and at least 0 otherwise}.(1.8)

If we assume that the protocol is coherent (p14), then

0 ≤ P ≤ P ≤ 1, (1.9)

and for some event E
PE = 1− PEc. (1.10)

Suppose PE = 0.001. Skeptic can buy this at 0.001. If E happens χE = 1, so
the gain is 1000. Since there is no possibility of bankruptcy because χ ≥ 0,
this is unlikely. Hence, E is unlikely.
If PE = 0.999, then PEc = 0.001, very unlikely, so E is likely.
We say an event is practically unlikely, if Skeptic’s capital never goes negative,
but increases without bound. E is almost sure if Ec is practically impossible.

Game theoretical probability concept accommodates both objective and sub-p19
jective concepts. The concepts may be classified by the ultimate authority for
the price:
(1) The statistical regularity is the authority for objective probability. We
expect events assigned small upper probabilities not to happen, and we expect
prices to be reflected in average values.
(2) Belief is the authority for subjective probability. In this case low prob-
ability implies that he thinks an event will not happen, i.e., he is willing to
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bet heavily against it. In this ‘neosubjectivist conception,’ the principle of
fundamental interpretative hypothesis is irrelevant.
(3) The market for financial security is the authority for the market game, and
the probability concept is about hedging of market risks.
Game theory is a mathematical account of potentiality: it analyzes what play-p46
ers can do, so game theoretical probability is a measure of potentiality.

Pricing optionsp23-4
Example. Stock price today is $8. Option x: can buy the stock tomorrow at
$8.
(a) Tomorrow, it may go to $5 or $10.
Ex = 6.
(b) Tomorrow, it may go to $5, $8, or $10.
E = 6 and E = 0, so no pricing without extra conditions.

2 Historical

Kolmogorov’s axioms p40-41.
After Grundbegriffe, probability was mathematics.p45
Kolmogorov regarded his axioms as axioms for a frequentist concept of proba-p43
bility: LLN and “If PE is very small, one can be practically certain that this
event would not occur at all if the experiment is realized only once.”

Cournot’s bridge: Events with zero probability cannot happen. This bridgesp44
probability theory and the physical world.
Once this is accepted, LLN is a theorem.

Von Mises collectives: Wald proposed in 1937 that we permit any rule for
selecting a subsequence that can be expressed in a formal logic. Church usedp48
effective computability to support Wald. This marked the end of the intense
discussion of collectives.

Ville’s strengthening of collectives
Ville showed that that probability theory requires even more irregularity from
a sequence than is required by the von Mises-Wald collective.
For example, the law of iterated logarithm requires such; no complexity oscil-
lation, so to speak. One can construct collective whose subsequences alwaysp48
give the frequency of 1 to approach to 1/2 from above. In this case one’s
capital can increase without bound without any risk of bankruptcy. That is,
there is a gambling system that can detect deviations from randomness that
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cannot be detected by subsequence selection rules.
Ville’s proposal is to add his ‘universal gambling’ in the subsequence choice
rules proposed by Wald.

Kolmogorov complexity
Kolmogorov’s idea was fully developed by Martin-Löf, showing the existence
of the universal test. In 1971 Schnorr2 showed that Ville’s type tests could
also give infinite random sequences.
Skeptic cannot become infinitely rich
=
Reality’s moves will pass any computable test based on Forecaster’s prices
=
Reality’s moves will be random in the sense of Schnorr.
Greater use of Kolmogorov complexity will be required to develop game the-p51
oretical probability theory.

Martingale
Let L be a real function on the history of gambling. If

E(L(x1, · · · , xn) | x1, · · · , xn−1) = L(x1, · · · , xn−1), (2.1)

we say L is martingale. Ville demonstrated that:
Event E is probability 1 iff there is a nonnegative martingale that diverges to
infinity if E fails. Ville came almost to showing

P (E) = inf{L0 | lim inf
n→∞ Ln ≥ χE} (2.2)

Here L0 is the initial value of L.

