
Stochastic Energetics
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Part I Basic

1. Langevin equations
Characteristic function7

Φy(φ) =

∫
dy eiφyp(y). (0.0.1)

From this we get (if g is holomorphic along the real axis)

〈g(y)〉 = g(−id/dφ)Φy(φ)|φ=0 (0.0.2)

because 〈yn〉 = (−id/dφ)nΦy(φ)|φ=0.
If y belongs to N(0, σ2), we have Novikov’s theorem

〈yf(y)〉 = 〈y2〉〈f ′(y)〉. (0.0.3)

Langevin equation18
dp

dt
= −γ p

m
+ ξ(t) (0.0.4)

with
〈ξ(t)ξ(s)〉 = 2bδ(t− s). (0.0.5)

Notice that the equation is not Galilean invariant: p→ p−mV , because the medium is not19
translated.

Einstein relation:
The average of the kinetic energy is

p2

2m
= lim

t→∞

1

t

∫ t

0

dt
p(t)2

2m
≡ 〈p2/2m〉t (0.0.6)

From (0.0.4)

p(t) = p0e
−t(γ/m) +

∫ t

0

ds e−(γ/m)(t−s)ξ(s) = p0e
−t(γ/m) +

∫ t

0

ds e−(γ/m)sξ(t− s). (0.0.7)

Therefore,

p(t)2

2m
=
p2

0e
−2t(γ/m)

2m
+

1

2m

∫ t

0

ds

∫ t

0

ds′ e−(γ/m)(s+s′)ξ(t− s)ξ(t− s′) (0.0.8)

Time averaging this, we get〈
p(t)2

2m

〉
t

= lim
t→∞

∫ t

0

ds

∫ t

0

ds′ e−(γ/m)(s+s′)〈ξ(t− s)ξ(t− s′)〉t (0.0.9)

Thanks to the law of large numbers, 〈ξ(t− s)ξ(t− s′)〉t = 〈ξ(t− s)ξ(t− s′)〉 = 2b δ(s− s′), so20
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〈
p(t)2

2m

〉
t

= lim
t→∞

1

2m

∫ t

0

ds

∫ t

0

ds′ e−(γ/m)(s+s′)2b δ(s−s′) =
b

m

∫ ∞
0

ds e−(2γ/m)s =
b

2γ
=

1

2
kBT.

(0.0.10)
Therefore, b = γkBT or

〈ξ(t)ξ(t′)〉 = 2γkBTδ(t− t′). (0.0.11)

Remark: This implies that |ξ| is not bounded; if bounded unbounded nature of δ would not
show up.
Needless to say, ensemble average also gives the same result.

If the time resolution is sufficiently coarser than m/γ, then the overdamped version is
obtained.

〈〈Systematic reduction〉〉 To perform the reduction directly from the Langevin equation, we
stretch the time as τ = ζt = t/ε; Let us write a small quantity 1/ζ = ε. In terms of this new
time the original Langevin equation reads

dr = ε(p/m)dτ, (0.0.12)

dp = (−p/m+ F /ζ)dτ +
√

2kBT/ζdB(τ), (0.0.13)

where the time-scaled Wiener process dB(τ) is defined as 〈dB(τ)dB(τ)〉 = dτ ; since this is
ζdt, the multiplicative factor is scaled with ζ. We expand the solution as r = r0 + εr1 + · · ·,
p = p0 + εp1 + · · ·.

To the zeroth order we have

dr0 = 0, (0.0.14)

dp0 = −(p0/m)dτ +
√

2kBT/ζdB(τ). (0.0.15)

Notice that the second equation is a closed equation for the momentum. In the ζ → ∞ limit,
p0 relaxes to its equilibrium distribution extremely rapidly. This is what we can intuitively
expect: the velocity field equilibrates very quickly around the Brownian particle.

Simple order-by-order calculation to the second order gives

dr = ε(p0(t)/m)dτ + ε2(1− e−τ/m)F dτ, (0.0.16)

= (p0(t)/m)dt+ (F /ζ)dt. (0.0.17)

In the last line we have discarded the transcendentally small term e−ζt/m. The first term is
a noise: its correlation function reads (let us consider only its x-component) (assuming that
ζ � 1) 〈

p0(t)

m

p0(s)

m

〉
=
kBT

m
e−ζ|t−s|/m. (0.0.18)

In the ζ → ∞ limit, this becomes proportional to the delta function, because (1/2τ)e−|t|/τ

becomes very sharp in the τ → 0 limit, but its area below the graph is always unity. Thus, we
know

kBT

m
e−ζ|t−s|/m ' 2kBT

ζ
δ(t− s). (0.0.19)

We have arrived at

dx =
F

ζ
+

√
2kBT

ζ
dB(t). (0.0.20)

There is of course a way to derive the Smoluchowski equation from the Fokker-Planck equa-

tion. Along this route the best way is to use the renormalization group theoretical approach to

singular perturbation theory.1
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21

