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This is a serious introductory textbook of equilibrium statistical mechanics. Its main
target readers are:
1) those who have already learned undergraduate level thermal physics,2 but have
not been satisfied,
2) those who wish to review elementary statistical mechanics without returning to
introductory textbooks,
3) those who do not wish to be a mere consumer of statistical mechanics/those who
have ambition to develop their own viewpoints (or even to make their own theoretical
frameworks).
The author wishes to make a textbook of equilibrium statistical mechanics for those
who wish to think things critically by themselves.

For the author to understand a theory is to reconstruct it by himself, or to make
a textbook of the theory for himself since his student days (thus most lectures were
very hard to understand during the class). The author tries to make a textbook that
he wished to read when he was a student. Those who review statistical mechanics
for exams’ sake are not among the target readers of this book; those people should
think that the life after exams is much longer. For the life after exams the reader
need not be able to solve exercise problems quickly; in real life if the reader wishes
to solve them, s/he can simply look up the problem books. Being tenacious is much
more important than being quick and smart in order to be a real scientist.

However, the author has no intention to make a book quite different
from the standard introductory textbooks, so all the elementary topics
are covered in detail (almost from the ground level). Furthermore, to make
the book reasonably inexpensive, there is a supplementary web page called “Equi-
librium Statistical Mechanics Supplementary Pages,” which covers detailed or subtle
discussions and advanced topics (with detailed calculation). The author was an or-
ganic synthetic chemist up to the master’s degree, and has not attended any standard
physics (and mathematics) courses. He learned statistical mechanics by himself, solv-
ing Kubo’s exercise book3 that contains full solutions of all the problems. Therefore,
to help those who struggle by themselves all the detailed solutions to the problems at
the end of each chapter are also posted at the Supplementary Pages. Consequently,
the book should be useful for those who wish to review equilibrium statistical me-
chanics for the sake of exams as well.

2At UIUC the 200 level courses.
3R. Kubo, H. Ichimura, T. Usui, and N. Hashitsume, Statistical Mechanics (North-Holland,

1990).
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One could say that statistical mechanics is a wonderful tool, so we ordinary sci-
entists should become expert users without ever asking why it works. It is true that
axioms cannot be derived. However, even in mathematics it is not useless nor futile
to understand why particular axioms are adopted. Furthermore, it is against the
spirit of science to swallow what is told without critical thinking. Therefore, the
book does not subscribe to the opinion mentioned above; the author wishes to make
a textbook that might be useful to those who wish to make ‘better’ statistical me-
chanical framework, or statistical framework applicable to the systems beyond the
scope of the conventional theories. Therefore, the book discusses not only how to
use statistical mechanics but also why its theory is plausible and natural. The book
places certain stress on the general idea of statistical mechanics and its consequences.

In the ordinary introduction to our subject, it is not rare that the students are
persuaded to become able to solve problems without trying to understand why s/he
can solve them. This is not at all a bad attitude, if they will later start to think, so
this book discusses clever techniques as well. Still, the author wishes to treat physics
as an intellectual and cultural endeavor.4 Therefore, most explanations will be with
informal backgrounds that exhibit intuitive ideas [Spilt over explanations will be in
the Supplementary Pages].

There are folklores in statistical mechanics. For example, in many textbooks er-
godic theory and the mechanical foundation of statistical mechanics are discussed
even though detailed mathematical explanations may be missing. We must clearly
recognize such topics are almost irrelevant to statistical mechanics. We are also
brainwashed that statistical mechanics furnishes the foundation of thermodynamics,
but we must clearly recognize that without thermodynamics statistical mechanics
cannot be formulated. It is a naive idea that microscopic theories are always more
fundamental than macroscopic phenomenology. Since natural science must be em-
pirically supported, phenomenology is the most reliable part of science (its least
metaphysical portion5). Many physicists, including the author himself, who wish to
emphasize theory and mathematical structures, tend to believe the so-called funda-
mental (microscopic) theories are the foundation of foundations, but occasionally we

4Since mathematics is an integral part of our intellectual culture, it will be used without any
reserve. However, in most cases, some advanced topics will be with footnotes and supplementary
notes in the web or small lettered auxiliary explanations that should be accessible without difficulty
by physics students.

5Crudely put, what we cannot decide experimentally is metaphysics.
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should reflect on the premises.

Topics that we will cover but that may not be discussed in detail in many text-
books include the following topics:
∗ Intuitive explanations are not avoided, or scaffolds will not be removed from the-
ories. For example, a physical interpretation of the so-called ensemble theory is
provided.
∗ The pillars of the modern probability theory are the law of large numbers and
its refinements (large deviation theory and central limit theorem). The pillars of
statistical mechanics are closely related to them. The law of large numbers makes
statistical mechanics possible. Fluctuation theory is the study of large deviation,
and renormalization group theory is the central limit theorem.
∗ Legendre transformation (actually the Fenchel equalities are called Legendre trans-
formations in elementary textbooks) is important transformations in thermodynam-
ics. It is a fundamental concept in convex analysis. The equivalence of ensembles is
closely related to the self-dual nature of Legendre transformations.
∗ Today, there must be a lot of opportunities to learn quantum many-body theory,
but it may be rare that physics students are exposed to classical liquid. Thus, im-
perfect gas, simple liquid, and some needed tools to study them are outlined.
∗ In conjunction to phase transitions, introductory discussions on thermodynamic
limit and Gibbs states are given. More generally, the book tries to make mathemat-
ical results more easily accessible than the original papers and mathematical physics
textbooks. Important mathematical results often used in statistical mechanics (e.g.,
Stirling’s formula, Jensen’s inequality, Perron-Frobenius’ theorem) are stated with
proofs or theoretical-physicist-style formal arguments.
∗ The arrangement of the topics is probably more logical than many textbooks. For
example, most introductory textbooks discuss mean field theory first, and then state
that unfortunately ubiquitous thermal fluctuation makes it not very reliable. This
book stresses the importance of equilibrium fluctuations. Inevitably, the idea of
renormalization comes to the fore. Only after renormalization can one understand
the significance of mean field theory in statistical mechanics. Thus, renormalization
is outlined before mean field approaches.

The book consists of the main text and (indented) additional explanations in small
letters and footnotes. To understand the main text no particular reading of the other
parts is required. A reasonable outline of statistical mechanics should be understood
by reading only the main text. Small lettered explanations cover reviews of related
elementary topics and advanced topics (mostly with bold face titles). The explana-
tions with † are more advanced. Long footnotes are often with titles embraced by
〈〈 〉〉. These footnotes augment related topics, some of which may be read as short
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column articles. As stated above, the book has Supplementary Pages that contain
more advanced topics, explanation of subtle points, and summary of each section.

Each chapter ends with a set of problems most of which have already been asked
as homework and exam problems. Most representative types of problems in problem
books may be found there. Even if the reader cannot do them quickly, that is per-
fectly all right, provided s/he continues to think tenaciously. As already mentioned,
all the full solutions are found in Supplementary Pages.

The book is based on what the author learned from his old friends, especially,
Bob Clegg, Hisao Hayakawa, Shin-ichi Sasa, Ken Sekimoto, Akira Shimizu, Yoichiro
Takahashi and Hal Tasaki, although he has not been a very good student. Extensive
comments of Joel Cannon, Barry Friedman, and Chuck Yeung have been incorpo-
rated. The precursor of this book is a posted set of lecture notes for the graduate
statistical mechanics course of University of Illinois at Urbana-Champaign. Correc-
tions and suggestions to the notes due to Hyeong Jun Kim, Farzad Tehranchi, Youcai
Wang and Shizhong Zhang are gratefully incorporated.

On September 20th, 2006, Akira Shimizu organized a ‘town meeting’ on the
manuscript in Tokyo. There, the author obtained critical comments of not only
Shimizu and Tasaki already mentioned above but also Takashi Hara and Nobuyasu
Itoh. This version has supposedly taken care of all the complaints and criticisms
raised in the meeting. The author is grateful to the participants to the town meeting.
Further later, he had an opportunity to discuss with Hara, and realized several wrong
statements in Chapter 5. The second town meeting organized by Hisao Hayakawa
was held on December 20, 2006 in Kyoto. In this meeting the author got many re-
quests of incorporating various topics, but regretfully the version has not responded
to most of them because the thickness of the book cannot be enormous. The 2008
March Japanese version with more introductory materials was circulated and the
author got again extensive criticisms by Tasaki, Shimizu, and Takahashi. They have
been duly incorporated into this version. On Jan 7-9. 2009 an opportunity of the
concentrated course was provided by Kiyoshi Higashijima. Useful comments and
questions by Toshio Nakatsu and Makoto Kikuchi at this opportunity and by Akira
Yoshimori at a similar opportunity at Kyushu University in June 2009 provided by
Hiizu Nakanishi have been gratefully incorporated. The resultant 2009 Japanese
version was further subjected to Sasa, Shimizu and Tasaki’s criticisms. The results
of discussions at the meetings with them at University of Tokyo in early July, 2010
have been take care of.
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Special symbol for hyper-referencing: ‘jump-mirror system’
Some concepts in this color are buttons to jump to related topics/explanations, where
there is this mark r. Clicking this mark, you can return to your starting point. You
can test. This version with full solutions as Chapter 6 has an analogous mark q that
returns the reader to the problems or their solutions.

The Supplementary Web Page
http://www.yoono.org/Y_OONO_official_site/StatPhys

In order not to make the book too thick, a summary of each section (minimum),
detailed explanation and auxiliary comments, examples, more advanced topics and
detailed solutions to problems at the end of the chapters are posted here. For exam-
ple, requested materials such as the ε-expansion, a method to obtain the exact free
energy of the square lattice Ising model are posted here.

r allows you to jump back to ‘test.’
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Chapter 1

Basics

For a practical physicist equilibrium statistical mechanics implies the following gen-
eral ‘algorithm’: Take a many-body system whose Hamiltonian is H.1 Then, the
Helmholtz free energy A of the system at absolute temperature T is given by (for a
brief review see “work and free energy” below)

A = −kBT logZ, (1.0.1)

where2 kB (= 1.3806503×10−23 J/K) is the Boltzmann constant and Z is the canon-
ical partition function computed as

Z = Tr e−βH . (1.0.2)

Here, β = 1/kBT (a standard notation) and the trace implies quantum-mechanically
the sum over all the eigenstates of the Hamiltonian, and classical-mechanically the
integration over the phase space. Thus, the algorithm supplied by statistical mechan-
ics allows us to compute thermodynamic quantities of a system from its Hamiltonian
that is a microscopic description of the system. This is the theoretical core of statis-

1To enjoy this book, the reader should know elementary analytical mechanics (the canonical
equation of motion, Poisson brackets, etc.), elementary quantum mechanics (bra and ket, angular
momentum, etc.) and elementary thermodynamics. For these elementary subjects appropriate
summaries will be given in Supplementary Pages. However, the reader may have forgotten thermo-
dynamics, so rudiments of equilibrium thermodynamics will be added at appropriate places.

2In this book ‘ln’ will never be used; log always implies the natural logarithm.

11



12 CHAPTER 1. BASICS

tical mechanics, and our remaining task is only to evaluate Z....(canonical formalism)3

The purpose of the book is to help the reader understanding the above theoretical
core of statistical mechanics, and then becoming able to use its machinery.4

The algorithm summarized at the beginning of the Chapter is often called the en-
semble theory as some of the readers may already know, but what ensemble does it
concern with? Perhaps, the reader has heard furthermore about ergodic hypothesis
that equates the time average and the average over the allowed set of microscopic
states. Is this hypothesis really relevant to statistical mechanics?

The main discussion of statistical mechanics will begin at Sect. 1.3. Section 1.1
may be read as the “making of statistical mechanics,” and Sect. 1.2 is a review of
probability theory and the law of large numbers. Section 1.1 is addressed to those
who have already learned elementary statistical mechanics. Therefore,

if the reader wishes to be efficient, s/he can start from Sect. 1.3.

Or, the reader can start from Sect. 1.3, read up to Sect. 1.6, and then come back to
Sect. 1.1. The author is acutely aware that there are people who denounce attempts
to discuss ‘making of statistical mechanics.’ The relation between thermodynamics
and equilibrium statistical mechanics is a paragon of the relation between a phe-
nomenology and its statistical model. Therefore, the author believes that to under-
stand intuitively why the relation becomes plausible should be of some use, when one
wishes, e.g., to extend the statistical framework to systems away from equilibrium or
to the systems the traditional framework has not been applied (or when one wishes
to understand why such extensions are impossible). This is the reason why we dare
try to see the “making of statistical mechanics.”

This book has fine-lettered entries with titles such as the following. They may be re-
views of some elementary topics or slightly advanced or complicate materials. Roughly
speaking, if the reader knows elementary thermodynamics and mechanics, without
reading these fine-lettered entries, s/he can acquire general understanding of statisti-
cal mechanics and a certain extent of technical details.

Work and free energy
The readers are expected to be familiar with the outline of thermodynamics, but
many of them may have forgotten it (as already noted in footnote 4, an introductory
material is provided in Supplementary Pages). Therefore, in this Chapter rudiments

3However, it is usually hard to compute Z, so statistical mechanics consists of three parts: the
study of results obtainable without any concrete computation, the study of approximate methods
to evaluate Z, and the study of systems for which Z can be computed exactly.

4〈〈Introduction to Statistical Thermodynamics〉〉 An introductory material for those who
have never learned thermodynamics and statistical mechanics at all is posted as a part of Supple-
mentary Pages. This is essentially a set of undergraduate course lecture notes. These notes provide
more than enough elementary material for this book.
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of equilibrium thermodynamics are summarized at strategic points in small letters
(like this paragraph) marked with [T]. An outline of the first and the second laws is
in Sect. 1.3, but here a common-sense understanding of free energy is summarized
briefly. The precise meaning of ‘work’ and ‘heat’ will be discussed later, but here they
may be interpreted intuitively.

In thermodynamics, the energy conservation law is summarized as the first law of
thermodynamics: the change of internal energy ∆E consists of heat Q and work W :

∆E = Q+W. (1.0.3)

The sign convention is: if a quantity goes into (resp., out from) the system, it is +
(resp., −). For example, if we do work to the system, W > 0; if the system cools
by radiating heat, Q < 0; etc. For a reversible isothermal change, we may write
Q = T∆S, where ∆S is the change of the system entropy, and T is the absolute
temperature of the system. For a reversible isothermal5 process we may write

W = ∆(E − TS) = ∆A, (1.0.4)

introducing the Helmholtz free energy A = E − TS. This is the meaning of the
statement that the reversible work added to the system through an isothermal process
is equal to the free energy increase of the system.

One way to state the second law of thermodynamics is that the free energy change
of the system does not exceed the work added to the system (Thomson’s principle)
for an isothermal process:

∆A ≤W. (1.0.5)

This inequality holds even when W is the work done by the system (say, to us). In this
case, W < 0 (consequently, ∆A < 0 as well). That is, in magnitudes, |∆A| ≥ |W |:
the work we can take out from the system cannot exceed the free energy decrease of
the system. ut

1.1 Being macroscopic—why do we need statis-

tics?

Statistical mechanics assumes that a macroscopic object (a macrosystem) is made of
numerous ‘microscopic constituents’ (particles) obeying (a certain) mechanics. Infor-
mally, a ‘macroscopic object’ implies an object of our length scale (say, not far smaller

5〈〈Isothermal process〉〉 An isothermal process is a process that can take place in a system
thermally contacting with a constant temperature heat bath. The process need not be reversible,
so during the process temperature may not be definable, but its initial and final equilibrium states
must have the same temperature. Needless to say, for a reversible isothermal process the system
temperature is always kept constant.
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than 0.1mm but not far larger than 10 m, i.e., 10±3cm) that is sufficiently uniform.
‘Microscopic constituents’ are, usually, molecules and atoms. Mechanics means the
fundamental laws of mechanics (classical or quantum mechanics at present). The
microscopic state (microstate) of a macrosystem is its individual state that can be
completely specified by its mechanical description (i.e., the elementary states of a
system described as a mechanical system); for a classical system it is a point in the
phase space of the system, and for a quantum system it is a 1-dimensional subspace
(called a ray) of the state (complex) vector space (Hilbert space) of the system.
There are so many microscopic constituents that if we wish to explain macroscopic
observables in terms of the properties and behavior of microscopic constituents obey-
ing a certain mechanics, we should need a certain statistical means. This is the usual
explanation of why we need statistics, motivating ‘statistical mechanics.’6

Is the meaning of the word ‘macroscopic’ clear? There might be readers who re-
gard it not so objective to characterize the concept ‘macroscopic’ in conjunction to
our own size. Furthermore, however large an object may be, if it is not homogeneous
up to a small scale, we could not simply say it is a macroscopic object. After all, it
is not an easy task to specify the word ‘macroscopic’ generally. Therefore, here, we
consider this only within the context of equilibrium statistical mechanics.

To begin with what is ‘equilibrium’? Let us recall the fact summarized as the
so-called zeroth law of thermodynamics (see [T1]). If a ‘macroscopic’ object left for
a sufficiently long time7 without any interaction with its surrounding world (i.e.,
left alone in isolation8), it reaches a macroscopically time-independent state, called

6However, the so-called ‘ensemble theory’ does not take statistics over microscopic constituents,
but over microstates of a macrosystem.

7〈〈How long is long enough?〉〉 If no further (macroscopic) change can be observed by patient
observation, the observation is long enough. Therefore, according to Feynman, an equilibrium state
is, in practice, a state in which ‘all the fast events have already occurred, but no slow events have
started yet.’ Feynman’s lecture notes: Statistical Mechanics, a set of lectures [notes taken by R.
Kikuchi and H. A. Feiveson, edited by J. Shaham] (W. A. Benjamin, Inc., 1972) is worth owning,
although its level is rather advanced.

8〈〈“To be left alone in isolation”〉〉r In plain terms, this means that the system is left
without any exchange of energy, matter and information with its surrounding environment. Then,
can we isolate a constant volume gas? We need a container, and the container is a part of the
external environment of the gas. In thermodynamics, such as containers are idealized as walls,
and are excluded from ‘physics,’ so a system isolated by a wall is regarded isolated, although it
interacts with the wall. In statistical mechanics we must describe such systems as mechanical
systems. We wish to have corresponding idealization of ‘walls.’ In statistical mechanics we say
a system is isolated, if we can model the system in terms of mechanics with a time-independent
uniform boundary condition. Notice that the key point is that an isolated system can be described
in terms of mechanics.
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an equilibrium state. However, isn’t this characterization useless to our purpose?
We wish to characterize the word ‘macroscopic’ or ‘macroscopically,’ but such words
already appear in the above sentence. If we wish to avoid circularity, we can only
accept the following answer: we say, in equilibrium, a system is macroscopic, if equi-
librium thermodynamics holds sufficiently accurately. In Sect. 1.3 the meaning of
this statement will be made clearer, but here the readers have only to have its rough
understanding.

The zeroth law of thermodynamics [T1] further requires the following as well. If
a macroscopic object in equilibrium is cut into halves, (1) each half is individually
in equilibrium in isolation, and (2) if the halves are joined again, the joined result is
(thermodynamically) indistinguishable from the original state of the original object
(Fig. 1.1.1).

Equilibrium as a whole in isolation

Each piece is in equilibrium 

in isolation even after 

separation

Combining A and B recovers a macrostate
indistinguishable from 1

A B

A B

A B

1

2

3

Fig. 1.1.1 Illustration of a part of the zeroth law
of thermodynamics we need. The usual zeroth
law asserts the existence of equilibrium states
and the equilibrium relation as an equivalence
relation: if systems A and B are in equilibrium
when joined, and if B and C are also in equilib-
rium when joined, so are A and C. However, the
invariance of equilibrium states under partition
and rejoining is much more fundamental.

[T1] The zeroth law of thermodynamics9 (rto p12, rto [T6])
This law guarantees the existence of the equilibrium state and characterizes its nature.
(1) An isolated system (see footnote 8),10 left alone for a sufficiently long time, reaches

9Fine-lettered explanations with [T] are about thermodynamics.
10〈〈E. Borel and chaos〉〉r E. Borel (the creator of measure theory) pointed out long ago

that the alteration of the gravitational field around us due to a 1cm displacement of 1g mass
on Sirius was sufficient to change the very near future dynamics of a gas particle in front of us.
There is no way to shield gravitational field, so there cannot be any truly isolated system in the
universe. We know that for many mechanical systems the external noise zero limit and the long
time limit do not commute. Consequently, we should recognize that the traditional idealization
of statistical mechanics considering an isolated Hamiltonian system is not a good idealization of
reality. The equilibrium state in thermodynamics should be understood as a state that does not
change macroscopically under such unavoidable external noises (we could say under thermodynamic
adiabatic conditions). This is probably the reason why it is fundamentally difficult to understand
thermodynamics in terms of mechanics. Maxwell and Boltzmann thought that the influences of the
external world were unavoidable; it is worth keeping in mind that they seem to have thought that
equal probability sampling of microstates was possible because of external influences.



16 CHAPTER 1. BASICS

a (macroscopically) time-independent state.r11 This state is called an equilibrium
state.
(2) If the thus obtained equilibrium system is partitioned into two (approximately
equal) parts (by a plane), then

(i) each piece in isolation is in equilibrium, and
(ii) if these pieces are joined as before the partition, the joined result is in equilib-

rium as a whole, and its state cannot be (thermodynamically) distinguished from the
state before the partition.

The usual zeroth law states, instead of (2), that the thermal equilibrium relation is
an equivalence relation as mentioned in the caption of Fig. 1.1.1. However, we cannot
state such a requirement at the beginning without introducing the concept of thermal
contact.
Comment about ‘isolated systems’ The just stated zeroth law is about the ‘iso-
lated’ system not under the influence of external fields as in the standard thermo-
dynamic textbooks. However, there are many thermodynamic states that cannot be
realized when the system is isolated without any external fields. A state of a magnet
at high temperatures with a nonzero magnetization is such an example. In such cases
the presence of an external field necessitates exchange of energy between the system
and its surrounding world. We must relax the ‘isolation’ condition, because we need
specify conjugate variables (e.g., magnetic field) to fix (the average values of ) ther-
modynamic coordinates (e.g., magnetization).

A required modification will be given at the end of Section 1.3. For the time being
we consider the conventional isolated systems. The required modification is, in short,
to replace the isolation condition with the ‘isolation condition sensu lato’ (the condi-
tion that allows time-independent mechanical operation to the isolated system in the
usual sense); henceforth the condition will be called ‘thermal isolation.’ If we replace
the concept ‘isolation’ with ‘thermal isolation,’ all the statements will still be correct.

(Ferro)magnets
To illustrate concepts and situations magnets are often used in this book, so let us
review magnets and their salient phenomena. (Ferro)magnets are microscopically un-
derstood as systems in which atomic or molecular magnets (atoms and molecules with
unpaired electrons) are spatially arranged and are interacting with each other. Be-
tween a pair of these elementary magnets is an interaction that tends to align their
magnetic moments (the so-called exchange interaction). If the temperature is suffi-
ciently high, elementary magnets point random directions, so there is no magnetization
(= the algebraic sum of magnetic moments of elementary magnets). If the tempera-
ture is lowered, then below some temperature, which is called the critical temperature,
the effect of interaction among elementary magnets overcomes the disordering effect of
thermal noise and the elementary magnets align predominantly in a certain direction.

11This is an assertion as to the direction of time. Notice that it is NOT the second law. What is
the meaning of the clause ‘macroscopically time independent’? As already alluded, a macrostate is a
state specified by thermodynamic observables, and ‘time independence’ implies that thermodynamic
observables are time-independent. However, thermodynamic observables cannot be characterized
without the first and the second laws (see [T5]). That is, precisely speaking, the zeroth law cannot
be understood separately from other thermodynamic laws.
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Consequently, the system exhibits a non-zero magnetization. The system Hamilto-
nian does not have any special direction to which the magnetic moments must order,
but below the critical point this symmetry is lost because of self-interactions. This
is called the spontaneous symmetry breaking. In some magnets their crystal lattices
have special directions (the easy directions) into which elementary magnetic moments
predominantly point. If there are only two opposite directions (say, + and − direc-
tions) that elementary magnetic moments can point, the magnet is called an Ising
magnet. In such a magnet, below its critical temperature, the + or the − direction is
pointed by majority of elementary magnets and the magnetization becomes non zero.
However, whether the + phase and the − phase can coexists (just as ice and liquid
water at 0 ◦C under 1 atm) depends on the spatial dimensionality (see Section 5.4).

If a macroscopic system in equilibrium is halved, the resultant halves are, if isolated,
individually in equilibrium again. For this statement to be literally true, a macro-
scopic system must be infinitely large. Strictly speaking, the laws of thermodynamics
are laws valid for infinite systems (‘systems in the thermodynamic limit’). Precisely
speaking, all the proper assertions of statistical mechanics are those after the ther-
modynamic limit is taken. This limit is not very simple (see Chapter 5, esp., Sections
5.2 and 5.3). However, for equilibrium thermodynamics to hold with sufficient ac-
curacy the system need not be infinitely large; if it is about our size, the scale is
more than enough. That is why thermodynamics is practically meaningful. Thermo-
dynamic observables may be determined with considerable accuracy for systems of
our size and for systems far smaller than our size, say, for 0.1 mm cubes. However,
the accuracy of thermodynamic observable values is restricted by ‘fluctuations’ in
the observables; their relative size is proportional to the inverse square root of the
system size (measured in, e.g., mass). See Sect. 2.8 and the fine-lettered explanation
below entitled ‘The relation between thermodynamic limit and finite systems.’

Statistical mechanics bridges mechanics and thermodynamics, so let us make it
clear between what sort of observables it relates. Let us assume that we have a com-
mon sense notion of mechanical observables. What is the characteristic of thermody-
namic observables? Important empirical facts answering this question is summarized
as the fourth law of thermodynamics:

Thermodynamic observables are either intensive or extensive.12

rThe fourth and the zeroth laws entail that all the thermodynamic quantities can
be obtained from the ‘chopped up’ system (a collection of, or rather, an ensemble

12 Consequently, we will not discuss systems interacting with gravitation. Although we say we
take the thermodynamic limit, we ignore gravitational interactions among subsystems. For the
precise meaning of the technical terms see the entry below of the fourth law of thermodynamics
[T2].
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of mutually isolated subsystems).13 This does not mean that a macroscopic system
actually consists of numerous isolated macroscopic subsystems. It simply means
that to obtain thermodynamic observables (macroscopic observables including, e.g.,
the form factors or correlation functions), any macroscopic system may be regarded
equivalent to a collection of macroscopic subsystems obtained by chopping the sys-
tem up. Since these subsystems are not interacting at all,14 we may interpret a
macroscopic object in equilibrium as a collection of numerous statistically unrelated
(i.e., independent)15 macroscopic objects for the purpose of computing thermody-
namic observables. We may express this fact as the partition/rejoining invariance of
thermodynamic observables.

Single isolated 

macrosystem

Collection (ensemble)

of isolated macrosystems

=∼ Fig. 1.1.2 An isolated macroscopic system
in equilibrium is thermodynamically equiv-
alent to a collection of isolated macroscopic
(sub)systems in equilibrium.r

The relation between thermodynamic limit and finite systemsr
As noted before, the laws of thermodynamics are, precisely speaking, the ones for
infinite systems. Then, aren’t all the extensive quantities meaningless? That is right;
truly meaningful thermodynamic observables for infinite systems are only densities
of the so-called extensive quantities and their conjugate intensive quantities (called
fields). That is, the fourth law asserts that proper thermodynamic observables are

13Needless to say, the fluctuations in small pieces are large. However, if the fluctuations become
three orders as large as the original system after chopping it up into one million pieces, the average
of all the small piece observables cancel exactly this increase of fluctuations thanks to the law of
large numbers (see Sect. 1.2).

14If there is an additive conserved quantity (e.g., energy), its total sum must be respected. The
reader might think there could be a problem of how to distribute conserved quantities to subsystems,
but if the original system is uniform, we can simply distribute them evenly.

15〈〈On virtual statistical independence of the parts〉〉 It is hard to assert the statistical
independence of the resultant pieces. The true meaning of the assertion here is: irrespective of the
actual picture, we may assume statistical independence. For a system in equilibrium, we may define
temperature. Thermodynamic observables of a system are intact even if the system is in contact
with a heat bath at the same temperature. Therefore, even if the pieces obtained by chopping-up
a macrosystem are joined after they are in thermal contact with their individual (private) thermal
baths, the resultant state must be thermodynamically indistinguishable from the original state of
the original macrosystem. Consequently, even if we assume each piece is statistically independent,
thermodynamically no difference should be detected.

Furthermore, as stated in the footnote of Borel and chaos (footnote 10), in reality, it is impossible
to eliminate external disturbances, so each part would be statistically independent sooner or later.
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densities and their conjugate fields. However, in statistical mechanics we cannot han-
dle infinite systems at once. It is meaningful to characterize extensive quantities as
quantities asymptotically proportional to the system size (i.e., the amount of mate-
rials). Even though the systems we can actually observe are all finite, their sizes are
much bigger than microscopic mechanical elements, so the values of thermodynamic
observables (densities and fields) are almost indistinguishable from their thermody-
namic limit values. Precisely stated, the values of thermodynamic observables for finite
systems fluctuate around the thermodynamic limit values with latitudes of O[1/

√
N ]

(see Sect. 2.7), where N is the number of microscopic entities in the system. This is
the reason why thermodynamics is practical.

How big is a ‘real’ finite system?
Since a real system is finite, we cannot chop it up into infinitely many ‘macroscopic’
pieces. Then, are we allowed to regard it as an ensemble of sufficiently numerous sub-
systems? Notice that the ‘tiny pieces’ obtained by chopping up an ordinary macrosys-
tem into one million pieces are sufficiently macroscopic (we have only to chop up one
liter of substance into 1mm cubes; if the substance is a gas at a room temperature at
1 atm, how many molecules are in it?). As we will see in the next section, for the law
of large numbers to hold with reasonable accuracy, we do not need such a big number
of samples. In short, a realistic macrosystem can be understood as an ensemble of a
sufficiently large number of macroscopic subsystems for the law of large numbers to
hold.16

The partition/rejoining invariance of thermodynamic observables, together with
the law of large numbers (see the next section), implies that thermodynamic mea-
surements can be instantaneous, and that their results are reproducible whenever
they are measured. These observations are consistent with empirical facts. For ex-
ample, to measure the compressibility of a gas, no more than 1 ms would be needed.
For an identical equilibrium state (up to the observation errors and thermal fluctu-
ations) we can reproducibly repeat measurements with long intervals between them.

Microstates that actually occur during a very short observation time for a macrosys-
tem must be an overwhelming minority among the microstates that can occur under

16〈〈How small are molecules?〉〉 Let us have a ‘real feel’ for how small and consequently how
numerous molecules are. The total mass of water (mostly sea water) on the earth is 1.4 × 1021

kg = 7.8 × 1022 moles = 9 × 1022 tablespoons (one tablespoon is 15 cm3). The number of water
molecules in a tablespoon is five times as large as the number of scoops needed to exhaust sea
water. What if we replace the tablespoon with a teaspoon (5 cm3)?
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the same equilibrium condition.17,18 In other words, thermodynamic measurement
gives averages over extremely localized microstates sampled from the phase space
(sampled from the set of all the microstates). Intermittently repeated measurements
must observe quite distinct microstates, so the excellent reproducibility of measure-
ment results implies that almost all locally sampled sets of microstates give the
identical thermodynamic result. The most natural and simplest interpretation of
these facts is that almost all individual microstates give identical thermodynamic
results.

Statistical mechanics assumes the conclusion of the above intuitive considerations.
Namely, it assumes that almost all microstates that can occur under the condition
that a particular macrostate is observed (we say these microstates are consistent
with the macrtostate) individually give the same thermodynamic observable values.
Then, thermodynamic quantities should be obtainable from almost any one of the
microstates consistent with the equilibrium state of a macroscopic system without
any averaging or taking statistics; we do not need statistics, do we? There are many
macroobservables for a microstate. How can we extract thermodynamic quantities
from all macroobservables? Since thermodynamic observables take identical values
for almost all microstates consistent with a given macrostate, it is natural to expect
that they may be extracted by averaging evenly over all consistent microstates.

In practice, (as we may see from computer experiments) a system with 106 par-
ticles is often large enough to obtain thermodynamic quantities. Therefore, 1010

‘macroscopic’ subsystems can easily be imagined in an ordinary macroscopic object.

17For example, in classical mechanics during this observation time the system must be able to
experience only overwhelmingly small portion of the phase space allowed to the system. Those
who have learned classical mechanics must know the Poincaré time, which is, roughly speaking,
the needed time for a system to itinerate all the representative mechanical states and is known to
be much longer than the age of the universe for ordinary macrosystems. Therefore, if the Poincaré
time is compared with the observation time, the above assertion about the fraction of the phase
space actually observed is quite natural.

18〈〈Boltzmann and Zermelo〉〉 Boltzmann utilized the enormous length of the Poincaré time to
show that there was virtually no contradiction between his mechanical derivation of irreversibility
and mechanical recurrence, and dismissed Zermelo’s logical criticism of 1896. Ernst Zermelo (1871-
1953) was in those days an assistant to Planck, who was critical about atomism. Read Section 1.4
of H.-D. Ebbinghaus, Ernst Zermelo, an approach to his life and work (Springer, 2008). Zermelo’s
much more important work is axiomatic set theory, but he never lost interest in statistical mechanics.
It was he who translated Gibbs’s statistical mechanics book into German (in 1908).

Zermelo’s criticism may have given an impression that it is an excessively mathematical criticism
without understanding the physical reality of the world, and that Boltzmann seems to have treated
it as such. However, as will be discussed later, this criticism seems to have seriously affected
Boltzmann and made him realize the true implication of the ergodic hypothesis.
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For this reason ensemble theory is applicable to a single macroscopic object.19 In the
actual experiment, it appears we do not need any statistics, but to perform thermo-
dynamic observations on a single macrosystem is in practice to take statistics over its
numerous subsystems. This seems to be the most natural interpretation of ensemble
theory.20

[T2] The fourth law of thermodynamicsqr (rto Lenard’s theorem)
The fourth law of thermodynamics may be stated as:
Thermodynamic observables are either homogeneous functions of degree one or degree
zero of the amount of materials in the system.
The name was coined and its significance was stressed by Landsberg.21 For homoge-
neous function see the next fine-lettered entry. Extensive quantities are the quantities
that double when the system size is doubled (while keeping the same thermodynamic
state). More precisely, a thermodynamic observable is an extensive quantity, if it is
proportional to the amount of materials in the system (if it is a homogeneous function
of degree 1 of the amount of materials). Examples are internal energy E, volume
V , magnetization M , etc. Intensive quantities are those independent of the amount
of materials in the system (homogeneous functions of degree zero of the amount of
materials). Examples are temperature T , pressure P , etc. In thermodynamics ex-
tensive and intensive quantities appear in pairs as T and S, −P and V , etc. These
pairs are called conjugate pairs.22 Since we must take the thermodynamic limit, all
the extensive quantities diverge and become meaningless, so, precisely speaking, we
must consider their densities. Thus, densities and intensive parameters (fields) are the
fundamental variables of thermodynamics. When two phases are in equilibrium, field
values must be identical, and difference in densities characterizes different phases.

Homogeneous functions
If a function of x1, x2, · · · , xn defined on an appropriate region23 of Rn (n-dimensional
real space) satisfies for any positive real number λ

f(λx1, λx2, · · · , λxn) = λαf(x1, x2, · · · , xn), (1.1.1)

f is called a homogeneous function of degree α, where α is a real number.
(1) If f is differentiable, then ∂f/∂xk for any k ∈ {1, 2, · · · , n} is a homogeneous

19That is, in the thermodynamic limit, if we use the terminologies explained later, a single
microscopic state of a macrosystem may be interpreted as a microcanonical ensemble.

20〈〈Khinchin and sum function〉〉r It was Khinchin who introduced the concept of sum func-
tions (multivariate functions that can be written as a sum of numerous functions with a few vari-
ables) and tried to mathematize the idea here. See A. Ya. Khinchin, Mathematical Foundations of
Statistical Mechanics translated by G. Gamov (Dover, New York, 1949).

21P. T. Landsberg, Thermodynamics with quantum statistical illustrations (Wiley, 1961).
22〈〈Conjugate pairs〉〉 They are conjugate pairs with respect to energy: dE = TdS − PdV +

hdM . We can conceive analogous pairs with respect to entropy: dS = (1/T )dE + (P/T )dV −
(h/T )dM , so when we mention a conjugate pair and when there is a possibility of confusion, we
must state explicitly with respect to what a conjugate pair is defined.

23This can be a cone whose apex is at the origin.
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function of degree α − 1.r This can be obtained easily by partially differentiating
(1.1.1).
(2) If f is differentiable, a necessary and sufficient condition for f to be a homogeneous
function of degree α is (Euler’s theorem for homogeneous functions)(q,rto ideal gas,
rto equipartition) ∑

k

xk
∂f

∂xk
= αf. (1.1.2)

Differentiating (1.1.1) with respect to λ and setting λ = 1, we obtain (1.1.2). To show
the converse we need a method to obtain the general solution of a quasilinear partially
differential equation (1.1.2).24 We first make the characteristic equation

dx1

x1
=
dx2

x2
= · · · = dxn

xn
=

df

αf
. (1.1.3)

Solving this for general solutions, we obtain

x2/x1 = constant, · · · , xn/x1 = constant, f/xα
1 = constant. (1.1.4)

Therefore, taking an arbitrary differentiable function h, the general solution to (1.1.2)
reads

f = xα
1h(x2/x1, · · · , xn/x1). (1.1.5)

This is obviously a homogeneous function of degree α.
The Gibbs relation reads, for example (the reader must know this relation at least

roughly25),
dE = TdS − PdV + hdM, (1.1.6)

where the variables are: E internal energy; T temperature; S entropy; P pressure; V
volume; h magnetic field; M magnetization.

E = E(S, V,M) (1.1.7)

is an extensive quantity = a homogeneous function of degree 1. Therefore, (1) above
implies that T , P and h are homogeneous functions of degree zero = intensive quan-
tities. (1.1.2) implies

E = TS − PV + hM. (1.1.8)

Combining this with (1.1.6), we obtain the Gibbs-Duhem relation:

SdT − V dP +Mdh = 0. (1.1.9)

Using the above relations, we can obtain the Gibbs relation for densities: e = E/V ,
s = S/V and m = M/V . From (1.1.8) we obtain e = Ts − P + hm. On the other

24As a standard reference see L. C. Evans, Partial Differential Equations (AMS 1998).
25If not, go to [T5] in Section 1.3 for a brief summary; an introductory material is placed in

Supplementary Pages.
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hand, from the Gibbs-Duhem relation sdT − dP +mdh = 0. Combining de and this,
we obtain

de = Tds+ hdm. (1.1.10)

We will encounter the generalized homogeneous function r in Chapter 5 discussing
critical phenomena. It is defined by the following formula instead of (1.1.1)

f(λα1x1, λ
α2x2, · · · , λαnxn) = λαf(x1, x2, · · · , xn), (1.1.11)

where αi (i = 1, · · · , n) and α are real. What is the counterpart of Euler’s theorem?

The explanation up to this point can only furnish an intuitive motivation for sta-
tistical mechanics, and is not sufficiently elaborate to found statistical mechanics on
it. In Sect. 1.3 a more formal introduction of statistical mechanics will be given.
The rest of this section is devoted to additional comments. Section 1.2 is a review
of rudiments of probability theory and the law of large numbers, because thermody-
namic observables can be understood as averages over numerous quantities (that are
fluctuating due to the finite size of subsystems).

A quantum mechanics aficionado will immediately object that such chopping up
mentioned above is not allowed because it destroys quantum mechanical coherence.
However, we are only using empirical facts,26 which tells us empirically that quantum
coherence is not a problem for thermodynamic observables. As empiricists, we must
pay due attention to the fact that quantum effects were not recognized by human
beings until very recent.

It should be clear by now that ‘ergodicity’ (read the next fine-lettered entry if the
reader feel not very familiar with the concept) has nothing to do with equilibrium
statistical mechanics. The traditional (legendary?) viewpoint that ergodicity is
crucial is chiefly due to Boltzmann’s followers (esp., Ehrenfest) who misunderstood

26〈〈Macroscopic quantum coherence〉〉 There are states with global quantum coherence such
as in superfluids. In this case the superfluid order may be considered just as magnetic order,
so when the system is chopped up or subsystems are joined, the direction of the order (phase)
must be respected. The crucial point is that this coherence can be macroscopically controlled (at
least in principle); with an appropriate boundary condition the coherence in a given subsystem
can be maintained, and when subsystems are joined, the global coherence can be reconstructed.
Almost tautologically, not macroscopically observable coherence [more precisely, the main topic of
A. J. Leggett, “Macroscopic Quantum Systems and the Quantum Theory of Measurement,” Prog.
Theor. Phys., Suppl. 69, 80 (1980)] does not matter thermodynamically. Such coherence can be
ignored.



24 CHAPTER 1. BASICS

the nature of statistical mechanics.27 It is still an entrenched view that the statistical
mechanical probability is given by the relative sojourn time in a set of microstates,
so let us have a critical discussion.

How long does it take to sample a “reasonable” portion of the collection of mi-
croscopic states allowed to a macrosystem, or how long does it take for the system
to itinerate those microstates? As we have already discussed, it must take eons to
sample even a millionth of the phase space.28 In short, no one can observe the system
long enough to substantiate Boltzmann’s conception of probability as the proportion
of sojourn time for a set of microstates. The important point here is that the ideal-
ized thermodynamic observation is an instantaneous observation and has nothing to
do with the dynamic behavior of the system during the observation. This implies,
as we have already concluded above, that the observation of (almost) any single mi-
crostate consistent with a macroscopic system in equilibrium is enough to study the
thermodynamics of the system. There is no room for ergodic theory.29 The prob-
lem of ergodicity became regarded fundamental simply because the founding fathers
completely misunderstood the origin of statistics.30

†Ergodicity
Let Ω be a space (e.g., the phase space) and Tt be a one-parameter family of maps
from Ω into itself (endomorphism) satisfying (i) TsTt = Ts+t and (ii) T0 = 1 (the

27For the original meaning of Boltzmann’s ergodic hypothesis see Jan von Plato, “Boltzmann’s
ergodic hypothesis,” Archive for History of Exact Sciences 42, 71 (1991).

28〈〈Short time correlation relevant?〉〉 There is an opinion that the correlation time of the
observed data are so short that observed data may be treated almost as independently and iden-
tically distributed samples. Consequently, almost instantaneously we can collect samples required
by the law of large numbers; the required time is independent of the system size. Therefore, the
criticism in the text is irrelevant or not serious. This argument sounds plausible, but we should not
forget that the microstates that may be sampled within a short time must lie locally closely to the
initial state. The shortness of the correlation time does not logically imply that observed quantities
agree globally everywhere in the state space. The other empirical fact that we can reproduce the
same result the next day implies that we can obtain the same observed results wherever we start
in the state space. That is, the crucial point is that all the microstates give the same observation
results, and the shortness of the correlation time is irrelevant.

29〈〈Boltzmann realized...〉〉 Boltzmann noted the discrepancy in time scales pointed out here,
and concluded that except for very rare states, all the microstates give the same thermodynamic
observables. That is, he reached the same conclusion as ours that is based on thermodynamics
and empirical arguments. However, Boltzmann’s crucial observation was not understood by his
successors, and was soon forgotten. G. Gallavotti, Statistical Mechanics: a short treatise (Springer,
1999) Chapter 1 explains Boltzmann’s original idea.

30Ergodic theory is an extremely important branch of mathematics, so the contribution of the
founding fathers of statistical mechanics to motivate the theory is significant. Even a total miscon-
ception could produce really deep results if taken seriously. The secret of Magellan was his sincere
belief in a wrong map (according to S. Zweik).
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identity map). The reader may understand that Tt(x) is the solution of a differential
equation at time t with the initial condition x at time t = 0. That is, Tt is a time
evolution operator. (Ω, Tt) is called a (continuous time) dynamical system.

We can imagine a probability measure m31 on Ω that is invariant under Tt (i.e.,
m(T−1

t (A)) = m(A) for any A ⊂ Ω for which m(A) is defined). T−1
t (A) is the

set of all the points that will visit A in t. Thus, m(T−1
t (A)) = m(A) implies that

the probability (estimated according to the weight m) for an event to occur that
guarantees the occurrence of A in t is equal to the probability (estimated according
to the weight m) that A actually occurs. The reader may understand such m (called
an invariant measure) as a steady state (a steady state distribution). There is always
at least one such measure for any dynamical system with a compact phase space
(Krylov-Bogoliubov’s theorem).

(Ω, Tt,m) is called a measure theoretical dynamical system. Notice that, generally
speaking, a dynamical system (Ω, Tt) has many (often uncountably many) invariant
measures, so there are many measure theoretical dynamical systems (Ω, Tt,m) for a
given dynamical system (Ω, Tt). Needless to say, the dynamical system does not have
any rule to choose a particular one of them.

(Ω, Tt,m) is called an ergodic dynamical system, if for any function f on Ω that
has an expectation value with respect to m the equality∫

Ω

dm(x)f(x) = lim
t→∞

1
t

∫ t

0

f((Ts(x0))ds (1.1.12)

holds for almost all x0 ∈ Ω with respect to m (agreement of the ensemble average and
the time average). The invariant measure m satisfying (1.1.12) is called an ergodic
measure.32

The reader must remember that ergodicity is not a property of the dynamical
system but of the measure theoretical dynamical system. Therefore, ergodicity of
a classical mechanical system does not make any sense until its invariant measure
is specified, even if Ω and the Hamiltonian are chosen. Usually, the phase volume
confined to a constant energy ‘shell’ is chosen as the invariant measure (thanks to
Liouville’s theorem; we will discuss this in Sect. 1.3). Ergodic theory never answers
the question why this invariant measure is the distribution underlying equilibrium
statistical mechanics, so even if the corresponding measure-theoretical dynamical sys-
tem is shown to be ergodic, the conclusion does not justify statistical mechanics. As
discussed in the main text, ergodicity is an irrelevant topic for equilibrium statistical
mechanics.

Finally, let us briefly reflect on what we mean by mechanics. Stated intuitively,
mechanics is a time evolution law that preserves microscopic information. We will

31An elementary introduction to measure can be found in Y. Oono, The Nonlinear World
(Springer 2012).

32A convenient introduction is P. Walters, Introduction to Ergodic Theory (Springer, 1982).
Elementary measure theory is a prerequisite. Most physics students will not be able to read the
book easily.
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later discuss how to quantify information (Sect. 2.4), but what ‘microscopic infor-
mation’ is is not often discussed in physics. Here, let us simply understand that it
is the information needed to single out a particular microstate, and an important
requirement for a mechanics is that it preserves this information. Honestly speak-
ing, it is very likely that we still do not know the true mechanics. The rule of the
game of statistical mechanics is to assume that all the microscopic constituents obey
a certain mechanics. How can we be sure that all molecules simultaneously obey
(some sort of) mechanics in a macroscopic system? No way. This is a metaphysical
assumption; metaphysical in the sense that there is no experimental means to check
this assertion.33

We need a certain metaphysical framework to understand the world34 just as we
need some coordinate system to describe a spatial curve in detail. However, just
as what is really there is invariant under the change of coordinate systems, what is
real must be invariant under changing metaphysics. Science must be metaphysics-
invariant. The implication of this requirement to statistical mechanics does not seem
to have been explored.

1.2 Law of large numbers

To understand the equilibrium state thermodynamically, we may regard a macro-
scopic object as a collection of numerous macroscopic objects which look the same
macroscopically up to fluctuation, and are statistically independent. That is, ther-
modynamic observables (densities and fields) may be understood as an average of nu-
merous independently and identically distributed (often abbreviated as iid) stochas-
tic variables (for terminologies and notations, see the review beginning on the next
page):

1

n

n∑
i=1

Xi, (1.2.1)

33A standard argument against this is that if we do not encounter any difficulty and can explain
all what we observe by assuming this ‘assumption,’ it should be regarded that the assumption has
been empirically verified. This sounds very sensible and plausible, but how can we be sure that
we have checked all the representative cases? History tells us that it is often the case that we see
(observe) only what we wish to see (observe).

34E. Schrödinger, Meine Leben, Meine Weltansicht (Paul Zsolnay Verlag, 1985).
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where Xi is the observable for the i-th subsystem. The key mathematics we need is
the law of large numbersr (rto fluctuation):

Let {Xi} be a collection of iid stochastic variables. For any ε > 0,

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑

k=1

Xk − E(X1)

∣∣∣∣∣ > ε

)
= 0 (1.2.2)

holds under the condition that the distribution of Xi is not too broad:
E(|X1|) <∞, where E(Y ) implies the expectation value of the stochastic
variable Y .

It is possible to say that this explains why repeated instantaneous thermodynamic
observations give exactly the same results again and again.

At this occasion let us review elementary probability theory.35 What is probability?
The probability of an event is a measure of the extent of our confidence in the
occurrence of the event in 0-1 scale. It behaves like the volume36 of a geometric
object. For example, when the reader draws a card from a stack of playing cards,
the certainty of it being a face card ought to be the sum of the certainty for it to be
a king and that to be a queen or a jack.

We model an event as a set. First, we consider a set Ω (called the whole event)
whose subsets can describe all the possible events under consideration. Its elements
are called elementary events,37 and any subset of Ω is an event. Put more plainly, a

35〈〈Measure theoretical probability〉〉 The subsequent introduction smoothly flows into the
axiomatic formulation of measure theoretical probability due to Kolmogorov. K. Itô, Introduc-
tion to Probability Theory (Cambridge UP, 1984) may be a good introduction. For those who
know rudiments of probability theory, R. Durrett, Probability: theory and examples (Wadsworth &
Brooks/Cole, 1991) is strongly recommended. It is a beautiful book.

36〈〈Importance of additivity〉〉Mathematically speaking, it behaves as a (σ-)additive measure.
The additivity is derived in R. T. Cox, “Probability, frequency and reasonable expectation,” Am. J.
Phys. 14, 1 (1946) with the aid of a very general axiomatic consideration about ‘reasonable expec-
tation.’ N. Chater, J. B. Tenenbaum and A. Yuille, “Probabilistic models of cognition: Conceptual
foundations,” Trends Cognitive Sci., 10, 287 (2006) contains relevant interesting discussions.

37〈〈Elementary events〉〉 Since events are subsets of Ω, not the elements of Ω but the singletons
(sets such as {a} consisting of a single element a ∈ Ω) should be called elementary events, but it
is customary to call elements also elementary events. The elementary event need not be an event
that we cannot analyze further, but can be an ‘equivalence class’ of events obtained when we ignore
certain aspects of events we are not interested in. For example, when we cast a dice, we usually
ignore where it lands or in which direction its particular face faces. That is, we classify all the
events into equivalence classes according to the numbers, and regard these equivalence classes as
elementary events. Needless to say, if the reader wishes to use the direction of the faces in a gamble,
she must set up elementary events differently.
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set Ω consisting of the totality of elementary events (the events we need not analyze
further) is constructed first. The set is called the whole event, any of whose subset
is called an event: we say an event occurs if an elementary event belonging to it
actually occurs.

The preceding paragraph may be illustrated with a dice as follows. The elementary
events are en = “n is rolled” (n = 1, 2, 3, 4, 5, or 6), and the whole event is Ω =
{e1, · · · , e6}. For examples, the event that a prime number is rolled is interpreted as
the subset {e2, e3, e5}, and the event that an even number is rolled corresponds to the
subset {e2, e4, e6}.

If two events A and B do not have any common element (A ∩ B = ∅), we say
they are mutually exclusive, and these events never occur simultaneously. Thus, it is
sensible to assert that if A ∩B = ∅,

P (A ∪B) = P (A) + P (B). (1.2.3)

This is additivity.38 The equality implies that probability is something like volume
or weight of an event (i.e., a set). Something (some elementary event) must happen.
Therefore,

P (Ω) = 1, (1.2.4)

and it is impossible for nothing to happen:

P (∅) = 0. (1.2.5)

This concludes the characterization of probability. That is, probability P is an
additive set function39 whose range is [0, 1]. P is often called a probability measure.

38〈〈σ-additivity〉〉 From (1.2.3) we can conclude that for any finite family of mutually exclusive
sets: {Ai}ni=1 (here, Ai ∩Aj = ∅ for any i, j ∈ {1, · · · , n})

P (∪n
i=1Ai) =

n∑
i=1

P (Ai).

However, we cannot generalize this to an infinite family. Therefore, in the standard axiomatic char-
acterization of probability, the extension of the above formula to n = ∞ is required (σ-additivity)
instead of (1.2.3).

39〈〈Set function〉〉 A set function on a set Ω is a function that assigns a number to a subset of
Ω. To be precise, we may not be able to assign a number to every subset of Ω, so we must specify
the family F of subsets in Ω to which we may define f . However, we will often omit this further
specification in this book.
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We say event A and event B are independent,40 if

P (A ∩B) = P (A)P (B). (1.2.6)

Independence implies that knowledge about event A’s occurrence or non-occurrence
yields no information about event B’s occurrence or non-occurrence and vice versa.
Do not confuse independence and mutual exclusiveness.

Suppose we know that an event A ⊂ Ω has occurred. How should we define the
conditional probability P (B|A) for the event that B occurs under the condition that
A occurs? Our confidence in simultaneous occurrence of A and B is P (A∩B). Since
we know about A, it is plausible that conditional probability should be defined by
scaling the probability so that P (A|A) is unity. Therefore, we define the conditional
probability of B under condition A as

P (B|A) =
P (A ∩B)

P (A)
. (1.2.7)

If A and B are statistically independent, note that P (B|A) = P (B). This is intu-
itively very sensible.41

†Interpretation of probability
There are two major camps as to the interpretation of probability: the frequentists and
the subjectivists.42 The former asserts, crudely put, that probability of a particular
event is the frequency of its occurrences relative to all the number of occurrences
of the possible events. The latter points out the difficulty in the interpretation of a
unique event (an event that occurs only once, e.g., today’s weather), and asserts that
some probabilities must be interpreted deductively rather than inductively contrary
to the frequentists.43

40Warning 〈〈Pairwise independence is not enough〉〉: Pairwise independence does not
imply multiple independence: even if A,B,C are three events that are pairwisely independent,
P (A∩B ∩C) = P (A)P (B)P (C) does not follow. For example, suppose we throw a fair coin twice,
Let A be the event that the first result is head, B the event that the second result is head, and C the
event that the first and the second results agree (both head or both tail). The event A∩B∩C implies
that head appears twice, so P (A ∩ B ∩ C) = 1/4, disagreeing with P (A)P (B)P (C). If we have
many events, to specify statistical independence of all the events, we must specify independence in
detail.

41According to a remark attributed to Mark Kac, probability theory is “Measure theory with a
Soul.”

42D. Gillis, Philosophical theories of probability (Routledge, 2000) has a summary. However, the
point of view advocated here is not discussed at all.

43Propensity interpretation by Popper, interpretation in terms of degree of confirmation by
Carnap, etc. See Gillis cited already. We may say that these are products of humanistic fallacy (=
fallacy common to the conventional humanities) that forgets our being living organisms.
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The characterization of probability in the text is as a measure of confidence, so the
reader might think that the author is on the subjectivist side. Despite characterizing
probability as a measure of confidence, he believes that this subjective measure must
agree at least approximately with our experiences. Measure of confidence must agree
with relative frequency with which the event occurs, when frequency interpretation
is possible. The author’s assertion is that probability is a measure of confidence
inductively (empirically) supported by relative frequency. ‘Non-frequentists’ forget an
important fact that our mental faculty is a product of evolution; our confidence may
not be tied to our own experience, but is tied to the result of our phylogenetic learning
= the totality of experiences by our ancestors during the past 4 billion years.44

It was Laplace who compiled classic probability theory (of Bernoulli, Fermat, de
Morgan and others).45 His basic idea was: the relative number of equally probable
elementary events in a given event is the probability of the event. Here, ‘equally
probable’ implies that there is no reason for any difference.46 This is exactly the same
as Boltzmann’s interpretation of probability. If we feel that there is no reason to
detect any difference between event A and event B, then we feel A and B are equally
likely. This feeling is often in accordance with our experience thanks to the evolution
process that has molded us. That is, our feeling and the ‘logic’ behind Laplace’s and
Boltzmann’s fundamental ideas have the basis supported by phylogenetic learning;
Probability is always (disguised) relative frequency, and the subjective interpretation
is a mere figment of the humanistic fallacy that ignores the fundamental fact that we
are living organisms.

The whole event Ω and a probability measure47 P on it define a probability space
(Ω, P ).48 A stochastic variabler X is a function defined on a probability space:

44〈〈Our innate statistics capability〉〉 Interestingly, it may well be that we have a mental
device to take statistics unconsciously. Not only us but as the following paper reviews a variety of
animals in different ecological contexts behave in manners consistent with predictions of Bayesian
updating models: T. J. Valone, “Are animals capable of Bayesian updating? An empirical review,”
Oikos, 112, 252 (2006). The following paper may also be related: P. J. Bayley, J. C. Frascino and
L. R. Squire, “Robust habit learning in the absence of awareness and independent of the medial
temporal lobe,” Nature 436, 550 (2005). A slow learning process with trial and error can occur
unconsciously.

45〈〈Laplace’s demon〉〉 The Laplace demon that can predict everything deterministically was
introduced to illustrate its absurdity and to promote probabilistic ideas in the introduction to his
Essai philosophique sur les probabilitès. [1814, this year Napoleon abdicated; Fraunhofer lines;
Berzelius introduced the modern chemical symbols now in use.]

46Warning 〈〈Ignorance and probability〉〉 Do not confuse this idea with the assignment of
equal probabilities due to ignorance (= if we do not know anything about events A and B, we set
P (A) = P (B)). The latter is a mere abuse of probability without any justification. Appreciate
that Laplace’s idea is diametrically different. He says that the same probabilities are assigned if no
difference can be found even after scrutiny.

47The reader can intuitively understand that it is a sort of volume.
48〈〈Probability space〉〉 Mathematically, we must also specify what events are allowed to have

probabilities. This is defined by specifying a family F of measurable subsets of Ω. Therefore,
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X = X(ω) (ω ∈ Ω) (its value may be a vector, a complex number, etc.).49 The
expectation value (mean or average) of a stochastic variable X is defined by50

E(X) =

∫
X(ω)dP (ω). (1.2.8)

The indicator χA of an event A is a function satisfying the following condi-
tions:

χA(ω) =

{
1, if ω ∈ A, that is, if event A occurs,
0, if ω 6∈ A, that is, if event A does not occur.

(1.2.9)

Its expectation value gives the probability of the event A:

P (A) = E(χA). (1.2.10)

Conditional expectation value may be defined analogously. Under the condition
that event A occurs, the conditional expectation value E(X|A) of X is defined
as

E(X|A) =
∑
ωi∈Ω

X(ωi)P (ωi|A) (1.2.11)

in terms of conditional probabilities.51 E(X|A) may be understood as a stochastic
variable dependent on A, so its average over A is meaningful. In particular,r if
Ai ∩ Aj = ∅ (i 6= j) and ∪iAi = Ω (i.e., {Ai} is a partition of Ω), then the average
over {Ai} of E(X |Ai) is the unconditional average:

E(E(X|Ai)) = E(X). (1.2.12)

mathematicians write the probability space as (Ω,F , P ). However, throughout this book it is
avoided to be conscious about the axiom of choice and the like.

49A stochastic variable is not simply defined as a function on Ω but that on the probability
space, because X as a function on Ω must be measurable with respect to P , but in this book we
will not mention such things.

50This integral is a Lebesgue-Stieltjes integral, but the reader can intuitively understand it just
as the usual Riemann integral as a sum of the product of the representative value X(ω) of X on the
infinitesimal set dω and the probability dP (w) ≡ P (dω) for the event dω to occur. If Ω is discrete,
the integral becomes the sum E(X) =

∑
iXiPi, where Xi is the value of X for event i and Pi is

the probability of this event.
51If the probability space is specified with a continuos parameter, we must define conditional

probability to the conditions with zero probability, so we need a much more careful definition of
conditional quantities. This book does not require such cases, so we do not discuss probability zero
conditions.
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This is an obvious equation, but is important in mean field theory (Sect. 5.8).

The variance of X is defined as

V (X) = E([X − E(X)]2) = E(X2)− E(X)2. (1.2.13)

Its square root σ(X) =
√
V (X) is called the standard deviation of X. For two

stochastic variables X and Y

C(X, Y ) = E([X − E(X)][Y − E(Y )]) = E(XY )− E(X)E(Y ) (1.2.14)

is called the correlation between X and Y , which shows up often when we wish to
study fluctuations (Sections 2.7 and 2.8).

Statistical independence of two stochastic variablesr X1 and X2 is defined by

E(f(X1)g(X2)) = E(f(X1))E(g(X2)) (1.2.15)

for any functions52 f and g of the stochastic variable. Think of the relation between
this independence and the independence of events above. The correlation between
X1 and X2 vanishes if they are statistically independent, but vanishing of correlations
does not imply independence of stochastic variables.

Now, we can demonstrate the (weak53) law of large numbers (1.2.2).54 First, let
us show this ‘honestly,’ and then ‘rederive’ it in a theoretical physicist’s fashion.

The key to an honest proof is Chebyshev’s inequality

a2P (|X − E(X)| ≥ a) ≤ V (X). (1.2.16)

This can be shown as follows (let us redefine X by shifting as X − E(X) to get rid
of E(X) from the calculation):

V (X) =

∫
X2dP (ω) ≥

∫
|X|≥a

X2dP (ω) ≥ a2

∫
|X|≥a

dP (ω) = a2P (|X| ≥ a).

(1.2.17)

52‘Any functions’ here means ‘any integrable functions.’ Such statements will not be explicitly
mentioned that are obvious to mathematicians but ‘nuisance’ to most physicists.

53As to the strong law of large numbers, see Supplementary Pages.
54In the following the assertion is proved under a stronger condition that V (X) is finite. To

prove the law under the condition E(|X1|) <∞ requires some tricks.
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We wish to apply Chebyshev’s inequality to the sample average (1/n)
∑
Xk. Its

expectation value is E(X1) (here X1 is used as a representative variable, but all the
variables give the identical result) and its variance is computed as

V

(
1

n

n∑
k=1

Xk

)
=

1

n2
V

(
n∑

k=1

Xk

)
=

1

n2

n∑
k=1

V (Xk) =
1

n
V (X1) (1.2.18)

thanks to the independence of each variable (see (1.2.15)). From this immediately
follows

P

(∣∣∣∣∣ 1n
n∑

k=1

Xk − E(X1)

∣∣∣∣∣ ≥ ε

)
≤ V (X1)

ε2n
. (1.2.19)

For our purpose n � 1010, so ε can be taken much smaller than 10−5. Thus, we
almost exclusively encounter the microstates that are extremely close to the average
behavior. If we adopt the intuitive understanding of the ensemble discussed in the
preceding section, the reproducibility of thermodynamic observables is due to the law
of large numbers. This is the significance of the law to statistical mechanics.

How to use Chebyshev’s inequality
(1.2.19) may be used as follows. Suppose we wish to estimate the empirical expectation
value within the error of 10−2. We tolerate larger errors if they occur only rarely, say,
less than once in 1000 such calculations. What n should we choose?55 Obviously, we
must require

V (X1)
10−4n

≤ 10−3 ⇒ n ≥ V (X1)107. (1.2.20)

If the variance is of order 1, we should use at least about 107 samples. In the context
of statistical mechanics this is nothing.
(1) [High dimensional numerical integration]q
Let us consider the problem of numerically evaluating a high-dimensional integral:

I =
∫ 1

0

dx1 · · ·
∫ 1

0

dx1000f(x1, · · · , x1000). (1.2.21)

If we wish to sample (only) two values for each variable, we need to evaluate the
function at 21000 ∼ 10300 points. Such sampling is of course impossible. This integral
can be interpreted as the average of f over the 1000 dimensional unit cube:

I =

∫ 1

0
dx1 · · ·

∫ 1

0
dx1000f(x1, · · · , x1000)∫ 1

0
dx1 · · ·

∫ 1

0
dx1000

(1.2.22)

55Here, ‘once’ means a single set of n consecutive observations or experiments to compute one
empirical expectation value. We do not wish to have more than one bad empirical expectation
value obtained in this manner out of one thousand empirical expectation values.
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Therefore, randomly sampling the points rk in the cube, we can obtain

I = lim
n→∞

1
n

n∑
k=1

f(rk). (1.2.23)

How many points should we sample to estimate the integral within 10−2 error, if we
allow larger errors at most once out of 1000 such calculations? We already know the
answer from (1.2.20): V (f(X1))107. The variance of the value of f is of order max |f |2,
if f is bounded, so we may scale it to be of order unity. Compare this number with
10300 above and appreciate the power of randomness.56 This is the principle of the
Monte Carlo integration. Notice that the computational cost does not depend on the
dimension of the integral.
(2) [Law of large numbers for empirical probability]
How many times should we throw a coin to check its fairness? The empirical proba-
bility for Head is given by NH/N , where N is the total number of trials and NH the
number of trials resulting in Head. The expectation value of NH/N is the probability
of Head pH . Let Xi be the indicator of the Head event for the i-th trial. Its expec-
tation value is also pH and NH =

∑
iXi. Let V (≤ 1/4) be its variance. Then, the

Chebyshev inequality implies

P (|NH/N − pH | ≥ ε) ≤
V

ε2N
. (1.2.24)

Therefore, the more unfair the easier to find the fact (express V in terms of pH), but,
for example, 10% unfairness is not very easy to detect.

Next, let us compute the density distribution function (for the terminology, see the
fine-lettered entry below (1.2.28)) fn of the n sample average by a formal calculation
with the aid of a generating function techniqueq (can the reader tell where the
following proof is incomplete?):

fn(x) = E

[
δ

(
1

n

n∑
i=1

Xi − x

)]
. (1.2.25)

Its characteristic functionq gn(ξ)57 may be given by

gn(ξ) ≡
∫
dx eiξxfn(x) = E

(
n∏

i=1

eiξXi/n

)
= E(eiξX1/n)n. (1.2.26)

56〈〈Constructive role of randomness〉〉 Read the article by N. Williams, “Mendel’s demon”
in Current Biology 11, R80-R81 (2001) and discuss the positive meaning of randomness. This is
a preview of M. Ridley, The Cooperative Gene, How Mendel’s Demon explains the evolution of
complex beings (The Free Press, 2001).

57We freely exchange the order of integrations. All of them can be justified a la Fubini (sometimes
with some additional technical conditions).
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Notice that Xi are independent. Let us write the characteristic function of X1 as
ω(ξ). Then, we have

gn(ξ) = ω(ξ/n)n. (1.2.27)

For very large n, the variable in ω is very close to zero for any fixed ξ. Since the
distribution has a finite mean m and variance, ω must be twice differentiable.58 We
may write ω(ξ/n) = 1+imξ/n+O(1/n2). Putting this into (1.2.27), we obtain

lim
n→∞

gn(ξ) = eimξ. (1.2.28)

This implies that the density distribution of (1/n)
∑
Xi (weakly59) converges to

δ(x−m). This is exactly what the reader should have expected.60

Distribution function and density distribution function
Let X(ω) be a real stochastic variable. The probability F (x) for X ≤ x is called the
distribution function of X:

F (x) = P ({ω |X(ω) ≤ x, ω ∈ Ω}) . (1.2.29)

Here, the indicator of X ≤ x may be written in terms of the unit step function Θ61

as Θ(x−X(ω)), so we have

F (x) = 〈Θ(x−X(ω))〉. (1.2.30)

58〈〈Bochner’s theorem〉〉 If the distribution has the m-th moment, then its characteristic func-
tion is m-times differentiable. A characterization of the characteristic function is given by Bochner’s
theorem, which is worth memorizing:
Theorem [Bochner] A necessary and sufficient condition for g(ω) to be the characteristic function
of a distribution is:
(i) g(0) = 1.
(ii) g is continuous.
(iii) Positive definite: let us choose an arbitrary positive integer p, arbitrary reals xi and arbitrary
complex numbers, αi (i = 1, · · · , n). Then,∑

i,j

αiαjg(xi − xj) > 0.

59Weak convergence fn → f means
∫
fnϕdx →

∫
fϕ dx for ‘any’ ϕ taken from an appropriate

function set. In the present case we may take the set of smooth functions with bounded support,
that is, the functions that vanish outside some interval.

60The ‘proof’ of the law of large numbers above is not rigorous, because the integration range
of (1.2.26) is usually not finite. The reason why the above argument is often justifiable is that in
many cases the contribution of fn for large |x| is small.

61

Θ(x) =
{

1, for x ≥ 0,
0, for x < 0.
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The derivative f(x) of F is called the density distribution function of X. Physicists
often call this the distribution function.62 Since the derivative of the unit step function
is the delta function δ(x), we can write

f(x) = 〈δ(x−X(ω))〉. (1.2.31)

This was our starting point.

†Kolmogorov’s 0-1 law
Ideally, a macroscopic system (or an ensemble) contains infinitely many statistically
independent subsystems. If an observation result of the ensemble is not affected by a
finite number of samples, then the probability that observation result becomes equal
to a particular value c is 0 or 1. This is Kolmogorov’s 0-1 law. This is more basic than
the law of large numbers.63 In the present context, this guarantees the reproducibility
of the thermodynamic observable values without error.

For example, for an iid stochastic variable sequence {Xi}∞i=1 let us consider an
empirical expectation value

1
n

(X1 + · · ·+Xn). (1.2.32)

If this converges, the result does not depend on a finite number m of observables
Xi1 , · · · , Xim , so the event that the empirical expectation value converges to c in the
n→∞ limit occurs with probability 0 or 1 for any c. That is, if the expectation value
exists, then it is definite (also if it diverges, its divergence is definite).

The law of large numbers and its refinements are the pillars supporting statistical
mechanics.r One refinement is the central limit theorem which is closely related to
renormalization group theory that we will discuss in Chapter 5. Another refinement is
large deviation theory (LD theory) which is related to the thermodynamic fluctuation
theory (Sect. 2.7, 2.8).

When we obtain the law of large numbers, we divide the empirical sum
∑n

i=1Xi

with n (we assume Xi to be iid stochastic variables as above). Consequently, we
cannot detect deviations of this sum from its representative behavior. However,
without this division the sum diverges and cannot tell us anything useful. Can we
make a quantity that obeys a distribution that does not spread all over nor shrink
to a δ-function by dividing the empirical sum with some factor that is smaller than
n but still increasing with n? This is the basic motivation for the central limit
theorem. As can be seen from Chebyshev’s inequality, the spread of the empirical
sum is O[

√
n]. Therefore, let us divide the empirical sum with

√
n instead of n. Let

62Therefore, to distinguish it from the more standard usage of the terminology F is sometimes
called the cumulative distribution function.

63For more details, see Section 1.7 of R. Durrett, Probability: theory and examples (Wadsworth
& Brooks/Cole, 1991).
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us compute the characteristic function of

Yn =
1√
n

n∑
i=1

Xi. (1.2.33)

For simplicity, we assume that the expectation value of Xi is zero, and its variance is
unity. Furthermore, we assume that E(|X1|3) < ∞. The characteristic function gn

of the density distribution function fn(y) of Yn may be obtained by mimicking the
‘theoretical physics proof’ of the law of large numbers as

gn(ξ) = ω(ξ/
√
n)n. (1.2.34)

Since we have assumed that the third moment of Xi exists, ω is three times differ-
entiable, so we may write

ω(ξ/
√
n) = 1− ξ2/2n+O(1/n3/2). (1.2.35)

Therefore, we obtain
lim

n→∞
gn(ξ) = e−ξ2/2, (1.2.36)

which is the characteristic function of a Gaussian distribution with average 0 and
variance 1. Thus, in the general case of Xi with expectation m and variance V ,
asymptotically in the n→∞ limit

P

(
1√
nV

n∑
i=1

(Xi −m) ≤ y

)
→
∫ y

−∞

1√
2π
e−x2/2dx (1.2.37)

holds, which is called the central limit theorem.64 This central limit theorem shows
us small fluctuations that cannot be detected if we normalize the observables with
the system size.

If the variables are not iid, but strongly correlated with each other, what happens
to the central limit theorem? We will learn in Chapter 5 that renormalization group
theory is a theory attempting to answer this question. The central limit theorem
does not appear in elementary statistical mechanics except for the problems such as
the following.

Elementary application of central limit theoremq
1 mole of argon gas is in a cubic box of volume 20 liters. This cube is halved with

64〈〈Central limit theorem references〉〉 The bible of the central limit theorem is W. Feller,
An Introduction to Probability Theory and Its Applications, vol. II (Wiley, 1971) Chapters III and
XVII. Chapter 2 of R. Durrett, Probability: theory and examples (Wadsworth & Brooks/Cole, 1991)
may be more accessible.
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a membrane. What is the probability P for one half of the cube to have 2 × 10−3%
atoms more than the other or more? Estimate the order of log10 P . We assume that
atoms are classical distinguishable particles.

Let Xi be a stochastic variable such that it is 1 if the i-th particle is in the right
half, and 0, otherwise. Its mean is 1/2 and the variance is 1/4. The event whose
probability we wish to know is characterized by

NA∑
i=1

(Xi − 1/2) ≥ 10−5 × N

2
. (1.2.38)

In this question NA is equal to the Avogadro constant NA = 6.02× 1023.

P = P

(
NA∑
i=1

(Xi − 1/2) ≥ 10−5NA

2

)
= P

(
1√
NA/4

NA∑
i=1

(Xi − 1/2) ≥ 10−5
√
NA

)
.

(1.2.39)
Its right hand side may be estimated approximately with the aid of the central limit
theorem. Let us write ε = 10−5

√
NA. Then,

P =
1√
2π

∫ ∞
ε

e−x2/2dx = − 1√
2π

∫ ∞
ε

1
x

d

dx
e−x2/2dx ' 1√

2πε
e−ε2/2. (1.2.40)

That is,

P (2× 10−3% imbalance) ∼ 1√
2πNA

105e−NA×10−10/2. (1.2.41)

As can be seen from log10 P ∼ −1.3× 1013, the probability is overwhelmingly small.
(However, this estimate is very crude, we should not be surprised that the answer is
inaccurate by one or 2 orders.) ut

The law of large numbers tells us that for any ε > 0 P (|
∑
Xi/n − E(X)| > ε)

decays to zero as n → ∞.r One possible refinement is to characterize this decay
rate. Generally, this decay is exponential. We ask a bit more precise question: How
does

P

(
1

n

∑
Xi ∼ y

)
(1.2.42)

decay (if it decays at all) as n is increased, where ∼ y roughly means that the value is
in the small range around y? It is known that if {Xi} are not very strongly dependent
on each other and not too broadly distributed, then there is a function I(y) called
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the rate function or large deviation function such that65

P

(
1

n

∑
Xi ∼ y

)
≈ e−nI(y). (1.2.43)

Here, ≈ means that the logarithmic ratio of both sides is asymptotically unity. The
rate functionr is a nonnegative convex function with unique zero: I(E(X)) = 0.66

That is, I(y) > 0 unless y = E(X). Thus, this gives us a variational principle for
the observable value: “I(y) is minimized at y = E(X).” Often we can expect close
relations between variational principles and the law of large numbers. In our context
this variational principle is actually the Gibbs variational principle and the large
deviation theory is the thermodynamic fluctuation theory that we will study in Sect.
2.7 and 2.8.

1.3 Setting up statistical mechanics

In Section 1.1 we considered the relation between statistics and macroscopic observables, and con-
cluded that if we wish to have only equilibrium thermodynamics, we may regard a macrosystem
under study as a collection of statistically independent macroscopic subsystems. Thus, we reached
a fundamental idea that thermodynamic quantities can be collected by averaging observables over
all the microstates allowed to the macroscopic subsystems. However, this is only heuristics; no one
has been able to justify the idea really mathematically, so we construct statistical mechanics on
some basic principles.

The reader can start to read this book from this section.r

The aim of statistical mechanics is to relate microstates of a system described by
mechanics and macrostates described by thermodynamics. To this end we need a
correspondence (or translation) between mechanical observables and thermodynamic

65〈〈Large deviation references〉〉 There seems to be no introductory textbook kind enough to
physics students. If the reader wishes to have an intuitive feeling, the introduction and Appendix
to Y. Oono, “Large deviation and statistical physics,” Prog. Theor. Phys., Suppl. 99, 165-205
(1989) may be of some use. J.-D. Deuschel and D. W. Stroock, Large Deviation (Academic Press,
2000) is a standard textbook. See also H. Touchette, “The large deviation approach to statistical
mechanics,” Phys. Rep. 478, 1-69 (2009).

66Some technical conditions are also assumed for I.
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observables. Also we must know the statistics of microstates consistent with a given
macrostate. That is, we need a translation rule and a statistical principle.

A macrostate is a state uniquely specified by equilibrium thermodynamics. It
is specified by internal energy and a few work coordinates, that is, by a set of the
thermodynamic coordinatesr of the system (it is reviewed below with fine letters).67

A microstate is a state regarded as elementary by (classical or quantum) mechanics.
That is, classically, a microstate is a point in the phase space. Quantum mechani-
cally, a microstate is a one-dimensional subspace of the vector space of all the allowed
states. However, a microstate in this sense can be an extremely strange state such
as a superposition of energy eigenstates with quite disparate energies. Therefore, in
this book, quantum mechanically, only the eigenstates of the Hamiltonian describing
the system are regarded microstates.

Statistical mechanics assumes that there are many microstates that are consis-
tent with a macrostate. The first step to formulate statistical mechanics must be
to specify the set of microstates consistent with a given macrostate. To this end
we must describe the thermodynamic coordinates in terms of mechanical observ-
ables. Since thermodynamic quantities and mechanical quantities are not the same,
we need a translation or correspondence between them. To identify mechanical en-
ergy and thermodynamic internal energy should be without any controversy.68 Work
coordinates are such as volume and magnetization and are with mechanically clear
meanings and are microscopically unambiguous, so the correspondence of work co-
ordinates and corresponding microscopic mechanical observables should be without

67〈〈Significance of thermodynamic coordinates〉〉 (rto [T5], rto Sect. 2.6) The vital impor-
tance of thermodynamic coordinates must be emphasized here. The following two points are crucial
if one wishes to understand thermodynamics:
1) Thermodynamic coordinates consist of internal energy E and work coordinates {Xi} that are
described in terms of (macroscopic) mechanics and electromagnetism;
2) A macrostate is an equivalence class of macroscopic states sharing the same thermodynamic
coordinate values.

A macroscopic state of macroscopic object cannot be specified by the thermodynamic coordi-
nates alone, because there are many other macroscopically observable properties such as locations,
colors, etc. of the systems. Thus, precisely speaking, a macrostate in thermodynamics (a thermody-
namic state) is an equivalence class of equilibrium states according to the thermodynamic coordinate
values (disregarding other macroscopic features). To describe entropy S as a function of thermody-
namic coordinates implies to give the most detailed description of a macrostate possible within the
framework of thermodynamics. Therefore, if statistical mechanics determines a functional relation
S = S(E, {Xi}), it implies that statistical mechanics perfectly reproduces thermodynamics.

68It is stated ‘without controversy’ here, but this was not as obvious as we believe now. B.
Widom writes as follows: “Is that obvious? If it now seems obvious it is only because we have given
the same name, energy, to both the thermodynamic and the mechanical quantities, but historically
they came to be called by the same name only after much experimentation and speculation led
to the realization that they are the same thing.” (B. Widom, Statistical Mechanics, a concise
introduction for chemists (Cambridge UP, 2002))
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any problem. Consequently, the set of microstates ω(E, {Xi}) (henceforth, the set of
needed work coordinates will be denoted collectively as {Xi}) corresponding to (con-
sistent with) the thermodynamic state (macrostate) specified by the thermodynamic
coordinates (E, {Xi}) is classical-mechanically defined as the subset of the phase
space for which the mechanical energy agrees with E and the work coordinates (col-
lectively denoted) with {Xi}. Quantum-mechanically, ω(E, {Xi}) is a vector space
spanned by the eigenkets | 〉 belonging to the eigenvalue E of the system Hamiltonian

that satisfy 〈 |X̂i| 〉 = Xi, where X̂i is the operator (observable) corresponding to
the work coordinate Xi.

Here, since observable values are always inevitably with some error, the corre-
spondences must allow certain ‘leeway,’ that is, the agreements between the micro-
scopic values and the corresponding macroscopic values are allowed to have certain
(small) errors. Therefore, precisely speaking, ω(E, {Xi}) is defined as the total-
ity of microstates specified by the thermodynamic coordinates (E ′, {X ′i}) satisfying
E − δE < E ′ ≤ E, X1 − δX1 < X ′1 ≤ X1, etc.

[T3] “Thermally Isolated system” and internal energyr
In the text above, we have assumed that the system is isolated for simplicity. In this
case, the system mechanical energy is the internal energy of the system. However,
as already noted, many thermodynamic states cannot be realized in strictly isolated
systems as exemplified by a non-zero magnetization state of a ferromagnet above its
critical temperature. Imposing a conjugate field of a work coordinate is a mechanical
operation. Let us call an isolated system with imposed conjugate fields a thermally
isolated system.69

A system isolated thermally can be described by a Hamiltonian of the following
structure:r

H = H0 − hiX̂i. (1.3.1)

where H0 is the Hamiltonian of the system in isolation, X̂i is the operator correspond-
ing to the work coordinate Xi, and hi is its conjugate field.

Thermodynamically, since the system is imposed the conjugate field hi the natural
thermodynamic potential is η = E − hiXi, which corresponds to enthalpy. That is,
the expectation value of H is not the internal energy but the (generalized) enthalpy.
However, since the expectation value of X̂i is the work coordinate, the internal energy
of the microstate is obtainable as E = 〈|H|〉+hi〈|X̂i|〉. Thus, even in thermal isolation
under the influence of conjugate fields the thermodynamic coordinate values of each
microstate is definite.

69Thermal isolation is not the same as adiabaticity. In thermodynamics, an adiabatic process is
a process without any net heat exchange; for example a system attached to a heat bath but if there
is no exchange of heat between the system and the bath, any process in the system is an adiabatic
process. Notice that the system cannot be described as a pure mechanical system. In contrast,
under thermal isolation the system is described as a purely mechanical system.

Incidentally, the word ‘adiabatic’ also appears in quantum mechanics. It means a very slow
process without causing any level crossing. In this book this process is called quantum-mechanical
adiabatic process.
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Notice that the internal energy is the expectation value of H0, but it is not neces-
sarily its eigenvalue; we may interpret hiX̂i as the potential energy of the system in
the external field hi, but we should not forget that this field modifies the system itself
microscopically.

[T4] Simple systems and composite systemsr
In thermodynamics, it is not rare that we must handle a system that may be un-
derstood as an interacting collection of simpler systems (subsystems) such as a box
divided by a movable wall (piston). In such a system, even if the system is made of a
single substance, it is only piecewisely uniform and some of fields (intensive variables)
assume different values in different subsystems. Since statistical mechanics should
reproduce thermodynamics, such composite systems must also be taken care of by
statistical mechanics. However, a wise way to utilize statistical mechanics is to leave
what thermodynamics can do to thermodynamics. Thus, in this book, we consider
only the statistical mechanics of simple systems. A clearer statement follows.

A simple system is a system that exhibits no spatial inhomogeneity in equilib-
rium due to some constraints not intrinsic to the system (say, by walls or by external
fields). In other words, a system is called a simple system which never exhibits any
spatial nonuniform of intensive variables (fields) in equilibrium. Spatial nonunifor-
mity due to phase coexistence may occur in a simple system. In this book we discuss
only the statistical mechanics of simple systems,70 and composite systems are left to
thermodynamic considerations.

[T5] The first and the second law of thermodynamics71r
Here, we confine our discussion to a closed system that does not exchange matter
with its environment. Furthermore, we do not consider chemical reactions. We will
return to these topics in Sect. 2.9 devoted to elementary chemical reactions. In the
following the term ‘adiabatic’ may be understood naively for the time being, but see
the footnote 77.

The first law of thermodynamics tells us:
(i) The equilibrium state of an isolated system is uniquely specified by a
set of extensive variables including internal energyr: (E, {Xi}).72,73 Here,

70However, systems under uniform gravity or uniformly rotating systems may be considered
occasionally.

71Systematic exposition such as the proof of the existence of entropy is not given here. It is
explained in an introductory material posted in the Supplementary Pages.

72〈〈Thermodynamic state〉〉 In the text, it is written, following the traditional explanation,
that in equilibrium the description of a macrosystem becomes simple in terms of a few thermo-
dynamic variables. However, as already noted in footnote 67, even in equilibrium, a macroscopic
system cannot be described completely macroscopically in terms of thermodynamic variables alone.
Thermodynamics does not actually claim that in equilibrium a macroscopic system can be described
in terms of the thermodynamic coordinates alone. What thermodynamics asserts is that if we in-
troduce an equivalence class of equilibrium states with respect to the thermodynamic coordinates,
then a complete theoretical system (called thermodynamics) is possible for the set of these states.
These equivalence classes are called (equilibrium) thermodynamic states.