Impossibility of gambling systemp55
To elaborate the assertion that a gambling system cannot succeed in a fair
game:
1. Any subsequence from an iid sequence has the same joint probability dis-
tribution,
2. If the expected gain is zero for a game, then no strategy to change it exist.
3. Player’s gain in a fair game is a random variable with mean zero.
4. If a player follows a system that does not risk bankruptcy, then the odds
are at least K − 1 to 1 against his multiplying his stake by K.
The last point is expressed by Ville in the form of Doob’s inequality:p56

P{sup
n
Ln ≥ λ} ≤ 1

λ
(2.3)

2 C. P. Schnorr, “A unified approach to the definition of random sequences,” Math. Sys-
tems Theory 5 246 (1971) and in German in LNM 218 (1971).
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where L is a nonnegative martingale.

Historical sources of game theoretical probabilityp60
(1) Principle of dynamic hedging due to Pascalp30
(2) Bridge due to Cournot
(3) Impossibility of gambling strategy due to Ville
(4) Dawid’s prequential principle that testing should use only what actually
happens.

3 Strong Law of Large Numbers

Fair coin game
i. Skeptic begins with an initial capital, say $1.
ii. He bets by specifying some number M ∈ R.
iii. Skeptic obtains $M if H appears, and loses $M if not.
Thus, the protocol reads:p64
K0 = 1
FOR n = 1, 2, · · ·

Skeptic announces M(n) ∈ R
Reality announces x(n) ∈ {−1, 1} (T or H)
Kn = Kn−1 +M(n)x(n).

Skeptic wins, if (1) Kn > 0 for all n and (2)

1

n

∑
x(n) → 0 or Kn → ∞ (3.1)

P 3.1 Game-theoretic strong law of large numbers. Skeptic has a
winning strategy in the fair coin game.
We say an event happens almost surely if Skeptic has a winning strategy:
Kn → ∞ keeping Kn > 0 for all n.

The winning convention may be said in the following collateral way:
Skeptic tries to keep K > 0.
Reality tries to keep K < ∞. If Skeptic fails, he loses.
If both fails, then Reality wins.
Therefore, under this collateral description, Skeptic wins only if the LLN holds.

To prove this a more general game is considered:

Bounded forecasting game
The only difference is that the domain of xn is [−1, 1].
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Here, forecast is the empirical average of xn to be zero.
P 3.2 Skeptic has a winning strategy in the bounded forecasting game with
forecasts set to zero.

We say the situation s precedes t if s is a prefix of t (we write s ❁ t). Let Ω∗
be the set of all finite sequences of numbers taken from [−1, 1]. A real-valued
function on Ω∗ is called a process. Any process P is interpreted as a strategy
for Skeptic. P(s) is the number M Skeptic chooses under situation s. Thus
we may write

K(tx) = K(t) + P(t)x. (3.2)

Here tx is a concatenation of t and x (in this case an extension of t by one
number x ∈ [−1, 1]). Notice that K is a linear function(al) of P. That is, wep67
may assume a linear portfolio of gambles.

Weakly forcing
We say a strategy P forces an event E if K(t) bounded from below (by −1)
grows without bound if t �∈ E. If supn K(tn) = ∞, then we say P forces E
weakly.

L3.1. If Skeptic can weakly force E, then he can force E.
[Demo] Let P be the weakly forcing strategy. We make a strategy PC that
allows an optional stopping as soon as the total capital reaches C.

PC(s) =

{ P(s) if KP(t) < C for all t ❁ s,
0, otherwise.

(3.3)

Now, we can make such strategy for indefinitely large C. Make a new strategy
Q

Q =
∞∑

k=1

2−kP2k

. (3.4)

KQ = ∞ but never below −1. So this Q is the forcing strategy.

Thus, we have only to find a weakly forcing strategy.

L3.2. If Skeptic can weakly force each of a sequence E1, E2, · · · of events, then
he can weakly force ∩Ek.
[Demo] Let Pk be a weakly forcing strategy for Ek. This implies that 1+KPk

is non-negative. Let us study the upper bound of 1 +KPk
(xn).