Notice that coarse-graining adds high frequency components. Sekimoto analogized this
with

√
1 + x2 ∼ |x| for |x| � 1. It is a good lesson to learn that coarse-graining can add

high frequency components. However, this is actually trivial, because large salce become
small scales after scaling alone (not high freq portion removed).
The short time components are not reliable.
D = kBT/γ.22
For a long distance diffusion ∝

√
t (with D ∼ 10−13 m2/s) is less efficient than systematic24

transport ∝ t (motor speed of vm ∼ 10−6 m/s). The ‘comparable length scale’ can be ob-
tained dimensional-analytically ([D] = L2/T , [vm] = L/T , so [D/vm] = L) as D/vm ∼ 10−7

m or 0.1 µm, the size of Bacteria.

Anisotropic particle:
Notice the mirror asymmetry should not cause any translation.26

Langevin equation may be obtained by the Markov approximation of microscopic mechanics.
Zwanzig’s solvable model: interactions are harmonic springs. The model is purely mechani-
cal, time-reversal symmetry is preserved without any approximation.

When the medium particle distribution is assumed to be equilibrium, then the time re-31
versal symmetry is lost.

Ito-Stratonovich correspondence (note df = f ′ ◦ dx)39

dx = adt+ bdB =

(
a− ∂b2/4

∂x

)
dt+ b ◦ dB. (0.0.21)

〈〈Wong-Zakai’s theorem〉〉 The Langevin equations with physical noise as

dx = a(x, t)dt+ σ(x, t) ◦ dB, (0.0.22)

where ◦ is used to denote clearly that the term is NOT interpreted in Itô’s sense, but in the
usual calculus sense. Since Itô’s lemma tells us

d

∫ B(t)

0

σ(x)dx = σ(B(t))dB(t) +
1

2

dσ

dx

∣∣∣∣
x=B

dt, (0.0.23)

and since the LHS can be calculated as the ordinary calculus formula, the ◦ product must be
interpreted as

σ(B(t)) ◦ dB = σ(B(t))dB(t) +
1

2
σ′(B(t))dt. (0.0.24)

This implies that, if we wish to apply Itô calculus to (0.0.22), we must interpret (→??)

σ(x, t) ◦ dB = σ(x, t)dB +
1

2

∂σ

∂x
dxdB = σ(x, t)dB +

1

2
σ
∂σ

∂x
dt. (0.0.25)

Thus, the physical Langevin equation (0.0.22) with the noise term dependent on x must be
mathematically interpreted as

dx =

(
a(x, t) +

1

2
σ
∂σ

∂x

)
dt+ σ(x, t)dB. (0.0.26)

1 L. Y. Chen, N. D. Goldenfeld, and Y. Oono, “Renormalization group theory and variational calcu-
lations for propagating fronts,” Phys. Rev. E 49, 4502-4511 (1994); an introductory review is Y. Oono.
“Renormalization and asymptotics,” Intl. J. Mod. Phys. B 14, 1327-1361 (2000).
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The relation between (0.0.22) and (0.0.26) is called Wong-Zakai’s theorem.
40

Physical Langevin equation reads with ◦. As a good example dz = iω(t)zdt with stochastic
changes in ω.
Correlation between the potential force and random force for41

0 = −∂U
∂x
− γ dx

dt
+ ξ(t). (0.0.27)

Using U ◦ dx = Udx+ (1/2)U ′dx2 = Udx+ (kBT/γ)U ′dt42 ∫
∂U

∂x
◦
√

2γkBTdB =

∫
∂U

∂x

√
2γkBTdB +

1

2

∫
∂2U

∂x2
dx
√

2γkBTdB (0.0.28)

=

∫
∂U

∂x

√
2γkBTdB + kBT

∫
∂2U

∂x2
dt, (0.0.29)

where we have used dx =
√

2γkBTdB/γ. This leads us to〈
∂U

∂x
ξ

〉
= γkBT

〈
∂2U

∂x2

〉
. (0.0.30)

Notice that this quantity vanishes in the underdamped case.

Simple Euler scheme gives for dx = adt+ σdB43

∆x = a∆t+ σ∆B (0.0.31)

Since the last term is of order
√

∆t, a(x + ∆x) = a(x) + a′(x)∆x is only accurate to order√
∆t. Generally speaking, in stochastic equations, the convergence of the solution does not

necessarily imply convergece to the right physics (e.g., energy conservation requires a higher
precision. see p147).

FDT.48

Thermodynamics
Free energy is an effective potential energy. Note that the fundamental relation without78
dissipation ∆A = W or dA = d′W that is, A is a potential for force relevant to work.

When ∆A < W , the difference is the unused work, which is dissipated as heat. HOW-82
EVER, do not forget that there are reversible component of heat. Since ∆A = ∆E − T∆S
or T∆S = ∆E −∆A, ∆E −∆A corresponds to the reversible portion of heat.