73〈〈Thermodynamic space〉〉 The space spanned by the thermodynamic coordinates is called
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Xi are chosen to be work coordinates that are described by mechanics
(including electrodynamics).
(ii) There is a process74 called a quasistatic reversible adiabatic process
such that dE =

∑
i fidXi, where fidXi is the work done to the system

when the work coordinate Xi is changed infinitesimally and fi must be a
function of (E, {Xi}).75

Whether (E, {Xi}) gives a respectable thermodynamic description of a system under
study or not depends also on whether the second law of thermodynamics holds or
not when all the thermodynamic states are described in these variables only.76 The
second law of thermodynamicsr is formulated as follows:

(i)q For a given macroscopic system, if we choose two equilibrium states
specified by energy and work coordinates, there is an adiabatic process at
least from one state to the other.
(ii) (Planck’s principle) When work coordinates are changed adiabatically,
if all of them agree before and after the change, the internal energy of the
system cannot decrease.
Here, ‘adiabatically’ implies that changes are only through mechanical
(including electromagnetic) means (i.e., modifying the work coordinates

the thermodynamic space. Not all the points in this space need be actually realized, but the
totality of realizable macrostates make a connected region in this space. It is assumed that the
space is equipped with a common sense topology (= the concept of the closeness of points). The
thermodynamic space of a composite system is a direct product of thermodynamic spaces for simple
systems from which the composite system is made.

74〈〈Thermodynamic processes〉〉 A process is a way the states change. Definitions of various
thermodynamic processes are different from book to book, so the definitions we adopt are summa-
rized here.

If all the states of the system along a process are infinitesimally close to equilibrium (that is, the
process can be described as a path in the system thermodynamic space), it is called a quasiequi-
librium process. Thermodynamics may be used to calculate the changes of the system along this
process. However, the process need not be reversible.

If it is possible to change the final state of a process to its initial state without any trace ‘in
the world’ of the whole round trip, the process is called a reversible process. Here, ‘any trace ‘in
the world’ ’ is a vague statement, but its meaning is that any external systems interacting with the
system during the process energetically (and materially) appreciably must return to their states
macroscopically indistinguishable from their original states. If any infinitesimal portion of a process
is reversible, the process is called a retraceable process. This is often informally called a reversible
process; this abuse of the terminology seems benign, so this book adopts this abuse.

75〈〈Importance of being quasiequilibrium〉〉 Irrespective of the process being quasiequilib-
rium or not, if the change is infinitesimal, there must be such a differential form. Why do we have
to require the change to be quasiequilibrium? Because, otherwise, fi cannot be described uniquely
in terms of thermodynamic coordinates. If change is rapid, for example, the gas pressure (which
may often be mechanically definable even out of equilibrium) cannot be determined by the energy
and the volume of the gas.

76If we wish to construct thermodynamics axiomatically, variables E, {Xi} are primitive concepts
without any definition.
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alone). It is not the sense appearing in the adiabatic theorem in mechan-
ics.77

From these and precise formulation of the zeroth and the fourth laws the existence of
entropy S is proved.78 In particular, it can be proved that ω = dE −

∑
i xidXi has

the absolute temperature as its integrating factor, and ω = TdS.
In a quasistatic reversible process, the Gibbs relationr

dE = TdS +
∑

i

xidXi (= TdS − PdV + xdX + · · ·) (1.3.2)

holds. Here, P is pressure, V is volume, and x,X denotes the generic conjugate
thermodynamic variable pair (if the amount of matter N may be varied, µdN is added,
where µ is chemical potential; this will be discussed in [T10]). From the statistical
mechanics point of view, the Gibbs relation is more convenient in the following form
regarding entropy as the basic quantity:

dS =
1
T
dE +

P

T
dV − x

T
dX + · · · . (1.3.3)

What the fundamental laws assert is that entropy never decreases in an adiabatic
process. If the system energy is changed only by modifying the work coordinates,
entropy can never be decreased. Therefore, if starting from an equilibrium state,
a system reaches another equilibrium state through varying work coordinates only,
generally the system entropy increases. This is the principle of entropy increase in
thermodynamics. However, this does not mean that entropy increases along the pro-
cess as a function of time. Thermodynamic entropy is defined only for equilibrium
states.

77〈〈Adiabatic process〉〉r It is not very easy to clearly specify what the adiabatic process is
when we do not clearly know what ‘heat’ is. According to the common sense, ‘it is a process
realized in a Dewar jar,’ but what is required is the absence of heat exchange; a system can be
thermodynamically adiabatic, even if it is in contact with a heat bath. Suppose a system can be
changed from a state A to state B under isolation solely with the mechanical changes of work co-
ordinates. If we remove the isolation condition and can still bring the state A to B by exactly the
same mechanical changes of work coordinates, the process is called an adiabatic process. rUsing
thus defined adiabatic process, we can define heat unambiguously. After defining heat precisely, we
can generalize the definition of the adiabatic processr as a process that does not have any net heat
exchange with the environment.

Incidentally, as to quantum mechanical adiabatic process see T. Kato, “On the adiabatic the-
orem of quantum mechanics,” J. Phys. Soc. Jpn., 5, 435 (1950). The paper contains an ultimate
form of the adiabatic theorem. Quantum-mechanical adiabatic process is a thermodynamic adia-
batic process, but the converse is totally false.

78〈〈If the reader is serious about thermodynamics〉〉 The discussion here is not very rig-
orous, so those who are interested in precise formulation of thermodynamics, read E. H. Lieb and
J. Yngvason, “The physics and mathematics of the second law of thermodynamics,” Phys. Rep.,
310, 1-96 (1999). A good introductory summary by the same authors may be found in Notices
Am. Math. Soc. 45, 571 (1998).



1.3. SETTING UP STATISTICAL MECHANICS 45

In the usual textbooks of statistical mechanics, statistical mechanics is completed
by imposing a statistical law (the principle of equal probability) on the set ω(E, {Xi})
of microstates consistent with a macrostate (E, {Xi}). Actually, however, if we have
a complete set of the correspondence rules that provide the translation of thermo-
dynamic variables in terms of mechanically meaningful quantities, the fundamental
purpose of statistical mechanics, i.e., deriving thermodynamics from the microscopic
description of the system, is fulfilled. The first part of the correspondence rule is,
as stated already, about the quantities whose natural interpretation in terms of me-
chanics is without controversy. The correspondence rule is not complete with this
part only, because thermodynamics discusses thermal quantities as well. Therefore,
as the thermal part of the correspondence rule, we adopt Boltzmann’s principle. If
the microscopic dynamics is quantum mechanics, the principle reads:

Suppose a(n isolated) macrosystem is in a thermodynamic state specified
by the thermodynamic coordinates (E, {Xi}). Let w(E, {Xi}) be the
number of microstates realized in this macrosystem with internal energy
E and work coordinates {Xi}. Then, the entropy of this macrostate is
given by

S = kB log w(E, {Xi}), (1.3.4)

where kB is Boltzmann’s constant: kB = 1.3806503× 10−23 J/K.

When Boltzmann proposed this translation rule in 1877, there was no quantum
mechanics. If the microscopic dynamics is classical, the above rule reads:

Suppose a(n isolated) macrosystem is in a thermodynamic state specified
by the thermodynamic coordinates (E, {Xi}). Let w̃(E, {Xi}) be the
phase volume of the set of microstates realized in this macrosystem with
internal energy E and work coordinates {Xi}.79 Then the entropy of this
macrostate is given by

S = kB log w̃(E, {Xi}). (1.3.5)

Thus, entropy as a function on the thermodynamic space is given solely in terms of
mechanically meaningful quantities (quantities definable within mechanics).

Let us summarize the value of the Boltzmann constant kB.80

kB = 1.3806503× 10−23 J/K

79As we will see later, w̃ is not the phase volume itself, but with a prefactor to make clas-
sical mechanics-quantum mechanics correspondence quantitative and with a combinatorial factor
to resolve the Gibbs paradox (see Sect. 1.4 (3)). As we will learn soon from the explanation of
Boltzmann’s original paper, the original proposal did not have such factors.

8010pN is a typical force felt or exerted by molecular machines; a few nm is a typical displacement
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= 1.3806503× 10−2 pN · nm/K

= 8.617343× 10−5 eV/K.

The gas constant R is defined by

R ≡ NAkB = 8.314462 J/mol ·K = 1.986 cal/mol ·K. (1.3.6)

Here, NA = 6.02214078(18)× 1023/mol81 is Avogadro’s constant and 1 cal = 4.18605
J. How can we experimentally determine kB? Can we do it with equilibrium obser-
vations only?

It is convenient to remember that at room temperature (300 K):82

kBT = 4.14 pN · nm

= 0.026 eV,

RT = 0.6 kcal/mol.

If entropy S is determined as S = f(w) solely by the number w of microstates
consistent with a macrostate, S must have the form of (1.3.4). Let us divide the
macroscopic system into two macroscopic subsystems, 1 and 2. If Si is the entropy
of subsystem i, then thermodynamics (the fourth law) tells us

S = S1 + S2. (1.3.7)

On the other hand, these two subsystems may be assumed to be statistically inde-
pendent without contradicting thermodynamics (thanks to the zeroth law), so if wi

is the number of microstates consistent with the macrostate of subsystem i, then
w = w1w2. (1.3.7) reads

S = f(w) = f(w1w2) = S1 + S2 = f(w1) + f(w2). (1.3.8)

of molecular motors. Cf., the diameter of DNA is 2 nm (its pitch is 3.4 nm); the α-helix pitch is
3.6 amino acid residues = 0.54 nm. To ionize an atom, a few electron volts are needed, so, if T
is the room temperature (300 K), it is about 100 kBT . Note that even on the surface of the sun
(with the temperature corresponding to the black body radiation of 6000 K), hydrogen atoms are
not significantly ionized.

81〈〈Definition of the Avogadro constant〉〉 This is defined as the number of atoms in a 0.012
kg of 12C. The Avogadro constant value is due to B. Andreas et al., “Determination of the Avogadro
constant by counting the atoms in a 28Si crystal,” Phys. Rev. Lett., 106, 030801 (2011).

82Under physiological condition, hydrolysis of a single ATP molecule provides about 20kBT .
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Let us assume that f is a monotone function of w. Then, S must be proportional to
the logarithm of w:

S = kB logw. (1.3.9)

Thus, the reader might have thought Boltzmann’s principle is almost trivial, but
the core of Boltzmann’s real insight is that S is determined by the number of the
microstates consistent to the macrostate.

Cauchy’s functional equation f(x + y) = f(x) + f(y) (∀x, y ∈ R)q
This relation immediately tells us that for any positive integer n

f(nx) = nf(x). (1.3.10)

Therefore, if m is a positive integer,

mf(1/m) = f(1). (1.3.11)

Combining the above two relations, we obtain

f(n/m) = (n/m)f(1). (1.3.12)

f(−n/m) = (n/m)f(−1) can also be obtained. Since f(−1) + f(1) = f(0) = 0, we
conclude that f(x) = cx if x is rational for some constant c. To relate the values at
rational x and irrational x, we need extra conditions. If we require continuity, we can
conclude that f(x) ∝ x for any real number x. The requirement of monotonicity also
implies the same conclusion.

Even though we say ‘statistical’ mechanics, in the above we never encountered
probability nor statistics. Then, in conventional introduction of statistical mechanics
why does a statistical principle called the “principle of equal probability” come to
the foreground instead of the correspondence rules? To seek an answer, let us review
how Boltzmann reached his correspondence (1.3.5).

How did Boltzmann reach his principle? (and its answer)
Let us taste the original paper.83 Main steps are stated as questions and answers to
them. Let us consider a gas consisting of N particles in a container with volume V .
Let wn be the number of particles with the (one-particle) energy between (n − 1)ε
and nε (ε > 0). Thus, the set {wn} specifies a collection of microstates of the system
with wn particles in the one particle energy bin with the energy in ((n− 1)ε, nε].
(1) Show that maximizing the number of ways (‘Komplexionszahl’) to realize a collec-
tion of microstates (‘Komplexion’) specified by {wn} is equivalent to the minimization
condition for

M =
∑

wn logwn. (1.3.13)

83L. Boltzmann, “Über die Beziehung zwischen dem zweiten Hauptsatze der mech-
anischen Wärmetheorie und der Wahrscheinlichkeitsrechinung respective den Sätzen über
Wärmegleichgewicht,” Wiener Berichte 76, 373 (1877) (“On the relation between the second law
of thermodynamics and probability calculation concerning theorems of thermal equilibrium”) [Ac-
cession of Queen Victoria to ‘Empress of India’ was proclaimed at the Delhi Durbar of 1877.]
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The Komplexionszahl reads

ZK =
N !

w1!w2! · · ·wn! · · ·
, (1.3.14)

so maximizing this is equivalent to minimizing the denominator or its logarithm:

log(w1!w2! · · ·wn! · · ·) =
∑

n

logwn! =
∑

(wn logwn − wn) = M −N. (1.3.15)

The original paper kindly discusses that we can discard numerical factors, etc., in
Stirling’s formula.
(2) Write wi = w(x)ε and simultaneously take the n → ∞ and ε → 0 limits, main-
taining x = nε finite. Show that minimizing M is equivalent to minimizing

M ′ =
∫
w(x) logw(x)dx. (1.3.16)

Substituting the quantities in M as indicated, we have∑
n

wn logwn =
∑

n

w(x)ε log[w(x)ε] =
∑

n

w(x)ε logw(x) +
∑

n

w(x)ε log ε (1.3.17)

The first term is a Riemann sum, so we obtain (1.3.16). The second term is N log ε
and is unrelated to the number of complexions, so we may ignore it.
(3) We should not ignore the constraints that the total number of particles is N and
the total energy is E. Under this condition, derive Maxwell’s distribution in 3-space
by minimizing M ′.

In the original paper Boltzmann regarded the variable x as the three components
of velocity vector vx, vy, vz. Here, we take the momentum p and the position r as x:
w(x) = w(r,p). The constraints are

N =
∫
drdpw(r,p), E =

∫
drdpw(r,p)E(p), (1.3.18)

where E(p) = p2/2m is the energy of a single particle state p with m being the
mass of a gas particle. Using Lagrange’s technique, we should maximize (α and β are
multipliers) ∫

drdpw(r,p)[logw(r,p) + α+ βE(p)]. (1.3.19)

Hence, (E = (3/2)NkBT is used to fix β)

w(r,p) =
N

V

1
(2πmkBT )3/2

e−p2/2kBTm. (1.3.20)

Thus, we have obtained the Maxwell distribution.
(4) Now, Boltzmann realized that logZK = logN !−M ′ gives the entropy of the ideal
gas. Based on this finding, he proposed

S ∝ log (Number of ‘Komplexions’). (1.3.21)
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Compare this and the formula for S obtained thermodynamically, as Boltzmann did,
to confirm his proposal.

If we compute (1.3.21) (i.e., N logN −M ′) with the aid of w

S = N log V +N

(
3
2

+
3
2

log(2πkBTm)
)

= N log V T 3/2 + const. (1.3.22)

This agrees with the entropy obtained thermodynamically (apart from logN !; the
formula is not extensive). Indeed, the Gibbs relation is

dS =
1
T
dE +

P

T
dV, (1.3.23)

so with the aid of the internal energy E = (3/2)NkBT and the equation of state, we
have

S = NkB log T 3/2 +NkB log(V/N) + const. (1.3.24)

Usually, the story ends here (so did Boltzmann’s original paper). However, being a
much deeper thinker than is usually regarded, for a macrosystem described by E and
V Boltzmann confirmed that his formula of entropy (1.3.5) satisfied the Gibbs relation
for general classical many-body systems; in particular, (dE + PdV )/T is a complete
differential. Boltzmann called a distribution on the totality of microstates consistent
with a macrostate an orthodic distribution, if it gives a statistical theory consistent
with thermodynamics. Thus, Boltzmann proved that microcanonical ensemble is an
orthodic ensemble. A problem at the end of this chapter will discuss the demonstration
of the Gibbs relation for the microcanonical ensemble. The most fundamental problem
of statistical mechanics may be the characterization of orthodic distributions: what
characterizes the distributions of microstates consistent with thermodynamics?

Does a statistical assumption or a statistical principle appear in Boltzmann’s
logic? It is latently in the starting point of the argument (1) in the above fine-
lettered entry. Its central idea is that a macrostate consistent with maximal number
of microstates is observed as a thermodynamic equilibrium state. It says that the
number is important, so it is a declaration of the idea that all the microstates are
counted equally. Namely, the principle that all the microstates consistent with a
macrostate have the same weight (the principle of equal weight or probability) is
assumed implicitly (probably unconsciously). This suggests that if we combine ther-
modynamics and a statistical principle, we could derive Boltzmann’s principle, and
formulate statistical mechanics. That is, the correspondence rule for thermodynamic
coordinates + a certain statistical principle (that imposes a distribution on the set
ω(E, {Xi})) should be able to formulate statistical mechanics.

In this way, we can understand the (at least potential) importance of the statisti-
cal principle. There are many authors who assert that such a key principle must be
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derivable from the mechanics of the microscopic system (if thermodynamic coordi-
nates are translated appropriately in terms of mechanics). Assuming an appropriate
translation rule, let us explore whether such an assertion is sensible or not.

In classical mechanics, the distribution is a probability measure84 on the phase
space spanned by all the position and momentum coordinates of the particles. Since
each point in the phase space corresponds to a single microstate, the distribution
assigns statistical weights to individual microstates, and we can imagine the distri-
bution as a cloud in the phase space. The equilibrium distribution must be time-
independent (must correspond to an invariant measure).85 In quantum mechanics
the distribution (or the density operator) is a linear operator ρ satisfying the follow-
ing two conditions:

(i) Normalization condition: Trρ = 1,
(ii) If A is non-negative definite,86 TrρA ≥ 0.87

For example,r
ρ =

∑
k

Pk|k〉〈k|, (1.3.25)

where the summation is over an appropriate set of orthonormal kets in the vector
space needed to describe the system and

∑
Pk = 1 (Pk > 0), is a respectable density

operator. If these kets are eigenkets of the system Hamiltonian (eigenstates of the
system Hamiltonian), it is invariant in time. How should we choose Pk’s? We know
nothing more than their time-independence and non-negativity. We encounter similar
non-uniqueness in classical mechanics. That is, the time-invariance condition falls
short of specifying the distribution we need.

What determines an invariant distribution? If we start from an initial distribution
and run the system long enough, usually it settles down to an invariant measure.88

Therefore, selecting a ‘right’ distribution is equivalent to selecting a ‘right’ initial
condition. However, everybody knows that an initial condition is chosen by the
user of the mechanics, not by the equation of motion itself. Nothing in classical or

84This may simply be understood as a weight whose total mass is normalized to 1.
85To be precise, the distribution is required to give time-independent results only for thermo-

dynamic observables, so the distribution itself need not be invariant. Thus, for example, we have
only to demand ‘weak’ time invariance for the expectation values of the jumpsum1sum functions
(roughly, it is a function of many variables expressed as a sum of many functions with a few vari-
ables) introduced by Khinchin. No serious attempts in this direction seem to exist, so this book
simply demands invariance in the usual sense.

86This means 〈 |A| 〉 ≥ 0 for any ket | 〉.
87A linear operator satisfying (ii) is self-adjoint.
88If a system is chaotic enough, loosely put. This is the classical case. For quantum systems,

the dynamics is linear, so the initial condition is everything.
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quantum mechanics tells us how to choose initial conditions, so we have to conclude
that the distribution needed to develop statistical mechanics cannot in principle be
deduced from mechanics alone.89 In Section 1.1, we thought what statistical principle
was convenient. Here, since mechanics cannot derive any principle, we follow the
standard approach of assuming a convenient principle.

As the statistical principle we adopt the principle of equal probability:

All the microstates consistent with the thermodynamic coordinates spec-
ifying a macrostate have the same statistical weight.

In other words, all the microstates in ω(E, {Xi}) are sampled with an equal prob-
ability.90 The distribution of microstates specified by this principle is called the
microcanonical distribution.

Quantum mechanically, the sum defining the density matrix (1.3.25) is over all
the microstates consistent with the macrostate91 with Pk being equal for all such mi-
crostates. The microcanonical density operator is written as the following normalized
sum

ρ =
1

w(E, {Xi})
∑

k

|k〉〈k|, (1.3.26)

where the sum is over all the eigenstates with energy eigenvalues between E − δE
and E, and (the expectation values of) work coordinates between Xi−δXi and Xi.

92

89A common objection to this conclusion is that if almost all initial conditions go to a particular
invariant measure, then the invariant measure describes the equilibrium distribution, so we are
allowed to claim that mechanics dictates the statistical measure. The error in this argument is in
the uncritical expression “almost all initial conditions.” With respect to what sampling method
(measure) is this statement made? We must choose the observation measure of the initial condition.
This choice is beyond mechanics, needless to say.

90〈〈Significance of the principle of equal probability〉〉 Those who have read Sect. 1.1 may
interpret the statistical principle as a means to specify a filter to obtain thermodynamic observables.
This is not a postulate that actually such a distribution really exists in the equilibrium state specified
by the thermodynamic coordinates. The equal probability may or nay not be the actual distribution.

91〈〈The significance of thermodynamic coordinates〉〉 This was already emphasized, but
here another importance must be pointed out. We must not forget that macrostates are uniquely
specified only by extensive variables (densities). This must be clear if we imagine a system with
phase coexistence (see Chapter 5). For example, if a macroscopic state of an isolated magnet is
specified by a temperature below its critical temperature (or has an internal energy corresponding
to such a temperature), its magnetization is not unique. Therefore, if we evenly average all the
microstates under this specification of the macrostate, the magnetization is zero. That is, the result
does not agree with the actually realizable thermodynamic state. (As we will see in Chapter 5 for
a 2D Ising model it is even a state that is never realized macroscopically.)

92To be precise, (E − δE,E] and (Xi − δXi, Xi] determines the shell.
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δE and δXi denote small widths from the macroscopic point of view. There is a large
latitude in the choice of these widths; if they are not extremely small, any choice
will do as is discussed in Section 1.5. The normalization constant w(E, {Xi}) is the
number of all the microstates in this shell. Since neither E nor Xi depends on time,
it is obvious that the density operator is time-independent.

Classically, the principle of equal probability implies that we compute the ex-
pectation value according to the uniform distribution whose support is the set of
microstates consistent with the specified thermodynamic coordinates (with some
latitude). The resultant distribution is called the microcanonical distribution. Since
the subset of the phase space consistent with a macrostate is invariant, and since the
phase volume is invariant (as seen just below), it is an invariant distribution.

Phase flow is incompressible r(rto Jarzynski equality, rto virial theorem)
Let us show that the phase volume is invariant classically. This is proved ‘officially’ by
Liouville’s theoremq (stating that any canonical transformation preserves the phase
volume), but here let us show the incompressibility of the phase flow. If there are
N point masses in a three dimensional space, the coordinates of the phase space are
q1x, q1y, q1z, · · · , qNx, qNy, qNz, p1x, p1y, p1z, · · · , pNx, pNy, pNz (q3y is the y-coordinate
of the third particle position vector, p5x is the x-component of the momentum vector
of the 5th particle, and so on). The suffixes denote individual degrees of freedom. The
phase flow vector v is a 6N -dimensional vector v = (q̇1x, · · · q̇Nz, ṗ1x, · · · , ṗNz) (dots
denote time differentiation) consisting of the following components:

dqs
dt

=
∂H

∂ps
,
dps

dt
= −∂H

∂qs
. (1.3.27)

That is,

v =
(
∂H

∂p1x
,
∂H

∂p1y
,
∂H

∂p1z
, · · · , ∂H

∂pNx
,
∂H

∂pNy
,
∂H

∂pNz
,− ∂H

∂q1x
,− ∂H

∂q1y
,− ∂H

∂p1z
,

· · · ,− ∂H

∂qNx
,− ∂H

∂pNy
,− ∂H

∂pNz

)
. (1.3.28)

The divergence of the flow vector in 6N -dimensional space reads

div v =
∑

s

(
∂q̇s
∂qs

+
∂ṗs

∂ps

)
=
∑

s

(
∂

∂qs

∂H

∂ps
− ∂

∂ps

∂H

∂qs

)
= 0. (1.3.29)

Notice that even if H is explicitly time-dependent, the incompressibility of the
phase flow is intact.

If we use the correspondence (translation) rule for thermodynamic coordinates and
the principle of equal probability, we may be able to derive Boltzmann’s principle
from the relation between entropy and heat dS = d′Q/T . This is essentially a rehash
of Einstein’s approach to derive the canonical distribution from thermodynamics.
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The microcanonical distribution is93

w =

∫
dΓ δ(H − E), (1.3.30)

This is the classical case but the following argument goes through for quantum
mechanics as well by replacing the phase integral with trace. Let us assume that the
Hamiltonian contains a parameter λ that can be controlled externally. The change
of the Hamiltonian due to the change of the parameter λ→ λ+ dλ is identified with
work by Einstein. Taking account of the internal energy E being also changed, we
obtain

0 = d

∫
dΓ

1

w
δ(H − E) = −d[logw] +

∫
dΓ (d′W − dE)δ′(H − E)∫

dΓδ(H − E)
. (1.3.31)

Since almost all the microstates gives the same thermodynamical results, d′W − dE
is almost always constant. Therefore, we obtain

d logw = (d′W − dE)

∫
dΓ δ′(H − E)∫
dΓ δ(H − E)

. (1.3.32)

Since d′W − dE = −d′Q, and

∂logw

∂E

∣∣∣∣
X

= −
∫
dΓ δ′(H − E)∫
dΓ δ(H − E)

, 94 (1.3.33)

we get
d logw = βd′Q. (1.3.34)

Comparing this with thermodynamic relations, Boltzmann’s relation (??) has been
derived.

In summary,
(i) A method to construct statistical mechanics is to impose the correspondence rules
for thermodynamic coordinates and entropy. No statistical principle is required.
(ii) Another approach is to use the correspondence rule for thermodynamic coordi-
nates, but the principle of equal probability is used instead of the correspondence
rule for entropy.

93Here, the traditional formula is written, but precisely speaking, not only the energy (internal
energy) but also work coordinate values must be specified, which are not written explicitly.

94For the classical ideal gas, we can explicitly compute (1.3.33) and confirm its identity with β.
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The construction of statistical mechanics explained above applies both to isolated
and thermally isolated systems.r As noted already, isolated systems (for which no
exchange of energy is allowed with the external world) are not enough to cover all
possible thermodynamic possibilities. Still, usually no separate discussion is found
about constructing statistical mechanics for thermally isolated systems. To begin
with we must modify the zeroth law ([T6]). Then, statistical mechanics is formulated
for thermally isolated systems.

[T6] Generalized zeroth law of thermodynamics
As noted before, a large subset of the thermodynamic states cannot be realized without
interactions with the external environment, so the zeroth law stated only for isolated
systems [T1] is not sufficient even for thermodynamics itself. What sort of interactions
with environment should be allowed? A macroscopic time-independent setup that
maintains (the expectation value95 of) a particular work coordinate (or more precisely
the expectation value of its density) at a chosen value must be tolerated.

Let us introduce the concept of ‘thermally isolated system.’ It is a system first
isolated in the ordinary sense, and then appropriate time-independent mechanical
interactions are imposed to keep work coordinates at their specified values. The
zeroth law applicable to thermally isolated systems may be formulated as:
(1) If a thermally isolated system is kept in a constant environment for a sufficiently
long time, it reaches a state without any macroscopic time dependence. This is called
an equilibrium state.
(2) If the obtained equilibrium state is divided roughly evenly with a plane,

(i) Each half can be kept in the same equilibrium state in thermal isolation,
(ii) if these halves are joined, then the resultant thermodynamic state is an equilib-
rium state indistinguishable from the original thermodynamic state in thermal
isolation.

To construct statistical mechanics, we need mechanical translation of work coor-
dinates. No modification is needed for this. We generalized the Boltzmann principle,
that is the mechanical translation of entropy (1.3.4) or (1.3.5). For simplicity, let us
assume that the thermally isolated system we consider is an isolated system with the
imposed conjugate field h to X. The natural thermodynamic potential is the gen-
eralized enthalpy J = E − hX;r (J, h, {Y }) is the natural thermodynamic variables
for the system, where {Y } is the work coordinates other than X. The system is

described as a mechanical system with the Hamiltonian H = H0 − hX̂, where H0 is
the system Hamiltonian in isolation and X̂ is the mechanical observable correspond-
ing to the work coordinate X, with the auxiliary conditions (boundary conditions)
corresponding to the experimental condition to prepare this equilibrium state. Then
the entropy of this state is given by

S(J, h, {Y }) = kB logw(J, h, {Y }). (1.3.35)

95In the thermodynamic limit, the actual value and the expectation value are identical.



1.4. IMPLICATION OF THE PRINCIPLES 55

where w(J, h, {Y }) is the number of eigenstates of H belonging to (J − δJ, J ] with a
reasonable width δJ with the specification of the expectation values of observables
{Ŷ } corresponding to the work coordinates {Y }. [That is, (1.3.35) is exactly the
same as the Boltzmann’s formula except for replacing H0 with H.]

We know the Gibbs relation now reads

dJ = TdS −Xdh+ · · · , (1.3.36)

so

dS(J, h, {Y }) =
1

T
dJ +

X

T
dh+ · · · . (1.3.37)

Notice that this is not a Legendre transformed version of S,96 but since we can
obtain E = J − hX and X is specified, S may be understood as a function of the
thermodynamic coordinates (E,X, {Y }), and from (1.3.37) we get consistently

dS(E,X, {Y }) =
1

T
dE − h

T
dX + · · · . (1.3.38)

1.4 Implication of the principles

To construct statistical mechanics we have reached the conclusion that we may adopt
(A) or (B) (as postulates):
For a thermally isolated system, besides the correspondence rules for work coordi-
nates:

(A) Entropy is given by S = kB logw, where w is the number of microstates
allowed to the system.

Here, the natural thermodynamic variables are the generalized enthalpy J = E −∑
i hiXi, imposed field hi conjugate to Xi and the rest of the work coordinates Yj.

The other choice is
(B) [Principle of equal probability] The probability to observe an event is propor-
tional to the number of microstates compatible with the event.

(B) implies (A), and to do thermodynamics, (A) is enough.

General consequences of the fundamental principles include:
(1) A thermodynamic equilibrium state is a macrostate that maximizes the number
of consistent microstates.

96Notice that the second term is not Xd(h/T ).
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(2) The number of microstates consistent with an equilibrium state is O[ecN ].
(3) Indistinguishability of identical particles.
(4) The equilibrium condition between two macroscopic objects that are allowed
to exchange extensive quantities is the agreements of the corresponding conjugate
intensive variables.
(5) Absence of macroscopic motions other than overall translation and rotation of
macroscopic objects in equilibrium.
(6) Positivity of absolute temperature.

(1) “Maximum entropy principle”
Thermodynamic entropy is defined only for equilibrium states.97 Therefore, it is a
nonsensical statement that an isolated macroscopic system specified by (E, {Xi})
takes the maximum entropy in equilibrium; thermodynamic entropy is a function of
(E, {Xj}), so its value is uniquely fixed. Thermodynamic entropy is defined only for
equilibrium systems in any case.

Let us consider a composite system consisting of two simple systems. Although
the subsystems must be in equilibrium individually, they need not be in equilibrium
mutually because of the constraints defining the composite system (say, an adiabatic
wall between them). Therefore, even though the system is not in equilibrium as a
whole without constraints, still we can obtain the entropy of the whole system. The
number w of microstates of the composite system may be written as w = w1w2, where
w1 and w2 are numbers of states of individual simple systems. If some constraints are
removed, then more microstates should be allowed to the composite system. That is
w must increase. Consequently, the newly reached equilibrium state must have larger
entropy than before removing the constraint. This is the thermodynamic entropy
maximum principle. This implies, as shown below with fine letters, that entropy is
a convex upward function of the thermodynamic coordinates.

[T7] Entropy maximum principle in thermodynamics
This principle is about the final equilibrium state that can be reached from an initial
equilibrium state of an isolated system when some constraints in the initial state
are removed. A precise statement is as follows: let a system be a composite system
consisting of simple systems i (i = 1, · · · , N). If each simple system is in equilibrium
the entropy of the composite system is a sum of the entropies of simple systems S(i) =
S(i)(E(i), {X(i)

j }), where superscripts (i) indicate simple systems. When a composite
system is formed from these simple systems, we may allow some exchange of work
coordinates and energy among them, so the initial isolation condition for each simple
system may be relaxed. Eventually, the composite system reaches an equilibrium
state. Each subsystem is also in equilibrium so its entropy may be expressed as S(i).

97Practically, if a macrostate is close to equilibrium, there are several natural ways to extend
the definition of entropy. However, at present they are pragmatic and not of fundamental nature.
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The compound system with a relaxed subsystem relations is in equilibrium, when

Ŝ =
∑

i

S(i)(E(i), {X(i)
j }) (1.4.1)

is maximized under the relaxed condition.
The concavity (convexity upward) of entropy follows from this. Suppose two (sim-

ple) systems made of the same material in equilibrium states ω(1) = (E(1), {X(1)
i })

and ω(2) = (E(2), {X(2)
i }), respectively, are in contact. Throughout the process we

assume that the whole system is surrounded by adiabatic walls. Then, eventually a
single equilibrium state ω = (E, {Xi}) ≡ (E(1)+E(2), {X(1)

i +X(2)
i }) would be formed

(Fig. 1.4.1).

1 2

E, V 

Fig. 1.4.1 The surrounding wall is adiabatic.
The two equilibrium states 1 and 2 are allowed
to make any interactions in the container.
Eventually, the composite system will reach an
equilibrium state specified by the total amounts
of extensive quantities.

Let us be more explicit with the independent extensive variables to be internal
energy and volume. The entropy maximum principle tells us that

S(E, V ) = sup[S(E1, V1) + S(E2, V2)], (1.4.2)

where the supremum is taken under the condition E = E1 + E2 and V = V1 + V2.
Here, since both systems are assumed to be made of the same substance, the use of the
same symbol S for systems 1 and 2 means that the functional form of S is identical.
This implies with the aid of the extensivity of Sr

S((1− α)E + αE′, (1− α)V + αV ′′)
≥ (1− α)S(E, V ) + αS(E′, V ′) (1.4.3)

for any α ∈ [0, 1], that is, S is a concave function (its graph is convex upward). This
inequality is, as we will learn later, a manifestation of the stability of the equilibrium
state.

(2) Impossibility (unrealistic nature) of mechanical adiabatic process
Since entropy is extensive, if N is the number of particles in the system, logw =
S/kB ∝ N and the dimensionless proportionality constant c for this relation is of
order unity. That is,

w ∼ ecN+o[N ]. (1.4.4)

Generally speaking, the spacing of energy levels of a macroscopic system is of order
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10−cN (here the unit of energy may be anything macroscopic, say, J or erg).98 The
energy levels of a macrosystem is so densely packed that it is impossible to realize a
process that may satisfy conditions for the adiabatic theorem of mechanics.99

(3)r Indistinguishability of identical particles (Gibbs “paradox”)
Suppose the statistical weight W of a system of volume V consisting of N almost
independent particles is given by

W (V,N) = V Nf(N). (1.4.5)

The Boltzmann principle and the extensivity of entropy implyW (rV, rN) = [W (V,N)]r

for any positive real r.100 That is (note that V is extensive),

(rV )rNf(rN) = V rNf(N)r, (1.4.6)

or
f(N)r = f(rN)rrN . (1.4.7)

As a mathematical problem, r can be anything, so setting r = 1/N , we get f(N)1/N =
f(1)/N . That is, with the aid of Stirling’s formula N ! ∼ (N/e)N , we concluder

f(N) = aN/N ! (1.4.8)

98Is this correct for ideal gas? The statement is true if the system is without extremely high
symmetry. Let {εi} be the totality of the one-particle energy eigenvalues. If two such particles
interact with each other, each level splits into two. If there are N particles, each level would split
into 2N levels. That is, if there is no degeneracy, the number of levels increase exponentially with
the number of particles N . Consequently, the energy spacings decrease exponentially as the number
of degrees of freedom increases.

99More precisely, we should state as follows: mechanical adiabatic process is clearly a thermo-
dynamic quasistatic process. Therefore, if entropy were to increase under mechanical adiabatic
condition, it implies that mechanics contradicts thermodynamics, and the idea of statistical me-
chanics is meaningless. On the other hand, since mechanical adiabatic process is an extremely
special quasistatic process, the invariance of entropy under mechanical adiabatic process means
almost nothing to thermodynamics. We should clearly recognize that macroscopic quasiequilibrium
processes are much faster and violent processes than the ones that allow the adiabatic theorem (in
mechanics) to hold.

100〈〈Irrelevance of particle indistinguishability in computer experiments〉〉 As the reader
can see from the argument around here, if the number of the particles is kept constant, there is no
way to determine f (furthermore, it is a constant, so we may simply ignore it). That is, there is no
thermodynamic observable that are affected by the (in)distinguishability of particles, if there is no
change of the number of particles in the system. Therefore, for example, in the computer experiment
without particle number change we have nothing to worry about particle (in)distinguishability. See
the last part of Sect. 2.1
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for large N , where a is a positive constant. Therefore, the statistical weight must
have the following general form

W =
1

N !
zN . (1.4.9)

Here, z may be interpreted as the statistical weight for each (weakly interacting)
microscopic entity.

The factor N !r indicates that the classical atomism (naive realism) is not con-
sistent with thermodynamics; we must regard individual but identical entities in-
distinguishable when we compute the combinatorial factor. This is called Gibbs’
paradox.101 Intuitively, this may correspond to interpreting particles as ‘pixels’ on a
computer screen that are turned on.

It is important to recognize that Gibbs himself did not regard this as a paradox,
because he knew that nothing was known about the physics of microscopic world. A
paradox about the reality is always due to our misconception (or wrong metaphysical
premise) about the reality.

Stirling’s formular
Γ(n+1) = n! '

√
2πn(n/e)n is a very famous formula and is used often in a simplified

form n! ∼ (n/e)n. Since it is an important formula, a demonstration is given here.
Here, we use the method Laplace used to derive the formula. It is a general method
to obtain an asymptotic formula called Laplace’s method. Consider

F (θ) =
∫ +∞

−∞
eθh(x)dx, (1.4.10)

where h is a real C2-function with the following properties:
(i) h(0) = 0 is an absolute maximum of h, and h < 0 for any nonzero x.
(ii) There are positive constant a and b such that h ≤ −a for |x| ≥ b.
We must of course assume that the integral converges for sufficiently large θ. Then,
in the θ →∞ limit, we get

F (θ) ∼
√

2π(−θh′′(0))−1/2. (1.4.11)

This is a logic used repeatedly in statistical mechanics and sometimes called informally
the saddle point method. Formally, this can be obtained by Taylor-expanding h

101〈〈Gibbs’ paradox for mixing〉〉 If we mix two distinguishable ideal gases at the same tem-
perature and pressure, the entropy increases due to mixing beyond the sum of the original entropies
of two gases, but if we mix two indistinguishable ideal gases at the same temperature and pressure,
the entropy is the same as the sum of the original entropies of two gases. This is also (and probably
more often than the ontological paradox in the text) called Gibbs’ paradox. See the problem set at
the end of the chapter.



60 CHAPTER 1. BASICS

around 0 to the second order and by using Gaussian integral.
Now, let us apply this to the Gamma function

Γ(z + 1) =
∫ ∞

0

dt tze−t. (1.4.12)

Substituting t = z(1 + x), we get

Γ(z + 1) = e−zzz+1

∫ ∞
−1

[
e−x(1 + x)

]z
dx. (1.4.13)

h in (1.4.10) reads −x+ ln(1 + x) and θ = z, so it satisfies the condition of Laplace’s
method, and h′′(0) = −1. Hence, we get

n! ∼
√

2πe−nnn+1/2. (1.4.14)

The above derivation looks natural. Another interesting approach is to use the
MacLaurin summation formula.102

(4) Equilibrium condition between two systems in contactq
Suppose two macrosystems 1 and 2 are in contact and are isolated as a whole. The
total entropy is S = S1 + S2, so δS = 0 is the equilibrium condition for the isolated
system (it is better to write as δS ≤ 0 for any possible variation of variables, because
S is maximum). Here, δ implies virtual variation.103 To compute the derivatives of
entropy, the Gibbs relation for entropy is convenient

dS =
1

T
dE +

P

T
dV − µ

T
dN − x

T
dX, (1.4.15)

where X is a generic extensive variable and x is its conjugate intensive variable with
respect to energy. Therefore,

1

T1

δE1 +
1

T2

δE2 +
P1

T1

δV1 +
P2

T2

δV2−
µ1

T1

δN1−
µ2

T2

δN2−
x1

T1

δX1−
x2

T2

δX2 = 0. (1.4.16)

Since the system is isolated, δE = δE1 + δE2 = 0, δV1 + δV2 = 0, etc.,(
1

T1

− 1

T2

)
δE1 +

(
P1

T1

− P2

T2

)
δV1 −

(
µ1

T1

− µ2

T2

)
δN1 −

(
x1

T1

− x2

T2

)
δX1 = 0.

(1.4.17)
E1, V1, etc., can be changed independently, so we obtain T1 = T2, P1 = P2, etc., are
the equilibrium conditions.

102 See J. Havil, Gamma, exploring Euler’s constant (Princeton, 2003), which is very enjoyable.
103Although it is called ‘virtual,’ it is actually real; such variations are incessantly realized by

thermal noise in the actual system.
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What happens if the wall is deformable but not diathermal? If no particle ex-
change is possible, this gives us P1 = P2, but the temperatures need not be identi-
cal.104

(5) The impossibility of macroscopic relative motion in equilibriumr
Entropy S is a function of the (expectation value of) internal energy E seen from the
center-of-mass co-rotating coordinates of the system (in thermodynamics it is called
the internal energy):

E = U − P 2

2M
− 1

2
LI−1L, (1.4.18)

where U is the total energy, P the total momentum, L the total angular momentum,
M the total mass of the system, and I the inertial moment tensor around the center
of mass. Let us divide the system into several subsystems. We put suffix a to
macroobservables of the subsystem a. We have P =

∑
P a and L =

∑
a La. The

angular momentum La of the subsystem a around the center of mass of the whole
system may be written as La = `a + ra × P a, where ra is the relative position
vector of the center of mass of subsystem a with respect to the center of mass of the
whole system, and `a is the angular momentum of subsystem a around its own center
of mass. The Gibbs relation for subsystem a reads (for simplicity, other extensive
variables than entropy are suppressed in dE = TdS + · · ·; we write U as a function
of S, momentum and angular momentum)

TdSa + va · dP a + ωa · d`a − dUa = 0, (1.4.19)

where va is the center of mass velocity of subsystem a, and ωa is its angular velocity
around its center of mass.

The additivity of entropy implies (we use the fact that the total energy is pre-
served)

TdS +
∑

a

va · dP a +
∑

a

ωa · d`a = 0. (1.4.20)

104〈〈A piston without heat exchange〉〉 In this case energy and volume cannot be changed
independently, so the Gibbs relation for entropy is not useful. Rather, dE = TdS − PdV + · · ·
is more convenient. dS = dS1 + dS2, but due to adiabaticity dS1 = dS2 = 0, so we cannot say
anything about temperature. From the volume change, we can conclude P1 = P2 only. Then,
what actually happens, if such a system is left alone for a long time? As the zeroth law asserts,
the system eventually reaches a certain equilibrium state, but it cannot be obtained by a simple
equilibrium thermodynamic argument alone. We must pay due attention to the nonequilibrium
details of the actual process that happens. See the following excellent paper: A. Fruleux, R. Kawai,
and K. Sekimoto, “Momentum Transfer in Nonequilibrium Steady States,” Phys. Rev. Letters 108,
160601 (2012).
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This can be rewritten as105

TdS +
∑

a

(va − ωa × ra) · dP a +
∑

a

ωa · dLa = 0. (1.4.21)

Now, let us write down the condition to maximize the total entropy of the system
under the constant total momentum, and total angular momenta. Using Lagrange’s
multipliers v and ω, we obtain

∂S

∂P a

=
v + ωa × ra − va

T
, (1.4.22)

∂S

∂La

=
ω − ωa

T
. (1.4.23)

Consequently,
va = v + ωa × ra, ωa = ω. (1.4.24)

That is, in equilibrium, a macroscopic system can move only as a rigid body: no
macroscopic relative motion of the parts is allowed.

In the above consideration we have assumed that the momenta are exchanged
between the subsystems. Suppose a macroscopic system may be divided into two
subsystems that can move relatively without friction. Then, note that the above
argument does not work (i.e., without dissipation relative macroscopic motion is
allowed even in equilibrium).106

(6) The absolute temperature must be positive (for a stable equilibrium state).
Almost as a byproduct of (5) we can conclude that the absolute temperature is non-
negative. Suppose T is negative. Then, S is a decreasing function of the internal
energy. Therefore, if T < 0, then the entropy can be increased by pumping the
energy into the macroscopic degrees of freedom (see (1.4.18)).107 Consequently, the
system explodes. Therefore, T cannot be negative.

However, if the system internal energy is bounded from above (needless to say,
no translational nor rotational motion should be allowed), then it cannot increase
indefinitely and the above argument does not apply (as we will see later for the spin
system not interacting with the lattice degrees of freedom).

105We have used the following relation: A ·B ×C = B ·C ×A = C ·A×B, where vectors are
3-vectors and these products describe the volume of the parallelepiped spanned by A, B and C (in
this order; if we exchange two variables, the volume is ‘inverted’ and the sign flips).

106However, no local velocity fluctuation can be generated thermally without dissipation. Nothing
without any decaying process can be produced spontaneously in the stable world.

107Small scale organization of microscopic thermal noise into mesoscopic scale collective motion
always occurs as fluctuation, but this does not cause anything serious, because the system is stable.
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We are tempted to conclude that in the T → 0 limit S = 0, because any ground
state of an ordinary quantum mechanical system is believed to be non-degenerate.
The third law of thermodynamics (see [T8]) is a thermodynamic claim, so it is for
a very large system. That is, the thermodynamic limit must be taken before T → 0
limit. Then, we easily realize that the third law is not the same as the non-degeneracy
of the ground state. Just as we have experienced with the adiabatic theorem, it is
dangerous to translate mechanics propositions directly into thermodynamic propo-
sitions.

[T8] The third law of thermodynamicsr
In 1902 Richards108 investigated electrochemical potentials at low temperatures, and
found that the change in the Gibbs free energy ∆G converges to that of enthalpy
∆H in the T → 0 limit. Based on his study and other low temperature chemical
reaction data, in 1906,109 Nernst110 proposed that ∆S = 0 for any reversible change
in the T → 0 limit. In other words, he proposed that the entropy of a substance in
equilibrium is bounded and continuous at T = 0. A stronger form of Nernst’s law is
that the derivative of S vanishes at T = 0. Later, Planck proposed that the entropy of
a pure substance in equilibrium is zero. One of these various versions is called the third
law of thermodynamics. Notice that the law was established for T not significantly
lower than 1 K.

Statistical mechanically, whether the third law holds or not depends on the energy
spectrum of the system; it is easy to make a counterexample for the third law. There
is a general belief, however, that the ground state of a real quantum system is not
degenerate (due to various small interactions). Still, as is already noted in the text,
this is not directly related to the third law.

The third law implies unattainability of T = 0.111

108Theodore William Richards (1868-1928) was the first American scientist to receive the Nobel
Prize in Chemistry. He demonstrated the existence of isotopes.

109[1906: K. Gödel was born on April 28.]
110Walter Hermann Nernst (1864-1941)
111The third law asserts that the isotherm T = 0 coincides with the adiabat S = 0. Nernst

pointed out that any quasistatic process can be approximated as accurately as one wishes by a
combination of isothermal and adiabatic processes, and that only adiabatic processes can reduce
the system temperature. Then, he concluded that since there is no other adiabat that can cross
S = 0, it is impossible to reach T = 0 with a finite number of processes. However, the converse does
not hold for classical ideal gas. For classical ideal gas, the T = 0 isotherms are P = 0 and V = 0,
but any adiabatic process must satisfy PV γ = constant, where γ is the ratio of constant pressure
and constant volume specific heats: CP /CV . Thus, T = 0 is unattainable for classical ideal gas,
but its entropy in the T = 0 limit is not bounded from below.
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1.5 Simple examples

The reader must have already been tired of simple rudimentary topics of statistical
mechanics discussed in rather boring undergraduate courses. For completeness sake,
however, let us study three simple systems: classical ideal gas, a noninteracting spin
system, and a freely jointed polymer. Each simple example tells us some interest-
ing mathematics or physics facts worth remembering: nature of high dimensionality,
negative temperature, and adiabatic cooling.

Classical ideal gasr
Let us consider the simplest macroscopic system. It is a system consisting of N
identical point particles of mass m without any internal structure (degree of freedom)
confined in a 3D cube of V = L× L× L. The box here is understood as an infinite
depth (3D) cubic potential well.112 Since there is no particle-particle interaction, we
have only to consider the single-particle Schrödinger equation:

− ~2

2m
∇2ψ = Eψ (1.5.1)

with ψ = 0 at the box walls. The energy eigenvalues are specified as E = h2n2/(8mL)q
by a three-dimensional vector whose components are positive integers n = (l,m, n).
The corresponding eigenstate is

ψn(r) =

(
2

L

)3/2

sin
lπx

L
sin

mπy

L
sin

nπz

L
. (1.5.2)

In practice, we only need the energy formula, which may be obtained from the general
formula for the wavelength of the de Broglie stationary wave with nodes at the walls
λ = 2L/n (n is a positive integer), the momentum-wavelength relation p = h/λ, and
the formula for the kinetic energy K = p2/(2m), appropriately generalized to a three
dimensional space.

Each eigenstate of particle i is specified by three quantum numbers taking positive
integers ni = {li,mi, ni}. The microstate of this system is completely specified by a
set ofN positive integer three-dimensional vectors (3-vectors) {n1, · · · ,ni, · · · ,nN} =
{ni}Ni=1. The system is isolated, so its total energy is confined in a well-defined energy

112Although particles do not interact with each other, we assume that each particle is distributed
uniformly in all one particle state in the potential well.
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shell ωE between E − δE and E. That is,

N∑
i=1

h2n2
i

8mL2
∈ ωE. (1.5.3)

Therefore, to obtain the number of microstates in this energy shell, we have to count
the number of 3N -dimensional vectors (· · · ,ni, · · ·) satisfying (1.5.3). That is, we
have only to be able to count the number of the integer vectors in the 3N -dimensional
spherical shell of radius

√
8mEL/h with thickness proportional to δE. As we will

see just below we need not worry about the choice of δE very much.

We are studying a very large system, so we should exploit the magnitude of N
(high dimensionality of the state space). Calculation of the volume of ωE is essentially
to obtain the volume of a thin skin of a large dimensional ball.113 The most important
fact to remember about a high dimensional object is that its most volume is in its
skin.q It is easy to see this. Let the linear dimension of a D-object114 be R and its
volume be CRD, where C is a constant dependent on the shape. We skin it. If the
skin thickness is δR � R, then the skinned object is similar to the original shape,
and its linear dimension is R − δR. Thus, the ratio of the skinned volume to the
original volume is

C(R− δR)D

CRD
=

(
1− δR

R

)D

. (1.5.4)

Therefore, for example, even if δR/R = 10−10, if D = 1020, this ratio is almost zero
(that is, if 1 � δR/R � D−1, the volume is almost concentrated in the skin). For
high-dimensional objects, its volumes is almost in its skin, and this situation does
not change unless the skin is excessively thin. Thus, δE/E may be chosen to be very
small if not too small. In the actual cases, the ratio is a small number independent of
the number of particles, because it is natural to regard δE as a leeway in an extensive
quantity.

The above consideration implies that the microcanonical partition function w(E, {Xi})
may be replaced by the number of all the microstates whose energy is less than or
equal to E (but all the work coordinates {Xi} are confined in the small ranges as

113We use the standard mathematical terminology; ‘sphere’ is the surface of a ‘ball,’ which is a
solid object.

114Following the tradition of mathematics an object whose dimension is D may be denoted as
D-object. Three-dimensional space is 3-space. An ordinary ring is 1-sphere. The surface of 3-ball
is a 2-sphere, etc.
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w):

W (E, {Xi}) =
∑

0≤E′≤E

w(E ′, {Xi}) ' w(E, {Xi}), (1.5.5)

where the summation is over all the energy shells up to energy E. Thus, we may
write Boltzmann’s principle as

S = kB logW (E, {Xi}). (1.5.6)

Analogous formulas for classical systems also hold.

The total number of states W (E, V ) of N point particles in a volume V whose
total energy is no more than E can be written as

W (E, V ) =
1

N !

∑
{ni}:

P
n2

i≤8mEL2/h2

1. (1.5.7)

Here, 1/N ! is put to take into account the indistinguishability of particles as we
discussed in the preceding section. The sum may be approximated by the volume
of the positive coordinate sector (i.e., the portion in which all the coordinates are

positive) of a 3N -ball of radius
√

8mEL/h. Therefore,

W (E, V ) =
1

N !

1

23N
B3N(

√
8mEL/h), (1.5.8)

where BD(R) is the volume of D-ball of radius R. It has the general form KDR
D,

where KD is a constant, which we will compute later, but for most purposes we do
not need any explicit form.

From (1.5.8) we see

W (E, V ) ∝ E3N/2L3N = E3N/2V N , (1.5.9)

which may also be obtained easily by dimensional analysis.115
q Let us first see that

we can obtain important thermodynamic relations, using this dimensional analytic
result and a general consideration (the extensivity of entropy, etc.). Boltzmann’s
principle tells us

S = kBN

{
log V +

3

2
logE + cN

}
. (1.5.10)

115Quantum mechanically, we must make a dimensionless quantity from V and E. We may
use m and h. Then, since h/

√
2mE has a dimension of length, we have a dimensionless quantity

(
√

2mE/h)3V .
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Here, since the proportionality constant in (1.5.9) depends on N , the remainder
cN is explicitly written with suffix N . We know S, V and E must be extensive
(proportional to N), so we see

S = kBN

{
log

V

N
+

3

2
log

E

N
+ c

}
. (1.5.11)

Here c is a constant which should not depend on N (if N is sufficiently large).
From this with the aid of thermodynamics we immediately obtain PV = NkBT and
E = 3NkBT/2. The latter implies that each translational degree of freedom has the
average energy kBT/2 (equipartition of energy, see Section 2.2). From these relations
we get PV = 2E/3.r The relation is, as we will see in Chapter 3, valid for quantum
ideal gases as well. It is easy to see from (1.5.10) that this relation is directly obtained
from P = −(∂E/∂V )S. This fact suggests that the relation PV = 2E/3 is a more
mechanical than a thermal relation. It is indeed the case, as we can derive this
relation immediately from the virial theorem as we will see in Chapter 4. The 2 in
this formula is because the energy is the quadratic form of momenta, and the 3 is
the spatial dimensionality. If we notice such relations, it is easy to generalize the
relation to arbitrary dimensional spaces and to superrelativistic gases.

To calculate c in (1.5.10) we must calculate the volume of the D-ball. Here, we
give supposedly the cleverest method.

The volume of a D-ballr
(1) Let SD be the surface area of the unit (D − 1)-sphere (the boundary of a unit
D-ball). Show that BD(R) = (SD/D)RD.
(2) Demonstrate that

ID =
∫ ∞
−∞

dx1 · · ·
∫ ∞
−∞

dxDe
−a(x2

1+···+x2
D) = (π/a)D/2, (1.5.12)

where a is a positive constant. Compute the same integral in the polar coordinate
system to show (cf. in 2-space we use 2πrdr, in 3-space 4πr2dr)

ID =
1
2
SDΓ(1 +D/2)a−D/2. (1.5.13)

(3) Comparing (1.5.12) and (1.5.13), we obtainq

SD =
2πD/2

Γ(D/2)
. (1.5.14)

Thus, we have obtained

BD(R) =
πD/2

Γ(D/2 + 1)
RD. (1.5.15)
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From (1.5.15) we obtain

W (E, V ) =
V N

N !h3N

(2πmE)3N/2

Γ(3N/2 + 1)
. (1.5.16)

That is, with the aid of Stirling’s formula Γ(N) ' N ! ' (N/e)N for N � 1,

S(E, V,N) = NkB

{
log

V

N
+

3

2
log

E

N
+ log

(4πm/3)3/2e5/2

h3

}
. (1.5.17)

Using E = 3NkBT/2, we can rewrite this as

S(E, V,N) = NkB

{
log

1

n
+

3

2
log

mkBT

2π~2
+

5

2

}
, (1.5.18)

where n = N/V is the number density. The de Broglie thermal wave lengthr λT =
(h2/mkBT )1/2 is obtained from the average kinetic energy 〈p2

x〉/2m = (1/2)kBT and
de Broglie’s relation between the wavelength of the matter wave and momentum
λ = h/p. The number density nQr of the ideal gas that contains on the average 1

particle in the cube with the edge length λT/
√

2π, i.e.,q

nQ = (mkBT/2π~2)3/2 = (
√

2π/λT )3 (1.5.19)

is called the quantum number density. Then, (1.5.18) may be expressed as

S = kBN [log(nQ/n) + 5/2]. (1.5.20)

Numerically, nQ may be computed asq

nQ = 9.88× 1029m̂3/2

(
T

300

)3/2

' m̂3/2

(
T

300

)3/2

× 1030, (1.5.21)

where m̂ is the mass of the particle in atomic mass unit (e.g., for water m̂ = 18).
Since nQ goes to zero in the T → 0 limit, S is not bounded from below, contradicting
the third law of thermodynamics. It is not a desirable (self-contradicting) practice
to use the Carnot cycle with the aid of the ideal gas law to discuss the second law
of thermodynamics. In any case, it is a bad taste to use a particular example to
demonstrate general statements.

The chemical potential can be obtained asq

µ = kBT log(n/nQ) (1.5.22)
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from (1.5.17) ((1.5.20) is not convenient, since E is not explicit) . If we replace
nQ with an appropriate effective number density n	 at a standard state that may
depend on T , P , etc., this form of chemical potential can be used for any non-
interacting (classical) particles, e.g., solute molecules in dilute solutions, rare exci-
tations in solids, etc. This chemical potential becomes −∞ in the n → 0 limit.

Dilution limit
Suppose a chemical reaction changes a chemical A whose concentration is nA into B
whose concentration is 0. Then, this chemical reaction produces ‘infinite’ free energy
that can be converted into work. Thermodynamically nothing is wrong, but this
sounds too good. What happens, actually?

It is said that the ‘grade’ of chemical energy is lower than that of mechanical
energy, and that of heat energy is further lower than that of chemical energy. What
does this refer to?

If we wish to do statistical mechanics within classical mechanics, there is no con-
cept of the number of states W (E, V ), since there is no concept of energy level,
but statistical mechanics existed before quantum mechanics. Instead of W (E, V ), a
quantity proportional to it, i.e., the volume W̃ (E, V ) of the phase space with energy
less than E:

W̃ (E, V ) =
1

N !

∫
q1∈V,···,qN∈V, (p2

1+···+p2
N )/2m≤E

dΓ (1.5.23)

was used with the Boltzmann’s famous formula, where dΓ = d3q1 · · · d3qNd
3p1 · · · d3pN

is the phase volume element. Here, the factor 1/N ! coming from the indistinguisha-
bility of identical particles is taken into account. This can be computed in terms of
the high-dimensional sphere volume B3N as

W̃ (E, V ) =
1

N !
V NB3N(

√
2mE). (1.5.24)

Since B3N(ar) = a3NB3N(r), we obtain from (1.5.8)

W (E, V ) =
1

h3N
W̃ (E, V ) (1.5.25)

Thus, it is sensible to relate the phase integral and quantum mechanical trace over
all the states as

Tr → 1

N !h3N

∫
dΓ. (1.5.26)
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In other words, h3N may be understood as the phase volume occupied by a single
microstate.116

Non-interacting spin system in an external magnetic fieldq
If magnetic atoms are dilute in an insulating solid, they do not interact with each
other;117 such a dilute magnet may be understood as a collection of non-interacting
spins. Here, for simplicity, the spin value is ±1 and its magnetic moment is µ times
the value of the spin.

In the magnetic field B (6= 0, in z direction), the system Hamiltonian is usually
written as

H = −
∑

i

µBσi, (1.5.27)

where σi is the ith spin (±1 for the±z direction, respectively). Does this Hamiltonian
express the energy of the system? Since there is no interaction among spins, this
(rather artificial) system should not have internal energy (or always E = 0118). This
is indeed true. This Hamiltonian (1.5.27) describes the potential energy of spins
placed in a magnetic field. In other words, it is the interaction Hamiltonian between
the spin system and the system M creating the external magnetic field B (or you
could say the interaction energy between the spin system and the magnetic field
B). Therefore, it is natural to consider the system as a thermally isolated system
whose Hamiltonian is given by (1.5.27). The natural thermodynamic potential is
J = E − BM , where M is magnetization.119 Our system is quite artificial, and
always E = 0, so J = −BM . The natural thermodynamic variables are J and B, so

116The above argument is exact only for ideal gas, so many readers would say that it is not
generally convincing. There is a formal argument with the aid of the Wigner representation. For
this formal argument, see Supplementary Pages.

117〈〈Ordering at very low temperatures〉〉 If there is no interaction, the system entropy stays
very large even at T = 0, so such a system contradicts thermodynamics. In reality, however
dilute the spin system is, there are residual interactions among spins, which cannot be ignored at
sufficiently low temperatures. Furthermore, although here magnetic dipole interactions are ignored,
they are not only long-ranged but also without any shielding effect, so very serious problems occur.
For example, the system thermodynamic functions depend on the sample shape. Here, we consider
only the situations where we may ignore the spin-spin interactions.

118In the actual system, spins are riding on atoms, so we cannot ignore, e.g., kinetic energy of
atoms as we will discuss later, but for the time being, we assume as if there are only spins.

119J may be called a generalized enthalpy. Compare dE = TdS + BdM in the present case and
that for a gas system: dE = TdS − PdV . The usual enthalpy is H = E − (−PV ) = E + PV .
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we should count w(J,B), the number of eigenstates of (1.5.27) in the shell (J−δJ, J ].

Let N+ be the number of upward spins and N− that of downward spins. Then, the
magnetization M reads M = µ(N+ −N−), so the number of microstates consistent
with the macrostate (−BM,B) is given by

w(J,B) =
N !

N+!N−!
. (1.5.28)

Here, note that N± = (N ±M/µ)/2 = (N ∓ J/µB)/2. Using Boltzmann’s principle
(translation rule) with the aid of Stirling’s formula N ! ∼ (N/e)N , we have

S = −kB(N+ logN+ +N− logN− −N logN). (1.5.29)

The Gibbs relation is dJ = TdS −MdB. Consequently, we obtain

1

T
=
∂S

∂J

∣∣∣∣
B

=
kB

2µB
log

N+

N−
, (1.5.30)

or
M = µN tanh βµB, (1.5.31)

where β = 1/kBT is a standard notation.120

Starting from a low temperature, if we increase the temperature, N−/N+ ↗ 1.
This ratio is at most one even in the T →∞ limit. However, if we flip all the spins in
the magnetic field, N− > N+ is realized easily,121 and it corresponds to β < 0 as can
be seen from (1.5.31). This is a negative temperature state. This is a higher energy
state than any positive temperature state, so we may conclude that the negative
temperature is actually ‘hotter’ than T = +∞. This sounds natural in terms of β,
since β ↘ implies higher temperature.

Let us ‘measure’ the temperature of a negative temperature state with a gas
thermometer (e.g., a monatomic ideal gas with n particles, so P ∝ T and E =

120The idealized spin system we are discussing here is simple but an over-idealized artificial
system. It is thermodynamically strange. For example, the internal energy is always E = 0 (or
constant) no matter what happens to spin configurations, because there is no spin-spin interaction
at all; even if entropy changes, energy remains unchanged. To change entropy, the magnetization
must be changed, so the standard thermodynamic relation (∂E/∂S)M = T is meaningless, so no
contradiction actually happens. That is, the system is indeed thermodynamically strange, but it
does not contradict thermodynamics in contrast to classical ideal gas.

121Here, the up or down direction of the spin is defined relative to the magnetic field as above.
To flip spins we can use an electromagnetic pulse, which is an important experimental means in
magnetic resonance.
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3nkBT/2).122 Let the negative temperature state we wish to observe have magne-
tization M0 = µ(N+ − N−) < 0 (E = B|M0|), and the state of the spin system
after equilibrating with the thermometer be with magnetization M > 0 (it must be
a positive temperature state). The total energy including the potential energy −hM
is conserved, so

B|M0|+
3

2
nkBT0 = −MB +

3

2
nkBT. (1.5.32)

Because |M0| = O[N ], we must conclude that 3nkBT/2 must also be of order N .
That is T = O[N/n]. A thermometer must be a tiny system, so this ratio must be
huge: T � 1. Then, M is almost zero, so

T =
2B|M0|
3kBn

(1.5.33)

must be accurate. The negative temperature state, though destroyed upon contacting
with the thermometer, was indeed very hot. If the reader wishes to solve this problem
more ‘mechanically’ and to confirm this is indeed correct, use (1.5.31) and then solve
(1.5.32).

This calculation explains why negative temperature systems cannot exist for a long
time (i.e., as a stable equilibrium state), because spin systems are always coupled
with a crystal lattice that has no upper energy bound.123

In reality,r each spin interacts with the degrees of freedom of the lattice in which
it is sitting. If we include the contribution of this interaction, the entropy of the
system should have the following form

S = S(M) + Se(E,M). (1.5.34)

Se(E,M) reflects the effect of the lattice system whose number of states increases
rapidly with the increase of energy, so due to the presence of Se, the ‘real’ ideal spin
system cannot have negative temperature states in equilibrium. The internal energy
is no more constant even if B = 0, or S is no more constant even if M is constant, so
E and M are independent thermodynamic coordinates and the Gibbs relation can
tell us a nontrivial relation124

dE = TdS +BdM. (1.5.35)

122This is only a gedanken experiment. As can be seen easily, the temperature is so high that
even relativistic corrections may be needed. Here, we proceed naively without such corrections.

123Precisely speaking, even if the energy is not bounded from above, negative temperature states
are realizable as stable states, if the number of microstates does not increase sufficiently with energy.

124In the over-idealized free spin case, dE = TdS +BdM is still correct, but since E = 0, so this
gives dS = −(B/T )dM , which is of course correct.
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Now, let us compare (1.5.34) and the formula for the ideal gas entropy, which is
divided into the part dependent solely on the gas-specific variable V and the rest
that depends only on internal energy:

S = S(V ) + Se(E). (1.5.36)

This separation is the true meaning of the adjective ‘ideal.’ This suggest that the
‘true ideal spin system’ is the spin system for which Se in (1.5.34) is dependent only
on E.

Freely jointed chain (ideal polymer chain)r
Suppose noninteracting spins are sitting on a one-dimensional lattice (Fig. 1.5.1
lower left). Next, let us regard each arrow as a small molecule (monomer) (an up
or down spin corresponds to an up or down monomer, respectively) and connect
(polymerize) them in the lattice order. We have a polymer chain in one-dimensional
space (Fig. 1.5.1 right).125 Corresponding to the lack of any interaction among
spins, the monomers can freely change its directions (up or down) except for being
connected.

Let us assume that the chain starts from the origin, and the number of steps =
monomers is N , which is called the degree of polymerization. The length of a single

125〈〈Usefulness of spin-monomer correspondence〉〉 The reader might think it is unnatural
that spins on the lattice do not interact each other, so the ‘magnet-polymer’ correspondence de-
scribed here is highly artificial. In reality, there are many interactions among monomers, so we can
think them as spin-spin interactions. Actually, this correspondence provides an effective way to
compute the properties of polymers (e.g., polypeptides). See P. J. Flory, Statistical mechanics of
chain molecules (Interscience Publishers, 1969).
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monomer is `.

O

R

Fig. 1.5.1 A system consisting of indepen-
dent spins that can assume up or down state
may be identified with a polymer chain. The
end-to-end ‘vector’ R corresponds to the
magnetization. Here, to make the figure clear
spins = steps are tilted slightly in the polymer
chain.

The translation of spin system quantities into the polymer chain quantities is: M →
L, h → F , and µ → `, where L is the end-to-end distance, and F the external
tensile force.126 Since N± = (N ±L/`)/2, the result (1.5.30) for the spin system tells
us

F =
1

2
kBT log

N + L/`

N − L/`
, (1.5.37)

or

L = N` tanh
`F

kBT
. (1.5.38)

We see that the chain end-to-end distance (polymer length) shrinks upon heating
under a constant external force. This is the characteristic feature of entropic elastic-
ity—elasticity due to entropy change in contrast to the elasticity of solid due mainly
to energy change— that is the essence of rubber elasticity.

Just as the spin system discussed above, this polymer system is also a rather
artificial system without any interactions among monomers. Furthermore, kinetic
energy of monomers is totally neglected, so the internal energy E of the polymer
is always constant (zero) independent of T . Its thermodynamic space is virtually

126The Hamiltonian of a stretched polymer under the influence of F is often written as

H = −
∑

i

F`σi,

by mimicking the spin system, σi = ±1 (+1/−1 is upward/downward), but this is not the Hamilto-
nian of the polymer system, but the interaction Hamiltonian between the polymer and the system
producing force F (just as noted for the ‘ideal spin’ case (1.5.27)). That is, this H is the potential
energy of the polymer in the force field. There is a minus sign, because to shorten the chain against
the external force requires energy.
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spanned by L only, and S cannot be changed independently from L. Therefore, the
model is not enough to discuss real polymer chains. In reality, monomers undergo
thermal fluctuation, but its contribution is totally ignored in this model. To consider
the contribution of thermal fluctuation to entropy, we must add a portion Se(E,L)
that depends much more on internal energy than on conformations (or L) as127

S = −kB

(
N+ log

N+

N
+N− log

N−
N

)
+ Se(E,L). (1.5.39)

For such a model the Gibbs relation dE = TdS + FdL can give nontrivial relations.

The standard statistical mechanics approach may be to make a more realistic
microscopic model and to compute a more realistic entropy formula, but general
qualitative features may be obtained thermodynamically in a more robust fashion.
Therefore, let us pursue logical consequences of the characteristic feature of entropic
elasticity: if the chain is warmed up under a constant force, it shrinks. That is,

∂L

∂T

∣∣∣∣
F

< 0. (1.5.40)

It is a good occasion to brush up the reader’s elementary skill. Also she may be able
to recognize the power of thermodynamics.128

With the aid of a Maxwell’s relation129 we can rewrite (1.5.40) as

∂L

∂T

∣∣∣∣
F

=
∂S

∂F

∣∣∣∣
T

=
∂S

∂L

∣∣∣∣
T

∂L

∂F

∣∣∣∣
T

< 0. (1.5.41)

127If Se(E,L) does not depend on L at all, the chain is called an ideal polymer chain. Recall
ideal gas and ideal spin systems.

128The contraction of a loaded rubber band upon heating was discovered by J. Gough in 1805.
Joule discovered that adiabatic stretching generates heat in 1857. This was the first observation of
adiabatic change in nongaseous substance.

129Our basic Gibbs relation is dE = TdS + FdL, but the independent variables of (1.5.40) are
T and F , so we consider the following Legendre transformation E − ST − FL, which gives the
transformed Gibbs relation containing −SdT − LdF .

As we will see in [T9], we use Maxwell’s relation in the form of ∂(x,X)/∂(Y, y) = 1 in this book.
Here, the upper and lower case letter pair of the same alphabet implies a conjugate extensive-
intensive variable pair (with respect to energy). The calculation in the present example looks like:

∂L

∂T

∣∣∣∣
F

=
∂(L,F )
∂(T, F )

=
∂(L,F )
∂(T, S)

∂(T, S)
∂(T, F )

=
∂(T, S)
∂(T, F )

=
∂S

∂F

∣∣∣∣
T

.
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Thus, since (∂L/∂F )T > 0, if the chain is stretched, the entropy of the chain decreases
under constant temperature:

∂S

∂L

∣∣∣∣
T

< 0. (1.5.42)

This can be intuitively visualized as Fig. 1.5.2.

a

b

Fig. 1.5.2 The temperature represents how vigorously kids are moving around. This also includes
‘vibration’ of individual bodies. The figure is after N. Saito, Polymer Physics (Shokabo, 1967) (The
original picture was due to T. Sakai’s lecture according to Saito). Entropy is monotonically related
to the width of the range kids can play around easily, which becomes smaller if the distance between
the flags is increased.

How can we check (1.5.40) with an easy experiment? The length change upon
warming up is not very large.130 We should observe a phenomenon more easily
observed and logically connected to the length change. If the chain is adiabatically
stretched, then the kids in Fig. 1.5.2 cannot run around easily, but the entropy must
be maintained, so they must keep ‘moving.’ That is, they must move their bodies
vigorously without running around to make up the entropy lost due to the restricted
running range. Thus, we guess the temperature goes up; we expect

∂T

∂L

∣∣∣∣
S

> 0. (1.5.43)

During a reversible adiabatic process, entropy is constant. Since thermodynamics
can compute derivatives for reversible changes only, a derivative under adiabatic
condition is always the derivative under constant entropy. Let us first check the

130However, still it is possible to observe the length change with the naked eye. Strongly stretch
a rubber band with a mark around its center and fix its both ends. Then, heat, say the right half
of the rubber band with a hair dryer. We can observe that the central mark is pulled to the right
slightly.
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consistency of (1.5.42) and (1.5.43) (for an explanation of Jacobian technique used
here, see the fine-lettered explanation [T9]):

∂S

∂L

∣∣∣∣
T

=
∂(S, T )

∂(L, S)

∂(L, S)

∂(L, T )
= −CL

T

∂T

∂L

∣∣∣∣
S

. (1.5.44)

Here, CL is the heat capacity of the polymer chain under constant length.131 The
heat capacity is positive, so the partial derivative in (1.5.42) and that in (1.5.43)
must have the opposite signs. (1.5.43) can be easily experienced by stretching a
small portion of a wide rubber band (such as used to bundle broccoli) rapidly and
put the part being kept stretched to the lip; the reader will feel warmth.132 Can the
reader guess the sign of

∂S

∂F

∣∣∣∣
L

? (1.5.45)

[T9] Jacobian technique
To manipulate many partial derivatives, it is very convenient to use the so-called
Jacobian technique. The Jacobian of two functions X and Y of two independent
variables x, y is defined as the following determinant:

∂(X,Y )
∂(x, y)

≡

∣∣∣∣∣∣
∂X
∂x

∣∣
y

∂X
∂y

∣∣∣
x

∂Y
∂x

∣∣
y

∂Y
∂y

∣∣∣
x

∣∣∣∣∣∣ = ∂X

∂x

∣∣∣∣
y

∂Y

∂y

∣∣∣∣
x

− ∂Y

∂x

∣∣∣∣
y

∂X

∂y

∣∣∣∣
x

. (1.5.46)

In particular, we have
∂(X, y)
∂(x, y)

=
∂X

∂x

∣∣∣∣
y

. (1.5.47)

It should not be hard to guess the cases with more variables and functions. For
example, when we must keep many variables constant

∂X

∂x

∣∣∣∣
x1,···,xn

=
∂(X,x1, · · · , xn)
∂(x, x1, · · · , xn)

(1.5.48)

From the property of the determinant, if we change the order of variables or
functions, there is a sign change (this is true for general cases larger than 2× 2):

∂(X,Y )
∂(x, y)

= −∂(X,Y )
∂(y, x)

=
∂(Y,X)
∂(y, x)

= −∂(Y,X)
∂(x, y)

. (1.5.49)

131〈〈Heat capacity and entropy〉〉 Suppose the system temperature increases by ∆T when
heat ∆Q is added to it under constant X. Then, ∆Q/∆T = T∆S/∆T must be equal to the heat
capacity CX . This is a method to measure the heat capacity.

132We use our lips, because it is sensitive to temperature. Use rubber bands that are quite unlikely
to snap lest you have very painful experience.
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If we assume that X and Y are functions of a and b, and that a and b are, in turn,
functions of x and y, we have the following multiplicative relation:

∂(X,Y )
∂(a, b)

∂(a, b)
∂(x, y)

=
∂(X,Y )
∂(x, y)

. (1.5.50)

This is a disguised chain rule. The proof of this relation is left to the reader. Use

∂X

∂x

∣∣∣∣
y

=
∂X

∂a

∣∣∣∣
b

∂a

∂x

∣∣∣∣
y

+
∂X

∂b

∣∣∣∣
a

∂b

∂x

∣∣∣∣
y

. (1.5.51)

The rest is straightforward algebra. From (1.5.50) we get at once

∂(X,Y )
∂(x, y)

= 1
/

∂(x, y)
∂(X,Y )

. (1.5.52)

In particular, we have
∂X

∂x

∣∣∣∣
Y

= 1
/

∂x

∂X

∣∣∣∣
Y

. (1.5.53)

Using these relations, we can easily demonstrate

∂X

∂y

∣∣∣∣
x

= − ∂x

∂y

∣∣∣∣
X

/
∂x

∂X

∣∣∣∣
y

(1.5.54)

as follows:
∂(X,x)
∂(y, x)

(1.5.50)
=

∂(y,X)
∂(y, x)

∂(X,x)
∂(y,X)

(1.5.49)
= −∂(x,X)

∂(y,X)
∂(X, y)
∂(x, y)

. (1.5.55)

Then, use (1.5.52). A concrete example of this formula is

∂P

∂T

∣∣∣∣
V

= − ∂V

∂T

∣∣∣∣
P

/
∂V

∂P

∣∣∣∣
T

, (1.5.56)

which relates thermal expansivity and isothermal compressibility.
Let {x,X} and {y, Y } be two conjugate pairs of thermodynamic variables with

respect to energy. Notice that all the Maxwell’s relations can be unified as

∂(x,X)
∂(y, Y )

+ 1 = 0 or
∂(x,X)
∂(Y, y)

= 1. (1.5.57)

Confirm the statement.133 When this formula is used, do not forget that the conjugate

133When the author mentioned this to his colleague, M. Stone, he showed me: V. Ambegaokar
and N. D. Mermin, “Question # 78. A question about the Maxwell relations in thermodynamis,”
Am. J. Phys., 69, 405 (2001), which asks, ‘where in the literature this (= ∂(P, V )/∂(T, S) = 1)
pleasing and apparently little known way of looking at Maxwell’s relations can be found?” The
answer appeared in Am. J. Phys., 70, 105 (2002) by D. J. Ritchie and by H. S. Leff. The former
wrote actually Mermine taught this in 1967 [a demonstration is given in D. J. Ritchie, Am. J.
Ritchie, “A simple method for deriving Maxwell’s relations,” Am. J. Phys., 36, 760 (1968)] The
latter quotes this same paper. The derivation given is lengthy, but this is almost a trivial result of
the differential forms: d2E = 0.
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variable of V is −P (do not forget the sign). Needless to say, we can use

∂(−X,Y )
∂(x, y)

= −∂(X,Y )
∂(x, y)

=
∂(X,Y )
∂(−x, y)

. (1.5.58)

(1.5.43) also implies

∂T

∂L

∣∣∣∣
S

=
∂T

∂F

∣∣∣∣
S

∂F

∂L

∣∣∣∣
S

> 0⇒ ∂T

∂F

∣∣∣∣
S

> 0. (1.5.59)

That is, if we suddenly134 remove the tensile force when the rubber band is stretched,
its temperature can be lowered. Or, in the magnetic system language

∂T

∂B

∣∣∣∣
S

> 0 (1.5.60)

allows us to cool the spin system by removing the magnetic field (and reducing the
order).135 This is the principle of adiabatic cooling.

More generally, assume that the system entropy depends on an intensive param-
eter α that can increase the order in the system. Tensile force F or magnetic field
B is such a parameter that can control the alignment of monomers or spins. Sup-
pose that we can increase α adiabatically (and in a quasiequilibrium fashion). Then,
S(T, α) = const., but if T were maintained, S should have decreased, so increasing α
adiabatically should increase the system temperature to maintain the entropy (recall
the rubber band).

Now, cool the system to the original temperature, and then return α to the orig-
inal value. The system should have been cooled. This is the general principle of the
adiabatic cooling. In practice, α is increased isothermally, and then adiabatically α
is reduced to the original value. The system cools down as illustrated by the path in
Fig. 1.5.3.

134In practice, we can simply relax a stretched rubber band rapidly. This relaxation is far slower
than the molecular relaxation rates, so the resultant process is virtually quasistatic. Needless to
say, the warming up due to heat influx from the ambient air is time consuming, so we can realize
a reversible adiabatic process.

135For a noninteracting spin system, as seen from (1.5.31), B/T is constant under the S constant
condition, so we can see this explicitly.
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Fig. 1.5.3 Adiabatic cooling.
Initially, the system is at T1. Isothermally, α is
increased as α1 → α2. This decreases entropy.
Now, α is returned to the original smaller value
adiabatically. The entropy is maintained, and
the temperature decreases (adiabatic cooling) to
T2. The dotted path is the one explained initially
in the text.
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Problems for Chapter 1

1.1 [Equivalence of heat and work]
A block of mass M = 1 g is at rest in space (vacuum). Another block of the same
mass and velocity V = 1.5 km/s collides with the first block and the two blocks stick
to each other.
(1) Assuming that there is no radiation loss of energy and that there is no rotation of
the resultant single block, obtain the temperature of the resultant single block after
equilibration. Assume that the specific heat of the material is 2.1 J/g·K.
(2) If rotation of the resultant body is allowed, what can be said about its final tem-
perature? In particular, is it possible not to raise the temperature of the resultant
single block? (Only a qualitative discussion will be enough.)

1.2 [Exchange of temperatures]
Suppose there are two water tanks A and B containing the same amount of water.
Initially, A is 42◦C and B is 25◦C. The final state we want is A to be 25◦C and B
42◦C (that is, the temperatures of A and B are exchanged; e.g., A is the used warm
bath water, and B new clean tap water). Assume that the whole system is thermally
isolated.
(1) Is the process reversibly feasible? Explain why.
(2) Devise a process. No precise statement is needed; only state key ideas.
(3) If the reader’s process in (2) contains mechanical parts (e.g., a heat engine), de-
vise a process without any moving parts. No precise statement is needed; only state
key ideas. The reader can use other containers to hold water and can freely move or
flow water (ignore dissipation).

1.3 [The fourth law of thermodynamics]
(1) For 0.5 moles of a certain substance the equation of state is obtained as:

E = κTV 1/2, (1.P.1)

where E is internal energy, V is volume, T is absolute temperature, and κ is a con-
stant. Write down the equation of state for N moles of this substance.
(2) We can define extensive quantities per molecule x = X/N , where X = E, S, V
and x = e, s, v. Write down the Gibbs relation for one mole (or a molecule). That
is, express de in terms of extensive quantities per mole (or molecule).

1-XX [Elementary thermodynamics]
The following equations of state cannot be realized, because they violate some gen-
eral rules of thermodynamics. State explicitly the reason why they are impossible.
Notations are standard ones (e.g., E is the internal energy, etc.) and α is a positive
constant.
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(1) S = α[N2E/V ]1/3

(2) S = αV 3/(NE)
(3) S = α(NE)1/2e−EV/N

(4) S = N log(V/N).

1-XX [Elementary Thermodynamics]
(1) A substance undergoes a melting phase transition at temperature Tm under pres-
sure p. The latent heat is ∆H(cal/mol). The specific heat (in cal/molK) in the solid
phase is CS and in the liquid phase CL; they are insensitive to temperature. Let
T0 < Tm < T1. Find the entropy difference between the solid at T0 and liquid at T1.
(2) Find the excess entropy the supercooled liquid at T0 has relative to the solid at
the same temperature.136

1-xx [The most general expression of Maxwell’s relations]
Demonstrate that all the Maxwell’s relations are unified into the following form:

∂(x,X)

∂(y, Y )
+ 1 = 0. (1.P.2)

Here, X and Y are generic extensive quantities, and x and y are the corresponding
conjugate intensive variables (wrt internal energy).

1.4 [Asymmetric coin and limit theorem]
The law of large numbers applies to an unfair coin as well. Suppose the coin we use
has a probability 1/2 + ε to yield a head (H). Otherwise, a tail (T) is yielded. One
get $1 when H shows up and must pay $1, otherwise.
(1) Write down the generating function ωN(k) for the reader’s expected gain per one
coin-tossing sN for the length N coin-tossing sequence.
(2) Compute the mean and the variance of sN .
(3) Using the generating function technique, find the density distribution function
fN for the fluctuation of sN to demonstrate137 the law of large numbers and the
central limit theorem.

1-XX [Elementary probability]
Monty problem.

1-XX [Uncorrelatedness and independence]
Let X be a Gaussian stochastic variable, and Y = ±X depending on the coin tossing
(e.g., choose + for head). Show that X and Y are uncorrelated, but not statitically

136Assume that equilibrium thermodynamics applies to metastable states. This assumption is
practically always all right.

137Need not be mathematical; quite a theoretical physicist’s way is OK!
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independent.138

1.5 [How to use Chebyshev’s inequality]
(1) We wish to know whether a coin is fair or not. To estimate the probability of
the head H within ±0.01, how many throwings do you need? Let us tolerate larger
errors once in 100 runs. You may assume that the coin is not grossly unfair.
(2) Theoretically, it is known that if the coin is flipped rapidly, the final surface
agrees with the original surface with probability 0.51 (for example, if the original
surface is H, then with probability about 0.51 H is obtained). To confirm this bias
how many throwings do you think are needed?

1-xx [Insufficiency of weak law of large numbers] Let {Xn} be iid with

P (|X| > t) = e/t log t (1.P.3)

for t > e. Show that 1.6 [A Monte Carlo method to determine π]
There is a unit square (1× 1 square) and in it is inscribed a disk of radius 1/2 shar-
ing the geometrical centers. Randomly dropping points uniformly on the square, and
counting the number of points landing on the disk, we can measure π (or rather π/4
directly). How many points do we need to obtain 3 digits below the decimal point
of π/4 with probability more than 99%?