3 For n = 1
M1 is at most 1 to avoid bankruptcy. Therefore, 1+K(x1) is at most 2. Then,
M2 can be at most 2, and 1 +K(x２) is at most 4. This way we can conclude
that for any k

1 +KPk(xn) ≤ 2n. (3.5)

3 xn the length n prefix of x.
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This implies also
|Pk(xn)| ≤ 2n. (3.6)

Therefore,
Q =

∑
k

2−kPk (3.7)

is well-defined for any finite path. Since Pk weakly forces Ek, so is Q for all
k (i.e., if one of Ek is violated, then Q grows indefinitely). Thus, Q is the
desired strategy to weakly force the common set ∩Ek.

Proof of game theoretic strong LLN for coins
L3.3. For any ε > 0 Skeptic can weakly force

lim sup
n→∞

1

n

∞∑
i=1

xi ≤ ε (3.8)

and

lim inf
n→∞

1

n

∞∑
i=1

xi ≥ −ε. (3.9)

[Demo] Let P be the strategy that always choose ε times the current capital
KP(xn) + 1 = (KP(xn−1) + 1)(1 + εx(n)).4 Since the initial capital is unity,

1 +KP(xn) =
n∏

i=1

(1 + εx(i)). (3.10)

If KP(x) is bounded, then there is a constant D such that

∑
log(1 + εx(i)) ≤ D, (3.11)

where D may depend on x. Notice that log(1 + t) ≥ t − t2 for t ≥ −1/2.
Therefore, if we assume ε < 1/2, then (3.11) implies

ε
∑

x(i)− ε2
∑

x(i)2 ≤ D. (3.12)

That is, since x(i)2 ≤ 1,
ε
∑

x(i)− nε2 ≤ D (3.13)

or
ε
∑

x(i) ≤ D + nε2. (3.14)

Therefore, we conclude
1

n

∑
x(n) ≤ D

εn
+ ε. (3.15)

4 xn = xn−1x(n).
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That is, for sufficiently large n the average cannot be larger than ε. Replacing
ε with −ε, a lower bound can also be forced.✷

To complete the proofpf LLN, we use L3.2. Choose ε = 2−k.

In the above x(i) are all in [−1, 1] and with zero price. We may choose different
prices m(i). Then,

1

n

∑
(x(i)−m(i)) → 0. (3.16)

This price may be set freely before Skeptic places his bet M . Therefore, it is
natural to introduce the forecaster who sets the price.

Bounded forecasting game (full but bounded version)p70
Here C > 0 is a parameter; Players are Forecaster, Skeptic, and Reality.
Protocol:
K0 = 1
FOR n = 1, 2, · · ·

Forecaster announces m(n) ∈ [−C,C],
Skeptic announces M(n) ∈ R,
Reality announces x(n) ∈ [−C,C].
Kn = Kn−1 +M(n)(x(n)−m(n)).

Skeptic wins if (1) Kn > 0 for all n and (2)

1

n

∑
(x(n)−m(n)) → 0 or Kn → ∞ (3.17)

P3.3. Skeptic has a winning strategy in the bounded forecasting game.✷

Notice that when Forecaster announces m(n),p71

Etx(n) = Etx(n) = m(n). (3.18)

Here, Ex is defined by infα{α : δK(n) ≥ Mn(x(n) − α)}, where δK(n) =
Kn −Kn−1. This implies Mnm(n) ≤ Mnα. We have both Mn > 0 and < 0,
so the smallest α is obtained whan M > 0 as α = m(n). Similarly we obtain
Ex(n) = m(n).

Comparison with measure theoretical strong law
In measure theoretical probability, the strong law for sequence x presupposesp71
the joint probability distribution and the price is the conditional expected
value of x(n) given xn−1. Therefore, the game theoretical formulation has less
assumptions.

Computation of strategies
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All the strategies so far discussed are computable, so
P3.5. Skeptic has a computable winning strategy in the bounded forecasting
game.

Then, a natural question is the computational complexity of the move for the
n-th step.