Coupling of two processes one is uphill and the other downhill of the free energy surface84
is the most important feature of thermodynamics (applications). This can be illustrated as
an overall downhill process of the composite free energy surface.

The second law tells us that Θ = (−W )/(−∆A) cannot be larger than 1 (for any isothermal87
process).
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The first order phase transition accompanies the compensation between enthalpy and en-90
tropy. Or the first order phase transition is between low energy (ordered) state and high
entropy (disordered) state. Increase in energy is compensated by increase in entropy.

Chemical Reactions
Poisson noise110

ζ(t) =
∑

δ(t− ti), (0.0.32)

where the random spike positions {ti} obeys

P

(∫ t+∆t

t

dt ζ(t) = n

)
=

(r∆t)n

n!
e−r∆t, (0.0.33)

where r (> 0) is the spiking rate and is given by r = 〈ζ(t)〉, because〈∫ t+∆t

t

dt ζ(t)

〉
=

∫ t+∆t

t

dt 〈ζ(t)〉 = r∆t. (0.0.34)

We could model chemical reactions through using Poisson process to describe the occurrence
of a particular reaction, The reaction rate is given by r, so if we have numerous distinct
reaction, we must introduce many rs corresponding to them.

Gillespie algorithm112
However, uniform simulation along the time axis may not be wise, especially when reactions
are rare. Thus, a event-driven scheme should be used.
Let vi be the reaction rate for the ith reaction. We assume that the reaction events obey
Poisson. Then, the probability that no reaction occurs for ∆t is given by

P0(∆t) = e−
∑
vi∆t. (0.0.35)

When a reaction occurs, what is the probability for the ith reaction to happen? This
is given by vi/

∑
vi. Using random numbers, we can perform these random choices.(see

https://cran.r-project.org/web/packages/GillespieSSA/GillespieSSA.pdf for an elementary in-
troduction and exercises).

Mesoscopic heat
The system consists of three parts: the system proper, thermal environment and external137
system.

The law of action and reaction holds between the Brownian particle and its environment:138
for

dp

dt
= −∂U(x, a)

∂x
− γ p

m
+ ξ(t),

dx

dt
=

p

m
, (0.0.36)

−γv + ξ(t) is the force acting on the Brownian particle. Thus

dQ = (−γv + ξ(t)) ◦ dx (0.0.37)
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is the work done to the system by the thermal environment. The first law (the energy
balance) reads

dE = dQ+ dW (0.0.38)

with

dQ =
dp

dt
◦ dx+

∂U(x, a)

∂x
◦ dx =

dp

dt
◦ p
m
dt+

∂U(x, a)

∂x
◦ dx (0.0.39)

= d

(
p2

2m

)
+
∂U(x, a)

∂x
◦ dx (0.0.40)

and E = p2/2m+ U . Therefore,

dE = d

(
p2

2m

)
+
∂U(x, a)

∂x
◦ dx+

∂U(x, a)

∂a
◦ da = dQ+

∂U(x, a)

∂a
◦ da (0.0.41)

This implies the following identification:140

dW =
∂U(x, a)

∂x
◦ da. (0.0.42)

Under overdamped conditions (0.0.37) implies that dQ = (∂U/∂x)◦dx. However, even under141
this condition, if T is space-dependent we just use (0.0.37) directly. In this case

E =
1

2
kBT (x) + U(x, a) (0.0.43)

and the Langevin equation reads

γ
dx

dt
= − ∂

∂x

(
1

2
kBT (x) + U(x, a)

)
+ ξ(t). (0.0.44)

If we use the Ito calculus142

d(p2/2m) = (p/m)dp+ (1/2m)(dp)2 = (p/m)dp+ (γkBT/m)dt, (0.0.45)

That is, if we ignore the correlation between p and dp, we must compensate this with the
second term. If we do not (i.e., if we use the ordinary calculus and the limit), the second
term is still in the first term. This is basically Wong-Zakai:

p ◦ dx = pdx+ (γkBT/m)dt (0.0.46)

Therefore, dE reads

dE = −2γ

m

(
p2

2m
− kBT

2

)
dt+ d′W +

√
2γkBT

p

m
dB. (0.0.47)

Up to this point the external agent is not allowed to modify the system-environment rela-143
tion. For example by modifying the shape we could change γ, but this cannot be done with
a memory-free medium, contradicting the Markov assumption.