1.7 [Law of large numbers does not hold, if the distribution is too broad (if fluctua-
tions are too wild)]
The Cauchy distribution that is defined by the following density distribution func-
tion

p(x) =
1

π

a

x2 + a2
(1.P.4)

does not satisfy E(|X|) < +∞ (needless to say, the variance is infinite). Actually,
the density distribution of

En =
X1 + · · ·+Xn

n
(1.P.5)

has exactly the same distribution function as X1, if {Xj} all obey the same Cauchy
distribution and are statistically independent. Let us demonstrate this.
(1) What is the characteristic function of the Cauchy distribution? You can look up
the result, but even in that case you must explain why the result is correct.
(2) Show what we wish to demonstrate.

1.8 [St. Petersburg Paradox by Daniel Bernoulli]
Let {Xi} be iid with

P (X1 = 2n) = 2−n (1.P.6)

1384.16 of J. P. Romano and A. F. Siegel, Counterexamples in Probability and Statis-
tics(Wadsworth & Brooks/Cole 1986).
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for all positive integers n.
(1) Show that E(X1) =∞.
Thus, it seems that if X1 is the gambler’s gain, the reader can participate in this
gambling game with any entry price and still can expect a positive gain. However,
any sensible person would pay $1000 as a fair price for playing. Why? This is the
‘paradox.’
(2) Needless to say, the law of large numbers does not hold for En. This implies that
empirically obtainable expectation and theoretical one should have some discrepancy.
Indeed, it can be proved (the reader need not show this; not very easy) that for any
positive ε

P (|En/ log2 n− 1| > ε)→ 0 (1.P.7)

in the n→∞ limit. Recall that En is the expected payoff. Explain why the reader
does not wish to pay $1000. (Or for this to be a fair price how many times does the
reader have to play?)

1.9 [Bertrand’s paradox]
Explain ‘Bertrand’s paradox’ in about 10 lines (without using outrageous fonts).
What lesson can you learn? [You can easily find a detailed account in the web.]

1.10 [System with dissipation]
There is a classical particle system described by the canonical coordinates {q, p}
(q and p are collective notations for position and momentum coordinates of all the
particles in the system). In terms of the Poisson bracket and the system Hamiltonian
H the equation of motion may be written as

dq

dt
= [q,H],

dp

dt
= [p,H]− αp, (1.P.8)

where α is a small positive constant. That is, the system is not perfectly classical
mechanical, but contains a certain effect of dissipation.139

(1) Demonstrate that the Liouville’s theorem is violated for this system.
(2) Demonstrate that the system energy decreases. (Assume that H = K + U as
usual and K is quadratic in p.)
(3) However, show that if H is time dependent, then the system energy may be
maintained.

1.11 [Wrong logic in a popular textbook]
The following can be read in a textbook. Point out the error in the argument.

In general, there is no logical “room” for adding extra assumptions, such
as equal a priori probability. The evolution of an actual system is deter-
mined by the laws of mechanics (or quantum mechanics). If the results

139This model may look artificial, but similar models are used to study nonequilibrium systems.
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of using any extra assumptions always agree with the logical consequence
of the laws of mechanics, and it should be possible to show that fact. If
they do not agree with the laws of mechanics, then the extra assumptions
are wrong.

1.12 [Another expression of microcanonical partition function]
Classically, the microcanonical distribution may be written as

ŵ(E) =
1

N !h3N

∫
δ(H(q, p)− E)dqdp. (1.P.9)

Show that this can be expressed as follows:

ŵ(E) =
1

N !h3N |gradH|
dσ, (1.P.10)

where σ is the area element of the constant energy surface and gradH is the 3N -
dimensional gradient vector of the system Hamiltonian H with respect to the canon-
ical variables (qi, pi).

1.13 [Equipartition of energy with the aid of microcanonical ensemble]r
Within the microcanonical ensemble formalism140 for a classical fluid consisting of
N interacting but identical particles,
(1) Show that the temperature T can be expressed in terms of the average of the
reciprocal kinetic energy as (N � 1 may be assumed)

kBT =
2

3N〈K−1〉
, (1.P.11)

where K is the total kinetic energy of the system.
Comment: We are NOT discussing ideal systems. The system can have any interac-
tion among particles.
(2) In the thermodynamic limit show that this is equivalent to

kBT =
2

3
〈κ〉, (1.P.12)

where κ is the average kinetic energy par particle. This is essentially the equiparti-
tion of kinetic energy. [Hint. the reader may use intuitively the weak law of large
numbers.]

1.14 [Generalized homogeneous function]

140Use Ω(E), the phase volume of the states with the total energy not exceeding E.



86 CHAPTER 1. BASICS

As we will learn much later, various thermodynamic quantities diverge at the second-
order phase transition point (critical point). The free energy density f as a function
of temperature τ ∝ T − Tc and pressure p behaves as141

f(λy1τ, λy2p) = λdf(τ, p), (1.P.13)

where λ (> 0) is a scaling factor, d is the spatial dimensionality, and y1 and y2 are
real constants (related to the so-called critical exponents). That is, f is a generalized
homogeneous function.142

Formulate the counterpart of Euler’s theorem and demonstrate it. You may freely
use the method of characteristics.

1.15. [Mixing entropy and Gibbs’ paradox]r
We have two ideal gases with the same volume V , pressure P , and temperature T .
These two gases consist of different chemical species. Assume that the whole system
is thermally isolated during the following processes.
(1) Two boxes containing the above gases are connected. That is, now the total
volume of the mixture is 2V . Find the entropy change due to this procedure of
joining two boxes.
(2) Find the entropy change if two gases are mixed into a single volume of V .
(3) How can you actually measure the entropy change in (1) experimentally?

1.16 [To check that Boltzmann’s formula does not contradict thermodynamics]r
Let us check that Boltzmann’s principle (within classical physics) is indeed consistent
with thermodynamics: that is, if S = kB log ŵ(E, V ),

dS =
dE + PdV

T
, (1.P.14)

where ŵ(E, V ) is the phase volume of microstates satisfying that the energy is in
(E − δE,E] and the volume is in (V − δV, V ]. Here, we clearly know what E and
V are in both mechanics and in thermodynamics. The pressure P can be computed
mechanically, and T is related to the average kinetic energy K of the system.

Using the Boltzmann formula

dS = kB
1

ŵ

∂ŵ

∂E
dE + kB

1

ŵ

∂ŵ

∂V
dV. (1.P.15)

Therefore, if we can compute partial derivatives in the above and identify their mean-
ings we should accomplish what we desire. This is actually what Boltzmann did in

141Precisely speaking, this is the singular part of the free energy as we will learn later. Peculiar
phenomena near the critical point are governed by this part of the free energy.

142B. Widom realized from the empirical data that if f is a generalized homogeneous function,
then critical peculiar phenomena can be explained in a unified fashion.
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1864. The demonstration is not very trivial, so we accept the following relation

kB
1

ŵ

∂ŵ(E, V )

∂V
→ P

T
(1.P.16)

(in the thermodynamic limit) and consider only the energy derivative. We can
write

ŵ(E, V ) =

∫
[E]

dqdp−
∫

[E−δE]

dqdp = δE
∂

∂E

∫
[E]

dqdp, (1.P.17)

where [E] denotes the phase volume with energy not larger than E. We assume
that the gas is confined in the volume V . Let E = K(p) + U(q), where K is the
total kinetic energy, and U the total intermolecular potential energy. The phase
integration may be written as∫

[E]

dqdp =

∫
dq

∫
K(p)≤E−U(q)

dp. (1.P.18)

Thus, the integration with respect to p is the calculation of the volume of the 3N -
sphere of radius

√
2m(E − U(q)).

(1) Show that

∂

∂E

∫
[E]

dqdp =

∫
dq
S3N

3N
2m

3N

2
[2m(E − U(q))]3N/2−1, (1.P.19)

where S3N is the surface area of the (3N − 1)-dimensional unit sphere.
(2) Using this formula, we can differentiate the integrand with E. Obtain

1

ŵ(E, V )

∂ŵ(E, V )

∂E
= kB

(
3N

2
− 1

)〈
1

K(p)

〉
. (1.P.20)

(3) We know from the kinetic theory that the average kinetic energy of a point
particle is proportional to T (precisely speaking, the average of p2/2m = 3kBT/2).
Assuming that all the kinetic energies of the particles are statistically independent,143

demonstrate that the formula in (2) is indeed equal to 1/T .

1.17 [Superrelativistic ideal gas]
Consider a super-relativistic gas consisting of particles whose energy ε = c|p|, where
c is the speed of light, and p is the particle translational momentum.

143This is not really a trivial statement; we need that the system is ‘normal.’ That is, the
intermolecular interaction range must be very short, and the interactions are sufficiently repulsive
in the very short range.
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(1) We have learned that the equation of state and the constant volume specific heat
CV of an ideal gas may be obtained almost dimensional analytically, if we accept the
basic postulate of statistical mechanics. Following this logic, find the pressure and
CV .
(2) Calculate the entropy to determine the constant corresponding to ‘c’ (the con-
stant in the entropy formula).

1.17’ [Generalization of 1.17]
There is an ideal gas consisting of N particles whose kinetic energy is given by
ε = c|p|α, where p is the momentum, and α and c are positive constants (α = 1 is
the superrelativistic case). Answer the following questions with dimensional analysis
(+ perhaps a little of thermodynamic principles, if needed). [Explicit calculations
will cost you significant points.]
(1) What is the equation of state?
(2) What is the pressure as a function of internal energy?

1.XX [Frenkel defect]
The atoms can be dislocated into interstitial sites upon heating a crystal. They are
the Frenkel defects. Suppose each atom can occupy either a regular lattice site or an
interstitial site. Let us assume that for each lattice site there are b interstitial sites.
Assume that the crystal is made of N atoms. Here, we assume that the state of each
atom does not depend on its environment.
(1) What is the entropy of the state with n dislocated atoms? (You need not try to
simplify the result.)
(2) Suppose it costs an energy ε for an atom to move into an interstitial site from
a regular site. What happens to n, if we double the number of available interstitial
sites? You may assume ε/kBT is large enough.
(3) Instead of (2) what happens if ε = 0?

1.18 [Application of the Sackur-Tetrode equation144]
The following data are all under 1 atm.
The melting point of mercury is 234.2 K and the heat of fusion is 2.33 kJ/mol. The
absolute entropy of solid mercury just at the melting temperature is 59.9J/K·mol.
The entropy increase of liquid between the melting point and the boiling point is
26.2 J/K·mol. The boiling point is 630 K and the evaporation heat is 59.3 kJ/mol.
(1) Calculate the absolute entropy of mercury gas just above the boiling point.
(2) Assuming that mercury vapor is a monatomic ideal gas, estimate Planck’s con-

144The best elementary exposition is found in F. Mandl, Statistical Physics (Wiley, 1971) Section
7.6.
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stant. The reader may use the value of kB.

1.19 [Negative temperature]
Let us consider the two state spin system containing 1 mole of spins as discussed
in the text. Assume that under the magnetic field h, the energy gap between the
up and down spin states is 600 K per spin. Suppose the initial temperature of the
magnet is −500K.
(1) What is the temperature of this system measured with an ideal gas thermometer
containing 10−6 moles of monatomic gas particles?
(2) If, instead, the original negative temperature system is thermally equilibrated
with a 1 mole of ideal monatomic gas that is initially 200K, what is the equilibrium
temperature?
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Chapter 2

Canonical Distribution

2.1 Isothermal systems

Isolated (or thermally isolated) systems are not very convenient practically. Often
we study systems whose temperature is maintained (thermostatted). This is realized
by thermal contact between the system and a heat bath; a heat bath is a sufficiently
large system that can equilibrate fast, so its temperature does not change by its
interaction with the system of our interest.

Do we clearly know all the words in the above paragraph? What is ‘thermal con-
tact’? It is a contact that allows heat exchange. Then, what is heat? We will learn
that our incomplete understanding of heat is a source of big trouble. To characterize
heat microscopically could be a major (perhaps the greatest) fundamental problem
in statistical physics.

What is heat? It is defined only macroscopically (at least in the current state of
physics1). Equilibrium states of a macroscopic system can be specified uniquely by
internal energy and work coordinates (see [T5] in the preceding Chapter). For a pair
of distinct such states, it is possible to change one of them to the other solely by
supplying work from outside under the condition that the system can be influenced

1However, if a system may be described in terms of Langevin equations, there is a systematic
way to define heat. See K. Sekimoto, Stochastic Energetics (Springer, 2010).

91
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only by work (adiabatic condition) (this is a part of the second law; the process is
generally not quasistatic). This allows us to measure the internal energy difference
∆E between these two states. Next, let us change the initial state to the final one
without adiabatic condition. In this case, even if the process is not quasistatic, still
the work W added to the system (or done by the system; it is only a matter of the
sign) can be quantified with the aid of mechanics. The discrepancy Q = ∆ − W
between ∆E and W is called heat.2 This is an operational definition, so a very re-
spectable definition in physics. The wall that allows Q 6= 0 to happen is called a
diathermal wall and the contact between two systems through such a wall without
any exchange of quantities described by work coordinates is the thermal contact. A
heat bath is a constant temperature system contacting with a system under study
through a diathermal wall.3 A wall that does not allow heat exchange but allows
exchange of work through it is called an adiabatic wall. An adiabatic process is a
process that may occur to a system enclosed by an adiabatic wall.4

If we take a big uniform isolated macroscopic object and surround its small (but
still macroscopic) part with a diathermal wall that does not allow exchange of work
coordinates, we can imagine the whole system as a system of our interest (System
I) + its surrounding heat bath (System II). Even if we must discuss a macrostate
in a thermally isolated system that requires external fields, we need only obvious
modifications, so we discuss the case of isolated systems as in the standard textbooks.

2If the process adding work W is not a quasistatic reversible process, the external work added
to the system can be dissipated in the system to generate heat, so W cannot be obtained in terms of
the work coordinate changes. If the work is added reversibly and quasistatically, it can be obtained
by integrating

∑
xidXi along the process.

3In practice, we may use a device that can control the temperature with the aid of a feedback
mechanism while monitoring the system temperature.

4〈〈Adiabatic condition〉〉When we discuss an adiabatic system, the reader may at once imag-
ine a system thermally isolated in a Dewar jar. It may be a good picture of a thermally isolated
system, but in thermodynamics an adiabatic process is a process for which no net heat exchange
exists between the system and any heat bath. For example, if a system is attached to a heat bath
and if there is no net exchange of heat between the system and the heat bath, it is a respectable
adiabatic process. Although an isolated system may be described purely in terms of mechanics,
there is no way to describe a general adiabatic process in terms of pure mechanics.
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II
I

isolated as a whole

Fig. 2.1.1
Heat bath (II) and the system (I).

rLet EX (X = I or II) be the internal energy of System X, and EI+II be the total
internal energy of the thermally contacting I and II.5 Since the systems are assumed
to be macroscopic, we may ignore the energy change due to the contact of these two
systems:

EI+II = EI + EII. (2.1.1)

The ground state energy of the system is set to be zero. Let wII(E) be the number of
microstates for System II with energy in (E− δE,E].6 Since the interaction between
I and II is weak, we may assume that these systems are statistically independent, so
the number of microstates allowed to the total system is

wI+II(E) =
∑

0≤EI≤E

g(EI)wII(E − EI). (2.1.2)

Here, the sum on the right-hand side is taken over all microstates of I (all the eigen-
states of the Hamiltonian of isolated I) whose energy EI belongs to [0, E]. g(EI)
denotes the multiplicity of such microstates. Therefore, assuming that the principle
of equal probability holds for the total system, the probability f(EI) that System I
has energy EI is given by

f(EI) =
1

wI+II(E)
g(EI)wII(E − EI). (2.1.3)

Applying Boltzmann’s principle, we may rewrite (2.1.3) in terms of the entropy of
the heat bath SII(EII) as

f(EI) ∝ g(EI) exp

{
1

kB

SII(E − EI)

}
. (2.1.4)

Let us consider the following Taylor expansion:

SII(E − EI) = SII(E)− EI
∂SII
∂EII

+
1

2
E2

I
∂2SII
∂E2

II
+ · · · . (2.1.5)

5For general thermally isolated systems, the following discussion would be slightly more in-
volved, because the energy of the system and its internal energy may not be identified.

6We have already discussed that δE may be chosen appropriately, but in practice, it is extensive,
i.e., it is a very small but a finite fraction of E.
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SII and EII are both extensive, so ∂SII/∂EII = O[N0
II] (i.e., intensive), where NII

is the number of particles in System II. Furthermore, ∂2SII/∂E
2
II must be the ho-

mogeneous function of degree −1 of the number of particles, so we conclude that
∂2SII/∂E

2
II = O[N−1

II ]. This implies that the second term on the RHS of (2.1.5) is

O[NI] and the third term is O[N2
I /NII]. Therefore, relative to the second term, we

may ignore the third term. (2.1.4) may be written as

f(EI) =
1

Z
g(EI)e

−EI/kBT , (2.1.6)

where we have used the definition of the absolute temperature T . Z is a normalization
constant called the canonical partition function:

Z =
∑
E

g(E)e−βE. (2.1.7)

Here, the summation is over all the distinct eigenvalues of the Hamiltonian H of
System I, and β is 1/kBT as usual. Since g(E) is the multiplicity of the eigenvalue,
we may write

Z = Tr e−βH . (2.1.8)

The obtained probability distribution (2.1.6) of energy of System I is called the
canonical distribution. The probability of the microstates with the same energy
must be the same according to the principle of equal probability, so we may write
the corresponding density operator (canonical density operator) as

ρ =
1

Z
e−βH . (2.1.9)

Classically, if the Hamiltonian of the N particle system is H, the ‘multiplicity’
g(E) appearing in the above should be interpreted as the phase volume of a thin
energy shell (E − δE,E] of width δE, so we should write it as

w̃(E) =
1

N !h3N

∫
E−δE≤H<E

dΓN , (2.1.10)

where dΓN is the volume element of the phase space. Therefore, the canonical par-
tition function may be written as

Z =
1

N !h3N

∑
E

∫
E−δE≤H<E

dΓN e
−E/kBT =

1

N !h3N

∫
dΓN e

−H/kBT . (2.1.11)

Here, the summation over E actually means to collect all the energy shells of thickness
δE. Because the probabilities of the microstates with the same energy are the same
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(the principle of equal probability), the probability density for the microstate γ may
be written as

P (γ) =
1

N !h3NZ
e−βH(γ), (2.1.12)

where H(γ) is the energy of the microstate γ. This is the (classical) canonical
distribution of the microstates.

Thus, the canonical partition function Z may be written generally asr

Z =
∑
E

w(E)e−βE, (2.1.13)

where w(E) is the number of states in the energy shell (E − δE,E] (if classical, it is
replaced with the corresponding w̃ (2.1.10)). w(E) is the microcanonical partition
function introduced in Chapter 1, so the canonical partition function isr essentially
the Laplace transform of the corresponding microcanonical partition function.7

Since w(E) is usually a rapidly increasing function, w(E)e−βE has a peak (this
also applies to w̃(E)). E is extensive and logW (E) is also extensive, so the peak
must be a very sharp peak.8 Therefore,

Z ' w(E∗)e−βE∗
, (2.1.14)

where E∗ is the energy that maximizes w(E)e−βE. Or, we may write9 (2.1.14)
as

Z ' exp

[
1

kB

sup
E

(S(E)− E/T )

]
. (2.1.15)

Therefore,r
inf
E

(E − TS) = A = −kBT logZ. (2.1.16)

Thus, Z directly gives the Helmholtz free energy A. This is the algorithm mentioned
at the beginning of this book.

7Here, following the tradition, no work coordinates are explicitly written, but all the work
coordinates required to single out the relevant thermodynamic state must be fixed (with the usual
reasonable leeway).

8This is the chief idea behind the WKB or the saddle point method (or Varadhan’s theorem in
large deviation theory).

9〈〈Sup and inf〉〉 sup implies ‘supremum.’ supA denotes the smallest number that is larger
than any number in A. The reader may intuitively understand that it is the maximum in A (the
reason why such a non-intuitive concept is needed is that A may not be a closed set). Analogously,
inf is ‘infimum’ and the reader may interpret inf A roughly as the minimum of A.
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This concludes the construction of the statistical framework for isothermal sys-
tems. We started from the principles for isolated systems,10 but we may start directly
with isothermal systems.

To construct statistical mechanics, we do not need any statistical principle, but
have only to specify how to compute thermodynamic observables in terms of me-
chanics (the correspondence rules). To this end, as before, we need only the corre-
spondence rule for thermodynamic coordinates and that for a thermal quantity. For
thermodynamic coordinates, the correspondence rules are the same as in the micro-
canonical case. For the thermal correspondence we have only to postulate

A = −kBT logZ (2.1.17)

instead of Boltzmann’s principle, where for Z we adopt the form as given above. In
place of postulating this correspondence rule, we should be able to postulate a statis-
tical principle: the probability distribution for the microstate γ is given by (2.1.12)
classically, and the density operator is given by (2.1.9) quantum-mechanically. This
was the approach chosen by Einstein as we will see soon below.

We have seen in Section 1.1 that thermodynamics requires only instantaneous
observations of macroobservables, so we need only a representative microstate. The
reproducibility of thermodynamic observables is likely due to statistical indepen-
dence of remote parts of a macroscopic system. Therefore, if a system is sufficiently
large, then a single energy eigenstate11 must be described locally as a canonical
distribution.12

Let us look at Einstein’s approachr to statistical mechanics. The correspondence
rule for the thermodynamic coordinates is the same as usual. From this interpretation

10To be precise, the formalism obtained here can always be used and gives equivalent results to
those obtained by the microcanonical ensemble method (see Sect. 2.6), but the derivation cannot
always be justified. Therefore, the argument given here should be regarded as a heuristic argument
to motivate the canonical formalism. The argument we used can be found in Einstein’s paper of
1903, which is almost his first paper; It can also be found in Gibbs’ famous book.

11We wish to say ‘a single quantum-mechanically pure state’ instead of ‘a single energy eigen-
state,’ but as noted already there are many pathological pure states, so to be safe we confine
ourselves to ‘energy eigenstates.’

12This argument has been justified: e.g., S. Goldstein, J. L. Lebowitz, R. Tumulka and V. N.
Zangih, “Canonical typicality,” Phys. Rev. Lett. 96, 050405 (2006). However, needless to say,
microcanonical distribution is assumed. This assumption cannot be removed as we have discussed
at length. The physical essence of statistical mechanics lies in that ‘almost any’ single energy
eigenstate is interpretable as a microcanonical ensemble.
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of dE and d′W in terms of mechanics is given.13 Einstein chose P = (1/Z)e−βH for his
statistical principle. We assume that the system Hamiltonian depends on parameters
λir that may be controlled externally. Let us write the change of the Hamiltonian
due to the change of these parameters as δH, and the rest as d′H:14

dH = δH + d′H. (2.1.18)

Since the control parameters can be changed adiabatically, Einstein concludes that
the first term in (2.1.18) (averaged over the canonical distribution) is the work.
Therefore, inevitably, heat corresponds to

d′Q ≡ 〈d′H〉. (2.1.19)

This is his translation rule (but not independent of the translation rule for thermo-
dynamic coordinates).

Let P = e− log Z−βH be the canonical distribution. Let us change the temperature
(i.e., β) and the mechanical parameters {λi}:

0 = d

∫
Pdy =

∫
dy [−d logZ −Hdβ − βδH]P (2.1.20)

Here d is the total derivative with respect to the variables β and {λi}. This reads

0 = −d logZ − Edβ − βd′W. (2.1.21)

Using the microscopic expression of heat (2.1.19), we may rewrite this as

0 = −d logZ − Edβ − βdE + βd′Q = −d logZ − d(βE) + βd′Q (2.1.22)

That is,
βdQ = d logZ + d(βE). (2.1.23)

According to thermodynamics, this reads

dS =
1

T
dQ = d

(
E + kBT logZ

T

)
(2.1.24)

13If we use the ordinary correspondence E = 〈H〉, the Gibbs-Helmholtz relation (a purely ther-
modynamic relation) gives −∂ logZ/∂β = ∂(βA)/∂β. This is, however, a relation between partial
derivatives, so we cannot conclude A = −kBT logZ from this.

14Einstein wrote explicitly as

δH =
∑

i

(
∂H

∂λi

)
q,p

δλi,

but such an expression is not needed.
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or −kBd logZ = d(A/T ). Integrating this and ignoring the arbitrary integration
constant,15 Einstein arrived at

A = −kBT logZ. (2.1.25)

Notice that the above argument does not depend on any explicit formula of heat;
what is needed is in (2.1.22) δH is the systematic change due to work.

rSince −kBd logZ = d(A/T ) is an equation obtained under the constant particle
number N condition, (2.1.25) actually must include an arbitrary function f(N) of
N as A = −kBT log[f(N)Z]. As stated when we discussed the Gibbs paradox, there
is no way to determine this for a system without change of N (nor there is any
necessity to do so). What we saw before was that the factor f(N) is determined if
we demand the consistency with the fourth law of thermodynamics, when N may be
changed.

Derivation of the canonical distribution, the general case
As stated before, if we consider only isolated system not subjected to external in-
fluences, we cannot have a statistical theory applicable to arbitrary thermodynamic
states. We must consider thermally isolated systems as well. We realized the states we
must count must be modified from the isolated cases. This modification propagates to
the derivation of canonical distribution. Although here the case of thermal isolation in
general is discussed, the outcome is quite parallel to the isolated case; simply replace
the system Hamiltonian H with the Hamiltonian H +Hi, where Hi is the interaction
Hamiltonian of the system with the external fields.

The stage of the derivation is the same as Fig. 2.1.1. The thermally isolated sys-
tem is assumed to be described by the Hamiltonian HI+II = H +HII (here the suffix
I is dropped for System I). Let the Hamiltonian of the system M needed to impose
the field(s) be HM , and the interaction Hamiltonian between System M and System I
(resp., System II) be, Hi (resp., Hi,II). The total Hamiltonian we must consider is the
sum of all these. However, System M is assumed to be a classical macroscopic system,
we need not worry about it to develop statistical mechanics, so the total Hamiltonian
we must consider is

H +Hi +HII +Hi,II. (2.1.26)
We have already seen that Boltzmann’s principle holds, if we replace internal en-

ergy with an appropriate thermodynamic potential adapted to the thermally isolated
system. This implies that the argument used for isolated systems directly translates
by replacing internal energy E with an appropriately generalized enthalpy J (such
that dJ = TdS − Xdx + · · ·), because J is the expectation value of HT = H + Hi

under the principle of equal probability of its eigenstates.
Therefore, we have only to rewrite (2.1.2) as

wI+II(J) =
∑

0≤JI≤J

g(JI)wII(J − JI), (2.1.27)

15This is allowed, because we have only to shift the origin of the energy.
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where the sum is over the microstates of System I which are the eigenstates of
HT = H + Hi whose eigenvalues JI are in [0, J ], and g(JI) is the multiplicity of
the eigenvalues. The subsequent argument with the aid of Taylor expansion is quite
parallel to the case of isolated systems, and we obtain the formula corresponding to
(2.1.5):

f(J) =
1
Z̃
g(J)e−J/kBT . (2.1.28)

Do not forget that g(J) is the number of eigenstates belonging to the eigenvalue J of
HT (System I interacting with M). The partition function Ẑ may be written as

Ẑ = Tr e−HT /kBT . (2.1.29)

The obtained ensemble is under constant temperature and some external fields, so the
natural thermodynamic potential is the generalized Gibbs free energy Ĝ = J − TS:

Ĝ = −kBT log Z̃. (2.1.30)

For example, for a magnet under a constant field, Ĝ = A − BM , and the Gibbs
relation is dĜ = −SdT −MdB.

†Legendre transformationrq
The Helmholtz free energy A is defined by A = infE{E − TS}. This may be un-
derstood as −A = supS{TS − E}, because E is monotonically related to S. Such a
transformation called the Legendre transformation appears again and again in ther-
modynamics.

The true essence of the Legendre transformation is: a convex curve can be recon-
structed from a set of its tangent lines, where a tangent line of a convex curve is a
line sharing at least one point with the curve, and all the points on the curve are on
one side of the line or on it (i.e., none on the other side).16

y = f (x)

Fig. 2.1.2
The totality of tangent lines can recover a
convex function. The picture can easily be
generalized to higher dimensional spaces with
the aid of tangent hyperplanes.

A line with a slope α is specified by its y-section −f∗(α): y = αx− f∗(α). If this
line is tangent to f , f∗(α) is given by the Legendre transformation of f (Fig. 2.1.3):

f∗(α) = sup
x

[αx− f(x)]. (2.1.31)

16A line is also understood as (a limiting case of) a convex curve. Accordingly, we understand
that a function that is everywhere infinite except at one point is also a limiting case of a convex
curve.
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This is the mathematically standard definition of the Legendre transformation f → f∗.

y=
   xα

y =
   x

   f
*(

)α

α   
_

l

y = f (x)

Fig. 2.1.3 l is the maximum gap between the
dotted line y = αx and the convex curve y =
f(x) (we pay attention to its sign; maximum of
αx− f(x)). Therefore, if we choose

f∗(α) = supx[αx− f(x)],
then y = αx − f∗(α) is the tangent line in the
figure. This gives a geometrical meaning of the
Legendre transformation f → f∗.

If f is convex, then f∗ is convex, and f∗∗ = f . That is, the inverse Legendre transfor-
mation may be given by a symmetric procedure f(x) = supα[αx − f∗(α)]. This can
be illustrated by Fig. 2.1.4. This graphic demonstration uses the fact that any convex
function is a primitive function of an increasing function g: f(x) =

∫ x
g(x′)dx′.

α

x

g

O

 (  )xf

α

x

g

O

 (  )xf

 ( )f * α

(b)(a)

Fig. 2.1.4 Illustration of the relation between f and f∗ in 1D.

In (a) of Fig. 2.1.4 the pale gray area is f(x). Legendre transformation maximizes
the signed area αx − f(x), the dark gray area, by changing x, that is, the (signed)
area bounded by the α-axis, the horizontal line through α, the vertical line through
x, and the graph of g(x). When α = g(x), this dark gray area becomes maximum.
This is realized in (b): f∗(α) + f(x) = αx (this equality is called Fenchel’s equality;
obviously for arbitrary x and α f∗(α) + f(x) ≥ αx (Young’s inequality)). From these
illustrations it should be obvious that the relation between f and f∗ is perfectly sym-
metric, so f∗ is convex, and f(x) = supα[αx−f∗(α)]. Although such an illustration is
impossible for higher dimensional case, still the relation between f and f∗ is correct,
so are Fenchel’s equality and Young’s inequality.17

As we will see E is a convex function of S (specific heat must be positive), so
−A = supS{ST − E} is a convex function of T . That is, A be must convex upward

17〈〈Convex analysis bible〉〉 The classic text book of convex analysis is R. T. Rockafellar,
Convex Analysis (Princeton UP, 1970; reprinted as a volume in the series Princeton Landmarks of
Mathematics in 1997).
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as a function of T .
We discussed only the 1-dimensional situation above, but Legendre transformation

may be defined in multidimensional space as well: f∗(α) = supx[α ·x− f(x)]. Many
theorems are common to the 1-dimensional case. In particular, if f is convex, so is
f∗. However, if Legendre transformation is not applied to the whole space spanned
by x, convexity is not necessarily preserved. Suppose we define supx1

[α1x1 − f(x)]
with respect to the first component of x. If f is convex, then g(α1, x2, · · · , xn) is a
convex function of α1 if x2, · · · , xn are fixed, but g is not generally a convex function
anymore as a multivariate function.

2.2 Simple applications of canonical distribution

As we will learn in Sect. 2.6, the microcanonical formalism and the canonical for-
malism are equivalent in the thermodynamic limit, so to compute thermodynamic
quantities we may use a convenient formalism. Often, the canonical formalism is
easier than the microcanonical formalism.

This point can be easily illustrated by the study of (classical) ideal gas. We can
totally avoid the calculation of the volume of a high-dimensional sphere.

Z =
1

N !

∑
{ni}

exp

(
−β
∑

i

h2n2
i

8mL2

)
=

1

N !

[∑
n

exp

(
−β h

2n2

8mL2

)]N

=
1

N !

[
∞∑

n=1

exp

(
−β h

2n2

8mL2

)]3N

.

(2.2.1)
The sum may be replaced by the integral:

1

2

∫ ∞
−∞

exp

(
−β h

2n2

8mL2

)
dn =

√
2πmkBTL2

h2
=

√
2π

λT

L, (2.2.2)

where λT is the de Broglie thermal wave length. Therefore,q

Z =
1

N !

[(
2πmkBT

h2

)3/2

V

]N

=
1

N !

[√
2π

λT

L

]3N

=

[
enQV

N

]N

, (2.2.3)

where we have used Stirling’s formula and nQ = (
√

2π/λT )3.

We obtain
A = NkBT log(n/nQ)−NkBT. (2.2.4)
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This is of course consistent with A = Nµ − PV . Z(T ) may be considered as the
generating function of w(E) (or the Laplace transformation of the latter as noted
already), so there is no wonder about the ease of the calculation. It is just the
standard trick.

Let us look at the general structure of the canonical partition function Z of a
classical system consisting of N interacting classical particles. The Hamiltonian of
such a system has the following structure:

H =
N∑

i=1

p2
i

2mi

+ U(r1, · · · , rN). (2.2.5)

Here, mi is the mass of the ith particle, pi its momentum vector, ri its position vector,
and U the total potential energy of the system. The integral over the phase space
appearing in the computation of the canonical partition function may be separated
into the integral over the subspace spanned by the momentum vectors and that over
the subspace spanned by the position vectors called the configuration space. Let K
be the total kinetic energy of the system. Then, we have

Z =
1

N !h3N

∫
dΓN e

−β(K+U) =
V N

N !h3N

∫
d3Np e−βK 1

V N

∫
d3Nr e−βU . (2.2.6)

Therefore, we can write
Z = ZidealQ, (2.2.7)

where

Zideal =
V N

N !

(
2πmkBT

h2

)3N/2

(2.2.8)

is the partition function for the classical ideal gas, and Q is called the configurational
partition function:

Q =
〈
e−βU

〉
V
. (2.2.9)

Here, V is the system volume and

〈∗〉V =
1

V N

∫
V

· · ·
∫

V

dr1 · · · drN ∗ . (2.2.10)

That is, the configurational partition function is the spatial average of e−βU . In
classical statistical mechanics how to compute Q is the problem.

Let us not dwell on very elementary examples; there are tons of problems in the
standard textbooks and exercise books.18 A few such problems can even be found

18The best exercise book is, R. Kubo, H. Ichimura, T. Usui and N. Hashitsume, Statistical
Mechanics (North-Holland, 1990).
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at the end of this chapter. These problems the reader need not be able to solve
(quickly) when s/he becomes a real scientist; after all, the solutions are in the books
and the reader’s business will be to find new problems and to solve them. So, here let
us discuss a few general conclusions we can easily obtain by the canonical formalism.

Simple worked-out examples
How to use the canonical formalism may be best reviewed through simple prob-

lems. Therefore, here a couple of elementary examples are solved in detail, and then
uninteresting qual style problems will be listed.
Example 1 [Harmonic oscillators]
Compute the entropy of a collection of N noninteracting 1D harmonic oscillators both
classically and quantum-mechanically. What is the chief difference, if any, between
these two entropies?

The classical partition function is (let us assume that N oscillators are distin-
guishable)

ZC =
(

1
h

∫
dpdq e−(1/2kBT )[p2/m+kq2]

)N

=
(

1
h2

2πm
β

2π
βk

)N/2

=
(
kBT

~ω

)N

,

(2.2.11)
where ω =

√
k/m. The quantum version isq

ZQ =

( ∞∑
n=0

e−β~ω(n+1/2)

)N

=
(

1
2 sinhβ~ω/2

)N

. (2.2.12)

Entropy is, classically (it is easier to perform the following calculation, with the aid
of equipartition of energy (Sect. 2.3), than differentiation),

SC = (E−A)/T = [NkBT +NkBT log(kBT/~ω)] /T = NkB log T+ const. (2.2.13)

Quantum mechanically (honest differentiation is the simplest), it is

SQ = NkB

(
1
2
β~ωcoth(β~ω/2)− log(2 sinh(β~ω/2))

)
. (2.2.14)

The chief difference is in the T → 0 limit. Classically, entropy goes to −∞ (incon-
sistent with thermodynamics), but quantum mechanically it is zero (consistent with
thermodynamics). ut

Example 2. N molecules of the same chemical species are fixed on a lattice. Each
molecule has two spins of spin 1/2, which interact in the same molecule according to
the following spin Hamiltonian:

h = −Jσ1 · σ2 − µB · (σ1 + σ2). (2.2.15)

Here, J is the coupling constant, B is the external magnetic field pointing in the
z-direction, and µ is the spin-magnetic moment ratio. The spins are quantum spins
of total spin angular momentum 1/2. Find the specific heat and the magnetization
at B = 0 (due to the spin degrees of freedom of the system).
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The system Hamiltonian is the sum of the above spin Hamiltonians for individual
molecules: H =

∑N
i=1 hi, where hi is the spin Hamiltonian for the ith molecule. The

canonical partition function of the system is19

Z = Tr{···σ1i,σ2i···}e
−β

P
hi , (2.2.16)

where the trace Tr{···σ1i,σ2i···} implies the sum over all the spin states for all the
molecules. Since all the states of individual molecules appear once and only once,

Z =
N∏

i=1

[
Trσ1i,σ2i

e−βhi
]
. (2.2.17)

Therefore, introducing the partition function for each molecule

z = Trσ11,σ21e
−βh1 , (2.2.18)

(here, the first molecule is chosen as the representative, but since all the molecules
are identical, the suffix ‘1’ will be henceforth dropped), we can write Z = zN . To
calculate this, it is probably the easiest to obtain the eigenstates of the molecular spin
Hamiltonian. Since

h = −Jσ1 ·σ2−µB ·(σ1+σ2) = −J
2
[
(σ1 + σ2)2 − σ2

1 − σ2
2

]
−µB ·(σ1+σ2), (2.2.19)

we may rewrite h with the aid of the total spin operator σ and its z-component σz as

h = −J
2

[σ2 − 3/2]− µBσz. (2.2.20)

Here, we have used σ2
1 = σ2

2 = 3/4. The total spin quantum number is 1 or 0, so the
eigenvalue of σ2 is 2 or 0. If the system under study is as simple as in this case, it is
convenient to make a table of states. E in the table denotes the eigenvalue of h, that
is, the energy of the eigenstate:

σ σz E
1 1 −J/4− µB
1 0 −J/4
1 −1 −J/4 + µB
0 0 3J/4

Therefore, we obtain

z = 2eβJ/4 coshβµB + eβJ/4 + e−3βJ/4,

19Precisely speaking, since the system is under an external magnetic field, the following Z is not
a canonical partition function, but a generalized canonical partition function, and the corresponding
thermodynamic potential is not simply A but A−BM , but here, we follow the usual abuse of the
notations and concepts.
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so the free energy reads:

A = −NkBT log z = −NkBT log
(
2eβJ/4 coshβµB + eβJ/4 + e−3βJ/4

)
.

The heat capacity may be obtained from entropy C = T∂S/∂T or from internal energy
C = ∂E/∂T . When we use the canonical distribution, the latter is simpler. E may
be obtained with the aid of the Gibbs-Helmholtz relation

E =
∂A/T

∂1/T

∣∣∣∣
V

= −∂logZ
∂β

, (2.2.21)

or we can directly write it down as the average of the energy.20 Entropy should
not be computed through differentiation −∂A/∂T , but should be computed as S =
(E −A)/T .

E = −3NJ
4

eβJ/4 − e−3βJ/4

3eβJ/4 + e−3βJ/4
, (2.2.22)

so when B = 0,

C =
3NJ2

kBT 2

e−βJ/2

(3eβJ/4 + e−3βJ/4)2
. (2.2.23)

Incidentally, we have

S = (E−A)/T = NkB log
(
2eβJ/4 coshβµB + eβJ/4 + e−3βJ/4

)
−3NJ

4T
eβJ/4 − e−3βJ/4

3eβJ/4 + e−3βJ/4
.

(2.2.24)
Magnetization χ requires computing magnetization M . This may be obtained

more conveniently directly with the aid of its definition rather than differentiating
free energy:21

M = Nµ
2 sinhβµB

2 coshβµB + 1 + e−βµJ
. (2.2.25)

From this for B = 0
χ =

∂M

∂B
= Nµ2β

2
3 + e−βµJ

. (2.2.26)

ut
Example 3. A gas consisting ofN atoms of massm is in a container that is cylindrically
symmetric around the z-axis. Gravity g acts in the negative direction of z. The side
wall of the container is expressed as

z = αrη (2.2.27)

in terms of the radial coordinate r (as an elementary example, you may set, for exam-
ple, η = 2, but the η-dependence is of some interest), where α is a positive constant,

20Strictly speaking, E is not the internal energy, but its appropriate Legendre transform, since
B is applied (a kind of enthalpy). However, here we use the usual abuse of concepts; notice that
for this E dE = TdS −MdB instead of dE = TdS +BdM .

21In this example, σ and the total Hamiltonian (or h) commute, so this simple calculation is
allowed.
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and the system as a whole is assumed to be thermally isolated.
(1) Find the specific heat of this system.
(2) If α is doubled reversible-quasistatically and adiabatically, what is the final tem-
perature? Assume that the initial temperature is T0. Also, how much work is needed
to realize this process?

Let us compute the Helmholtz free energy A first.22 The canonical partition func-
tion is

Z =
(

2πmkBT

h2

)3N/2 [∫ ∞
0

2πrdr
∫ ∞

αrη

dz e−βmgz

]N

. (2.2.28)

Its first term is the (momentum portion of) partition function of the ideal gas coming
from the kinetic energy. The content of [ ] is23

I =
∫ ∞

0

1
βmg

e−βmgαrη

πdr2 = Γ
(

2
η

+ 1
)

π

(mg)1+2/ηα2/η
(kBT )1+2/η. (2.2.29)

Internal energy may be obtained from the Gibbs-Helmholtz relation as E = (5/2 +
2/η)NkBT . Consequently, we have C = (5/2 + 2/η)NkB .

If the gas is in a cylinder (an infinitely tall cylinder), the wall is perpendicular,
so η = ∞. If the container opens more widely upward, η becomes smaller. The heat
capacity becomes larger accordingly. The heat capacity increases for such a container,
because increasingly more work is required to expand.

When α→ 2α adiabatically and reversible-quasistatically, entropy stays the same.
The easiest way to compute entropy is to use (E −A)/T :

S = (5/2+2/η)NkB+NkB log

[(
2πmkBT

h2

)3/2

Γ
(

2
η

+ 1
)

π

(mg)1+2/ηα2/η
(kBT )1+2/η

]
(2.2.30)

Consequently, T 5/2+2/η/α2/η is kept constant. Hence, Tf = 24/(4+5η)T0. This implies
that

Ef =
(

5
2

+
2
η

)
NkB24/(4+5η)T0. (2.2.31)

The system is thermally isolated, so the increase of internal energy must be solely due

22Precisely speaking, the potential energy due to the external field is included in the Hamiltonian
in this example as well, so A is actually not ‘free energy,’ but ‘generalized Gibbs free energy’ Ĝ.
However, in this case the external field is constant and g is not regarded as a parameter that we can
change during thermodynamic processes, so this distinction is not important. Therefore, notations
such as A and Z are used informally.

23Since we need the exponent Q such that Z ∝ βQ to compute thermodynamic quantities,
actually, we need not explicitly compute the integrals. For example, it is easy to see that the
integral inside the square brackets of (2.2.28) is proportional to β−1−2/η by scaling the integration
variables. This could even be obtained by the following dimensional-analytic argument: [I] = [r]2[z],
[z] = [r]η and [βz] = 1, where the last relation is due to the dimensionlessness of the exponent.
Thus, z ∝ β−1 and r ∝ β−1/η, so I ∝ β−1−2/η. In this problem, we also need the α dependence but
that can also be obtained by analogous approaches. For example, to realize [αrη] = 1 is enough.
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to work. Thus, the work needed to increase α is

W =
(

5
2

+
2
η

)
NkB

(
24/(4+5η) − 1

)
T0. (2.2.32)

ut

All the spin problems solved with the aid of the microcanonical distribution can
be reworked with the aid of the canonical distribution. As we have seen for the ideal
gas, Laplace-transformation with respect to E often simplifies the calculation.

For the sake of completeness, some qual type questions are attached:
When the reader solves ‘elementary questions,’ it is a good habit to:

(o) Check that the obtained result is intuitively plausible.
(i) Check the general conclusions (e.g., consistency with thermodynamic laws).
(ii) Take various limits (e.g., T →∞).
(iii) Find approximate calculations close to a certain limit (e.g., high/low temperature
analytic formulas).
Quiz 1. Study the system consisting of N spins that can assume only up or down
state. How can one study the negative temperature case? We can of course study the
case with a degenerate excited state. ut
Quiz 2. Find the magnetization of the magnetic spin as a function of temperature.
ut
Quiz 3. There is a collection of N permanent electrical dipoles. When an external
electric field E is applied, it must exhibit a polarization P . We can compute the
dielectric constant of this system. ut
Quiz 4. The spin system problem may have the following realistic form:
Due to the ligand field the degeneracy of the d-orbit of the chromium ion Cr3+ is
partially lifted, and the spin Hamiltonian has the following form

H = D(S2
z − S(S + 1)/2), (2.2.33)

where D > 0 is a constant with S = 3/2 (the cation is in the term 4F3/2).
(0) Why can we apply statistical mechanics to this ‘single’ ion?
(1) Obtain the occupation probability of each energy level.
(2) Calculate the entropy and the specific heat. Then, show the specific heat behaves
as ∝ T−2 at higher temperatures.
(3) Suppose C = kB(T0/T )2 with T0 = 0.12K. Determine the energy spacing.
[The specific heat of this form is called the Schottky type specific heat.] ut
Quiz 5. N lattice sites have quantum spins of S = 1. Compute the spin entropy of
the system. Obtain the high and low temperature asymptotic forms. ut
Quiz 6. There is a quantum system having two states a and b. Its Hamiltonian may
be written as H = H0 −mB, where B is the external magnetic field, and m is the
magnetic moment (operator) with the following matrix elements:

〈a|H0|a〉 = 〈b|H0|b〉 = E, 〈a|H0|b〉 = −∆ (∈ R), (2.2.34)

〈a|m|a〉 = −〈b|m|b〉 = µ, 〈a|m|b〉 = 0. (2.2.35)
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The reader may assume that 〈a|b〉 = 0.
(1) When B = 0, obtain the canonical partition function Tre−βH0 .
(2) When B 6= 0, obtain 〈m〉 and 〈|m|〉. Why does 〈m〉 increase with B? ut

2.3 Some consequences of canonical distribution

In this section, three general consequences of the canonical distribution are discussed
that may be shown easily: quantum nature of thermodynamic magnetic effects, ef-
fects of system rotation to thermodynamics, and the equipartition of energy. Canon-
ical distribution is not indispensable, but simplifies the argument.

(1) The Bohr-van Leeuwen theoremr asserts that thermodynamically relevant mag-
netic phenomena are all quantum mechanical. The existence of a magnetic field may
be expressed in terms of the vector potential A by replacing the momentum p with
p− qA, where q is the charge of the particle, as

H =
∑

i

1

2mi

(pi − qiA)2 + V. (2.3.1)

Here, A may be dependent on the position of the charges and includes mutual mag-
netic interactions due to induced charge motions.r The momentum integral can be
understood as the integration over the mechanical momentum p−qA, so the classical
canonical partition function cannot depend on A. That is, the system free energy is
independent of the magnetic field.

Review of 4-potential
(1) Vector potential. Since divB = 0 (nonexistence of monopoles), where B is the
magnetic field, we can introduce a vector field A such that curlA = B. This is called
the vector potential. If B is a constant, A = r ×B/2 may be chosen (not unique).
(2) If an electromagnetic field is given in terms of a 4-potential (A, φ/c), (p−qA, (1/c)(E−
qφ)) is again a 4-vector, where q is the charge. Its length is the same as the case with-
out the 4-potential:

(1/c2)(E − qφ)2 − (p− qA)2 = m2c2. (2.3.2)

Therefore, if the speed of the particle is small E = mc2 +Eclassic may be introduced:

Eclassic =
1

2m
(p− qA)2 + qφ. (2.3.3)
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(2) Equilibrium in rotating systems and non-classical rotational inertia (NCRI):r
We know that a system in equilibrium can have only uniform translation and rotation
as its macroscopic motion. If the uniform rotational angular velocity of the system is
ω, then the energy Eco of the system seen from the ‘co-rotating’ coordinate system
K’ is (see the next fine-lettered explanation, if needed)

Eco = E − ω ·L, (2.3.4)

where L is the total angular momentum of the system seen from the inertial frame
(lab frame) K.24 The free energy seen from the co-rotating frame is

Aco = −kBT log
[
Tr e−β(H−ω·L)

]
. (2.3.5)

Notice that this jumppequiv2corresponds to a Legendre transformation, so

dAco = −SdT − 〈L〉 · dω + · · · . (2.3.6)

The rotational moment of inertia I is obtained by differentiating the angular mo-
mentum with ω:

I =
∂〈L〉
∂ω

= −∂
2Aco

∂ω2
. (2.3.7)

We may interpret this as the susceptibility of the system against changing ω.

Example [Rotating macrobody]
(1) Show that the rotation around the principal axis with the largest inertial moment
is thermodynamically stable.
(2) Suppose a body is initially rotating with a definite total angular momentum L
around an arbitrary axis through its center of mass. What happens to its temperature
eventually? Assume that the system is thermally isolated.

If we could minimize the macroscopic kinetic energy K of the body, since S =
S(U −K) , where U is the total energy, we can maximize entropy. K = L2/2I implies
that maximizing I maximizes entropy. Therefore, the rotation around the principal
axis of rotation that maximizes the moment of inertia is thermodynamically stable.25

Since the total energy of the system must be constant, the lost rotational kinetic
energy must turn into thermal energy (the temperature increases). This is actually
possible through dissipation of mechanical energy due to deformation and vibration
of the body.

24Henceforth, the observables with respect to the co-rotating frame will be with ′. Actually
L = L′, because p = p′ as seen below.

25It is also mechanically stable. The rotation is also mechanically stable around the principal
axis with the minimum moment of inertia, but it is not thermodynamically stable.
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Review of mechanics seen from the rotational coordinates
(1) Let v be the particle velocity with respect to the inertial frame K. The velocity
v′ seen from the co-rotating frame K’ is

v = v′ + ω × r. (2.3.8)

Here, we consider the instance when K and K’ coincide r = r′, and their origins are
at the center of mass of the system.
(2) To identify momentum, etc., the best way is to start with the Lagrangian formal-
ism. The Lagrangian in terms of the quantities with respect to the co-rotating frame
is

L =
1
2
mv′2 +mv′ · ω × r′ +

1
2
m(ω × r′)2 − V. (2.3.9)

The momentum p′ is

p′ =
∂L

∂v′
= mv′ +mω × r = p. (2.3.10)

That is, the momentum seen from the inertial frame and that from the co-rotating
frame are identical. Consequently, the angular momentum around the origin seen from
the inertial frame and that from the co-rotating frame are identical as well: L = L′.

The equation of motion may be obtained with the aid of Lagrange’s equation of
motion:

d

dt

(
∂L

∂v′

)
=

d

dt
(mv′ +mω × r′) = m

d

dt
v′ +mω × v′, (2.3.11)

∂L

∂r′
= mv′ × ω +m(ω × r′)× ω − ∂V

∂r′
, (2.3.12)

so we have
m
d

dt
v′ = −2mω × v′ −mω × (ω × r′)− ∂V

∂r′
. (2.3.13)

The first term is the Coriolis force,26 and the second the centrifugal force.
(3) The Hamiltonian in the co-rotating frame is defined by Hco = p′ · v′ − L, so

Hco = m(v′ + ω × r) · v′ − L = H − ω ·L. (2.3.14)

The additivity of energy and that of angular momentum imply (2.3.4) for a many-body
system. Since

Hco = H − ω ·L =
1
2
mv′2 + V − 1

2
m(ω × r)2, (2.3.15)

in terms of the canonical variables

Hco =
1

2m
(p′ −mω × r)2 + V − 1

2
m(ω × r)2. (2.3.16)

If there are many particles, the last term becomes (1/2)ωT Iclω, where Icl is the
(classical mechanical) inertial moment tensor around the origin.

26G. G. de Coriolis (1792-1843); the Coriolis force was in 1835 [de Tocqueville, Democracy in
America was published this year].
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The Hamiltonian of a many body system seen from a rotational frame may be
written as (see (2.3.16))

Hco =
∑ 1

2m
(p′ −mω × r′)2 + V − 1

2
Iclω

2, (2.3.17)

Therefore, if we explicitly compute the partition function in (2.3.5)

Zco = Tre−βHco . (2.3.18)

Classically, just as we have done in the Bohr-van Leeuwen theorem, the ω dependence
comes only from the last term (the centrifugal potential) of (2.3.17). This implies
I = Icl. However, quantum-mechanically, this equality is not always true (e.g., if
the fluid system is superfluid, then this equality breaks down). Thus, nonclassical
rotational inertia is possible.27

(3) Equipartition of energy for classical systems:(rto ideal gas) (rto internal degree)q Let
xi and xj be two components of canonical coordinates (say, the x-component of the
spatial coordinate of particle 1 and z-component of the momentum of particle 2).
Then, for classical systems we have28〈

xi
∂H

∂xj

〉
= kBTδij, (2.3.19)

where the average is over the canonical distribution. Indeed,〈
xi
∂H

∂xj

〉
=

1

Z

∫
dΓxi

[
−kBT

∂

∂xj

e−βH

]
, (2.3.20)

= − 1

Z
kBTxie

−βH

∣∣∣∣
|x|→∞

+
1

Z
kBT

∫
dΓ

∂xi

∂xj

e−βH . (2.3.21)

From this we obtain the law of equipartition of energy for classical kinetic energy
such as (no summation convention implied)〈

p2
i

2m

〉
=

1

2
kBT, (2.3.22)

27A. J. Leggett, “Can a solid be “superfluid”?”, Phys. Rev. Lett., 20, 1543 (1970) demonstrates
this possibility even in solid states if there is a Bose-Einstein condensation (see the following chap-
ter).

28The microcanonical version is also possible, but the demonstration is slightly cumbersome. See
a problem at the end of Chapter 1.
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or 〈
L2

i

2Ii

〉
=

1

2
kBT, (2.3.23)

where m is the mass, Ii is the i-th principal moment of inertia (i-th eigenvalue of
the inertial moment tensor) and Li is the corresponding component of the angular
momentum. If the system is governed by a harmonic potential with a spring constant
k, we obtain 〈

kx2

2

〉
=

1

2
kBT. (2.3.24)

Since the classical kinetic energy K is quadratic in (angular) momenta, Euler’s the-
orem for homogeneous functions implies∑

i

pi
∂K

∂pi

= 2K. (2.3.25)

Thus, if there are N particles, then there are 3N variables, so

〈K〉 =
3N

2
kBT. (2.3.26)

If the potential energy is a homogeneous function of M position coordinates of degree
s, then

s〈V 〉 = MkBT. (2.3.27)

Therefore, if a system is described as coupled harmonic oscillators with M modes,
the average total potential energy isr

〈V 〉 =
M

2
kBT. (2.3.28)

A direct application of the equipartition of energy is the high temperature (con-
stant volume) specific heat per particle of multiatomic molecular ideal gas. Let us
assume that each molecule contains N atoms. The Hamiltonian of each molecule
can be written as

H = KCM +Krot +Kvib + Uvib, (2.3.29)

where KX is the kinetic energy associated with the motion X: CM denotes the center
of mass translational motion; rot implies rotational motion around its center of mass;
vib means the vibrational motion. Uvib is the potential energy for the vibrational
motion. We may assume that the molecular internal vibrations are harmonic, so all
these terms are quadratic terms. Therefore, the internal energy can be obtained only
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by counting the number of degrees of freedom.

The total number of degrees of freedom per molecule with N atoms is 3N .r For
a not-linear molecule there are 3 translational degrees, and 3 rotational degrees,
so there are 3N − 6 harmonic modes. Thus, 〈KCM〉 = 〈Krot〉 = 3kBT/2, and
〈Kvib + Uvib〉 = (3N − 6)kBT . That is, the internal energy is E = (3N − 3)kBT , so
CV = (3N − 3)R per mole, where R is the gas constant. For a linear molecule there
are 3 translational degrees, and 2 rotational degrees, so there are 3N − 5 harmonic
modes.29 Thus, 〈KCM〉 = 3kBT/2, 〈Krot〉 = kBT , and 〈Kvib + Uvib〉 = (3N − 5)kBT .
That is, E = (3N − 5/2)kBT , so CV = (3N − 5/2)R per mole. It is a well-known
story that these values grossly contradict the actual specific heats of molecular gases
and were regarded as a paradox before the advent of quantum mechanics.

2.4 Entropy and information

rUsing the canonical distribution, let us compute entropy explicitly:

TS = U − A, (2.4.1)

= kBT logZ − kBT Tr
e−βH

Z
log e−βH , (2.4.2)

= −kBT Tr
e−βH

Z
log

e−βH

Z
. (2.4.3)

That is,
S = −kBTr ρ log ρ, (2.4.4)

where ρ = e−βH/Z is the canonical density operator, or, similarly, classically

S = −kB

∫
dΓ p log p, (2.4.5)

where p is the canonical distribution function. This is the formula first given by
Gibbs in his famous book on the foundation of statistical mechanics.

The same formula was proposed by Shannon to quantify information, so (2.4.5) is
often called Shannon’s formula. It is a convenient occasion to see why such a formula

29When a molecule is straight, the reader must be able to explain into what modes the rotational
degree is converted, comparing, e.g., water and carbon dioxide.
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is a good measure of information. Shannon did not ask what information was, but
tried to quantify it.30

Let η(m) be the ‘information’ per letter we can send with a message (letter se-
quence) that is composed of m distinct letters. Here, the word ‘information’ should
be understood intuitively. Let us assume that all the letters are used evenly. Then,
η(m) must be an increasing function of m; if there are only two letters, we can send,
per letter, the information telling whether {1, 2, 3} or {4, 5, 6} as to the outcome of a
single casting of a dice, but if there are three, then more detailed information: {1, 2},
{3, 4} or {5, 6} may be sent per single letter.

Now, let us use simultaneously the second set consisting of n letters. We could
make compound symbols by juxtaposing them as ab (just as in many Chinese charac-
ters). The information carried by each compound symbol should be η(mn), because
there are mn symbols. We could send the same message by sending all the left half
symbols first and then the right half symbols later. The amount of information sent
by these methods must be equal, so we must conclude that31

η(mn) = η(m) + η(n). (2.4.6)

Since η is an increasing function, we conclude

η(n) = c log n, (2.4.7)

where c > 0 is a constant. Its choice is equivalent to the choice of unit of information
per letter and corresponds to the choice of the base of the logarithm in the formula.

If c = 1, we measure information in nat; if we choose c = 1/ log 2 (i.e., η(n) =
log2 n), in bit. 1 bit is an amount of information one can obtain from an answer to
a single yes-no question.

We have so far assumed that all the symbols are used evenly, but such uniformity
is not usual. What is the most sensible generalization of (2.4.7)? We can write
η(n) = − log2(1/n) bits; 1/n is the probability for a particular letter. − log2(1/n)
may be interpreted as the expectation value of − log2(probability of a letter). This
suggests that for the case with not-equal-probability occurrence of n letters with
probabilities {p1, · · · , pn}, the expectation value of the information carried by the i-
th symbol should be defined as − log2 pi bits, which is sometimes called the surprisal

30〈〈Textbook of information theory〉〉 The best textbook of information theory (in English)
is T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).

31We must send a message explaining how to combine the transferred signals as a part of the
message, but the length of the needed message is finite and independent of the length of the actual
message we wish to send, so in the long message limit we may ignore this overhead.
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of symbol i, because it measures how much we are surprised by encountering this
symbol (smaller p should give more surprise). The average information in bits carried
by a single symbol should be defined by

H({pi}) = −
n∑

i=1

pi log2 pi. (2.4.8)

This is called the Shannon information formula.32q When Shannon arrived at (2.4.8),
he asked von Neumann what it should be called. it is told that von Neumann sug-
gested the name ‘entropy,’ adding that it was a good name because no one understood
it.

Characterization of information
The reader may have thought the ‘derivation’ of (2.4.8) is a bit ad hoc. The formula
(2.4.8) can be characterized naturally as follows. Hn({pi}) (in bits for n letters) is:
(1) Symmetric wrt exchanging variables,
(2) H2(t, 1− t) = f(t) is positive and continuous for t ∈ (0, 1) (this condition may be
relaxed),
(3) Additive:

Hn(p1, p2, · · · , pn) = Hn−1(p1 + p2, · · · , pn) + (p1 + p2)H2(p1/(p1 + p2), p2/(p1 + p2)).
(2.4.9)

Then, (2.4.8) is the unique form (up to the base of the logarithm).
It may be easier to use the axioms for surprisal. The ‘extent of surprise’ f(p) we

get, spotting a symbol that occurs with probability p, should be
(1) a monotone decreasing function of p (smaller p should give us bigger surprise).
(2) Nonnegative.
(3) Additive: f(pq) = f(p) + f(q).33

Therefore, f(p) = −c log p (c > 0) is the only choice. The additivity should be natural,
if we consider our surprise when something rare occurs successively.

Information per letter of English
If the symbols of English alphabet (+ blank) appear equally probably, what is the
information carried by a single symbol?(4.75 bits) In actual English sentences, it is
about 1.3 bits. What actually happens? Also think about how to determine this
actual value.34

32for an uncorrelated (or Bernoulli) information source. About Shannon himself, see S. W.
Golomb et al., “Claude Elwood Shannon (1916-2002),” Notices AMS 49, 8 (2002). His thesis is on
genetics. See J. F. Crow, “Shannon’s brief foray into genetics,” Genetics 159, 915 (2001).

33We could invoke the Weber-Fechner law.
34There is a related ‘fun’ paper, D. Benedetto, E. Caglioti and V. Loreto, “Language tree and

zipping,” Phys. Rev. Lett. 88, 048702-1 (2002). This uses the Lempel-Ziv algorithm LZ77 (used in
gzip, for example) to measure information (or rather mutual information).
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Example [Information carried by messages]
(1) Suppose a positive integer is given. It must begin with one of 1, 2, · · ·, and 9. If
all the non-zero digits are likely to appear evenly, what is the information carried by
the message that the first digit was actually 6?

Since all 9 non-zero digits are likely to appear, the initial uncertainty (entropy) is
log2 9 = 3.17 bits. No uncertainty remains after receiving the message (i.e., entropy is
zero), so the message must have provided the information of 3.17 bits. This is exactly
the surprisal of 6 itself.
(2) In reality, it is known that the first digit does not distribute evenly. Approximately
the probability that digit D appears as the first digit is PD = log10(1 + 1/D). What
is the information carried by this empirical law?

After knowing the law, the uncertainty (entropy) is −
∑

D PD logPD = 2.88 bits.
Therefore 3.17− 2.88 = 0.29 bits is the information provided by the empirical law.
(3) Now, after knowing the empirical law what is the information carried by the
message that the first digit was actually 6?

With this information no uncertainty remains, so 2.88 bits must be the answer. ut

In chemical physics entropy is often measured in eu (entropy unit = cal/mol·K).
It may be useful to remember that 1 eu = 0.726... bits/molecule. Some people say
that the unit of entropy (e.g., J/K) and unit of information (bit) are disparate. This
is simply because they do not think things microscopically. If one wishes to tell each
molecule to turn ‘to the right’, the number of required messages is comparable to
the number of molecules, so it is huge, but for each molecule it is about a few bits.
For example, the entropy change in a small molecule reaction is usually the order of
a few eu. This is a reasonable value.

Except for the p in Gibbs’ formula being the probability density instead of the
probability, (2.4.8) is the same as (2.4.5). Maximizing Shannon’s entropy is to find
the least biased distribution, so we may expect that the resultant distribution is
the most probable distribution. We should be able to obtain the ‘true distribution’
by maximizing the Gibbs formula under the condition that we know the expectation
value of energy (internal energy). This is equivalent to maximizing the following vari-
ational functional with Lagrange’s multipliers β and λ (the latter for normalization
condition):

− kB

∫
p log p dΓ− β

∫
pHdΓ− λ

∫
p dΓ. (2.4.10)

This indeed gives
p ∝ e−βH . (2.4.11)

The Shannon formula is derived logically from almost inescapable requirements about
‘knowing something.’ The above line of argument seems to indicate that the principle
of statistical mechanics can be derived directly from this fundamental conceptual
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basis. Thus, some brave people concluded that this was the true basis of statistical
mechanics; forget about mechanics, the principle of equal probability, etc.35 This is
the so-called information-theoretical derivation of statistical mechanics.

Don’t be fooled by such a logic. Even if we admit that the result that maximizes
the information entropy is the maximally likely result from our point of view, why
does Nature have to accept it as the most ‘natural’ outcome? There is a logical gap
here. The most natural argument to fill this gap is that we (or our brains) have
evolved (or have been selected) to feel that the most natural things in the actual
world are the most probable. In short, our brains have evolved in the world following
the principle of equal probability. That is, the logic of information maximization is
circular; implicitly, the principle of equal probability is assumed. Furthermore, if we
look at (2.4.5), we should realize that something is wrong. p there is not probability
but probability density, so it is not invariant under coordinate transformation. For
example, the description in the Cartesian coordinates and that in the equivalent polar
coordinates should not give different entropies. Therefore, log p must be log(p/q)
for some density distribution q. That is, if entropy is free from the choice of the
coordinate system to describe distribution functions, the ‘true’ Gibbs entropy formula
must read as

S = −kB

∫
dΓ p log

p

q
. (2.4.12)

This is the (negative) Kullback-Leibler entropy whose natural implication is supplied
by the large deviation theory (see just below). We cannot do anything without fixing
q. To determine it, we need a certain statistical principle.36

†Sanov’s theorem
Let q be the probability density on an interval J . Sample N points from J according
to this distribution, and make an empirical distribution

pN =
1
N

∑
k

δxk
, (2.4.13)

where δy is the atomic measure concentrated at y (i.e., δ(x − y)dx, intuitively). As
N → ∞ pN (weakly) converges to q. This is the law of large numbers justifying
the empirical study of distribution. It is natural to ask how quickly this convergence

35The originator seems to be E. T. Jaynes, “Information theory and statistical mechanics,” Phys.
Rev. 106, 620-630 (1959).

36It cannot be overemphasized that even for discrete states the use of information tacitly pre-
supposes the principle of equal probability. Think of surprisal, for example. Why is it simply a
function of the probability without depending on any other contexts? It is because the world is
uniform. However, this uniformity is not a consequence of any logic, but an empirical fact; we feel
it natural thanks to phylogenetic learning.
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occurs. This is just the large deviation question, and we can introduce the rate
function(al) I(p):

P

(
1
N

∑
k

δxk
∼ p

)
≈ e−NI(p). (2.4.14)

If xk are iid stochastic variables on J based on the distribution whose density is q,
then Sanov’s theorem asserts that

I(p) =
∫

J

dx p(x) log
p(x)
q(x)

. (2.4.15)

That is, I(p) is the Kullback-Leibler information.37 This implies that under the prin-
ciple of equal probability Shannon’s formula measures how unlikely p is empirically.

It is worth remembering that (2.4.15) is non-negative for any p and q (as long as
q > 0 whenever p > 0): We know log x ≤ x− 1 (draw the graph to check this), so

−I(p) =
∫

J

dx p(x) log
q(x)
p(x)

≤
∫

J

dx p(x)
(
q(x)
p(x)

− 1
)

=
∫

J

dx [q(x)−p(x)] = 1−1 = 0.

(2.4.16)

2.5 Equilibrium statistical mechanics and the sec-

ond law

It is often said that there are two aspects of the second law of thermodynamics:
(A) [The law about work] The work done by the system is maximum when the pro-
cess is performed in a quasistatic reversible way (essentially Thomson’s principle).
Or, the adiabatic process without any change of the work coordinates cannot de-
crease the system energy (Planck’s principle).
(B) [The law about irreversibility] From any initial condition any isolated system
irreversibly reaches an equilibrium state.

Boltzmann (and almost all ‘fundamentalists’ including Einstein) tried to demon-
strate (B) from mechanics and failed.38 However, more precisely speaking, (B) is the

37There is no very kind introductory book to large deviation theory for physicists. For an informal
introduction, see the introductory part and Appendix 1 of Y. Oono, “Large deviation and statistical
physics,” Prog. Theor. Phys., Suppl. 99, 165-205 (1989). Sanov’s theorem is demonstrated in a
theoretical physicist’s fashion.

38Boltzmann’s first long paper (his second) “Über die mechanische Bedeutung des zweiten Haupt-
satzes der Wärmetheorie” (Wiener Berichte 53, 195-220 (1866)) was written when he was 22. This
was one year before UIUC was chartered.
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assertion of the zeroth law. As has already been noted, we must critically reconsider
whether an isolated mechanical system is a meaningful idealization of a real system.
It is debatable whether it is worth pursuing a demonstration of the consistency of (B)
and mechanics of isolated systems. If we admit that any system eventually settles
down to an equilibrium state, the content of the second law required to develop ther-
modynamics is only (A), so we have only to show, e.g., Thomson’s principle:

∆A ≤ W, (2.5.1)

that is, the work W needed to change a system from an equilibrium state a to another
equilibrium state b with an isothermal process (i.e., a process that is realized in a
system in thermal contact with a single heat bath) cannot be smaller than the free
energy difference ∆A = Ab − Aa, where Ax is the free energy of state x.

Jarzynski showed the following equality (Jarzynski’s equality) classically:39〈
e−W/kBT

〉
= e−∆A/kBT . (2.5.2)

The average on the LHS is explained in the next paragraph. The system Hamiltonian
H(λ) depends on a parameter λ (as in Einstein’s argument in Sect. 2.1) that can be
changed from 0 to 1. W is the work needed to change the initial system Hamiltonian
H(0) to the final one H(1), and ∆A = A(1)− A(0), where

A(λ) = −kBT logZ(λ) (2.5.3)

with

Z(λ) =

∫
dΓ e−βH(λ). (2.5.4)

The meaning of the average on the left-hand side of (2.5.2) is the average over
repetition of (i) + (ii) below:
(i) The initial condition must be sampled from the canonical distribution with the
Hamiltonian H(0) and temperature T .
(ii) While changing λ from the initial to the final value the required work W (the
work we do) is measured. This measurement is done under isolation condition40 of
the system.41

39Jarzynski himself calls this ‘irreversible work theorem.’ He notes that for a cycle (i.e., ∆A = 0),
this was demonstrated by Bochkov and Kuzovlev; G. N. Bochkov and Yu. E. Kuzovlev, Zh. Eksp.
Teor. Fiz. 72, 238 (1977) [Sov. Phys.-JETP 45, 125 (1977)]; Physica 106A, 443, 480 (1981).

40This may be relaxed to thermally isolated condition.
41For the Jarzynski equality to hold, the phase space of the system must be the identical one

throughout the course of experiments. Thus, free expansion of a gas to a larger volume after
removing a wall (in this case no work is done, but the free energy decreases) is not an example the
Jarzynski equality can cover (a remark by C. Yeung).
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(iii) To make the whole process isothermal, after finishing adding work, the system is
thermally connected to a heat bath of the temperature as the initial heat bath. There
is no work during this last process. Eventually the system reaches an equilibrium
state with the canonical distribution determined by the Hamiltonian H(1).

Actually, the step (iii) has nothing to do with the measurement ofW , so in practice
only (i)+(ii) need be repeated again and again.

To demonstrate Jarzynski’s equality, the expression of the work in (ii) may seem
to be required, but since under the condition stated in (ii) the energy exchange is
possible only in the form of work

W = H(y(tF ), 1)−H(y(0), 0), (2.5.5)

where H(y, λ) is H(λ) with the canonical variables expressed explicitly, and y(t)
collectively denotes the canonical variables at time t.42 Here, tF is the last time of
the parameter change such that λ(tF ) = 1 (the last moment we supply work to the
system). Therefore,

〈
e−βW

〉
0

=
1

Z(0)

∫
dΓ(0) e−βW−βH(y(0),0) =

1

Z(0)

∫
dΓ(0) e−βH(y(tF ),1). (2.5.6)

dΓ(t) is the phase volume element at time t. Liouville’s theorem holds even if the
Hamiltonian is time-dependent (the phase flow is incompressible), so we may change
the integration variables from y(0) to y(tF ) without worrying about the Jacobian:
dΓ(0) = dΓ(tF ). Consequently, (2.5.6) reads

〈exp(−βW )〉0 =
Z(1)

Z(0)
= exp[−β(A(1)− A(0))]. (2.5.7)

Here, only the average over the initial ensemble shows up, but in practice it is the
average over experiments starting with the sampled initial conditions.

Thanks to the convexity of the exponential function and Jensen’s inequality:q for
a convex function f , and for any well-defined averaging scheme 〈 〉43

〈f(x)〉 ≥ f(〈x〉), (2.5.8)

42For a N -particle system y = (q1, · · · , qN ,p1, · · · ,pN ). For example, ẏ∂/∂y =
∑

i(q̇i∂/∂qi +
ṗi∂/∂pi).

43〈〈Jensen’s inequality〉〉q A necessary and sufficient condition for a function f to be convex
on a convex domain D is that for any α ∈ [0, 1] and any x1, x2 ∈ D

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).
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we immediately get
〈W 〉 ≥ ∆A (2.5.9)

from (2.5.2). Sometimes, this result is interpreted as Thomson’s principle; especially
if the Hamiltonian returns to the original one with λ = 1, it is interpreted as Planck’s
principle. Indeed, the above calculation is for certain isothermal processes, so (2.5.9)
is an inequality for certain isothermal processes, and has the form of Thomson’s
principle. However, the genuine Thomson’s principle does not require any extra con-
dition on the isothermal process. That is, the derivation of (2.5.9) only shows that
equilibrium statistical mechanics does not contradict thermodynamics (in particu-
lar, the second law); it is never a derivation of the second law. If H(0) = H(1),
(2.5.9) gives W ≥ 0. However, the inequality is demonstrated only for isolated
systems. Planck’s principle is for adiabatic processes. As already noted, thermo-
dynamic adiabatic conditions are distinct from isolation conditions; they are quite
different mechanically. Therefore, again, the inequality obtained above is, although
it does not contradict thermodynamics, not the second law itself. As we will see
below, all the relations connecting equilibrium statistical mechanics and the second
law (A) are about isolated systems. The reason for this is trivial; mechanics cannot
be used unless the system is isolated except for the parameters that may be modified
systematically.

Relevance to experiments
The Jarzynski equality holds however fast the process may be performed. For such
processes W has a distribution whose peak value is far larger than ∆A. Still the
average of e−βW must be equal to e−β∆A, so W much smaller than ∆A must occur
occasionally. That is, occasionally, the system does work upon us to compensate
our work, organizing its thermal energy (or, we can say, occasionally producing a
large amount of negative entropy). Therefore, although the inequality is correct even
in the thermodynamic limit, we must be extremely patient to accumulate very rare
fluctuation results. In other words, verifying this equality for a macrosystem is in
principle impossible. The correctness of the second law implies the impossibility of
the demonstration of Jarzynski’s equality for macroscopic systems. Consequently, the
equality, if meaningful at all, may be practical only for mesoscale systems (e.g., single
macromolecules) at the largest.

Then, it is very inconvenient to study isolated systems, because molecules such
as proteins are usually immersed in a solution. To cover this situation, we take the
system (e.g., a molecule) + the solution (environment) as an isolated system just as
we have derived the canonical ensemble from the microcanonical ensemble. The total

From this it is trivial to obtain for αi ∈ [0, 1] (
∑
αi = 1) and for xi ∈ D

f
(∑

αixi

)
≤
∑

αif(xi).

Thus, the resultant inequality for countably many points and the continuity of the convex function
give Jensen’s inequality.
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Hamiltonian reads

H(y(t), λ(t)) = Hs(z(t), λ(t)) +Hint(y(t)) +H0(x(t)), (2.5.10)

where z collectively denote the canonical variables of the system, x collectively denote
the canonical variables of the solution (environment), y = (z, x), Hs is the system
Hamiltonian, H0 the Hamiltonian of the environment and Hint is the interaction
Hamiltonian between the system and the environment. We have assumed that the
controllable parameter λ is attached only to the system Hamiltonian. We sample the
initial condition of the whole system according to the canonical distribution of the
whole system at temperature T and then change λ just as the isolated case discussed
already. We obtain exactly as (2.5.7)

〈exp(−βW (t))〉 =
Y (t)
Y (0)

, (2.5.11)

where

Y (t) =
∫
dΓ(x)dΓ(z) exp[−β(Hs(z, λ(t)) +Hint(y) +H0(x))]. (2.5.12)

In contrast to the derivation of the canonical distribution, we cannot ignore the inter-
action term, because the system is small. Notice that the effective canonical partition
function may be written as

Z∗(t) = Z0

∫
dΓ(z) 〈exp[−β(Hs(z, λ(t)) +Hint(z, x))]〉0 = Z0e

−βA∗(t), (2.5.13)

where 〈 〉0 is the average over the canonical distribution over the environment, Z0

is the canonical partition function for the environment, and A∗ is the thermody-
namic potential of the system immersed in the environment. Obviously, Y (t)/Y (0) =
Z∗(t)/Z∗(0), so with this careful definition of the thermodynamic potential, (2.5.11)
reads

〈exp(−βW )〉 = exp(−β∆A∗). (2.5.14)

Notice that there is no formal difference from (2.5.2).

Next, let us consider the quantum case of Jarzynski’s equality. Consider a quan-
tum system with the Hamiltonian H. In terms of kets, the Schrödinger equation for
the system reads

i~
d

dt
| 〉 = H| 〉. (2.5.15)

Taking the conjugate of this equation, we obtain the Schrödinger equation for bras:

i~
d

dt
〈 | = −〈 |H. (2.5.16)
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If the initial ket is given by |0〉, the solution |t〉 of (2.5.15) at time t is obtained
as

|t〉 = e−iHt/~|0〉. (2.5.17)

e−iHt/~ is the time evolution operator for the system, and is a unitary operator.
Generally speaking, a canonical transformation in classical mechanics corresponds
to a unitary transformation in quantum mechanics. Even if the system is perturbed
by an external disturbance or manipulation, this is true. The Hamiltonian in (2.5.15)
can now be an arbitrary function of t, but the relation between the initial ket and
the ket at time t is connected by a unitary transformation U(t) as

|t〉 = U(t)|0〉. (2.5.18)

Let us demonstrate that U(t) is indeed unitary. Since

i~
dU

dt
= H(t)U, (2.5.19)

we immediately see U∗U = 1. To show UU∗ = 1 is easy, if H does not explicitly
depend on t; more generally, we use U(t+∆t) = (1+H(t)∆t)U(t)+o[∆t] to see

U(t+ ∆t)U∗(t+ ∆t) = (1 +H(t)∆t/i~)U(t)U∗(t)(1−H(t)∆t/i~) + o[∆t]. (2.5.20)

Then, we can use mathematical induction: if U(t)U(t)∗ = 1 holds up to time t,

U(t+ ∆t)U∗(t+ ∆t) = (1 +H(t)∆t/i~)(1−H(t)∆t/i~) = 1 + o[∆t]. (2.5.21)

Since U(0) = 1, for all t > 0 we have shown that U(t) is unitary.

A density operator ρ is a bilinear form of bras and kets (a linear combination of
the products of a ket and a bra), so from (2.5.18) and (2.5.19) the time evolution
of the density operator of the system whose Hamiltonian is H is governed by the
following von Neumann equation:44

i~
d

dt
ρ = H(t)ρ− ρH(t) = [H(t), ρ]. (2.5.22)

44The time dependence of the density operator can be determined by Tr ρA(t) = Trρ(t)A, where
A is an observable, and A(t) is A in the Heisenberg’s picture. That is, ρ(t) corresponds to ρ in the
Schrödinger picture.

i~
d

dt
Tr{ρA(t)} = Tr{ρ[A(t),H]} = Tr{[H, ρ(t)]A} = Tr

{
i~
dρ

dt
A

}
for any A, so we must conclude (2.5.22).
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Its solution to the initial value problem may be written as

ρ(t) = U(t)ρ(0)U∗(t). (2.5.23)

Let us consider a quantum system with a Hamiltonian H(λ) dependent on a pa-
rameter λ. The initial parameter value is λ = 0 and the final one is λ = 1. The eigen-
values of H(λ) are denoted as En(λ) and the corresponding eigenket is |n;λ〉. The
initial density operator is the canonical density operator ρ(0) = eβA(0)−βH(0), where
A(0) is the initial free energy. Let U be the time evolution operator corresponding to
the parameter change from λ = 0 to 1 under the condition that the system is isolated.
As we have already noted, if the mechanical work W is identified with the difference
between the final and the initial Hamiltonians (e.g., W = U∗H(1)U − H(0)), then
the noncommutativity of H(1) and H(0) generally ruins the equality. However, if
we identify W as the difference between the observed final and the initial energies
En(1)− Em(0), then the Jarzynski equality in the following form holds:〈

e−β(En(1)−Em(0))
〉

= e−β∆A, (2.5.24)

where the average is over the initial states m and final states n (reached from state
m) and ∆A = A(1) − A(0). To write this explicitly, we need the transition prob-
ability between the two observation results Em(0) initially and En(1) finally. This
can be written as Pn←m = |〈n; 1|U |m; 0〉|2. Notice that Pn←m is doubly stochastic:∑

n Pn←m =
∑

m Pn←m = 1.45 Explicitly, the left hand side reads∑
n,m

e−β(En(1)−Em(0))Pn←me
β(A(0)−Em(0)) =

∑
nm

e−βEn(1)Pn←me
βA(0) = e−β∆A. (2.5.25)

Therefore, Jensen’s inequality tells us the inequality W ≥ ∆A compatible with the
second law. However, as noted already in the classical case, it is not the second law
itself.

Lenard essentially demonstrated the following statement quantum mechanically:46

The second law of thermodynamics ⇐⇒ The equilibrium distribution is a monotone
decreasing function of energy.

If ρ(0) =
∑

n |n; 0〉w(En(0))〈n; 0| with w(x) being a decreasing function of x,
then

〈H〉U − 〈H〉0 ≥ 〈H〉ad − 〈H〉0, (2.5.26)

45{Pi←j} is a stochastic matrix, if Pi←j ≥ 0 and
∑

i Pi←j = 1. It is called doubly stochastic, if∑
j Pi←j = 1 also holds.
46A. Lenard, “Thermodynamical proof of the Gibbs formula for elementary quantum systems,”

J. Statist. Phys. 19, 575 (1978).
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where 〈 〉0 is the expectation value with respect to the initial distribution ρ(0),
and 〈 〉U is the average over Uρ(0)U∗ for an arbitrary unitary operator U , and 〈 〉ad

implies the average over the distribution reached from ρ(0) by a quantum mechanical
adiabatic process. If the initial and the final Hamiltonians are identical (2.5.26)
becomes Planck’s principle under isolation condition.

†An outline of the proof of (2.5.26)
Let us assume that eigenvalues are ordered as Ei(λ) ≤ Ei+1(λ). Let the initial dis-
tribution be ρ0 =

∑
n |n; 0〉w(En(0))〈n; 0|. We have only to show that if w(x) is

nonincreasing as a function of x, for any unitary transformation U

Tr(HUρ0U
−1) ≥ 〈H〉ad. (2.5.27)

In terms of components this reads∑
nm

En(1)Pnmw(Em(0)) ≥
∑

n

En(1)w(En(0)). (2.5.28)

where Pnm is the doubly stochastic matrix already given in (2.5.25). Therefore, if
we can show the following inequality, we are done: Let Ai and Bi be both increasing
sequences. Then, for any doubly stochastic matrix Pij∑

ij

PijAiBj ≤
∑

i

AiBi. (2.5.29)

To prove this we have only to find an operation Q such that ATPB ≤ AT (QP )B
and QnP = I for some finite positive n.47. Let P be an N ×N matrix with nonzero
elements PaN and PNb for some a, b (a, b ∈ {1, · · · , N}; if there is no such pair replace
N with N − 1 and repeat the argument here). Q is a procedure to find such a pair
a, b and change the following four elements PaN , PNb, PNN , Pab as follows. Let the
smaller one of PaN and PNb be ∆: ∆ = min{PaN , PNb}:

(QP )aN = PaN −∆, (2.5.30)
(QP )Nb = PNb −∆, (2.5.31)
(QP )ab = Pab + ∆, (2.5.32)

(QP )NN = PNN + ∆. (2.5.33)

Then,
AT (QP )B −ATPB = (Aa −AN )(Bb −BN )∆ ≥ 0. (2.5.34)

QP remains to be a doubly stochastic matrix, and at least one element in the N -th
raw or column goes from a positive value to zero. Repeat applying Q until there is
no pair a, b such that PaN and PNb are simultaneously nonzero. Within finitely many
application of Q all the elements of the N -th raw and column become zero except for
PNN (= 1). Thus, the problem has been reduced to a N − 1×N − 1 problem. Since
the theorem is trivial for N = 1, we are done.