When LLN is not satisfied, we could ask how fast Skeptic can increase his
capital. This is a game-theoretical large deviation principle.
P 3.6. Skeptic has a computable winning strategy in the bounded forecasting
game with an unbounded K such that

lim sup
n→∞

logK(xn)

n
> 0 (3.19)

✷

It might be interesting to study the trade-off between computational efficiencyp74
and the rate of capital increase.

4 Strong Law of Large Numbers (Unbounded

Case)

Unbounded game
In this case variance must be bounded, so Forecaster must specify not only
the price for x(n) but also the price for (x(n)−m(n))2.
Protocol:
K0 = 1
FOR n = 1, 2, · · ·:

Forecaster announces m(n) ∈ R and v(n) ≥ 0.
Skeptic announces M(n) ∈ R and V (n) ≥ 0.
Reality announces x(n) ∈ R.
The capital process is computed by

Kn = Kn−1 +Mn(x(n)−m(n)) + Vn[(x(n)−m(n))2 − v(n)]. (4.1)

The winning rule is the same as before.
In this game, a path is defined by v(1)x(1)v(2)x(2) · · ·.
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What happens may be summarized as
P4.1.
1. Skeptic has a winning strategy, if

∑
[v(n)/n2] < ∞.

2, Reality has a winning strategy, if
∑
[v(n)/n2] = ∞.

1 of P4.2 generalizes P3.2, because V (n) = 0 already gives a winning strategy
if x(n) are bounded.

Theorem 4.1.
1. Skeptic can force∑

[v(n)/n2] < ∞ ⇒ 1

n

∑
(x(n)−m(n)) → 0. (4.2)

2. Reality can force∑
[v(n)/n2] = ∞ ⇒ 1

n

∑
(x(n)−m(n)) �→ 0. (4.3)

If Reality has (4.3) as her goal, then Skeptic cannot have any winning strategy.p80

v(n) is an upper price of (x(n)−m(n))2, because V (n) is nonnegative.

We may set all m(n) = 0 without any loss of generality.

Capital process and supermartingale
L4.1. The capital processes form a convex cone: if Si are capital processes
defined by (4.1), then

∑
ciS

i (ci ∈ [0,∞)) is also a capital process.✷
This should be obvious, since K is linear in M and V .

Supermartigale: A process of the form T = S − B, where B is an increasingp82
process, is called a supermartingale process. The capital process S is also a
supermartingale.
B may be understood as a cumulative money that has been thrown away.
If for a supermartingale process T ,

S(xn)− S(xn−1) ≥ T (xn)− T (xn−1) (4.4)

S is called a bounding capital process for the supermartingale T , and the strat-
egy that produces S is called a bounding strategy.
L4.2. Supermartingales form a convex cone. ✷

Minimal bounding strategy:
Let ‖δT‖ for a supermartingale T be defined as

‖δT‖(svx) = inf{‖(M,V )‖ : V is nonnegative,

and T (svx)− T (s) ≤ Mx+ V (x2 − v) for all x ∈ R}
(4.5)
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for every s and every nonnegative number v. ‖(M,V )‖ =
√
M 2 + V 2. ‖δT‖

is a deterministic process because it does not depend on x. If the infimum is
actually attainable, then ‖δT‖(s) = ‖(M,V )‖(s). Such a strategy (M,V ) is
called a minimal bounding strategy for T .
L4.3. Every supermartingale has a minimal bounding strategy.
[Demo] Fixing s and v we show the infimum is attained. For each x the set

µ(x) = {(M,V ) : V is nonnegative, and T (svx)−T (s) ≤ Mx+V (x2−v) for all }
(4.6)

is a closed set. A supermartingale process has at least one bounding strategy
by definition, so µ = ∩µ(x) �= ∅. Therefore, µ is a nonempty closed set, so it
must have an element closest to the origin.✷

L4.4 Let T k be a sequence of nonnegative supermartingale processes and ck ≥
0. Write

T =
∞∑

k=1

ckT
k. (4.7)

If the initial value is finite, and
∑
ck‖δT k‖ < ∞, then, T is a nonnegative

supermartingale and
‖δT‖ ≤∑

k

ck‖δT k‖. (4.8)