The average heat is149

6



d〈Q〉 = −2γ

m

(
p2

2m
− kBT

2

)
dt (0.0.48)

If overdamped, then dQ = (−γv + ξ) ◦ dx = (∂U/∂x) ◦ dx, so using Wong-Zakai (note that150

dx = −(∂U/∂x)dt/γ +
√

2kBT/γdB)

dQ =
∂U

∂x
dx+

1

2

∂2U

∂x2
dx2 =

∂U

∂x
dx+

kBT

γ

∂2U

∂x2
dt (0.0.49)

= −1

γ

(
∂U

∂x

)2

dt+
kBT

γ

∂2U

∂x2
dt+

√
2kBT

γ

∂U

∂x
dB (0.0.50)

Hence,

d〈Q〉 = −1

γ

〈(
∂U

∂x

)2
〉
dt+

kBT

γ

〈
∂2U

∂x2

〉
dt. (0.0.51)

Contact with more than one heat baths: however, no system variable with two distinct
heat baths to avoid direct interactions among heat baths.

γ γ’

K
T T’

Figure 0.0.1:

Writing dB = ωdt formally

0 = −γ dx
dt

+
√

2γkBTω(t)−K(x− x′), (0.0.52)

0 = −γ′dx
′

dt
+
√

2γ′kBT ′ω(t)−K(x′ − x), (0.0.53)

Thus,

dQ = (−γẋ+ ξ(t)) ◦ dx = K(x− x′) ◦ dx, dQ′ = K(x′ − x) ◦ dx′ (0.0.54)

That is,

dQ+ dQ′ = K(x− x′) ◦ (dx− dx′) = d[K(x− x′)2/2]− ([x− x′)2/2]dK (0.0.55)

If K is constant, in a steady state dQ = dQ′ = 0. On the other hand, with the aid of
Wong-Zakai (dω = ξdt etc., formally)

γdQ′ − γ′dQ = γ′K(x′ − x) ◦ dx′ − γK(x− x′) ◦ dx (0.0.56)

= γ′K(x′ − x) dx′ − γK(x− x′)dx+
1

2
K(dx′ − dx)γ′dx′ − 1

2
K(dx− dx′)γdx

(0.0.57)
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Notice that

γ′K(x′ − x) dx′ − γK(x− x′)dx = K(x′ − x)[dω′ −K(x′ − x)]−K(x− x′)[dω −K(x− x′)]
= K(x′ − x)dω′ −K(x− x′)dω. (0.0.58)

Therefore, this vanishes on the average. Notice that dxdx′ = 0 and dx2 = 2kBTdt/γ, etc.,155
so

1

2
K(dx′ − dx)γ′dx′ − 1

2
K(dx− dx′)γdx = K(kBT

′ − kBT ) (0.0.59)

From the above calculations we obtain

〈dQ〉 = −〈dQ′〉 =
kBKdt

γ + γ′
(T − T ′). (0.0.60)

This heat transport is due to mechanical coupling. The heat converted into work at the156
high temperature end is possible due to a feedback control that reduces the return of energy
from the other side.

Partition of heat: In the situation of Fig. 0.0.1, a work is supplied to the spring. We157
can then ask how much heat goes to which bath. If T = T ′, then

γ
d

dt
〈Q〉 = γ′

d

dt
〈Q′〉 =

γγ′

γ + γ′
K(t)

2

d

dt
〈(x− x′)2〉. (0.0.61)

or, if the process is slow enough, K(t)(x− x′)2/2 = kBT/2 is allowed, and

d〈Q〉 =
γ′

γ + γ′
kBT

2
K(t)d

1

K(t)
= − γ′

γ + γ′
kBT

2
d logK(t). (0.0.62)

Thus, for example,

∆〈Q(t)〉 =
γ′kBT

γ + γ′
log

√
Kinit

Kfin

. (0.0.63)

Thus, the contact with smaller friction get more heat. Also if K → 0, Q can be indefinitely
large.

Even if T = T ′ and not work is added, random fluctuation of heat (diffusion of heat) can158
occur.

Thermal ratchet.2 Generally the equations are159

0 = −γ dx
dt
− ∂U

∂x
+
√

2γkBTω (0.0.64)

0 = −γ′dx
dt
− ∂U

∂x
+
√

2γ′kBTω
′ (0.0.65)

with U = U1(x− φ(y)) + U2(y)− fx. v = 〈ẋ〉 and the average power output is P = vf .
If the load is just strong to make v = 0. Under the stalled condition, what actually160

2Reviews: Parrondo & De Cisneros Appl Phys A 75 129 (2002); Reimann PR 361 57 (2002).

8



happens is the thermal connection through the device between the two heat baths without
any work, so the efficiency is 0.

Near the equilibrium (linear regime) noneq thermodynamics argument is available.3

Strictly speaking Langevin systems should not be applicable to nonequilibrium situations,172
but at least qualitatively successful examples are many. Generally speaking,
This method works if the nonequilibrium in the system, but it does not work if the nonequi-
librium is at the interface between the system and the environment.

Mesoscopic work

Let U(x, a) be the potential energy including all the interaction energy between the system176
and the external system. Since a is the ‘coordinates’ of the external system −∂U∂a is the
force exerted by the system to the external system, so the work done to the system read

dW =
∂U

∂a
◦ da. (0.0.66)

This depends on the resolution on a.
In the present approach it is assumed that the external system is not influenced by the

system(’s state and dynamics). However, in reality, this condition is hard to impose, so
we must consider where the boundary is between the system and the rest. There seems no
systematic argument.