47The proof here is due to Nir Friedman (private commun., 2008).
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Conversely, the second law implies that w(x) must be decreasing. If the fourth
law of thermodynamics is also assumed, w(E) ∝ e−βE follows with some ‘technical’
conditions. More precisely, the assumptions are:
(i) Passivity: This is essentially the second law. Let H(t) be a time-dependent
Hamiltonian and the density operator ρ(t) obeys von Neumann’s equation

i~
dρ

dt
= [H(t), ρ]. (2.5.35)

Here, we assume that this Hamiltonian has no time dependence outside the range
of time [0, 1] and H(0) = H(1). Then, the work needed for this cycle is nonnega-
tive:

W (K, ρ0) =

∫ 1

0

dt Trρ(t)
dH(t)

dt
≥ 0. (2.5.36)

(ii) Structural stability: any small perturbation of the Hamiltonian does not destroy
the system passivity.
(iii) Let a compound system consist of two subsystems and be in a passive struc-
turally stable state. Its density operator is the product48 of the density operators of
the two subsystems.

Roughly speaking, (i) implies that the distribution is a monotone decreasing func-
tion of energy, and (iii) restricts the functional form to be exponential. Consequently,
the canonical distribution is derived. If we do not demand (iii), more general distri-
butions could be obtained.

Lenard’s equivalence relation sounds plausible, even if the isolation condition is
replaced with the thermodynamic adiabatic condition. However, thermodynamic adi-
abatic conditions lack mechanical interpretation, such a thermodynamically mean-
ingful assertion can never be proved by mechanics. Furthermore, the mechanical
interpretation of work follows the tradition initiated by Einstein, and pays no atten-
tion to whether it is macroscopically realizable or not. In short, we do not have any
understanding of heat in terms of mechanics, so no satisfactory relation between the
second law and statistical mechanics is obtained.

48More precisely, tensor product
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2.6 Various ensembles

In this section, we introduce various convenient partition functions. We have already
encountered two distributions (ensembles), microcanonical and canonical. Let us
observe their relations and corresponding thermodynamic potentials to see some
general patterns. Here, notations are the same as before.49

w(E) → Z(T ) =

∫
dE w(E)e−βE =

∫
dE e[S(E)−E/T ]/kB ,

(2.6.1)

S(E) = kB logw(E) → S(E)− E

T
= −A

T
= kB logZ(T ). (2.6.2)

The reader must have realized a certain formal relation. The Laplace transformation
of the partition function in (2.6.1) corresponds to the Legendre transformation of
the thermodynamic potential. That is, the Laplace transformation of the partition
function and the Legendre transformation of the thermodynamic potential corre-
spond one to one. Let us first see that this is a general feature in classical statistical
mechanics.

As we see above, it is convenient to use the Gibbs relation with respect to en-
tropy:

dS =
1

T
dE +

P

T
dV − µ

T
dN − x

T
dX. (2.6.3)

If we wish to study a system under constant temperature and pressure, the convenient
Massieu function50 must be S−E/T−PV/T = −A/T−PV/T = −G/T . Therefore,
following the above pair of formulas, we haveq

Z(T, V ) → Q(T, P ) =

∫
dV Z(T, V )e−βPV , (2.6.4)

−A
T

= kB logZ(T, V ) → −A
T
− PV

T
= −G

T
= kB logQ(T, P ). (2.6.5)

The ensemble describing a system under constant temperature and pressure is called
a pressure ensemble.

If we wish to study a system under constant temperature and volume but attached

49As noted in Section 1.5 we can use W (E) (the number of all the microstates whose energy
does not exceed E) instead of w(E) (the number of microstates in the energy shell (E − δE,E]).
Here, we use w(E) because it is the logical choice.

50The Legendre transforms of entropy are generally called Massieu functions.r
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to a chemostat allowing the change of the number of particles N (a summary of
chemical thermodynamics is in Section 1.12), then the convenient Massieu function
is

q = S − E

T
+
µN

T
=
PV

T
, (2.6.6)

which is sometimes called Kramers’ q. We have

Z(T,N) → Ξ(T, µ) =

∫
dV Z(T,N)eβµN =

∑
N

e[−A/T+µN/T ]/kB

(2.6.7)

−A
T

= kB logZ(T,N) → −A
T

+
µN

T
= q = kB log Ξ(T, µ). (2.6.8)

Ξ is called the grand canonical partition function.

Let us summarize this Laplace-Legendre correspondence:r

Θ
Θ= log Υ(x)←→ Υ(x)yLegendre

yLaplace

Λ = supx(Θ + xX)
Λ= log Γ(X)←→ Γ(X) =

∫
dxΥ(x)eβxX =

∫
dX eΘ(X)+βxX

The above general theory is correct within the classical statistical mechanics frame-
work. In quantum statistical mechanics, if H and X are not commutative, generally
we respect the inequality: Tr e−β(H−xX) 6= Tr e−βHeβxX , so the formulas cannot gen-
erally be as simple as the above, because exponential factors cannot be successively
multiplied. However, for the usual systems the Hamiltonian and the particle number
are commutative, so the above commutative diagram is true for the relations among
microcanonical, canonical and grand canonical partition functions even for quantum
statistical mechanics.

Example [Ideal rubber band] (cf microcanonical approach)
There is a polymer consisting of N monomers of length a. Each monomer can orient
in any direction freely (if there is no external tensile force).
(1) We wish to use temperature T and tensile force F as independent thermodynamic
variables to describe the system. What generalized canonical partition function Y
should we use? Relate Y to Z(T,L) (or define Y in terms of Z) that is the canonical
partition function for a polymer with one end fixed at the origin and the other end
fixed at L along the axis parallel to the tensile force to be applied).
(2) Compute Y as a function of F, T and N . Choose the force direction to be the
polar axis direction so that the azimuthal angle may be used to describe the tilt of
the monomer from the force direction.
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(3) Find the end-to-end distance L of the polymer as a function of F .
(4) For a small force the polymer is a harmonic chain. Find the Hooke’s constant.
(5) Obtain the mean square fluctuation of the end to end distance (i.e., 〈δL2〉) without
the external force under constant T .

The Legendre transformation we wish to use is A → G̃ = A − FL (or −A/T →
−A/T + FL/T ), so

Y (T, F ) =
∑
L

Z(T,L)eβFL =
∫
dL eβFLZ(T,L). (2.6.9)

Notice that51

LF = Fa
∑

i

cos θi. (2.6.10)

Thus,

Y =
∫ ∏

i

(dθidϕi sin θi) exp
(
βFa

∑
cos θi

)
=
∏

i

[∫
dθidϕi sin θi exp (βFa cos θi)

]
,

(2.6.11)

=
[
2π
∫ π

0

dθ sin θ exp (βFa cos θ)
]N

=
[
2π
∫ 1

−1

dx eβFax

]N

. (2.6.12)

That is,

Y (T, F ) =
[
4π

sinh(βaF )
βFa

]N

. (2.6.13)

We should realize that Z is much harder to compute.
Thermodynamics tells us that G̃ = −kBT log Y (dG̃ = −SdT − LdF ), so

L = +kBT
∂log Y
∂F

∣∣∣∣
T

= NaΛ(βaF ), (2.6.14)

where Λ(x) is called the Langevin function and is defined by

Λ(x) = cothx− 1
x
. (2.6.15)

The length of the polymer should not exceed Na; in the F → ∞ limit Λ → 1, so
indeed L→ Na.

If the external force is small, we may expand as

Λ(x) =
1
3
x− 1

45
x3 + · · · . (2.6.16)

Therefore, Hooke’s constant is k = 3kBT/Na
2. This model is a model of rubber

elasticity. k ∝ T indicates the entropic nature of the elasticity. Notice that a2N/3 =

51As noted in Section 1.5 Z(T,L) should have not only the portion explicitly used here but also
that due to thermal motion of monomers, but here the latter is irrelevant, so it is suppressed.
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〈R2〉 is the variation of the end-to-end distance (called the mean square end-to-end
distance). We will learn its close relation to the spring constant shortly (see the
fluctuation-response relation).
ut

There are different partition functions, but how are their results related? From
the above formal consideration, it appears all give us the same thermodynamics;
thermodynamic potentials corresponding to various partition functions are related
mutually by Legendre transformations. Therefore, for systems with ordinary particle-
particle interactions (e.g., not long-ranged and with a sufficiently hard core),52 in the
thermodynamic limit all the partition functions are expected to be equivalent in the
sense that all give identical thermodynamics.r Let us demonstrate this ensemble
equivalencer with a representative example: the equivalence of microcanonical and
canonical ensembles. The relation between the canonical and the grand canonical
partition functions is an exercise at the end of this Chapter.53

Let us take a finite system with N particles. The Laplace transformation may be
understood as a summation over energy shells (this was the original form in Section
2.1; the ground state energy is set to be zero):

Z(T ) =
∑
E

w(E)e−βE, (2.6.17)

where the sum
∑

E is the sum over all the shells of thickness δE. w(E) is the number
of microstates whose energy is in (E − δE,E]. (2.6.17) is an infinite sum, but we
assume it converges (if not, there is no thermodynamics54). Therefore, there is E0

(which is of order N as shown in the fine lettered explanation below) beyond which
the sum (2.6.17) is bounded by 1:∑

E

w(E)e−βE = Z(T ) ≤
∑

E≤E0

w(E)e−βE + 1. (2.6.18)

Let us write the largest value of the summand of (2.6.18) as w(E∗)e−βE∗
(≥ w(0) ≥

1).r Obviously (see Fig. 2.6.1),

w(E∗)e−βE∗ ≤ Z(T ) ≤ (E0/δE)w(E∗)e−βE∗
+ 1 ≤ 2(E0/δE)w(E∗)e−βE∗

(2.6.19)

52So long as entropy is a concave function (−S is a convex function) of all the extensive param-
eters = thermodynamic coordinates.

53As has already been noted, the relations among these three ensembles are exactly the same
for classical and quantum systems.

54Its convergence is guaranteed if the interactions among particles are as mentioned above.
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Fig. 2.6.1 The inequalities in (2.6.19) are illustrated. The gray areas respectively from left to right
correspond to the three formulas in (2.6.19). E∗ is the peak position, whose height is w∗e−βE∗

,
where w∗ = w(E∗).

Therefore,

sup
E

(S(E)−E/T ) ≤ −A/T ≤ sup
E

(S(E)−E/T )+kB log(2E0)−kB log δE. (2.6.20)

Since E0 is of order N and since we know 〈E〉/N � δE � 〈E〉, the above for-
mula implies that the free energy per particle A/N obtained from the canonical
partition function, that is obtained with the aid of Laplace transformation from the
microcanonical partition function, and the free energy per particle obtained thermo-
dynamically with the aid of Legendre transformation from the entropy, that is the
result of the microcanonical partition function, are identical. This is the equivalence
of ensembles. The demonstration given here is almost rigorous. The only insufficient
part is that it is not demonstrated that E0 can be chosen to be of order N (see the
following detailed explanation).

Outline of demonstration of E0 = O[N ]
We need an upper bound of w(E)e−βE . Obviously, w(E) ≤W (E), so we estimate an
upper bound of W (E)e−βE .

The demo consists of two steps. First, W is estimated for non-interacting systems,
and then we consider how the result is modified by interactions. For non-interacting
systems (with suffix I) it is not hard to show55 that the general form is:

W I(E) = exp[V s(e)], (2.6.21)

55〈〈Upper bounds for ideal systems, an outline〉〉 For the classical case, we already know
an explicit estimate. For quantum cases no explicit microcanonical calculation is given, but for
fermion systems, it is clear that any microstate is also a microstate of the corresponding classical
system, so W is bounded by the classical result. For boson systems with the aid of Kronecker’s
deltas we can write (here εi is the energy of the i-th one particle state, and ni is the number of
particles having this energy, the occupation number of the i-th state; see Chapter 3)

W (E) =
∑

E′≤E

∑
{ni}

δP
niεi,E′δP

ni,N .

Then, noting the following obvious inequality for any β and µ

δP
niεi,E′δP

ni,N ≤ e
β[E′−

P
niεi]+βµ[N−

P
ni] ≤ eβ[E−

P
niεi]+βµ[N−

P
ni]
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where e = E/V is the energy density. s is the entropy density, so it is convex upward.
Since ∂s/∂e = 1/T , as long as β0 > 0, there is e = e0 such that ∂s/∂e = β0. Thus,
we have

s(e) ≤ s(e0) + β0(e− e0). (2.6.22)

Consequently, we have

W I(E) ≤ exp{V [s(e0) + β0(e− e0)]}. (2.6.23)

Let us arrange all the energy eigenvalues of the system (resp., of the corresponding
non-interacting system) in the increasing order as Ei ≤ Ei+1 (resp., EI

i ≤ EI
i+1). If

the interaction is stable, that is, if the potential energy Φ ≥ −BN (B > 0), there is
an operator inequality H ≥ HI − BN , where H is the system Hamiltonian, and HI

is that for the corresponding non-interacting system (i.e., H = HI + Φ). Then, with
the aid of the minimax principle (see the next entry), we can generally show

Ei ≥ EI
i −BN. (2.6.24)

This implies the following inequality:

W (E) ≤W I(E +BN) ≤ exp{V [s(e0 +Bρ) + β0(e+Bρ− e0)]} = exp[V s̃+ β0E],
(2.6.25)

where e = E/V , ρ = N/V and s̃ = s(e0 +Bρ) + β0(Bρ− e0).
Hence,

W (E)e−βE ≤ exp[V s̃+ (β0 − β)E], (2.6.26)

but β0 can be anything if positive, so, for example, we may choose β0 = β/2:

W (E)e−βE ≤ exp[V s̃− βE/2]. (2.6.27)

Thus,∑
E≥E0

w(E)e−βE ≤
∑

E≥E0

W (E)e−βE ≤
∑

E≥E0

exp[V s̃− βE/2] =
2
β
eV s̃e−βE0/2.

(2.6.28)
We wish to bound this with 1, so we require

βE0

2
+ log

β

2
> V s̃. (2.6.29)

That is, E0 ≥ (2kBT )[V s̃+ log(2kBT )] is required. Therefore, when T is given, if the
volume is sufficiently large, we have only to choose E0/V slightly larger than 2kBT s̃.
Indeed, E0 = O[V ] = O[N ].

we have
W (E) ≤ eβ[E−µN ]Ξ(1/β, µ),

where Ξ is the grand canonical partition function for the corresponding classical system, which can
be estimated easily. See Chapter 3. Notice that E, N and log Ξ are extensive, so we have the form
(2.6.21).
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The minimax principle for eigenvalues56

Theorem Let A be a self-adjoint operator defined on a vector space H. For an
arbitrary finite dimensional subspace M of H, let us compute

λ(M) = sup
|ϕ〉∈M,〈ϕ|ϕ〉=1

〈ϕ|A|ϕ〉. (2.6.30)

Let us arrange the eigenvalues of A in the increasing order and number them (with
their multiplicity taken into account) and write the k-th eigenvalue as µ(k). Then, we
have

µ(k) = λ(k) ≡ inf
dimM=k

λ(M). (2.6.31)

That is, if we choose an arbitrary k-dimensional subspace M and compute (2.6.30),
then the smallest among them is the kth eigenvalue of A.
[Demo] Let us write the orthonormal basis corresponding to {µ(k)} as {|k〉}.

First of all, λ(k) ≤ µ(k) is obvious: if we adopt the k-dimensional subspace
spanned by {|1〉, · · · , |k〉} as M, λ(M) = µ(k), so the smallest value we look for by
changing M cannot be larger than this value.

Thus, we have only to show λ(k) ≥ µ(k). Since M is a finite dimensional vector
space, it must be contained in a subspace spanned by {|1〉, · · · , |N〉}, if N is sufficiently
large. Take a subspace V spanned by {|k〉, · · · , |N〉}. Since M is with dimension k,
M and V must share a vector which is not zero. Let us normalize it and call it |0〉.
By the definition of λ(M)

λ(M) ≥ 〈0|A|0〉, (2.6.32)

but |0〉 =
∑N

i=k |i〉〈i|0〉, so

〈0|A|0〉 =
N∑

i=k

|〈i|0〉|2µi ≥ µ(k). (2.6.33)

That is, for any k-dimensional M we have λ(M) ≥ µ(k). Thus, we have shown that
λ(k) = µ(k). ut

Let A and B be self-adjoint and A ≥ B, that is, for any vector ϕ 〈ϕ|A|ϕ〉 ≥
〈ϕ|B|ϕ〉. Let us arrange the eigenvalues of A (respectively, the eigenvalues of B) in
increasing order (with the multiplicity due to degeneracy taken into account) and write
the kth eigenvalues as λA(k) (respectively, λB(k)). Then, for any k, the inequality is
preserved:

λA(k) ≥ λB(k). (2.6.34)

This is the relation we needed above, which can be shown with the aid of the min-
imax principle. Notice that for any k dimensional subspace M there is a vector φ
satisfying57

〈φ|A|φ〉 ≥ λB(M). (2.6.35)

56D. Ruelle, Statistical Mechanics (World Scientific, 1999; original 1969) Section 2.5. Here, the
demonstration is made slightly informal.

57Here, ‘sup’ is used instead of ‘max,’ so some care is needed. A precise statement is: for any
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Therefore, λA(M) ≥ λB(M). Next, we choose M to minimize λA(M). Then, with
a similar argument, we must conclude that there is a k dimensional subspace M′
satisfying

λA(k) ≥ λB(M′). (2.6.36)

Hence, we are done. ut

The ensemble equivalence allows us to use any convenient partition function we
wish in order to compute thermodynamic quantities.58 As long as the interaction is
not crazy,59 the equivalence is valid.60

If the system under study is small (say, N = 300), then the ensemble equivalence
is not right. In such a case, a practical recommendation is to use the ensemble whose
condition is close to the actual system (e.g., if under constant temperature and
pressure, use the pressure ensemble corresponding to G). The system Hamiltonian
may have to include the system-environment interactions explicitly (see below).

An intuitive picture of a statistical ensemble is a collection of non-interacting
macroscopic systems. That this picture may be used when we discuss thermodynamic
observables of a single macroscopic system is a key observation to set up statistical
mechanics as discussed in Section 1.1. Needless to say, a real macroscopic system is
not at all a collection of independent subsystems. However, there are cases for which
the system may be literally understood as an ensemble of independent subsystems.
For such systems, the microstates of the whole collections obey the principle of
equal probability.61 In this case, the principle of equal probability governs the true

ε > 0 there is a vector φ satisfying

〈φ|A|φ〉 ≥ λB(M)− ε.

Therefore, λA(M) ≥ λB(M)− ε. Hence, λA(M) ≥ λB(M).
58This statement is unconditionally correct for classical statistical mechanics. For quantum

statistical mechanics, microcanonical, canonical and grand canonical ensembles are equivalent. For
other ensembles some care is needed [see Supplementary Pages].

59As long as entropy is concave (convex upward), our logic goes through.
60〈〈Phase coexistence and Legendre transformation〉〉 If entropy is convex upward (i.e., if

the system is thermodynamically normal), then the equivalence relation holds. However, as we will
see in Sect. 5.13, states with distinct {E,Xi} may be mapped to an identical state {T,Xi} (many
to one correspondence). Even in such cases, thermodynamic variables unique in both ensembles
agree. For example, the temperature of the state {T,Xi} agrees with the temperature calculated
from any of {E,Xi}.

61〈〈Asymptotic equipartition property〉〉 Let us assume that the microstate i of each inde-
pendent element is realized with probability pi. A microstate of the whole system is designated
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distribution of the microstates of the collection. Therefore, the distribution we can
obtain as a canonical distribution applied to a collection of independent elements is
the actual distribution for such a collection attached to a heat bath. Utilizing the
fact that each element is statistically independent (and the Hamiltonian of the whole
system H is the sum of Hamiltonians hi of individual elements as H =

∑
hi), we can

get the statistical description of the individual system as the marginal distribution
obtained by projection onto each element as

e−βH = e−β(h1+h2+···+hN ) → e−βhi . (2.6.37)

That is, we can apply the canonical distribution to individual elements. We know
the simplest such example from elementary statistical mechanics: the µ-space de-
scription of an ideal gas molecule (the Maxwell distribution): the probability of a
molecule with mass m to have the velocity v is proportional to exp(−m|v|2/2kBT ).
A far more interesting example is a dilute solution of macromolecules. In this case
we may regard the system as an ensemble of droplets containing a single macro-
molecule.

When we study a single mesoscopic system (e.g., a molecular motor sitting on
a polystyrene bead), if we can observe it repeatedly with a sufficient time interval
(much longer than the system relaxation time62), then the collection of the observed
data may be understood as those obtained by observing an ensemble of noninteract-
ing mesoscopic systems. If we use the Hamiltonian of the mesoscopic system with
interaction terms with its environment, the usual canonical formalism may be used.63

Perhaps, in certain cases we wish to use an ensemble under constant tensile force. In
any case, if the the Hamiltonian describing the mesoscopic system contains all the
interaction terms with its environment, we can fully utilize the formalism explained
in this section.

by specifying the microstates of individual elements {ik}Nk=1, where N is the number of indepen-
dent elements in the collection. The weak law of large numbers tells us −(1/N) logP ({ik}Nk=1) =
−(1/N)

∑N
k=1 log pik

→ −
∑
pi log pi = h (h, which is the Shannon entropy for each system). The

strong law also holds: for almost all the microstates of the whole system P ({ik}Nk=1) ' e−nh, which
is called the asymptotic equipartition property.

62Relaxation time is a measure of memory retention time of the system.
63Perhaps one may say with constant pressure, but in condensed phases the system compress-

ibility is so low that usually we need not worry about the pressure effect.
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2.7 Fluctuation and response

So far we have studied very large systems (thermodynamic limit). There, the law of
large numbers reigns: for any ε > 0

P

(∣∣∣∣ 1V X(V )− 〈X〉
∣∣∣∣ > ε

)
→ 0 (2.7.1)

in the V →∞ limit, where V is the volume of the domain we observe, and X(V ) is
the observed result there.64 If we observe a volume that is not large, then, the prob-
ability above is positive. That is, we observe fluctuations. Even if we say the volume
we observe is tiny, since we are macroscopic organisms, the volume is sufficiently
large from the microscopic point of view. Therefore, fluctuations should not be very
large, and we have only to consider the second moments to quantify fluctuations.65

The most important observation we will make is that quantities with large fluc-
tuations can easily be perturbed externally. There is a close relation between the
system response and fluctuations in the system.

Take a finite (classical) system and observe a work coordinateX there. We assume
that the system is maintained at temperature T . Let us look at the response of X to
the modification of its conjugate variable x (with respect to energy). A convenient
partition function is the following generalized canonical partition function:

Z(β, x) = Tre−βH+βxX̂ , (2.7.2)

where X̂ is the microscopic description of the work coordinate X (= 〈X̂〉). We
obtain66

d(logZ(β, x)) = −Edβ +Xd(βx), (2.7.3)

so the susceptibility χ = ∂X/∂x of the response X to the change of x reads67

χ = β
∂2 logZ

∂(βx)2
. (2.7.4)

64If X is extensive, X(V ) is the total amount in V (i.e., X(V )/V is its density). If X is intensive,
then X(V )/V should be interpreted as the average value in the volume V .

65If the reader remembers large deviation theory, she will realize that we are discussing the
quadratic approximation of the rate function.

66In the following, the system interacts with a system preparing the external field x, and the
interaction potential energy is −xX̂. The canonical distribution based on this + the intrinsic
Hamiltonian of the system is a generalized canonical distribution. The corresponding thermody-
namic potential is A− xX. See the discussion on thermally isolated systems.

67In the following partial derivative, the variables kept fixed depends on the situation. In this
case X can fluctuates, but whether other variable Y can fluctuate or not depends on the situation.
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Performing the partial differentiation, we obtainr

χ = β
(
〈X̂2〉 − 〈X̂〉2

)
= β〈δX̂2〉 ≥ 0, (2.7.5)

where δX̂ = X̂ − 〈X̂〉. This is the fluctuation-response relation. (rto rotating system,

rto spring constant, rto Gaussian distribution, rto critical exponent)

We can make three important observations from the result.
(i) The ‘ease’ of response results from ‘large’ fluctuations. Notice that χ describes

the response to an external perturbation, but the variance of X̂ is due to spontaneous
thermal fluctuations. Gentle nudging of the system (reversible change) must respect
the spontaneity of the system.
(ii) Since X is extensive and x is intensive, χ must be extensive (proportional to the

number of particles there, N)r. Therefore, δX = O[
√
V ].68

(iii) χ cannot be negative. This is the manifestation of the stability of the equilibrium
state (free energy minimum) as we will see in more detail later.

If there are many variables fluctuating simultaneously, we should extend the above
result δX = β〈δX̂2〉δx to a collection {Xi} of extensive variables. A natural guess
may be

δXi =
∑

j

β〈δX̂iδX̂j〉δxj, (2.7.6)

where δXi is the thermodynamically observable perturbation result when conjugate
variables {xi} are perturbed. This formula can be obtained most easily by the Taylor
expansion of the following formula wrt {δxi}:69

〈Xi〉 =

∫
dΓ X̂ie

−βH(xj+δxj)

/∫
dΓ e−βH(xj+δxj) (2.7.7)

=

∫
dΓ X̂ie

−β[H(xj)−
P

j Xjδxj+···]
/∫

dΓ e−β[H(xj)−
P

j Xjδxj ···] (2.7.8)

= 〈X̂i〉0 +
∑

j

β
(
〈X̂iX̂j〉0 − 〈X̂i〉0〈X̂j〉0

)
δxj + · · · . (2.7.9)

For example, if a magnet is thermostatted and can freely change its volume, then T, P are the
variables that must be kept constant, but if the volume is not allowed to change, T, V must be
fixed.

68away from critical points. There, χ can diverge (fluctuation diverges)r, so nothing can be said
from this argument.

69Here, H is the Hamiltonian including the intereaction between the system and the external
field.
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Here 〈 〉0 implies the average without perturbation {δxj}. In the RHS of (2.7.6), 〈 〉
is just the equilibrium average, so it is actually 〈 〉0 in the above result. (2.7.6) may
be written asrq

〈δX̂iδX̂j〉 = kBT

(
∂Xi

∂xj

)
x1···x̌j ···xn

, (2.7.10)

where ˇ implies to remove xj. Notice that the Maxwell relations follow from this. In

the above formulas, X and X̂ are meticulously distinguished, but if not confusion is
likely, we may simply drop hats.

The reader should have realized that the derivation of (2.7.6) does not work for
quantum mechanical cases, because Taylor expansion is not simple due to noncom-
mutativity of the variables (observables); since generally eA+B 6= eAeB, we cannot
write eA+εB = eA(1+εB+· · ·). To obtain the quantum version, we need the following
non-commutative Taylor expansion formula:

eA+a = eA

(
1 +

∫ 1

0

dλ e−λAaeλA + · · ·
)
. (2.7.11)

†A formal proof is left to standard textbooks.70 Here, it is explained how to guess
this formula, using Trotter’s formula71

eA+a = lim
n→∞

(
eA/nea/n

)n

. (2.7.12)

From this, we obtain

d

dx
eA+xa

∣∣∣∣
x=0

'
n∑

j=1

1
n
eA(1−j/n)aeA(j/n). (2.7.13)

This is a Riemann sum formally converging to the integral in the above formula.
With the aid of (2.7.11) we can Taylor expand as

e−β(A+a) = e−βA

(
1 + kBT

∫ β

0

dλ eλAae−λA + · · ·

)
. (2.7.14)

70One way is to show:
d

dλ
eλ(A+a)e−λA = e−λ(A+a)ae−xλA.

Integrating this from t = 0 to 1, we obtain the desired formula.
71〈〈Trotter’s formula〉〉 This formula holds if at least A or a is a bounded operator. See

J. Glimm and A. Jaffe, Quantum Mechanics, a functional integral point of view, second edition
(Springer, 1987), Section 3.2. Its (‘infinite’ matrix) component representation is the path integral.
The idea of Trotter’s formula is very important in the quantum Monte Carlo method and in nu-
merical solutions of (nonlinear) partial differential equations. The corresponding formula for finite
matrix A is originally due to Lie, so the formula should be called the Lie-Trotter formula.
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If we introduce the Heisenberg picture A(t) = eiHt/~Ae−iHt/~,

eβHAe−βH = A(−iβ~), (2.7.15)

so

e−β(A+a) = e−βA

(
1 + kBT

∫ β

0

dλ a(−iλ~) + · · ·
)
. (2.7.16)

Using this and repeating the calculation just as the classical case, we arrive at

δXi =
∑

j

β〈δX̂i; δX̂j〉δxj, (2.7.17)

where

〈X̂; Ŷ 〉 = kBT

∫ β

0

dλ 〈X̂(−iλ~)Ŷ 〉e (2.7.18)

is called the canonical correlation function. Here, the suffix e implies the equilibrium
average without perturbation. If all the variables commute, this reduces to 〈X̂Ŷ 〉
and (2.7.17) reduces to (2.7.6). It is often the case that if we replace the correlation
in classical results with the canonical correlation, we obtain formulas valid in the
quantum cases.

2.8 Thermodynamic fluctuation theory and sys-

tem stability

Fluctuation is a window to the smaller scales of the world supporting what we ob-
serve. Even in equilibrium fluctuations are time-dependent, so fluctuation allows
us to glimpse nonequilibrium behaviors as well. Here, we study only equal time
correlations among various fluctuating quantities.72

Einstein in 191073 studied the deviation of thermodynamic observables in a small
domain of a system from their equilibrium values in order to understand critical

72The best reference is Landau-Lifshitz, Course of Theoretical Physics, volume 5 Chapter XII
(Pergamon Press 1980). Note that kB is not explicitly written in this book.

73[This year, Russel and Whitehead, Principia Mathematica started to publish (∼1913), the
Mexican revolution began, Tolstoy died (11/20, 1817∼) Nightingale died.]



140 CHAPTER 2. CANONICAL DISTRIBUTION

fluctuations.74 To obtain the probability of fluctuations, he inverted the Boltzmann
principle as

w({X}) = eS({X})/kB , (2.8.1)

where {X} collectively denotes extensive variables. Then, he postulated that the
statistical weight for the value of X deviated from its equilibrium value may also
be obtained by (2.8.1). Since we know the statistical weights, we can compute the
probability of observing {X} as

P ({X}) =
w({X})∑
{X}w({X})

. (2.8.2)

The denominator may be replaced with the largest term in the summands (cf. Sect.
2.6), so we may rewrite the formula as

P ({X}) ' w({X})
w({Xeq})

= e[S({X})−S({Xeq})]/kB = e−|∆S|/kB , (2.8.3)

where ' implies the equality up to a certain unimportant numerical coefficient, and
{Xeq} is the value of {X} that gives the largest w (maximizes the entropy), that is,
the equilibrium value. ∆S = S({X})− S({Xeq}) is written as −|∆S| to emphasize
the sign of ∆S (i.e., negative). To the second order

P ({δX}) ∝ e−|δ
2S|/kB . (2.8.4)

Einstein proposed this as the fundamental formula for small fluctuations in a small
portion of any equilibrium system.75 Here, S({Xeq}) is the genuine thermodynamic
entropy as a thermodynamic function, and is a univalent function in the thermo-
dynamic space. In contrast, in S({X}) X involves deviations from equilibrium
(δX = X − Xeq is the deviation), so S is not the entropy as a thermodynamic
function. In the Einstein theory, it is assume that even for this, the standard ther-
modynamic relation is applicable. That is, if δX is not too large, S(X) − S(Xeq)
is approximated as a quadratic form of {δX} whose coefficients may be computed
with the aid of equilibrium thermodynamics. This is a fundamental postulate of
thermodynamic fluctuation theory.

74A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeitsgemischen in der Nahe des
kritischen Zustandes,” Ann. Phys., 33, 1275-1298 (1910). [Theory of critical opalescence of homo-
geneous fluid mixture near the critical state]. J. D. Jackson, Classical Electrodynamics, 2nd Edition
(Wiley, 1975) Sect. 9.7 is a good summary of related topics.

75The large deviation theoryr is the theory of fluctuation. |∆S|/kB divided by the small volume
being observed is the rate function.
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†Einstein is ‘always correct’
The reader surely claims that Einstein cannot be right. w is a good quantity to study
only isolated systems, so if we wish to study a small portion embedded in a large
system, the proper formalism must be

P ({δX}) =
Ẑ({X})
Ẑ({Xeq})

= e−|δΨ|/kB (2.8.5)

instead of (2.8.2), where Ẑ is an appropriate generalized canonical partition function
we have already discussed:

Ψ = kB log Ẑ (2.8.6)

is the corresponding Massieu function. It is an appropriate Legendre transformation
of S as

Ψ = S +
∑

j

x̂jXj

T
, (2.8.7)

where the intensive variables fixed externally are hatted. The reader is correct, but
Einstein is also (almost and practically always) correct.

Let us choose Xi as independent variables. Then,

Ψ = Ψeq + δ2Ψ + · · · =

Seq −
∑

j

xjδXj

T
+ δ2S + · · ·

+
∑

j

x̂jδXj

T
+ · · · . (2.8.8)

Under an equilibrium condition xi = x̂i must hold. That is, to the second order
the answer agrees with Einstein irrespective of the starting ensemble. In practice we
never compute higher order correlation than the second order, so Einstein is ‘always’
right. We can recover the classical statistical case discussed in the preceding section
from the above formalism. Notice, however, that the first variation δS that Einstein
conveniently ignored is not zero. Still, the second variation term of an appropriate
thermodynamic potential is identical to δ2S.

In contrast, the thermodynamic fluctuation theory in this section imagines a meso-
scopic region in a large system and consider fluctuations of various quantities there.
Therefore, there is no variable that is kept constant (except, for example, for the
situation we consider fluctuations in a fixed small fictitious volume), so any thermo-
dynamic variable can fluctuate. Still, to the second order we may always use δ2S.

Then, what variables should we use as independent variables to compute the sec-
ond variation? Suppose we study a system that requires n thermodynamic coordinates
(i.e., its thermodynamic space is n-dimensional). To change statistical ensembles, ex-
tensive variables Xi, · · · are replaced with their conjugate intensive variable xi, · · ·.
We know any ensemble may be used to study the second moments of thermodynamic
fluctuations. As we see from this, generally speaking, we may choose n independent
variables, selecting one (i.e., X or x) from each conjugate pair {x,X}. Any choice
will do, but sometimes a clever choice may drastically simplify the calculation.

To study the fluctuation we need the second order variation δ2S. This can be
computed from the Gibbs relation (here δ means the so-called ‘virtual variation,’
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but notice that such variations are actually spontaneously realized by thermal fluc-
tuations)

δS =
1

T
(δE + PδV − µδN − xδX) (2.8.9)

as (this is the second order term of the Taylor expansion, so do not forget the overall
factor 1/2)76

δ2S =
1

2

[
δ

(
1

T

)
(δE + PδV − µδN − xδX) +

1

T
(δPδV − δµδN − δxδX)

]
,

(2.8.10)

= − δT

2T 2
TδS +

1

2T
(δPδV − δµδN − δxδX). (2.8.11)

Thus, we have arrived at the following useful expression worth remembering (actually,
almost nothing to remember anew):77

δ2S =
−δTδS + δPδV − δµδN − δxδX

2T
= − 1

T
δ2E.r (2.8.12)

Consequently, the probability density of fluctuation can have the following form,
the starting point of practical calculation of fluctuations (second moments):

P (fluctuation) ∝ exp

{
− 1

2kBT
(δTδS − δPδV + δµδN + δxδX)

}
. (2.8.13)

76If the reader has some trouble in understanding the following formulas, look at a simple
example: f = f(x, y), where x and y are regarded as independent variables. If we can write

δf = Xδx+ Y δy,

then
δX =

∂X

∂x
δx+

∂X

∂y
δy, δY =

∂Y

∂x
δx+

∂Y

∂y
δy.

Therefore, the second order Taylor expansion term reads

δ2f =
1
2

(
∂X

∂x
δx2 +

∂X

∂y
δyδx+

∂Y

∂x
δxδy +

∂Y

∂y
δy2

)
=

1
2
(δXδx+ δY δy).

In short, the second variations of independent variables are zero (i.e., δ2x = δ2y = 0):

δ[Xδx+ Y δy] = δXδx+Xδ2x+ δY δy + Y δ2y = δXδx+ δY δy.

77As has already been stated in the above fine lettered explanation notice that δS = 0 does not
hold. The derivation of this formula by Einstein was indeed a feat.
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δ2E is the energy we must supply, if we wish to create the fluctuation by ourselves.
Therefore, we may rewrite (2.8.13) asq

P (fluctuation) ∝ e−βWf , (2.8.14)

where Wf is the reversible work required to create the fluctuation.

The formula in the round parentheses of (2.8.13) is a quadratic form in indepen-
dent variations (of our choice, say, {δT, δP, δN, δX}).78 Thus, this is a multivariate
Gaussian distribution.

Multivariate Gaussian distribution
A multivariate distribution is called the Gaussian distribution, if any marginal dis-
tribution is Gaussian. Or more practically, we could say that if the negative log of
the density distribution function is a positive definite quadratic form (apart from a
constant term due to normalization) of the deviations from the expectation values, it
is Gaussian:

f(x) =
1√

det(2πV )
exp

(
−1

2
xTV −1x

)
, (2.8.15)

where V is the covariance matrix defined by (do not forget that our vectors are column
vectors)

V = 〈xxT 〉. (2.8.16)

If the mean value of x is nonzero 〈x〉 = m, simply replace x in the above with x−m.
The reader must not have any difficulty in demonstrating that (2.8.15) is correctly
normalized.

In particular, for the two variable case:q

f(x, y) ∝ exp
{
−1

2
(
ax2 + 2bxy + cy2

)}
, (2.8.17)

then

V = Λ−1 =
(
a b
b c

)−1

=
1

detΛ

(
c −b
−b a

)
(2.8.18)

That is,
〈x2〉 = c/detΛ, 〈xy〉 = −b/detΛ, 〈y2〉 = a/detΛ. (2.8.19)

The fluctuation-response relation (classical case) can be obtained with the aid
of thermodynamic fluctuation theory as well. If δ2E is expressed in terms of δX
(deviations of extensive variables), (2.8.13) generally reads

P (fluctuation) ∝ exp

− 1
2kBT

∑
i,j

(
∂xi

∂Xj

)
x1···x̌j ···xn

δXiδXj

 . (2.8.20)

78We can freely choose any one variable from each of the intensive-extensive pairs as already
discussed in a fine-lettered explanation.
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Here, ˇ implies to remove the variable below the check mark. Notice that[
Matr.

(
∂xi

∂Xj

∣∣∣∣
X1···X̌j ···Xn

)]−1

= Matr.

(
∂Xi

∂xj

∣∣∣∣
x1···x̌j ···xn

)
. (2.8.21)

Therefore, we obtain the fluctuation-response relation:

〈δXiδXj〉 = β
∂Xi

∂xj

∣∣∣∣
x1···x̌j ···xn

. (2.8.22)

This thermodynamic formalism can be applied if δ2S is well defined irrespective
of quantum or classical nature of the fluctuations. If the fluctuation is too rapid (i.e.,
T∆S ∼ h/τ for the fluctuation time scale τ 79), or the temperature is too low, we
cannot rely on the theory. That is, for (2.8.4) to be applicable, we need the following
condition:

∆S � h/Tτ. (2.8.23)

Our remaining task is to use practically the fundamental formula (2.8.13). Notice
that
(i) If an extensive variable X and an intensive variable y are not conjugate (with
respect to energy), then 〈δXδy〉 = 0. Therefore, if one are interested in only 〈δX2〉,
one should choose other variables than δX all intensive, so that no cross terms show
up (as seen in the example just below).
(ii) 〈δXiδxi〉 = kBT (no summation convention).
(iii) The fluctuations of the quantities that may be interpreted as the expectation
values of microscopically-mechanically expressible quantities (e.g., internal energy,
volume, pressure), the fluctuations tend to zero in the T → 0 limit. However, the
fluctuations of entropy and the quantities obtained by differentiating this do not
satisfy the above property.

All the above statements require demonstration (good exercises).

Calculate 〈δT 2〉. Let us assume there is no fluctuation in the number of particles
(δN = 0). To this end, we must first choose independent variables. δT must of
course be chosen. We need one more independent variable. Referring to (i), we
should choose δV as the other variable. Then, we have only to compute the following
term in (2.8.13):

− 1

2kBT
δSδT = − 1

2kBT

∂S

∂T

∣∣∣∣
V

δT 2 + · · · = − CV

2kBT 2
δT 2 + · · · . (2.8.24)

79due to the energy-time uncertainty principle. This is the relation between the certainty of the
energy of a state and its relaxation time scale.
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Therefore, we can easily conclude

〈δT 2〉 = kBT
2/CV . (2.8.25)

The same result should be obtained even if our choice of the independent variables
is not clever.

Let us compute the same 〈δT 2〉 with δT and δP as independent fluctuations. Then,

− 1
2T

[δSδT − δPδV ] = − 1
2T

{
∂S

∂T

∣∣∣∣
P

δT 2 − 2
∂V

∂T

∣∣∣∣
P

δTδP − ∂V

∂P

∣∣∣∣
T

δP 2

}
. (2.8.26)

Using (2.8.19), we should be able to compute the desired quantity. Since

detΛ =
1
T 2

∂(V, S)
∂(T, P )

, (2.8.27)

〈δT 2〉 = − kB

detΛ
1
T

∂V

∂P

∣∣∣∣
T

= −kBT

∂(V,T )
∂(P,T )

∂(V,S)
∂(T,P )

= kBT
∂(V, T )
∂(V, S)

=
kBT

2

CV
. (2.8.28)

We know δ2S < 0 for equilibrium states, so there is no too large spontaneous
fluctuations. This is an indication of the stability of the equilibrium state.r (rto Sect
2.1, rto Sect 2.7) We could also write δ2E > 0. Generally speaking, for any virtual
changes

δ2S < 0 or δ2E > 0 (2.8.29)

is called the stability criterion for the equilibrium state. We can also call

δ2S > 0 or δ2E < 0 (2.8.30)

the evolution criterion; if this inequality holds, the state must change (evolve). (No-
tice that these criteria do not depend on the ensemble choice. Why?) Here, re-
member that the variation δ2S (sometimes called virtual displacement) is actually
being checked incessantly and spontaneously by the system with the aid of thermal
fluctuations.

The stability criterion to the second order reads∑
i,j

∂2E

∂Xi∂Xj

δXiδXj > 0. (2.8.31)

That is, δ2E must be a positive definite quadratic form of {δXi}. A necessary and
sufficient condition for a square matrix A to give a positive definite quadratic form is
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that all the principal minors of A is positive. In particular, all the diagonal elements
must be positive:r

∂xi

∂Xi

∣∣∣∣
X1···X̌j ···Xn

> 0. (2.8.32)

This inequality is Le Chatelier’s principle:80 the change due to perturbation of the
system occurs in the direction to reduce the perturbation effect. For example, if we
put heat into a system, then the system temperature goes up, so further import of
heat becomes difficult. Such a relation is thanks to the convexity of E, so differen-
tiability of E (or S) is not needed.81 Therefore, we can conclude, for example,q
(i) if a phase I changes into II by raising temperature, then the entropy of phase II
must be larger than that of I.
(ii) if a phase I changes into II by increasing pressure, then the volume of II must be
smaller than that of I (do not forget that the conjugate variable of P is not V but
−V ).

In 3He at low temperatures, melting of solid occurs upon decreasing temperature.
Therefore, (i) implies that the solid state has a larger entropy (due to nuclear spin
disorder82) than liquid (Pomeranchuk effect).

T

P

gas

liquid

solid

Fig. 2.8.1 A schematic phase diagram of 3He.
Under constant pressure at low temperatures
(below ∼ 0.3 K), heating solidifies 3He liquid.
Therefore, entropy increases upon solidification
according to (i). In this case the solid phase is al-
ways above the liquid phase, so the volume must
shrink upon solidification according to (ii) even
if melting is caused by heating.

The positivity of 2× 2 principal minors implies

∂(xi, xj)

∂(Xi, Xj)
> 0. (2.8.33)

We have already encountered this matrix in the calculation of the two variable fluc-
tuation above.

The positivity of the diagonal terms may be used to derive the following inequality.

80Henry Louis Le Chatelier (1850-1936).
81E is C1 as a function of extensive variables, but it may not be twice differentiable. Thus,

(2.8.32) may not be meaningful. Still, for example, −∆P∆V > 0 must hold.
82These spins order into an antiferromagnetic state only at around 10−3 K.
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Since dx = ∂x
∂X

∣∣
Y
dX + ∂x

∂Y

∣∣
X
dY + · · ·

∂x

∂X

∣∣∣∣
y

=
∂x

∂X

∣∣∣∣
Y

+
∂x

∂Y

∣∣∣∣
X

∂Y

∂X

∣∣∣∣
y

, (2.8.34)

=
∂x

∂X

∣∣∣∣
Y

+
∂x

∂Y

∣∣∣∣
X

∂(Y, y)

∂(X, x)

∂(X, x)

∂(X, Y )

∂(X, Y )

∂(X, y)
(2.8.35)

=
∂x

∂X

∣∣∣∣
Y

− ∂x

∂Y

∣∣∣∣2
X

∂Y

∂y

∣∣∣∣
X

(2.8.36)

Here, a Maxwell’s relation has been used (we can also start with expansion of the
Jacobian). That is,

∂x

∂X

∣∣∣∣
y

<
∂x

∂X

∣∣∣∣
Y

. (2.8.37)

This implies that the indirect change occurs in the direction to reduce the effect
of the perturbation (Le Chatelier-Braun’s principle).83q A typical example is CV ≤
CP :q larger specific heat implies that it is harder to warm up, that is, the system
becomes more stable against heat injection. More generally, we may summarize the
Le Chatelier-Braun principle as follows:

(∆x)y ≤ (∆x)Y , (2.8.38)

(∆X)Y ≤ (∆X)y. (2.8.39)

The second formula is obtained by taking the reciprocal of (2.8.37).

To conclude the section on fluctuations, let us discuss the particle number fluc-
tuation in dilute gas (or in a noninteracting particle system). It is a good occasion
to discuss the law of small numbers. To study the exchange of particles between a
‘small volume’ and its surrounding the grand canonical partition function is conve-
nient. The probability to find n particles in the volume is

P (n) =
1

Ξ
Zne

βnµ, (2.8.40)

where Zn is the canonical partition function for n particles that has the form Zn =
(1/n!)fn, and

Ξ =
∑

n

Zne
βnµ = exp

(
feβµ

)
. (2.8.41)

83Karl Ferdinand Braun (1850-1918) [the inventor of the cathode-ray tube, the discoverer of
principle of semiconductor diode, shared the Nobel prize with Marconi for wireless technology].
The history of this principle can be found in J. de Heer, “The principle of le Chatelier and Braun,”
J. Chem. Educ., 34, 375 (1957). The form stated here is due to Ehrenfest.
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Sincer

〈n〉 =
∂log Ξ

∂βµ
= feβµ, (2.8.42)

we can rewrite P (n) as

P (n) =
1

n!
〈n〉ne−〈n〉. (2.8.43)

This is the Poisson distribution with average 〈n〉, which is also the variance of the
distribution.

The same problem may be seen as follows. Let χi be the indicator of the event
that i-th particle shows up in the volume we are looking at. Then,

n =
N∑

i=1

χi (2.8.44)

Here, N is the number of particles in the ‘world.’ For any particle the probability
for it to be in the volume is 〈n〉/N , so

P (n) =

(
N

n

)
pn(1− p)N−n. (2.8.45)

For N � n
(

N
n

)
' Nn/n!, so in the N →∞ limit

P (n) =
Nn

n!

(
〈n〉
N

)n(
1− 〈n〉

N

)N

→ 1

n!
〈n〉ne−〈n〉. (2.8.46)

Mathematically, the Poisson distribution may be obtained for the observable X
whenever the following three conditions are satisfied:
(1) X has an expectation value.
(2) X is expressed as a sum of numerous independent random variables taking only
the values 0 and 1.84

(3) None of these random variables can dominate the observable.85

This is called the law of small numbers.

84The distributions need not be the same.
85 This means that, for example, ‘x1 '

∑
the rest’ never occurs. Democracy is required for each

realization (not only in law).
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2.9 Chemical Reactions

Here, an elementary exposition of equilibrium chemical reactions is given.r Without
chemical reactions no atomism was possible. Furthermore, the idea of detailed bal-
ance originated from chemical reactions. Also to understand chemical reactions is
becoming increasingly important even for physicists because we living organisms are
chemical machines.

Before discussing chemical reactions let us review chemical thermodynamics. The
summary of thermodynamic laws in Section 1.1 deliberately confined itself to closed
systems that do not have any exchange of matter with their environments. Now,
we consider an open system that is allowed to exchange work, heat and matter with
its environment. The zeroth and the fourth laws require no essential change. To
describe an equilibrium state we need not only energy E and work coordinates {Xi}
but also some extensive variables that specify the amount of chemical species {Ni}.
Here, we simply assume that there is a set of independent variables {Ni} that can
uniquely specify the chemical composition of the system in equilibrium.

If the work coordinates and the variables {Ni} can be treated exactly the same
way, except for enlarging the set of independent extensive variables, almost no special
care is needed. Simply we can define heat as the deficit of energy balance just as we
reviewed in Section 1.1. Under the adiabatic condition if Ni is changed by dNi,

86 the
internal energy of the system changes by µidNi (no summation convention). How-
ever, it is hard to construct an adiabatic wall that allows transferring chemicals across
it. Therefore, let us consider the Helmholtz free energy change of a thermostatted
system + thermostatted chemostats. In this case using the relation W = ∆A we can
in principle measure the change of the free energy. Furthermore, we can change a
particular Ni infinitesimally. This requires a selective wall (semipermeable wall) that
allows only a particular chemical to be exchanged across it. The existence of such a
wall is assumed; at least approximately such a wall or a membrane exists. We could
count many selective (but not energy-consuming) channels in biological systems as
examples. Thus, the free energy change may be written as

dA =
∑

i

xidXi +
∑

i

µidNi, (2.9.1)

where the second term is called the mass action.
86Ni is a discrete variable, strictly speaking, but ‘being macroscopic’ implies that we cannot

detect any discrete atomistic structure of matter empirically. Therefore, within thermodynamics,
Ni are never discrete variables.
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[T10]r The first law and the second law for an open system87 (r to ensembles,
r to chemical reaction)
The first law may be extended as (here, thermodynamics for a closed system is assumed
to have been formulated, so we can freely use thermodynamics without mass exchange
or chemical reactions):

(i) The equilibrium state of a system is uniquely specified by a set of
extensive variables including (internal) energy: {E,Xi, Ni}. Here, Xi are
= work coordinates and Ni denotes the amount of chemical i.
(ii) There is a process called a reversible isothermal process such that
dA =

∑
i xidXi +

∑
i µidNi.

The second law consists of the following two parts:
(i) When two equilibrium states are given, there is at least a process to
change one state into the other through a combination (if necessary) of
an isothermal process with mass action (to change the composition) and
an adiabatic process without mass action (to change the temperature).
(ii) W ≥ ∆A under the thermostatted condition, where W is the sum of
actual work and mass action,

Since the general formulas may be cumbersome, in this section, we use the follow-
ing reaction to illustrate the general formulas:

N2 + 3H2 ↔ 2NH3. (2.9.2)

This formula implies that one molecule (or one mole88) of nitrogen reacts with 3
molecules (or 3 moles) of hydrogen to produce two molecules (or 2 moles) of ammonia.
This does not mean that four molecules react at once; it is a summary of a certain
number of elementary reactions.89 The left hand side is called the original system
(or reactant system) and the right hand side the product system. The coefficients 2,
3 and (not explicitly written) 1 (for nitrogen) are called stoichiometric coefficients.
If we use the sign convention that the stoichiometric coefficients for the product
system are all positive, and those for the original system all negative, we may write
the reaction in an algebraic form

− N2− 3H2 + 2NH3 = 0. (2.9.3)

87As stated before, reading the entries with [T] can provide an elementary (but not introductory)
summary of thermodynamics.

88The quantity of one mole (mole number) is defined by the same number (Avogadro’s number)
of molecules as contained in 12 g of 12C).

89As the actual elementary reactions in the gas phase, such a reaction as (2.9.2) is very un-
usual, because elementary reactions are unimolecular decay or binary collision type reactions. The
phenomenological scheme such as (2.9.2) may be interpreted as a time-coarse-grained reaction.
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Thus, generally any reaction may be written as∑
νiAi = 0, (2.9.4)

where νi are signed stoichiometric coefficients for chemical Ai; νi > 0 (resp., νi < 0)
implies i is a product (resp., a reactant).

To describe the progress of a reaction, an extensive variable ξ called the extent of
reaction (or progress variable) is introduced as

dξ = dni/νi, (2.9.5)

where ni is the quantity of chemical species i in moles, and dni is its change due
to the reaction under consideration.90 That is, νiξ describes the quantity of the
production of chemical Ai (νiξ > 0 implies the production of chemical i in the usual
sense, and νiξ < 0 implies its consumption).

Let bi be a thermodynamic extensive quantity B carried by the chemical species
i (often called molar quantity, e.g., molar enthalpy). Precisely, the quantity should
be understood as

∂B/∂ni = bi (2.9.6)

under constant T, P and nj (j 6= i). Under constant T and P 91, B =
∑

i nibi holds
thanks to Euler’s theorem. The change ∆B of the total B due to the reaction (2.9.4)
may be written as

∆B =
(∑

νibi

)
∆ξ. (2.9.7)

For example, if hi is the molar enthalpy of chemical i

∆H =
(∑

νihi

)
∆ξ (2.9.8)

is the reaction heat. Notice that ∆H > 0 means that the system enthalpy increases,
that is, enthalpy is absorbed by the proceeding of the reaction: it is an endothermic
or endoergic reaction. If ∆H < 0, the reaction is exothermic or exoergic. Recall Le
Chatelier’s principle. What is the sign of ∂ξ/∂T , if the reaction is exothermic?

The conjugate variable −A of the extent of chemical reaction is called the chemical

90If there are several simultaneous reactions, dni should carry the symbol denoting each reaction
as d(r)ni to describe the change due to the reaction r, and dξr = d(r)ni/ν

r
i , where νr

i is the signed
stoichiometric coefficient for chemical i in reaction r.

91These conditions must respect the actual experimental condition, but often chemical reaction
experiments are done under constant T and P .
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affinity.92 In terms of chemical potentials, the affinity for a particular reaction may
be expressed as

A = −
∑

i

νiµi, (2.9.9)

where µi is the chemical potential of chemical i.93 Thus, the Gibbs relation reads

dE = TdS − PdV −Adξ + · · · . (2.9.10)

Under constant T and P the suitable thermodynamic potential is Gibbs’ free
energy G. The equilibrium condition for the reaction (2.9.4) is given by A = 0:

−A =
∂G

∂ξ
=
∑

i

∂ni

∂ξ

∂G

∂ni

=
∑

i

νi
∂G

∂ni

=
∑

i

νiµi = 0. (2.9.11)

To utilize this condition, we need expressions of chemical potentials.

We have already learned that for ideal gases,

µ = RT log[n/nQ(T )] = RT log[P/kBTnQ]. (2.9.12)

For a gas mixture P is replaced by the partial pressure Pi of chemical i: we may
write

µi = µ◦i +RT logPi. (2.9.13)

Here, µ◦i is the chemical potential for Pi = 1.94 In solutions the chemical potential
of a solute i in a solution is written as

µi = µ◦i (T, P ) +RT log ai, (2.9.14)

where ai is called the activity of chemical i, which is close to the molarity xi when
the solution is dilute.

The equilibrium condition for the reaction (2.9.4) reads

0 =
∑

i

νi[µ
◦
i (T, P ) +RT log ai]. (2.9.15)

92The minus sign in the definition is a convention, but it implies, “the reaction proceeds easier
when the affinity is larger,” so it is a convention familiar to chemists.

93If we have several reactions going on in parallel, for reaction r we introduce the corresponding
affinity Ar. −Adξ in (2.9.10) is replaced with −

∑
r Ardξr, where r denotes a particular reaction.

94If the gas is not a mixture of ideal gases, then the partial pressure must be replaced with the
fugacity. Such chemical thermodynamics details will not be discussed here. See, for example, J.
Kirkwood and I. Oppenheim, Chemical Thermodynamics (McGraw-Hill, 1961).
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Or, (assuming the constant T P condition, so Φ = G)

A◦ = −∆G◦ ≡ −
∑

i

νiµ
◦
i (T, P ) = RT

(∏
i

aνi
i

)
. (2.9.16)

The left hand side does not depend on the chemical composition of the system, so
we introduce the chemical equilibrium constant K(T, P ) according to

K(T, P ) = eA
◦
/RT =

· · · aνp
p · · ·

· · · a−νr
r · · ·

, (2.9.17)

where the numerator have all the products, and the denominator all the reactants.
(2.9.17) is called the law of mass action. Note that all the exponents in the above
formula are positive. Large K implies that the reaction favors the product system in
equilibrium (the reaction shifts to the right, or the standard affinity of the reaciton
is large). The equilibrium constant for the reaction (2.9.2) is given by

K(T, P ) =
[NH3]

2

[N2][H2]3
. (2.9.18)

Here, [X] is the partial pressure (fugacity) of chemical X in the gas phase reaction
or the molarity (activity) in the solution.

If we differentiate the equilibrium constant with respect to T , we can obtain the
heat of reaction, that is, ∆H due to reaction. The Gibbs-Helmholtz relation (or its
analog for the Gibbs free energy) tells us

∂logK

∂T

∣∣∣∣
P

=
∆H◦

RT
, (2.9.19)

where ∆H◦ is the enthalpy change for the ‘standard state.’ This is called van’t Hoff’s
equation. Similarly,

∂logK

∂P

∣∣∣∣
T

= −∆V ◦

RT
, (2.9.20)

where ∆V ◦ is the volume change due to reaction for the ‘standard state’. In reactions
the change ∆ always implies (product system) − (original system).

(2.9.19) tells us that if the reaction is exothermic (exoergic, i.e., ∆H◦ < 0), then
increasing the temperature shifts the reaction to reduce the heat generation (i.e.,
K decreases and the reaction tends to go back from the product system to the
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original). This is an example of Le Chatelier’s principle asserting that “the response
to a perturbation is in the direction to reduce its effect.” (2.9.20) is also its example.
Needless to say, these are manifestations of the stability of our world.

Consider a simple reaction

A
k+

−→
←−
k−

B. (2.9.21)

Here, k± are kinetic coefficients: if A and B are dilute, we may write

d[A]

dt
= k−[B]− k+[A] = −d[B]

dt
. (2.9.22)

Therefore, in equilibrium two directional reactions dynamically balance in detail,
and

k+/k− = [B]eq/[A]eq = K(T, P ) = e−∆G◦/RT , (2.9.23)

where K is the equilibrium constant. That is, the equilibrium constant can be
described by the ratio of chemical reaction rates. However, never forget that this is
not a general relation. This is true only under the assumption that the rate may be
described directly in terms of concentrations. In general, reaction rates are assumed
to be the function of activities instead of concentrations. Furthermore, when (2.9.22)
is used away from equilibrium (as usually the case), the activity ai of chemical i in
equilibrium may not be the right activity to describe the reaction rate.

The equilibrium constant may be computed with the aid of (2.9.17). The relevant
statistical mechanics problem is to compute the chemical potential of the standard
state. In practice, this statistical mechanical computation can yield meaningful an-
swers only for gas phase reactions, virtually when we may assume the gases are ideal.
We have computed the chemical potential of monatomic ideal gas without internal
degrees of freedom as (1.5.22). Chemical reactions among molecules with internal
degrees of freedom are discussed in the following. This is not understandable before
reading Section 3.6, so the reader may skip the topic.

To obtain the partition function for general ideal gases we have only to multiply
the partition function for the internal degrees of freedom zI (see Sect. 3.6) to the
usual ideal gas partition function (i.e., the partition function of monatomic ideal gas
without internal degrees of freedom). Therefore, the chemical potential (when the
amount of the substance is measured in moles) reads

µ = µ◦(T ) +RT logP, (2.9.24)
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where P is the partial pressure and

µ◦ = −RT log

[
zI

(
2πmkBT

h2

)3/2

kBT

]
(2.9.25)

Here, m is the mass of the molecule. We have only to use (2.9.17) and (2.9.16), but we
must use the common energy origin for the chemical potentials for all the substances.
The usual formula for zI uses the ground state of the molecule as the energy origin.
Therefore, in order to use the usual zI (calculated as in Sect. 3.6) we must pay
attention to the energy origin shifts due to, e.g., the difference in vibrational zero
point energies.r That is, we need the energy difference (per molar extent of reaction)
∆: the energy of the product system when all the products’ internal states are in the
ground states relative to the energy of the original system when all the reactants’
internal states are in their ground states. Consequently, A◦ must be replaced with
A◦ − ∆, if we stick to the conventional definition of zI whose energy origin is the
ground state of the molecule. Instead of writing down a general expression, let us
write down K(T, p) for the ammonia synthesis reaction (2.9.2). Let ∆ be the reaction
energy for (2.9.2). Then, we may write

K(T, P ) = exp
[(
µ◦N2

+ 3µ◦H2
− 2µ◦NH3

−∆
)
/RT

]
, (2.9.26)

=

(
m

3/2
NH3

zNH3

)2

(
m

3/2
N2
zN2

)(
m

3/2
H2
zH2

)3

(
2πkBT

h2

)−3

(kBT )−2e−∆/RT . (2.9.27)

Here, zX is the partition function for the internal degrees of freedom for chemical
species X. ∆ is given by

∆ = 2E0
NH3
− 3E0

H2
− E0

N2
, (2.9.28)

where E0
X is the ground state energy of chemical species X. These will be given in

a problem of Chapter 3.
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Exercises for Chapter 2

2.1 [On derivation of canonical distribution]
A textbook of statistical mechanics has the following derivation of the canonical dis-
tribution:
“The distribution function must not depend on the properties of particular systems,
but must be universal. That is, the probability P (EI) (resp., P (EII)) for the system
I (resp., II) to have energy EI (resp., EII) and the probability P (E) for the com-
pound system of I and II to have energy E = EI +EII must have the same functional
form. This must be so, as long as we expect statistical mechanics holds universally.
Therefore,

P (EI)P (EII) = P (EI + EII). (2.P.1)

For this equation to be valid, we can prove that P (E) must have the following
functional form:

P (E) = Ce−βE, (2.P.2)

where C is a constant.”
Is this argument correct?

2.2 [Elementary problem about spin system]
Due to the ligand field the degeneracy of the d-orbitals of the chromium ion Cr3+ is
lifted, and the spin Hamiltonian has the following form

H = D(S2
z − S(S + 1)/2), (2.P.3)

where D > 0 is a constant with S = 3/2 (the cation is in the term 4F3/2).
(0) Why can you apply statistical mechanics to this ‘single’ ion?
(1) Compute the occupation probability of each energy level at temperature T (you
may use the standard notation β = 1/kBT ).
(2) Calculate the entropy.
(3) At high temperatures approximately we have C = kB(T0/T )2 with T0 = 0.18 K.
Determine D in K.

2.3 [Vapor pressure of silicon]
The chemical potential µs of the atom in a solid is essentially given by the binding
energy ∆ of atom in the solid: µs = −∆. Obtain the formula for the equilibrium
vapor pressure of solid, and estimate the vapor pressure at room temperature of
silicon for which ∆ = 3 eV.

2.4 [Specific heat]



2.9. CHEMICAL REACTIONS 157

Suppose that a (3D) classical mechanical system has the following Hamiltonian

H =
N∑

i=1

ak|pk + ck|s (2.P.4)

where ak (k = 1, · · · , N), s are positive constants, and ck are constant 3-vectors.
Without any explicit calculation compute the specific heat.

2.5 [Permanent dipole]
The potential energy of a permanent electric dipole p is U = −p ·E in the electric
field E. Obtain the electric susceptibility of the system.

2.6 [Internal degree of freedom]
There is a classical ideal gas of volume V consisting of N molecules whose inter-
nal degrees of freedom are expressed by a single (quantum-mechanical) harmonic
oscillator with a frequency ν. The frequency depends on the volume of the system
as

dlog ν

dlog V
= γ. (2.P.5)

(1) Obtain the pressure of the system.
(2) Obtain the constant pressure specific heat CP .

2.7 [Application of equipartition of energy]95

The internal motion of some ring puckering molecules (e.g., cyclobutanone) can be
described by the following Hamiltonian:

H =
p2

2m
+ ax4, (2.P.6)

where m is the effective mass of the oscillator and a is a positive constant. Obtain
the constant volume specific heat of this gas around the room temperature. Do not
forget the contribution of translational degrees of freedom, etc.

2.8. [Equipartition of energy for relativistic gas]
For a classical relativistic ideal gas show that the counterpart of the law of equipar-
tition of kinetic energy reads〈

1

2

mv2
x√

1− v2/c2

〉
=

1

2
kBT. (2.P.7)

2.9 [An equality about canonical ensemble]

95original credit: B. Widom
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Let Φ be the total potential energy of classical system. Show

〈∆Φ〉 = β
〈
(∇Φ)2

〉
. (2.P.8)

Here, the Laplacian and the nabla are understood as operators in the 3N-space.

2.10 [Density operator for free particles: perhaps an elementary QM review]
The canonical density operator is given by

ρ =
1

Z
e−βH , (2.P.9)

where H is the system Hamiltonian and Z is the canonical partition function. Let
us consider a single particle confined in a 3D cube of edge length L. We wish to
compute the position representation of the density operator 〈x|ρ|x′〉 (x and x′ are
3D position vectors, and bras and kets are normalized).

Let U(β) = e−βH and H = p2/2m. There are two ways to compute 〈x|U(β)|x′〉:
A.
(1) Show that

∂

∂β
〈x|U(β)|x′〉 =

~2

2m
∆x〈x|U(β)|x′〉, (2.P.10)

where ∆x is the Laplacian with respect to the coordinates x.
(2) What is the initial condition (i.e., 〈x|U(0)|x〉)?
(3) Solve the equation in (1) with the correct initial condition. You may use a simple
boundary condition assuming the volume is very large (and temperature is not too
low).
(4) Compute Z, using the result in (3). You may use (3) to study the finite volume
system as long as the temperature is not too low.

B.
We can directly compute 〈x|U(β)|x′〉 with the aid of the momentum representation
of U(β):

〈p|U(β)|p′〉 = e−βp2/2mδ(p− p′).

(5) We use

〈x|U(β)|x′〉 =

∫
d3p d3p′〈x|p〉〈p|U(β)|p′〉〈p′|x′〉.

What is 〈x|p〉? You may assume the infinite volume normalization (i.e., the δ-
function normalization: 〈p|p′〉 = δ(p− p′)).
(6) Perform the integral in (5).

2.11 [Density operator for a spin system]
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Let ρ be the density operator of a single 1/2 quantum spin system whose Hamilto-
nian96 is given by H = −γσ ·B, where σ is (σx, σy, σz) in terms of the Pauli spin
operators.
(1) Obtain the matrix representation of ρ with respect to the base that diagonalizes
σz.
(2) Find the average of σy.
(3) Obtain the matrix representation of ρ with respect to the base that diagonalizes
σx.

2.12 [Legendre vs Laplace]
Consider an ideal gas consisting of N atoms under constant pressure P and temper-
ature T .
(1) What is the most convenient partition function and the thermodynamic poten-
tial? Compute the partition function. You may use the ideal gas canonical partition
function.
(2) Obtain the enthalpy of the system.

2.13 [Constant magnetic field ensemble]
The following situation is the same as 1.18: N lattice sites have spins of S = 1 (in
the term 3P ), and the spin Hamiltonian has the following form:

H = DS2
z . (2.P.11)

(1) Consider this as the constant magnetic field (B) ensemble (also constant T is
assumed), and construct the corresponding generalized canonical partition function.
The magnetization is given by M = µ

∑
Szi.

(2) Compute the magnetization as a function of the magnetic field and temperature.

2.14 [Absorption of mixed ideal gas, or convenient partition function]97

There is a gas mixture consisting of two distinct atomic species A and B. The mix-
ture is an ideal gas and the partial pressures of X is pX (X = A or B). The gas is
in equilibrium with an adsorbing metal surface on which there are adsorption sites.
Atom X adsorbed at the site is with energy −EX on the average relative to the one
in the gas phase, where X = A or B. Each surface site can accommodate at most
one atom. [Hint: you must know how to calculate the chemical potentials of the
atoms, knowing the molecular weights.]
(1) Write down the ‘partition function’ (use the most convenient one) for the single
site.
(2) Obtain the average surface concentration nX (X = A or B) of atoms A and B.

96Precisely speaking, this is te interaction Hamiltonian of the system with the magnetic field.
97Original credit: UIUC Qual F95.
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(3) Under given (partial) pressures of A and B nE : nA : nB = 1 : 1 : 18 (here, E
means empty). Find the maximum concentration nA obtainable with changing only
the partial pressure of B.

2.15 [Adsorption on catalytic surface]
There are N adsorption centers on the catalyst surface exposed to a gas (ideal gas)
of a certain chemical. Each adsorption center can accommodate at most two parti-
cles. The partition function for the single particle adsorption state is a1 and the two
particle adsorption state is a2.
(1) Write down the single site (grand) partition function.
(2) Let a1 = 0 (i.e., adsorption is possible only when a pair is formed). The average
number of particles absorbed on the catalytic surface is n0. Find the chemical po-
tential of the particles.
(3) Now, the pressure of the chemical is doubled (with the temperature kept con-
stant) and the average number of particles adsorbed on the catalytic surface is n1.
Find n1 in terms of N and n0. a1 is still assumed to be zero.
(4) If a1 > 0, does the number of absorbed molecules increase from n0 in (2) (i.e.,
the a1 = 0 case)? Demonstrate your answer and give a brief physical explanation.

2.16 [Gas under a weight]
Suppose there is a vertical cylindrical container of cross section s whose top wall is
a movable piston of cross section s with mass M . The piston is assumed to move
only in the vertical direction (z-direction) and feels gravity. The container contains
N (� 1) classical noninteracting particles with mass m.
(1) Write down the Hamiltonian of the gas + piston system (write the piston vertical
momentum as pM).
(2) Obtain the pressure P of the gas, and write the Hamiltonian in terms of P and
the volume of the gas V = sz, where z is the position of the piston from the bottom
of the container.
(3) Now, the mechanical variables are the phase variables of the gas system and the
piston momentum pM and z = V/s. Compute the canonical partition function of
the whole system.
(4) You should have realized that the calculation in (3), apart from the unimportant
contribution in the thermodynamic limit of the piston momentum, is the calculation
of the pressure ensemble. [That is, the heavy piston acts as a constant pressure
device.] Obtain the equation of state of the gas in the cylinder (a trivial question).

2.17 [Ideal gas with the aid of grand canonical ensemble]
Let us study the classical ideal gas with the aid of the grand canonical ensemble. Let
µ be the chemical potential.
(1) Compute the grand canonical partition function for a monatomic ideal gas. As-
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sume that the mass of the atom is m.
(2) Find the internal energy and the pressure as a function of chemical potential µ.
(3) Suppose the expectation value of the number of particles is N . How is the chem-
ical potential determined?
(4) Are the results obtained above (especially the results of (2)) consistent with what
you already know?

2.18 [To obtain the microcanonical partition function with the aid of Laplace inverse
transformation]
Starting from

Z =
V N

N !

(
2πmkBT

h2

)3N/2

, (2.P.12)

obtain the microcanonical partition function w(E, V ) (with the aid of Laplace inverse
transformation).

2.19 [Equivalence of canonical and grand canonical ensembles]r
Let us check the equivalence of grand canonical and canonical ensembles. That is,
if we compute thermodynamic quantities in the thermodynamic limit, both give the
same answers. Even experimentalists should look at this proof at least once in their
lives.

The grand partition function Ξ(T, µ) and canonical partition function Z(T,N)
(the ground state energy is taken to be the origin of energy) are related as

Ξ(T, µ) =
∞∑

N=0

Z(T,N)eβµN .

Let us assume that the system consists of N (which is variable) particles in a box
of volume V and the total interaction potential Φ among particles is bounded from
below by a number proportional to the number of particles N in the system: Φ ≥
−NB, where B is a (positive) constant. (The system Hamiltonian generally has the
form of H = K + Φ, where K is the kinetic energy.)

Through answering the following almost trivial questions, we can demonstrate the
ensemble equivalence (rigorously).
(1) Show that there is a constant a such that

Z(T,N) ≤
(
aV

N

)N

. (2.P.13)

Actually, show (classically)

Z(T,N) ≤ Z0(T,N)eβNB,
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where Z0 is the canonical partition function for the ideal gas (e.g., (1.7.3)). This is
just eq.(6.2.105) above
(2) Show that the infinite sum defining the grand partition function actually con-
verges. The reader may use eq.(6.2.105) and N ! ∼ (N/e)N freely.
(3) Choose N0 so that

∞∑
N=N0

Z(T,N)eβµN < 1.

Show that this N0 may be chosen to be proportional to V (that is, N0 is at most
extensive).
(4) Show the following almost trivial bounds:

max
N

Z(T,N)eβµN ≤ Ξ(T, µ) ≤ (N0 + 1) max
N

Z(T,N)eβµN .

(5) We are almost done, but to be explicit, show that PV/NkBT obtained thermo-
dynamically from the canonical partition function and that directly obtained from
the grand partition function agree.

2.20 [Legendre transformation in convex analysis]
(1) We know that −S is a convex function of internal energy E. Using the general
property of the Legendre transformation, show that Helmholtz free energy A is con-
vex upward as a function of T . You may assume any derivative you wish to compute
exists.
(2) When a phase transition occurs, the curve of S(E) has a linear part as a function
of E (that is, E can change under constant T = Te). Then, A as a function has a cusp
at T = Te (that is, all the states corresponding to the flat part is collapsed to a point,
the one-to-one nature of the Legendre transformation can be lost, if there is a phase
transition). To illustrate this point, let us consider the following toy function

f(x) =


2 tanh(x+ 1)− 2 for x < −1,

2x for − 1 ≤ x ≤ 1,
(x− 1)2 + 2x for x > 1.

Sketch its Legendre transform f ∗(α) = supx[αx− f(x)]. [Do not try to compute the
explicit formula.]

2.21 [Information]
Suppose there are two fair dice. We assume that one dice is red and the other is
green (that is, distinguishable). Let us record the numbers that are up in this order
as (n,m) (n,m ∈ {1, 2, · · · , 6}).
(1) To know a particular pair of numbers (a, b) unambiguously what information (in
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bits) do you need?
(2) You are told that the sum a+ b is not less than 5. What is the information you
gain from this message?
(3) Next, you are told, one of the dice shows the face less than 3. What is the
information you gain? (You must know the info obtained from (2) already.)
(4) Now, you are told that actually, the one of the dice in (3) is the red one. What
is the information carried by this message?
(5) Finally, you are told that face pair is actually (2, 5). What is the information in
this final statement?

2.22 [Variational principle for free energy (classical case)98]
Let H = H0 + V be a system Hamiltonian.
(1) Show that

A ≤ A0 + 〈V 〉0,
where A is the free energy of the system with H and A0 that with H0. 〈 〉0 is the
average over the canonical distribution of the system with the Hamiltonian H0. The
inequality is (sometimes) called the Gibbs-Bogoliubov inequality.
(2) We can use the inequality to estimate A. If we can compute A0 and 〈V 〉0 (that
is, the free energy for the system with H0 and the average with respect to this
system), then we can estimate the upper bound of A. Its minimum may be a good
approximation to A. This is the idea of the variational approximation. Let us study
an anharmonic oscillator with the Hamiltonian

H =
1

2m
p2 +

1

2
kx2 +

1

4
αx4,

where m, k and α are positive constants. Let us define

H0 =
1

2m
p2 +

1

2
Kx2.

Choose K to obtain the best estimate of A (you need not compute the estimate of
A; it is easy but messy). You may use all the available results the text.

2.23 [Gibbs-Bogoliubov’s inequality (quantum case)]99

Gibbs-Bogoliubov’s inequality

A ≤ A0 + 〈H −H0〉0 (2.P.14)

holds in quantum statistical mechanics as well.
(1) Demonstrate Peierls’ inequality:

98This holds quantum mechanically as well, but the proof is not this simple.
99M D Girardeau and R M Mazo, “Variational methods in statistical mechanics,”
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Tre−βH ≥
∑

i

e−〈i|H|i〉, (2.P.15)

where {|i〉} is an arbitrary orthonormal basis.
(2) Let {|i〉} be the orthonormal basis consisting of the eigenstates ofH0. Then,

e−βA ≥
∑

i

e−β〈i|H|i〉 = e−βA0

∑
i

eβ(A0−〈i|H0|i〉)e−β〈i|(H−H0)|i〉. (2.P.16)

Show Gibbs-Bogoliubov’s inequality with the aid of Jensen’s inequality.
2.24 (1) For any density operator ρ

A ≤ Tr[ρ(H + kBT log ρ)], (2.P.17)

where A is the free energy for the system whose hamiltonian is H.
(2) Suppose ρ is the canonical density operator ρ = eβ(A0−H0) for a system with the
Hamiltonian H0. Show that the above inequality is just Gibbs-Bogoliubov’s inequal-
ity.

2.25 [Convexity of free energy] (Ruelle)

A[
∑

λiHi] ≥
∑

A[λiHi]. (2.P.18)

2.26 [Thermodynamic perturbation theory]
Suppose the system Hamiltonian is given as H = H0 + εH1, where ε is a (small)
constant. Demonstrate the following expansion formula:

A = A0 + ε〈H1〉0 −
1

2
βε2〈(H1 − 〈H1〉0)2〉0 + · · · , (2.P.19)

where A is the free energy of the system, A0 is the free energy in case H1 = 0, and 〈
〉0 is the expectation with respect to the canonical distribution with the Hamiltonian
H0.

2.27 [Jarzynski’s equality].100

A single stranded DNA with a certain binding protein is stretched slowly until the
protein dissociates from the DNA. Then, the length of the DNA is returned slowly
to the rather relaxed state where the binding of the molecule does not affect the

100Inspired by Rustem Khafizov and Yan Chemla’s experiment on SSB. The numbers are only
fictitious. although the magnitudes are realistic.
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DNA tension. The work W dissipated during the cycle is measured at 300 K and
the experimental results were as follows:

W in pNnm number of times βW e−βW

78-82 4 19.3 4.04× 10−9

83-87 15 20.5 1.21× 10−9

88-92 7 21.74 3.62× 10−10

93-97 4 22.94 1.082× 10−10

98-102 1 24.15 3.23× 10−11

What is the best estimate of the (Gibbs) free energy change due to binding of the
protein in the relaxed state of the single stranded DNA? How is your estimate dif-
ferent from the simple average 〈W 〉?
2.28 [Fluctuation and spring constant]101

Inside the F1ATPase is a rotor γ to which a long actin filament (it is a straight stiff
bar of length 30 nm) is perpendicularly attached. Thus, the filament swings back
and forth when the ATPase is waiting for an ATP molecule.
(1) The root mean square angle fluctuation of the stiff filament was 30 degrees at
290 K. If the temperature is raised by 10%, by what percentage will the angular
fluctuation change? Assume that the molecular structure is not affected by this tem-
perature change.
(2) What is the torsional spring constant of this rotor captured by the surrounding
ring?
(3) Now, by adding appropriate polymers to the ambient solution, the effective vis-
cosity of the solution is doubled. What is the mean square angle fluctuation of the
filament? You may assume that the polymers do not affect the ATPase itself.

2.29 [Thermodynamic fluctuations]
(1) Suppose X and y are nonconjugate pair with respect to energy, X extensive and
y intensive. Prove that 〈δXδy〉 = 0.
(2) Let X and x be a conjugate pair (wrt energy). Show 〈δXδx〉 = kBT .
(3) Express 〈δµ2〉 in terms of a single thermodynamic derivative. The system is as-
sumed to be described in terms of S, V,N (or their conjugate variables).
(4) Show with the aid of grand partition function that

kBT
2 ∂E

∂T

∣∣∣∣
µ,V

= 〈δE2〉 − µ〈δEδN〉.

101If you wish to see the structure of the ATPase or to learn about how you can be alive, see K.
Kinosita, K. Adachi, and H. Itoh, “Rotation of F1ATPase: how an ATP-driven molecular machine
may work,” Ann. Rev. Biophys. Biomol. Struct., 33, 245 (2005).
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(5) Let X be an extensive quantity. What can you conclude about 〈δSδX〉? The
result is pedagogically suggestive, because entropy fluctuation means spatially local
heat transport: that is, local temperature change.

2.30 [Equilibrium fluctuation]
(1) Obtain 〈δSδV 〉.
(2) Obtain 〈δPδT 〉.
2.31 [Fluctuation and Le Chatelier-Braun’s principle]
(1) Show the following elementary algebraic inequality:

〈δxδX〉2 ≤ 〈δx2〉〈δX2〉

where x and X make a conjugate pair of thermodynamic variables (with respect to
energy).
(2) What is the relation between this inequality and the Le Chatelier-Braun princi-
ple? (Thus, you understand how natural the Le Chatelier-Braun principle is.)

2.32 [Fluctuation of internal energy]
For a classical monatomic ideal gas consisting of N atoms, compute the fluctuation
of its internal energy (under constant T and P ). Or show

〈(E − 〈E〉)2〉/〈E〉2 = 2/3N. (2.P.20)

2.33 [Stability and related topics, e.g., Le Chatelier-Braun]
(1) Suppose a phase transition from phase I to phase II occurs upon increasing the
magnetic field in the z-direction. What can you say about the relation between the
magnetisms of the phases?
(2) Suppose phase I is a low temperature phase and II a high temperature phase.
The phase transition I → II is first order. What can you say about the sign of the
latent heat ∆H of this phase transition?
(3) Which specific heat is larger, CB or CM (under constant magnetic field, and
under constant magnetization, respectively)?
(4) Suppose there is a dielectric material between a parallel plate capacitor. The two
plates of the capacitor may be short-circuited by a switch. What can you say about
the relation between the heat capacity of the dielectric material under the open- and
short-circuited conditions? Let ε be its dielectric constant, that may or may not
depend on temperature.
(5) Suppose there is a liquid that crystallizes upon heating. Discuss the latent heat
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for this transition.102

2.34 [Chemical equilibrium constant103]
The reaction

A
k+

−→
←−
k−

B. (2.P.21)

may be described as follows, if A and B are sufficiently dilute:

d[A]

dt
= k−[B]− k+[A] = −d[B]

dt
. (2.P.22)

For all t > 0 show that
[B]F (t)

[A]B(t)
= K, (2.P.23)

holds. Here, F denotes the forward reaction starting with pure A, and R denotes the
reverse reaction starting with the same moles of B as A. That is, if these two reac-
tions are started simultaneously, then the concentration ratio at time t as (6.2.158)
is time-independent and equal to the chemical equilibrium constant. [However, this
cannot be a general relation, but holds only under ideal solution and reaction con-
ditions.]

102 Johari, et al., “Endothermic freezing on heating and exothermic melting on cooling,” J. Chem.
Phys., 123, 051104 (2005): α-cyclodextrin + water + 4-methylpyridine (molar ratio of 1:6:100).
For this system a liquid’s endothermic freezing on heating and the resulting crystal’s exothermic
melting on cooling occur. Cp decreases on freezing and increases on melting. Melting on cooling
takes longer than freezing on heating.

103A. B. Adib, “Symmetry Relations in Chemical Kinetics Arising from Microscopic Reversibil-
ity,” Phys. Rev. Lett., 96, 028307 (2006).
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Chapter 3

Non-interacting Systems

This chapter discusses the so-called ideal systems consisting of noninteracting parti-
cles.

That there are only two kinds of elementary particles, called fermions and bosons,
is one of the fundamental principles of quantum mechanics. Let Pij be the particle
exchange operator:

Pijψ(· · · , xi, · · · , xj, · · ·) = ψ(· · · , xj, · · · , xi, · · ·), (3.0.1)

where ψ is a many-body wave function, and xi is the position coordinates of particle
i. Due to the indistinguishability of particles,r Pij does not change physics. Recall
that not the vectors but the rays1 determine physics. Therefore, we conclude

Pijψ(· · · , xi, · · · , xj, · · ·) = λψ(· · · , xi, · · · , xj, · · ·). (3.0.2)

where λ is a phase factor. P 2
ij = 1 implies λ2 = 1, so λ = ±1: if +1, the particles

are bosons; if −1, fermions. This negative sign implies Pauli’s exclusion principle:
if there are two particles in the same state, the corresponding wave function of the

1〈〈Rays〉〉 A ray is a one-dimensional subvector space spanned by a ket. In short, if two kets
are identical up to the scalar multiplicative factors, they describe exactly the same physics except
in interferences. That is, the phase factor does not matter. Interference between wave functions
appear because we divide the whole world into subsystems (i.e., actually inseparable states are
decomposed into two or more). Here, ψ is the wave function for the system as a whole.

169
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whole system must be identical to its negative version, so the function must be zero.
That is, no such state is allowed. Fermions avoid each other in space, because they
avoid occupation of the same one particle state. If the spin is a half odd integer, then
the particle is a fermion; otherwise, it is a boson. This is called the spin-statistics
relation.

The statistics of a composite particle (say, nuclei), if regarded as a single particle,
are determined by its total spin. Therefore, if the particle consists of bosons and
an odd number of fermions, the particle behaves as a single fermion; otherwise, as
a single boson. Ejecting or absorbing particles, composite particles can switch their
statistics.