[Demo] To show that T is well defined (then T is obviously nonnegative su-
permartingale), we have only to show the finiteness of T for all time. T0 is
assumed to be finite. Suppose Tn is finite. Then,

T k(svx)− T k(s) ≤ Mk(s)x + V k(s)(x2 − v) (4.9)

and the RHS is finite, so is T k
n+1. It is also easy to see thatp84

‖δT‖ ≤∑
ck‖δT k‖. (4.10)

Therefore, the increment is always bounded. ✷

Proof of Theorem 4.1
L4.5. If T is a nonnegative supermartingale, then Tn converges (i.e, has a
finite limit) almost surely.
[Here, as usual, ‘almost surely’ means that we can construct a nonnegative
supermartingale (witnessing supermartingale) T ∗ that diverges on all paths
that fail to converge. That is, an unlikely event that actually happens can exit
(can be constgructed).]
[Demo essentially following Doob] Choose two positive rational numbers a < b.
We name the times at which T exits (a, b): σ1 is the first up-exiting time.
τ1 > σ1 is the first down-exiting time after σ1, etc. Formally, τ0 = 0 and

σk = min{i > τk−1 : Ti > b}, τk = min{i > σk : Ti < a}. (4.11)
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Let P be a minimal bounding strategy for T . We construct a strategy to
gamble only between the a-downcrossing times and b-upcrossing times (τk, σk]:

Pa,b
n =

{ Pn, if ∃k : τk−1 < n ≤ σk,
(0, 0), otherwise

(4.12)

Let T a,b be a nonnegative martingale defined as T0 +KP a,b
.

‖δT a,b‖ ≤ ‖δT‖. (4.13)

(They agree or LHS = 0.) Also, if the Tn oscillation lasts forever, then

T a,b
n → ∞. (4.14)

This is because, Pa,b is the strategy to increase T by b− a for sure. Collecting
all the rational intervals, make T ∗ as

T ∗ =
1

2
T +

∞∑
k=1

2−k−1T ak ,bk (4.15)

L4.4 says that T ∗ is a nonnegative supermartingale with

‖δT ∗‖ ≤ ‖δT‖. (4.16)

If Tn does not converge (if it grows unboundedly, Skeptic wins), there must be
a minimum amplitude of oscillation of Tn. Therefore, T

∗
n tends to infinity. ✷

Let T be a supermartingale, and A an increasing predictable process. Then
U = T + A is called semimartigale. A is called a compensator for U .

L4.6. Let U be a semimartingale with a compensator A. If A∞ < ∞, then
Un converges.
[Demo] Set T = U − A, which is a supermartingale. Define a nonnegative
supermartingale TC (C ∈ N ∗) by TC

0 = C and by the increment at time n

δTC(n) =

{
δT (n), if A(n) ≤ C,

0, otherwise
(4.17)

(That is, until the increasing A(n) hits C, T ≥ 0 irrespective of U , because it
is nonnegative.) Following (4.15), define (TC)∗. ‖δ(TC)∗‖ ≤ ‖δTC‖. Define

R =
∑

2−C(TC)∗. (4.18)

Since ‖δTC‖ ≤ ‖δT‖ (this is from the definition), ‖δR‖ ≤ ‖δT‖. Then, R,p85
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which is a nonnegative supermartingale according to L4.4, witnesses the di-
vergence of U . ✷

L4.7. Let S be a supermartingale, and S2 be a semimartingale with compen-
sator A. If A∞ < ∞, then Sn converges almost surely.
[Demo] If A is a compensator of S2, then it is a compensator of (S + 1)2 as
well. [(S +1)2 −A = (S2 −A) + 2S +1; (S2 −A) and S are supermartingale.
Then, use L4.2.] Thanks to L4.6, S2 and (S+1)2 both converge almost surely.
Since 2S = (S + 1)2 − S2 − 1, this implies the convergence of S. ✷

Completion of proof of Theorem 4.1
To conclude the proof that Skeptic has a winning strategy, we make a capital
process