A particle in a laser trap:178

−∂U(x, a)

∂a
+

[
−γ dx

dt
+ ξ(t)

]
= 0. (0.0.67)

The work done to the system by changing the spring constant reads

W =

∫ af

ai

∂U

∂a
da =

1

2

∫ af

ai

x(t)2da(t) =
1

2

∫ af

ai

a(t)x(t)2d log a(t) (0.0.68)

for a given sample path x(t). Now, let us introduce the time scale parameter τ and write
t = τs, so that s = 0 corresponds to the intial time and s = 1 the final time. Write
ã(s) = a(τs):

W =
1

2

∫ tf

ti

a(t)x(t)2dlog a(t)

dt
=
∑
k

∫ tk+τds

tk

1

2
a(t)x(t)2dt

dlog a(t)

dt
. (0.0.69)

For very large τ (slow process), the law of large numbers tells us∫ tk+τds

tk

1

2
a(t)x(t)2dt = kBTτds (0.0.70)

and the Riemann sum becomes179

3van den Broeck & Kawai PRL 96 210601 (2006); Komatsu & Nakagawa, EPJ B 38 457 (2006); Prost
et al., RMP 69 1269 (1997).
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W =
1

2
kBT

∫
τds

dlog a(t)

dt
= kBT log

√
af
ai

(0.0.71)

This result correspnds to the thermodynamic result:

A(a, T ) = −kBT log(1/
√
a). (0.0.72)

This relation to equilibrium thermodynamics holds for general U(x, a), because〈
∂U

∂a

〉
=

∂

∂a
A(a, β). (0.0.73)

Thus, as expected W → ∆A in the slow limit. If the system is open, a similar formula holds182
with an appropriate thermodynamic potential.

The irreversible work is the difference W −∆A, so184

Wirr =

∫
da

[
∂U(x, a)

∂a
−
〈
∂U(x, a)

∂a

〉]
. (0.0.74)

One particle ideal gas with a heat bath (= thermally vibrating piston) is very similar.186

Cyclic process. The work done is zero.188

Work/time complementarity: Wirrτ ≥ some positive constant. In the slow process limit,190
the irreversible portionn must not depend on the sign of da/dt, so we must be able to wrtie

〈Wirr〉 =

∫
dt
da

dt
Λ(a)

da

dt
. (0.0.75)

Therefore,192

〈W 〉 = ∆A+

∫
daΛ(a)

da

dt
=

∫
da

[
∂A

∂a
+ Λ(a)

da

dt

]
. (0.0.76)

Then, W must have the following form with a stochastic element Xi:

W =

∫
da

[
∂A

∂a
+ Λ(a)

da

dt
− Ξ(t)

]
. (0.0.77)

or

∆A =

∫
da

[
−Λ(a)

da

dt
+ Ξ(t)

]
+W. (0.0.78)

Thus the dissipation may be ascribed to a macroscopic frictioin Λ.

Jarznski and work theorem195
For Mamrkovian case, the most efficient derivation of Jarzynsk’s equality may be as follows.

Consider a Markov process whose transition rate depends on time (i.e., not a stationary pro-
cess). Let us write the transition rate qij as qij(t) (transitions are i ← j)). Let ps(i|k; t) be a
distribution satisfying ∑

j

qij(t)ps(j|k; t) = 0. (0.0.79)
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That is, if the transition probability is fixed to be the one at time t, then ps(i|k; t) is the
stationary state of this fictitious Markov process. Let us assume that we may write

ps(i|k; t) = e−H(i|k;t). (0.0.80)

Obviously,
d

dt
ps(i|k; t) =

∑
j

qij(t)ps(j|k; t)− ∂H(i|k; t)

∂t
ps(i|k; t). (0.0.81)

Its solution may be written in terms of the path integral as

ps(i|k; t) =

〈
exp

(
−
∫ t

0

ds
∂H(x(s)|k; s)

∂s

)〉
k→i

, (0.0.82)

where 〈 〉 implies the average over all the paths connecting k and i in time t. If the initial
condition is ps(i|k; 0) = e−H0(i|k), then4

ps(i|k; t) =
∑
i0

〈
exp

(
−
∫ t

0

ds
∂H(x(s)|i0; s)

∂s

)〉
i0→i

e−H0(i0|k). (0.0.83)

This is probably the most general version of Jarzynski’s equality.5 Let

ps(x; t) =
1

Z0
e−βH(t), (0.0.84)

and iLt = [ · , H(t)]PB . Then,
Ltps(x; t) = 0. (0.0.85)

Therefore, we have
∂

∂t
ps(x; t) = Ltps(x; t)− β ∂H(t)

∂t
ps(x; t). (0.0.86)

This has exactly the same structure as (0.0.81), so (0.0.83) becomes Jarzynski’s equality.