We know that if we wish to understand phenomena with the scales between our
length scale and the atomic scale, we have only to take into account the Coulomb
interaction as interparticle interactions. For a charged particle system to be stable
at least one of the charged species (say, the plus species) must be fermions. If both
are bosons, the total energy of the system is not bounded from below (the system
collapses).2

3.1 Grand canonical approach

It is convenient to discuss the ideal system with grand canonical ensemble.3 Let us
summarize the grand canonical formalism. We allow energy and particle exchange,
so the appropriate Massieu function for a system with a constant volume is

S − E

T
+
µN

T
=
PV

T
, (3.1.1)

which is sometimes called Kramers’ q. The corresponding generalized canonical
partition function is the grand partition function:

Ξ =
∑
N

∑
E

wN(E)e−β(E−µN). (3.1.2)

2〈〈Stability of matter〉〉 E. H. Lieb, “The stability of matter,” Rev. Mod. Phys. 48, 553-569
(1976); “The Stability of Matter: From Atoms to Stars, 1989 Gibbs Lecture,” Bull. Amer. Math.
Soc., 22, 1-49 (1990).

3Thanks to the ensemble equivalence, in the thermodynamic limit, microcanonical, canonical
and grand canonical ensembles all give the same thermodynamics results, so this choice is a matter
of convenience.
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A convenient relation is

d

(
PV

kBT

)
= d log Ξ = −Edβ + βPdV +Nd(βµ). (3.1.3)

Let us consider the system consisting of noninteracting particles whose possible
one-particle energies are in the set {εi} (the degeneracy of the one particle states
is taken into account by multiply placing the same energies in this list; εi is the
energy of the i-th state of a single particle). Since particles are not interacting, a
microstate of our system may be completely described by the list of the occupation
numbers {ni} of one particle states, where ni is the number of particles in the i-th
one particle state. In the following do not confuse one particle quantum states and
microstates of a macroscopic system.

The grand partition function may be computed as

Ξ(β, µ) =
∑
N

Z(N)eβµN , (3.1.4)

where the canonical partition function for the N -particle system reads4

Z(N) =
∑
E

 ∑
P

niεi=E,
P

ni=N

∏
i

e−βniεi

 =
∑

P
ni=N

∏
i

e−βniεi . (3.1.5)

Here, the equations such as
∑
niεi = E describe constraints on ni, when the sums

are taken (these constraints are with some latitudes; for example E has a latitude
δE as we discussed in the case of the microcanonical ensemble). Thus, we can write
the grand partition function as

Ξ(β, µ) =
∑
N

∑
n1+···=N

∏
i

e−β(εi−µ)ni , (3.1.6)

=
∏

i

(∑
ni

e−β(εi−µ)ni

)
. (3.1.7)

For bosons, the sum is over all nonnegative integers ni, so

ΞBE(β, µ) =
∏

i

(
1− e−β(εi−µ)

)−1
. (3.1.8)

4Here, the degeneracy of energy levels are taken into account by counting the same level as
many times as needed. Therefore, formally, the formulas with and without level degeneracies read
the same.
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Here, BE implies ‘Bose-Einstein.’
On the other hand, for fermions, ni = 0 or 1, so

ΞFD(β, µ) =
∏

i

(
1 + e−β(εi−µ)

)
. (3.1.9)

Here, FD implies ‘Fermi-Dirac.’
Thus, we can write as

Ξ(β, µ) =
∏

i

(
1∓ e−β(εi−µ)

)∓1
. (3.1.10)

Here, the sign upstairs is for bosons, and the sign downstairs is for fermions.
We stick to this convention throughout this chapter.

Classic cases are small particle number density limits, so they correspond to the
µ→ −∞ limit (cf. the Poisson distribution). Therefore, these grand partition func-
tions both asymptotically go to

ΞMB(β, µ) = 1 +
∑

i

e−β(εi−µ). (3.1.11)

Here, MB stands for ‘Maxwell-Boltzmann.’

The expectation value 〈ni〉 is obtained from (3.1.10) as

〈ni〉 = − ∂

∂(βεi)
log Ξ =

1

eβ(εi−µ) ∓ 1
. (3.1.12)

Take note the following points (here the lowest energy level is taken as the energy
origin):
(i) For fermions, if the temperature is sufficiently low, 〈n(ε)〉 behaves like a step
function θ(µ − ε). Therefore, at sufficiently low temperatures chemical potential
must be non-negative.
(ii) For bosons, the chemical potential cannot be positive, because 〈n(ε)〉 must be
nonnegative. If the temperature is low enough, the one-particle ground state may
be occupied by a macroscopic number of particles (the Bose-Einstein condensation
as will be discussed in detail later).
(iii) The chemical potential decreases as temperature increases. Notice

∂µ

∂T

∣∣∣∣
N

= − ∂S

∂N

∣∣∣∣
T

. (3.1.13)
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Our system is ideal, so S is proportional to N and the entropy per particle is positive.
Therefore, indeed µ decreases as T increases. Thus, for fermions, µ(T ) starts from
some positive number and decreases as T increases into the negative domain. For
bosons, µ(T ) starts from zeroq and decreases as T increases.

The expected total number of particles 〈N〉 is obtained by differentiating the
grand partition function wrt βµ:

〈N〉 =
∑

i

1

eβ(εi−µ) ∓ 1
. (3.1.14)

This is of course consistent with (3.1.12). Classically, µ→ −∞, so

〈N〉 =
∑

i

e−β(εi−µ) = log ΞMB, (3.1.15)

but this is obvious from (3.1.11) and the equation of state of the classical ideal gas
PV = NkBT .

The distinction between fermions and bosons show up clearly in pressure:

PV

kBT
= log Ξ = ∓

∑
i

log
(
1∓ e−β(εi−µ)

)
. (3.1.16)

(1) If T, V,N are kept constant (the usually more interesting case than (2)), then

PFD > PMB > PBE. (3.1.17)

(2) If T, V, µ are kept constant, then

PBE > PMB > PFD. (3.1.18)

(2) is easy to see from 1/(1− x) > 1 + x for x ∈ (0, 1) and (3.1.16). (1) requires
some trick, so it will be shown below, but intuitively this can be understood by
the extent of effective particle-particle attraction relative to the fermion case as the
elementary two-box-two-particle system in Fig. 3.1.1 suggests. The figure not only
suggests the pressures, it also suggests the extent of particle number fluctuations. As
we will see later 〈δn2〉 = 〈n〉(1−σ〈n〉), where σ is +1 for fermions, 0 for the classical
limit and −1 for bosons.

(1) may be demonstrated as follows: Classically, PV = NkBT , so we wish to
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BE

FD

MB

2/3

2/4=1/2

0

Fig. 3.1.1q Two-particle two box illustration of statistics. The numbers in the right denote the
relative weights of the states for which effective attraction can be seen.

demonstrate (N and 〈N〉 need not be distinguished, since we consider macrosys-
tems)

log ΞFD > 〈N〉 > log ΞBE. (3.1.19)

Let us see the first inequality:5 Writing xj = e−β(εj−µ), we have

log ΞFD − 〈N〉 =
∑

j

[
log(1 + xj)−

xj

1 + xj

]
, (3.1.20)

where xj = e−β(εj−µ). We are done, because for x > 06

log(1 + x)− x

1 + x
> 0. (3.1.21)

Similarly, we can prove the second inequality in (3.1.19).

(3.1.16) can be written in terms of the one-particle state density (translational
degrees of freedom only) Dt(ε) as

PV = ∓kBT

∫
dεDt(ε) log

(
1∓ e−β(ε−µ)

)
. (3.1.22)

Remark. As we will learn later when the Bose-Einstein condensation occurs, the
summation cannot always be replaced with integration, because the ground state
contribution is significant. However, p = 0 particles should not contribute to E nor
to P (as intuitively understandable), so the above formulas must be correct for very
large volumes even if there is a Bose-Einstein condensation (so long as logN/N � 1).
We will come back to this point more quantitatively after the discussion of the Bose-
Einstein condensation.

5The reader might wonder why we cannot use ΞMB to demonstrate the formula; the reason
is that µ in this grand partition function and that in ΞFD or ΞBE are distinct. Remember that
we keep N ; inevitably µ depends on statistics, so we cannot easily compare the Boltzmann factor
eβ(ε−µ) in each term.

6Consider the derivatives.
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A dimensional analysis may allow us to conclude Dt(ε) ∝ ε1/2 in 3-space, so∫ ε

0

Dt(ε)dε =
2

3
Dt(ε)ε. (3.1.23)

Using this in (3.1.22) with the aid of integration by parts (the boundary terms
disappear), we can rewrite it asrq

PV =
2

3
E. (3.1.24)

where E is the internal energy

E =
∑

i

〈ni〉εi =

∫
dεDt(ε)

ε

eβ(ε−µ) ∓ 1
. (3.1.25)

We already know that (3.1.24) is true for the Maxwell-Boltzmann case, but now we
know that it is true for any (non-relativistic) ideal gas (in 3-space). We will see the
conclusion is a purely mechanical result with the aid of the virial theorem.

Recalling Dt(ε) quickly
When Dt(ε) is forgotten, perhaps the easiest method to recover it may be to use the
relation between classical and quantum statistics:∫ ε

0

Dt(ε)dε =
1
h3

∫
p2/2m≤ε

d3pd3q =
V

h3

∫ p(ε)

0

4πp2dp, (3.1.26)

The integration with respect to the momenta is over 3D sphere of radium
√

2mε∫ ε

0

Dt(ε)dε =
V

h3

4π
3

(2mε)3/2. (3.1.27)

That is,

Dt(ε) = 2πV
(

2m
h2

)3/2

ε1/2. (3.1.28)

Remark. In this book, the internal degrees of freedom of the particles, e.g., spins,
are not taken into account in Dt(ε). If there are g states that are degenerate, then
the answer must be multiplied by g. Since electrons are the most common examples,
g = 2 due to spins is often built into Dt(ε). However, in this book such g will NEVER
be included in Dt; we will write gDt; we reserve Dt for single particle translational
aspects only. That is the reason for the subscript t.
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3.2 Using annihilation and creation operators

We can go on without algebraic devices to compute various expectation values, but
in any case, we must be familiar with the so-called second quantization formalism,
so the needed device is introduced in the most efficient way.

Since we are studying indistinguishable particle systems, any microstate may be
uniquely specified by the occupation numbers nk of one particle energy states k. That
is, {nk} is a complete specification of a microstate of the system. Let us introduce
a normalized ket |nk〉 describing the state that the one-particle k-th energy level is
occupied by nk particles. All the possible states allowed to the k-th single energy
level is completely described by nk and the states with different occupation numbers
can never be observed simultaneously, so we may assume that {|nk〉}nk=0,1,··· is an
orthonormal complete set to describe this single energy level system. If we introduce
a direct product ket |{nk}〉 = |n1〉|n2〉 · · ·, we may assume that the totality of such
kets makes a complete orthonormal system for the whole system. To describe the
microstates choosing these kets as the basis is called number representation.

Consider a representative single one-particle energy level (the state name k is
omitted for simplicity), and write the state with n particles on that level to be |n〉
without a suffix for simplicity. Let us define7 a linear operator called the creation
operator a+ by

a+|n〉 = cn+1|n+ 1〉. (3.2.1)

Here, cn+1 is a complex number we can choose conveniently. The adjoint of a+ is
denoted by a:

〈n|a = c∗n+1〈n+ 1|. (3.2.2)

(3.2.1) and (3.2.2) yield

〈n|a|n+ 1〉 = c∗n+1〈n+ 1|n+ 1〉 = c∗n+1. (3.2.3)

For other combinations of bras and kets, this is zero. Therefore, a|n+ 1〉 must be
parallel to |n〉: to be consistent with (3.2.3):

a|n+ 1〉 = c∗n+1|n〉. (3.2.4)

7A linear operator on a certain vector space is defined if we specify all the matrix components
with respect to a complete orthonormal set like {|n〉}. Thus, we can freely design an operator. Of
course, whether it is useful or not is another matter.
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This implies that a may be called the annihilation operator. Since we cannot remove
any particle from |0〉, we demand c0 = 0:

a|0〉 = 0. (3.2.5)

(3.2.1) and (3.2.4) imply
a+a|n〉 = |cn|2|n〉. (3.2.6)

Boson case
Now, we assume that n is without upper bound, so {|n〉}n∈N makes a complete
orthonormal set. To define the operators we can freely choose {cn}. A convenient
choice is cn =

√
n

a+a|n〉 = n|n〉. (3.2.7)

With this choice n̂ = a+a is called the number operator. We see

aa+ − a+a = [a, a+] = 1. (3.2.8)

We can summarize the boson annihilation and creation operator as follows:

a+|n〉 =
√
n+ 1|n+ 1〉, (3.2.9)

a|n〉 =
√
n|n− 1〉, (3.2.10)

n̂ = a+a. (3.2.11)

The following commutation relations are useful:

[a, a+] = 1, [a, a] = [a+, a+] = 0. (3.2.12)

Fermion case
Pauli’s principle tells us that {|0〉, |1〉} is a complete set, so we may regard this as a
complete orthonormal set. We may introduce a creation operator a+ by

a+|0〉 = |1〉, a+|1〉 = 0. (3.2.13)

The adjoint becomes an annihilation operator

a|0〉 = 0, a|1〉 = |0〉. (3.2.14)

This defines a and a+ completely. We could write as

a+|n〉 =
√

1− n|n+ 1〉, a|n〉 =
√
n|n− 1〉. (3.2.15)
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It is easy to see n̂ = a+a is the number operator. Since

(aa+ + a+a)|0〉 = |0〉, (3.2.16)

(aa+ + a+a)|1〉 = |1〉, (3.2.17)

in terms of anticommutator [A,B]+ = AB +BA

[a, a+]+ = 1, [a, a]+ = [a+, a+]+ = 0. (3.2.18)

We must extend the above formalism to many one-particle energy state cases. Let
aj and a+

j be the annihilation and creation operators for the j-th (one particle) energy
state. To the end, we must specify the relation between xix

′
j and x′jxi, where x and

x′ are the creation or annihilation operators. The physical effect of these operations
must be the same. We can freely choose the phase factor, so we ‘uniformize’ the rule:

Creation and annihilation operators: SUMMARY
Bosons:

a+
i |n1, · · · , ni, · · ·〉 =

√
ni + 1|n1, · · · , ni + 1, · · ·〉, (3.2.19)

ai|n1, · · · , ni, · · ·〉 =
√
ni|n1, · · · , ni − 1, · · ·〉. (3.2.20)

The commutation relations are

[ai, aj] = [a+
i , a

+
j ] = 0, [ai, a

+
j ] = δij. (3.2.21)

|n1, n2, · · ·〉 =
∏
k=1

1√
nk!

(a+
k )nk |0〉 (3.2.22)

makes a complete orthonormal set of a vector space called the Fock space.

Fermions:

a+
i |n1, · · · , ni, · · ·〉 =

√
1− ni|n1, · · · , ni + 1, · · ·〉, (3.2.23)

ai|n1, · · · , ni, · · ·〉 =
√
ni|n1, · · · , ni − 1, · · ·〉. (3.2.24)

These operators satisfy the following anti-commutation relations:

[ai, aj]+ = [a+
i , a

+
j ]+ = 0, [ai, a

+
j ]+ = δij. (3.2.25)

Analogous to (3.2.22), the space spanned by the orthonormal basis vectors

|n1, n2, · · ·〉 =
∏
k=1

(a+
k )nk |0〉 (3.2.26)
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is also called a Fock space.

Let ψk(x) = 〈x|1k〉 be the (normalized) one particle wave function for the k-th
state. Then,

ψ+(x) =
∑

k

ψ∗k(x)a
+
k (3.2.27)

is an operator to create a particle at x. For bosons,

[ψ(x), ψ+(y)] =
∑

k

ψk(x)ψ
∗
k(y) = δ(x− y), (3.2.28)

because {ψk} is an orthonormal complete system (this is just Parseval’s equality).
All other commutators vanish. Needless to say, its fermion analogue holds with the
anticommutator.

The Hamiltonian of the ideal system may be written as

H =
∑

r

εrn̂r. (3.2.29)

Since the total number of particles N =
∑

r n̂r, the grand partition function may be
written as

Ξ = Tre−β(H−µN) = Tr
∏

r

e−β(εr−µ)n̂r . (3.2.30)

Here, n̂r’s commute, so we can factorize the product.

If we wish to compute 〈n̂r〉 we have only to compute

〈n̂r〉 =
1

Ξr

Tr
[
n̂re

−β(εr−µ)n̂r
]
, (3.2.31)

where Ξr is the normalization constant. To compute this we use the following useful
formulas (correct for both bosons and fermions) (the suffix r is omitted for simplic-
ity):

eAn̂a = aeAn̂e−A, (3.2.32)

eAn̂a+ = a+eAn̂eA. (3.2.33)

Here, A is anything commutative with the creation/annihilation operators. This
implies

〈aB〉 = eβ(ε−µ)〈Ba〉, (3.2.34)

〈a+B〉 = e−β(ε−µ)〈Ba+〉. (3.2.35)
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Here, B is an arbitrary operator. To show (3.2.34) we have only to compute

Tr
[
aBe−β(ε−µ)n̂

]
= Tr

[
Be−β(ε−µ)n̂a

]
= eβ(ε−µ)Tr

[
Bae−β(ε−µ)n̂

]
(3.2.36)

Here, we have used the cyclic permutation invariance of Tr(AB · · ·Y Z) = Tr(ZAB · · ·Y ).

For the boson case (If obvious the hat of the number operator may be dropped.)

1 = ara
+
r − a+

r ar ⇒ 1 = 〈ara
+
r 〉 − 〈nr〉. (3.2.37)

Thanks to (3.2.33)
〈ara

+
r 〉 = eβ(εr−µ)〈nr〉. (3.2.38)

Therefore, (3.2.37) becomes

1 = eβ(εr−µ)〈nr〉 − 〈nr〉. (3.2.39)

That is,

〈nr〉 =
1

eβ(εr−µ) − 1
. (3.2.40)

For fermions, the anti-commutation relation tells us

1 = ara
+
r + a+

r ar ⇒ 1 = 〈ara
+
r 〉+ 〈nr〉. (3.2.41)

Therefore,

〈nr〉 =
1

eβ(εr−µ) + 1
. (3.2.42)

The expectation values of the products of creation and annihilation operators for
noninteracting particle systems may be systematically reduced to the calculation
of the average of number operators. The general formula is called the Bloch-de
Dominicis theorem. In practice, the following iterative rule implied by the theorem
is enough. Let Ai be ai or a+

i (annihilation or creation operators). For fermions

〈A1A2 · · ·A2n〉 = 〈A1A2〉〈A3 · · ·A2n〉 − 〈A1A3〉〈A2A4 · · ·A2n〉
+ 〈A1A4〉〈A2A3A5 · · ·A2n〉+ · · · ± 〈A1A2n〉〈A2 · · ·A2n−1〉.

(3.2.43)

For bosons −-signs must be all +. For example, for the fermion case

〈A1A2A3A4A5A6〉 = 〈A1A2〉〈A3A4A5A6〉 − 〈A1A3〉〈A2A4A5A6〉+ 〈A1A4〉〈A2A3A5A6〉
−〈A1A5〉〈A2A3A4A6〉+ 〈A1A6〉〈A2A3A4A5〉 (3.2.44)
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and the 4-operator product can be reduced as

〈A1A2A3A4〉 = 〈A1A2〉〈A3A4〉 − 〈A1A3〉〈A2A4〉+ 〈A1A4〉〈A2A3〉. (3.2.45)

We can easily compute the variance of the occupation number (let us write 〈n̂〉 =
n).r For bosons

〈n̂2〉 = 〈a+aa+a〉 = 〈a+a〉〈a+a〉+ 〈a+a+〉〈aa〉+ 〈a+a〉〈aa+〉, (3.2.46)

= n2 + n〈aa+〉 = n2 + n(1 + n) = 2n2 + n, (3.2.47)

so
〈δn2〉 = n+ n2. (3.2.48)

For fermions, we can use the same method, but since n̂2 = n̂, we immediately
obtain

〈δn2〉 = n− n2 = n(1− n). (3.2.49)

For the classical case n� 1 for any one particle state, so

〈δn2〉 = n. (3.2.50)

This is in agreement with the result of the Poisson distribution as we already dis-
cussed in Chapter 1.

The Bloch-de Dominicis theorem
Here is the ‘official statement’ of the Bloch-de Dominicis theorem
Let Ai be ai or a+

i (annihilation or creation operators for fermions). Then, we have for
the canonical or grand canonical ensemble average of noninteracting (ideal) fermion
systems (for boson systems sgn(P ) is simply replaced by unity everywhere; it is for-
mally the same as Wick’s theorem for Gaussian random variables.)

〈A1A2 · · ·A2n〉 =
∑
P

sgn(P )〈Ai1Ai2〉〈Ai3Ai4〉 · · · 〈Ai2n−1Ai2n〉, (3.2.51)

where sgn(P ) is the sign of the permutation of i1, i2, · · · , i2n, and

i1 < i2, i3 < i4 · · · , i2n−1 < i2n, (3.2.52)
i1 < i3 < · · · i2n−1. (3.2.53)

〈Ai1Ai2〉 are called contractions and the sum in (3.2.51) is over all the ways to make
contractions choosing pairs with the constraints above.

Here, we demonstrate the theorem for fermions. The case with bosons is analogous.
We may assume

AiAj +AjAi = c(i, j), (3.2.54)
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where c(i, j) is an ordinary number calculated by the anti-commutation relations.
Let 〈 〉 be the canonical or grand canonical average. Then,

〈A1A2 · · ·A2n〉 = 〈[c(1, 2)−A2A1] · · ·A2n〉, (3.2.55)
= c(1, 2)〈A3 · · ·A2n〉 − 〈A2A1A3 · · ·A2n〉, (3.2.56)
= c(1, 2)〈A3 · · ·A2n〉 − 〈A2[c(1, 3)−A3A1] · · ·A2n〉,(3.2.57)
= · · · . (3.2.58)

Therefore, eventually, we obtain

〈A1A2 · · ·A2n〉 = c(1, 2)〈A3 · · ·A2n〉 − c(1, 3)〈A2A4 · · ·A2n〉+
· · ·+ c(1, 2n)〈A2 · · ·A2n−1〉 − 〈A2A3 · · ·A2nA1〉.(3.2.59)

Now, let us assume that the average above is about the canonical or grand canonical
ensemble and that the particles are non-interacting. That is, the system Hamiltonian
is of the following form

H =
∑

r

εrn̂r. (3.2.60)

and (in the following for the grand canonical ensemble replace εr with εr − µ)

〈A2A3 · · ·A2nA1〉 =
1
Z
Tr(A2A3 · · ·A2nA1e

−βH). (3.2.61)

Let A1 = a±1 , where a−1 = a1. Then,

a±1 e
−βH = e−βHe±βε1a±1 . (3.2.62)

Therefore, using the cyclic permutation invariance of the trace operation, we have

〈A2A3 · · ·A2na
±
1 〉 = e±βε1〈a±1 A2A3 · · ·A2n〉. (3.2.63)

Therefore, (3.2.59) reads

(1 + e±βε1)〈A1A2 · · ·A2n〉 = c(1, 2)〈A3 · · ·A2n〉 − c(1, 3)〈A2A4 · · ·A2n〉+
· · ·+ c(1, 2n)〈A2 · · ·A2n−1〉. (3.2.64)

Now, consider
c(1, 2)/(1 + e±βε1). (3.2.65)

If A1 = a+
1 , then c(1, 2) 6= 0 only when A2 = a1. 〈A1A2〉 6= 0 only when A2 = a1. If

A2 = a1, then c(1, 2) = 1 and

〈A1A2〉 =
1

eβε1 + 1
=

c(1, 2)
eβε1 + 1

. (3.2.66)

If A1 = a1, then c(1, 2) 6= 0 only when A2 = a+
1 . 〈A1A2〉 6= 0 only when A2 = a+

1 . If
A2 = a+

1 , then c(1, 2) = 1 and

〈A1A2〉 = 1− 1
eβε1 + 1

=
c(1, 2)

e−βε1 + 1
. (3.2.67)
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Therefore,
c(1, 2)/(1 + e±βε1) = 〈a±1 A2〉 (3.2.68)

for all cases. Thus, in (3.2.59) we may formally ignore the last term and replace all
c(1, j) with 〈A1Aj〉. It is obvious that we can repeat the same argument for smaller
n, so the proof is essentially over.

Maxwell derived his distribution function based on the detailed balance argu-
ment.q Its essence is: if two particles in states r and r′ collide and make two particles
in states s and s′, there must also be the reversed process as frequently as the original
process (thanks to time reversal symmetry of mechanics). The collision process may
be described by the interaction Hamiltonian HI

HI =
∑

As′s,rr′a
+
s′a

+
s arar′ . (3.2.69)

The representative term expresses a binary collision: r and r′ states are destroyed
and s and s′ states are created. When particles satisfying the conditions collide, the
probability amplitude for such a process actually happens is described by As′s,rr′ . If
the initial ket is |i〉 = |{nk}〉, and if r, r′, s, and s′ are all distinct (i.e., the generic
case),

〈f |HI |i〉 = As′s,rr′

√
(ns + 1)(ns′ + 1)nrnr′ . (3.2.70)

Since HI is self-adjoint, it must also contain the term

A∗s′s,rr′a
+
r′a

+
r asas′ . (3.2.71)

This contributes

〈f |A∗s′s,rr′a
+
r′a

+
r asas′|i〉 = A∗s′s,rr′

√
(nr′ + 1)(nr + 1)nsns′ . (3.2.72)

In equilibrium if a transition A → B can occur, then the opposite transition B
→ A also can occur with the same probability (detailed balance). Therefore, (3.2.70)
and (3.2.72) must have the same absolute value, or

(ns + 1)(ns′ + 1)nrnr′ = (nr′ + 1)(nr + 1)nsns′ . (3.2.73)

This implies
ns′

ns′ + 1

ns

ns + 1
=

nr′

nr′ + 1

nr

nr + 1
. (3.2.74)

That is,

qs = log
ns

ns + 1
(3.2.75)
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is an additive invariant of the binary interaction (collision). Therefore, it is natural
to assume that this is a linear function of energy:

ns

ns + 1
= e−β(ε−µ). (3.2.76)

This is exactly the Bose-Einstein distribution.

For fermions we have

〈f |HI |i〉 = As′s,rr′

√
(1− ns)(1− ns′)nrnr′ . (3.2.77)

The detailed balance condition implies

(1− ns)(1− ns′)nrnr′ = (1− nr)(1− nr′)nsns′ . (3.2.78)

The same logic as before gives the Fermi-Dirac distribution.

The Maxwell’s original case is nsns′ = nrnr′ . This is consistent with the above
quantum cases, because ns � 1 for any state s in the classical limit.

3.3 Ideal Fermion Systems

Let us summarize what we know.
The creation/annihilation operators:

[ai, aj]+ = [a+
i , a

+
j ]+ = 0, [ai, a

+
j ]+ = δij, (3.3.1)

and the particle number operator is

n̂j = a+
j aj (3.3.2)

with

f(ε) ≡ 〈n̂〉 =
1

eβ(ε−µ) + 1
, (3.3.3)

where ε is the energy of a particular one particle state (an eigenvalue of the single
body Hamiltonian describing each particle) and µ is the chemical potential. The
chemical potential (also called the Fermi energy or Fermi level) must be positive, if
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the temperature is sufficiently low, but is a monotone decreasing function of temper-
ature.

The pressure is obtained with the aid of Kramers’ q:

q =
PV

T
= kB

∑
r

log(1 + e−β(εr−µ)). (3.3.4)

Since G = Nµ,

A = G− PV = Nµ− kBT
∑

r

log(1 + e−β(εr−µ)). (3.3.5)

Also

N =
∑

r

〈nr〉 =
∑

r

f(εr), (3.3.6)

E =
∑

r

εr〈nr〉 =
∑

r

εrf(εr). (3.3.7)

If we know the density of state, i.e., the density distribution function for the eigen-
values of the one particle Hamiltonian, Dt(ε)

A = Nµ− kBT

∫
dε gDt(ε) log(1 + e−β(ε−µ)), (3.3.8)

N =

∫
dε gDt(ε)f(ε), (3.3.9)

E =

∫
dε gDt(ε)εf(ε), (3.3.10)

where g is the multiplicity due to internal degrees of freedom (g = 2 for electrons
due to spin).

Intuitively, we may think that the total entropy is the sum of the contributions
due to individual single particle states:

S =
∑

k

Sk. (3.3.11)

For each single state, 〈nk〉 is the occupation probability, so we may guess with the
aid of the Gibbs-Shannon formula:

Sk = −kB[〈nk〉 log〈nk〉+ (1− 〈nk〉) log(1− 〈nk〉)]. (3.3.12)
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That is,

S = −kB

∫
dε gDt(ε)[f(ε) log f(ε) + (1− f(ε)) log(1− f(ε))]. (3.3.13)

Our guess is correct. Let us derive the formula thermodynamically.

ST = E − A =

∫
dε gDt(ε)εf(ε)− µ

∫
dε gDt(ε)f(ε) + kBT

∫
dε gDt(ε) log(1 + e−β(ε−µ)),

(3.3.14)

=

∫
dε gDt(ε)(ε− µ)f(ε) + kBT

∫
dε gDt(ε) log f(ε)−

∫
dε gDt(ε)(ε− µ). (3.3.15)

Here, kBT log(f(ε)−1 − 1) = ε− µ, so

ST = −kBT

∫
dε gDt(ε)(1−f(ε)) log

1− f(ε)

f(ε)
−kBT

∫
dε gDt(ε) log f(ε). (3.3.16)

Our guess is right.

Topics of some interest of the ideal fermion system may be:
(1) Qualitative feature of f(ε) as a function of T .
(2) Properties at T = 0,
(3) Finite temperature corrections for small T .
The reader should be able to sketch (1) and (3).

Let us sketch Dy(ε)f(ε) for various temperatures.
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D f (ε)

ε

ε

ε

t
(ε)

Fig. 3.3.1 Dy(ε)f(ε)
The dotted curve denotes the density of states
Dt. The chemical potential decreases (toward
−∞) as T increases. [The figure will be replaced
with a better one later.]

The Fermi energy at T = 0 is implicitly defined by (Dt is (3.1.28))

N =

∫ µ(0)

0

gDt(ε)f(ε) = V
4

3
πg

(
2mµ(0)

h2

)3/2

. (3.3.17)

The main feature is n ∝ µ(0)3/2, which is equal to the number of one particle states

below µ(0) and is proportional to the volume of the 3-ball of radium ∝
√
µ(0).

(3.3.17) implies

µ(0) =
h2

2m

(
3n

4πg

)2/3

. (3.3.18)

The density of states may be written as

gDt(ε) = V
3

2
n

(
ε

µ(0)3

)1/2

. (3.3.19)

We know Dt must be proportional to ε1/2 and its dimension must be 1/energy, so
1/µ(0)3/2 is required.

The internal energy at T = 0 must be ∝ nµ(0) per volume.q Indeed,

e(0) =
1

V

∫ µ(0)

0

εgDt(ε)dε =
3

2
nµ(0)−3/2

∫ µ(0)

0

ε3/2dε =
3

5
µ(0)n. (3.3.20)
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This can be derived quickly from the form Dt = Aε1/2 (A is a constant indepen-
dent of ε); N = (2/3)Aµ(0)3/2 and E = (2/5)Aµ(0)5/2, so E = (3/5)µ(0)N . E/V
immediately gives us the pressure at T = 0

PV =
2

5
µ(0)N. (3.3.21)

Now, we must compute the correction due to small T for various quantities. The
basic idea is that at low temperatures, the cliff of the Fermi distribution is steep, so
its derivative is close to a δ-function around µ.

Fig. 3.3.2 The derivative of the Fermi dis-
tribution. Its width is about 5kBT . and the
height is β/4.

Thus,

J =

∫ ∞
0

dεφ(ε)

(
−df
dε

)
' φ(µ). (3.3.22)

To improve this approximation we Taylor expand φ around µ as

J = −
∫ +∞

−∞
dε

[
φ(µ) + (ε− µ)φ′(µ) +

1

2
(ε− µ)2φ′′(µ) + · · ·

]
df

dε
. (3.3.23)

Exchanging the order of integration and expansion, we have only to compute the
integral of the power (ε − µ)n. df/dε is symmetric around µ, so the odd powers
vanish. The result is a useful formula for J :

−
∫ +∞

−∞
dε φ(ε)

df(ε)

dε
= φ(µ) + (kBT )2ζ(2)φ(2)(µ) + · · · . (3.3.24)

Here, ζ is the zeta function; ζ(2) = π2/6.
Analogously, we should be able to expand the following integral, if φ(0) = 0 and

the asymptotic increase rate of φ is at most algebraic:q∫ +∞

0

dε φ(ε)f(ε) =

∫ µ

0

φ(x)dx+ (kBT )2ζ(2)φ′(µ) + · · · . (3.3.25)
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The full expansion formula

J = −
∫ +∞

−∞
dε φ(ε)

df(ε)
dε

= φ(µ) +
∞∑

r=1

2(1− 21−2r)ζ(2r)φ(2r)(µ)(kBT )2r (3.3.26)

may be obtained as follows. Taylor-expanding φ, we obtain

J = φ(µ)−
∞∑

n=1

∫ ∞
−∞

dε
1
n!

(ε− µ)n df

dε
φ(n)(µ) = φ(µ) +

∞∑
n=1

(kBT )n 1
n!
Knφ

(n)(µ).

(3.3.27)
Here,

Kn ≡ −
∫ +∞

−∞
dε (ε− µ)n df

dε
. (3.3.28)

This is zero for odd n. We have

Kn = −2(kBT )n

∫ ∞
0

dy yn d

dy

1
ey + 1

= 2n(kBT )n

∫ ∞
0

dy
yn−1

ey + 1
. (3.3.29)

for even n > 0. To compute this we use the following expansion

1
ey + 1

=
e−y

1 + e−y
=
∞∑

k=0

(−1)ke−(k+1)y, (3.3.30)

and the integral and this expansion may be exchanged: we can use∫ ∞
0

dy yn−1e−(k+1)y =
Γ(n)

(k + 1)n
. (3.3.31)

Therefore,

Kn = 2(kBT )nn!
∞∑

k=0

(−1)k 1
(k + 1)n

. (3.3.32)

The sum can be computed as

∞∑
k=0

(−1)k 1
(k + 1)n

=
∑
even

1
(k + 1)n

−
∑
odd

1
(k + 1)n

=
∑
odd

1
kn
−

∑
even>0

1
kn

(3.3.33)

=
∞∑

k=0

1
(2k + 1)n

−
∞∑

k=1

1
(2k)n

=
∞∑

k=1

1
kn
− 2

∞∑
k=1

1
(2k)n

(3.3.34)
= ζ(n)− 21−nζ(n). (3.3.35)

Therefore,
Kn = 2(kBT )nn!(1− 21−n)ζ(n). (3.3.36)
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We may apply (3.3.25) toN becauseDt grows only algebraically (ζ(2) = π2/6):

N =

∫ ∞
0

dε gDt(ε)f(ε) =

∫ µ

0

dx gDt(x) + ζ(2)
dgDt(ε)

dε

∣∣∣∣
ε=µ

(kBT )2 + · · · . (3.3.37)

The Fermi level µ(0) at T = 0 has already been computed with the aid of

N =

∫ µ(0)

0

gDt(ε)dε. (3.3.38)

Therefore, combining with (6.3.71), we can find µ as a function of T : First, we
see ∫ µ(0)

0

gDt(ε)dε =

∫ µ

0

dx gDt(x) + ζ(2)
dgDt(ε)

dε

∣∣∣∣
ε=µ

(kBT )2 + · · · . (3.3.39)

We can guess µ = µ(0) + a(kBT )2 + · · ·, so substituting this relation in the above
formula to fix a, we obtain the low temperature formula for the Fermi level:

µ(T ) = µ(0)− π2

6

d

dε
log gDt(ε)

∣∣∣∣
ε=µ(0)

(kBT )2 + · · · . (3.3.40)

This may be streamlined as follows for sufficiently low temperature:

µ(T ) = µ(0)

[
1− π2

12

(
T

TF

)2
]
. (3.3.41)

Here, TF = µ(0)/kB is the Fermi temperature.8 This behavior can be guessed from
(i) no change of any thermodynamic potential (per particle) at T = 0 (hence, no
first order derivative wrt T is nonzero) and (ii) for T > 0 µ is a decreasing function
of T .

(3.3.25) allows us to calculate temperature corrections such as

E =

∫
dε gDt(ε)εf(ε) (3.3.42)

=

∫ µ

0

dεgDt(ε)ε+ ζ(2)(kBT )2dgDt(ε)ε

dε

∣∣∣∣
µ

+ · · · . (3.3.43)

8Representative values: Li 5.5×104K (4.7 eV); Cu 8.2×104K (8.2 eV); Au 5.5×104K (5.5 eV).
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Therefore, introducing (3.3.40) and expanding the integral around µ(0), we obtain
(notice that D′t(ε)ε = Dt(ε)/2)q

E = E0 + ζ(2)gDt(µ(0))(kBT )2 + · · · , (3.3.44)

where E0 = V e(0) is the zero-point energy. A more streamlined low temperature
formula for the internal energy density reads

e(T ) =
3

5
nµ(0)

{
1 +

5π2

12

(
T

TF

)2

+ · · ·

}
. (3.3.45)

Its high temperature asymptote reads

e(T ) ' 3

2
nkBT, (3.3.46)

so we may sketch E(T ) as Fig. 3.3.3.

T0
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c 
be
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vi

or

E(0)

E

Fig. 3.3.3q Internal energy of ideal Fermi gas as
a function of T .

From the internal energy obtained in (3.3.45), it is easy to see that the low temper-
ature specific heat reads

CV '
π2

3
k2

BTgDt(µ(0)). (3.3.47)

This reads

CV '
1

2
π2nk2

BT/µ(0) =
1

2
π2nkB

T

TF

(3.3.48)

for ideal Fermi gas, where TF is the Fermi temperature; the dependence on spin is
only through TF . CV ∼ T/TF can easily be guessed dimensional analytically as well.
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Specific heat is proportional to the number of thermally excitable degrees of free-
dom (in ideal gas this is proportional to the number of thermally excitable particles);
the reader must be able to explain ∝ T intuitively. For ordinary metals, however, it
is not easy to see this linear behavior, because TF is very high and easily masked by
the phonon contribution.

It is wise to use the specific heat to compute the T dependence of entropy:

S(T ) =

∫ T

0

CV

T
dT. (3.3.49)

Therefore, at low temperatures

S(T ) ' CV (T ). (3.3.50)

For sufficiently low temperatures, we can use the formula for internal energy (3.3.45)
to obtain the equation of state.

PV =
2

5
NkBTF

(
1 +

5

12
π2

(
T

TF

)2

+ · · ·

)
. (3.3.51)

Clearly recognize that this is extremely large for metals.
For sufficiently high temperatures (or rather, for sufficiently low chemical potential

close to classical limit) fugacity z = eβµ is very small, so we wish to expand PV and
N , T in powers of fugacity. PV in terms of the fugacity z is:

PV

kBT
=

∫
dε gDt(ε) log(1 + ze−βε) =

∞∑
n=1

(−1)n−1zn

n

∫
dεe−nβεgDt(ε), (3.3.52)

and

N =

∫
dε gDt(ε)

1

1 + eβε/z
=
∞∑

n=1

(−1)n−1zn

∫
dεe−nβεgDt(ε). (3.3.53)

Both are analytic functions of z along the positive real z-axis.9 Solving z in powers
of number density n, we can obtain the virial expansion of the equation of state for
the ideal Fermi gas:

PV

NRT
= 1 +

1

25/2g

n

nQ

+ · · · . (3.3.54)

Here, g is the spin degeneracy, and nQ = (2πmkBT/h
2)3/2 as before.

9Hence, there is no phase transition. See Chapter 5.
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3.4 Ideal Boson Systems

The creation/annihilation operators (→Section 3.2):

[ai, aj] = [a+
i , a

+
j ] = 0, [ai, a

∗
j ] = δij, (3.4.1)

and the particle number operator is

n̂j = a∗jaj (3.4.2)

with

〈n̂j〉 =
1

eβ(εj−µ) − 1
. (3.4.3)

The chemical potential µ is a monotone decreasing function of T and cannot be
larger than the one-particle ground-state energy, because 〈n(ε)〉 must be positive.

The pressure is obtained by

q =
PV

T
= −kB

∑
r

log(1− eβ(εr−µ)). (3.4.4)

Since G = Nµ,

A = G− PV = Nµ+ kBT
∑

r

log(1− e−β(εr−µ)). (3.4.5)

Also

N =
∑

r

〈nr〉 =
∑

r

f(εr), (3.4.6)

E =
∑

r

εr〈nr〉 =
∑

r

εrf(εr), (3.4.7)

where

f(ε) =
1

eβ(ε−µ) − 1
. (3.4.8)

µ must be a function of N and T for a canonical ensemble. We know

PV =
2

3
E (3.4.9)
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is true for any (non-relativistic) ideal gas in 3-space.

Intuitively, we may think that the total entropy is the sum of the contributions
due to each one particle state:

S =
∑

k

Sk, (3.4.10)

where Sk is the entropy contribution by a one particle energy state k with energy εk.
Let f = 〈n̂k〉. The Gibbs-Shannon formula tells us that

Sk/kB = −
∑

n

pn log pn, (3.4.11)

where pn is the probability for this energy state to have n bosons. This can be
computed as (suffixes k are omitted for simplicity)

pn = e−nβ(ε−µ)/(1 + e−β(ε−µ) + e−2β(ε−µ) + · · ·) =
1

1 + f

(
f

1 + f

)n

. (3.4.12)

Putting this into (3.4.11), we obtain

Sk/kB = −
∑

n

1

1 + f

(
f

1 + f

)n [
− log(1 + f) + n log

f

1 + f

]
= log(1 + f)− f log

f

1 + f
= (1 + f) log(1 + f)− f log f. (3.4.13)

That is (compare the following result with (3.3.13)),

S = −kB

∑
k

[f(εk) log f(εk)− (1 + f(εk)) log(1 + f(εk))]. (3.4.14)

This indeed agrees with the thermodynamic result:

ST = E − A =
∑

k

εkf(εk)− µ
∑

k

f(εk)− kBT
∑

k

log(1− e−β(εk−µ))

(3.4.15)

= −kBT
∑

k

{
f(εk) log

f(εk)

1 + f(εk)
+ log

1

1 + f(εk)

}
. (3.4.16)

We have already noted that rewriting the sum
∑

k →
∫
dεDt(ε) may not be

correct for bosons. Let us explicitly see why. Let us formally rewrite the formula for
N as

N1(T, µ) =
V

h3

∫ ∞
0

1

eβ(p2/2m−µ) − 1
4πp2dp. (3.4.17)
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This integral is a monotone increasing function of µ, so its upper bound can be
evaluated asq

N1(T, µ) ≤ N1(T, 0) =
V

h3

∫ ∞
0

1

eβp2/2m − 1
4πp2dp = AV T 3/2, (3.4.18)

where A is a positive constant. Thus, if T is sufficiently low N1 < N . That is, the
integral approximation cannot describe the number of particles correctly. Let us plot
n1(T, µ) = N1/V as a function of T (Fig. 3.4.1).

nn

zero

chemical 

potential

Tc
T

n

T

nn0

1

T12

positive

chemical 

potential

Fig. 3.4.1 Qualitative behavior of n1(T, µ),
the integral approximation = the number
density of particles in excited states. If the
temperature is higher than Tc as T1, we may
choose a negative chemical potential such that
n = n1. If T < Tc such as T2, then µ = 0, but
then n0 > 0 is possible and n1 + n0 = n can be
satisfied.

We must write the contribution of the ground state explicitly as

N =
1

e−βµ − 1
+N1(T, µ). (3.4.19)

Let us write the number densities with the lower case letters as n1 = N1/V , etc.
(i) If n1(T, 0) > n = N/V , µ(T ) < 0 is required, but then N0 cannot be macroscopic,
so we must choose a negative chemical potential such that n1 = n .
(ii) As we lower the temperature, to fulfill the equality n1 = n, we must increase µ.
This is sketched in Fig. 3.4.1.
(iii) As we increase µ, we hit µ = 0 at T = Tc. Below this temperature n1 < n, so
(one particle) ground state is occupied by a macroscopic number of particles. This
is called the Bose-Einstein condensation.10r

Below Tc, the number density of the condensate isq

n0(T ) = n− n1(T, 0) = n

(
1−

(
T

Tc

)3/2
)
. (3.4.20)

10This was discovered by Einstein; Bose has nothing to do with this discovery.
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For small T − Tc n0 ∝ (Tc − T ). To get Tc we must solve n1(Tc, 0) = n; from
(3.4.18)

n1(Tc, 0) =
1

h3

∫ ∞
0

1

eβp2/2m − 1
4πp2dp =

(
2πmkBT

h2

)3/2

F3/2(0) (3.4.21)

with

F3/2(0) =
2√
π

∫ ∞
0

t1/2

et − 1
dt = ζ(3/2) ' 2.61. (3.4.22)

Therefore,q

Tc =
h2

2πkBm

( n

2.61

)2/3

∝ n2/3

m
. (3.4.23)

1/m can be seen from the combination of βp2/2m in the Boltzmann factor.

Let us confirmr that in the pressure formula we may replace the summation
(3.1.16) with the integration (3.1.22). The grand canonical partition function Ξ0

for the lowest energy state ε = 0 is given by

Ξ0 =
∞∑

n=0

enβµ =
1

1− eβµ
= e−βµ〈N0〉. (3.4.24)

Below Tc µ is almost zero (really zero in the thermodynamic limit):q

〈N0〉 =
1

e−µβ − 1
' kBT

|µ|
. (3.4.25)

Because Ξ0 = 1/(1 − eβµ) = N0e
1/N0 , the contribution of the ground state to pres-

sure reads P0 ' (kBT/V ) logN0. That is, it is O[(logN)/N ]. Therefore, we may use
integration in macroscopic systems to obtain pressure (and internal energy).

Below Tc µ = 0 so thermodynamic quantities depends on T in a clean fashion.
This fact is worth memorizing. For example,q

E =

∫
dεgDt(ε)

ε

eβε − 1
=

3

2
kBTV

(
2πmkBT

h2

)3/2

ζ(5/2) ∝ V T 5/2, (3.4.26)

so
CV ∝ T 3/2. (3.4.27)
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For T > Tc we must pay attention to µ(T ) as well, so it is not very easy to demon-
strate that CV is monotone decreasing (explicit calculation is needed; see the problem
for this Chapter).

T/Tc

1

2

C
/k

B
V

0 1 2

3R/2
Fig. 3.4.2q Specific heat has a cusp at Tc.
To see the behavior above Tc, we need a detailed
calculation (see a problem at the end of the
chapter).

The integral in (3.4.18) for d ≤ 2 dimensional space diverges, so n1 = n can always
be satisfied by choosing an appropriate µ(T ). Therefore, there is no Bose-Einstein
condensation in low dimensional spaces.

When superfluidity was found (around 1938 explicitly by Kapitza11),12 London
suggested this is related to the Bose-Einstein condensation.

rTo consider this problem, we must reflect on what ‘superfluidity’ means. Charged
superfluidity is superconductivity. We know that supercurrent and the Meissner ef-
fect are two major characteristic features of superconductivity. We have already
seen that the Bohr-van Leeuwen theorem should imply that the Meissner effect is a
purely quantum effect. Furthermore, the rotation-vector potential analogy implies
that there is a counterpart of the Meissner effect, the nonclassical rotational iner-
tia (NCRI) for non-charged superfluid (Section 1.7). Therefore, as Leggett stresses,
NCRI and supercurrent should be the characteristic features of superfluidity.

To exhibit NCRI the system must have a certain quantum coherence over a macro-

11Kamerlingh-Onnes found a singularity in the density in 1911, but Kapitza was the first to
realize superfluidity: Nature, 141, 74 (1938).

12[In 1911 Rutherford proposed his atom model. G. Mahler died; Amundsen reached the South
Pole. In 1938 Hahn et al. discovered nuclear fission. Kemal Atatürk died; Carel Chapek died (who
coined the word ‘robot’). Anschluss; Kristallnacht.]
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scopic range, because non-commutativity of the canonical variables is crucial. How-
ever, NCRI does not require the Bose-Einstein condensation.13 For the existence
of supercurrent, the state with flow must be metastable thermodynamically, so we
must consider the barrier between different flow states. Again, some sort of quantum
coherence is needed,14 but its direct relation to the Bose-Einstein condensation does
not exist.15

3.5 Phonons and photons

Photons and phonons are obtained through quantization of the systems that can
be described as a collection of harmonic oscillators.16 Possible energy levels for the
i-th mode whose angular frequency is ωi

17 are (n+ 1/2)~ωi. The canonical partition
function of the whole systems is given by

Z(β) =
∏

i

(∑
ni

e−β(ni+1/2)~ωi

)
, (3.5.1)

since no modes interact each other. Here, the product is over all the modes. The
sum in the parentheses gives the canonical partition function for a single harmonic
oscillator we have already encountered in (2.2.12). The canonical partition function
may be rewritten as:

Z(β) =
∏

i

(
e−β~ωi/2

)
Ξ(β, 0). (3.5.2)

13Easy counterexamples exist. See A. Leggett, ‘Topics in superfluidity and superconductivity’
in Lecture Notes Phys 394 (1991).

14〈〈1D superfluidity〉〉 See Eggel et al., “Dynamical Theory of Superfluidity in One Dimen-
sion,” Phys. Rev. Lett.,107, 275302 (2011). The paper asserts superflow is essentially a dynamical
phenomenon related to the suppression of quantum phase slip at low temperatures.

15A natural conclusion is that superfluidity and the Bose-Einstein condensation are caused in
4He liquid by a deeper common reason, the special topology of the many-body wave function.

16That is, the system whose Hamiltonian is quadratic in canonical coordinates (quantum me-
chanically in the corresponding operators).

17A system with a quadratic Hamiltonian may be described in terms of canonical coordinates
(or corresponding operators) that makes the Hamiltonian diagonal. In other words, the system
may be described as a collection of independent harmonic oscillators. The motion corresponding
to each such harmonic oscillator is called a mode. If more than one modes have identical angular
frequencies, modes cannot be uniquely chosen, but this does not cause any problem to us because
partition functions need the system energies and their degeneracies only.
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Here, we have used the formula

Ξ(β, 0) =
∏

i

(
∞∑

n=0

e−βn~ωi

)
, (3.5.3)

which may be obtained from (3.1.8) by setting εi = ~ωi, and µ = 0. As long as we
consider a single system, the total zero-point energy of the system

∑
i ~ωi/2 may be

ignored by shifting the energy origin.18 Therefore, the canonical partition function
of the system consisting of photons or phonons may be written as ΞBE(β, 0). That
is, it is written as the grand partition function with a zero chemical potential.

The thermodynamic potential for the system consisting of photons or phonons
is the Helmholtz free energy A whose independent variables are T and V , because
the expected number 〈ni〉 of phonons (photons) of mode i is determined, if the
temperature T and the volume V are given. Since dA = −SdT − PdV , we have
A = −PV . That is, our observation logZ(β) = log Ξ(β, 0) holds as a thermodynamic
relation for a system that can be described by a collection of harmonic oscillators
(as long as we ignore the zero-point energy). Thus, we may conclude that systems
consisting of phonons or photons can be described consistently by the grand partition
function with a zero chemical potential. For example, the pressure of the photon or
phonon system can be computed immediately as we see below. However, do not
understand this relation to indicate that the chemical potentials of photons and
phonons are indeed zero; actually they cannot be defined. The relation is only a
mathematical formal relation that can be sometimes useful.

Photons are super-relativistic particles in 3-space, so the relation between the
one particle energy and the momentum (dispersion relation) can be written as ε =
c|p|, where c is the speed of light. Therefore, the one particle translational energy
density reads Dt(ε) ∝ ε2. Consequently, with the aid of the logic around (3.1.23),
we have

PV =
1

3
E. (3.5.4)

This was known to Boltzmann (of course before photons) from classical electrody-
namics. This and thermodynamics tell us that E ∝ V T 4 (the Stefan-Boltzmann

18However, if the system is deformed or chemical reactions occur, the system zero-point energy
can change, so we must go back to the original formula with the total zero-point energy and take into
account its contribution. We have already seen this when we computed the chemical equilibrium
constant (just above (2.9.28)). Furthermore, for electromagnetic field, the change of the total
zero-point energy may be observed as force. This is the Casimir effect.
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law):19 dE = TdS − PdV implies

∂E

∂V

∣∣∣∣
T

= T
∂P

∂T

∣∣∣∣
V

− P. (3.5.5)

Let E = V e(T ). Then

e(T ) =
1

3
Te′(T )− 1

3
e(T ) (3.5.6)

or
Te′(T ) = 4e(T ). (3.5.7)

That is, e(T ) ∝ T 4. Since PV = −A ∝ V T 4, the entropy of photon gas must behave
as S ∝ V T 3.

Statistical mechanics allows us to compute the proportionality coefficient in P ∝
T 4. The translational energy density Dt(ε) of photons may be obtained as usual
from ∫ ε

0

Dt(ε
′)dε′ =

4π

3h3
V p(ε)3, (3.5.8)

where p(ε) is the magnitude of momentum corresponding to energy ε, and is given
by p = ε/c. Introducing this, we obtain

Dt(ε)dε = 4πV
ε2

c3
dε = 4πV

ν2

c2
dν, (3.5.9)

where ν is the frequency. The multiplicity g of a photon is 2 (the polarization is
perpendicular to the momentum)

gDt(ε)dε = 2× 4πV
ν2

c3
dν. (3.5.10)

The pressure may be obtained as

PV = −kBT

∫ ∞
0

log(1− e−βhν)8πV
ν2

c3
dν, (3.5.11)

= −(kBT )4V

π2(~c)3

∫ ∞
0

log(1− e−x)x2dx =
(kBT )4V

3π2(~c)3

∫ ∞
0

x3

ex − 1
dx.

(3.5.12)

19About Stefan and Boltzmann see D. Lindley, Boltzmann’s Atom, The great debate that launched
a revolution in physics (The Free Press, New York, 2001).



3.5. PHONONS AND PHOTONS 201

The integral can be performed (= π4/15) to give

PV =
4σ

3c
V T 4, (3.5.13)

where σ is the Stefan-Boltzmann constant:

σ =
π2k4

B

60~3c2
= 5.672× 10−8 kg/s3K4. (3.5.14)

We also get (from dA = −SdT )q

S =
16σ

3c
V T 3. (3.5.15)

Therefore, the internal energy is given by the Stefan-Boltzmann law:

E =
4σ

c
V T 4 = 3PV. (3.5.16)

From (3.5.12) we obtain

e(T ) =
(kBT )4

π2(~c)3

∫ ∞
0

x3

ex − 1
dx. (3.5.17)

Therefore, the energy per volume contained in the wavelength range λ and λ + dλ
reads

e(λ, T ) =
8πhc

λ5

hν

eβhν − 1
. (3.5.18)

This is Planck’s radiation law.

How Planck reached his law
In 190020 Planck knew Wien’s semiempirical formula (in terms of the Boltzmann
distribution): asymptotically in the short wavelength limit

u(λ, T ) =
8πhc
λ5

e−βhc/λ, (3.5.19)

and an experimental result that u(λ, T ) ∝ T in the long wavelength limit, which he
knew only a few days before the German Physical Society meeting in October. It is
very likely that Planck did not know the Rayleigh-Jeans formula

u(λ, T ) =
8π
λ4
kBT (3.5.20)

20[1900N: Britain annexed Republic of South Africa; Boxer Rebellion]
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that can be obtained by applying the equipartition of energy for harmonic oscillators.21

During the meeting on October 19th after H. Rubens’ presentation of his experimental
results, Planck proposed (3.5.18) as an interpolation formula between the above two
known results. Next morning, Rubens came to tell Planck that the formula fit well
with experimental results over all the wavelengths. Thus, Planck’s efforts to derive
his formula began.22

We know (acoustic) phonons have the dispersion relation just as super-relativistic
particles at the low energy end of the spectrum.23 Therefore, the density of states
for low frequency acoustic phonons must have the same form as (3.5.10):

gDt(ν) = 3× 4πV
ν2

c3
dν, (3.5.21)

where c is the acoustic speed. ‘3’ appears, because acoustic phonons have two
transversal and one longitudinal waves.24 Therefore, at low temperatures only long
wavelength acoustic phonons are excited, detailed material structure should not mat-
ter and (3.5.21) is a good description. However, in contrast to photons, the num-
ber of the degree of freedom for phonons is finite for a finite volume (for acoustic
phonons there are only 3N , where N is the number of unit cells in the crystal).
Thus, Debye introduced the so-called Debye approximation for the acoustic phonon
spectrum:

D(ν) =
9N

ν3
D

ν2θ(νD − ν). (3.5.22)

Here, νD is the Debye frequency and is determined by∫ νD

0

D(ν)dν = 3N. (3.5.23)

21Rayleigh derived this formula without the exact proportionality constant in June, 1900. The
proportionality constants were given, independently, by Einstein and Jeans in 1905.

22based on H. Ezawa’s exposition “Quantum mechanics: from its birth to reconsideration of tis
basis,” in Physics of the 20th century (edited by H. Ezawa, Saiensu-Sha, 1998) [in Japanese].

23Notice this corresponds to the one-particle energy state density distribution for the ordinary
ideal particle system.

24Here, for simplicity, we assume that the material is isotropic, but generally speaking the sound
speed for transversal and longitudinal waves are different, so it is often used an effective sound
speed c defined by

3/c3 = 1/c3L + 2/c3T ,

where cL is the speed of the longitudinal sound wave and cT that of the transversal sound wave.
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The rest is quite parallel to the black-body radiation (if we ignore the existence of
the frequency cutoff νD). The internal energy reads

E(T ) =

∫ νD

0

hνD(ν)

eβhν − 1
dν. (3.5.24)

Therefore, the specific heat is given by

CV = 3NkB
3

ν3
D

∫ νD

0

eβhν

(eβhν − 1)2

(
hν

kBT

)2

D(ν)dν = 3NkBf(ΘD/T ). (3.5.25)

Here, ΘD = hνD/kB is called the Debye temperature,25 and f is defined by

f(x) =
3

x3

∫ x

0

t4et

(et − 1)2
dt. (3.5.26)

A major difference of (3.5.24) from the Stefan-Boltzmann law is the existence of
the high-frequency cutoff νD due to the existence of the crystal lattice. However,
if the temperature is sufficiently low (T � ΘD), no high frequency phonons can be
significantly excited, so we may take νD → ∞ limit. Thus, at low temperatures
E ∝ T 4 and Cv ∝ T 3 (Debye’s T 3 law):

CV ' 3NkB
12π4

5

(
T

ΘD

)3

. (3.5.27)

In the high temperature limit, the equipartition of energy implies

CV ' 3NkB
3

ν3
D

∫ νD

0

D(ν)dν = 3NkB, (3.5.28)

which is the Dulong-Petit law. The discrepancy between the true specific heat CV (T )
and the Dulong-Petit law gives the zero point energy E0 of the solid under the
harmonic approximation:26∫ ∞

0

[CV (∞)− CV (T )]dT = E0. (3.5.29)

25〈〈Debye temperature is not a constant〉〉 The Debye temperature (or frequency) is not a
constant for a given material, but is a function of T and P , because the frequency spectrum of a
given material (even if it is pure) depends on them.

26This holds for any phonon spectrum, so no Debye approximation is required to show this.
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The reader should have realized that in D-space:
(1) The existence of the Fermi level implies CV ∝ T (D−1)/2 (TD−1 superrelativisti-
cally) at low temperatures.
(2) Noninteracting bosons imply CV ∝ TD/2 (TD superrelativistic case27).
(3) For any ideal gas PV = (2/D)E ((1/D)E superrelativistically28).
These are quite universal; they depend almost only on the general symmetry of par-
ticles and the spatial dimensionality.

Michael Fisher classifies statistical physics problems into two classes, fetish and
fundamental.29 To compute, e.g., the actual melting point is a typical fetish problem;
it depends sensitively on materials details. This is an important problem for mate-
rials science that cashes on nonuniversality of materials (peculiarities of particular
materials), but it is not a major question of statistical physics.

In this chapter we studied universal features of noninteracting systems. Thus,
we studied fundamental questions of statistical physics. The universalities summa-
rized above are, however, based on the universality of the building blocks of the
systems. Thus, these universalities are straightforward manifestation of atomistic
universality; therefore, we may say they are trivial (or elementary) universalities.30

In Nature there are other kinds of universalities that emerge from truly many-body
interactions such as critical phenomena and polymer solutions. These universalities
are highly nontrivial and cannot easily be guessed or understood from the nature of
the constituents of the system. In contrast to the trivial universalities, these gen-

27It is an easy exercise to see that the dispersion relation ε ∝ |p|s implies CV ∝ TD/s.
28For the dispersion relation ε ∝ |p|s PV = (s/D)E.
29〈〈The task of theory〉〉 M. Fisher, Scaling, Universality and Renormalization Group Theory,

Lecture Notes in Physics 186 (1983) p4 says:

What is the task of theory? It is worthwhile, when embarking on theory to have some
viewpoint as to what theory is. There are different opinions on this subject. Some
people feel the task of theory is to be able to calculate the results of any experiment
one can do: they judge a theory successful if it agrees with experiment. That is
not the way I look at a theory at all. Rather, I believe the task of theory is to try
and understand the universal aspect of the natural world; first of all to identify the
universal; then to clarify what they are about, and to unify and inter-relate them
finally, to provide some insights into their origin and nature. Often a major step
consists in finding a way of looking at things, a language for thinking about things —
which need not necessarily be a calculational scheme.

30 However, the reader should not automatically conclude that the case that looks to be described
by a collection of free particles is always trivial. The quasiparticle in Landau’s Fermi liquid theory
is a counter example.
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uine universalities are robust against modifying microscopic details except for some
crucial parameters. The nontrivial universalities are important topics of Chapter
4.

3.6 Classical ideal gas — internal degrees of free-

dom

If the density is not very high or the temperature is not too low, gases behave as
classical ideal gas. However, internal degrees of freedom of each gas molecule may
not be classical.r We already know that in most cases the actual specific heat CV

does not agree with the result due to the equipartition of energy. This is simply
because excitation of many of the internal degrees of freedom requires energy quanta
far greater than kBT .

Let us first itemize internal degrees of freedom:
i) Each atom has a nucleus, and its ground state could have nonzero nuclear spin.
This interacts with electronic angular momentum to produce ultrafine structure. The
splitting due to this effect is very small, so for the temperature range relevant to gas
phase we may assume all the levels are energetically equal. As we will see in the case
of homonuclear diatomic molecules, nuclear spins could interfere with rotational de-
grees of freedom through quantum statistics, but otherwise we can simply assume
that the partition function is multiplied by a constant g = degeneracy of the nuclear
ground state.
ii) Electronic degrees of freedom has a large excitation energy (of order of ionization
potential ∼a few eV, so unless the ground state of the orbital electrons) is degener-
ate, we may ignore it. If the ground state is degenerate, then it could have a fine
structure with an energy splitting of order a few hundred K31, so we cannot simply
assume that all the states are equally probable nor that only the ground slate is
relevant.
iii) If a molecule contains more than one atom, it can exhibit rotational motion. The
quantum of rotational energy is usually of order 10K.32

31For ground state oxygen (3P2) the splitting energy is about 200K.
32However, for H2 it is 85.4K. For other molecules, the rotational quantum is rather small: N2:

2.9K; HCl: 15.1K.
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iv) Also such a molecule can vibrate. The vibrational quantum is of order 1000K.33

Notice that there is a wide temperature range, including the room temperature,
where we can ignore vibrational excitations and can treat rotation classically (Fig.
3.6.1). Thus, equipartition of energy applied to translational and rotational degrees
of freedom can explain the specific heat of many gases.

vibrational

rotational

translational

vC /Nk TB

TΘ ΘR V0

3/2

5/2

7/2

RT

Fig. 3.6.1
The constant volume specific heat of diatomic
gas. Note the local maximum due to the
rotational contribution.q

Due to the indistinguishability of identical particles, if a diatomic molecule is
homonuclear (that is A-A type instead of A-B), rotation by 180 degrees gives the
microstate indistinguishable from the original state. This does not happen if the
nuclei are distinct (heteronuclear case). Therefore, we must discuss homo and het-
eronuclear diatomic molecules separately.34

First, let us look at the heteronuclear diatomic case. Diatomic molecules have
rotational and vibrational degrees of freedom. The energy quantum of rotation εr is
1 ∼ 10K (for H2 it is exceptionally high: 85.4K). The energy quantum of vibration εv

is ∼ 103 (for H2 this is 6100K, again exceptionally high). Notice that εr � εv. This
implies that the coupling between rotation-vibration must be very weak and can be
ignored. Nonlinearity (anharmonicity) in vibration is also about the same order as
the rotation-vibration coupling. Therefore, the Hamiltonian for the internal degrees
of freedom reads

H =
1

2I
J2 + ~ω

(
n̂+

1

2

)
, (3.6.1)

where I is the moment of inertia, J the total angular momentum and n̂ is the
phonon number operator. Therefore, the partition function for the internal degrees
of freedom reads

zi = (2SA + 1)(2SB + 1)zrzv (3.6.2)

33N2 3340K; O2: 2260K; H2: 6100K.
34Such complications should exist even for more complicated molecules, but quantum effects are

significant only at low temperatures. Therefore, practically we need not worry such complications.
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Here, (2SA + 1)(2SB + 1) is due to the nuclear spins,

zr =
∞∑

J=0

(2J + 1)e−β~2J(J+1)/2I , (3.6.3)

and

zv =
∞∑

n=0

e−β~(n+1/2). (3.6.4)

zr may be written as

zr =
∞∑

J=0

(2J + 1)eJ(J+1)Θr/T , (3.6.5)

where Θr = ~2/2kBI. If T � Θr, we may approximate

zr ' 1 + 3e−2Θr/T . (3.6.6)

The contribution of rotation to specific heat is

Crot ' 3N

(
~2

IT

)
e−2Θr/T . (3.6.7)

For T � Θr, we may approximate the summation by integration (Large Js con-
tribute, so we may approximate J ' J + 1):

zr ' 2

∫ ∞
0

dJJe−J2(Θr/T ) =
T

Θr

. (3.6.8)

With the aid of the Euler-MacLaughlin summation formula35 an accurate approxi-
mation is available:

zr =
T

Θr

{
1 +

Θr

3T
+

1

15

(
Θr

3T

)2

+
4

315

(
Θr

3T

)3

+ · · ·

}
. (3.6.9)

35〈〈Euler-MacLaughlin summation formula〉〉
∞∑

m=0

f(m) =
∫ ∞

0

f(x)dx+
1
2
f(0)− 1

12
f ′(0) +

1
720

f (3)(0) + · · · ,

The formula is not necessarily a converging series. There is no guarantee that we can get a better
approximation by retaining more terms. For example, try

∑
e−m2

.
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The specific heat reads

Crot ' kB

{
1 +

1

45

(
Θr

3T

)2

+
16

945

(
Θr

3T

)3

+ · · ·

}
. (3.6.10)

The leading term is a consequence of the equipartition of energy. If T is large,
∂Crot/∂T < 0, so the rotational specific heat has a peak and its maximum value is
larger than the classical value NkB.

The vibrational partition function can be summed as

zv = 1/2 sinh(β~ω/2). (3.6.11)

For small T
zv ' (1 + e−β~ω)eβ~ω/2 (3.6.12)

is enough. Consequently,

Cvib ∼ kBN

(
~ω
kBT

)2

e−β~ω. (3.6.13)

Since Θr � ~ω/kB, there is a wide range of temperature where only rotation con-
tributes to the specific heat.

Next, let us study the homonuclear diatomic ideal gas.r The total wave function
of the diatomic molecule reads

ψ = ψeψrψvψn, (3.6.14)

where ψe is the electron wave function, ψr the rotational wave function, ψv the
vibrational wave function, and ψn the nuclear spin wave function. Two nuclei cannot
be distinguished, so under their permutation N the total wave function ψ must be
symmetric (bosonic nuclei) or anti-symmetric (fermionic nuclei) (see the beginning
of this chapter). We know

Nψe = ψe, (3.6.15)

Nψv = ψv, (3.6.16)

Nψr = (−1)Jψr. (3.6.17)

The first two are simply because the electron or phonon clouds are not affected at
all. The last line follows from the property of the spherical harmonics YJm (or recall
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s, p, d, f, · · · electrons). Thus ψn must also be an eigenstate of N (i.e., it must have
a definite parity). The parity of ψn depends on the nuclear spins: Let ψA(s) be the
spin state of nucleus A with the z-component s. Then, eigenstates of N may be
constructed as:
Symmetric case

ψ(+)
n ∝ ψA(s)ψB(s′) + ψA(s′)ψB(s). (3.6.18)

Antisymmetric case
ψ(−)

n ∝ ψA(s)ψB(s′)− ψA(s′)ψB(s). (3.6.19)

Suppose the nucleus has spin S. The total number of the distinguishable nuclear
spin states is (2S+1)2. If s = s′, only symmetric states are possible. There are 2S+1
such ‘diagonal’ states. The remaining 2S(2S + 1) states can have both symmetric
and antisymmetric states. Therefore, there are S(2S + 1) distinct antisymmetric
states,36 and (S + 1)(2S + 1) symmetric states.

Since the total symmetry of the wave function is constrained, we cannot con-
sider rotational and nuclear wave functions independently.q Suppose nucleons are
fermions, then antisymmetric (resp., symmetric) ψn is possible only with even (resp.,
odd) J states. Therefore, the rotational and nuclear partition function for fermions
reads

znr = (2S + 1)(S + 1)z(o)
r + S(2S + 1)z(e)

r , (3.6.20)

where

z(o)
r =

∑
J=odd

(2J + 1)e−J(J+1)Θr/T , (3.6.21)

z(e)
r =

∑
J=even

(2J + 1)e−J(J+1)Θr/T . (3.6.22)

It is clear that for bosonic homonuclear diatomic molecules

znr = (2S + 1)(S + 1)z(e)
r + S(2S + 1)z(o)

r . (3.6.23)

In summary, the total partition function due to the internal degrees of freedom
reads

zi = zezvznr. (3.6.24)

At sufficiently high temperatures

z(e)
r ' z(o)

r '
1

2
zr. (3.6.25)

36This is also 2S+1C2.
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Therefore, at sufficiently high temperatures

zi =
1

2
zezvzrzn. (3.6.26)

The prefactor 1/2 is the symmetry factor to avoid double counting of geometrically
indistinguishable states.

The above homonuclear diatomic molecules may be a good elementary quantum
mechanics topic, which is no more very interesting (except in exams). However,
the topic played an important role in determining whether protons are fermions or
not.

Is a proton a fermion?
Although it was known that the proton spin was 1/2, before 1930 the spin-statistics
relation was not known. For H2 the rotational-nuclear partition function reads

znr = gez
(e)
r + goz

(o)
r . (3.6.27)

If protons are fermions, β = ge/go = [(2S + 1)S]/[(2S + 1)(S + 1)] = 1/3, if bosons,
its reciprocal, 3. In February 192737 Hund, analyzing the specific heat, found β = 2.
Spectroscopically, Hori obtained β = 1/3. Dennison realized that there is no equi-
librium between the singlet and triplet nuclear spin states in hydrogen gas (respec-
tively called para hydrogen and ortho hydrogen) at low temperatures. Therefore, the
nuclear-rotation partition function cannot be written as

Znr = zN
nr = (gez

(e)
r + goz

(o)
r )N (3.6.28)

but
Znr = (gez

(e)
r )ρN (goz

(o)
r )(1−ρ)N , (3.6.29)

where ρ is the fraction of the even rotational angular momentum states. Dennison
found ρ = 1/4 from the specific heat data. This implies that at sufficiently high
temperatures where two nuclear spin states can change into each other β = 1/3 (on
June 3, 1927). Then, later he realized that this implies that protons are fermions (on
June 16, 1927).38

Annealed and quenched systems
The difference between (3.6.28) and (3.6.29) is very important in the study of a system
under the influence of external fields or randomness in the system. Suppose the system
depends on a parameter (or a field) f , and f is a stochastic variable. For a fixed f ,
the partition function is given by Z(f).

If f varies sufficiently rapidly so that within the observation time f samples its
distribution almost evenly (‘ergodically’), then the free energy we observe should be
given by

A = −kBT log〈Z(f)〉f , (3.6.30)

37[1927: This is the year Heisenberg proposed the uncertainty principle and matrix dynamics.
Chiang Kai-shek set up a government in Nanjing; Mao moved to the Jinggang Mountains, Jiangxi]

38S. Tomonaga, Spin the Spin (World Scientific, 2004).
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where 〈 〉f is the average over f . However, if f is frozen for each sample, but is
different from sample to sample, then the free energy we get should be

A = −kBT 〈logZ(f)〉f . (3.6.31)

The former is the annealed case and the latter quenched case. The low temperature
hydrogen gas was a quenched system.

Can we study the intermediate case with the aid of equilibrium statistical me-
chanics? No. Recall that an equilibrium state is a state where all the fast events have
occurred, but no slow events have occurred yet.

Let us conclude this section with a summary of polyatomic gases. As in the case
of diatomic gases, we can write

zi = zrzv. (3.6.32)

The nuclear contribution can be treated as a mere multiplicative factor as is dis-
cussed. Let the principal moments of inertia of the molecule be I1, I2 and I3. Then
the rotational Hamiltonian reads

Hrot =
∑

i

L2
i

2Ii
, (3.6.33)

where Li is the angular momentum around the i-th principal axis. We may treat the
partition function classically,q so that

zrot =
(2kBT )(πI1I2I3)

3/2

~3
. (3.6.34)

Notice that I1I2I3 is the determinant of the inertial tensor around the center of mass.
For a linear molecule I3 = 0 and I1 = I2 = I, so that

zrot =
2IkBT

~2
. (3.6.35)

zv is the product of contributions from each normal mode. Often, vibrational degrees
of freedom are all frozen, so we may ignore them.
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Exercises for Chapter 3
3.1 [Fermions and bosons; the ultimate elementary problem]
There is a system with only three states with energies 0, ε and ε (ε > 0, i.e., excited
states are degenerate). There are three identical particles without spin.
(1F) If the particles are fermions, write down the canonical partition function.
(2F) Find the probability of finding N particles in the (one-particle) ground state.
(3F) Compute the average occupation number N of the ground state.
(1-3B) Repeat the same problems assuming that the particles are bosons.
(4) Consider the high temperature limit. (UIUC Qual Spring00)

3.2 [Elementary problem for boson systems]
There are 100 identical spinless bosons whose s-th one-particle state has an energy
Es = sε (s ∈ N) and is described by a wave function φn(r) (normalized). These
particles do not interact.
(1) How many microstates with the energy 4ε does the system have?
(2) When the system is in equilibrium with the particle reservoir (chemostat) of
temperature T and chemical potential µ, on the average 99 particles occupy the
one-particle ground state (s = 0), and one particle occupies the one-particle first
excited state (s = 1). The other one-particle states are negligibly occupied, Find µ
and β = 1/kBT in terms of ε.

3.3 [Basic problem for quantum ideal gas: isothermal compression]
In a cylinder with a piston are N identical particles. The temperature is maintained
constant.
The fermion case:
(1) Suppose the system is maintained at T = 0, and the volume has been reversibly
halved. What is the relation between the initial energy ei per particle and the final
energy ef per particle?
(2) In the process described in (1) what is the ratio Pf/Pi, where Pi is the initial
pressure and Pf the final pressure.
(3) Now, suppose the system is maintained at a positive temperature T . As in (1)
we halve the volume of the system reversibly . How does the ratio ef/ei change as a
function of T? You may assume T is sufficiently close to T = 0.
The boson case:
(4) Suppose the density of the condensate is positive at the initial temperature. After
the volume is halved reversibly does the density of the condensate remain positive?
(5) Suppose T = 0 when the volume is reversibly halved. Find the ratio Pf/Pi ,
where Pi is the initial pressure and Pf the final pressure.

3.4 [Basic problem for quantum ideal gas: adiabatic free expansion]
In a thermally isolated cylinder with a piston is an ideal gas, whose initial tempera-
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ture is Ti. The piston is pulled suddenly to increase the volume by 10%.
The fermion case: Suppose the ideal gas is fermionic.
(1F) Find the final pressure Pf in terms of Pi, the initial pressure.
(2F) Which is correct, Ti < Tf , Ti = Tf or Ti > Tf?
(3F) Suppose the initial temperature is T = 0. Express the final temperature Tf

approximately in terms of the Fermi temperature TF before the expansion.
The boson case: Suppose the ideal gas is bosonic.
(1B) Find the final pressure Pf in terms of Pi, the initial pressure.
(2B) Suppose the initial temperature is sufficiently low and the condensate does not
disappear by expansion. What is the final temperature Tf?
(3B) Suppose the initial temperature is less than Tc. After expansion, the final tem-
perature becomes exactly Tc (for the expanded system). Find the initial temperature
Ti in terms of the Tc before expansion.

3.5 [Basic problem for quantum ideal gas: adiabatic quasistatic expansion]
In a thermally isolated cylinder with a piston is an ideal gas, whose initial tempera-
ture is Ti and initial pressure is Pi. The piston is pulled slowly to double the volume.
The fermion case: Suppose the ideal gas is fermionic.
(1F) Obtain the final pressure Pf in terms of Pi.
(2F) What is the final temperature Tf , if Ti = 0?
(3F) More generally, obtain Tf in terms of Ti.
The boson case: Suppose the ideal gas is fermionic.
(1B) Obtain the final pressure Pf in terms of Pi.
(2B) Obtain Tf in terms of Ti, assuming that the condensate does not disappear.
(4B) Let N0i be the initial number of particles in the condensate. Does the final
number of particles N0f in the condensate increase or decrease?

3.6 [Basic problem for quantum ideal gas: compression under constant internal en-
ergy]
In a cylinder with a piston is an ideal gas consisting of N particles, whose initial
temperature is Ti. The piston is pushed in slowly to halve the volume while remov-
ing thermal energy appropriately to keep the internal energy constant. Let Tf be the
final temperature.
I.The case of spinless bosons: assume that there is a Bose-Einstein condensate ini-
tially.
(1) Find the number of particles N0 in the condensate before compression. You may
use the critical temperature Tc.
(2) Which is true, Tf < Ti, Tf = Ti or Tf > Ti?
(3) Does the number of particles in the condensate increase or decrease?
II. The case of spin 1/2 fermions.
(4) Find the final pressure Pf .
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(5) Is there a minimum temperature (> 0) below which this process becomes impos-
sible?
(6) Which is true, Tf < Ti, Tf = Ti or Tf > Ti?

3.7 [Qualitative properties of quantum ideal gases]
Assume the particles do not interact. Answer the following qualitative questions and
give your justification for your answers. All the processes are quasistatic.
The boson case: there are N bosons in a volume V .
(1B) The volume is increased under constant energy. Does the temperature de-
crease?
(2B) The volume is increased under constant entropy. Does the temperature de-
crease?
(3B) Can we decrease the volume while keeping the internal energy?
The fermion case: there are N fermions in a volume V .
(1F) The volume is increased under constant energy. Does the temperature de-
crease?
(2F) The volume is increased under constant entropy. Does the temperature de-
crease?
(3F) Can we decrease the volume while keeping the internal energy?

3.8 [Conversion of fermion into bosons]
There is an ideal fermi gas with the total energy 10 eV in an adiabatic container.
The fermion particles are actually metastable and turn into bosons without adding
any energy. Assume that the conversion is done quasistatically and adiabatically.
Does the container explode? [UIUC qual]

3.9 [Equation of state of ideal gases]
We know the relation between PV and the internal energy does not depend on par-
ticle statistics.
(1) Is this still true for ideal gas mixtures?
(2) Compute PV/E in d-space (this is already mentioned in the text).

3.10 [Effective intereaction due to statistics]
Fig. 3.1.1 illustrates how we can intuitively understand the effective interactions
between particles: compared with classical particles, between bosons there is an ef-
fective attraction, and between fermions there is an effective repulsion. Let us make
this understanding slightly quantitative. Here, we proceed step by small step, re-
viewing elementary quantum mechanics.

We wish to consider a two-particle system in terms of canonical ensemble theory.
The system Hamiltonian reads

H =
p2

1

2m
+

p2
2

2m
, (3.P.1)
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and the canonical partition function is

Z = Tre−βH , (3.P.2)

where the trace is with respect to the microstates specified by two momenta |p,p′〉.
To compute this trace semi-classically, we introduce a single-particle momentum
state |p〉.
(1) Express |p,p′〉 both for the boson and fermion cases in terms of single particle
kets |p〉. You may regard two momenta are distinct, but the obtained states must
be properly normalized.
(2) Assuming that the system is in a sufficiently big box of volume V , find the
position representation 〈r|p〉 (i.e., the wave function) of the momentum ket |p〉.
(3) Let ri be the position vector of the i-th particle. Find the position representation
of |p,p′〉. [This is of course virtually the same question as (1).]
(4) For an N -particle system in the semi-classical limit, the calculation of trace in Z
may be performed as follows:

Tr → 1

N !

∫
V N

d{rk}
N∏

k=1

〈rk| · · ·
N∏

k=1

|rk〉 (3.P.3)

=
1

N !

∫
V N

d{rk}
N∏

k=1

〈rk|

∑
{pi}

|{pi}〉〈{pi}|

 · · ·
∑
{pi}

|{pi}〉〈{pi}|

 N∏
k=1

|rk〉

(3.P.4)

If the volume is big enough, we should be able to replace the summation over mo-
menta by integration over them. The replacement rule is∑

{pi}

→ V N

h3N

∫
d{pi}. (3.P.5)

Justify this for N = 1 in 1-space.
(5) Write Z down using h−3/2eir·p/~ = 〈ri|p〉. Beyond this point, let us simplify
formulas by taking the V →∞ limit. You need not perform the integration.
(6) The outcome of (5) must have the following form:

1

2h6

∫
dr1dr2dpdp

′e−β(p2+p′2)/2m[· · ·]. (3.P.6)

Perform the integral in this expression and find F in the following formula:

Z =
1

2h6

∫
dr1dr2dpdp

′ e−β(p2+p′2)/2mF (3.P.7)
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(7) F may be interpreted as the Boltzmann factor coming from the effective inter-
action originating from particle statistics. Sketch the potential (×β) of this effective
interaction for bosons and fermions.

3.11 [Elementary low temperature formulas for fermions]
The following questions ask for standard elementary calculations, but you should do
them once in your life.
(1)r Obtain the chemical potential (the Fermi level) to order T 2 around T = 0D
(2) Obtain the pressure P to order T 2 around T = 0.

3.12 [Derivation of Maxwell’s distribution]
Maxwell derived in his Illustrations of the Dynamical Theory of Gases (1860) the
density distribution function f(v) of the gas particle velocity.

Maxwell assumed that orthogonal components of the velocity are statistically in-
dependent. This implies that we may write

f(v) = φx(vx)φy(vy)φz(vz), (3.P.8)

where φx, etc., are density distribution function for each component. Maxwell also
assumed isotropy. Hence, f is a function of v2 ≡ |v|2, so we may regard f(v) ≡ F (v2),
and φx’s do not depend on suffixes. Let us introduce ψ(s2) ≡ φx(s). Then, the above
functional equation reads

F (x+ y + z) = ψ(x)ψ(y)ψ(z). (3.P.9)

If Fand ψ are both once differentiable, we obtain

F ′(x+ y + z) = ψ(x)ψ(y)ψ′(z). (3.P.10)

Setting y = z = 0, we have

F (x) = ψ(x)ψ(0)ψ(0), F ′(x) = ψ(x)ψ(0)ψ′(0), (3.P.11)

so F ′(x)/F (x) must be a constant. This implies that the distribution is Gaussian.
(1) Is there any other solution? If we do not assume the differentiability of F (that
is, if we assume only the continuity of F ), what do you get?39

(2) Since we know the result of equilibrium statistical mechanics, if the particle en-
ergy is E, then the distribution function is proportional to e−βE. This is derived
from the consistency of mechanics and thermodynamics. On the other hand, the
above derivation of the Maxwell distribution uses only the statistical independence

39If we do not assume the continuity of F , there would be uncountably many solutions.
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of the orthogonal components and its isotropy, and mechanics is never used.. Then,
this seems to imply that Maxwell’s logic determines the form of the kinetic energy
K in terms of velocity from statistically natural assumption + thermodynamics; at
least K ∝ v2 is concluded. This sounds incredible, even if thermodynamics is great.
What is wrong? [Hint: think of relativistic case.]
[Comment] Maxwell himself did not like the above derivation we criticize here,40 so
he rederived the distribution a few years later. He this time used the detailed balance
argument (as explained in the text). Pay due respect to Maxwell’s sound instinct.

3.13 [2-dimensional neutron system]
1018 neutrons are confined in a square of edge length 1 m. If we regard this as a
2-dimensional system, estimate the needed temperature required for this system to
be regarded a classical system.41

3.14 [2-dimensional fermion system]
The density of translational states of a 2D fermion system confined in a volume
(area) V may be written as c D(ε) = cV with a positive constant c.
(1) Find the chemical potential µ in terms of the number density ρ and (inverse)
temperature β.
(2) In the high density limit, we have µ ∝ ρ. Explain why this form is plausible.
(3) What is the classical limit? Does the obtained result consistent with the classical
ideal gas result?