Sn =
n∑ x(k)

k
(4.19)

and an increasing deterministic process

An =
n∑ v(k)

k2
. (4.20)

S2−A is a capital process. This means (p82) that (S2−A)n−(S2−A)n−1 may
be written as Mx(n)+V (x(n)2− v(n)), M and V depends on xin−1. This can
be see explicitly by computation. Therefore, S2 is a semimartingale with A
as its compensator. Thus, L4.7 implies that if A converges, then S converges
almost surely. Kronecker’s lemma:5

∑ x(k)

k
converges ⇒ 1

n

∑
x(k) = 0 (4.22)

concludes the proof. ✷
The nonnegative supermartigale that witnesses the strong law of large numbersp87
can be constructed explicitly (P4.2).

Reality’s winning strategy
Kolmogorov devised a randomized strategy for Reality:

5

m∑
ak/k = (1/n)

n∑
ak +

n−1∑
((1/k) − (1/n − 1))ak,

= (1/n)
n∑

ak + (1/(n − 1) − 1/n)
n−1∑

ak +
n−2∑

((1/k) − (1/n − 2))ak,

(4.21)

etc.
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if v(n) < n2,

x(n) =


 n

−n
0


 with probability


 v(n)/(2n2)

v(n)/(2n2)
1− v(n)/n2


 , (4.23)

if v(n) ≥ n2,

x(n) =




√
v(n)

−
√
v(n)


 with probability

(
1/2
1/2

)
. (4.24)

But the argument is measure theoretical.

Martingale strong law

5 Martin’s Theorem

Consider a perfect information game with Player I and II, who alternate moves.

Finite horizon gamep95
Zermelo proved that if a game has a finite horizon, one of the players has a
winning strategy. This can be proved by a backward induction.

General case
A game path may be expressed as

a1b1a2b2 · · · , (5.1)

where ai is the moves of I, and bi that of II. Generally, we may write a path
as ci, and interpret that for odd i the moves are by I, etc.
Let Γ be the totality of paths. Let E ⊂ Γ. G(E) denotes the games thatp96
Player I has wins, if a path is in E; otherwise II wins. If I or II has a winning
strategy, we say G(E) is determined.

The quasi-Borel subsets of Γ form the smallest class of subsets of Γ that con-
tains all open sets and is closed under
(1) complementation
(2) countable union
(3) Open-separated union = difference.
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(That is, roughly if a set is written as a countable union of open sets and its
comlements, then the set is quasi-Borel.)
Martin’s Theorem 1990. If E ⊂ Γ is quasi-Borel, then G(E) is determined.

Axiom of determinacy [Mycielski and Steinhaus 1962]
Every perfect information game G(E) on N ∗ is determined.

AD + DC (= dependent choice) is more regular in a certain ways than AC:p98

Mycielski-Świerczkowski: Any set of real numbers is Lebesgue measurable.

Davis: Any uncountable set of real numbers contains a perfect set.

This implies the continuum hypothesis, because a perfect set has a cardinality
of the continuum.

6 Law of Iterated Logarithm
p99

Khinchin’s law claims that the convergence to the limit dictated by the LLN is
almost surely oscillatory with maximal deviations on both sides asymptotically
close to

√
log logn/

√
2n: for the fair coin tossing process the number of heads

yn up to the nth trial obeys

lim sup
n→∞

yn/n− 1/2√
log log n

2n

= 1, lim inf
n→∞

yn/n− 1/2√
log log n

2n

= −1. (6.1)

Predictable unbounded forecasting gamep122
Protocol:
K0 = 1,
FOR n = 1, 2, · · ·

Forecaster announces m(n) ∈ R, c(n) ≥ 0, and v(n) ≥ 0.
Skeptic announces M(n) ∈ R and V (n) ∈ R.
Reality announces x(n) such that |x(n)−m(n)| ≤ c(n).
The capital process is computed by

Kn = Kn−1 +Mn(x(n)−m(n)) + Vn[(x(n)−m(n))2 − v(n)]. (6.2)

The winning rule is the same as before.
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Let

An =
n∑

k=1

vk. (6.3)