An elementary exposition follows:

Jarzynski’s equality6

Suppose a thermostated system has a parameter λ(t) that can be changed experimentally
externally from λ(0) to λ(1). Let W be the work needed to perform this change. Then, the free
energy change ∆A from the equilibrium state with λ(0) and to that with λ(1) may be obtained
by

〈e−βW 〉 = e−β∆A, (0.0.87)

4Here, ∂H(x(s)|i0; s)/∂s may look like a matrix, so the time ordering operator T seems to be required,
but actually T is not needed, because the second variable i0 is fixed, so we are not treating this as a matrix.

5G E Crooks, “Path-ensemble averages in systems driven far from equilibrium,” Phys. Rev. E 61, 2361-
2366 (2000). See also G Hummer and A Szabo, “Free energy reconstruction from nonequilibrium single-
molecule pulling experiments,” PNAS 98, 3658-3661 (2001).

6C. Jarzynski, “Nonequilibrium equality for free energy differences”, Phys. Rev. Lett. 78, 2690-2693
(1997). The latest note dispelling misunderstanding is: C. Jarzynski, J. Stat. Mech. 2004, P09005, “Nonequi-
librium work theorem for a system strongly coupled to a thermal environment.” Chris Jarzynsky calls his
equality, ‘nonequilibrium work theorem.’ In this latest paper, Jarzynski discusses how H may be interpreted
as the effective Hamiltonian of the system when the system interacts strongly with the heat bath; this is
directly relevant to ‘single molecule physiology.’ How did he arrive at this remarkable formula? He realized
the relation when he was analyzing a numerical experimental result. That is, the relation was suggested first
empirically.
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where the average is over many experiments with the same protocol. This is called Jarzynski’s
equality.7,8

More precisely, suppose a system is described classically with the Hamiltonian H(x, λ(t))
with a time-dependent parameter λ(t), which may be externally controlled. The initial state
a is distributed canonically at the temperature T = kB/β and with the Hamiltonian H(x, λ0).
Let state b be an equilibrium state with the Hamiltonian H(x, λ1) at the same temperature.
We fix the protocol to change the system by fixing the function λ(t) (λ(0) = λ0 and λ(tf ) = λ1,
where tf is the last time to modify the parameter). We embed this system in a large thermostat
that can be described by a Hamiltonian H0. Let us write the Hamiltonian of the whole sys-
tem as Hw(z, λ(t)), where z denotes the phase variables of the whole system collectively. This
Hamiltonian includes the interaction Hamiltonian between the system and the thermostat. We
assume this effect may be ignored.

Now, W is the work done on the system during the change under the condition that the
whole system is isolated.9 Then, the above equality holds.
Warning. The final state actually reached by the protocol at time tf is usually very different
from the final equilibrium state we are interested in. ut
Exercise 1. There is a macromolecule whose end-to-end distance can be controlled. We
change its length from L0 to L1 in one second (linearly in time). The free energy difference of
the equilibrium states with parameters L0 = 1nm and L1 = 3nm is given by ∆A = 40pNnm
(= pico newton × nanometer) (i.e., the stretching increases the free energy this much if one
does this in a quasiequilibrium fashion). The experiments told us that the work done to the
molecule W was distributed according to a Gaussian distribution, and the average work was
〈W 〉 = 60pNnm. Assuming that the temperature is 300K, find the variance of the work. (Check
that 300kB = 4pNnm). ut
Exercise 2. It is often hard to obtain equilibrium free energy change with actual experiments
performed at finite speeds. Thus, sometimes Jarzynski’s equality is practically meaningful.
Read the paper: “Equilibrium information from nonequilibrium measurements in an experi-
mental test of Jarzynski’s equality” by Liphardt et al.10 in Science 296, 1832-1835 (2002), and
summarize the content.11 ut
Discussion 1. There is a box separated into two compartments with a separating wall. One
compartment is empty but the other is filled with gas. Now, the separating wall is removed
by sliding quickly without any work. In this case, the free energy decreases because entropy
increases. However, there is definitely no external work. Therefore, Jarzynski’s equality cannot
hold. ut

Demonstration of Jarzynski’s equality
The work done on the system is given by W = Hw(z(tf ), λb)−Hw(z(0), λa), because it is as a
whole isolated. Therefore,

〈e−βW 〉 =
1

Ya

∫
dz(0)e−βH(z(0),λa)−βW (0.0.88)

=
1

Ya

∫
dz(0)e−βH(z(tf ),λb). (0.0.89)

Here, Ya is the partition function for the system with the Hamiltonian H(x, λa) + the thermo-

7The equality holds if the system obeys a Markov process as seen above.
8For a cycle (i.e., ∆A = 0), this was demonstrated by Bochkov and Kuzovlev in the 1980’s (according to

C. Jarzynski); G. N. Bochkov and Yu. E. Kuzovlev, Zh. Eksp. Teor. Fiz. 72, 238 (1977) [Sov. Phys.-JETP
45, 125 (1977)]; Physica 106A, 443, 480 (1981).