3.15 [Quantum gas with internal degrees of freedom]
Let us consider a quantum gas consisting of N particles. Individual particles have
internal states consisting of two levels: the ground state and the non-degenerate ex-
cited state with energy ε (> 0).
(1) Suppose the particles are fermions. How does the Fermi energy µF (i.e., the
chemical potential) behave as a function of ε?
(2) Suppose the particles are bosons. How does the Bose-Einstein critical tempera-
ture Tc depends on ε? Give a clear argument even if it is qualitative.

3.16 [Zeemann splitting]
The outer shell of an ion has a magnetic moment µB of 1 Bohr magneton. In a
magnetic field B this outer shell state splits into two energy states with energies
E = E0±µBB. Let nu (resp., nd) be the occupancy number of up-spin (resp., down-
spin) states. Then the magnetization reads M = µB(nu − nd). You may ignore the
electron-electron interactions.
(1) Find 〈M〉 and 〈N〉 (N = nu +nd) with the aid of the grand canonical formalism.

40However, even strict Pauli uncritically repeat the above argument in W. Pauli, Thermodynam-
ics and the Kinetic Theory of Gases (edited by C. P. Enz), Section 25.

41cf ProblWS p176.
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(2) Find the magnetization when the outer shell has one electron for each ion. Com-
pare the result with the result of (1) for µ = E0.

42D

3.17 [Electron paramagnetism]
Due to the spin, each electron in a magnetic field B (assumed to be pointing the
z-direction) has the potential energy ±µ̃B. Let Dt(ε)be the one-particle transla-
tional density of states (however, the electrons may be in a crystal field, so we do
not specify its form)D
(1) The magnetization M of this system M is the expectation of the magnetic mo-
ment due to electron spins. Express M in terms of Dt(ε± µ̃B).
(2) Express the magnetic susceptibility χ in terms of D′t(ε), assuming that µ̃B is not
too large.
(3) Obtain χ to order T 2 around T = 0 with the aid of logDt(ε).

3.18 [Do we have only to treat the ground state special below Tc?]
For a bose gas in 3-space we know the following integral expression is not always
correct:

〈N〉 =
∞∑
i=0

〈n̂i〉 =

∫ ∞
0

dεDt(ε). (3.P.12)

It is because the expression ignores a large number of particles in the one-particle
ground state. Thus, we are taught that if we count the number N0 of the particles
occupying the one-particle ground state and if we add this to N1, then the number of
particles in the system may be expressed correctly. However, ther may be the people
who are not so convinced yet: why only ground state? Don’t we have to consider
the first excited state? Don’t we actually have to perform the following calculation
· · ·:

〈N〉
V

=
1

V
〈n̂0〉+

1

V
〈n̂1〉+

1

V

∫ ∞
0

dεDt(ε). (3.P.13)

Let us perform a slightly more honest calculation (to recognize clearly that Einstein
is always correct!):
(1) Our energy coordinate convention is that the ground state is always 0: ε0 = 0.
Let us assume that the system is a cube of edge length L: V = L3. The lowest
excited one-particle state energy ε1 as a function of V .
(2) Compare the occupation number of the one-particle ground state and the one
particle first excited states (which is triply degenerate). That is, compute the ratio
〈〈n̂0〉/(〈n̂1〉+ 〈n̂2〉+ 〈n̂3〉) = 〈n̂0〉/3〈n̂1〉 for a very small negative chemical potential
µ43 required by the Bose-Einstein condensation. How big is it as a function of V ?

42UIUC QualFall 95
43which is not zero, because the system is finite.
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(3) We just saw in (2) except for 〈n̂0〉 other expectation values are not extensive. That
is, the ground state is really special. Excited states cannot contribute an extensive
quantity unless infinitely many of them are collected. Explain that the contribution
of all the excited states may be obtained accurately by replacing the summation with
integration (as usual).

3.19 [Ideal boson gas slightly warmer than Tc]
Fig. 3.4.2 illustrates that the specific heat Cv of the ideal Bose gas has a cusp. Let
us demonstrate this. To compute Cv we need the internal energy of the system. Let
us compute it.
(1) What is the internal energy below Tc? (This is an easy question.)
(2) If we compute the internal energy assuming µ = 0 and write its value as E0,
show

∂E0

∂µ
' 3

2
N0(T ), (3.P.14)

where

N0(T ) ≡ N(T, 0) =
V

h3

∫ ∞
0

1

eβp2/2m − 1
4πp2dp. (3.P.15)

Therefore, for T (> Tc) we could approximate the true internal energy at T as
E(T ) = E0 + (3/2)N0(T )µ. This implies that to obtain E as a function of T , we
need µ as a function of T . To this end let us write the number of particles for T > Tc

(µ < 0) as

N = N0(T ) +
V

h3

∫ ∞
0

{
1

eβ(p2/2m−µ) − 1
− 1

eβp2/2m − 1

}
4πp2dp. (3.P.16)

(3) Show that we may approximate the second term of (6.3.123) as∫ ∞
0

{
1

eβ(ε−µ) − 1
− 1

eβε − 1

}√
εdε ' kBTµ

∫ ∞
0

dε
1√

ε(ε+ |µ|)
= −πkBT

√
|µ|.

(3.P.17)
Do not forget that µ < 0. [This allows us to obtain µ in terms of N0(T ) which is
obtainable from (6.3.122) as a function of T .]

3.20 [Bose-Einstein condensation in a harmonic trap]
Let us consider an ideal bose gas consisting of N particles confined in a 3D harmonic
potential.44 It is hard to treat this in terms of the canonical ensemble, so we discuss

44Actually, BEC is observed in a collection of Rb atoms confined in a (not spherically symmetric)
3D harmonic potential.
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this with the aid of the grand canonical theory; ifN is larger than 103, then logN/N45

is not large, so this approach must not be bad.
(1) Suppose the angular frequency of the trapped boson is ωt. Find the density D(ε)
of one-particle state as a function of energy ε. Measure the energy from the ground
state and ignore the zero-point energy.
(2) Find the number of particles N1 in the non-condensate as a function of the
chemical potential. Show that the integral (or N1) is bounded from above in 3-space
(no explicit integration required). Thus, Bose-Einstein condensation is possible in
this system.
(3) The number of particles occupying the one-particle ground state approaches zero
as

N0(T ) = N

(
1−

(
T

Tc

)γ)
, (3.P.18)

when T ↗ Tc. Find γ.
(4) Find Tc as a function of N . For N = 3000, and ωt = 103 rad/s estimate Tc. (Use
ζ(3) = 1.2020569031595 · · ·.)
(5) If a 2D harmonic potential can trap 2D Bose gas,46 can we observe Bose-Einstein
condensation?

3.21 [Expanding universe]
At present, the cosmic background radiation is at 3 K. Suppose the volume of the
universe doubles adiabatically. What is the temperature of the cosmic background
radiation after this expansion?

3.22 [Specific heat of hydrogens]
Consider a 1 mole of ideal gas at 10 K consisting of pure HD, pure HT or pure
DT. Whose specific heat CV is the largest? Give your answer without detailed
computation. You may assume that the length of the chemical bonds are all the
same.

3.23 [Internal degree of freedom of heavy hydrogen]
The potential energy function describing the chemical bond in a heavy hydrogen D2

may be approximately described as

φ(r) = ε
[
e−2(r−d)/a − 2e−(r−d)/a

]
, (3.P.19)

where ε = 7× 10−19 J, d = 8× 10−11 m and a = 5× 10−11 m.
(1) Evaluate the smallest energy required to excite the rotational motion, and esti-
mate the temperature Tr for which the rotation starts to contribute significantly.

45It is emphasized again that the error is not of order
√
N/N = 1/

√
N , but logN/N .

46This is virtually realized on graphene.
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(2) Evaluate the smallest energy required to excite the vibrational motion, and esti-
mate the temperature Trv for which the vibration starts to contribute significantly.

3.24 [Computation of inertial moment tensor]
Obtain the moment of inertia tensor for CH3D around its center of mass, and com-
pute its rotational partition function classically. [You have only to state your strategy
without actually estimating the components of the tensor.]
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Chapter 4

Interacting Fluid Systems

If there are interactions among the microscopic constituents of the system, struc-
turally different phases with bewildering diversity become possible. Materials con-
stants such as specific heat, elastic moduli, various susceptibilities sensitively depend
on details of interactions. However, here, we are not so interested in materials di-
versity; the reader must clearly recognize the distinction between statistical physics
and materials science. We concern about universal features and tools and concepts
that are generally useful to understand equilibrium systems made of numerous in-
teracting constituents. Thus, imperfect gases, liquids, magnets, etc., are discussed
only to illustrate useful general ideas and tools.1 We maximally avoid fetishism. In
this chapter some tools to discuss classical many body systems are explained.

1For example, many-body problems in nuclear physics utilizes tools inspired by methods to
study liquids.

223
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4.1 Virial expansion of imperfect gas

A collection of identical classical particles interacting via a certain potential U may
be described by the following Hamiltonian

H =
∑

i

p2
i

2m
+ U({ri}), (4.1.1)

where m is the particle mass and ri the position vector of the i-th particle. It is
often assumed that U may be decomposed into binary interactions as

U =
∑
〈i,j〉

φ(rij), (4.1.2)

where 〈i, j〉 denotes the pair (disregarding the order) of particles i and j, rij = ri−rj,
and φ is the potential of the binary interaction. If we discuss a spherically symmetric
interaction, then φij ≡ φ(rij) = φ(|rij|) with a slight abuse of the function symbol.

How realistic is the binary interaction description? If the molecule is not simple
and if the phase is dense, it is known that three-body interactions2 are very impor-
tant. However, it is also known that we could devise an effective binary interaction3

that incorporates approximately the many-body effects. In this case the binary
potential parameters are fitting parameters to reproduce macroscopic observables
(thermodynamic and scattering data).4

2Here, ‘three-body interaction’ does not imply simultaneous binary interactions among three
particle, but a genuine three-body interaction in the sense that even the intereaction between two
particles is modified by the presence of the third particle.

3Later we will discuss the potential of mean force. Do not confuse this effective potential and the
effective binary interaction being discussed here. In the present case, the ‘effectiveness’ implies to
write truly many-body interactions (approximately) in terms of binary interactions. The potential
of mean force we will discuss later is the potential of the effective force between a particular pair
of particles surrounded by many other interacting particles.

4〈〈How good is the effective two-body interaction potential?〉〉 The two-body correlation
may be fitted with an effective binary interaction, but generally, we cannot fit the three-body
correlation function. See, for example, an experimental work: C. Russ, M. Brunner, C. Bechinger,
and H. H. von Grünberg, “Three-body forces at work: Three-body potentials derived from triplet
correlations in colloidal suspensions,” Europhys. Lett. 69, 468 (2005). How good is the ab initio
quantum mechanically obtained binary potential? For noble gases if we take into account the triple-
dipole interaction, fairly good results for gas-liquid coexistence curve seems obtained. See A. E.
Nasrabad and U. K. Deiters, “Prediction of thermodynamic properties of krypton by Monte Carlo
simulation using ab initio interaction potentials,” J. Chem. Phys. 119, 947 (2003).
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We already know from (2.2.7) that the classical canonical partition function Z
can be written as a product of the classical ideal gas partition function Zideal and
the configurational partition function Q, where

Q =
〈
e−β

P
〈i,j〉 φij

〉
V
, (4.1.3)

V is the system volume, and 〈∗〉V is the average (2.2.10) over the configuration space.
If statistical mechanics is correct, all the phases (for which quantum effects may be
ignored), gas phase, liquid phase, solid phase, etc., must be in Q.

Isotope effects
Isotope effects show up in spin-statistics relation and in mass difference. The spin-
statistics relation affects only low temperature properties of diatomic molecules. There-
fore, the effect due to mass difference is the only remaining isotope effect in most cases.
There are two effects, modifying the de Broglie wave length and modifying the inter-
action potential (through changing the effective mass of electrons).

The ionic potential is of the order of 10 eV, so H-D mass difference could affect
it and modify the interaction potential to the extent that cannot be totally ignored
relative to kBT . In any case, however, unless the H-D effect is involved, isotope ef-
fects are usually very small for equilibrium properties around room temperature. For
low molecular weight compounds, the isotope effect is at most 1 or 2 K for phase
transition temperatures.5 However, the replacement of H with D in polymers can
have a large effect. For example, the phase separation temperatures could change
by 10 K. Polystyrene and D-polystyrene melts cannot mix. Thus, isotope effect may
be amplified by many-body effects. Incidentally, heavy water disrupts the spindle to
inhibit cell division, so seeds cannot germinate with heavy water; also it can cause
male infertility.

The difference in de Broglie thermal wavelength can change the structure of con-
densed phases. For example, even if the interaction potential is the same, lighter
isotopes tend to be delocalized.6 In classical statistical mechanics, configurational
and kinetic parts are separated, so unless there is a mass effect on the interaction po-
tential, no isotope effect can be explained. Therefore, without modifying the potential
to take account of the delocalization effect, classical statistical mechanics cannot ex-
plain the effect of de Broglie wavelength difference.

In terms of the configurational partition functionQ, we can write (cf.−V ∂A/∂V =
n∂A/∂n = PV )

PV

NkBT
= 1− n ∂

∂n
W, (4.1.4)

5For example, even for water the effect is small: the triple point: H2O is 0.01◦C, D2O is 3.82◦C;
boiling point (at 1atm): H2O is 100◦C, D2O is 101.42◦C.

6A. Cunsolo, D. Colognesi, M. Sampoli, R. Senesi, and R. Verbeni, “Signatures of quantum
behavior in the microscopic dynamics of liquid hydrogen and deuterium,” J. Chem. Phys. 123,
114509, (2005). The paper observes that ordinary hydrogen delocalizes more than heavy hydrogen
in the liquid phase.
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where W = (1/N) logQ and n = N/V (the number density). For gas phases, our
main task is to obtain the virial expansion of the equation of state:7

PV

NkBT
= 1−

∞∑
k=2

k

k + 1
βkn

k, (4.1.5)

= 1 +B(T )n+ C(T )n2 +D(T )n3 + · · · , (4.1.6)

where B,C,D, · · · are called virial coefficients. The systematic calculation of virial
coefficients is not very simple, but certain general useful ideas worth remembering
are used: Mayer’s f , cumulant expansion, 1-PI diagrams, etc.8

1_

0

0

f

φ

r

r

Fig. 4.1.1
Sketch of Mayer’s f . It is short-ranged and
usually between 1 and −1.

Expanding W or Q in terms of the number density is roughly equivalent to ex-
panding it in terms of interactions. Unfortunately, the binary interaction potential
has a hard core due to the Pauli exclusion principle, so the binary interaction po-
tential φ is not bounded. Therefore, we need something smaller to facilitate our
expansion. Mayer introduced Mayer’s f -function:

f(r) = e−βφ(r) − 1. (4.1.7)

In terms of f we can write

Q =

〈∏
i<j

e
fij

L

〉
V

. (4.1.8)

7This form was introduced by Kammerlingh-Onnes in 1901.
8Except for somewhat simplified notations, the exposition here is based on R. Abe, Statistical

Mechanics (University of Tokyo Press) [in Japanese].
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where ex
L = 1 + x is the linearized exponential function. 9

Elementary calculation of the second virial coefficientq
Before jumping into a systematic calculation, let us compute the second virial coeffi-
cient in an elementary fashion.

Q =
1
V N

∫
d3r1d

3r2 · · · d3rN

∏
i<j

(1 + fij), (4.1.9)

=
1
V N

∫
d3r1d

3r2 · · · d3rN

1 +
∑
i<j

fij+

 , (4.1.10)

= 1 +
1
V 2

(
N

2

)∫
d3r1d

3r2f12 + · · · = 1 +
1
V

(
N

2

)∫
d3ρf(ρ) + · · ·(4.1.11)

At the last step the integration variables have been switched from r1, r2 to r1,ρ =
r2 − r1. The integration over r1 gives V . Therefore,

W =
1
2
n

∫
d3ρf(ρ). (4.1.12)

Comparing this with (4.1.6), we obtain

B(T ) = −1
2

∫
d3ρf(ρ) =

1
2

∫
d3ρ (1− e−βφ(ρ)). (4.1.13)

If the binary potential is a hard core (of diameter σ) + short-ranged attractive tail,r

f(ρ) =
{

−1 for ρ < σ,
−βφ(ρ) for ρ ≥ σ, (4.1.14)

so we get

B(T ) =
2
3
πσ3 − a

kBT
, (4.1.15)

where we have introduced

a = −1
2

∫ ∞
σ

φ(ρ)4πρ2dρ, (4.1.16)

which is finite, since we have assumed a short-ranged attraction.

We need logQ instead of Q itself. A general technique to study the logarithm of
the generating function is the cumulant expansion. Let X be a stochastic variable
with all the moments well defiend. 〈eθX〉 is the (moment) generating function:

〈eθX〉 = 1 +
∞∑

n=1

θn

n!
〈Xn〉 , (4.1.17)

9The reason to introduce eL is to use cumulant expansion explained below as conveniently as
possible later.
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where θ is a real number. Cumulants are introduced asr

log〈eθX〉 =
∞∑

n=1

θn

n!
〈Xn〉C =

〈
eθX − 1

〉
C
. (4.1.18)

The second equality is for the mnemonics sake. 〈Xn〉C is called the n-th order cu-
mulant. To compute cumulants, we must relate them to the ordinary moments. It
is easy to extend the definition of cumulants to multivariate cases.

The following two properties are worth remembering:
(i) A necessary and sufficient condition for X to be Gaussian is 〈Xn〉C = 0 for all
n ≥ 3.
(ii) If X and Y are independent stochastic variables, then 〈XnY m〉C = 0 for any
positive integers n and m.

(i) is obvious from an explicit calculation. (ii) is obvious from 〈eαX+βY 〉 =
〈eαX〉〈eβY 〉. (ii) is crucial in our present context.

We must have an explicit formulas for multivariate cases, but this extension be-
comes almost trivial with the aid of a clever notation (Hadamard’s notation):10 Let
A and B be D-dimensional vectors. Then, we write

AB =
D∏

i=1

ABi
i . (4.1.19)

For (nonnegative) integer D-vector N = (N1, · · · , ND)

N ! =
D∏

i=1

Ni!. (4.1.20)

With the aid of these notations, the multivariate Taylor expansion just looks like the
one-variable case:

f(x + x0) =
∑
M

1

M !
f (M )(x0), (4.1.21)

where x is a D-vector and

f (M )(x) =

(
∂

∂x

)M

f(x) (4.1.22)

10The notation is standard in partial differential equation theory.
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and the summation is over all the nonnegative integer D-vector M : M ∈ND. The
multinomial theorem reads

(x1 + · · ·+ xD)n =
∑
K

n!

K!
xK , (4.1.23)

where the summation is over all nonnegative component vector K such that K1 +
· · ·+KD = K · 1 = n. Here, 1 = (1, · · · , 1) (there are D 1’s).

The multivariate cumulants are defined as (see (4.1.18))

log
〈
eθ·X

〉
=
〈
eθ·X − 1

〉
C
. (4.1.24)

Actually, what we need later is only

〈XM 〉C = 〈XM 〉+ · · · , (4.1.25)

where · · · has all the terms with extra insertion of 〉〈 (i.e., the terms decomposed into
the product of moments).

Cumulant in terms of moments
Using

log(1 + x) =
∑

n

(−1)n−1x
n

n
, (4.1.26)

we expand the LHS of (4.1.24) as

log

1 +
∑
N 6=0

θN

N !

〈
XN

〉 =
∞∑

n=1

(−1)n−1

n

∑
N 6=0

θN

N !

〈
XN

〉
n

. (4.1.27)

To expand the RHS we use (4.1.23). Therefore, the RHS of (4.1.27) becomes

∞∑
n=1

(−1)n−1

n

∑
K·1=n

n!
K!

[
θN

N !

〈
XN

〉]K
. (4.1.28)

Here, [· · ·]K may be a slight abuse of the notation, but now each component of K

denotes how many θN terms appear. This double summation over n and K can be
rewritten as

−
∑
K

(K · 1− 1)!(−1)K·1
1

K!

[
θN

N !

〈
XN

〉]K
. (4.1.29)
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This should be compared with (4.1.24). Hence, we obtain

〈
XM

〉
C

= −M !
∑

P
i KiN i=M

(∑
i

Ki − 1

)
!(−1)

P
i Ki

1∏
iKi!

∏
i


〈
XN i

〉
N i!

Ki

.

(4.1.30)
Here, the summation is over all possible decomposition of M into nonzero nonnegative
integer vectors N i with multiplicity Ki.

We formally apply (4.1.24) to (4.1.8):

logQ = log

〈∏
i<j

e
fij

L

〉
V

=
∑
M 6=0

1

M !

〈
fM

〉
C
. (4.1.31)

The cumulants can be expressed in terms of the moments 〈fN 〉V , but thanks to the
definition of eL, no moment containing the same f more than once shows up (i.e.,
the components of N are 0 or 1).

Let us itemize several key ideas helpful to express cumulants in terms of moments.

(1) There are many cumulants or moments, so a diagrammatic expression of fM is
advantageous. In these diagrams, particles correspond to the vertices and fij is de-
noted by a line connecting two vertices corresponding to particles i and j (See Fig.
4.1.2 for illustrations).

1

2
3

4
3

4 6

7

Fig. 4.1.2 The left diagram corresponds to
f12f23f14f24, and the right one to f34f46f67f73.

There are many diagrams in these days, but the theory we are discussing here is the
first systematic use of diagrammatics.
(2) If a diagram consists of two disconnected parts, then the particle positions can
be changed freely independently, so the corresponding cumulants vanish. The same
is true for diagrams that can be decomposed into disjoint pieces by removing one

particle (one vertex). This is because the average of fM is the average over the rel-
ative coordinates between particles; if a diagram has a hinge around which two parts
can be rotated independently, the interparticle vectors belonging to these two parts
are statistically independent. Therefore, only the 1-PI diagrams (= one-particle irre-
ducible diagram; a diagram that does not decompose into disjoint parts by removing
one vertex) matter.

yoshioono
Pencil
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1-PI diagrams NOT

1-PI

Fig. 4.1.3 1-PI diagrams and a non 1-PI
diagram

(3) If M is a vector whose components are 0 or 1 and gives a 1-PI diagram, then we

may identify 〈fM 〉C and 〈fM 〉V (as already announced) in the large volume limit.

This may be understood as follows. Suppose the diagram corresponding to 〈fM 〉
has m particles. Then, (let us call these m particles 1, · · · ,m)

〈fM 〉V =
1

V m

∫
dr1 · · · drmfM . (4.1.32)

The integral is of the order of V , because we may place the cluster at any position
in the space. Therefore, the moment is of order 1/V m−1. Consider a decomposition
M 1 + M 2 = M .

*
*

M

M1

2

Fig. 4.1.4 A decomposition of a 1-PI diagram into
two subdiagrams results in at least two common
vertices (with ∗) shared by the subdiagrams. In
this example, the edge between these shared ver-
tices belong to M1.

The original diagram is 1-PI, so the subdiagrams corresponding to M 1 (containing
m1 vertices) and M 2 (containing m2 vertices) share at least two vertices. Therefore,
m1 +m2 −m ≥ 2 and

〈fM 1〉V 〈fM 2〉V = 〈fM 〉VO[V −1]. (4.1.33)

(4) The above consideration implies that we may ignore in the large volume limit all

the cumulants 〈fM 〉C with M having some component(s) larger than 1.

Now, (4.1.31) reads (notice that M ! = 1)

logQ =
∑
M 6=0

〈
fM

〉
V
. (4.1.34)
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The summation is over all the choices of 1-PI diagrams with no multiple edges con-

necting two vertices directly. If fM corresponds to a k vertex 1-PI diagram, there are(
N
k

)
∼ Nk ways to choose k particles. Because 〈fM 〉 = O[1/V k−1], the overall con-

tribution of such diagrams to the summation is proportional to Nk/V k−1 ∼ Nnk−1.
Since logQ must be extensive, this is just the right contribution from such dia-
grams:

logQ =
∞∑

k=2

(
N

k

)∑
D(k)

〈
fM

〉
V,k
, (4.1.35)

where D(k) is the 1-PI silhouettes (see Fig. 4.1.5) with k vertices:

∑
D(k)

〈
fM

〉
V,k

=
1

V k−1

∫
d(independent relative particle coordinates)

∑
fM .

(4.1.36)
The sum here is over all the topologically distinguishable assignments of the particles
1, · · · , k to the vertices of the silhouette D(k). For example, for k = 4 there are three
distinct silhouettes as shown in Fig. 4.1.5(b), and for one of them there are ways to
assign 4 particles as exhibited in (a). If the silhouettes are identical, then the inte-
grated values are identical, so we have only to count the ways for such assignments.
For the example (a) there are 6 ways.

+ ++++=
11 1 1 12222

23 3 3

3

3

1

2

3

4 44 4 4 4

1

2

3

4 1

2 3

4

For example, = etc., should not be double counted.

3 + 6 +

(a)

(b)

6

Fig. 4.1.5
(a) “Silhouette’ implies the diagrams that are identical if particles are indistinguishable.
(b) For k = 4 there are three different kinds of silhouettes (topologically different silhouettes), each
of which have several ways (as denoted with a prefactor) of assigning 4 particles.
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Finally, we obtain the virial expansion of the free energy:

1

N
logQ =

∞∑
k=1

nk

k + 1
βk, (4.1.37)

where

βk =
1

k!

∫
d(independent relative particle coordinates)(all 1-PI k + 1 particle silhouettes∗).

(4.1.38)
‘Silhouette∗’ implies that the number of ways counted as in Fig. 4.1.5 has been taken
into account (see (4.1.41); implying that, for example, the numerical coefficients as
3 and 6 in this formula should be included). This integral is called the k-irreducible
cluster integral. For example,

β1 =

∫
f12dr12, (4.1.39)

β2 =
1

2

∫
f12f23f31dr12dr13. (4.1.40)

β3 consists of three different silhouettes:

β3 =
1

3!

∫
(3f12f23f34f41 + 6f12f23f34f41f13 + f12f23f34f41f13f24) dr12dr13dr14.

(4.1.41)
Diagrammatic expressions are as follows:

3 + 6 +[ ]

From (4.1.37) and (4.1.4) we finally obtain the virial expansion of equation of
state:

PV

NkBT
= 1−

∞∑
k=1

k

k + 1
βkn

k, (4.1.42)

= 1 +B(T )n+ C(T )n2 +D(T )n3 + · · · . (4.1.43)
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Notice that when we compute the virial coefficients, V,N → ∞ is taken with
n being kept constant. The series expansion and this limit are not commutative.
Therefore, from the nature of the series (4.1.43) we cannot conclude anything about
the existence or absence of phase transition.11 It is known that this series has a finite
convergence radius.12

4.2 Van der Waals equation of state

Van der Waals13 proposed the following equation of state (van der Walls equation of
state:

P =
NkBT

V −Nb
− aN2

V 2
, (4.2.1)

where a and b are materials constants. Here, P,N, T, V have the usual meaning in
the equation of state of gases. His key ideas are:
(1) The existence of the real excluded volume due to the molecular core should
reduce the actual volume from V to V −Nb; this would modify the ideal gas law to
PHC(V −Nb) = NkBT . Here, subscript HC implies ‘hard core.’
(2) The attractive binary interaction reduces the actual pressure from PHC to P =
PHC − a/(V/N)2, because the wall-colliding particles are actually pulled back by
their fellow particles in the bulk.

The most noteworthy feature of the equation is that liquid and gas phases are
described by a single equation. Maxwell was fascinated by the equation, and gave
the liquid-gas coexistence condition (Maxwell’s rule).q

11However, this does not mean that we cannot obtain the critical temperature from the coeffi-
cients. See T. Kihara and J. Okutani, Chem. Phys. Lett., 8, 63 (1971). See Problem 5.1.

12〈〈Virial expansion converges〉〉r Theorem [Lebowitz and Penrose] The radius of convergence
of the virial expansion (4.1.42) is at least 0.289 · · · (e2βB + 1)−1C(T )−1, where −2B is the lower
bound of φ. ut
See D. Ruelle, Statistical Mechanics (World Scientific, 1999) p 85.

13〈〈van der Waals’ biography〉〉 See the following page for his scientific biography:
http://www.msa.nl/AMSTEL/www/Vakken/Natuur/htm/nobel/physics-1910-1-bio.htm.
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Liquid

V

p

Fig. 4.2.1 The thick curve is the coexistence
curve below which no single phase can sta-
bly exist, and the dotted curve is the spinodal
curve bounding the thermodynamically unstable
states; the region between the spinodal and co-
existence curves is the metastable region. When
a high temperature state is quenched into the
unstable region, it immediately decomposes into
liquid and gas phases. If a high temperature
state is quenched into the metastable region, af-
ter nucleation (of bubbles or droplets) of the
minority phase, phase separation occurs. The
liquid-gas coexistence pressure for a given tem-
perature is determined by Maxwell’s rule: the
two shaded regions have the same area.

Maxwell’s rule is motivated by the calculation of G: dG = V dP . Thus, we can
compute the area between the P -axis and the PV curve in Fig. 4.2.1. The result is
illustrated in Fig. 4.2.2.

T cT<

Gas

Liquid

V

P

A

B

G

coexistence

Liquid

Gas

A

B

P

Fig. 4.2.2r Maxwell’s rule explained.
G is essentially the (signed) area below
the PV curve. Thus, A and B give
‘spines.’ The spinodal curve owes its
name to these spines. The self-crossing
point of the G curve corresponds to the
equal shaded area in Fig. 4.2.1.

However, it is not generally justifiable to use thermodynamics when the system is
unstable (definitely no equilibrium is possible), so the above motivation cannot be
justified, but as we see in a Problem∗ to this chapter, Maxwell’s rule can be properly
justified without abusing thermodynamics.

The van der Waals equation of state is heuristically derived, but what is really the
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microscopic model that gives it, if any? A proper understanding of van der Waals’s
idea is14

P = PHC −
1

2
an2, (4.2.2)

where PHC is the hard core fluid pressure, and the subtraction term is the average
effect of attractive forces.15 The equation of state of this type is called (by Widom)
the augmented van der Waals equation of state.16 As it is, this equation exhibits the
non-monotonic (i.e., not thermodynamically realizable) PV curve just as the van
der Waals equation of state, so there cannot be any microscopic model for (4.2.2).17

However, this equation augmented with Maxwell’s rule is thermodynamically legit-
imate, and indeed it is the equation of state of the gas interacting with the Kac
potential:rq

φ(r) = φHC(r/σ) + γ3φ0(γr/σ), (4.2.3)

where φHC(x) is the hard core potential: 0 beyond x = 1 and∞ for x ≤ 1, and φ0 is
an attractive tail. The parameter γ is a scaling factor; we consider the γ → 0 limit
(long range but infinitesimal interaction); note that the second virial coefficient is
independent of γ.
Theorem.18 The equation of state for the system with the Kac potential is given
byr

P ≡ lim
γ→∞

p(γ) =

[
1

2
n2φ0 + PHC(v)

]
Maxwell

. (4.2.4)

Here, ‘Maxwell’ implies the application of Maxwell’s rule, PHC is the pressure of the
hard core fluid (see Section 4.3) and

φ0 =

∫
φ0(r)4πr

2dr. (4.2.5)

ut
14Generally speaking, van der Waals’s idea of separating the interaction into the hard core part

and the long-range attractive part is a productive one. See, for example, D. Chandler, J. D. Weeks
and H. C. Andersen, “Van Der Waals Picture of Liquids, Solids, and Phase Transformations,”
Science 220, 787-794 (1983).

15For a collection of hard cores there is no gas-liquid transition at any temperature.
16This is not so impressive for dense fluid or liquid.
17Roughly speaking, if the interaction potential is not too long-ranged, if it does not allow pushing

infinitely many particles into a finite volume, and if the total intereaction energy is bounded from
below, then the normal thermodynamics is obtained.

18P. C. Hemmer, M. Kac and G. E. Uhlenbeck, “On the van der Waals theory of the liquid-
vapor equilibrium, I.,” J. Math. Phys. 4, 216 (1963). This is for 1D, and is later extended to 3D by
J. L. Lebowitz and O. Penrose, “Rigorous treatment of the van der Waals-Maxwell theory of the
liquid-vapor transition,” J. Math. Phys., 7, 98-113 (1966).
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We can exactly compute the equation of state of a 1D fluid interacting with the
Kac potential,r because we can compute PHC exactly in 1-space (hard-rod gas, Tonks’
gas).19 Consider a 1D box of length L containing N particles whose hard core size
(length) is σ. We discretize the space into a lattice of spacing δ. Let M = L/δ, and
m = σ/δ (assume both are integers). That is, the discretization converts the problem
to the one of placing N rods consisting of m lattice points on the lattice with total
M lattice points without any overlap. This problem is equivalent to distributing
M −Nm vacant points into N + 1 positions (rod spacings + 2 end spaces). This is
equivalent to distributing M −Nm points into N + 1 bins. Thus, the total number
Z of the configurations is given by(

M −Nm+N

N

)
. (4.2.6)

Since the contribution of the kinetic energy to the canonical partition function is
irrelevant to the pressure, we have only to compute

P

kBT
=
∂A

∂L
=

1

δ

∂A

∂M
= log

(
M −Nm+N

M −Nm

)
=

1

δ
log

(
1 +

Nδ

L−Nσ

)
. (4.2.7)

Now, take the δ → 0 limit to obtain

P

NkBT
=

1

V − b
, (4.2.8)

where L is written as V (volume) and b = Nσ is the total excluded volume. There-
fore, the 1D Kac model gives

P =

[
NkBT

V − b
− 1

2
a

(
N

V

)2
]

Maxwell

. (4.2.9)

This equation gives without Maxwell’s rule thermodynamically unstable states, so a
liquid-gas phase transition exists (due to the infinite-range interaction).

We have realized that van der Waals equation of state corresponds to an idealiza-
tion limit of mean-field like attractive interaction with the hard core to maintain the
system stable. It is a theoretically very respectable equation.

19L. Tonks, “The complete equation of state of one, two and three-dimensional gases of hard
elastic spheres,” Phys. Rev. 50, 955 (1936). This work computes the partition function honestly.
Actually, we can do better as in a problem∗ at the end of this chapter (Takahashi gas)
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van der Waals later realized that the materials constants a and b can be gotten rid
of in terms of the critical parameters Tc, Vc and Pc (critical temperature, volume and
pressure, respectively;20 see Problem; critical points will be discussed in Chapter 4):
introducing reduced quantities Tr = T/Tc, Pr = P/Pc and Vr = V/Vc, the equation
of state can be written as

Pr =
(8/3)Tr

Vr − 1/3
− 3

V 2
r

. (4.2.10)

He proposed the law of corresponding states: in terms of reduced quantities, all the
gas equations of state can be expressed by a universal equation of state.21 Certainly,
the gas equation of state is universal in the dilute limit (the ideal gas law); this uni-
versality is a trivial one. Near the critical point the equation of state becomes again
universal (this is a nontrivial one as we will see later). In other states there is no deep
reason to believe the universality claimed by van der Waals. However, if the binary
interaction potential is, for example, given by the Lennard-Jones 12-6 potential that
has two parameters (energy scale ε and the length scale σ), then dimensional anal-
ysis tells us that the reduced equation of state must be universal. This is a trivial
universality. Unfortunately, the intermolecular forces are not that universal, so the
law of corresponding states remains as an approximate law. However, it is practically
sufficiently useful, and Kammerlingh-Onnes used it as a guide-line to liquify helium.

4.3 Liquid state

The most difficult classical many body problem in equilibrium statistical mechanics
is liquid.22 P. A. Egelstaff, An Introduction to the Liquid State (Oxford, 1994) is an
excellent introduction.23 Again, liquid is explained because some methods and ideas
are probably useful in wider contexts. For example, the use of functional Taylor

20In this case the critical temperature is defined by the temperature where the unstable state
ceases to exist. The critical point is the inflection point of the equation of state at this temperature.

21However, for a gas to be described by a van der Waals equation PcVc/NkBTc = 3/8 is required.
Thus, it is obvious that this cannot be universal.

22Phase transitions are difficult, but when we study a single phase made of spherically symmetric
particles with short-range interaction forces liquid is the most complicated.

23J. M. Ziman, Models of Disorder, the theoretical physics of homogeneously disordered systems
(Cambridge UP, 1979) contains many readable related discussions.
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Fig. 4.2.3. The law of corresponding states.

expansion24 may be of some value to take note.

As we have seen van der Waals could convince the people that liquid and gas
are continuously connected without any phase transition. However, near the triple
point, solid, liquid, and gas phases are quite distinct. What are the characteristics
of these phases?25 As can be seen from the magnitude of the latent heat between
them and their densities solids and liquids are rather similar. We know that solids
are ordered, and liquids are not so, but then from this point of view, it is not easy
to distinguish liquid from gas. The characterization by Bernal, who is the founder

24A function of functions, that is, a map that maps functions to something else (e.g., numbers,
functions) is called a functional.

25〈〈Phases〉〉r It is not easy to define phases globally in the phase diagram as can be seen
from the example of gas and liquid phases (see also Chapter 5). Therefore, in this book, the
concept of ‘phase’ is used ‘locally’ when precise statements are needed. We say the states (near
the phase transition point) that cannot be changed into each other without a phase transition (=
thermodynamic singularity, see Section 5.3) are distinct phases (near the phase transition point).
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of molecular biology,26 seems to be the best:

long range order coherence
solid © ©
liquid × ©
gas × ×

Here, coherencer means that at any instant at least four particles are repulsively
interacting with a chosen particle, and such repulsive contacts structurally resist
against compression. This is the microscopic reason why liquid cannot be compressed
so easily as gas. Thus, it is clear that repulsive interactions due to hard cores of
molecules are crucial. Therefore, we may say that the ideal liquid is the dense hard
core fluid confined in a box (the box replaces the collective cohesive effect due to
attractive intermolecular interactions; recall the Kac potential and augmented van
der Waals equation of state).

The lack of long range order but the existence of coherence imposes a peculiar
local structure (approximate symmetry) to the core packing in liquid. If there is a
3, 4 or 6 fold symmetry around a given particle, this local symmetry is compatible
with a long range order as we know from the crystal structure such as face-centered
cubic lattice, cubic lattice, or hexagonal lattice. Bernal realized that local five-fold
symmetry is the key to the liquid molecular packing. Studying the actual ball-bearing
‘random close packing’,27 he found the so-called Bernal polyhedra.28 They represent
the polyhedra whose vertices correspond to the centers of the particles touching a
given particle in liquid.29

Because of this local packing flexibility the mechanism of thermal expansion of
liquid is distinct from solid. In solids, the volume expands by increasing the in-
terparticle distance without modifying the structure. However, in liquids, particles
can be rearranged locally, so the volume can increase by reducing the coordination
number (increasing vacancies; however, do not imagine any vacancy or void that can
accommodate a particle). Thus generally, the expansion coefficient of liquid is larger

26See a recent book review of his biography in Nature, 440, 149 (2006).
27〈〈Random close packing well defined?〉〉 The requirement of randomness and that of close-

ness are contradictory, so there is a criticism that such a structure is not well-defined and is not
worthy of any precise discussion. However, here Bernal’s intuition is trusted and the viewpoint
is adopted that we cannot precisely characterize such a structure, not because it is intrinsically
ill-defined, but because we have not yet been able to characterize the structure of liquid.

28J. D. Bernal, “Geometry of the structure of monatomic liquids,” Nature 185, 68 (1960).
29There is a work observing the five-fold symmetry: H. Reichert, O. Klein, H. Dosch, M. Denk,

V. Honkimäki, T. Lippmann and G. Reiterk, “Observation of five-fold local symmetry in liquid
lead,” Nature 408, 839 (2000).
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Fig. 4.3.1 Bernal polyhedra representing the local core packing. Notice the local five-fold symmetry
in three of them.

than the corresponding solid.30

V

TTm

liq
ui

d

solid

glass

Fig. 4.3.2
Thermal expansion of liquid and solid. As long
as the particles can be rearranged locally, the ex-
pansion coefficient (slope) is large even in super-
cooled liquid. However, upon dynamical freezing
(glass formation) the expansion mechanism be-
comes just as in solids. Here, Tm is the melting
point.

To study the structure more quantitatively, it is convenient to count the number of
particles located between r and r + dr from (the center of) a particular molecule
as

4πng(r)r2dr = the number of particle ‘centers’ in the shell between r and r + dr.
(4.3.1)

Here, n is the number density, and g(r) is called the radial distribution function (see
(4.3.10) analytically). The general shape of the radial distribution function is given
in Fig. 4.3.3. The number of particles under the first peak is the coordination num-
ber. This is about 8 for argon at the triple point.

r

g

1

0

σ

Fig. 4.3.3
A typical shape of the radial distribution
function g. σ is roughly the diameter of the
particles making the liquid. The first peak
corresponds to the first coordination shell, and
the second peak to the second coordination shell
(see Fig. 4.3.4).

30Structural liquids such as water can be different.
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Fig. 4.3.4
The gray particles make the first coordination
shell, and the surrounding particles make the sec-
ond coordination shell, roughly.

The radial distribution function is the quantity of central importance for liquids:
(i) It is directly observable by (e.g., neutron) scattering experiments.
(ii) It is related to the potential of mean force between two particles.
(iii) If the interaction is binary, it describes all the thermodynamic quantities of
liquid. (This is a good exercise, so is left to the reader.31)

Before explaining (i)-(iii), let us summarize many-body distribution functions.
Instantaneous k-body (density) distribution function is defined as

ρ(k)(r1, · · · , rk) =
∑

i1,...,ik∈{1,···,N}

δ(r1 − xi1) · · · δ(rk − xik), (4.3.2)

where i1, · · · , ik are all distinct, xi is the position vector of the i-th particle. If this is
averaged over an equilibrium distribution, the k-body (density) distribution function
is obtained:

n(k)(r1, · · · , rk) = (N)k〈δ(r1 − x1) · · · δ(rk − xk)〉, (4.3.3)

where (N)k = N(N − 1) · · · (N − k + 1) (a standard notation). In particular, the
single-body distribution function is defined as

n(1)(x) = 〈ρ(1)(x)〉 (4.3.4)

in terms of the instantaneous single body distribution function

ρ(1)(r) =
∑

i∈{1,···,N}

δ(r − xi). (4.3.5)

Analogously, the two-body distribution function is defined as

n(2)(r1, r2) = 〈ρ(2)(r1, r2)〉, (4.3.6)

31The reader must know g at various temperatures, and integration with respect to temperature
may be required. The answer may be found in Egelstaff’s book.
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where ρ(2) is the instantaneous two-body distribution function defined as

ρ(2)(r1, r2) =
∑

i1,i2∈{1,···,N},i1 6=i2

δ(r1 − xi1)δ(r2 − xi2). (4.3.7)

Here, the sum is over all the way (N(N − 1) ways) to choose distinct ordered pairs
of particles from N distinguishable particles. If we know the k-body distribution
function, we can obtain the (k−1)-body distribution functions by integration as∫

V

d3rk n
(k)(r1, · · · , rk) = (N − k + 1)n(k−1)(r1, · · · , rk−1). (4.3.8)

In particular, ∫
V

d3r n(1)(r) = N, (4.3.9)

so n(1) behaves roughly as the number density n (if the system is uniform, it is
the number density itself: n(1)(x) = N〈δ(x − r1)〉 = N/V = n). We see that
n(2) behaves like n2. If the system is isotropic and uniform, we define the radial
distribution function g as

n(2)(r, r′) = n2g(|r − r′|). (4.3.10)

g(r) is zero for small r due to the repulsive core. In the r → ∞ limit, the particle-
particle correlation should disappear, so n(2)(r, r′)→ n2, implying g → 1.

The scattering amplitude A of, e.g., neutron monochromatic beam from the in-
stantaneous density distribution ρ(x) may be written as

A ∝
∫
eik·xρ(x)dx, (4.3.11)

so the scattering function is proportional to

S(k) = 〈|A|2〉 ∝

〈
N∑

i=1

N∑
j=1

eik·(ri−rj)

〉
. (4.3.12)

The term due to i = j does not depend on k, so we may ignore it. Now, the radial
distribution function may be written as (see (4.3.6) for n(2))32

n2g(r) = n(2)(r, 0) = 〈ρ(r)ρ(0)〉. (4.3.13)

32The rightmost term in the following formula is ρ(2)(r, r′) = ρ(1)(r)ρ(1)(r′) + Nδ(r − r′), so
the equality is not right, but the difference is where there is no k dependence (or k = 0 term, that
is the forward scattering term), so it is ignored.
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Thus, the scattering function (form factor) S(k) is proportional to the Fourier trans-
form of g.33

Let w(r) be the required reversible work to bring one particle from infinity (outside
the fluid) to r, when another particle is fixed at the origin in the fluid. Then,

g(r) = exp(−βw(r)). (4.3.14)

w is called the potential of mean force.rq
Let us write the total potential energy to be U({ri}), and r1 = r, r2 = 0. The

mean force required to move the first particle is

− d

dr
〈U〉x1=r,x2=0 = −

∫
dx3 · · ·xN(∂U/∂r)e−βU∫

dx3 · · ·xNe−βU
(4.3.15)

= kBT
d

dr
log

∫
dx3 · · ·xNe

−βU , (4.3.16)

= kBT
d

dr
log g(r), (4.3.17)

because the normalization constant does not depend on the particle positions. In-
tegrating this, we conclude that w is the reversible work required to bring the first
particle to r while fixing the second particle at the origin.

4.4 Statistical mechanics of simple liquid

As we have seen in the preceding section, to obtain g is the central issue of liquid
state, especially for simple liquids consisting of spherical particles. To this end it is
convenient to analyze the structure of g. g → 1 in the long distance limit, so

h(r) = g(r)− 1 (4.4.1)

is a more convenient function, which is called the indirect correlation function. The
damping oscillatory nature of h may be intuitively understood from the successive
coordination shells as in Fig. 4.3.4.

Ornstein and Zernike thought the oscillatory behavior of h may be constructed

33In some cases (esp., with X-ray scattering) there is a k-dependent prefactor due to a particular
scattering mechanism, so its effect must be eliminated from S(k) to obtain g.
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from a short range function (a function with a small support near the origin) c
successively as

h = c+ nc ∗ c+ n2c ∗ c ∗ c+ · · · , (4.4.2)

where ∗ is the spatial convolution:

c ∗ c(r) =

∫
dr′ c(r − r′)c(r′). (4.4.3)

Summing over this sequence, we may writeq

h(r) = c(r) + n

∫
dr′ c(r′)h(r − r′). (4.4.4)

Mathematically, c is defined by this equation called the Ornstein-Zernike equation. c
is called the direct correlation function and is indeed shorter ranged than h (at least
away from the critical point if the binary interactions are short-ranged). If we can
obtain one more relation between h (or g) and c that involves φ, we can obtain h.

The strategy that may be recommended to obtain this second relation is based
on the following series of ideas:
(1) g is obtained from the two body correlation function n(2)(r1, r2). This can
be obtained if we can compute the single body distribution n(1)(r1|U) under the
existence of an arbitrary external potential U . Set U(r) = φ(r − r2); actually,
n(2)(r1, r2) = nn(1)(r1|φ). This is, physically, equivalent to pushing in the second
particle at r2 (the idea may be realized numerically34).
(2) Therefore, to study n(1)(r1|U) is the key. To this end we study the effect on
n(1)(r1|U) of perturbation of U :

δn(1)(r|U) = QδU. (4.4.5)

If we know the linear operator Q,35 then, since it is a sort of derivative, ‘functional
version’ of the fundamental theorem of calculus should allow the ‘integration’ to ob-
tain n(1)(r1|U).
(3) Unfortunately, we cannot obtain Q for general U , so this functional integral pro-
gram cannot be performed exactly. We use a ‘linear approximation’ with Q evaluated
at U = 0.

34By a Monte Carlo method, see R. Pomès, E. Eisenmesser, C. B. Post and B. Roux, “Calculating
excess chemical potentials using dynamic simulations in the fourth dimension,” J. Chem. Phys.,
111, 3387 (1999); see also a recent paper by Pomès et al., “Absolute free energy calculations by
thermodynamic integration in four spatial dimensions,” J. Chem. Phys., 123, 034104 (2005).

35Mathematically, this is the Frechét derivative.
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(4) We wish to know an approximate relation between n and U . The direct ap-
plication of the above idea may not be the best. A natural idea is to improve
an approximate relation A ' B by linear Taylor approximation, where A and B
are functionals of n and U . (If we regard the procedure as an improvement of
A(U) − A(0) ' B(U) − B(0), then A and B need not be close at all).36 If teh
following exposition is preempted, Q = (δA/δB)U=0 and formally, what we wish to
write down as an improved equation is, formally,q

A(U)− A(0) =
δA

δB

∣∣∣∣
U=0

[B(U)−B(0)]. (4.4.6)

To implement the above program, we must be able to compute something (=
functional derivative) corresponding to Q in (4.4.5) for A, B. A brief summary of
the basic calculation rules of functional derivatives is given below.

A map F that maps a function g to another function f is called a functional:

f = F [g]. (4.4.7)

Here, the value of f at x may be determined by the function g as a whole (i.e., f(x) is
not determined by the value of g at x alone). F is called a functional. For example,

the map from f(x) to its Fourier transform f̂(x) is a functional. This relation may be
understood as a relation between the sequence of values {g(x)} and that of {f(x)}.
Functional analysis regards a function f as a vector whose components are {f(x)} or
f = (——f(x)——). Let us recall the ordinary vector analysis. If F maps a vector u
to v as v = F (u), and if F is differentiable, we may study the effect of small change
in u on v as

vi + δvi = Fi(u) +
∑

j

DF (u)ijδuj + · · · (4.4.8)

Analogously, if we change g slightly in (4.4.7), we expect f to change slightly,37 and
we may write

f(x) + δf(x) = F [g](x) +

∫
dyDF [g](x, y)δg(y) + · · · , (4.4.9)

36For example, an ‘approximate relation’ cosx ' 1 + x2 near x = 0 does not give a correct
relation between the slopes, but if this is ‘improved’ by the linear Taylor approximation, we obtain
cosx = 1− 1

2x
2, which is correct to O[x2].

37As the reader expect from the elementary calculus, just as in the case of the ordinary functions,
we need many technical conditions for a functional to be ‘differentiable,’ but we proceed only
formally. No mathematical details such as ‘Banach space’ are required by our formal applications.
Let’s be blissfully formal.
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where DF [g](x, y) is ‘the (x, y) component’ of a linear operator analogous to the
matrix component DF (u)ij. The following correspondence explains the intuitive
meaning of functional derivative DF [g](x, y) = δf(x)/δg(y):

δvi =
∑

j

∂vi

∂uj

δuj ↔ δf(x) =

∫
dy

δf(x)

δg(y)
δg(y). (4.4.10)

As we will see below, many functional derivatives may be computed fairly easily
with the aid of rather mechanical rules, but if some difficulty is encountered, go back
to the variational formula (4.4.9). This definition gives us

δf(x)

δf(y)
= δ(x− y). (4.4.11)

This should be compared with
∂xi

∂xj

= δij, (4.4.12)

which is the derivative of one component with respect to another of a finite dimen-
sional vector x = (x1, · · · , xD); δij is obtained, because xi and xj are independent
variables for i 6= j. As already noted above, “functional calculus is the calculus
regarding a function f as a vector (——f(x)——).” Suffixes are not discrete i = 1,
2, · · · but continuous x. It may not be hard to grasp the general computational rules
from a few examples: If F is an ordinary function,

δF (f(x))

δf(y)
= F ′(f(x))δ(x− y) (4.4.13)

is a chain rule. The next example also illustrates a chain rule, when G is a func-
tional:

δG[f(x)]

δg(y)
=

∫
dz

δG[f(x)]

δf(z)

δf(z)

δg(y)
. (4.4.14)

This should not be hard to see if the reader knows the chain rule in vector analysis.
Here, x is often a dummy variable, because G depends on f as a whole (not on
its particular value at x). The ordinary calculus operations are mere addition or
subtraction, so we may freely change the order of functional differentiation and the
ordinary calculus operations:

δf ′(x)

δf(y)
=

d

dx
δ(x− y) (4.4.15)

δ

δf(x)

∫
A

f(y)dy =

∫
A

δ(x− y)dy = χA(x). (4.4.16)
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where χA is the indicator of the set A. Let f̂ be the Fourier transform of f :

f̂(k) =

∫
dx f(x)eikx. (4.4.17)

Then,
δf̂(k)

δf(x)
= eikx. (4.4.18)

Let q be a twice differentiable function of t, and the action is defined as

S =

∫ t2

t1

dt

[
1

2
mq̇2 − V (q)

]
. (4.4.19)

Then, the Newton’s equation of motion is just38

δS

δq(t)
= 0. (4.4.20)

Now, we can differentiate the grand partition function with the external potential
U to perturb the system. Let us write

Ξ[U ] =
∑
N

1

N !

∫
dΓN e

β[µN−HN−
P

i U(xi)]. (4.4.21)

Here, dΓN is the volume element of the N -particle phase space, and HN is the N -
particle Hamiltonian. We can compute (all the details are given here, so that the
reader may practice calculation)

δΞ[U ]

δe−βU(r)
= eβU(r) δΞ[U ]

δ(−βU(r))
(4.4.22)

= eβU(r)
∑
N

1

N !

∫
dΓN

δ

δ(−βU(r))
eβ[µN−HN−

P
i U(xi)] (4.4.23)

= eβU(r)
∑
N

1

N !

∫
dΓN e

β[µN−HN−
P

i U(xi)]

[
N∑

i=1

δ(r − xi)

]
38The derivative of δ-function is interpreted just as in the standard distribution theoretical sense:∫

δ′(x)f(x)dx = −
∫
δ(x)f ′(x)dx = −f ′(0).
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(4.4.24)

= eβU(r)Ξ[U ]

〈
N∑

i=1

δ(r − xi)

〉
U

. (4.4.25)

Here, 〈 〉U denotes the average over the grand canonical ensemble with the external
potential U . Using the definition of the single body distribution function (4.3.4), we
obtain

δlog Ξ[U ]

δe−βU(r)
= eβU(r)n(1)(r|U), (4.4.26)

where n(1)(r|U) is the one-particle distribution with the external field U . We need
derivative of n wrt U . Differentiating (4.4.26) again, we obtain

δ2 log Ξ[U ]

δe−βU(r)δe−βU(r′)
=

δ

δe−βU(r′)
eβU(r) 1

Ξ[U ]

∑
N

1

N !

∫
dΓN e

β[µN−HN−
P

i U(xi)]

[
N∑

i=1

δ(r − xi)

]
(4.4.27)

= eβU(r)eβU(r′)
[
n(2)(r, r′|U)− n(1)(r|U)n(1)(r′|U)

]
. (4.4.28)

In the preceding calculation do not forget the differentiation of the overall multi-
plicative factor eβU(x) (if forgotten, n(2) cannot be obtained). Combining (4.4.26)
and (4.4.28), we obtain

− δn(1)(r|U)

δβU(r′)
= e−βU(r′) δe

βU(r)n(1)(r|U)e−βU(r)

δe−βU(r′)
(4.4.29)

= n(2)(r, r′|U)− n(1)(r|U)n(1)(r′|U) + n(1)(r|U)δ(r − r′).

(4.4.30)

Therefore,

−
(
δn(1)(r|U)

δβU(r′)

)
U=0

= n(2)(r, r′)−n2+nδ(r−r′) = n[nh(r−r′)+δ(r−r′)]. (4.4.31)

Here, h is the indirect correlation function .

Let us return to our project with the above preparatory steps. Our strategy is to
find an appropriate function(al)s A and B of n(1) and U , and improve the relation
∆A ' ∆B by the Taylor expansion trick. This trick even improves relation A 6' B
as already noted. In (4.4.5) A = n and B = U . However, U is eventually set to be
equal to φ containing a hard core. Thus, the perturbation cannot be weak at all,
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and the first order approximation should not be very reliable.39 B = f = e−βU − 1
should be far better but 1 is not a very small quantity. In the dilute limit n ∼ e−βU ,
so A = eβUn may be a better choice than A = n. Then we could choose B = n.
Perhaps we could use logarithms of these choices as well. The choice A = eβUn and
B = n gives the Percus-Yevick integral equation theory of liquid, perhaps the ‘best’
theory that gives realistic g.

We wish to Taylor-expand A = eβUn with respect to n around U = 0. We
need

δn(1)(r|U)eβU(r)

δn(1)(r′|U)

∣∣∣∣
U=0

= δ(r − r′) + n(1)(r|U)
δeβU(r)

δn(1)(r′|U)

∣∣∣∣
U=0

, (4.4.32)

= δ(r − r′) + n
δβU(r)

δn(1)(r′|U)

∣∣∣∣
U=0

. (4.4.33)

The derivative is the inverse of (4.4.31) as seen from the following chain rule:∫
dy

δf(x)

δg(y)

δg(y)

δf(z)
= δ(x− z). (4.4.34)

We use the Ornstein-Zernike equation (4.4.4) to compute the inverse of (4.4.31):
(δ-function is the unit element for the ∗-product)

h = c+ nc ∗ h = c ∗ (δ + nh). (4.4.35)

Therefore,

nc ∗ (δ + nh) = nh+ δ − δ ⇒ δ = (δ + nh) ∗ (δ − nc). (4.4.36)

This implies that the inverse of δ + nh is δ − nc, so (4.4.33) reads

δn(1)(r|U)eβU(r)

δn(1)(r′|U)

∣∣∣∣
U=0

= nc(r − r′). (4.4.37)

The linearized Taylor approximation

A(φ)− A(0) =

∫
dx

(
δA

δB

)
0

[B(φ)−B(0)] (4.4.38)

reads in the present case as

ng(r)eβφ(r) − n = n

∫
nc(r − r′)h(r′)dr′ (4.4.39)

39However, the Debye-Hückel theory of electrolyte solutions uses this result. See Problem∗.
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or
g(r)eβφ(r) = g(r)− c(r). (4.4.40)

This is called the Percus-Yevick closure (PY closure). This has a remarkable prop-
erty that the support of c is contained in the support of φ. Therefore, for the hard
core potential c is nonzero only within the hardcore diameter. The Ornstein-Zernike
equation + this closure is the Percus-Yevick theory, and can be solved analytically
for spherical hard core fluids in 3D (the Thiele-Wertheim solution 40). The PY equa-
tion gives a fairly good approximate description of the radial distribution function.

g

1

2

3

2 4 6 8

Fig. 4.4.1
A sketch of PY solutions for hard core fluid; the
packing density is 0.5 (thick curve), 0.3 (thin
curve) and 0.1 (dotted curve). The radius of
the hard sphere is 1 (i.e., σ = 2).

There are two ways to obtain the pressure (i.e., the equation of state) based on
g; one is based on the virial theorem and the other on the compressibility equation.
These two methods should give the identical equations of state, but our g obtained
theoretically is only approximate, so they give different results. The g obtained by
the PY closure gives for the hard core fluid (PY-V stands for the equation of state
based on the virial theorem, and PY-C that on the compressibility equation)q

P

nkBT
=

1 + 2η + 3η3

(1− η)2
PY-V, (4.4.41)

P

nkBT
=

1 + η + η2

(1− η)3
PY-C, (4.4.42)

where η = πσ3n/6 is the packing fraction, σ is the diameter of the particle and n
is the number density. rThe Monte-Carlo calculation can be fitted very well to the

40〈〈Exact solution of the Percus-Yevick theory〉〉 M. S. Wertheim, J. Math. Phys., 5, 643
(1964). This is a very nice exercise of complex analysis. Actually, it can be solved analytically
in any odd dimensional space: E. Leutheusser, “Exact solution of the Percus-Yevick equation for
a hard-core fluid in odd dimensions,” Physica A 127, 667 (1984). It is known that the Thiele-
Wertheim method allows to solve the Percus-Yevick theory for fluids with any piecewise constant
binary potential. ref
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following Carnahan-Stirling equation:41

P

nkBT
=

1 + η + η2 − η3/3

(1− η)3
. (4.4.43)

This is between PY-V and PY-C: PY-C > CS > PY-V.

Virial equation of state
Clausius derived the virial theorem:rq

〈K〉 = −1
2

〈∑
qiFi

〉
, (4.4.44)

where K is the total kinetic energy, Fi is the total force acting on the i-th particle,
and 〈 〉 is originally the time average. We know that time average is meaningless in
statistical mechanics, so for (4.4.44) to be meaningful macroscopically, the average
must be over the canonical distribution.

Notice first that with the aid of Liouville’s theorem (invariance of the phase
volume)

1
Z

∫ (∏
dq(0)dp(0)

)∑
i

qi(t)pi(t)e−βH =
1
Z

∫ (∏
dq(t)dp(t)

)∑
i

qi(t)pi(t)e−βH

(4.4.45)

=
1
Z

∫ (∏
dqdp

)∑
i

qipie
−βH , (4.4.46)

so

d

dt

1
Z

∫ (∏
dq(0)dp(0)

)∑
i

qi(t)pi(t)e−βH

=
1
Z

∫ (∏
dq(0)dp(0)

)∑
i

[q̇i(t)pi(t) + qi(t)ṗi(t)]e−βH = 0.

(4.4.47)

That is, 〈∑
(ṗiqi + piq̇i)

〉
= 0. (4.4.48)

Since
∑
q̇ipi = 2K, this leads to (4.4.44). Its quantum version can be derived in an

almost parallel fashion with the aid of Heisenberg’s equation of motion.
Let us consider a gas confined in a box made of a potential well UW . Then, the

Hamiltonian of the system may be written as H + UW , where H = K + U is the
Hamiltonian of the gas system alone (the intrinsic Hamiltonian). (4.4.44) gives us

2〈K〉 =
∑(〈

qi
∂U

∂qi

〉
+
〈
qi
∂UW

∂qi

〉)
. (4.4.49)

41This is an empirical result, obtained by choosing the functional form close to the analytic
results.
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Since UW is the effect of the box walls, its derivative is nonzero only very close to
the walls. Here, −∂UW /∂qi is the force the walls exert on the particle. Therefore,
if we choose the surface element dS (outward normal) at q on the wall, the sum of
−qi∂UW /∂qi near the surface element must be −Pq · dS, where P is the pressure.
Notice that dS points outward (outward normal), so − is needed.∑〈

qi
∂UW

∂qi

〉
=
∫

∂V

q · PdS = 3PV, (4.4.50)

where Gauss’s theorem has been used. Consequently, (4.4.49) readsr

PV =
2
3
〈K〉 − 1

3

∑〈
qi
∂U

∂qi

〉
. (4.4.51)

This is called the virial equation of state. Notice that the general result for the ideal
gas PV = 2E/3 follows.

Compressibility in terms of h
We may use functional differentiation to compute (∂n/∂P )V,T . Let us work with the
grand canonical ensemble. In the volume V we apply an infinitesimal uniform external
field δU , and study how n and P vary.42 Using (4.4.31), we have

δn = −
∫
d3x

(
δn(1)( · |U)
δβU(x)

)
U=0

δU, (4.4.52)

= n

∫
d3x[nh( · − x) + δ( · − x)]δU = −n

[
n

∫
d3xh(x) + 1

]
δU.

(4.4.53)

42A thermodynamically more elementary derivation is as follows: Let us compute

kBT
∂n

∂P

∣∣∣∣
V

=
kBT

V

∂N

∂P

∣∣∣∣
V

=
∂N

∂µβ

∣∣∣∣
V

∂µβ

∂P

∣∣∣∣
V

.

We know (∂µβ/∂P )T,V = ∂µβ/∂(kBT log Ξ/V )T,V = βV/N , so the fluctuation-response relation
tells us

kBT
∂n

∂P

∣∣∣∣
V

=
β

N
〈δN2〉

Now, we must compute 〈N2〉:

〈N2〉 =
∫
drdr′〈ρ(1)(r)ρ(1)(r′)〉

Notice that ρ(1)(r)ρ(1)(r′) = ρ(2)(r, r′) + ρ(1)(r)δ(r − r′), we obtain

〈N2 〉 = n2V

∫
g(r)dr +N = N

(
n

∫
h(r)dr + 1

)
+N2.

Thus, we arrive at (4.4.55).
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From P/kBT = (1/V ) log Ξ and (4.4.26)

1
kBT

δP =
1
V

∫
ndxδU = nδU. (4.4.54)

Taking the ratio of these formulas, we obtain the compressibility equationq

kBT
∂n

∂P

∣∣∣∣
V,T

= n

∫
h(r)dr + 1. (4.4.55)

The choice A = log
[
eβU(x)n(1)(x|U)

]
and B = n(1)(x|U) gives the hypernetted

chain (HNC) closure

c(x) = g(x)− 1− log g(x)− βφ(x). (4.4.56)

With this closure the Ornstein-Zernike equation (4.4.4) may be solved for correlation
functions. For short range interactions, the PY approximation seems better (more
reliable).

Diagrammatics and closure approximations
We used a diagrammatic expansion to study imperfect gas. A similar approach is
possible for liquid. The PY and HNC closures can be obtained diagrammatically by
summing infinitely many diagrams up.43 The HNC closure is obtained by summing
all the diagrams that the current technology can sum up. The PY closure is obtained
by summing up a smaller subset of diagrams. In any case, diagram approach has no
physics. That is why this topic was not discussed at all.

The PY closure was derived originally from a very different idea of producing
collective coordinates for classical many-body systems. It is probably fair to say that
the main project did not go anywhere, but a byproduct was the PY closure.44

What is an ideal liquid? We know ideal gas. It is deservingly called ideal gas,
because real or imperfect gas may be obtained by perturbative approaches starting
with (or expansion around) ideal gas. For gases, turning off all the interactions
gives ideal gas. Even for liquids, this approach gives ideal gas, which is qualitatively
different from liquid. One of the most important properties of liquid is coherence;
it resists compression. The existence of the molecular repulsive core must be a
vital element of liquid. Thus, it is a natural proposal to regard sufficiently dense
hard core fluid as ideal liquid. Indeed, any liquid of spherical particles with short
range attractive forces can be studied perturbatively around the hard core liquid

43G. Stell, “Percus-Yevick equation for radial distribution function of a fluid,” Physica 29, 517
(1963).

44J. K. Percus and G. J. Yevick, “Analysis of Classical Statistical Mechanics by Means of Col-
lective Coordinates,” Phys. Rev. 110, 1 (1958). It is an interesting paper to read.
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with an appropriate core size. The perturbation theory of liquid is quantitatively
successful.45,46

Crowding effect
Dense fluid systems without any long range order is of vital importance in biology.
Hard core fluids can be used to model colloidal solutions. The effect of excluded volume
is quite serious in various processes in the cell, because 10%-40% of the volume is
occupied by macromolecules. Crowding could enhance DNA folding and the function
of chaperones.47 It could protect bacteria and cells in general against large variation
in tonicity of the environment and could even reverse the direction of reactions.48

4.5 Are there crystals?

As can be seen from (4.4.42) or (4.4.41) there is no anomalous behavior for the pack-
ing fraction η up to unity. Since it has been demonstrated that the largest packing
density in 3-space is the fcc or hcp densest close packing (for relevant comments see
below), in reality there must be crystallization far below η = 1. Thus, it is clear that
our liquid theory cannot describe the liquid-solid phase transition.

When a hard sphere fluid is compressed, crystalline order is found computationally,
which is called the Alder transition.49

45D. Ben-Amotz and G. Stell, “Analytical implementation and critical tests of fluid thermody-
namic perturbation theory,” J. Chem. Phys. 119 10777 (2003) may be a good starting point to look
for references.

46〈〈Bridge function〉〉 The integral equation theory is further developed by taking account of
the so-called bridge diagrams (or bridge function) B(r) defined as

h+ 1 = exp{−βφ+ h− c+B}.

B = 0 corresponds to the HNC approximation. How to write (approximately) B in terms of h, c and
φ is the challenge of integral equation theory. J. M. Bomont and J. L. Bretonnet, “A self-consistent
integral equation: Bridge function and thermodynamic properties for the Lennard-Jones fluid,” J.
Chem. Phys. 119, 2188 (2003) may be a starting point to search references.

47protein folding catalysts
48R. J. Ellis, “Macromolecular crowding: obvious but underappreciated,” Trends Biochem Sci

26, 597 (2001) and a report of a meeting by G. Rivas et al., “Life in a crowded world — Workshop
on the Biological Implications of Macromolecular Crowding,” EMBO Rep 5, 23 (2003) may be good
starting references.

49〈〈Does the Alder transition exist?〉〉 The original paper by Alder was about 2-dimensional
hard disk system. It is known that there cannot be such a first-order phase transition in 2-space.
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PYC
PYV

Pressure

D
e
n
si

ty

MD

Fig. 4.5.1 PY equation of states and molecular
dynamics simulation (based on B. J. Alder, J.
Chem. Phys. 40, 2724 (1964)).

Notice that this transition is solely entropy driven. The system is a hard core system,
so the internal energy is only due to kinetic energy. Thus, crystal is solely driven by
increasing entropy of configuration by regular packing. If we make a close random
packing in a box and shake it, we would not hear rattling sound, but if we order the
content (keeping the same number of particles), we would hear loud rattling noise.

Does the canonical or grand canonical partition function exhibit crystals? The
fundamental question may be stated as follows:

Suppose we have a 3D fluid system with short range interactions and
sufficiently hard cores. If the temperature is sufficiently decreased and/or
the density is sufficiently increased (in short, if the fugacity is sufficiently
large), does the system lose translational symmetry?

In 2D we do not expect that a long-range order is possible due to its significant
thermal fluctuation. We will discuss this point in detail in the next chapter. How-
ever, at T = 0 for the classical case, there is a proof that for the ordinary fluid
systems the lowest energy state is a triangle lattice.50 In 3D it is still an outstand-
ing open problem of mechanics (and statistical mechanics) to show that the lowest

Therefore, the transition found by computer simulations was a finite-size effect.
50F. Theil, “A Proof of Crystallization in Two Dimensions,” Commun. Math. Phys., 262, 209-

236 (2006).
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energy state is periodic.

A related question is the packing and tiling problems.51 One might easily guess
that the crystallization problem is intimately related to the packing problem of hard
spheres. It has been proved that the fcc or hcp packing density π/

√
18 ∼ 0.74048 · · ·

is the highest density possible in 3-space.52 However, the ‘ground state’ is uncount-
ably degenerate, because aperiodic stacking of 2D hexagonal lattice is possible while
maintaining the maximum possible density. It is believed that adding weak attractive
forces will lift the degeneracy and the periodic structure becomes the energy mini-
mum state. Although we have seen that hard core interactions alone cannot make
any periodic structure, still they have almost decisive effects on crystal structures as
Kihara demonstrated with his magnet models.53

51A readable review article is: C. Radin, “Low temperature and the origin of crystalline symme-
try,” Internat. J. Mod. Phys. B 1, 1157 (1987). For a very recent related article, see J. H. Conway
and S. Torquato, “Packing, tiling, and covering with tetrahedra,” Proc. Natl. Acad. Sci., 103, 10612
(2006).

52〈〈The Kepler problem〉〉 This was first conjectured by Kepler. T. C. Hales, “A proof of the
Kepler conjecture,” Ann. Math., 162, 1065-1185 (2005). For ellipsoids, this density can be larger:
(24
√

2− 6
√

3− 2π)π/72 ' 0.7533355 · · · (A. Bezdek and W. Kuperberg, in Applied Geometry and
Discrete Mathematics: The Victor Klee Festschrift (ed. P Gritzmann and B Sturmfels) (AMS
Providence, RI 1991) p71).

53T. Kihara, Intermolecular forces (Wiley, 1978).
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Exercises for Chapter 4 (rto Maxwell, rto Tonks, rto Debye-Hückel)
4.1. [Kac potential]
There is an imperfect classical gas with a binary potential φ given by

φ(|r|) =


∞ if |r| < a,
−ε/l3 if a ≤ |r| < l,

0 otherwise.
(4.P.1)

Here, ε > 0, a is a length scale of atom size, and the l →∞ limit is taken. (This is
an example of the Kac potential.)
(1) Compute the second virial coefficient (in the l→∞ limit).
(2) Compute the Joule-Thomson coefficient (∂T/∂P )H , where H is enthalpy. The
reader may assume that the heat capacity CP under constant pressure is a constant
and is known,

4.2 [van der Waals equation of state]r
(1) Show that the critical point is defined by

∂P

∂V

∣∣∣∣
T

=
∂2P

∂V 2

∣∣∣∣
T

= 0. (4.P.2)

(2)r For the van der Waals equation of state, find the universal ratio PcVc/kBTc.
(3) Obtain the reduced equation of state Pr = f(Vr, Tr) for the van der Waals gas.
Here, Pr = P/Pc, Vr = V/Vc and Tr = T/Tc are reduced variables. [The reader can
work with a 1 mole gas.]
(4) Near the critical point Pr − 1 may be expanded in powers of Tr − 1 and nr − 1,
where nr = 1/Vr is the reduced number density. Find the coefficients A - C (we will
see a close relation of this to the Landau theory of phase transition later).

Pr − 1 = A(Tr − 1) +B(Tr − 1)(nr − 1) + C(nr − 1)3 + · · · . (4.P.3)

(5) For hydrogen gas H2, b = 26.61 cm3/mol. This volume can be interpreted as the
smallest volume that the molecules can be squeezed into. Assuming that Avogadro’s
constant is known, estimate Planck’s constant (use dimensional analysis to guess the
atom size in terms of electron charge e, mass m, h and 4πε0).

4.3 [The free energy of the van der Waals gas]
The Helmholtz free energy of the van der Waals gas may be expressed as

A = −NkBT
{

log
[nQ

N
(V −Nb)

]
+ 1
}
− aN2

V
. (4.P.4)

(1) Comparing this with the free energy formula for the ideal gas, explain why this
form is natural.
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(2) Compute the internal energy and the entropy of the van der Waals gas.

4.4 [Thermodynamically respectable derivation of Maxwell’s rule]
If the temperature is sufficiently low, the PV -curve given by the van der Waals
equation of state implies

∂P

∂V
= − NkBT

(V −Nσ)2
+ a

N2

V 3
> 0. (4.P.5)

That is, it is thermodynamically unrealizable. Actually, gas-liquid coexistence oc-
curs when this ‘unphysical behavior’ happens, and the coexistence temperature T is
determined by the Maxwell rule. This is what Maxwell proposed and an ‘explana-
tion’ was given in the text but was with a remark that the argument is an abuse
of thermodynamics. Many textbooks argue that Maxwell’s rule cannot be derived
thermodynamically properly, because the argument in the text (the usual one) uti-
lizes thermodynamics where the states are unstable. However, it is possible to avoid
this abuse and still we can thermodynamically demonstrate Maxwell’s rule. The
coexistence condition for phase A and phase B is the agreement of P , T and µ.
µB(T, P )− µA(T, P ) of the difference of the Gibbs free energy must be computable
along the path in the phase diagram through only stable phases (that is the broken
curve in the following figure).

A B

P

Since

G = E − ST + PV, (4.P.6)

if we compute EB − EA and SB − SA, then GA = GB allows us to compute the
difference of PV , that is, P (VA − VB).
(1) Compute EB − EA.
(2) Compute SB − SA.
(3) Since GB−GA = 0, these results allow us to compute P (VB−VA). Confirm that



260 CHAPTER 4. INTERACTING FLUID SYSTEMS

this and the result obtained by the naive abuse of thermodynamics:∫ B

A

PdV (4.P.7)

agree.

4.5 [Grand canonical approach to 1D van der Waals gas]
Let us study the 1D Kac model with the aid of the grand canonical approach.
(1) If there are N particles in the container of volume V , the canonical partition
function reads

ZN(V ) =

∫ V−σ

(N−1)σ

dxN · · ·
∫ x3−σ

σ

dx2

∫ x2−σ

0

dx1

∫
dp1 · · · dpne

−
PN

i=1 p2
i /2mkBT+aN2/kBTV .

(4.P.8)
After checking the formula is correct, actually compute this.
(2) Using the result of (1) write down the grand partition function (you cannot per-
form the summation in a closed form).
(3) The grand partition function written down in (2) has the following structure:

Ξ =
M∑

N=0

eV A(N/V ), (4.P.9)

where M is the maximum number of particles we can push into the volume V . Show
that if the temperature is sufficiently high, there is only one n = N/V that maximizes
A(n). Also demonstrate that if the temperature is sufficiently low, there can be three
extrema for A(n).
(4) What do you expect the grand partition function looks like, if n that maximizes
A(n) are not unique?
(5) There is a text book which writes explicitly as follows:

Ξ = eβPV + eβP ′V . (4.P.10)

Here, we have assumed that A(n) have two maxima, and the two terms correspond
respectively to the two maxima. Is this correct?

4.6 [Hard sphere fluid]
The virial equation of state for a fluid interacting with 2-body potential reads

P

nkBT
= 1− 2π

3
βn

∫ ∞
0

φ′(r)g(r)r3dr. (4.P.11)



4.5. ARE THERE CRYSTALS? 261

Using this formula, derive the equation of state for the hard sphere fluid:

PH

nkBT
= 1 +

2π

3
ng(σ)σ3, (4.P.12)

where σ is the diameter of the sphere. Strictly speaking, g(σ) is limr↘σ g(r).

4.7 [Internal energy of fluid interacting with binary forces]
(1) Suppose the interactions among spherical particles can be expressed in terms of
the two-body interaction potential φ(r) = φ(r). Write down its internal energy in
terms of E φ, the number density n and the radial distribution function g(r).
(2) Obtain the internal energy of the Kac fluid (i.e., the fluid interacting via the Kac
potential). Set σ = 1.
(3) Using the virial equation of state

P/nkBT = 1− 2π

3
nβ

∫ ∞
0

φ′(r)g(r)r3dr, (4.P.13)

obtain the augmented van der Waals equation of state for a Kac fluid:

βP = βPH +
n2

2
β

∫
d3r φ(r). (4.P.14)

Notice that the radial distribution function of the Kac fluid is the same as the had
sphere fluid with the same number density.54

4.8 [Functional differentiation]
Compute the following functional derivative.

δ

δψ(x)

∫
d3r

[
1

2
(∇ψ(r))2 − 1

2
τψ2(r) +

1

4
ψ4(r)

]
, (4.P.15)

where τ is a constant.
(2) [Green’s function and functional differentiation] Consider a differential equation
(partial or ordinary) Lϕ = f , where L is a linear differential operator acting on the
functions of x.55 Show that δϕ/δf is the Green’s function for the initial boundary
value problem defined by the linear operator L. (This is a problem immediately
solved by inspection, but the fact is not meaningless. The method of Green’s function
is actually a method to solve a differential equation by the first order functional
Taylor expansion approach explained in the text; in this case the problem is linear,

54However, we cannot derive the Maxwell’s rule requirement.
55If (Lf)(x) is determined by the value of f at x and the values of various derivatives of f at x,

L is called a differential operator.
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so the method gives an exact solution.)
(3) Regard the entropy S of a fluid interacting with the binary potential φ as its
functional, and express the functional derivative

δS

δφ(r)
(4.P.16)

in terms of the radial distribution function (and its appropriate partial derivatives).
It may be easy to compute the corresponding functional derivative of the Helmholtz
free energy.

4.9 [Functional derivatives of canonical partition function]
Redo the calculations (4.4.25)-(4.4.27) using the canonical formalism; this is slightly
easier than the grand canonical approach given in the text.

4.10 [Debye-Hückel theory]
Let us perform the functional Taylor approximation approach explained in Section
4.4 with A = n and B = U .
(1) Within this approach find the equation governing the radial distribution function
g.
(2) Obtain the Fourier transform of the in direct correlation function in the present
approximation.
(3) Let φ be the Coulomb potential. Its Fourier transform may be written as
φk = Q/k2. What is the functional form of the indirect correlation function h(r)?

4.11 [Toy integral equation for liquid]
Let us make a prototype closure for the radial distribution.
(1) Make the first order approximation (i.e., the first order functional Taylor expan-
sion approximation) of n(1)(x|U) in terms of the Boltzmann factor exp[−βU(x)].
(2) What is the direct correlation function?
(3) Find the Fourier transform of the indirect correlation function.
(4) Find the equation of state with our approximation with the aid of compressibility
or its reciprocal. Assume that the diameter of the hard core is a.

4.12. [Scaled particle theory of hard core fluid]56

As we know well by now, for a spherical hard core fluid

P/nkBT = 1 +
2π

3
nσ3g(σ), (4.P.17)

56R. J. Baxter, in Physical Chemistry an advanced treatise volume VIIIA Liquid State (edited
by H. Eyring, D. Henderson and W. Jost, Academic Press 1971) Chapter 4, Section VIII.



4.5. ARE THERE CRYSTALS? 263

where σ is the diameter of the spherical core. Therefore, to know the hard core
equation of state we need g only at r = σ.

Let p0(r) be the probability of observing a bubble of radius r. Let nG(r) be
the expected number of the centers just outside the bubble (nGdr is the expected
number of particle centers in the spherical shell between r and r + dr). When the
bubble is of radius σ, it just behaves as the exclusion zone by the hard sphere at the
origin. Therefore,

g(σ) = G(σ). (4.P.18)

We have only to determine G to know the hard-core fluid pressure.
(1) Derive

p0(r + dr) = p0(r)[1− 4πnr2G(r)dr]. (4.P.19)

That is,

d

dr
log p0(r) = −4πnr2G(r). (4.P.20)

(2) We can determine G for very large r. According to the fluctuation theory, the
probability of fluctuation that creates a bubble of radius r may be written in terms
of the reversible work W (r) required to make it. Therefore,

p0(r) = e−βW (r). (4.P.21)

Using this and the thermodynamic result for large r (i.e., for the usual macroscopic
bubble!)

dW (r) = PdV + f [1− (2δ/r)]dA, (4.P.22)

where A is the surface area of the bubble, and f(1− 2δ/r) is the surface tension of
the curved surface of mean curvature 1/r. Using (6.4.119)-(6.4.121), find G(r) as a
function of r.
(3) If r < σ/2, only 1 particle center can come in the bubble. What is this probabil-
ity? This must be 1− p0(r) for r < σ/2.
(4) Determine G(r) for r < σ/2.
(5) Unfortunately, G(r) is not a smooth function, but it is known that it is contin-
uously differentiable at r = σ/2. Let us make an approximation that the unknown
parameters f and δ may be determined by matching G obtained in (2) and in (4) at
r = σ/2 smoothly (match G and G′ there). Derive, under this approximation,

P

nkBT
=

1 + η + η3

(1− η)3
, (4.P.23)
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where η is the packing density: η = πσ3n/6 as usual.
[This is identical to PY-C! Furthermore, f obtained is quite reasonable.]

4.13 [Quantum effect on the second virial coefficient]57

The second virial coefficient for a spherical symmetrical particle is, classically,

B = 2π

∫ ∞
0

(1− e−βφ(r))r2dr. (4.P.24)

Its quantum version should be obtained by replacing the Boltzmann factor e−βφ with
the diagonal element of the 2-body density operator ρ(r):

B = 2π

∫ ∞
0

(1−Nρ(r))r2dr, (4.P.25)

where N is the normalization constant to make Nρ(r)→ 1 in the r →∞ limit.58

Thus, the calculation has been reduced to that of ρ. Let us perform this through
small steps. The difference of fermions and bosons can be ignored except for helium
below 25 K. Therefore, we totally ignore the effect of particle symmetry on the wave
function. The following calculation was done for the first time by E. Wigner in the
1930s. For 4He, below 50 K the quantum correction increases the classical value by
about 50%, but 10 % around 100 K, so the quantum correction is not very small.
(1) Let us assume that two-body Hamiltonian to be

H = − ~2

2m
(∆1 + ∆2) + φ(|r1 − r2|), (4.P.26)

where ∆i is the Laplacian wrt the position coordinates of the i-particle. The two-
body density operator is given by ρ = e−βH . Show that the matrix element 〈r1, r2|ρ|r′1, r′2〉
of the 2-body density operator satisfies the following equation:

∂

∂β
〈r1, r2|ρ|r′1, r′2〉 = −H〈r1, r2|ρ|r′1, r′2〉. (4.P.27)

If we use the normalized eigenket |i〉 (H|i〉 = Ei|i〉) of H, we can write

〈r1, r2|ρ|r′1, r′2〉 =
∑

i

〈r1, r2|i〉e−βEi〈i|r′1, r′2〉. (4.P.28)

57This is based on T. Kihara, Molecular forces.
58As we will see below, the diagonal element of the position representation of the density operator

is proportional to the probability of finding particles, so it is proportional to the Boltzmann factor
semiclassically. Therefore, normalizing the density operator appropriately, we can interpret it as a
quantum statistical extension of the spatial Boltzmann factor.
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Here, the summation may include integration.
(2) For the case with φ = 0 (i.e., for the ideal gas case) obtain 〈r1, r2|ρ|r′1, r′2〉. As
already noted, you can totally forget about the particle exchange symmetry. You
must specify the initial and the boundary conditions correctly to solve the above
parabolic equation.
(3) Let us introduce the deviation Ψ from the case without interactions as

〈r1, r2|ρ|r′1, r′2〉 =

(
2π~2β

m

)−3

exp

[
− m

2~2β
[(r1 − r′1)

2 + [(r2 − r′2)
2] + Ψ(r1, r2; r

′
1, r
′
2)

]
.