Theorem 5.1 In the predictable unbounded forecasting game, if An → ∞ and

cn = o

[√
An

log logAn

]
, (6.4)

then Skeptic can force

lim sup
n→∞

∑n
k=1(x(k)−m(k))√

log logAn

= 1. (6.5)

✷
The ordinary unbounded forecasting game is not strong enough to claim the
equality above (Skeptic’s advantage is not enough):
Theorem 5.2 In the unbounded forecasting game, if An → ∞ and

|x(n)−m(n)| = o

[√
An

log logAn

]
, (6.6)

then Skeptic can force

lim sup
n→∞

∑n
k=1(x(k)−m(k))√

log logAn

≤ 1. (6.7)

✷

7 Weak Laws

The game theoretic version of weak laws reads P replaced by P in the ordinary
measure-theoretical framework.

Finite horizon fair coin gamep124
Reality’s move is H or T or ±1. We make a game up to time N (finite horizon).
Protocol:
K0 = α (> 0)
FOR n = 1, 2, · · · , N

Skeptic announces M(n) ∈ R
Reality announces x(n) ∈ {−1, 1}.
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Kn = Kn−1 +M(n)x(n).
If Kn is never negative and either KN ≥ 1 or |SN/N | < ε (> 0), then Skeptic
wins, where

Sn =
n∑
k

x(k). (7.1)

Bernouilli without probability
Bernoulli’s theorem says if N is sufficiently large Skeptic has a winning strat-
egy.

We must make a nonnegative martingale that witnesses the weak law.
L6.1. Ln defined as follows is a nonnegative martingale with L0 = 1:

Ln =
S2

n +N − n

N
. (7.2)

[Demo] By a simple calculation the increment reads

δ(S2
n − n) = 2Sn−1x(n) + x2(n)− 1 = 2Sn−1x(n) (7.3)

Therefore, S2
n − n is a capital process; martingale. Therefore, Ln is also mar-

tingale. Since S2
n ≥ 0 obviously Ln ≥ 0.✷

P6.1 [Bernouilli’s theorem]. Skeptic has a winning strategy in the finite
horizon fair coin game, if N ≥ 1/αε2.
[Demo] Let us choose the strategy so that Mn = αSn−1:

Kn = Kn−1 + 2αSn−1xn. (7.4)

Then, according to L6.1 Kn = αLn. Therefore, KN = αS2
N/N . If this is 1 or

more, Skeptic wins. If not, then since 1/N < αε2

αS2
N/N < 1, ⇒ S2

N/N
2 < ε2. (7.5)

And Skeptic still wins. ✷

Bernouilli’s theorem with game-theoretical probability
The upper probability of an event E measures the degree to which a strategyp126
for betting on E can multiply one’s capital without risk of bankruptcy:

PE = {α | there is a strategy that begins with α

and ends up with at least 1 if E happens and at least 0 otherwise}.
(7.6)
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According to P6.1 Skeptic has a strategy to increase α to be 1 if the path does
not satisfy (7.5). That is, if α > 1/Nε2, then (7.5) does not happen:

P (|SN/N | ≥ ε) < 1/Nε2. (7.7)

Since P ≤ P , from this we have

P (|SN/N | ≥ ε) < 1/Nε2. (7.8)

Martingale (measure theoretical)

[I] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion
Processes nd Ed. (North-Holland, 1989)
[P] P. Protter, Stochastic Integration and Differential Equations, a new ap-
proach (Springer, 1990).

Martingale
Let X = (Xt)t∈T be a stochastic process. It is called a martingale (resp., su-
permartingale, submartingale) wrt (Ft), if
(i) Xt is integrable for each t ∈ T ,
(ii) Xt is Ft adapted,
(iii) E(Xt | Fs) = Xs (resp., ≤, ≥) for s < t.

The sample path of a continuous martingale is of a.e. unbounded variation
unless it is constant everywhere [P64] (due to Fisk).