9For the following equality to be correct, the temperature of the whole system must not change, but if
the bath is large enough, this is not a constraint.

10by J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, Jr., and C. Bustamante.
11See also a recent paper by the same group: PNAS 99 13544-13548 (2002), and Jensen et al. on GlpF

PNAS 99 6731 (2002).
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stat. According to Liouville’s theorem, this reads

〈e−βW 〉 =
1

Ya

∫
dz(tf )e−βH(z(tf ),λb) =

Yb
Ya
, (0.0.90)

where Yb is the partition function for the system with the Hamiltonian H(x, λb) + the ther-
mostat. Since the Hamiltonian of the thermostat is intact, and we ignore the interaction
Hamiltonian that may depend on the parameter λ, Yb/Ya = Zb/Za, where Zc is the canonical
partition function for the system with the Hamiltonian H(x, λc). Thus, we have demonstrated
(0.0.87).12

Since e−x is convex, (0.0.87) implies

〈W 〉 ≥ ∆A. (0.0.91)

This is Thomson’s principle.
Warning. Notice that the whole system is isolated, so if the total work done to the system is
large, then the final temperature would be definitely higher than the initial one. Still (0.0.87)
holds. However, ∆A compared there is not the free energy change between the initial and the
actual final equilibrium states experiments realize.

Jarzynski’s equality and rare fluctuations
We know that the difference W − ∆A can be made large without bound. Still, Jarzynski’s
equality (0.0.87) holds. What does this mean?

Let us consider the simplest case; we make a cycle, and the initial and the final equilibria
are identical. ∆A = 0, so

〈e−βW 〉 = 1. (0.0.92)

If we make a rapid change, very likely W > 0; maybe it is often very large. Still, the equality

must hold, so we need fairly large negative W occasionally. That is, we must wait for a fairly

large scale ‘violation’ of the second law (cf. ??). This implies that we must wait for a very long

time to use (0.0.87) for a macroscopic system or for a process with large dissipation, even if a

system under study is not macroscopic.

Exercise 1. Imagine a cylinder with a piston containing an ideal gas. The whole system is in

a thermostat. Let us pull out the piston extremely rapidly (ignore the mass of the piston), and

then very slowly and gently we return the piston to the original position. [Do not believe that all

the questions below can be answered with the conditions given here; Appropriate information

must be added.]

(1) What is the total work needed on the average?

(2) What is the heat generated?

(3) What sort of fluctuations does one have to wait for (0.0.87) to hold?

(4) Estimate their probabilities.

(5) How long should we wait for such fluctuations? ut

Probability of violation of the second law
We have seen that fluctuation can go to a considerable extent against the second law. After all,
fluctuation decreases (local) entropy and without such fluctuations Jarzynski’s equality cannot
hold.

Let the classical system13 under study be described by its canonical coordinates y and

12This is the derivation given in the original paper, but it is hardly justifiable, because ‘no change’ in the
heat bath does not imply the ratio of its partition functions before and after the change of the heat bath is
unity (it is ∞/∞). If we can model the whole system as a Markov process, we can justify the formula as we
will see in ??.

13not necessarily a deterministic system, but must be Markovian.
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externally controllable parameters λ. The system history may be expressed by {y(t), λ(t)}. We
assume that the system satisfies the following microscopic reversibility:

P ({x, λ}t0|x(0))/P ({x, λ}0t |x(t)) ≡ P (→)/P (←) = e−βQ({x,λ}t0), (0.0.93)

where {x, λ}t0 is the path = history with a given protocol λ(t), and the overline indicates the
time reversal operation.14 Q is the energy absorbed by the system from the heat bath during the
forward process. [C] Is this interpretation of Q consistent with the usual operational definition
of heat?

If the initial and the final states are in equilibrium, the difference of the surprisal − log ρ is
interpreted as the entropy change. Therefore, we may assume15

Σ = log ρ(x(0))/ρ(x(t))− βQ, (0.0.94)

where Σ is the entropy production, ρ(x(t)) is the distribution of canonical coordinates at time
t.16 Notice that the probability of the entropy production to be Σ by the forward dynamics is
given by

PF (Σ) =
∑

ρ(x(0))P (→), (0.0.95)

where the sum is over all the transitions compatible with the entropy production Σ. An analo-
gous formula can be written for the backward dynamics PR

PR(−Σ) =
∑

ρ(x(t))P (←). (0.0.96)

There is a one to one correspondence between the forward and reversed paths, so the sum
above is over exactly the same paths (although reversed in time) in the sum for PF . We wish
to compute

PF (+Σ)

PR(−Σ)
=

∑
ρ(x(0))P (→)∑
ρ(x(t))P (←)

. (0.0.97)

Combining (0.0.93) and (0.0.94), we obtain for each path

ρ(x(0))P (→)

ρ(x(t))P (←)
= eΣ (0.0.98)

Now, take the following trivial identity:

a

b
=
c

d
⇒ a

b
=
c

d
=
a+ c

b+ d
. (0.0.99)

Therefore, (0.0.97) implies
PF (Σ)/PR(−Σ) = eΣ. (0.0.100)

This is called the fluctuation theorem. This type of theorems hold for sufficinetly chaotic dy-
namical systems.17

Exercise 1. The fluctuation theorem may be experimentally checked with a small system.