(4.P.29)
Note that −kBTΨ corresponds to the ‘quantum-corrected two-body interaction. Ψ
satisfies the following equation:

φ+
∂Ψ

∂β
+kBT [(r1−r′1) ·∇1 +(r2−r′2) ·∇2]Ψ =

~2

2m
[(∇1Ψ)2 +∆1Ψ+(∇2Ψ)2 +∆2Ψ].

(4.P.30)
This equation can be obtained from (6.4.143) by substituting (6.4.145); nothing
special has not been done at all.

To obtain the quantum correction we expand Ψ as

Ψ = Ψ0 +
~2

2m
Ψ1 + · · · (4.P.31)

and then introduce this into (6.4.146). Requiring the order by order agreement of
the substituted result, we get

φ+
∂

∂β
Ψ0 + kBT [(r1 − r′1) · ∇1 + (r2 − r′2) · ∇2]Ψ0 = 0, (4.P.32)

∂

∂β
Ψ1 +kBT [(r1−r′1) ·∇1 +(r2−r′2) ·∇2]Ψ1 = (∇1Ψ0)

2 +∆1Ψ0 +(∇2Ψ0)
2 +∆2Ψ0,

(4.P.33)
etc. First, we must solve the zeroth order equation. Show that the diagonal element
of the only meaningful solution is Ψ0(β, r1, r2; r1, r2) = −βφ(|r1 − r2|).
(4) We have only to obtain the diagonal element of Ψ1. Solve the simplified equation
that can be obtained by taking the diagonal limit of (6.4.149):

∂

∂β
Ψ1 = lim

{r′
i}→{ri}

[
(∇1Ψ0)

2 + ∆1Ψ0 + (∇2Ψ0)
2 + ∆2Ψ0

]
. (4.P.34)

As can immediately be seen, to compute the RHS of this equation, we cannot use
Ψ0(β, r1, r2; r1, r2) = −βφ(|r1−r2|) that is already in the diagonal limit. The deriva-
tive must be computed from the original expression of Ψ0. Find lim{r′

i}→{ri}∇1Ψ0
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and lim{r′
i}→{ri}∇2Ψ0.

(5) To botain ∆1Ψ0 we could perform a similar calculation. However, our purpose
is not to practice calculation (although this practice is also meaningful), the needed
result is provided:

∆iΨ0 = −1

3
β∆iφ, (4.P.35)

where i = 1, 2.
Obtain the diagonal element 〈r1, r2|Ψ1|r1, r2〉. Then compute the quantum cor-

rection to the second virial coefficient to order ~2. Show that the correction is positive
for any T (as stated for helium, quantum correction always increases the second virial
coefficient).
(6) The quantum correction starts with the term of O[~2]. Why, or why is’t there
any correction of odd order in h?



Chapter 5

Phase Transitions

For systems with interactions various ‘phases’are often found other than the dis-
ordered phase that is usually found at high temperatures. The state of a system
may depend on temperature, pressure and other thermodynamic variables. A ‘phase
diagram’ is a ‘territory map’ of various phases in the space spanned by these thermo-
dynamic variables. Our ‘common-sense phases’ such as liquid phase or solid phase
usually occupy a large domain in this diagram. The boundary of the territory may
or may not be well-defined, but to have a rough understanding of this map should
be the first step to understand the character of the system. To this end, we should
first understand where the territory boundaries run and how these boundaries are
characterized. If distinct phases may be definable at all, they must have distinct
thermodynamic characteristics. Therefore, at the territory boundary (where a phase
changes to another phase) the change of thermodynamic variables must be differ-
ently from that inside the territory. Phase boundaries and phases affected by the
existence of nearby phase transitions occupy only a very small portion of the whole
phase diagram, but the importance of understanding phase transitions should be
clear.

After an overview section, two sections are devoted to explain thermodynamic
limit to characterize phase transitions precisely. These two sections may be skipped
for the first reading without losing an overall picture. For a phase other than the
high temperature disordered phase to exist, the phase must be stable against ther-
mal fluctuation. If the spatial dimension is not large (not larger than four) the
effect of fluctuation is decisive. The fluctuations can be spatially strongly correlated
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fluctuations near the phase boundaries, so we need a generalization of the central
limit theorem (renormalization) to handle them. However, if we wish to discuss a
phase sufficiently away from the phase boundaries, the correlation of fluctuations
become relatively insignificant. Therefore, we may understand the qualitative fea-
tures of phases without paying due attention to fluctuations, or we may average
fluctuations out (mean field theories). Therefore, in this Chapter after surveying
the effects of fluctuations on phases and phase transitions, the idea of renormaliza-
tion group theory is introduced intuitively, and then mean field theory is outlined.
Roughly speaking, in order to understand the phase diagram, we have only to un-
derstand where renormalization group theory is needed and where mean field theory
is effective.

5.1 Does a phase order?

We have already seen two exactly solvable models exhibiting phase transitions (the
ideal Bose gas and the 1D Kac potential system). Although not without approxi-
mation we have also studied fluid systems which are more realistic than the above
examples. Let us introduce a lattice model of ferromagnets that is not so artificial
but perhaps more tractable than fluids. It is the Ising model introduced by W. Lenz.1

The model consists of spins {si}, where each spin si ∈ {−1,+1} with i indicating
lattice points. We consider here simple regular lattices with a finite coordination
number such as the cubic lattice. The system Hamiltonian (under an external mag-
netic field; the intrinsic Hamiltonian + interaction potential with the magnetic field,
precisely speaking) reads

H = −J
∑
〈i,j〉

sisj − h
∑

i

si, (5.1.1)

where the summation is over all the nearest neighbor spin pairs on the lattice (〈i, j〉
implies an adjacent spin pair of spin i and j), J > 0 is called the coupling constant,
and h is the magnetic field.

1〈〈W. Lenz〉〉W. Lenz (1888-1957) is different from the Lenz of Lenz’s law. He was an important
figure in the early development of quantum mechanics, known for the Lenz vector (Laplace-Runge-
Lenz vector relevant to the O4 symmetry of the Kepler problem). He was a student of and, later,
a long-time assistant to Sommerfeld. Pauli, Jordan and others were his assistants. He was an
important figure in the development of theoretical physics in Germany.
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Spin-spin interaction
Ferromagnets result from electron exchange interactions aligning atomic magnets.
Atomic magnets may be understood as magnetic moments associated with electron
angular momenta.2 This purely quantum mechanical exchange interaction proposed
by Heisenberg gives an interaction energy proportional to

− Js · s′ (5.1.2)

between adjacent atomic magnetic moments s and s′, where J (> 0) is a constant
called the coupling constant.

If the crystal has a direction in which the magnetic moments tend to point (called
the easy direction or easy axis), then we may approximate the magnetic moment as a
scalar and (5.1.2) becomes

− Jss′. (5.1.3)

If spins s and s′ take only two values, say ±1, they are called Ising spins.3

If the temperature is high, due to large thermal fluctuation, it is not easy for neighbor-
ing spins to be parallel with each other. Therefore, at sufficiently high temperatures
spin directions are various, so a disordered phase should be the equilibrium state
in which the expectation value of the spin 〈si〉 is zero (disordered state). To make
a phase in which many spins align in one direction, say, up (ferromagnetic phase)
where 〈si〉 is nonzero, the aligned phase must be stable against thermal noise. If such
a state is realized at sufficiently low temperatures, there must be a phase transition
from a disordered phase to an ordered phase at some temperature Tc > 0, where 〈si〉
changes from zero to some nonzero value.

There is a way to understand why Tc > 0 in spaces with dimension larger than or
equal to 2 for the Ising model.r

D

Fig. 5.1.1 Peierls’ argument illustrated for
2-space. The gray zone is the up spin ocean,
and the white zone is the down spin island to be
created by thermal fluctuations. The needed en-
ergy is proportional to the size D (proportional
to the length of the circumference).

Let us consider a 2-Ising model (two-dimensional Ising model), and consider the

2In a crystal due to the crystal field orbital angular momenta disappear in the ground state of
the atom, so the spin angular momenta contribute mainly, quite different from free ions.

3Strictly speaking, this is the case with S = 1/2.
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state with all spins down. Let us take a circular island of diameter D, and flip all the
spins on it. If this spin flipping costs no macroscopic energy, then thermal fluctuation
could afford such flipping, and we cannot expect any stable ordered phase at finite
temperatures. The energy required for this flipping is πD × 2J . Therefore, if D is
large, this is impossible at sufficiently low temperatures;q we may expect ordering
of spins at sufficiently low temperatures. Thus, we may conclude that 2-Ising model
can exhibit order-disorder phase transition at Tc > 0.4 This argument, called Peierls’
argument,r can actually be mathematically justified. Stated in a precise form, it says
that even if the all up-spin boundary recedes to infinity, the probability of the spin
at the center of the system to be up remains strictly larger than 1/2 (see the next
section and an exercise at the end of this Chapter). It is clear that Peierls’ argument
can be applied to d-space with d ≥ 2. That is, d-Ising model (d ≥ 2) exhibits an
order-disorder phase transition at a finite temperature, Tc > 0.

Let us repeat the same argument as above in 1-space.r The energy cost to flip all
the spins on the segment of length D upward in the ocean of down spins is always
4J irrespective of D, because the boundaries are just two points. This is a micro-
scopic energy; only ‘finite patience’ is needed to obtain it even if the temperature
is very low (but positive). Therefore, there should not be any phase transition at
a finite temperature. To be precise, we must take account of the entropyq due to
the location of the island, which is proportional to the logarithm of the system size,
and is definitely larger than logD. Therefore, the free energy cost ∆A to create the
island must be smaller than 4J − kBT logD. This implies that as long as T > 0, the
boundary is formed spontaneously.

We have realized that in lower dimensional spaces fluctuation effect is serious.
1-Ising model cannot order at any positive T . As we will discuss later, 2-Ising model
can order below Tc, but up-spin phase and down-spin phase cannot coexist (we say
there are only two pure Gibbs states as we will learn later), because the interface

4〈〈Effect of boundary entropy〉〉 In reality, the phase boundary is microscopically rugged,
so the boundary is stabilized due to the entropic effect. In other words, the free energy required
to form the boundary is reduced and the boundary becomes easier to form. However, this ‘surface
entropy’ must be proportional to the surface area of the (coarse-grained) boundary (the extensivity
in the space one dimension lower than the bulk space), so it is proportional to D. Let us write
the proportionality constant to be c. The free energy cost to make an island in Fig. 5.1.1 becomes
∆A = 2πJD − cTD. If the temperature is sufficiently low, this certainly becomes positive, so the
rough argument given in the text is justified.

There is also the contribution of the positional freedom of the island (i.e., where to position the
center of the island) to the entropy, but it is proportional to the logarithm of the system volume,
so compared to D, which is proportional to V 1−1/d in the general case, we may ignore it as long as
d > 1. We cannot ignore this in 1-space as noted below.
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fluctuates violently. Nontrivial critical behavior mentioned in 2 and 3D for the Ising
model is due to fluctuation. The fluctuation effect on phase transition is crucial.

Why spatial dimensionality is important can be understood if we consider how
vulnerable the ‘communication paths’ between two lattice points are against thermal
fluctuations. Spatially separated two Ising spins can unite to resist thermal fluctu-
ations only when they can communicate well (that is, one spin must clearly know
whether the other spin is up or down). If there are many communication routes,
then fluctuations cannot easily disrupt the communication between the spins, so
they can work together. In particular, in 1-space, any two distinct spins have only
one communication route. If this is destroyed by a fluctuation, that is the end of
the collaboration. Therefore, the long range order in 1-space is vulnerable to fluc-
tuations. In 2-space, there are sufficiently many routes for two spatially separated
Ising spins to communicate, so fluctuations cannot disrupt the cooperation of spins
that are even far apart, if the temperature is low enough.

Another way to understand the spatial dimensionality is to ask how the effect of
disturbance at one point can propagate in space. This is to observe the response
of a phase against spatial perturbation. Since response and fluctuation are closely
related, this is also a natural approach to understanding the nature of the phases. If
the effect of a localized disturbance is global, then the stability of the phase may be
questioned.

To study the global response of the system to a localized disturbance, we have
only to look at the system from distance. Even in the case of Ising ferromagnets
in an ordered state not all the spins point the same direction, so if we look at the
magnet from distance, it looks ‘gray.’ That is, it is sensible to describe the order in
terms of a continuous field ϕ (a course-grained order parameter field; for example,
for the all up phase ϕ = +1, for the all down phase ϕ = −1, and for other phases
the values are appropriately assigned to interpolate these values). We expect that
a spatially uniform equilibrium state is stable, so we can expect that there is a
restoring force against disturbances that could destroy the spatial uniformity ϕ =
const. The restoring force must be a linear force for small disturbances, so it must
be proportional to −∆ϕ (∆ is the Laplacian; see the fine letters below). Then, the
fundamental solution5 of the Laplace equation ∆ϕ = 0 is the key to understanding
the disturbance effect. It behaves roughly as 1/rd−2 in d-space. An ordered phase is
clearly very vulnerable in 1-space, and stable in 3-space. If we pay attention to the
interface, it is one dimensional in 2-space, so it is unstable. This explains why the
interface in 2-Ising model fluctuates violently as we see in Sect. 5.4.

5The fundamental solution satisfying the given auxiliary conditions is the Green’s function.
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Intuitive understanding of Laplacianr
If we discretize the 1-Laplacian (i.e., d2ϕ/dx2) using the simple Euler scheme, it reads

− d2ϕ

dx2
' 2
δx2

(
ϕ(x)− ϕ(x+ δx) + ϕ(x− δx)

2

)
. (5.1.4)

That is, if we denote the nearest neighbor average of ϕ at x as 〈〈ϕ(x)〉〉

−∆ϕ(x) ∝ ϕ(x)− 〈〈ϕ(x)〉〉. (5.1.5)

This is true in any dimensional space.
ϕ is a harmonic function if and only if ∆ϕ = 0. Our interpretation immediately

tells us that harmonic functions cannot have any local extremum. Furthermore, the
famous spherical average theorem (for a harmonic function its average value on a
sphere is equal to the value at the center of the sphere) is intuitively clear.

In the above Peierls’ argument we assumed that the system was sufficiently large.
If not, needless to say, D cannot be macroscopic in Fig. 5.1.1, so no stable ordered
phase can exist. As we have already learned, to formulate thermodynamics precisely,
we must take the thermodynamic limit. Therefore, we should also take the same
limit to discuss phase transitions without ambiguity. Let us outline how to take the
thermodynamic limit and its consequences in the next two sections.

5.2 Gibbs measure and phase transition

It is almost meaningless to discuss solid and liquid phases if the system is a cluster
of 10 molecules. Needless to say, to state clearly that the system is in a solid state, it
must be sufficiently large. How large is large? To avoid such an awkward question,
the simplest way is to take the large system size limit. The phase transition becomes
sharp in larger systems, so thermodynamic limit, formulating the large system-size
limit precisely, has special significance in the present context: it gives a possibil-
ity to characterize phase transition as a mathematical singularity or a bifurcation
point.

How can we study the thermodynamic limit of a system?r The Hamiltonian in
this limit is meaningless; it is generally a non-convergent infinite sum. For example,
see the Ising Hamiltonian; it is an infinite sum of ±1. Consequently, the Boltzmann
factor is almost always 0 or ∞.

Because the purpose of thermodynamic limit is to study the bulk properties of
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a system, we should take the van Hove limit.6 Thus, in order to consider thermo-
dynamic limit we prepare nested sequences of volumes whose surfaces are not very
complicated. A finite system must have, usually, a boundary, so boundary conditions
must be imposed. The reader might think the boundary conditions lose significance
in the thermodynamic limit, but this is not always the case. We already know that
for 2-Ising model, the up-spin boundary condition far away indeed affects what we
observe around us, if T < Tc. In most interesting cases boundary effects are crucial.

In this section a procedure to take the thermodynamic limit is outlined with the
aid of a lattice model with finite-range interactions. Suppose we wish to study an
infinite lattice L. We prepare nested sequence {Vi} of (van Hove) volumes converging
to L (i.e., V1 ⊂ V2 ⊂ · · · ⊂ L).

V

L

V

V

V
1

n+1

2

n
1

B
2

Bn+1

Bn

B

Fig. 5.2.1 An increasing nested sequence of finite
systems to define thermodynamic limit. L is the
infinite lattice and Vi are finite systems with van
Hove volumes with explicit boundary conditions
Bi (= the minimal sufficient condition to fix the
system energy uniquely when the state in Vi is
given).

For each finite volume system a boundary condition B must be specified.7 Let us
write the volume-boundary condition pair as (V,B). Let us make the canonical
distribution for (V,B):

µV,B =
1

ZV,B

e−βHV (B), (5.2.1)

whereHV (B) is the Hamiltonian for the system with the volume V 8 and the boundary
condition B (thus HV (B) includes the surface interaction terms). Make the totality
of µV,B choosing all possible V ⊂ L and B. Then, we take a sequence {µVi,Bi

} that
converges to a probability measure µ (defined on the set of microstates on L). The

6Roughly speaking, this implies that we take the large system size limit so that the surface area
×L scales as the system volume, where L is the representative length scale of the system.

7For the Ising model the interaction is nearest neighbor, so we have only to specify the spins
just outside the boundary. However, if the interaction is wider-ranged, we must specify a lot about
the external ‘spin configurations.’

8Here, V denotes a bounded (and singly connected) subset of the whole lattice, but occasionally
also denotes its volume.
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limit points (= probability measures) available through this construction (that is,
accumulation points of M) are called the Gibbs measures (however, read the fine-
lettered explanation on the “totality of Gibbs measure” below).

To speak about ‘convergence’ we must specify the topology of the space M . That
is, we must be able to tell which canonical distribution of the form (5.2.1) is close
to which. Since our aim is statistical mechanics, it is sensible to define the closeness
of two distributions by the closeness of thermodynamic observables computed by
these distributions. Therefore, we interpret the statement “The probability measure
sequence {µi} converges to µ,” as “all the thermodynamic observables computed by
this sequence converge to those computed by µ.”

At least one Gibbs state exists
An argument goes like...9

Here, we mean by a lattice system a system consisting of discrete entities fixed at
lattice points that can take (at most) countably many states. The existence of a con-
vergent sequence in {µV,B} is shown by the diagonal argument. We take a countable
list of bounded thermodynamic observables {Qi} (i.e., we make a list of observables
such as internal energy density, magnetization density, etc.) Let us write the expec-
tation value of observable Q with respect to µ as µ(Q). Let us first make a sequence
{µV,B(Q1)} of observation results of Q1. Since this is a bounded sequence, we can
choose a converging sequence {µ1i(Q1)}. Next, we make the sequence {µ1i(Q2)} for
observable Q2, and choose a convergent subsequence {µ2i(Q2)}. Repeat this proce-
dure to make {µki} for all k ∈ N . Now, choose the diagonal elements and make
a sequence {µkk}. By construction {µkk(Qi)} converges for any Qi. Thus we may
conclude that {µkk} converges to a µ, which is a Gibbs measure. Thus, there is at
least one Gibbs measure for any reasonable lattice model.

A possible definition of the phase transition for a system is the occurrence of
qualitative change in the set of the totality of the Gibbs states of the system. For
example, if the temperature is lowered, the number of (pure) Gibbs states changes
1 to 2 for 2-Ising model (see Sect. 5.4). This temperature is the critical point = the
second order phase transition point.

The totality of Gibbs states
In the text thermodynamic limit is understood as a limit reached by a sequence of
increasingly large systems, and the Gibbs measure is defined as a measure obtained in
this sequence limit. However, in mathematical physics, the Gibbs measure is directly
defined without any limiting procedure (classically by the DLR (Dobrushin-Lanford-
Ruelle) equation, quantum-mechanically by the KMS (Kubo-Martin-Schwinger) con-

9That {µV,B} is a compact set with respect to the vague topology is perhaps the best argument
for mathematicians. The argument here with the aid of the diagonal argument is quite general, but
sounds rather artificial. For general systems, more physical arguments would not be available.
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dition, for example).10 The totality K of the Gibbs measures defined directly is the
convex linear hull of the Gibbs measures defined sequentially. K is a nonempty convex
set and any state in it must be one of the following (a) or (b):11

(a) µ ∈ K cannot be expressed as a linear combination of other members of K. Such
states are called pure states.r (rto symmetry breaking)
(b) µ ∈ K can be uniquely decomposed into a linear combination of pure states. Such
states are called mixed states.

Physically, pure states correspond to macroscopic states that can be observed lo-
cally for a sufficiently large single system.12 Do not confuse pure Gibbs states and
thermodynamic single phases (pure phases). A mixed state corresponds, as illustrated
in Fig. 5.1.3, to an ensemble containing different (pure) states and has nothing to do
with individual samples to have more than one phases.13

The macroscopic thermodynamic state we observe in a single system corresponds
to a pure Gibbs state. Precisely speaking, a pure Gibbs state corresponds to a unique
thermodynamic state of the system. However, a thermodynamic state is defined as
the equivalence class with respect to the thermodynamic coordinate values, so it corre-
sponds to an equivalence class of pure Gibbs states with respect to the thermodynamic
coordinate values. For example, if two phases coexist in a pure Gibbs state, the phase
boundary plane is also specified in space; however, thermodynamic states are indif-
ferent to the actual (normal) direction of the phase boundary.

mixture ensemble pure state ensemble

Fig. 5.1.3 Two kinds of ensemble; a pure Gibbs
state corresponds to an actual state of a single
sample observable by a single observation. No-
tice that both ensembles give the same expec-
tation values for thermodynamic quantities. In
this illustration the left figure exhibits a mixture
Gibbs state made of thermodynamically pure
phase samples, and the right figure exhibits a
pure Gibbs states whose samples contain ther-
modynamically coexisting phases.

We have reached an idea that the phase transition is a point where the Gibbs state
of the system changes qualitatively. It is also natural to expect that at such a point
thermodynamic functions should have certain qualitative changes (have singulari-
ties). Let us consider the singular points of thermodynamic functions.

10 A good reference is R. B. Israel, Convexity in the Theory of Lattice Gases (Introduction by
A. S. Wightman) (Princeton Univ. Press 1979). The introduction by Wightman should be read by
everyone.

11That is, K is a Choquet simplex.
12Here, ‘locally’ implies that we observe a large but finite volume at around, e.g., the origin (or

in front of us).
13Sequentially defined limits need not be pure states.
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5.3 Phase transition and singularity

rIn this section let us observe the relation between the phase transition and the
singularity of a thermodynamic potential (e.g., free energy loses differentiability at
the phase transition point) with the aid of a classical fluid consisting of particles with
sufficiently hard cores.

If the system is finite (e.g., with a volume V ), then the grand canonical partition
function reads

ΞV (z) =
M∑

N=0

zNZN(T, V ), (5.3.1)

where M is the upper bound of particles pushed into V ,14 z = eβµ (= fugacity)
and

ZN(T, V ) =
1

h3NN !

∫
dΓN e

−βHN (5.3.2)

may be understood as the canonical partition function for a N particle system. Also
we assume that the potential energy part UN of the system Hamiltonian HN when
there are N particles in V is bounded from below as

UN ≥ −NB, (5.3.3)

with some positive number B. (5.3.1) is a polynomial of z, so it is obviously holo-
morphic15 for any complex z (i.e., ΞV (z) is entire). The pressure of the system may
be obtained as

PV

kBT
=

1

V
log ΞV (z). (5.3.4)

Here, suffix V explicitly denotes the finiteness of the system. Since all the coefficients
of the polynomial ΞV (z) are positive, it cannot have any real positive zero. Therefore,
PV is holomorphic on the real positive axis. Now, it is clear that there is no (‘clear’)
phase transition for finite systems. The derivative

∂

∂log z
βPV = nV > 0 (5.3.5)

14Here, for simplicity, let us assume that the system, if finite, is confined in an infinite potential
well.

15i.e., locally expandable into Taylor series; physicists often say ‘analytic,’ intead. Mathemati-
cally, ‘analyticity’ is a global concept. In contrast, ‘holomorphy’ is a local concept.
〈〈Holomorphy〉〉 A complex valued function defined on C is holomorphic on an open set Ω, if its
Taylor expansion around any point in Ω has a finite convergence radius. [If Ω is not an open set,
we interpret that holomorphy holds in an appropriate neighborhood of Ω.]
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is the number density, which is bounded by the densest close packing density, so it
is uniformly bounded for all V . Therefore, if the thermodynamic limit exists, then
the limit of this derivative is bounded. That is, the limit P of PV , if exists in the
V →∞ limit, is continuous and monotone increasing function of z.

The proof of the existence of thermodynamic limit consists of demonstrating of
the following three steps:
(1) In the large volume limit, the surface effect can be ignored for a cube.
(2) If {V } is a nested increasing sequence of cubes, then {(1/V ) log ΞV (z)} con-
verges.16

(3) For any nested sequence of volumes of any shape satisfying the van Hove condi-
tion, the large volume limit converges.

Existence of thermodynamic limit of P
For physicists (1) should be clear. (3) should not be a problem, either, if we admit
(2) (see Fig. 5.3.1).

Fig. 5.3.1 The thermodynamic limit for a
general domain, but with not too bad surface
geometry. The domain is tessellated with the
cubes from inside and from outside. In the
thermodynamic limit, the majority of the cubes
do not intersect the boundary.

(2) may be demonstrated as follows:
Let W be (the volume of) a cube with a given edge length. Let us subdivide W

into n subcubes, and write the grand canonical partition function for a subcube as
ΞW/n. The number of particles in the boundary zone may be bounded from above by
a number proportional to 6(W/n)2/3n ∝ n1/3W 2/3 (the total surface area of the sub-
cubes). Therefore, the energetic contribution of these boundary particles is bounded
from below by −kBTγn

1/3W 2/3,17 where γ > 0, because the interaction is attractive.
Consequently, we have

ΞW ≤ Ξn
W/ne

n1/3W 2/3γ . (5.3.6)

This implies that
log ΞW ≤ n log ΞW/n + n1/3W 2/3γ. (5.3.7)

In short, if we write f(V ) = log ΞV , this function is subadditive (up to a higher order
correction). Therefore,18 log ΞV /V converges to infV (1/V ) log ΞV . ΞV > 1 and it is

16Here, the same symbol V is also used to denote its volume.
17Here, we have assumed that the system is stable.
18due to Fekete’s lemma:
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also bounded from above by M times the largest summand which is bounded from
above by ecV for some positive c, so this limit is finite.

The pressure PV is bounded for finite z from above for all V uniformly as there
is a constant such that ΞV < ecV as can be shown with the aid of (5.3.3). Therefore,
Vitali-Porter’s theorem tells us that in the domain R where no zero of ΞV appears
for all sufficiently large V , eβP is holomorphic. Hurwitz’ theorem tells us that its
zero is only the accumulation point of the zeros of ΞV .

Needed elementary theorems from complex analysis
For convenience, theorems of complex analysis used in the text are summarized here;
it is a good occasion to review complex analysis.19

Theorem [Vitali (1903), Porter(1904)] Let D be a region (= open connected set in
C) on which a sequence {fn} is holomorphic. If the sequence is (locally) uniformly
bounded, and is convergent on a set that have an accumulation point in D, then fn

converges (locally) uniformly in D.
This is often an exercise question related to the Vitali-Montel theorem.20

Theorem [Hurwitz] Let {fn} be a sequence of holomorphic functions in a region D
with ∂D being a simple closed curve. If the convergence fn → f is uniform in D and
f is not identically zero there (f(z) 6≡ 0), then a necessary and sufficient condition for
z0 to be a zero of f in D is that z0 is an accumulation point of the zeros of fn(z).
This follows immediately from the argument principle.21

We thus conclude:q
(1) As V grows the number of zeros of ΞV increases. If they do not come near the
real positive axis, still we would not have any phase transition. However, if they close
in onto a certain part of the real positive axis, then the holomorphy of limV PV (z) is
lost there, and we must conclude that there is a phase transition. The distribution
of zeros depends on temperature, so the fugacity (or the density) at which phase
transition occurs depends on temperature.

〈〈Fekete’s lemma〉〉 If f is subadditive (i.e., f(n + m) ≤ f(m) + f(n) for any n,m ∈ N), then
limn→∞ f(n)/n = inf f(m)/m.
[Demo] Obviously, lim inf f(n)/n ≥ inf f(m)/m. Let n = s+ km. Then,

f(n)
n

=
f(s+ km)

n
≤ f(s) + kf(m)

s+ km
→ f(m)

m
.

Therefore, lim sup f(n)/n ≤ inf f(m)/m.
19A good and modern reference of complex analysis may be M. Rao and H. Stetkaer, Complex

Analysis, an invitation (World Scientific, 1991).
20Theorem [Vitali-Montel] Let Ω be open in C, and {fk} be a sequence of holomorphic functions

on Ω that are uniformly bounded on any compact subset in Ω. Then, there is a uniformly convergent
subsequence on every compact subset of Ω.

21
∫

∂D
(f ′/f)dz is the number of zeros in D, if f is holomorphic in D and not zero on ∂D.
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(2) We have already seen that the virial expansion of the pressure has a positive
convergence radius,22 so if the fugacity is small enough, P is holomorphic in z. That
is, there is no phase transition if βµ is small (high temperature and/or low density).
We may assume that it is a thermally agitated disordered phase. It is unique for any
reasonable system.

This is the picture first explicitly recognized by Lee and Yang.23

R

R1 2 3R R
z

z

t t1 2

no phase transition

two phase transitions

O

O

Fig. 5.3.2 The zero free regions on the complex
fugacity plane and phase transitions. If, for
example, zeros of ΞV (z) close in onto the real
positive axis in the thermodynamic limit at t1
and t2, then the zero free region is decomposed
into three regions. The interpretation is that
each phase (say, gas, liquid, etc) corresponds to
each region, and that phase transitions occur at
the fugacities where zeros close in.

Thus, a phase transition may be mathematically characterized by a singularity of
a thermodynamic potential. The singularity here implies the loss of holomorphy, so
the potential may still be C∞ even at the phase transition.24 This book adopts this
definition of phase transition. The bifurcation in the Gibbs states certainly implies
phase transition, but the converse may not hold.

Then, what is a phase?r We may be tempted to say that states in, say, R2 in Fig.
5.3.2 all belong to the same phase; a phase corresponds to an analytic branch of a
thermodynamic potential. However, even in this case, if we change the temperature
R2 and R3 may merge. This is just what happens between the gas and the liquid
phases. We can go to one phase from the other without any phase transition. Even
if we may not find such a path in the ordinary phase diagram, perhaps we can apply
an exotic field to connect two ‘phases’ continuously by changing the field. Therefore,
in this book ‘phase’ is understood as a local concept relative to a phase transition: if

22For the lattice gas model below this is guaranteed by the Lee-Yang circle theorem.
23C. N. Yang and T. D. Lee, Phys. Rev. 87 404 (1952), “Statistical theory of equations of state

and phase transitions. I. Theory of condensation.” This is a classic definitely worth reading; Proofs
can be made simple with the aid of standard theorems, but we realize that it is a sign of good
theoreticians that everything needed are proved without known theorems.

24Such examples indeed exists: the 2-dimensional XY-model.
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we have a phase transition, then near the phase transition point we can clearly say
phases are distinct.

It is not easy to demonstrate the above general picture for realistic models. Lee
and Yang illustrated the general theory with the aid of a solvable model.25 To
understand this first let us discuss the Ising-lattice gas correspondence.q We interpret
down spins of the Ising model as particles, and up spins as vacancies. In this way the
spin system is translated into a lattice gas system. The lattice gas model consists of a
lattice whose individual lattice points may be occupied by at most one particle. Let
ni ∈ {0, 1} be the occupation number of lattice point i. Then, the model Hamiltonian
reads

HL = −J ′
∑
〈i,j〉

ninj, (5.3.8)

where J ′ > 0 is a coupling constant (nearest neighbor particles attract each other).

Let us consider an Ising model on a cubic lattice. The canonical partition func-
tion26 for the Ising model readsq

Z =
∑
SC

eβJ
P

〈i,j〉 sisj+βh
P

j sj , (5.3.9)

where
∑

SC is the summation over all the spin configurations. Let [D] be the number
of down spins, and [U ] up spins. Then∑

i

si = −[D] + [U ] = V − 2[D], (5.3.10)

where V = [D] + [U ] is the total number of lattice points (= volume). Let [UD] be
the total number of the up-down (antiparallel) spin pairs. Then,∑

〈i,j〉

sisj = 3V − 2[UD], (5.3.11)

so we may write the total energy as

− J
∑
〈i,j〉

sisj − h
∑

j

sj = −3JV + 2J [UD] + h(2[D]− V ). (5.3.12)

25The following is an introduction to T. D. Lee and C. N. Yang, “Theory of condensation, II.
Lattice gas and Ising model,” Phys. Rev., 87, 410-419 (1952).

26It is under an external magnetic field, so it is a generalizd canonical partition funcition, but
we call it simply ‘canonical.’
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Let [DD] be the total number of down spin pairs. There are two ways to count
the number of ‘arms’ sticking out from all down spins: there are 6 arms from each
down spin, and one down spin pair uses 2 arms and one up-down spin pair 1 arm.
Therefore,27

2[DD] + [UD] = 6[D]. (5.3.13)

Therefore, (5.3.12) reads

− J
∑
〈i,j〉

sisj − h
∑

j

sj = −3JV + 12J [D]− 4J [DD] + h(2[D]− V ). (5.3.14)

Consequently, the canonical partition function of the Ising model may be rewritten
as

Z = e−βV f =
∑
SC

exp [−β (−(3J + h)V + (2h+ 12J)[D]− 4J [DD])] . (5.3.15)

Here, f is the free energy per spin. The formula implies that the canonical partition
function of the Ising model can be translated into the grand canonical partition
function of the lattice gas model (note that HL = −J ′]DD]):

eβPV =
∑
SC

z[D]e4βJ [DD] =
V∑

N=0

zN
∑

PC,N

e−βHL . (5.3.16)

Here,
∑

PC,N implies the sum over all the N particle configurations, the fugacity is

z = e−β(2h+12J), N = [D], the pressure of the gas is P = −(3J + h + f) and HL is
(5.3.8) with J ′ = 4J .28

If (5.3.16) is considered as a polynomial of z, its roots are all on a circle (|z| =
e−12βJ) according to the circle theorem below. This implies that there is at most one
phase transition for the lattice gas when the fugacity is changed. The most general
form of the circle theorem is as follows:

Lee-Yang Circle theoremq Let the real numbers a({i, j}) ∈ [−1, 1] for all {i, j}
(i, j ∈ L = {1, · · · , V }). Then, all the zeros of the following polynomial are on the
unit circle:

P (y) =
∑
X⊂L

y|X|
∏
i∈X

∏
j 6∈X

a({i, j}). (5.3.17)

27Notice that this is exact only on the infinite square lattice; if the lattice is very small (or the
portion of spins near the lattice edges cannot be ignored) the magnet-lattice gas translation here is
not applicable.

28This correspondence is correct in the large lattice limit.
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Here, the constant term and the coefficient of the highest order term yV must be
unity and |X| is the number of elements in X (the cardinality of X). The summation
is over all the subsets of L. ut29

If we set y = ze12βJ = e−2βh, as a polynomial of y (5.3.16) is P (y) =
∑
y[D]e−2βJ [UD],

satisfying the conditions in the circle theorem. The theorem asserts that for any reg-
ular or random lattice and for any finite range (random) ferromagnetic coupling
among spins, the corresponding lattice gas has at most one phase transition when
the fugacity (or pressure) is changed. However, its assertion about the original mag-
netic system is uninteresting. The theorem does not tell us anything about the phase
transition due to temperature change. When magnetic field is changed, there is at
most one phase transition and that occurs at y = 1, i.e., h = 0.

The correspondence between the Ising model and the lattice gas model suggests
that there are common features in the phase diagrams of a magnet and of a fluid
system. Furthermore, we may interpret the Ising model as a lattice fluid mixture
of ‘up’ molecules and ‘down’ molecules (or the fluid as a mixture of molecules and
vacancies), so the phase diagram of a binary mixture must share some features with
that of magnets (Fig. 5.3.3).

5.4 Phase transition and fluctuation

rPhase ordering is possible because the order can resist thermal fluctuation.(rto crys-
tal) To this end microscopic entities must stand ‘arm in arm.’ The number of entities
each entity directly interacts (cooperates) crucially depends on the spatial dimen-
sionality. Let us look at the effect of spatial dimensionality on the Ising model.

1-Ising model:
We can obtain the free energy (with magnetic field) exactly as we will see later by,
e.g., the transfer matrix method (see Section 5.9); the phase transition does not occur
for T > 0 as we have intuitively seen in Section 5.1 and will see soon by calculation
that T = 0 is the critical point.

2-Ising model:r

29The most succinct proof is Appendix to D. Ruelle, “Is our mathematics natural? The case of
equilibrium statistical mechanics,” Bull. Amer. Math. Soc., 19, 259 (1988). An accessible version
is in Supplement Pages.
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Fig. 5.3.3 The correspondence between the magnetic, the fluid, and the binary liquid mixture
systems near the critical point CP. T : temperature, Tc: the critical temperature, H: magnetic
field, P : pressure, µ: chemical potential of one component, m: magnetization per spin, ρ: the
number density, c: the concentration of a particular component.

For the magnetic system, the spins are assumed to be the Ising spins (only two directions
are allowed, up or down), and ‘up’ (resp., ‘down’) in the figure means majority of the spins point
upward (resp., downward) (ferromagnetically ordered). L implies the liquid and G the gas phase.
I and II denote different mixture phases.

The following correspondences are natural: for the fields H ↔ P ↔ µ; for the order parameters
m↔ (ρL − ρG)↔ (cI − cII).

(1) The Onsager solution gives the free energy without magnetic field.30 There is a
phase transition at Tc > 0.
(2) Below the phase transition temperature Tc there are only two pure Gibbs states
corresponding to the up spin phase and the down spin phase.31 That is, up and down
phases cannot coexist (see Fig. 5.4.1).r

30L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition,”
Phys. Rev., 65, 117-149 (1944). Probably, the easiest method is to use Grassmann algebra: S.
Samuel, “The use of anticommuting variable integrals in statistical mechanics. I. The computation
of partition functions,” J. Math. Phys., 21, 2806 (1980). This is explained in Supplementary Page.

31Independently by: M. Aizenman, “Translation invariance and instability of phase coexistence
in the two-dimensional Ising model,” Commun. Math. Phys. 73, 83 (1980); Y. Higuchi, “On the
absence of non-translationally invariant Gibbs states for the two-dimensional Ising system,” in
Random Field (ed. J. Fritz, J. L. Lebowitz and D. Szaz, North-Holland, 1981).
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Fig. 5.4.1 Even the half up and half down fixed
boundary spin configuration cannot stabilize the
interface location between up and down phases
for 2D Ising model below Tc. The interface may
be understood as a trajectory of a Brownian par-
ticle connecting the two phase boundary points
at the boundary (Brownian bridge). If the sys-
tem size is L, then its amplitude is

√
L. In the

thermodynamic limit almost surely the observer
at a fixed point (say, at the center) who can ob-
serve only a finite volume can observe only one
of the phases, and can never see the spin flip in
her lifetime.

(3) The effect of the magnetic field can be calculated perturbatively, so magnetic
susceptibility is exactly known.32,33

(4) Near Tc there are various nontrivial critical divergences.34

3-Ising model:
(1) No exact evaluation of the free energy is known, but it is easy to demonstrate
that Tc > 0 (see Peierls’ argument). It is known that at sufficiently low temperatures
there are infinitely many pure Gibbs states.35 They are interpreted as up and down
spin phases and their coexisting phases.
(2) Thus, at sufficiently low temperatures the interface is not rough. Whether this
happens at Tc (where the uniqueness of the Gibbs state is lost) or strictly below it
(that is, there is a separate roughening transition) cannot be known from the existing
theories, but according to simulations the roughening transition on the 001 surface
of the cubic Ising model occurs about Tc/2.36

32C. N. Yang, “The spontaneous magnetization of a two-dimensional Ising model,” Phys. Rev.
85, 808 (1953).

33In the scaling limit, the system with a magnetic field can be solved exactly (due to Zamolod-
chikov). See G. Delfino, “Integrable field theory and critical phenomena: the Ising model in a
magnetic field,” J. Phys. A 37 R45 (2004).

34Here, ‘non-trivial’ means that the fluctuation is so large that we cannot use mean-field theory
to study the divergent behavior correctly.

35R. L. Dobrushin, “Gibbs state describing coexistence of phases for a three-dimensional Ising
model,” Theor. Probab. Applic., 17, 582 (1972); “Investigation of Gibbsian state for three-
dimensional lattice systems,” ibid., 18, 253 (1973).

36See M. Hasenbusch and K. Pinn, “Computing the roughening transition of Ising and solid-on-
solid models by BCSOS model matching,” J. Phys. A 30, 63 (1997).
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(3) The critical divergences are non-trivial as we will see.

Beyond 3-space:
Although no exact free energy is known, the existence of positive Tc is easy to demon-
strate, and the critical divergences around this point are believed to be the same for
all d ≥ 4. This has been established for the dimension strictly greater than 4;37

4-Ising model still defies mathematical studies.

Phase transitions are often studied by changing intensive parameters (e.g., tem-
perature and pressure). When two phases coexist, they share the same intensive
parameters (fields). Therefore, a convenient thermodynamic potential is the general-
ized Gibbs free energy for a given amount of material (N); for example, that obtained
by Legendre transformation of internal energy with respect to entropy, volume, mag-
netization, etc., except for the number of particles N . The Gibbs free energy may
lose differentiability with respect to its natural independent variables (intensive pa-
rameters). If the differentiability is lost, we say a first order phase transition occurs.
If the singularity in Gibbs free energy is less drastic, generally we say there is a
second order phase transition.38

The reader might conclude that the first order phase transition is the most basic
phase transition, but first order phase transition occurs when an ordered phase be-
comes unstable against not very large thermal fluctuations. Therefore, we could say
the ordered phase that disappears by a first order phase transition is not so stable.r
In the case of the second order phase transition the ordered phase withstands thermal
fluctuation as long as there is ‘positive order’ (the order parameter is positive). The
‘ultimate phase transition’ should be the disappearance of ‘very stable’ order due to
very large fluctuations. Thus, the second order phase transition is the most typical
phase transition. In equilibrium states, fluctuations cannot become large without
long-range correlation. Consequently, if the ordered phase is destroyed only when
the fluctuation is very large (divergent, mathematically), the range of the correlation
of order parameter must be unbounded. It must be crucial to study the correlation
of order parameters to understand the second-order phase transition.

37M. Aizenman, “Proof of the triviality of ϕ4
d field theory and some mean-field features of Ising

models for d > 4, Phys. Rev. Lett., 47, 1 (1981).
38The terminology, “infinite order phase transition” is used if the free Gibbs energy loses holo-

morphy (i.e., not Cω) but still infinite times differentiable (C∞). This can happen in 2D XY
model.
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5.5 Correlation of oder parameter

For second order phase transitions fluctuations are crucial. To see this let us calculate
the order parameter correlation function and study the correlation length ξ defined
as follows:39

〈φ(0)φ(r)〉 ∼ e−|r|/ξ. (5.5.1)

Here, ∼ implies a long distance asymptotic relation.40

At the second order phase transition point, the correlation length diverges. What
happens to the correlation function? (5.5.1) implies that the correlation must decay
slower than any exponential decay. For some c > 0 the decay like e−c

√
r can be

imagined, but such a stretched exponential decay is impossible for equilibrium spatial
correlation functions. For example, when ferromagnetic ordering occurs, it can be
proved41 that

〈φ(0)φ(r)〉 ≤
∑
s∈B

〈φ(0)φ(s)〉〈φ(s)φ(r)〉. (5.5.2)

Here, B can be any set of lattice points such that removal of all the points in B
destroys all the paths along the lattice bonds connecting the origin 0 and r. For
example, we may choose it to be a spherical shell centered at the origin with an
appropriate thickness.42 If the system is translationally symmetric, then from (5.5.2)
we get

〈φ(s)φ(r)〉 = 〈φ(0)φ(r − s)〉 ≤
∑
s1∈B

〈φ(0)φ(s1)〉〈φ(s1)φ(r − s)〉 (5.5.3)

All the moments of spins are positive.43 Therefore, introducing the relation (5.5.3)
into (5.5.2), we obtain

〈φ(0)φ(r)〉 ≤
∑
s∈B

〈φ(0)φ(s)〉

(∑
s1∈B

〈φ(0)φ(s1)〉〈φ(s1)φ(r − s)〉

)
. (5.5.4)

39Here, we assume 〈φ〉 = 0. More generally, we should use the second order cumulant:
〈φ(0)φ(r)〉C = 〈φ(0)φ(r)〉 − 〈φ(0)〉〈φ(r)〉.

40Precisely, the ratio of the logarithms of the both sides reaches unity in the |r| → ∞ limit.
41For ferromagnetic Ising models, see B. Simon, “Correlation Inequalities and the decay of

correlations in ferromagnets,” Commun. Math. Phys., 77, 111 (1980).
42For d-(hyper)cubic lattice, its thickness can be slightly larger than

√
d× lattice spacing.

43This is one of Griffiths’ inequalities (the first inequality): for any finitely many positive integers
ai 〈

∏
i s

ai
i 〉 ≥ 0. A simple proof may be found in J. Glimm and A. Jaffe, Quantum Physics, a

functional integral point of view, Second Edition (Springer, 1987) Sect. 4.1.



5.5. CORRELATION OF ODER PARAMETER 287

To be sure let us reiterate this procedure once more:

〈φ(0)φ(r)〉 ≤
∑
s∈B

〈φ(0)φ(s)〉

{∑
s1∈B

〈φ(0)φ(s1)〉

(∑
s2∈B

〈φ(0)φ(s2)〉〈φ(s2)φ(r − s− s1)〉

)}
.

(5.5.5)
If r is sufficiently far away from the origin and the above procedure may be

repeated q times, then replacing the term 〈φ(sq)φ(r − s − s1 − · · · − sq−1)〉 that is
expected to appear after these iterations with its maximum value C, we obtain

〈φ(0)φ(r)〉 ≤

[∑
s∈B

〈φ(0)φ(s)〉

]q

C. (5.5.6)

Here, q may be chosen to be a number proportional to |r|. If we can make
∑

s∈B〈φ(0)φ(s)〉 <
1, the correlation function decays exponentially. That is, the summability of the cor-
relation function on a large sphere is the key for exponential decay. If the correlation
function behaves as r−µ (d − 1 < µ), the decay must be exponential. On the other
hand, as can be seen from the decay of the fundamental solution to the Laplace
equation, even without any fluctuation, correlation decays as 1/rd−2.

If there are fluctuations, intuitively speaking at least for the ferromagnetic case,
the correlation is expected to decay faster than without fluctuations. Therefore,
when ξ diverges, the correlation function must decay algebraically; if we write this
algebraic decay as r−µ, µ cannot be larger than d − 1, and cannot be smaller than
d− 2. Therefore, we may conclude thatr

〈φ(0)φ(r)〉 ∼ 1

rd−2+η
(5.5.7)

is the general expression for the order parameter correlation function at the critical
point. Here, η (∈ (0, 1]) is one of the critical indices we will encounter in the next
section.

The above argument suggests that if there is a long range interaction, fluctuation
effects can be contained. We already know such an example: the 1D Kac model.
Even in 1-space this long-range interaction model exhibits gas-liquid phase transi-
tion.44

What happens if we introduce a small number of (fraction of) long range interac-
tions into a short-ranged lattice system? This is a story of systems with the so-called

44However, no local order can be stabilized by a long range interaction, so no crystal formation
is possible.
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‘small world’ interaction network.45 Let us introduce such long range interaction
with probability p (� 1). The average distance from an arbitrary lattice point to
one of such long-range interacting points (= airports) is ` ∼ p−1/d. We compare
this with the domain size = correlation length ξ, which is the distance over which
spins can ‘communicate.’ This length generally grows as temperature decreases. The
ordering would occur if ξ reaches `, because then the ordered patch can have access
to the ‘big world.’ As we will learn, in 1-space46

ξ ∼ e2J/kBT , (5.5.8)

so Tc ∼ 1/| log p|; now phase transition can occur at a positive temperature. Also as
we will learn later ξ ∼ (T − Tc)

−ν in D(> 1)-space, so Tc(p)− Tc(0) ∼ p1/dν .

5.6 Critical fluctuation and Kadanoff picture

Second order transitionsr are characterized by the divergence of correlation length ξ
associated with very large equilibrium fluctuations:q

ξ ∼ |T − Tc|− = |τ |−ν , r (5.6.1)

where τ = (T − Tc)/Tc, and ν (> 0) is an example of critical exponents (critical
indices). We know susceptibilities directly reflect fluctuations as is clearly seen from
a fluctuation-response relation:

〈δMδM〉 = kBT
∂M

∂H

∣∣∣∣
T

. (5.6.2)

This implies that at the second order phase transition point the magnetic suscep-
tibility χ diverges. Indeed, empirically it diverges as (for h = 0, without magnetic
field)

χ ∼ |T − Tc|−γ = |τ |−γ (h = 0).r (5.6.3)

45see D. J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness
(Princeton Studies in Complexity, 2003).

46The probability of introducing one up-down boundary is e−2J/kBT , so the spacing of ‘defects’
should be the reciprocal of this.
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We cannot expect smooth change of the magnetization m,47 so

m ∼ (−τ)β (h = 0, τ < 0), r (5.6.4)

m ∼ h1/δ (τ = 0).r (5.6.5)

The divergence of energy fluctuation causes the divergence of specific heat as

CH ∼ |τ |−α (h = 0).r (5.6.6)

α, β, γ, δ are positive numbers and are critical indices. Representative values can
be found in the following table. It was empirically noted that several relations hold
among these indices such as

α+ 2β + γ = 2. (5.6.7)

Ising critical exponents.r
Exponents 2-space 3-space d(≥ 4)-space

α 0 (log) 0.11 0 (jump)
β 1/8 0.325 1/2
γ 1.75 1.24 1
δ 15 4.8 3
ν 1 0.63 1/2

T TT

Tc

m χ

Tc Tc

C

Fig 5.6.1 Schematic illustrations of singular behaviors near the critical point.

A typical spin configuration at the critical point of the Ising model on the square
lattice looks as in Fig. 5.6.2.48

47Notice that there is no logical relation between the divergence of the susceptibility and the
emergence of non-zero magnetization. For Ising models it is proved that these two occur simulta-
neously. The discrepancy seems to be possible only when long-range order is impossible.

48This is from the graphical illustration by the editors accompanying the article “Iterated random
functions” by P. Diaconis and D. Freedman, SIAM Review 41, 45 (1999).
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Fig. 5.6.2 A typical spin configuration of
2-Ising model exactly at Tc. The lattice size
is 4200 × 4200 with a periodic boundary
condition. If we find an even black and white
composition, it is very likely that we are not
exactly at Tc, because we are not observing
really large fluctuations.

Even around the critical point the system does not become thermodynamically un-
stable. This imposes several inequalities among critical indices. For example,49

∂(S,M)

∂(T,H)
≥ 0. (5.6.8)

This inequality can be written explicitly as

∂S

∂T

∣∣∣∣
H

∂M

∂H

∣∣∣∣
T

≥ ∂S

∂H

∣∣∣∣
T

∂M

∂T

∣∣∣∣
H

=
∂M

∂T

∣∣∣∣2
H

, (5.6.9)

where a Maxwell’s relation has been used to obtain the second equality. This im-
plies

1

T
CHχ ≥

∂M

∂T

∣∣∣∣2
H

. (5.6.10)

Introducing the definitions of the critical exponents, we obtain

|τ |−α|τ |−γ ≥ |τ |2(β−1). (5.6.11)

Here we have ignored all the finite coefficients near the critical point (such as T−1).50

(5.6.11) implies that
|τ |−(α+2β+γ−2) ≥ 1 (5.6.12)

49This requires twice differentiability of the potential, so it does not hold exactly at the critical
point, but we may use it in its any neighborhood.

50We have assumed that the critical point is not zero; The 1-Ising model has Tc = 0, but this is
a pathological example.
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is required for τ → 0. Therefore, the quantity in the parentheses must be nonnega-
tive:q

α+ 2β + γ ≥ 2. (5.6.13)

This is called Rushbrooke’s inequality. Another example is Griffiths’s inequality (see
Problem),

α+ β(1 + δ) ≥ 2. (5.6.14)

Kadanoff succeeded in elucidating the general features of critical systems with an
ingenious intuitive picture.r

copy

shrinkingξ ξ

ξ

Fig. 5.6.3 The Kadanoff construction. ‘Shrink-
ing’ implies looking at the system from distance
with fixed eyesight, that is, coarse-graining +
scaling. The outcome corresponds to the system
away from the critical point, if compared with
the copy of the part of the original system. ξ is
the correlation length.

If the original system has a temperature τ = (T − Tc)/Tc and the magnetic field
h, then from our stepped-back point of view the system looks as if it has these
parameters enlarged (away from the critical point) to τ`y1 , h`y2 : the exponents y1

and y2 must be positive, where ` is the shrinking rate (> 1). This is a guess or
hypothesis, but seems to explain everything neatly.

Let us write m =M(τ, h) (this is the equation of state for the magnetic system).
After one stepping-back, the volume of the region recognized as a unit cube to us
would be actually the cube with edge ` (see Fig. 5.6.4) in the original system.

original minimum

discernible volume

minimal discernible

volume after shrinking

sh
ri

n
k
in

g

Fig. 5.6.4 If we step back and the distance be-
tween us and the sample becomes ` (in the fig-
ure ` = 2) times as large as the original distance,
the actual linear dimension of the minimum dis-
cernible volume becomes `-times as large as the
original minimum discernible volume.
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Let us put ′ to the quantities observed after stepping back. We look at the
magnetic energy stored in the minimum block h′m′ (after shrinking). The energy
should be a much better additive quantity than the local magnetic moment, so we
expect (the energy is extensive)

h′m′ = `dhm. (5.6.15)

Since h′ = h`y2 , we obtain

m′ =M(τ ′, h′) = `d−y2M(τ, h) (5.6.16)

or
m =M(τ, h) = `y2−dM(τ`y1 , h`y2). (5.6.17)

That is,r M is a generalized homogeneous function of τ and h.q This is the scaling
relation for the equation of state. It should be clearly recognized that this is an
identity that holds for any positive number `. Therefore, we may set |τ |`y1 = 1.
Thus, we obtain from (5.6.17) (τ < 0 to have non-zero magnetization)

m(τ, 0) = |τ |(d−y2)/y1m(−1, 0). (5.6.18)

That is,q

β =
d− y2

y1

. (5.6.19)

We can also conclude

γ =
2y2 − d
y1

. (5.6.20)

To obtain α we need specific heat, which is available as the second derivative of
the free energy with T . The (singular part of the) free energy51 fs = Fs(τ, h) per
minimum discernible volume unit scales as

fs = Fs(τ, h) = `−dFs(τ`
y1 , h`y2). (5.6.21)

This comes from f ′s = `dfs due to the extensivity of the free energy. If we differentiate
(5.6.21) with h, we get (5.6.17). Historically, before Kadanoff Widom realized that
if the scaling form (5.6.21) is assumed, all the critical divergences and critical index
equalities can be derived. As we have seen Kadanoff furnished the key physics picture

51The free energy itself has a large nonsingular part that does not contribute to the singular
behaviors near the critical point.



5.6. CRITICAL FLUCTUATION AND KADANOFF PICTURE 293

underlying Widom’s hypothesis. Differentiating (5.6.21) twice with respect to τ (that
is, T ), we obtain

C(τ, h) = `2y1−dC(τ`y1 , h`y2). (5.6.22)

Therefore,

α =
2y1 − d
y1

. (5.6.23)

From (5.6.20), (5.6.19) and (5.6.23) we obtain

α+ 2β + γ = 2. (5.6.24)

Obviously, ξ′ = ξ/` (simply shrunk), so

ξ(τ.h) = `ξ(τ`y1 , h`y2). (5.6.25)

Choosing ` = |τ |−1/y1 , we may write this as

ξ = |τ |−1/y1X±(h/|τ |y2/y1), (5.6.26)

where X± are appropriate functions for τ > 0 or τ < 0, so

ν = 1/y1. (5.6.27)

This allows us to rewrite (5.6.23) as

α = 2− dν, (5.6.28)

which is called the hyperscaling law.52

There is one more important critical exponent η defined by the correlation function
at τ = 0. The correlation function for the spin s is defined as

G(r) = 〈s(r)s(0)〉 − 〈s(r)〉〈s(0)〉, (5.6.29)

where 〈 〉 is the equilibrium average. At the critical point τ = h = 0 the decay is
asymptotically algebraic for large r:

G(r) ∼ 1

rd−2+η
. (5.6.30)

52This relation (the Josephson relation) contains d, so we do not expect this to hold for d > 4.
For a reason, see M. E. Fisher, Lect. Note. Phys., 186 (1993) Appendix D.
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According to thermodynamic fluctuation theory,53

χ = β

∫
ddrG(r) = βG̃(0), (5.6.31)

where β = 1/kBT and G̃ is the Fourier transform of G:

G̃(k) =

∫
ddre−ik·rG(r). (5.6.32)

(5.6.31) implies that
G̃(0) ∼ ξγ/ν . (5.6.33)

From (5.6.30) we have at τ = 0 (i.e., ξ =∞)

G̃(k) ∝ kη−2. (5.6.34)

For (5.6.33) and (5.6.34) to be compatible, we must require the following functional
form

G̃(k) ∼ ξγ/νg(kξ), (5.6.35)

where g is a well-behaved function; we have taken into account that the variable
should be a dimensionless quantity kξ. Furthermore, we must require that g(x) ∼
x−γ/ν to cancel ξ. Therefore, (5.6.34) implies

γ

ν
= 2− η. (5.6.36)

What happens if the system size is finite (say, its linear dimension is L)?q If
T is sufficiently close to Tc, ξ > L should happen, but that is impossible; in any
case, phase transition should not be clear in a finite system. Indeed, divergence is
curtailed. The magnetic susceptibility reads

χ = |τ |−γX(h/|τ |y2/y1 , L−1/|τ |1/y1). (5.6.37)

For simplicity, let us suppress h. Even if τ → 0, the correlation length cannot become
larger than the system size; ξ →∞ is not realizable. Therefore, χ should not depend

53β〈M2〉/V is the susceptibility per volume, which we can interpret as χ. Now,

〈M2〉 =

〈(∫
ddrS(r)

)2
〉

= V

∫
ddrG(r).



5.7. RENORMALIZATION GROUP FLOW 295

on ξ (or on τ). Then, X(0, x) must be a power function of x in the x→∞ limit (the
standard scaling argument). The power is determined to cancel τ in (5.6.37):

χ ∼ (L−1)−γ/ν = Lγ/ν = L2−η, (5.6.38)

where we have used ν = 1/y1. The lack of divergence is consistent with the cur-
tailed fluctuation. This corresponds to the roundoff of the phase transition as ex-
pected.54

5.7 Renormalization group flow

Kadanoff’s idea (Kadanoff construction) consists of two parts: coarse-graining and
scaling. The crux of the idea is: if the system is at the critical point, then the con-
figuration is invariant under coarse-graining K and scaling S. That is, if we define
R = KS, then thermodynamic observables are invariant (up to the change due to
extensivity or intensivity of the observables) under the application of R. To apply R
is to observe the system from distance with a fixed eyesight.55 Fig. 5.7.1 illustrates
how iterative operation of R drives the statistical configurations at various temper-
atures.

Operating R is called a renormalization group transformation. We can under-
stand its iterative applications as product of R, and the unit element corresponds to
doing nothing to the system, so the totality of the renormalization transformations
makes a monoid, but informally we call it a renormalization group. According to
Kadanoff’s original idea, the image due to R is the same system under a different
condition (e.g., at a different temperature), so we may understand that R transforms
a thermodynamic state into another (of the same material system); we may imagine
that successive applications of R defines a flow (renormalization group flow = RG

54M-C Wu and C-K Hu, “Exact partition functions of the Ising model on M ×N planar lattices
with periodic-aperiodic boundary conditions,” J. Phys., A 35, 5189-5206 (2002) gives exact solutions
to the 2D Ising model on finite lattice with various boundary conditions. We can find explicit results
for the roundoff.

55〈〈History and renormalization〉〉 “It is true that it is only possible to anticipate the general
structure of the future, but that is all that we in truth understand of the past or of the present.
Accordingly, if you want a good view of your own age, look at it from far off. From what distance?
The answer is simple. Just far enough to prevent you seeing Cleopatra’s nose.” (Ortega, La rebelión
de las masas (1930) p55)
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flow) on the phase diagram.56
r

Fig. 5.7.1 The result of Kadanoff construction,
or the real space renormalization group trans-
formation. For simplicity, h = 0. Here, τ =
(T − TC)/TC and n is the number of operations
of renormalization group transformation R. The
vertical line on the left is the destination after
many applications of R. Only when the starting
point is right, the system can stay within the fi-
nite range of τ ∼ 0. The low temperature state
is driven to one of the ordered phases at T = 0;
this time, it happens to be totally ‘up.’ If the
starting point is T > Tc, the state is driven to
T =∞ state.

T

H
to perfect up phase

to perfect down phase

to high temperature 

limit

A

A'

B C

V

T

Solid

triple

point

CP

A
C

B

Liquid

supercritical fluid
Gas

to T = 0 limit

A'

Fig. 5.7.2 RG flows on the phase diagram. Left: (Ising) magnet. There are five ultimate destinations
(high temperature limit, phase boundary, critical point, all up and all down low temperature states);
Right: Fluid system (actually, the flow corresponding to that of the magnetic system is defined for
fluid phases only.)

At the fixed point Rξ = ξ. Since S definitely shrinks the system, this condition
is satisfied only if ξ = 0 or ξ =∞. That is, the phases without spatial correlation at
all or critical points are the only possible fixed points. Notice that if we understand

56As we will see soon, the RG flow does not generally flow on the phase diagram (of a given
material). In terms of Fig. 5.7.1, the phase diagram corresponds to what happens on the n = 0
slice. The actual flows move as n = 1, 2, · · ·. The flows in Fig. 5.7.2 are, intuitively, the projection
of these RG flow lines onto n = 1.
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these fixed points, we understand the general structure of the phase diagram. The
ordinary bulk phases from our macroscopic point of view do not have any appreciable
correlation distance, so ξ = 0 fixed points are bulk phases. To understand their
macroscopic properties we need not worry (qualitatively) about spatial correlations
of fluctuations. This is the reason why the so-called mean-field theory is useful, which
will be discussed shortly (see Section 5.8). Thus, to understand the phase diagram,
we use mean field theory to understand the bulk phases not too close to the critical
points,57 and use renormalization group theory to understand the features near the
critical points.

We may interpret the renormalization group transformation as a map from a
(generalized) canonical distribution µ to another (generalized) canonical distribution
µ′ = Rµ. We can imagine an effective Hamiltonian H (it is customary that β is
absorbed in H) such as

µ =
1

Z
e−H , µ′ =

1

Z ′
e−H′

. (5.7.1)

We may write H ′ = RH. Therefore, we can imagine that successive applications of
R defines a flow in the space of Hamiltonians (or models or systems). This idea is
illustrated in Fig. 5.7.3.

In Fig. 5.7.3 H∗ is a fixed point with an infinite correlation length of the RG flow. Its
stable manifold WS(H∗) is called the critical surface. The Hamiltonian of the actual
material, say, magnet A, changes as the temperature changes along the trajectory
denoted by the curve with ‘magnet A.’ It crosses the critical surface at its criti-
cal temperature. The renormalization transformation uses the actual microscopic
Hamiltonian of magnet A at various temperatures as its initial conditions. Three
representative RG flows for magnet A are depicted. ‘a’ is slightly above the critical
temperature, ‘b’ exactly at Tc of magnet A (‘b′’ is the corresponding RG trajectory
for magnet B), ‘c’ slightly below the critical temperature. Do not confuse the trajec-
tory of the actual microscopic system as temperature changes and the trajectories
produced by the RG transformation.

Some technical terms of dynamical systems58

The theory of dynamical systems studies the flow induced by the map on a certain
spaces, so the technical terms of this theory is convenient to describe renormalization

57This does not mean that we can use the original microscopic Hamiltonian when we utilize a
mean-field approach; we must use an appropriately renormalized Hamiltonian. Therefore, a precise
statement is: there is a Hamiltonian (with short-range interactions) that can be used to describe
the macroscopic features of a bulk phase with the aid of a mean-field approach. See the following
explanation of the Hamiltonian flow.

58J. Palis, Jr. and W. de Melo, Geometric Theory of Dynamical Systems, an introduction
(Springer, 1982) is a good introductory book.
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critical surface

T

cT

magnet A

for magnet A

cT
for magnet B

T

magnet B

where linearization is OK

H*

= stable mfd of 

unstable mfd of H*

H*

a

b
c

b'

Fig. 5.7.3r A global picturer of renormalization group flow in the Hamiltonian space H. The
explanation is in the text. ‘mfd’ = manifold.

group flows. If T is a map from a set A into itself, (T,A) is a (discrete time) dynam-
ical system. A point x ∈ A such that Tx = x is called a fixed point of the dynamical
system. There may not be any such point or there may be infinitely many of them.
For a fixed point x, the set Ws(x) of points y ∈ A such that limn→∞ Tny = x is
called the stable manifold of x. The linear approximation of T around a fixed point
x is determined by the derivative DxT at x. The eigenspace of eigenvalues of DxT
inside the unit disk is tangent to the stable manifold of x at x. The set Wu(x) of
points y such that T−ny → x is called the unstable manifold of x.59 This is tangent
to the eigenspace of the eigenvalues of DxT outside the unit disk. If the dimension of
the stable manifold is zero, the fixed point is called a source; if the dimension of the
unstable manifold is zero, the fixed point is called a sink.

If DxT has no eigenvalue on the unit circle, the fixed point x is called a hyper-
bolic fixed point. Around a hyperbolic fixed point, the flow induced by the map T
may be approximated by the flow induced by its linearization DxT . More precisely,
there is a homeomorphism (= one to one map continuous in both directions) φ such
that φ(T (y)) = DxT (φ(y)) for y in an appropriate neighborhood of x (the Hartman-
Grobman theorem).

Figure 5.7.3 tells us that to understand the critical phenomenon we have only to

59Here, for simplicity, T−1 is also considered as a map; if T−1 is not a map T−ny → x should
read x ∈ T−ny.
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study H∗ and its neighborhood. The fixed point is usually hyperbolic (see the fine-
lettered explanation above), so we can study the behavior of RG near H∗ through
linear approximation. We will come back to this problem after mean field the-
ory.

According to the Kadanoff construction, after coarse-graining the ‘spin’ in the
coarse-grained Hamiltonian must be, as can be guessed from the illustrations, some
sort of ‘blocked spins’ (called block spins). Now, let us go back to basic statistics
of iid stochastic variables {Xi}. The pillars of modern probability theory are the
law of large numbers and its refinements. Statistical mechanics heavily relies on the
law of large numbers. The thermodynamic theory of fluctuation is an application of
large deviation theory. The other major refinement of the law of large numbers is
the central limit theorem, which has not really been used yet in this book.60 The
central limit theorem for the iid stochastic variables with zero average reads that
the distribution function of (1/

√
N)
∑N

i=1Xi converges to N(0, V ), where V is the

variance of X1. The partial sum SN =
∑N

i=1Xi corresponds to the block spin in
Kadanoff’s picture, so making the partial sum is a sort of coarse-graining. Dividing
with

√
N corresponds to scaling. The fixed point distribution of the ‘renormalization

group transformation’ R : X1 → SN/
√
N = (1/

√
N)
∑N

i=1Xi is N(0, V ). Here, the

scaling factor
√
N is chosen carefully to have a nontrivial limit: not δ-function-like

nor zero everywhere.61

Thus, we see renormalization group theory is the central limit theoremr for strongly
correlated stochastic variables.62

60〈〈Central limit theorem vs. large deviation〉〉 The reader might claim that it has already
been used to understand fluctuations; isn’t the Gaussian nature of fluctuation the sign of cen-
tral limit theorem? This is only accidental for short-correlated systems. Fluctuation studies the
deviation of the average from the true average, when the system size is small. We ask how the fluc-
tuation of the mean disappears as the system size increases. In contrast, the central limit theorem
is concerned with small deviations from the mean that appropriately scales with the system size.

61The authoritative reference of the central limit theorem for iid variables is W. Feller, An
introduction to probability theory and its applications, vol. II (Wiley, 1971). The ideas of flow, fixed
point, stability, etc., all appeared in the classical theory long before renormalization group theory.

62This view point was clearly recognized first by G. Jona-Lasinio, “The renormalization group:
a probabilistic view,” Nuovo Cim. 268, 99-119 (1975).
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5.8 Mean field theory

As discussed in the preceding section to understand the phase diagram globally, we
may ignore the correlation effects except near critical points, where the correlation
length diverges. Away from critical points, if we wish to compute the equilibrium
average of a function of several spins f(s0, s1, · · · , sn) we may separately average all
the spins. Furthermore, if we assume 〈sk

i 〉 ∼ 〈sk〉k (i.e., if we assume that fluctuations
are not large), we arrive at

〈f(s0, s1, · · · , sn)〉 ' f(〈s0〉, 〈s1〉, · · · , 〈sn〉). (5.8.1)

This is the fundamental idea of the mean field approach. Here, let us proceed slightly
more systematically.

Let us recall an elementary identity of probability theory.r If ∪iBi = Ω and
Bi ∩Bj = ∅ for i 6= j (i.e., {Bi} is a partition of the total event), then

E (E(A|Bi)) = E(A); (5.8.2)

That is, the average of a conditional expectations over all the conditions is equal to
the unconditional average.

Let us choose as B a particular configuration {s1, · · · , s2d} of all the spins inter-
acting with the ‘central spin’ s0 on a d-cubic lattice.

ss
s

s
s0 1

2

3

4

Fig. 5.8.1 The central spin s0 and its nearest
neighbor surrounding spins s1, · · · , s2d.

We can compute the following conditional average for the d-Ising model on the (hy-
per)cubic lattice exactly:

E(s0|s1, · · · , s2d) =

∑
s0
s0e

βJs0(s1+···+s2d)+βhs0∑
s0
eβJs0(s1+···+s2d)+βhs0

= tanh[βh+ βJ(s1 + · · ·+ s2d)].

(5.8.3)
Because E(s0) = E (E(s0|s1, · · · s2d)), we obtainq

〈s0〉 = 〈tanh [βh+ βJ(s1 + · · ·+ s2d)]〉. (5.8.4)
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This is an exact relation into which we may introduce various approximations to
construct mean field approaches.

Now, to compute the RHS of (5.8.4), we must introduce some approximation. The
most popular (and simple-minded) version is (5.8.1):

〈tanh[βh+ βJ(s1 + · · ·+ s2d)]〉 ' tanh[βh+ βJ〈s1 + · · ·+ s2d〉]. (5.8.5)

Therefore, for m = 〈s0〉, we obtain a closed equation

m = tanh[β(2dJm+ h)]. (5.8.6)

2dJm may be understood as an effective field acting on s0, so this is called the mean
field (sometimes called the molecular field as well). This is the etymology of the name
of the approximation method being considered. Let 2dβJm = x. (5.8.6) reads

x = 2dβJ tanh(x+ βh). (5.8.7)

For simplicity, let us assume h = 0. We have to solve

x = 2dβJ tanh x. (5.8.8)

This may be graphically solved (Fig. 5.8.2).

x

y

Fig. 5.8.2 The solution to (5.8.8) may be
obtained graphically.

The bifurcation63 from the case with a single solution to that with 3 solutions occurs
at 2dβJ = 1. That is, this gives the phase transition temperature Tc. m increases as
|T − Tc|1/2 (i.e., the critical exponent β = 1/2).

63A phenomenon that the solution changes its character is called bifurcation. There are many
types, and this is a pitchfork bifurcation; if we know this, the exchange of the stability of the
branches immediately tells us the stabilities of the branches as illustrated in the text.
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To conclude that the bifurcation actually signifies the phase transition (within
the mean-field approximation), we must check that the nonzero solutions are the
equilibrium solutions. That is, we must demonstrate that the m 6= 0 solution has a
lower free energy than the m = 0 case. The best way may be to study the bifurcation
diagram and check the stability of the solution under small perturbations. The
stability of m 6= 0 state is obvious.

x

Tc

T
stable

stable

stable

unstable

Fig. 5.8.3 The stability of the solution to
(5.8.8) may also be understood graphically.

To obtain the equation of state, we must include the external magnetic field h.
From (5.8.6) we can obtain

βh = Arctanhm− 2dβJm = (1− 2dβJ)m+
1

3
m3 +O[m3]. (5.8.9)

Therefore, we obtain δ = 3, γ = 1 and β = 1/2. Combining these results and
assuming Rushbrooke’s equality (5.6.13), we conclude α = 0. As we have already
discussed, the mean field theory is not designed to describe critical phenomenon, so
these critical exponents need not be very realistic.

A better approximation to (5.8.4) could be invented. We know s = ±1. Therefore,
s2

i = 1 (no summation convention), so, if we write the parity of x as σ(x) (0, if x is

even and 1, if x is odd), sp
1s

q
2s

r
3s

s
4 = s

σ(p)
1 s

σ(q)
2 s

σ(r)
3 s

σ(s)
4 . Since tanhx is an odd analytic

function, we may write as (2d-case, for simplicity)

tanh βJ(s1 +s2 +s3 +s4) = a(s1 +s2 +s3 +s4)+ b(s1s2s3 +s2s3s4 +s3s4s1 +s4s1s2),
(5.8.10)

where a and b are numerical coefficients. This relation must be an identity. Hence,
a and b may be chosen by computing particular spin configurations. All up gives
us

tanh 4βJ = 4a+ 4b, (5.8.11)
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while only one down gives us

tanh 2βJ = 2a− 2b. (5.8.12)

All other configurations give one of the above, or 0 = 0. We get a = (tanh 4βJ +
2 tanh 2βJ)/8 and b = (tanh 4βJ − 2 tanh 2βJ)/8. Writing 〈s〉 = m and assuming
the spatial uniformity, (5.8.4) reads

m = 4am+ 4b〈s1s2s3〉. (5.8.13)

This is still exact. Therefore, we should realize that for 1D this method gives an
exact equation for the magnetization.

If we approximate 〈s1s2s3〉 = m3, we have a closed equation

m = 4am+ 4bm3. (5.8.14)

This gives us a considerable improvement over simple mean field theory.

Warning. We have introduced the idea of mean field theory to study the system
thermodynamic sufficiently away from critical points. Therefore, the mean field the-
ory cannot generally assert anything about the phase transition. It cannot guarantee
the existence of phase transition (esp., second order phase transition) even if it con-
cludes that there is one. Recall that even for d = 1, the mean field theory (a simple
version) asserts that there is a second order phase transition at some finite T . We
know this cannot be true. Even in the case where a phase transition occurs, it can-
not reliably predict whether the phase transition is continuous or not. However, if
fluctuation effects are not serious, then the mean field results become qualitatively
reliable. Thus, it is believed that if d ≥ 4 (especially d > 4), for fluids and magnets,
the simplest mean field results are generally qualitatively correct.64,65

However, if a mean field theory concludes that there is no ordering phase tran-
sition, this conclusion sounds very plausible. Since mean field theory ignores fluc-
tuations, it should overestimate the ordering tendency. For the ferromagnetic Ising

64〈〈Mean field results are reliable in high dimensional spaces〉〉 Recent progress in this
respect is: M. Biskup and L. Chase, “Rigorous analysis of discontinuous phase transitions via mean-
field bounds,” Commun. Math. Phys. 238, 53 (2003). Under a technical condition (the reflection
positivity) it is shown that whenever the mean-field theory predicts a discontinuous transition, the
actual model also undergoes a discontinuous transition (which occurs near the mean-field transition
temperature), provided the spatial dimension is sufficiently high and/or the phase transition is
sufficiently strong.

65〈〈Strong first order phase transtions may be predicted by mean field〉〉 L. Chayes,
“Mean Field Analysis of LowDimensional Systems,” Commun. Math. Phys., 292, 303 (2009) tells
us that if the order parameter jumps sufficiently at the transition, the mean field theory can predict
the first order phase transition correctly even in 2 and 3-spaces.
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model this expectation has been vindicated.66 The same idea tells us that the mean
field critical temperature should be the upper bound of the true critical temperature:
Tc ≤ Tc,mean.

5.9 Transfer matrix

q

Before going to an actual renormalization group illustration, let us look at a technique
called the transfer matrix method. This was the method used by Onsager to evaluate
the partition function of the 2-Ising model on the square lattice.67

Let us consider a 1-Ising model with the Hamiltonian (+ the interaction Hamil-
tonian with the magnetic field h) given by

H = −J
N−1∑
i=1

sisi+1 − h
N∑

i=1

si. (5.9.1)

Let us define the partition function ZN(+) for the length N spin chain with the Nth
spin up:

ZN(+) =
∑
{sn}N−1

n=1

eβ[J(+1)sN−1+h(+1)]eβ[JsN−1sN−2+hsN−1] · · · eβ[Js2s1+hs2]eβhs1 . (5.9.2)

We can analogously define the partition function ZN(−) for the length N spin chain

66C. J. Thompson, “Upper bounds for Ising model correlation functions,” Commun. math. Phys.,
24, 61 (1971) proves that, if the magnetic field is non-negative, then the mean field magnetization
density is the upper bound of the true magnetization density.

67〈〈Onsager’s biography〉〉 See C. Longuet-Higgins and M. E. Fisher, “Lars Onsager: November
27, 1903-October 5, 1976,” J. Stat. Phys., 78, 605 (1995). This is Onsager’s biography everyone can
enjoy. According to this, Onsager applied the transfer matrix method to the strip of width 2, 3 and
4 lattice points, and constructed a conjecture from these results, then confirmed it for the width
5 strip and closed in on the general formula. “His statistical mechanics were popularly known as
‘Advanced Norwegian I’ and ‘Advanced Norwegian II’.” He was fired more than once for his poor
teaching, and his Nobel-prize winning dissertation intended for his PhD was rejected as insufficient
from his alma mater.
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with the Nth spin down. In terms of these, we can make ZN+1(+) as

ZN+1(+) =
∑
s=±1

eβ[Js+hs]ZN(s). (5.9.3)

Therefore, if we introduce the vector

ZN =

(
ZN(+)
ZN(−)

)
, (5.9.4)

ZN+1 = TZN , (5.9.5)

where T , called the transfer matrix,68r is defined as

T = Matr(eβ[Jss′+hs]) =

(
eβJ+βh e−βJ+βh

e−βJ−βh eβJ−βh

)
. (5.9.6)

Notice that
ZN = (1, 1)ZN . (5.9.7)

Repeated use of the recursion (5.9.5) results in

ZN = T N

(
eβh

e−βh

)
. (5.9.8)

In this case the first spin is free to point up or down. For a ring ofN spins (s1 = sN+1),
as we see immediately, ZN = TrT N .

The easiest method to compute (5.9.8) is to use a similarity transformation (or
unitary transformation, if possible) to convert T into a diagonal form:69

T = U−1

(
λ1 0
0 λ2

)
U, (5.9.9)

where λ1 and λ2 are eigenvalues of T , and U is the orthogonal transformation needed
to diagonalize T . Introducing (5.9.9) into (5.9.8), we obtain

ZN = U−1

(
λN

1 0
0 λN

2

)
U

(
eβh

e−βh

)
. (5.9.10)

68〈〈The origin of the transfer matrix method〉〉 The method was devised by Kramers and
Wannier: Phys. Rev. 60, 252 (1941). For a continuum model, an integral equation approach can
be used and was devised by H. Takahashi almost simultaneously in 1942 (Proc. Phys-Math. Soc.
Japan 24, 60 (1942)). He showed that 1D short-range systems cannot have any phase transition
for T > 0. [In 1941 Japan attacked Pearl Harbor; in 1942 Fermi and collaborators succeeded in
nuclear chain reaction.]

69if impossible, in a Jordan normal form; in the present case, the eigenvalues are distinct, so the
matrix is diagonalizable.
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Therefore, we finally have the following structure:

ZN = aλN
1 + bλN

2 , (5.9.11)

where a and b are real numbers. If we assume λ1 > |λ2|, a is positive, and, since
N � 1, the first term dominates ZN . Therefore, the free energy per spin is given
by

f = −kBT log λ1. (5.9.12)

Depending on the boundary conditions, the exact formula for the partition function
changes, but the free energy per spin (this is the only quantity meaningful in the
thermodynamic limit N →∞) depends only on the largest eigenvalue of the transfer
matrix that is not dependent on the boundary condition.

The elements of the transfer matrix are entire functions70 of T or h, and eigenval-
ues are their algebraic functions.71 Therefore, as long as eigenvalues are finite, their
singularities are branch points. The branch points of the eigenvalues occur when they
change their multiplicities (digeneracies), so the multiplicity of the largest eigenvalue
is of vital importance. The key theorem we need is the following famous and impor-
tant theorem:

Theorem [Perron and Frobenius]q
Let A be a square matrix whose elements are all non-negative, and there is a pos-
itive integer n such that all the elements of An are positive. Then, there is a non-
degenerate real positive eigenvalue λ such that
(i) |λi| < λ, where λi are eigenvalues of A other than λ,72

(ii) the elements of the eigenvector belonging to λ may be chosen all positive. ut
This special real eigenvalue giving the spectral radius is called the Perron-Frobenius
eigenvalue.

Proof of the Perron-Frobenius theorem73

Let us introduce the vectorial inequality notation: x > 0 (≥ 0) implies that all
the components of x are positive (non-negative). Also let us write x ≥ (>)y if
x− y ≥ (>)0.
Let x be a vector such that |x| = 1 and x ≥ 0. The largest ρ satisfying

Ax ≥ ρx (5.9.13)

70A function that is holomorphic except at infinity is called an entire function.
71An algebraic function of {xi} is a function constructed from {xi}∪R by applying finitely many

times the elementary operations (= addition, multiplication, division, subtraction, and integer root
extraction) on these elements.

72That is, λ gives the spectral radius of A.
73A standard reference may be E. Seneta, Non-negative matrices and Markov chains (Springer,

1980). The proof here is an eclectic version due to many sources, including N. Iwahori, Graphs and
Stochastic Matrices (Sangyo-tosho, 1974).
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is denoted by Λ(x). The proof is divided into several steps.
(i) Since the set U = {x |x ≥ 0, |x| = 1} is a compact set,74 there is a vector z ∈ U
that maximizes Λ(x). Let us write λ = Λ(z).
(ii) λ is an eigenvalue of A, and z belongs to its eigenspace: Az = λz.
[Demo] Even if not, we have w = Az − λz ≥ 0 (not equal to zero). Notice that for
any vector x ≥ 0 but 6= 0 there is some positive integer m such that Amx > 0, so

Amw = AAmz − λAmz > 0. (5.9.14)

This implies Λ(Amz) > λ, but λ is the maximum of Λ, this is a contradiction. There-
fore, w = 0. That is, z is an eigenvector belonging to λ.
(iii) We may choose z > 0.
[Demo] z ≥ 0 and nonzero, so there is a positive integer m such that Amz > 0 but
this is λmz > 0, so actually z > 0.
(iv) λ is the spectral radius of A.
[Demo] Suppose Ay = λ′y. Let q be the vector whose components are absolute values
of y: qi = |yi|. Then, Aq ≥ |λ′|q. Therefore, |λ′| ≤ λ.
(v) The absolute value of other eigenvalues are smaller than λ. That is, no eigenvalues
other than λ is on the spectral circle.
[Demo] Suppose λ′ is an eigenvalue on the spectral circle but is not real positive. Let
q be the vector whose components are absolute values of an eigenvector belonging to
λ′. Since Aq ≥ |λ′|q = λq, actually we must have Aq = λq. That is, the absolute
value of each component of the vector Amy = λ′my coincides with the corresponding
component of Amq. This implies∣∣∣∣∣∣

∑
j

(Am)ijyj

∣∣∣∣∣∣ =
∑

j

(Am)ij |yj | =
∑

j

|(Am)ijyj |. (5.9.15)

All the components of Am are real positive, so all the arguments of yj are identical.75

Hence, λ′ = λ.
(vi) λ is non-degenerate.
[Demo] Suppose otherwise. Then, there is a vector z′ that is not proportional to z but
still Az′ = λz′. Here, A is a real matrix and λ is real, we may choose z′ to be real.
Since z and z′ are not parallel, we may choose α appropriately so that v = z+αz′ ≥ 0
but has a zero component. This is contradictory to (iii). ut

Since the transfer matrix is with positive elements, the logarithm of its Perron-
Frobenius eigenvalue gives the free energy per spin. If the number of states for each
1D element is finite and the interaction range is finite, then no phase transition
occurs for T > 0, because the transfer matrix is finite dimensional.

What happens if T → 0 for the 1-Ising model?r Let us explicitly compute the

74The domain of λ is a sphere of some dimension restricted to the nonnegative coordinate sector.
Thus, the problem is to find the largest value of a continuous function λ on a closed set. The
maximum value theorem guarantees the existence of the maximum point.

75a, b 6= 0 and |a+ b| = |a|+ |b| imply the real positivity of a/b.
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eigenvalues of the transfer matrix (5.9.6):

λ± = eβJ

[
cosh βh±

√
sinh2 βh+ e−4βJ

]
. (5.9.16)

Unless e−4βJ vanishes, they are analytic in h, so no spontaneous magnetization is
possible. That is, there is no spontaneous magnetization for T > 0.