Let X be martingale, and f a deterministic process. Then, Y = f ·X defined
by

Y0 = X0, (7.9)

Yn = Yn−1 + fn · (Xn −Xn−1) (7.10)

is also martingale. This is the definition of the stochastic integral wrt the mar-
tingale [I55, P50].
Optional stopping. If τ(ω), σ(ω) are stopping times. If σ ≤ τ , thenE(Xτ | Fσ) =
Xσ [I26].

Submartingale inequality [Doob]. Let X be submartingale. Then for any
λ > 0

λP ( max
0≤n≤N

Xn ≥ λ) ≤ E(XN | max
0≤n≤N

Xn ≥ λ) ≤ E(X+
N) ≤ E(|XN |), (7.11)
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and

λP ( min
0≤n≤N

Xn ≤ −λ) ≤ −E(X0)+E(XN | min
0≤n≤N

Xn ≤ −λ) ≤ E(|X0|)+E(|XN |).
(7.12)

[Demo] Let n be the time that X ≥ λ occurs for the first time. This is a
stopping time. Therefore, E(XN |Fn) ≤ Xn or E(XN) ≤ E(Xn).

E(Xn) = E(Xn ; max
0≤n≤N

Xn ≥ λ) + E(Xn ; max
0≤n≤N

Xn < λ), (7.13)

= E(Xn ; max
0≤n≤N

Xn ≥ λ) + E(XN ; max
0≤n≤N

Xn < λ), (7.14)

≥ λP ( max
0≤n≤N

Xn ≥ λ) + E(XN ; max
0≤n≤N

Xn < λ). (7.15)

Here E(A ; B) is the average of A on B (i.e., E(AχB)). ✷

(generalized) Doob-Kolmogorov’s inequality
Let X be martingale. Then |X|p is a submartingale. If E(|X−n|p) < ∞, then
for p ≥ 1

P ( max
0≤n≤N

Xn ≥ λ) ≤ E(|XN |p)/λp. (7.16)

If p > 1,
E( max

0≤n≤N
|Xn|p) ≤ [p/(1− p)]pE(|XN |p). (7.17)

(7.16) immediately follows from the inequality above. ✷

If X is submartingale such that supn E(X+
n ) < ∞, then X∞ = limn→∞ exists

almost surely and is integrable.✷ [I30]

Doob-Meyer decomposition of submartingale. Let X be submartingale
(with some integrability condition). Then, X = M + A, where M is martin-
gale, and A is predictable and increasing. The decomposition is unique [I34]
([Funaki]).
[Demo] A is defined by

A0 = 0, (7.18)

An = An−1 + E(Xn −Xn−1 | Fn−1). (7.19)

Mn = Xn −An is a martingale. If we have two decompositions, then Mn −M ′
n

is deterministic, so

Mn −M ′
n = E(Mn −M ′

n | Fn−1) = Mn−1 −M ′
n−1 = · · · = X(0)−X(0) = 0.

(7.20)
That is, the decomposition is unique. ✷

There are continuous time versions.
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Semimartingale.
Roughly put, if IX(f) : f → f · X is continuous (in probability) for any
predictable process,6 X7 is called a semimartingale.
If X is of finite total variation, then X is a semimartingale.
A square integrable martingale is a semimartingale.
This implies
(i) A locally square integrable cadlag martingale8 is a semimartingale.
(ii) A local semimartingale with continuous paths is a semimartingale.
(iii) The Wiener process is a semimartingale.

Let A and M be Ft-adapted stochastic processes; A be of bounded variation
and right-continuous, and M be (square integrable) martingale. Then

X(t) = X(0) +M(t) + A(t) (7.21)

is called a decomposable process [P48]. If X is cadlag, then decomposability =
being a semimartingale [P88].
A decomposable process is a semimartingale.
A Lévy process is a semimartingale.
Stochastic integration preserves the property of being a semimartingale [P55].

6 [P43], this means that, roughly, when a change occurs, it is measurable with respect to
the event just up to the jump.

7 X must be ‘cadlag’ (right continuous [i.e., limx↓x0 f(x) = f(x0)] and with left limits.
8 local martingale is enough [P33].

21

Y OONO 

        MEMO