14The conditional probability implies that we do not take the (equilibrium or stationary) distribution of
the states into account.

15[C] The original paper: G. E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium
work relations from free energy differences,” Phys. Rev. E 60, 2721 (1999) claims that the result is applicable
far away from equilibrium, but it is questionable simply because we have no clear definition of entropy away
from equilibrium.

16Precisely speaking, this ratio must be the reciprocal of the Radon-Nikodym derivative dρ(x(t))/dρ(x(0)).
17This type of relation was first found numerically by D. J. Evans, E. G. D. Cohen and G. P. Morriss,

Phys. Rev. Lett. 71, 2401 (1993), and later proved for Anosov dynamical systems by G. Gallavotti and E.
G. D. Cohen, J. Stat. Mech. 80, 931 (1995) ( see ??). The form given here is due to G. E. Crooks, Phys.
Rev. E 60, 2721 (1999).
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Read Wang et al. Phys. Rev. Lett. 89, 050601-1 (2002)18 and summarize its content. ut
Remark. There have been numerical and empirical attempts to check the fluctuation theo-

rem: M. Dolowschí(a)k and Z. Kovács, “Fluctuation formula for nonreversible dynamics in the
thermostated Lorentz gas,” Phys. Rev. E 65 066217-1-4 (2002). This is for a driven periodic
Lorentz gas, and is consistent. ut

Relation of fluctuation theorem to Jarzynski’s equality
Let Wd be the dissipated part of the work done to the system. Then,

Σ = βWd (0.0.101)

Therefore, from (0.0.97) we have
〈e−βWd〉F = 1. (0.0.102)

We know Wd = W −∆F , this is Jarzynski’s equality.
Discussion 1.19 We can also derive

〈eΣ〉R = 1. (0.0.103)

This is, so to speak, an anti-Jarzynski equality. Can we use it? ut

Comparison of stepwise (simple fuction) and smooth changes. Do they agree? Yes, if δt is199
sufficiently small.

Heat

Each description scale has its own definition of heat.203
What is explicitly observed and controlled?

Langevin equation (p52) with a small amplitude high-frequency periodic potential204

γẋ = −U ′M(x) + a0 − V ′(x) +
√

2γkBTξ(t), (0.0.104)

where Um is the periodic potential

System can have different levels of randdom variables. If a system has fast variables y208
and slow variables x, the Hamiltonian reads H(x, y, a), where a is an extrenal macro-control
parametrer.

Z(β, a) = Trx,ye
−βH = e−βF (β,a), Z(β, x, a) = Trye

−βH = e−βF̃ (β,x,a), (0.0.105)

where F̃ (β, x, a) is the Landau free energy. Notice that F̃ is an effective Hamiltonian at the
level of slow variables. Thus, this may be understood a the mesoscopic energy. On the pther
hand, the average of the Hamiltonian (the calorimetric energy) is the internal energy at this
level, so

Ẽ =
∂βF̃

∂β
. (0.0.106)

18by G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles and D. J. Evans, “Experimental demonstration
of violations of the second law of thermodynamics for small systems and short time scales.”

19from the question by Mr Y. Liu
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Ẽ − F̃ = −T ∂F̃
∂T

= TdS̃ (0.0.107)

The Langevin eqution for x reads

γ
dx

dt
+ ξ(t)− ∂

∂x
F̃ (β, x, a) = 0. (0.0.108)

The stochastic energetic for this is the mesoscopic thermodynamics:

dF̃ = dQ̃+ dW̃ =
∂F̃

∂x
dx+

∂F̃

∂a
da, (0.0.109)

where

dW̃ =
∂F̃

∂a
da (0.0.110)

dQ̃ =

(
−γ dx

dt
+ ξ

)
◦ dx =

∂F̃

∂x
◦ dx (0.0.111)

If x is slow enough, from y, the motino of x is always quasistatic. Therefore, thermo-
dynamics holds with x and a as external parameters. Then heat at this level is TdS̃, the
mesoscopic entropy. Now, calorimetrically,

dẼ = dW̃ + dQcal (0.0.112)

where Qcal is the calorimetric heat and

dQcal = dQ̃− T dF̃
dT

= dQ̃+ TdS̃. (0.0.113)
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