The ratio λ−/λ+ reads without magnetic field (h = 0)

λ−
λ+

=
1− e−2βJ

1 + e−2βJ
. (5.9.17)

Therefore, in the T → 0 limit, βJ →∞ and the ratio converges to unity. Its impli-
cation can be understood from the correlation function (notice that 〈s〉 = 0)

〈si+rsi〉 ∼ (λ−/λ+)r. (5.9.18)

That is, the correlation length diverges in the T → 0 limit. That is, for 1-Ising model
Tc = 0.

Correlation and eigenvalues of transfer matrix
The correlation function 〈sisj〉 (without magnetic field) may be calculated as follows:

〈sisj〉 =
1
ZN

∑
{sn}N+1

n=1

eβJsN+1sN eβJsN sN−1 · · · eβJsi+1sisie
βJsisi−1 · · · eβJsj+1sjsje

βJsjsj−1 · · · eβJs2s1 .

(5.9.19)
This formula can be rewritten as

〈si+rsi〉 =
1
ZN

(1, 1)T N−i−rσT r+1σT i−1

(
1
1

)
, (5.9.20)

where

σ =
(

1 0
0 −1

)
. (5.9.21)

Using the diagonalization of T , we have

〈si+rsi〉 =
1
ZN

(1, 1)[U−1ΛN−i−rU ]σ [U−1Λr+1U ]σ [U−1Λi−1U ]
(

1
1

)
. (5.9.22)

To compute this further, we note that the magnetization is zero. That is, for any
j

〈sj〉 =
1
ZN

(1, 1)U−1
[
ΛN−jUσU−1Λj

]
U

(
1
1

)
= 0 (5.9.23)
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Now, pay attention to the factor in the square brackets:(
λN−j

+ 0
0 λN−j

−

)
UσU−1

(
λj

+ 0
0 λj

−

)
(5.9.24)

This is dominated by
λN−j

+ [UσU−1]11λ
j
+ (5.9.25)

so for any i (recall that ZN ∼ λN
+ )

〈si〉 '
1
ZN

λN
+ [UσU−1]11 ' [UσU−1]11 = 0. (5.9.26)

This implies that

〈si+rsi〉 '
1
ZN

(1, 1)U−1
{
λN−i−r

+ [UσU−1]12λr
−[UσU−1]21λi−1

+

}
U

(
1
1

)
. (5.9.27)

Therefore,
〈si+rsi〉 ∼ (λ−/λ+)r. (5.9.28)

The above consideration clearly indicates that as long as the transfer matrix is a
finite matrix no phase transition exists. If the interaction range is not finite, then
the transfer matrix is no more finite-dimensional and there is a possibility that even
a 1D system can have phase transitions (as we know for the Kac model in 1D).

Exact solutions are very useful of course, but the reasons for successfully solving
a problem exactly may be a rather unimportant peculiarity from the physics point
of view. In 2-space the richness of the conformal symmetry group is often a major
reason for exact solutions and the reason is not at all trivial or mere peculiarity, but
still two dimensional world is an extremely special world. Was the Onsager exact
solution for the 2-Ising model decisive for the understanding of phase transition?76

There are people who say that Onsager’s result for the first time demonstrated that
the equilibrium statistical mechanics framework could capture phase transition, but
Peierls’ work was far before the exact solution.

76Onsager’s much greater contribution to statistical physics is his contribution to nonequilibrium
theory. This point seems often ignored as can be seen explicitly in S. G. Brush, Statistical Physics
and the Atomic Theory of Matter, from Boyle and Newton to Landau and Onsager (Princeton UP,
1983).
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5.10 Real space renormalization

Kadanoff’s idea may be summarized as follows:
We introduce some method B to coarse-grain the system. This method also dictates
the extent of the spatial scale reduction rate `. The coarse-graining method B
may be understood as a map from a configuration S (this may be a field or spin
configuration {si}) of the original system to a configuration of the reduced system.
Fig. 5.10.1 illustrates two examples. The important point of K is that it is a map:
given a configuration S, K(S) is unique. However, it is not an injection (one-to-one
map), since it is a kind of coarse-graining.
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Fig. 5.10.q 1 Left: Decimation of 1-Ising model, ` = 2; Right: Blocking of 3 spins of the triangular
lattice 2-Ising model. ` =

√
3. The value of the block spin is determined by the majority rule: the

block spin is up (down) if two or more spins being blocked are up (down).

We wish to compute the partition function

Z =
∑

S

e−H(S), (5.10.1)

where the microstate (or the microscopic configuration) is denoted as S. Here, β =
1/kBT is not explicitly written; as we will see soon, there is no point to separate
temperature out, because the coefficients in the coarse-grained (or renormalized)
Hamiltonian depend in a complicated way on temperature. Let K(S) = S ′, where
S ′ is the coarse-grained configuration, which is a microstate for the coarse-grained
system, as illustrated in Fig. 5.10.1. We introduce a generalized Kronecker δ:

∆(C,C ′) =

{
1, if C = C ′,
0, otherwise,

(5.10.2)
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where C and C ′ are configurations of a given system. Since K is a map, for any fixed
S ∑

S′

∆(K(S), S ′) = 1. (5.10.3)

Therefore, obviously we have

Z =
∑

S

[∑
S′

∆(K(S), S ′)

]
e−H(S). (5.10.4)

Now, we change the order of summations:

Z =
∑
S′

[∑
S

∆(K(S), S ′)e−H(S)

]
. (5.10.5)

We may define the Hamiltonian H(S ′) for the coarse-grained system as

H ′(S ′) = − log

[∑
S

∆(K(S), S ′)e−H(S)

]
, (5.10.6)

which defines the coarse-grained system on the coarse-grained lattice. We may
rewrite the partition function as77

Z =
∑
S′

e−H′(S′). (5.10.7)

If K blocks adjacent k spins into a single ‘block spin,’ H ′ is a spin Hamiltonian for
block spins.

In this way H ′ is constructed from H. As the examples in Fig. 5.10.1 illustrate,
H ′ can live on a lattice that is similar to the original lattice. Actually what we have
accomplished by H → H ′ is a construction of the renormalization group transforma-
tion R with ` being geometrically easily read off from the figures (` = 2 for the 1D
Ising decimation and ` =

√
3 for the triangle lattice example).

As a simple example, let us study 1-Ising model with the aid of decimation. This
procedure thins the spins through summing over a subset of spins, keeping the rest

77As the reader may have noticed, more generally, ∆ may be replaced with a nonnegative function
P (S, S′) such that

∑
S′ P (S, S′) = 1.
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fixed. Look at Fig. 5.10.1(left). The partition function reads (here, K = βJ ; we
absorb β into the original Hamiltonian)

Z =
∑
s,σ

· · · eK(s−1σ0+σ0s1) · · · , (5.10.8)

where spins at the even lattice positions are written as σ. We sum over all σ states.
The result is a product of the terms of the following form:∑

σ=±1

eK(s−1σ0+σ0s1) = 2 coshK(s−1 + s1). (5.10.9)

Equating this with the form ∝ eK′s−1s1 , we can fix K ′ with the aid of the fact that
s2 = 1:78

K ′ =
1

2
log cosh 2K. (5.10.10)

Thus, we have constructed a map from the original Hamiltonian to the coarse-grained
Hamiltonian with ` = 2:

H =
∑
i∈Z

Ksisi+1 → H ′ =
∑

i/2∈Z

K ′sisi+2. (5.10.11)

Starting from some positive K and iterating (5.10.10), we see (e.g., graphically)
clearly that K → K ′ → · · · → 0 quickly, consistent to the fact that there is no phase
transition for T > 0.

Let us study a more interesting example: the triangular lattice Ising model.q In
contrast to the 1D case, in higher dimensions it is generally the case that coarse-
graining produces multi-spin interactions, even if the original model contains only
binary spin interactions as in the present example.79. However, we wish to be as
simple as possible, so we use a (crude but still interesting) approximation that un-
der K illustrated in Fig. 5.10.1(right), the Hamiltonian preserves its shape (that

78If one wishes to be more precise, assume eA+K′s−1s1 . If the spin sum is zero, 2 = eA−K′
;

otherwise, 2 cosh(2K) = eA+K′
, so we obtain e2K′

= cosh(2K). The free energy of the original
system cannot be determined by H ′ only, but depends on A as well. In reality, the contribution of
A is larger, but it does not have the singularity that is responsible for the critical singularity. The
free energy fs in Kadanoff’s theory was just the singular part removing this contribution of A.

79This is the explanation of why as soon as renormalization transformation is applied the system
leaves the natural trajectory in Fig. 5.7.3. Here, we assume that the form of the Hamiltonian does
not change. This is equivalent to assuming that the RG flow and the ‘natural trajectory of the
system’ agree. We can see from Fig. 5.7.3 that we study the trajectory going through H∗.
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is, we assume that the RG flow does not leave the phase diagram. Recall Section
5.7.):80

H =
∑

Ksisj + hsi → H ′ =
∑

K ′s′αs
′
β + h′s′α, (5.10.12)

where s′α, etc. denote the block spins defined by the majority rule: if two or more
spins are up (down) in the block, the block spin is up (down). Fig. 5.10.2 explains
the block spins more explicitly.

α

β
1

2 3

1
2 3

Fig. 5.10.2q Triangular lattice and the
block spins α and β. 1, 2, 3 denote the original
spins (small black dots). The rounded triangles
denote block spins, and gray disks indicate the
positions of the block spins.

For simplicity, let us study the small h case; we ignore its effect on the coarse-
grained coupling constant. Since we are interested in the macroscopic global behavior
of the mode, we need not worry about the intrablock spin interactions.81 Therefore,
the ‘block spin α’-‘block spin β’ interaction energy must be equal to the sum of
interaction energies among the original spins belonging to different blocks. Thus, as
can be seen from Fig. 5.10.2, we may demand

K ′s′αs
′
β = K(sα2sβ1 + sα3sβ1) (5.10.13)

on the average (we cannot demand this exactly). That is, the block spin α-β inter-
action is supported by two ‘actual’ interactions: interactions between β1 spin and
α2 and α3 spins.

If we wish to relate K and K ′, we must relate s and s′. The basic idea is that
near the critical point the correlation length ξ is large, so

K ′s′αs
′
β = K(〈sa2〉s′α〈sβ1〉s′β + 〈sa3〉s′α〈sβ1〉s′β), (5.10.14)

80More accurate handling of this problem can be seen in Th. Niemeijer and J. M. J. van Leeuwen,
“Wilson theory for spin systems on a triangular lattice,” Phys. Rev. Lett. 31, 1411 (1973).

81They shift the origin of the free energy, but it has nothing to do with the correlation length, so
they correspond to the non-singular part of the free energy.r Recall that we discussed the singular
part of the free energy; we are picking up the singular part only.
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where 〈s〉s′ is the average of the original spin s in the block spin whose value is s′ (a
conditional average), and

s′α = sgn(〈sα1〉s′α). (5.10.15)

The following table tells us the original spin configuration compatible with s′α = +1
(i.e., the majority up). The last line in the table is the internal energy of the block
spin that determines how a particular internal configuration is likely.

+−++
+

+
+

+
+

+
−

−

αs 1 +1 −1+1+1

energy +K−3K +K +K

Therefore, we obtain

〈sα1〉+ = φ(K) ≡ e3K + e−K

e3K + 3e−K
. (5.10.16)

By symmetry 〈sα1〉− = −〈sα1〉+, so we can write

〈sα1〉s′α = φ(K)s′α. (5.10.17)

We have obtained all the ingredients to relateK andK ′. (5.10.13) now reads

K ′s′αs
′
β = 2Kφ(K)2s′as

′
β, (5.10.18)

or
K ′ = 2Kφ(K)2. (5.10.19)

It is clear that there is no point to separate kBT = 1/β out in the Boltzmann factor;
even if K may be written as βJ for some T -independent J , the T dependence of K ′

is not this simple.

Since we have assumed that h is small, we may simply ignore its effect on K ′, and
we require

h′s′α = h(sα1 + sα2 + sα3), (5.10.20)

so we immediately obtain
h′ = 3hφ(K). (5.10.21)

This completes our construction of R : (K,h)→ (K ′, h′). ` =
√

3.

We must not forget what we are really doing. Look at Fig. 5.7.3 again. We
are looking at the flow due to R in the Hamiltonian space. In the present case we
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have parameterized the Hamiltonians in terms of K and h (or we have introduced
the coordinate system (K,h) to the unstable manifold of the critical point in the
Hamiltonian space), so we can describe the Hamiltonian flow in this two dimensional
space.82 For small h we may rely on (5.10.19) and (5.10.21) to study the flow in
this space, the (K,h)-plane. First, let us look for fixed points KF , hF determined
by

KF = 2KFφ(KF )2, hF = 3hFφ(KF ). (5.10.22)

KF = 0 is certainly a solution, but φ = 1/
√

2 gives K∗ = (1/4) log(1 + 2
√

2) '
0.3356 · · ·. For all KF hF = 0 is a solution. There is no other finite solution.83 That
is, (K,h) = (0, 0) or (K∗, 0) are the fixed points.84

h

K

Fig. 5.10.4 The RG flow for the triangular lat-
tice Ising model in the (K,h)-plane. The black
dot denotes the location of the nontrivial fixed
point (K∗, 0). The origin is also a fixed point.
This figure corresponds to Fig. 5.7.2; larger K
corresponds to lower temperature.

We have already seen that the critical surface is a codimension 2 manifold,85 and
the stable fixed point in it corresponds to the critical point. The critical point
has a 2-dimensional unstable manifold. The (K,h)-plane we have considered above
corresponds to this unstable manifold. Thus, the unstable fixed point (K∗, 0) is the
critical point.

In the Kadanoff construction the coordinate system (τ, h) spans this manifold. As
can be seen from Rτ = τ`y1 , we must study the local behavior of R near the critical
fixed point (see Fig. 5.7.3 again).r That is, we have only to study the linearization of
R around the critical point Hamiltonian H∗. Let the deviation of Hamiltonian from
H∗ be δH.q Then, we study

R(H∗ + δH) = RH∗ +DRδH = H∗ +DRδH, (5.10.23)

where DR denotes the derivative (or the Jacobi matrix) of R at the fixed point H∗.

82Actually, this 2-space is an approximation of the unstable manifold of H∗ (the orthogonal
complement of the critical surface) as will be discussed soon.

83Don’t divide the equation with zero.
84KF =∞ is a fixed point corresponding to the ordered phases or T = 0.
85That is, there are two directions that are not contained in this surface, or there are a plane (=

a two-dimensional object) perpendicular to the tangent to this surface.
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That is, we study the linearized flow near the fixed point:

δH ′ = DR(H∗)δH. (5.10.24)

The eigenvalues of DR is the power of `
Let us explicitly write the scaling factor ` for the renormalization transformation as
R`. A very important property of R` is

R`R`′ = R``′ . (5.10.25)

This implies (the chain rule; cf. d(f(g(x))/dx = f ′(g(x))g′(x))

DR``′(H) = DR`(R`′(H))DR`′(H), (5.10.26)

so at the fixed point
DR``′(H∗) = DR`(H∗)DR`′(H∗). (5.10.27)

Let λ(`) be an eigenvalue of DR`(H∗). Then, (5.10.27) implies

λ(``′) = λ(`)λ(`′). (5.10.28)

Since we may assume that λ(`) is a continuous function of `, (5.10.28) implies that

λ(`) = `α. (5.10.29)

In this way, RG completely justifies the Kadanoff construction near the critical fixed
point.

Now, let us complete our study of the triangular lattice Ising model, computing
the critical exponent ν. Our map R` : (K,h) → (K ′, h′) with ` =

√
3 given by

(5.10.19) and (5.10.21) can be linearized around the nontrivial fixed point (K∗, 0)
(the parametric representation of H∗) as (derivatives are evaluated at the nontrivial
fixed point)

DR`(K
∗, 0) =

(
∂K′

∂K
∂h′

∂K
∂K′

∂h
∂h′

∂h

)
. (5.10.30)

Since in our approximation K ′ is not affected by h, the eigenvalues are simply read
off as

λ1 =
dK ′

dK
= 1.634 · · · , λ2 =

∂h′

∂h
= 3φ(K∗) =

3√
2
. (5.10.31)

The eigenvalue related to the temperature is λ1. Our general discussion tells us that
y1 is related to this as λ1 = `y1 , where ` =

√
3 (the increase of lattice spacing by

blocking spins) in our example. Therefore,

y1 = log 1.634/ log
√

3 ' 0.8939 · · · , (5.10.32)
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which is 1/ν, so ν = 1.1187 · · ·. The exact value is 1. The reader may think the
result is not impressive, but the mean field theory gives 1/2. Incidentally, y2 =
log(3/

√
2)/ log

√
3 = 1.368 · · ·. The exact value is y2 = (γ + β)/ν = 15/8 = 1.875,

and the mean field theory gives 3.86

5.11 Field theoretical model and renormalization

Real space renormalization group procedures coarse-grain the spatial configurations,
so we can expect that continuous field theory should be enough to describe the second
order phase transition. There are several approaches to construct field theoretical
models from the usual microscopic models, but none of them is well controlled.87

Therefore, for practical physicists the best way is to write it down using her intuition
and some general constraints such as symmetry.88

We write the Hamiltonian in the following form:

H =

∫
ddrL, (5.11.1)

where L is the Hamiltonian density89 that is a local function of the ‘order parameter
field’ φ and its spatial derivatives. As an order parameter here we choose naively
something that is zero in disordered phases and nonzero otherwise. The magnetiza-
tion density is a respectable order parameter for magnets.90

First of all, we are interested in the systems for which spatially uniform phases
away from the phase transition temperature are stable. For such systems nonzero

86β = 0.704 (the exact value is 1/8= 0.125; the mean field value is 1/2), γ = 0.827 (the exact
value is 1.75; the mean field value is 1). α = −0.236 (the exact behavior is logarithmic singularity;
the mean field singularity is discontinuity).

87It is generally believed that making the renormalization group method rigorous is the only way
to control this.

88That is, use of abduction in the sense of Peirce is the most appropriate. See Y. Oono, The
nonlinear world (Springer, 2012) Chapter 4.

89The symbol L is used because this is the (Euclidean version of ) the Lagrangian density in the
ordinary quantized field theory.

90The order parameter field may be (appropriately normalized) number density for fluids, or
(appropriately normalized) concentration difference for binary mixtures.
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gradient of the field should be energetically penalized. Thus, L should at least con-
tain the term like

L = a(∇φ)2 + · · · , (5.11.2)

where a is a positive constant.91 Here, we have assumed that our system is macro-
scopically isotropic and uniform = rotationally and translationally symmetric. We
must not forget at what length scale we wish to use the continuum field model.
We wish to perform statistical mechanics (statistical field theory) starting with the
Hamiltonian we are constructing. Therefore, we are seeking for a description at the
‘mesoscopic scale.’ That is, the minimum discernible scale is much larger than the
lattice spacing, but is much shorter than the correlation length near the critical point.
The nonlinear behaviors we observe macroscopically are due to large scale fluctua-
tions, so they should not exist at our mesoscopic Hamiltonian level. Therefore, we
expect that the restoring dynamics is linear. Now, as the meaning of the Laplacian
discussed before tells us that the leading order contribution must be a quadratic form
of the gradient.

If the temperature is high (T > Tc), the local average of φ should be zero. That is,
L must favor φ = 0. The easiest way to realize this is to add L a term proportional
to φ2:

L = a(∇φ)2 + bφ2 + · · · , (5.11.3)

where b > 0.92 If T < Tc, φ 6= 0 must be encouraged. That is, φ = 0 must be
energetically penalized. The easiest way is to flip the sign of b in (5.11.3). However,
then indefinitely large |φ| is encouraged, and the system becomes unstable. To
stabilize the system or to confine φ in a finite range, we must penalize too large φ.
The easiest way is to add a term proportional to φ4:

L = a(∇φ)2 + bφ2 + cφ4, (5.11.4)

where c > 0. We can change the space length unit, and also scale the field appropri-
ately,93 so we may set a = 1/2 without any loss of generality. Thus, we have arrived
at a model defined by the Hamiltonian:

H =

∫
ddr

[
1

2
(∇φ)2 +

1

2
τ0φ

2 +
g0

4
φ4

]
, (5.11.5)

91(∇φ)2 implies the scalar product = (∂1φ)2 + (∂2φ)2 + · · ·; this is a standard abuse of symbols
in physics.

92Again, we wish to have a linear equation for small fluctuations, so the lowest order term is
quadratic in φ. Although this is a plausible motivation, the final judge of any model is Nature.
Therefore, a sensible strategy of model building is to make the simplest and mathematically best
behaved model, and check its outcome. If it does not work, let us make a more sophisticated model.

93φ is the variable over which we take sum when we compute the partition function, so it is a
dummy variable.
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where τ0 and g0(> 0) are constants. This is the celebrated φ4
d model. Such continu-

ous Hamiltonians defined by simple polynomials are generically called the Ginzburg-
Landau Hamiltonian.

To understand the importance of the parameters,94 let us perform dimensional
analysis of the model. The key observation is that H is dimensionless:95

[H] = 1. (5.11.6)

Since integration is dimensionally equivalent to multiplying length, and since differ-
entiation is equivalent to dividing with length, we have[∫

ddr(∇φ)2

]
= Ld([φ]/L)2 = 1. (5.11.7)

Here, L is the dimension of length. From this, we obtain

[φ] = L1−d/2. (5.11.8)

Using this and [H] = 1, we obtain[∫
ddrτ0φ

2

]
= [τ0]L

d(L−1d/2)2 = 1 ⇒ [τ0] = L−2. (5.11.9)

The result may be read off immediately, if [τ0] = [∇2] is recognized by comparing
the two terms in the Hamiltonian. Using this approach, we immediately obtain
[g0φ

2] = [τ0], or
[g0] = Ld−4 = L−ε, (5.11.10)

where ε = 4− d, famous for the ε-expansion.

Suppose we are interested in phenomena observable at the scale L. Then, whether
a parameter is important or not may be discussed in terms of dimensionless parame-
ters containing the parameters and L. τ0L

2 is such a dimensionless parameter. This
is large, if L is large. That is, if we are interested in macroscopic observables, τ0 is
important. g0L

ε is also dimensionless, so if the spatial dimensionality is less than 4,
we must respect g0.

96 These parameters are called relevant parameters. By the way,

94Do not forget the field is a dummy variable that are integrated out, so the parameters are the
only physically meaningful quantities.

95because the probability should not change even if we change units.
96Of course, we must if τ0 < 0, but what is meant here is that even if τ0 > 0.
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if a parameter is relevant, its effect is decisive, but as we have just seen, if ε is very
small, then it is almost marginal (that is, dimensionless or in the present context,
L-independent) and the nonlinear effect may be treated perturbatively. This is the
idea of the ε-expansion method.97 Here, ‘perturbatively’ does not imply that the
perturbation series converge. They should not, if the effect of g0 is interesting, that
is, causes qualitative differences. Thus, the perturbation series are divergent, and
are at best asymptotic.98

We can also make a dimensionless parameter g0τ
−ε/2
0 . If we are close to the crit-

ical point this quantity becomes large in 3-space. That is, we cannot ignore the
nonlinear term ∝ φ4. In other words, we must respect large fluctuations as we know

well already. Thus, for g0τ
−ε/2
0 > 1, the mean field theory becomes unreliable. This

criterion is called the Ginzburg criterion.

Our ‘derivation’ of the field theory above looks quite arbitrary. Therefore, it
is natural to consider a more general Hamiltonian than the φ4

d-model (the suffix d
means the spatial dimensionality) called P (φ)d-model (P is for ‘polynomial’) with
the Hamiltonian density L given by

L =
1

2
(∇φ)2 +

1

2
τ0φ

2 +
1

4
g0φ

4 + · · ·+ 1

2n
u2nφ

2n. (5.11.11)

For example, let us look at u6. We have

1 = [u6][φ]6Ld = [u6]L
6−3d ⇒ [u6] = L2d−6. (5.11.12)

For d = 3 this is marginal and is irrelevant for d > 3. We cannot always ignore it in
3-space but the correction is not large.99

Building up of ‘low power terms’ from higher power terms
The reader might have thought, if g0 = u6 = 0 and τ0 > 0, then we need not
worry about ‘nonlinear terms.’ However, do not forget that, for example, the φ8

term looked ‘from distance’ (i.e., after renormalization) looks like the φ4 term. If
the Feynman diagram for the φ2n term is drawn, it is easy to see that it expresses
a ‘collision’ (nonlinear interaction) effect among n harmonic components (modes)
of fluctuations. Look at the ‘collision’ among two high (spatial) frequency modes
and two low frequency modes from distance. It may look like a collision of two low

97K. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,” Phys. Rev. Lett. 38,
240 (1972).

98Warning Divergence and asymptoticity do not have any logical relation; an asymptotic series
need not be divergent nor a divergent series asymptotic.

99This is effective only when the φ4 term cannot stabilize the system.
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frequency modes locally modulated by high-frequency modes, so it is effectively a two
body collisions. Thus, the model with L = (1/2)(∇φ)2 + τ0φ

2 + u100φ
100 describes

phenomenologically the same phenomenon as the φ4 model; they are in the same
‘universality class.’

It should also be clear to the reader that the φ4 term modifies the φ2 term. This
implies that to describe the critical phenomenon, τ0 < 0 must be carefully chosen.

How about higher order spatial derivatives of φ? For example, we could imagine
a term a(∇φ)4. Its dimension is [a]L−2d, so we may ignore it when we are interested
in large scale phenomena.100 Such parameters are called irrelevant parameters. We
can easily see the higher order derivative terms such as (∆φ)2 can be ignored.

We may conclude that the φ4
d-model is enough to describe the critical phenomenon.

If we wish to make a continuum field theory without cutoff ` (or more com-
monly, without the cutoff momentum Λ), the dimensionless parameter of interest is
Λ−{2n−(n−1)d}u2n. If this quantity diverges in the Λ → ∞ limit, the operator φ2n

is said to be non-renormalizable in field theory (or in high energy physics). The
theory with such a term is not well defined as a continuum field theory, because we
cannot take the continuum limit Λ → ∞. If Λ−{2n−(n−1)d}u2n vanishes or finite in
the Λ→∞ limit, we say the operator is renormalizable.

Notice that nonrenormalizable quantities correspond to irrelevant quantities (see
Fig 5.10.1).
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Fig. 5.11.1 Irrelevant vs. relevant or
nonrenormalizable vs. renormalizable
effects. Here L is the length scale and `
is the cutoff length scale (` ∼ 1/Λ).

If the effect of a certain microscopic term converges in the macroscopic limit to the
same limit, then we may ignore it from the theory, because it does not give different
results for macro-observables of different systems. If the macroscopic limit does not
converge, it means that a small change in the term must have serious effects on the
macroscopic observables. Therefore, its effect must be subsumed into a macroscopic
parameter (e.g., materials constant) that alters macroscopic observables.

100Of course, we ignore the ‘building up’ of lower order powers as explained above.
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We have come to a conclusion: if we wish to study macroscopic universal behav-
iors of a system, we have only to take into account the renormalizable terms when
we make a model. Nonrenormalizable terms can simply be ignored. Therefore, a
field theory that explains our low energy world can be assumed to be renormaliz-
able. That is, renormalizability may be used as a criterion for a respectable theory.
Emerging from this conclusion is a view that all the field theories are phenomeno-
logical theories.101

What actually does renormalization group (RG) do? Or, what can we obtain by
RG? Let us look at a typical result. For T > Tc, the correlation length behaves
as

ξ = A(T − Tc)
−ν . (5.11.13)

Here, T and ξ are observables; A and Tc are materials constants; ν or the functional
structure x−ν is the universal structure. This universal structure is for a class of
phenomena or materials (e.g., sharing the same spatial and spin dimensionality).
Another example is the size of a polymer chain in a solvent: its mean square end-to-
end distance reads

〈R2〉 = AM2ν , (5.11.14)

where the LHS and the molecular weight M are observables, A is a materials con-
stant (depending on the polymer-solvent pair), and x2ν is the universal functional
form. This holds for any pair of a sufficiently long polymer chain and a solvent that
dissolves the polymer well. Thus, we see the following general structure in the RG
results:

Phenomenology = Universal Structure + Materials Constants. (5.11.15)

Here, “Phenomenology” means a general description of a class of phenomena, and
“Materials Constants” means something dependent on the individual idiosyncrasy
of each system; the fetish part in Fisher’s terminology. We call a collection of phe-
nomena or systems sharing the same universal structure a universality class. The
concept of universality was consciously introduced by Kadanoff.102 From this point
of view, the principal aim of statistical physics is to identify universality classes and

101The following review article is strongly recommend: K.-I. Aoki, “Introduction to the non-
perturbative renormalization group and its recent applications,” Int. J. Mod. Phys. B 14, 1249-1326
(2000).

102He once told the author that when he started to study critical phenomena, he assumed every-
thing was universal; then by and by it turned out to be known that there are different universality
classes.
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study their universal features.

The aim of the previous section was to explain a method to extract universal
features of a system. The guiding idea is to observe a system from distance with
fixed eyesight; what continues to be observed should be universal. The strategy com-
bining coarse-graining and shrinking is called the Wilson-Kadanoff renormalization
group method. On the other hand, there is an approached based on our observation
(5.11.15); if we alter microscopic details (this could be changing materials) the sec-
ond term of (5.11.15) changes. This change is often very sensitive to the alteration
(see Fig. 5.11.1), if we could isolate microscopic-detail sensitive parts, the rest should
be selected as the universal features. The renormalization group method based on
this idea is called the Stückelberg-Petermann renormalization group method.103

5.12 Spontaneous symmetry breaking

rIf an equilibrium state (precisely, a pure Gibbs state) has a symmetry group which
is a genuine subgroup of the symmetry group of the system Hamiltonian, we say
the symmetry is spontaneously broken. Certainly, the symmetry is spontaneously
broken below Tc for 2-Ising model. In this case the symmetry that is broken is
described by a discrete group (up-down symmetry).104 Really interesting cases of
spontaneous symmetry breaking occur if the broken symmetry is continuous such as
rotation.105

Consider a Heisenberg magnet as an example (cf. Fig. 5.12.1).

103This is the so-called field-theoretical renormalization group theory, and was invented in the
1940s. However, it is fair to say that its true meaning was not understood until the advent of
the Wilson-Kadanoff renormalization group method. As an introductory textbook, M. Le Bellac,
Quantum and Statistical Field Theory (Oxford 1991) may be recommended. Field theoretical renor-
malization is technically rather complicated, but the basic idea can be understood without technical
difficulty as is explained with the aid of the von Koch curve. This and a sample calculation of field
theoretical renormalization group calculation (ε-expansion) can be found in Supplementary Pages.
See also Chapter 3 of Y. Oono, The Nonlinear World (Springer, 2012).

104Z2 group.
105O3.
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symmetry breaking

transition

Fig. 5.12.1 Symmetry breaking results in
an ensemble of symmetry broken phases col-
lectively representing the whole symmetry of
the system. (This illustration corresponds to
a transition from a paramagnetic phase to a
ferromagnetic phase.)

When a spontaneous breaking of a continuous symmetry occurs, there are two
important consequences, development of collective excitations called the Nambu-
Goldstone bosons (NG bosons) and the (generalized) rigidity in the ordered phase.
The NG bosons refer to long wave length collective excitations in the ordered phase
(like acoustic phonons = sound waves in solids) whose excitation energy tends to zero
in the long-wavelength limit. Rigidity implies that the change of the order parameter
in a small part of the system propagates throughout the system (like the rigidity of
a solid body: if one end is twisted, the other end follows).106

The reason for these consequences is easy to understand, if we pay due attention
to the nature of breaking of the continuous symmetry. All possible symmetry broken
phases (see Fig. 5.14.1) have the same energy, because they can be transformed into
each other with an element of the symmetry group of the system Hamiltonian. A
local deformation is energetically unfavorable, so the system changes to a new phase
compatible with the local deformation to remove the excess deformation energy. This
change is observed as the manifestation of rigidity. The energy cost per unit cross-
sectional area of deformation of the order parameter field along an axis (say, x-axis)
may be estimated as ∫ L

0

(
∂φ

∂x

)2

dx '
(
δφ

L

)2

L =
(δφ)2

L
, (5.12.1)

where δφ is the overall change of the order parameter. This implies that if L (the
total length) is large enough, the total energy required to deform by δφ can be made
indefinitely small. Thus, excitation of long-wavelength deformations is energetically

106The change in a ‘small part’ is in this case kept by an external means. Then, the change
eventually propagates to the whole system (i.e., any indefinitely large finite domain follows). Notice
that an equilibrium state is stable under any perturbation of any finite domain, if the perturbation
is left unconstrained. Do not mix up these different situations.
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without any cost, the existence of the NG bosons.

A more explicit illustration with the aid of the spin system (or the φ4 system)
with spin dimension 3 (the Heisenberg model) is as follows. Suppose the spin density
φ (a 3-vector) is governed by the following Hamiltonian density:107

L =
1

2
(∇φ)2 + V (φ), (5.12.2)

and a spontaneously broken symmetry phase is described by φ = e3 (the magneti-
zation is in the third coordinate direction; we assume that V (e3) = 0 is a minimum;
we assume a ‘Mexican hat shaped’ V : Fig. 5.14.2).

Let us expand L around this, writing φ = e3 + θ:

L =
1

2
(∇θ)2 +

1

2
V33θ

2
3 + · · · . (5.12.3)

Due to the symmetry of the potential there is no restoring potential in the directions
perpendicular to the magnetization (order). Therefore, say, the first component is
governed by

1

2
(∇θ1)

2, (5.12.4)

so the dispersion relation for, e.g., diffusive modes is ω ∝ k2, that is, long-wave
length excitation costs very little. This is an illustration of the NG excitations.

V

φ3

Fig. 5.12.2 The free energy (Landau po-
tential) under symmetry breaking. The
potential is rotationally symmetric, but in the
ordered phase, the magnetization points in a
particular direction. Suppose it is the third
coordinate direction. The third component has
a restoring force to keep it nonzero, but for
the remaining components there is no restoring
force along the circular trough.

As can be seen from (5.12.4), the correlation of the displacement in the x-direction
reads

〈θ1(r)θ1(0)〉 ∼
1

rd−2
(r →∞). (5.12.5)

107(∇φ)2 implies (∇φ1)2 + (∇φ2)2 + (∇φ3)2.



326 CHAPTER 5. PHASE TRANSITIONS

(for d = 2 this is log r.) This is an alarming result, because it suggests a peculiar
behavior in d = 2. Indeed, this is the case: there is no symmetry broken phase in
d = 2 for n ≥ 2 systems (the Mermin-Wagner theorem).108

If there is a long range interaction (as in plasmas), however spatially-gently one
changes the order parameter, one cannot lower the needed energy cost, because sig-
nificantly different orientations interact directly through space. Therefore, the NG
boson is not expected to exist. Indeed, in plasmas, the so-called plasma oscillation
(plasmon) has a lower energy cutoff.

We can summarize representative examples.109

solid Heisenberg ferro superfluid
Broken Symmetry 3D translational rotational phase
Order 3D periodicity ferromagnetism superfluidity
NG boson acoustic phonons spin wave second sound
Rigidity rigidity ferromagnetism superfluidity

If the system is finite, there is no symmetry breaking.110 Fig. 5.12.1 implies the
following difficulty: if we compute the partition function of a system as usual

Z =
∑

Γ

e−H , (5.12.6)

because the sum is over all the possible microscopic states, the resultant Z or the
free energy of the system is completely symmetric, that is, its symmetry group is
identical to that of the microscopic Hamiltonian. This statement is true if the system
is finite, because the sum is a finite sum. Thus, taking the thermodynamic limit
and introducing Gibbs states are absolutely needed to make a rational and simple
framework to understand spontaneous symmetry breaking.

When the intrinsic symmetry is broken, how is a particular phase selected in the

108It asserts that there is no ordering for 2D Heisenberg model. This is readily extended to include
the 2D XY model. The theorem is much harder to prove than the Lee-Yang circle theorem (see
IRG Lecture 30 for a proof).

109About this section, a strongly recommended reference is: P. W. Anderson, Basic Notions of
Condensed Matter Physics (Westview Press 1984, 1997), Chapter 2.

110To state more practically, the state with a broken symmetry has a life time. For example, for
a very small crystal, thermal fluctuation could spontaneously rearrange the crystal axes. Needless
to say, if a crystal is not very small such fluctuations occur only very rarely. The agreement of its
behavior to the behavior in the thermodynamic limit is practically perfect, because the life-time
of a give orientation is very long. However, mathematically, or theoretically, it is still not a true
equilibrium state, so thermodynamic limit is taken.
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real world? This is selected by extremely small fortuitous external effects or even
without such effects by intrinsic thermal fluctuations. If there is a weak external
field, the system would react very sensitively to it. Therefore, if one wishes to
study a particular phase with the aid of statistical mechanics an appropriate weak
field conjugate to the order parameter is introduced to the system Hamiltonian to
select the phase. After computing its thermodynamic limit, the field is set to zero.
This limit must be take after the thermodynamic limit; if taken zero before the
thermodynamic limit, the symmetry breaking field effect disappears. Symmetry
breaking means that the thermodynamic limit and the conjugate-field zero limit are
not commutative.

5.13 First-order phase transition

The most fundamental macroscopic description of a macrosystem in equilibrium is
in terms of thermodynamic coordinates. The entropy as a function of the thermody-
namic coordinates gives the most complete thermodynamic description of the system.
In other words, if we know the internal energy as a function of entropy and work
coordinates as E = E(S, V, · · ·), we have a complete thermodynamic description of
the system. Generally, it was mentioned that phase transition is characterized by
a singularity in a certain thermodynamic potential. In terms of internal energy, a
phase transition occurs where the convex function E = E(S, V, · · ·) loses its smooth-
ness. Here ‘smoothness’ implies the holomorphy as a multivariable function. Since
a convex function is continuous, E cannot have any jump. Furthermore, as we see
from the Gibbs relation, its continuous differentiability must be satisfied in the re-
gion of thermodynamic space meaningful to the system. Thus, internal energy must
be a C1 convex function of entropy and work coordinates. Consequently, the worst
singularity is the loss of second differentiability. For example, the constant volume
specific heat can become not definable. We know at the critical point this indeed
happens.

If a C1 convex function loses twice differentiability, what can happen? Let us look
at one variable S of E. Let us assume that work coordinates (such as the volume) are
kept constant. Here we pay attention to the case in which the singularity is isolated.
We will not discuss more general cases. Fig. 5.13.1 illustrates E as a function of
S. The slope of this curve is temperature T . Something happening to the second
derivative implies that the temperature derivative of S (the constant volume specific
heat) has a singularity.
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Fig. 5.13.1. When twice differentiability is lost: In (A) it is assume that the second differentiability
has a problem at a single point a. In (B) this happens at two points a and b.

In (A) phase I and phase II have the same extensive variable values (the values of
thermodynamic densities) at a, so these two phases do not coexist. In this case the
order parameter may change continuously. In contrast, in (B) phase I and phase II
coexist at a temperature T (= given by the slope of the straight portion between a
and b). These two phases are distinct and have different densities. If some density
changes discontinuously at the phase transition, it is called a first order phase tran-
sition. Otherwise, it is generally called a higher order (usually second order) phase
transition; if two phases can coexist, the transition is first order. This happens for
(B) (however, even if the transition is first order, phases may not coexist; recall
the 2D Ising model). In case (A) a crude sketch of the energy function cannot tell
whether the transition is first order or higher.

rTo understand the coexistence of two phases under constant temperature dis-
cusssed above, it is convenient to use the thermodynamic potential one of whose
independent variables is temperature, that is, the Helmholtz free energy. It is ob-
tained by the Legendre transformation with respect to entropy. We have already
seen a general introduction to convex analysis. Here, let us see some detail when
there is a phase transition. We know A = infS[E − ST ]. If this is rewritten in the
form standard to convex analysis, it reads −A = supS[ST − E] (i.e., E∗ = −A).
Thus, the free energy is convex upward as a function of temperature (In Fig. 5.13.2
the convex function −A is illustrated).

If a first order phase transition happens and if two phases can coexist, there is a
‘linear’ portion in the graph of internal energy. This is mapped to a point by the
Legendre transformation (Fig. 5.13.2). As can be seen from this, when two phases
coexist, thermodynamic states that can be distinguished by thermodynamic coor-
dinates (intuitively, the states distinguishable by different ratios of two phases) are
identified and mapped to a single point by the Legendre transformation. In the ex-
ample illustrated in Fig. 5.13.1 phases with various entropy densities are mapped to
a point p designated by a single temperature Tp (the coexistence temperature). In
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Fig. 5.13.2. Left is just the same as Fig. 5.13.1 (B) and depicts Eas a continuously differentiable
function of S. E is linear between a and b, and the slopes at a and at b agree with the slope of the
linear portion. Phase I occupies left of a, and phase II right of b,and the linear portion describes
the coexistence of these phases. The slope of the linear portion is the coexistence temperature Tp,
corresponding to the break point p of the free energy graph on the right. All the coexisting phases
between a and b are mapped to a point p by the Legendre transformation.

this sense, Legendre transformations are not generally one to one transformation.
However, it should be noted that from the right graph in Fig. 5.13.2, we can com-
pletely reconstruct internal energy as a function of thermodynamic coordinates by
the inverse Legendre transformation E = supT [ST − (−A)] (i.e., E∗∗ = E). This is
the implication of the ensemble equivalence.

Up to this point we looked at the phase transition in terms of entropy or tem-
perature, but we already know that phase diagram can depend on other variables as
well. For example, we know the phase diagram exhibiting the solid-liquid-gas phase
diagram for a system consisting of simple molecules whose coordinates are T and P .
To glance at a more complicate situation, let us discuss the complete thermodynamic
description of this system in terms of internal energy E = E(S, V ), and its relation
to the description in terms of the Gibbs free energy G = G(T, P ), which is obtained
by the Legendre transformation of E with respect to S and V .

If we draw the graph of internal energy as a function of S and V , there are regions
surrounded by the ‘edges’ where second differentiation is not possible. First order
phase transitions occur in such regions. Fig. 5.13.3 is the graph of internal energy.
The regions designated by various ‘coexistence’ are ruled surfaces, and the line seg-
ments connecting two coexisting phases lie in such regions. The flat triangle marked
with t corresponds to the triple point. Generally speaking, flat (hyper) surfaces of
the dimension equal to or less than the number of independent variables (the line seg-
ments in the ruled surfaces in the above example) correspond to phase coexistence,
and at each point in such surfaces the ratio of the amounts of coexisting phases are
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Fig. 5.13.3 The convex function E = E(S, V ) looked up from below. Left is its rough sketch of the
internal energy ‘surface’ relief. It is only conceptual and not very accurate. Right is the graph of E
looked up from below in the direction of the gray arrow in Left. CP is the gas-liquid critical point.
The triangle (which is a flat surface) with t corresponds to the triple point. The surfaces extended
from the edges of the triangle are not flat but they are all ruled surfaces; several line segments are
drawn in the LS (liquid-solid) coexistence domain to show this. These line segments correspond to
the linear portion in Fig. 5.13.2 Left.

uniquely determined.111 The result of the Legendre transformation that uses T, P as
independent variables is illustrated in Fig. 5.13.4.

To study phase transitions, we should know what phases we can observe before-
hand. However, this is not an easy problem. In many cases experiments tell us the
existence of interesting phases, and then theories are constructed to explain their na-
ture and required microscopic interactions. Then, suppose we know existing phases.
How can we know what types of phase transitions we can expect? In many cases
mean field approaches are used heuristically, but as has already been warned, mean
field theories do not even have a guarantee to predict the existence of the phase
transitions. If a model is given in terms of the Ginzburg-Landau Hamiltonian, there
is a heuristic way that is often useful, which will be discussed in the next section.
The rest of this section looks at some topics relevant to the general features of first
order phase transitions.

111In the above example a triangular flat surface corresponding to the triple point. In this triangle,
the ratio of solid:gas:liquid is unique at each point. If there were a flat square, four vertex points
are not needed to uniquely specify the position on the square. Thus, the amounts of four phases
corresponding to the vertices to a point in the square are not uniquely determined. That is, the
phase rule is violated. However, it seems to be a difficult problem to know the microscopic condition
for the phase rule to hold.
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Fig. 5.13.4 Left: A convex upward function G = G(T, P ) (only its part is shown). CP is the
gas-liquid critical point, and t corresponds to the triple point. The entered curve is the phase
coexistence line, which has kinks. The relation between these kinks and the ruled surface in Fig.
5.13.3 is just parallel to that shown in Fig. 5.13.2. Right: the free energy change as a function of
temperature under constant pressure.

We have already discussed that a first order phase transition occurs if the coop-
eration among microscopic elements in the system is not sufficiently strong. Let us
see this explicitly within the mean field approximation. For a magnet, suppose that
if the (magnitude of the) magnetization per spin m becomes smaller, J in (5.8.8)
decreases as illustrated in Fig. 5.13.5.

J

m

Fig. 5.13.5 Order-dependent coupling constant
that induces a first order phase transition. If
the order parameter becomes small, the spin-spin
interaction becomes weak. In such a model the
order would precipitously decreases.

The self-consistent equation for the mean field now reads, instead of (5.8.8),

x = 2dβJ(x) tanhx. (5.13.1)

It is obvious that the model exhibits a first order phase transition near T = Tb

(slightly below this temperate) (see Fig. 5.13.6); At Tb a new non-zero fixed point
appears. The stability of solutions may be read off from the bifurcation diagram Fig.
5.13.7.
Below Tb there is a branch where m is not zero. The possibility of hysteresis (e.g.,
supercooling) can also be found. An equilibrium phase transition (or the coexistence
of two phases) occurs somewhere the branches corresponding to the coexisting phases
are stable. To determine the exact phase transition point requires an analogue of
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h h h

T > T T = T T < Tb b b

Fig. 5.13.6 A first order phase transition occurs slightly below Tb. To determine the exact phase
transition temperature, we need an analogue of Maxwell’s rule.

Maxwell’s rule (see Fig. 4.2.1 or Fig. 4.2.2).

m      hor

Tb

T
stable

stable

stable

unstable

unstable

Fig. 5.13.7 The bifurcation diagram for the
model that allows a first order phase transition.
The vertical arrows denote the evolving direction
of perturbation to the fixed point values of m at
various temperatures. We can at once see the
stability of the fixed points from the exchange of
stability occurring at every bifurcation. To de-
termine the exact phase transition temperature
(denoted by the dotted line in the figure; within
the mean-field theory) we need a rule parallel to
Maxwell’s rule.

If the cooperation effect is overwhelmed by an external field, phase transition can
occur. Below Tc 2-Ising model is in the up phase or down phase. If a small magnetic
field is applied, then the direction of the spins of one phase is stabilized relative to
the other phase. Let us discuss the phase transition induced by this change with the
aid of a mean field theory. Let us assume J is constant as in Section 5.8, and we
consider (5.8.7), i.e.,

x = 2dβJ tanh(x+ βh). (5.13.2)

Let us look at Fig. 5.13.8. Initially, there is no magnetic field, and the system is in the
‘down’ phase (spins are predominantly down; black disk). If a magnetic field pointing
upward is applied, the true equilibrium state must be the ‘up’ phase. However, if the
magnetic field is not too large, the island of up spins cannot stably exist in the ocean
of down spins unless it is larger than some size (larger than the critical nucleus size),
because the interface (phase boundary) free energy penalty is too large comparing to
the decrease of free energy due to the favorable magnetic field. Thus, the down phase
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Fig. 5.13.8 If the magnetic filed intensity is increased (the curve moves to the left), the stability of
the ‘down’ phase (black disk) diminishes, and becomes metastable until the curve reaches the thick
dotted curve. If the magnetic field is increased further, this ‘down’ phase become unstable, and the
phase jumps to the ‘up’ phase (white disk).

is metastable. If the magnetization becomes larger than the value corresponding to
the thick dotted line in the figure the down phase becomes unstable, and without any
nucleation the system goes to the up phase. If a bifurcation diagram is constructed
with the magnetization h as the parameter, it is easy to see what happens.

The picture just explained applies to many common first order phase transitions.
Magnetic field is the conjugate field of magnetization. In parallel to the illustration
in Fig. 5.3.3 for a fluid system (or a binary mixture system), pressure (or chemical
potential) may be regarded as the conjugate variable to the order parameter. Thus,
the first order phase transition that occurs when an external field is altered is very
common.

To make microscopic order sensitive to fluctuations, one method is to increase the
degree of freedom of the order parameter. From this point of view, an interesting
generalization of the Ising model is the p-state Potts model, where p is a positive
integer. In this model, at each lattice point is a variable (Potts spin) that can take
p different states (si ∈ {1, · · · , p}), and the system Hamiltonian reads

H = −J
∑
〈i,j〉

δsi,sj
, (5.13.3)

where J > 0 is a coupling constant. In short, if two Potts spins on the nearest
neighbor lattice points are in the same state, it is energetically stabilized; otherwise
the pair is destabilized. The Ising model is a 2-state Potts model. If p is large, then
aligning spins should become difficult, so the second order phase transition we know
for p = 2 would become first order for a large p. Indeed, this is true. In 2-space,
it is known that the phase transition is first order for p = 5, 6, · · ·. In 3-space the
transition is first order for p = 3, 4, · · ·.112

112A summary of mathematical results can be found in M. Biskup and L. Chase, Commun. Math.
Phys., 238 53 (2003).
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In Fig. 4.2.2 (lower side) we studied the free energy of the van der Waals fluid
in the metastable states. According to the figure, at least the free energy of the
metastable states looks available by extrapolating the free energy of stable phases.
This may give us a hope that the free energy of the metastable phase can be obtained
by analytically continue (with respect to temperature) the stable phase free energy.
It is known that this is impossible for short-range interaction systems.113 However,
if the interaction range is infinite as the Kac potential it is known that the above
expectation is correct.114 In the following, Andreev’s argument for gas-liquid phase
transition singularity is outlined.

The probability for a gas bubble of radius R to be formed in the liquid phase is
determined by the required minimum work to create the bubble:

∆W = (4π/3v)[µg(T )− µl(T )]R3 + 4πσR2, (5.13.4)

where σ is the boundary free energy of the gas-liquid interface, and v is the volume
of gas per molecule. If T > Tb (boiling point), the chemical potential µg of the gas
phase is smaller than the chemical potential µl of the liquid phase, so for sufficiently
large R

∂∆W

∂R
< 0. (5.13.5)

That is, once a large bubble is formed, it grows without limit. The number of bubbles
of radius R for T < Tb is given by

n(R) ∼ exp[−∆W (R)/T ]. (5.13.6)

Each bubble of radius R contributes the following free energy:

ϕ(R) = A(Tb − T )R3 +BR2, (5.13.7)

where A and B are positive constants. Let q be the evaporation heat. Note that

µg(T )− µl(T ) = q(Tb − T )/Tb. (5.13.8)

113S. Friedli and C.-E. Pfister, “On the Singularity of the Free Energy at a First Order Phase
Transition,” Commun. Math. Phys., 245, 69 (2004). This was first discussed by A. F. Andreev,
“Singularity of thermodynamic quantities at a first order phase transition point,” Soviet Physics
JETP 15, 1415 (1964), and then proved by Isakov in 1984.

114S. Friedli and C.-E. Pfister, “Non-Analyticity and the van der Waals Limit,” J. Stat. Phys.,
114, 665 (2004).
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The contribution of all the bubbles to the free energy change is given by

∆Φ = V

∫ R

0

4πR2dRϕ(R)n(R). (5.13.9)

To estimate this when we approach the phase transition point from below (from the
liquid side) we have only to evaluate the following integral:∫ ∞

0

Rm exp

[
−ATb − T

Tb

R3 − B

Tb

R2

]
dR. (5.13.10)

This diverges for T > Tb. In the limit T → Tb− 0 the derivatives of ∆Φ with respect
to T converges for all orders. The formula (5.13.10) only allows us to estimate very
high order derivatives (because, for small order derivatives the contribution of the
integrand come from microscopic R), but for high order derivatives with the aid of
an asymptotic evaluation of the Γ-function, we have

dnΦ(Tb−)

dT n
' (−AT 1/2

b /B3/2)n
√
n(3n/2e)3n/2. (5.13.11)

That is, Φ is not holomorphic, but C∞. If we introduce τ = iη, we realize that
(5.13.10) behaves as exp(c/η2). In other words, the boiling point is a C∞ singularity,
so generally speaking, there is no hope to obtain the free energy of the overheated
liquid by analytical continuation.

5.14 Phenomenology of first order phase transi-

tion

The first order phase transition is phenomenologically discussed very often in terms
of the Ginzburg-Landau Hamiltonian in physical chemistry. The basic idea and its
relation to the standard statistical mechanics are reviewed to conclude this chap-
ter.

For many first order phase transitions, fluctuations are not crucial, so it is natural
to guess that mean-field theory is useful. As has already been stated, it is not easy
to justify the results of mean field arguments, and it is not very wise to swallow the
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mean field results uncritically, but they are heuristically useful.

Let us write the (generalized) canonical partition function in terms of the Ginzburg-
Landau Hamiltonian as

Z =
∑

φ

exp

{
−
∫
ddr

[
1

2
(∇φ)2 +

1

2
τ0φ

2 +
1

4
gφ4 + hφ

]}
. (5.14.1)

Here, the sum over φ is a formal representation of functional integral and means
summation over all the order parameter field configurations. In the mean field ap-
proximation, fluctuations are ignored. In the bulk phase, φ must be spatially con-
stant, so we ignore the derivative term. Therefore, the free energy density may be
written as

βF(τ, h) =
1

2
τm2 +

1

4
gm4 + hm, (5.14.2)

where φ is replaced by its spatially uniform value m and the suffixes ‘0’ have been
removed. The basic idea is that the m that minimizes F (perhaps with some other
conditions) is realized in equilibrium.

Fig. 5.14.1 illustrates (5.14.2) as a function of m for various values of h and τ .

hO

τ

L1

L2

R1

R2

C1

C2

C3

C4

C5

Fig. 5.14.1 Sketches of Landau free energy den-
sity (5.14.2).
For each free energy density graph the abscissa
is the order parameter m. C3 is at the criti-
cal point. The local free energy has a flat bot-
tom and fluctuation is large around m = 0. As
temperature increases from C2 to C1, the disor-
dered phase becomes clearer. In contrast, on the
lower temperature side C4 and C5 two phases
become possible. Whether one of them is real-
ized or coexistence occurs depends on systems.
As temperature is lowered, order phases become
more ordered. L1 and R1 are under the bias of
the conjugate variable in the high temperature
phase. No qualitative change is seen. In con-
trast, in L2 and R2 phase transitions between
ordered phases may be possible.

The reader must think immediately that the free energy function which is not
convex as a function of the order parameter is nonsensical. This conclusion is cor-
rect. Therefore, let us call (5.14.2) the quasi free energy density. We have already
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encountered a similar situation in the case of the van der Waals fluid. The difficulty
was evaded with the aid of Maxwell’s rule there. A similar strategy may work in the
general case, but here we take the meaning of the integrand of (5.14.1) seriously. It
is the free energy at the mesoscopic scale (the free energy of a macroscopically small
system; we could call it the mesoscopic free energy). In the preceding argument,
we simply discarded the gradient term, and also discarded fluctuations as irrele-
vant. However, even without looking at Fig. 5.14.1 everybody knows that m at the
mesoscopic scale violently fluctuates, and cannot be a variable that specifies a ther-
modynamic state. This implies that to understand thermodynamics of the system
we must sum up (5.14.1). However, what result we can obtain may be guessed fairly
accurately and intuitively from the mean field results, that is, from Fig. 5.14.1.

To calculate the free energy as a function of the order parameter m, let us apply
step by step coarse-graining just as in the case of real space renormalization, instead
of trying to compute thermodynamic quantities at once. From this point of view, the
quasi free energy above is the effective free energy we would obtain by coarse-graining
fluctuations up to an intermediate mesoscopic scale. As is explained below, we can
guess the free energy in the thermodynamic limit from this effective free energy, so
quasi free energy is not a bad quantity to consider. However, to this end, we must
first recognize that there are two kinds of order parameters, non-conserved order
parameters (NCOP) and conserved order parameters (COP) .

For example, magnetization density of ferromagnets is a NCOP. If we cut out a
finite spatial portion and isolate it, the sum of NCOP is not conserved; magneti-
zation of the volume can change without any conservation constraint. In this case,
we can simply minimize the obtained free energy to determine the phase diagram
without paying any attention to any constraints. Therefore, even if there are two
minima at some coarse-grained scale, if they have different free energy values, then
further coarse-graining enlarges the discrepancy and the effective free energy makes
a sharper and sharper valley around the smallest minimum, so no phase coexistence
can occur in this case. In other words, the actual order parameter value observed in
a macroscopic system is close to m that gives the smallest minimum value in Fig.
5.14.1. Thus, we may say qualitative conclusions can be read off from Fig. 5.14.1.
However, if the smallest minima are not unique, we cannot say what would happen
by this approach. As in the case of sufficiently cold 3-Ising model there may be
coexistence of multiple phases, or as the 2-Ising model, only one of them is realized
without any coexistence.

A good example of the COP is the density in the case of gas-liquid phase transi-
tion and the concentration (difference) in the case of the binary fluid mixture. If we
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cut out a finite spatial portion and isolate it, the sum of COP is conserved; in these
examples this is due to the conservation of materials. Since atoms and molecules
cannot move at once to a distant place, the conservation low applies locally. To
know what phases are realized in a given system, we must minimize the effective
free energy appropriate to the scale under the constraint that the sum of m over the
system is given. Fig. 5.14.2 (upper side) illustrates how the effective free energy as
a function of the order parameter evolves as the COP system is coarse-grained. The
right most graphs correspond to the thermodynamic limit (in practice, the system
size need be a few times as large as the correlation length; this is usually tiny). The
flat parts we see here correspond to the flat portions in Fig. 5.13.1 and Fig. 5.3.2.
The states marked with a and b correspond to thermodynamic pure phases (single
phases), and the states between them correspond to coexisting phases. If we mimic
this evolution, we can roughly guess how the free energy depends on the order pa-
rameter in the thermodynamic limit. Thus, it is usually not very difficult to guess
the thermodynamic limit from the quasi free energy. Needless to say, however, the
calculation of the actual value of phase transition temperature or order parameter
values is out of question.

Suppose that the system-wise average of the order parameter density is m, and
this value lies in the flat part of the free energy in the thermodynamic limit. What
happens actually? Let us call the pure phase corresponding to ‘a’ in Fig. 5.14.2 as
phase I, and ‘b’ as phase II. Let α be the fraction of phase I and the order parameter
of phase I (resp., phase II) be mI (resp., mII). αmI + (1− α)mII = m must be kept
constant. Under this condition the free energy density reads

F = αF(mI) + (1− α)F(mII), (5.14.3)

and α is determined geometrically by the so-called lever rule (Fig. 5.14.3). The pair
mI and mII determines the phase coexistence curve on the phase diagram (cf. Fig.
5.14.7).

Is there any use of mesoscale effective free energies illustrated in Fig. 5.14.2 (lower
left side or the starting points of the upper side) which is not convex? The effective
free energy must tell us the fluctuation at the appropriate spatial scale. In the case
of NCOP, we can trivially see what fluctuation we can observe. In the COP case, we
must pay due attention to the conservation law. In this case, even for smaller scale
fluctuations phase separation could be locally induced. As noted already, molecules
cannot jump over a long distance, so they move only diffusively locally. Therefore,
if the local average of the order parameter happens to be m, then this value cannot
change rapidly (i.e., conservation law holds locally). Consequently, we have only to
think what happens in a small volume (of the appropriate coarse-grained scale). If
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Fig. 5.14.2 How free energy changes as coarse-graining goes on. The upper figures illustrates for
two examples how the effective free energy evolve as the system is coarse-grained. The leftmost
figures are quasi free energy. The lower figure illustrates how the quasi free energies in Fig. 5.14.1
correspond to the true free energy (density) in the thermodynamic limit. For each graph the abscissa
is the whole-system average value of m, and the ordinate denotes the free energy density. The state
that cannot be realized in equilibrium is assigned +∞; this convention is natural as can be guessed
from the quasi free energy functions.

the effective free energy on this length scale is locally convex around the point P cor-
responding to the local average m, then the state is stable against small fluctuations.
However, the total free energy might be reduced further by phase separation (see
Fig. 5.14.4). If this is possible (i.e., the convex envelop of the effective free energy
can have the portion below the effective free energy graph), the single phase corre-
sponding to point P is said to be metastable. If the effective free energy is not convex
locally around P, the single phase separates into two phases by small fluctuations,
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Fig. 5.14.3 The lever rule: The ordinate of this graph is the free energy (density) and the abscissa
is the order parameter. Suppose the system-wise average of the order parameter is indicated by the
dotted vertical line passing through the white disk. The ratio of phase I and phase II is given by
the ratio of the lengths LI and LII. mI and mII dictate the compositions of the coexisting phases.
The ordinate of the white disk denote the free energy density.

so we say the local state is unstable.

A

B

P

(meta)stable

unstableA
BP

Fig. 5.14.4 If the effective free energy is locally
convex around P, small fluctuation cannot seg-
regate this into two phases, say at A and B,
because such phase separation increases the ef-
fective free energy. Therefore, the state P is
(meta)stable. Whether P is actually metastable
or stable cannot be distinguished if we pay atten-
tion only to the neighborhood of P. If the effec-
tive free energy is not locally convex, the total
free energy of the system can be reduced by a
small fluctuation that separates P into A and B,
so this state is unstable.

When phase separation occurs mesoscopically, the ratio of the separated phases
can be determined by the lever rule just as before as explained in Fig. 5.14.5. In this
figure the concentration difference is the order parameter, which is a COP.
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Fig. 5.14.5 The lever rule. Suppose the total
composition of the mixture is given by the verti-
cal broken line. The uniform state of this com-
position is unstable, so it separates into phase I
and phase II to minimize the total free energy.
The lowest total free energy realized is indicated
by the open circle. The ratio of the phase I and
II is given by the ratio of LI and LII .

It must be emphasized that in the thermodynamic limit true equilibrium states
of a system whose average m is in the interval (mI,mII) is, as illustrated in Fig.
5.14.3 coexisting of phase I and II. However, even for a macroscopic system, since
molecules cannot travel a long distance very quickly, if a mixture is metastable around
the correlation length scale, truly equilibrium states are not so easily realized. Thus,
understanding the stability of homogeneous state with various m in terms of quasi
free energy can be useful. Fig. 5.14.5 allows us us to guess the phase coexistence
behavior away from the critical point as illustrated in Fig. 5.14.6. The result is the
popular phase diagram Fig. 5.14.7.

I II

stable

composition

metastable 

composition

unstable 

composition

stable

composition

Fig. 5.14.6 Stable, metastable and unsta-
ble states for the COP case.
Where the convex envelop of the curve can
come blow the original curve phase coexistence
occurs. The fictitious single phase whose order
parameter value 〈m〉 is the average value is
metastable if the graph around 〈m〉 is convex.
Otherwise, unstable.

The boundary between the metastable and unstable states is called the spinodal
curve. This curve is practically definable if fluctuation is small, but it is not a well
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defined curve near the critical point.

I II

τ

c

spinodal line

unstable

metastable

stablestable

coexistence curve

CP

Fig. 5.14.7 The phase diagram of a binary
mixture corresponding to Fig. 5.14.6. The gray
portion is the metastable phase, and the white
region below the spinodal curve is the unstable
phase, but near the critical point CP the
distinction is blurred due to large fluctuations.

Supplementary Pages relevant to phase transitions
At least the following topics are posted in the Supplementary Pages in a pedagogi-
cally accessible fashion.

a more systematic real space RG(not yet)
A concrete calculation illustration of field theoretical RG,
RG for Self-Avoiding walk (not yet),
2D Ising model exact solution
RG of the XY model (not yet)
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Exercises for Chapter 5
5.1 [Phase transition and analyticity]
If there is no phase transition in a range of fugacity z = eβµ, P/kBT is, by definition,
holomorphic in z, so we may expand it as

P

kBT
=
∞∑

`=1

b`z
`, (5.P.1)

where b` is called the `-body cluster coefficient. They are smooth (actually real ana-
lytic) functions of T and positive for lower temperatures, so each b` has the smallest
real positive zero T`. It is known that {T`} is a monotone decreasing sequence of `.
It is demonstrated115 that
(i) b`(Tc) > 0 if ` is sufficiently large.
(ii) There are infinitely many T` between any T (> Tc) and Tc.
Let Ta be the accumulation point of {T`}. Show Tc = Ta.

116
r

5.2 [Crude version of rigorous Peierls’ argument]r
Let us impose an all up spin boundary condition to the 2-Ising model on the finite
square. Then, we wish to take a thermodynamic limit. If the spin at the center of
the square is more likely to be up than to be down, we may conclude that there is a
long-range order.

Let γ be a closed Bloch wall (i.e., the boundary between up and down spin do-
mains; this does not mean that the domain enclosed by γ is a totally up or down
domain (lakes can contain islands with ponds with islets, etc.; the wall corresponds
to the shore lines.) The probability PV (γ) to find such a wall in the system with
volume V has the following estimate (we used this in our discussion on Peierls’ ar-
gument):

PV (γ) ≤ e−2βJ |γ|,

where |γ| is the total length of the contour γ, β = 1/kBT , and J is the usual
ferromagnetic coupling constant. [This naturally looking inequality needs a proof; it
is not trivial.]
(1) Since the outside boundary is all up, there must be a Bloch wall encircling the
origin for the spin at the origin to be down. Therefore, the probability P 0

V of the
spin at the origin to be down must be smaller than the probability of the occurrence
of at least one contour encircling the origin. Show

P 0
V ≤

∑
γ

e−2βJ |γ|, (5.P.2)

115T. Kihara and J. Okutani, Chem. Phys. Lett., 8, 63 (1971).
116This problem asks a mathematically trivial question, but the main point is the fact stated

here.
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where the summation is over all the possible contours surrounding the origin. [Hint:
Don’t think too much. If event A occurs when at least one of B and C occurs, then
A ⊂ B ∪ C.]
(2) Estimate the number of contours with circumference |γ| crudely as the total num-
ber of random walks of length |γ| starting from appropriate neighborhood points of
the origin. Use this crude estimate and show that if β is sufficiently large, P 0

V < 1/2
for large V .

5.3 [Phase transition in 1D long-range system]
Using Peierls’ argument, discuss the phase transition in a 1d spin system whose cou-
pling constant behaves as r−q (q < 2) beyond some distance r0 (you may assume that
the coupling constant for r < r0 is J , constant). No rigorous argument is wanted.

5.4 [Griffiths’ inequality]
Empirically, it is known that there is the following relation among critical expo-
nents:

α+ β(1 + δ) = 2. (5.P.3)

(1) Thermodynamically, demonstrate the following inequality (Griffiths’ inequal-
ity)

α+ β(1 + δ) ≥ 2. (5.P.4)

[Hint: You may proceed just as the case of Rushbrooke’s inequality, but use m ∼ h1/δ

(at T = Tc) to differentiate wrt H under constant temperature. At τ = 0 and h = 0
the (vertical) line T = Tc is tangent to m = m(τ, h = 0), so m may be parameterized
by τ .]
(2) Using the scaling relation or Kadanoff’s argument (that is, using the expression
of the magnetization as a generalized homogeneous function of h and τ), show that
the equality actually holds. [Hint: the wisest approach may be to use βδ = β + 1.
You may use such as α+ 2β + γ = 2 we have already discussed.]

5.5 [A toy illustration of Lee-Yang theory]117

Suppose the grand partition function of a fluid in a volume V is given by

ΞV = (1 + z)V 1− zV

1− z
, (5.P.5)

where z is the fugacity.
(1) Find the zeros of ΞV . How does the distribution of the zeros change as V →∞?
(2) Obtain P for real positive z and locate the phase transition.
(3) Find the volume v per particle as a function of z.

117S similar question can be found in Reichl
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(4) Find the P -v relation, and demonstrate that phase coexistence does happen.

5.6 [The Lee-Yang circle theorem illustrated
The the theorem is proved in Supplementary Pages. Here, let us check its content
for simple cases.
(1) According to the theorem the root of p(z) = 1 + 2az + z2 must be on the unit
circle as long as a ∈ [−1, 1]. Confirm this.
(2) On the apices of a triangle are spins interacting with each other. For this system
construct the polynomial of z, and confirm that as long as the interactions are fer-
romagnetic, all the zeros are on the unit circle.

5.7 [A derivation of mean field theory]
A mean field approach may be obtained with the aid of a variational principle for
free energy. If the (density) distribution function of microstates is f (we consider
classical case) the Helmholtz free energy may be written as:

A = 〈H〉+ kBT

∫
dΓf(Γ) log f(Γ). (5.P.6)

Here, the integration is over the whole phase space. 〈H〉 is the expectation value of
the system Hamiltonian with respect to f . Let us apply this to the Ising model on
a N ×N square lattice. Its Hamiltonian is as usual

H = −J
∑
〈i,j〉

SiSj. (5.P.7)

If we could vary f unconditionally and minimize A, then the minimum must be
the correct free energy, but this is in many cases extremely hard or plainly impossi-
ble. Therefore, we assume an approximate form for f and the range of variation is
narrowed. For example, we could introduce a ‘single-body’ approximation:

f = φ(S1)φ(S2) · · ·φ(SN), (5.P.8)

where φ is a single-spin (density) distribution function.
(1) Under this approximation write down A in terms of φ. That is, find X1 and X2

in the following formula:

A = X1

[∑
S

φ(S)S

]2

+X2

∑
S

φ(S) log φ(S), (5.P.9)

where N and N ± 1 need not be distinguished.
(2) Minimize A wrt φ. φ must be normalized. What is the equation determining φ?
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(3) Using the obtained formula, write down the magnetization per spin. The used
Lagrange’s multiplier must be determined.

5.8 [Gibbs-Bogoliubov’ inequality and mean field]
(1) Derive the following inequality (called the Gibbs-Bogoliubov inequality) with the
aid of Jensen’s inequality for classical systems [This question has already been asked
in Chapter2, but is reproduced here]:

A ≤ A0 + 〈H −H0〉0. (5.P.10)

Here, A is the free energy of the system with the Hamiltonian H, A0 is the free
energy of the system with the Hamiltonian H0, 〈 〉0 is the average over the canonical
distribution wrt H0. [Hint: compute

〈
e−(H−H0)

〉
0
; the temperature may be absorbed

or we could use the unit system with kB = 1.]
All the variational approximations for statistical thermodynamics are applications

of this inequality.118 Let H be the Hamiltonian of the system we are interested in,
and H0 be the Hamiltonian of a system whose free energy A0 we can compute exactly.
We introduce variational parameters in H0 and tehn try to make the RHS of (6.5.43)
as small as possible.
(2) As H we adopt the N ×N 2-Ising model Hamiltonian (without a magnetic field;
even with it there is almost no change), and

H0 =
∑

i

hsi. (5.P.11)

Derive the equation for h that minimizes the RHS of (6.5.43).

5.9 [Exact mean field for 1-Ising model]
The starting point of the mean-field theory can be the following exact relation for
the 1-Ising model:

〈s0〉 = 〈tanh βJ(s−1 + s1)〉, (5.P.12)

where 〈 〉 is the equilibrium expectation. Utilizing s2 = 1 and translational symmetry
of the system, write down a closed equation form = 〈s〉, and then discuss the possible
phase transitions.

5.10 [2-Ising model on the honeycomb lattice]
Let us consider a 2-Ising model on the honeycomb lattice whose coupling constant
is J . Assume there is no magnetic field.
(1) Find the equation corresponding to (5.8.4).

118See, for example, M. D. Girardeau and R. M. Mazur, “Variational methods in statistical
mechanics,” Adv. Chem. Phys. XXIV, eds. I. Prigogine and S.A. Rice (Academic, New York,
1974), p187-255.
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(2) Find Tc with the aid of the approximation corresponding to (5.8.6).
(3) Then, using a more accurate mean field theory corresponding to (5.8.13) compute
Tc. Which Tc obtained by (2) or this question should be lower? Is your result
consistent with your expectation?

5.11 [1-Gaussian model]
At each lattice point i of a one-dimensional lattice lives a real variable qi, and the
system Hamiltonian is given by

H =
∑

j

[
1

2
q2
j −Kqjqj+1

]
. (5.P.13)

The partition function reads

Z =

(∏
j

∫ ∞
−∞

dqj

)
N−1∏
j=1

exp[w(qj, qj+1)], (5.P.14)

where

w(x, y) = −1

4
(x2 + y2) +Kxy. (5.P.15)

The partition function should be evaluated just as the 1-Ising model with the aid of
the eigenvalue problem:

λf(x) =

∫ ∞
−∞

dy f(y) exp

[
−1

4
(x2 + y2) +Kxy

]
. (5.P.16)

The integral kernel is Gaussian, so the eigenfunction belonging to the largest eigen-
value should be of constant sign [Hint: you can see a correspondence to the transfer
matrix approach; actually, there is a counterpart of Perron-Frobenius theorem for
positive definite integral kernels]. Therefore we may assume that f is also Gaussian.
(1) Find f(x) (its multiplicative numerical coefficient may be ignored).
(2) Find the free energy per lattice point. Is thee any phase transition?

5.12 [Correlation function by mean field theory, or mean field for nonuniform space]
(1) Let us assume that the coupling constant and the magnetic field depend on spatial
position:

H = −
∑
〈i,j〉

Jijsisj −
∑

i

hisi. (5.P.17)

Derive the basic equation for the mean-field theory for a square lattice:

〈si〉 =

〈
tanh(β

∑
j

Jijsj + βhi)

〉
. (5.P.18)
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If we introduce the crude approximation like (5.8.6), we obtain

〈si〉 = tanh(β
∑

j

Jij〈sj〉+ βhi). (5.P.19)

(2) We wish to compute the spatial correlation 〈sisj〉. First, demonstrate that

∂〈si〉
∂hk

= kBT 〈sisk〉 (5.P.20)

without any approximation.
(3) Applying this to the following form of (6.5.79), obtain the equation for {〈sisk〉}:

Arctanh〈si〉 = β
∑

j

Jij〈sj〉+ βhi. (5.P.21)

(4) Now, let us go over to the continuum limit, assuming that the system has a
translational symmetry. If we write the correlation as g, the equation obtained in
(3) becomes ∫

dy

(
δ(x− y)
1−m2

− βJ(x− y)
)
g(y − z) = δ(x− z). (5.P.22)

We have already assumed the spatial translational symmetry and set m(x) = m.
The Fourier transform of the coupling constant reads

J(k) =
∑

j

eik·rjJ(rj) = 2dJ cos kx cos ky · · · . (5.P.23)

Find the Fourier transform G(k) of the correlation function g.
(5) If we are interested in global features, we have only to pay attention to small
k. Determine the coefficients A and B in the following formula (you may assume
T > Tc):

G(k) ' 1

A+Bk2
. (5.P.24)

(6) Determine the critical exponent ν.

5.13 [Lattice gas on honeycomb lattice]
Let us relate the 2-Ising model on the honeycomb lattice and the lattice gas on the
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same lattice. The Ising Hamiltonian H and the lattice gas Hamiltonian HL as just
as given in the text:

H = −J
∑
〈i,j〉

sisj − h
∑

i

si, (5.P.25)

HL = −J ′
∑
〈i,j〉

ninj. (5.P.26)

Let V (� 1) be the total number of lattice points and down spins are regarded
particles.
(1) Following the procedure around p276, rewrite the canonical partition function of
the Ising model in therms of the number of down spins [D] and that of down spin
pairs [DD].
(2) Express the lattice gas pressure in terms of magnetic field h and the free energy
per spin f .
(3) Demonstrate that the lattice gas pressure P is a continuous function of h.
(4) Sketch the free energy V f = −kBT logZ119 of the Ising model for a few repre-
sentative temperatures. Next, sketch the pressure of the lattice gas as a function of
log z (this is essentially the chemical potential) for a few representative temperatures.
Then, explain their noteworthy features succinctly.

5.14 [RG by Migdal approximation120]
When we discussed ‘decimation’, we have realized that the procedure is not very
good in the space higher than 1D. For example, if we apply the method to the
2-Ising model (taking ` = 2, i.e., thin half of spins), we obtain

K ′ =
1

4
log cosh 4K, (5.P.27)

where the Hamiltonian is written in the following form:

H = −
∑

Ksisj (5.P.28)

and the temperature is absorbed in the parameter. The fixed point of this transfor-
mation is K = 0 (i.e., the high temperature limit), so there is no ordering.

Migdal proposed to remedy the defect of underestimating the interactions as fol-
lows (see the figure below).

(i) [y-bond moving step] Every other vertical bonds (y-bonds) are combined with
their right-neighboring bonds . If the coupling constant in the y-direction is Ky, the

119Notice that this free energy is G rather than A, since h is on.
120
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y-bond move x-decimation x-bond move y-decimation

coupling constant due to the new bonds made by combining two vertical couplings
is 2Ky.
(ii) [x-decimation step] For the x-direction, one dimensional thinning is performed.
For the new x-directional coupling constant is computed by the 1D thinning result
we obtained (5.10.10).
(iii) [x-bond moving step] Next, every other x-bonds are merged with their lower
neighbor x-bonds.
(iv) [y-decimation step] Apply one-dimensional decimation in the y-direction.
Thus, we have arrived at the square lattice with the lattice spacings doubled (i.e.,
` = 2). If we halve the spatial scale we can complete a renormalization group trans-
formation.
(1) Let us put ′ to the parameters after the procedure (i)-(iv). Show that

K ′x = log cosh(2Kx), (5.P.29)

K ′y =
1

2
log cosh(4Ky). (5.P.30)

Here, the ‘initial values’ are K for both the x and y couplings. Notice that in two
different directions, the step-cycle of the procedure is ‘out of phase,’ so to speak.
In the x-direction, the decimation is applied first and then the bond are moved,
while in the y-direction the bonds are merged first, and then decimation follows.
Consequently, the fixed points of these two equations have different fixed points
(marked with ∗): K∗x = 2K∗y .
(2) Find all the fixed points K∗x. Which corresponds to the critical fixed point?
(3) Linearizing the renormalization transformation around the fixed point, we can
calculate critical exponents; we have only to compute d log cosh(2Kx)/dKx. This
corresponds to `y1 . Determine ν. We can not say the result is impressive, but still
there is an improvement from the mean-field approach. 5.8 [‘Democracy’]121

Assume that there is a hierarchical organization whose decision at the level k is
determined by s units at the level k − 1. Let us assume that level 0 corresponds

121cf. S. Galam and S. Wonczk, “Dictatorship from majority rule voting,” Eur. Phys. J. B 18,
183 (2000).
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to individual persons, and level F is the decision of the organization; we assume
there are sufficiently many levels (in practice, 5 is enough). This is sort of a coarse-
graining system of people’s opinions; any political system is a coarse-graining system
of opinions, so no subtle voice of conscience can go through to the top.
(1) Suppose s = 3 and the strict majority rule is used. Find all the fixed points of
this system, and tell which is stable and which is not.
(2) If s = 4 under the majority rule but when opinion A ties with B, always A is
chosen. What is the minimum fraction of the people with opinion B to dominate the
organization? How about the s = 2 case?
(3) Suppose s = 5 with strict majority rule, but there is an organizational propaganda
for one opinion. Because of this, there is definitely one member in s at each level
that its opinion is fixed. What is the minimum percentage of the anti-organizational
opinion to prevail?

5.15 [Finite size effect]
The specific heat of a certain magnetic system behaves C ∼ |τ |−α near its critical
point without external magnetic field, if the specimen is sufficiently large. If the
magnet is not very large, or more concretely, if it is a sphere of radius R, near its
critical point, its maximum specific heat is C(R). Compute the ratio C(2R)/C(R)
in terms of critical indices.

5.16 [Use of block spins in 1-Ising model]
Let us construct an RG transformation for a 1-Ising model with a similar approach
as is applied to the triangle lattice1-Ising model. We start with (5.10.12). The figure
corresponding to Fig. 5.10.2 os as shown below:

1 2 31 23

α β

The equation corresponding to (5.10.13) is

K ′s′αs
′
β = Ksα3sβ1, (5.P.31)

and s′ is the block spin of ±1 determined by the majority rule. This relation cannot
literally be realized, so just as in the triangle lattice case, we need an analogue of
(5.10.14).
(1) Write down φ(K) corresponding to (5.10.16).
(2) Write down the RG equation corresponding to (5.10.19) and (5.10.21).
(3) Find the fixed points.
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(4) What can you conclude from these calculations?

5.17 [‘Democracy’]122

Let us consider a hierarchical organization in which the decision at the kth level
depends on the decisions of the s cells of the k− 1st level. Assume that the 0th level
corresponds to individual members of the organization, and the decision at level F is
the decision of the organization. If there are sufficiently many levels (actually 5 levels
are enough), the system may be understood as a system to coarse-grain individual
opinions. To be frank, any political organization is a coarse-graining mechanism of
opinions, and it is usually the case that conscientious subtle voices do not reach the
top.
In the following we assume there are two options A and B that must be chosen.
Consider the fraction pn of the cells at level n that support A.
(1) Suppose s = 3 and strict majority rule is applied. Find all the fixed points of
this system and study their stability.
(2) Suppose s = 4. Majority rule is applied but if two opinions A and B are equally
supported, A is always selected. For B to be the decision of the organization, at least
how many % of the people should support B? In the extreme case, if s = 2 what
happens?
(3) Suppose s = 5. Majority rule is applied, but due to the organizational propa-
ganda at every level there is always at least one cell that supports A. For B to win
despite this arrangement, what is the minimum % of the supporters of B?

122cf. S. Galam and S. Wonczk, “Dictatorship from majority rule voting,” Eur. Phys. J. B 18,
183 (2000). The paper contains some trivial calculation errors, so trust your own result.



Chapter 6

Solutions

In this solution set, to come back from the destination of hyperlinks click q.

6.1 Problems for Chapter 1

1.1 [Equivalence of heat and work]
A block of mass M = 1 g is at rest in space (vacuum). Another block of the same
mass and velocity V = 1.5 km/s collides with the first block and the two blocks stick
to each other.
(1) Assuming that there is no radiation loss of energy and that there is no rotation of
the resultant single block, obtain the temperature of the resultant single block after
equilibration. Assume that the specific heat of the material is 2.1 J/g·K.
(2) If rotation of the resultant body is allowed, what can be said about its final
temperature? In particular, is it possible not to raise the temperature of the resultant
single block? (Only a qualitative discussion will be enough.)

Solution
(1) The total initial macroscopic kinetic energy is MV 2/2 = 1.125× 103 J. The final
total kinetic energy of macroscopic motion is (the necessary speed is determined by

353
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the conservation of linear momentum)

1

2
(2M)(V/2)2 =

1

4
MV 2 = 562.5J. (6.1.1)

Therefore, 562.5 J should become the energy of thermal motion. Thus, 562.5/4.2 =
134 K is the increase in temperature, so the final temperature is 334 K.
(2) Rotational motion can be excited, so the temperature increase is reduced. How-
ever, this rotation is due to the non-zero angular momentum around the center of
mass of the initial system. Now, the question is whether the rotational kinetic en-
ergy can preserve the kinetic energy of relative motion. If the second body has an
extremely long thin rod to connect it to the other body to become a single block,
then we can reduce the loss of rotational kinetic energy indefinitely (compute the
final rotational kinetic energy and compare it with the relative kinetic energy). That
is, the temperature increase can be made indefinitely small.

1.2 [Exchange of temperatures]
Suppose there are two water tanks A and B containing the same amount of water.
Initially, A is 42◦C and B is 25◦C. The final state we want is A to be 25◦C and B
42◦C (that is, the temperatures of A and B are exchanged; e.g., A is the used warm
bath water, and B new clean tap water). Assume that the whole system is thermally
isolated.
(1) Is the process reversibly feasible? Explain why.
(2) Devise a process. No precise statement is needed; only state key ideas.
(3) If the reader’s process in (2) contains mechanical parts (e.g., a heat engine), de-
vise a process without any moving parts. No precise statement is needed; only state
key ideas. The reader can use other containers to hold water and can freely move or
flow water (ignore dissipation).
Solution
(1) The initial and final states obviously have the same entropy. Thus, if there is a
way to connect these two in a quasiequilibrium fashion, it is reversible. Well, is there
any quasiequilibrium process connecting them? [Notice that thermodynamics, esp.,
the second law postulates that there is an adiabatic process connecting two equilib-
rium states of the same system; the process must inevitably reversible in this case.
This is usually an assumption; however, depending on the formalism of equilibrium
thermodynamics, this can be proved.1]
(2) Operate a reversible engine between the two tanks until the temperatures be-
come equal. The work produced may be stored by pulling up a weight. Now, use

1E. H. Lieb and J. Yngvason, “The physics and mathematics of the second law of thermody-
namics,” Phys. Rep., 310, 1-96 (1999). This is the state of the art of thermodynamics.
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the engine as a heat pump with the aid of the stored energy in the weight.
(3) The answer (2) is fine, but if you wish to commercialize the machinery, you need
an engine and a motor, not very economical. In any case moving parts are where
troubles start (as is often the case with the hard disk). Thus, we wish to get rid of
moving parts. In the actual commercial product, water from the faucet is guided
through some clever heat exchange device. Thus, we assume we can freely move wa-
ter (but slowly). We must reduce the production of entropy, so heat transfer between
different temperatures should be maximally avoided. Initially, the temperatures are
distinct, so this is impossible. However, we can make this initial mismatch effect
indefinitely small by making the amount of water to be equal temperature from both
tanks as small as possible. Look at the scheme in the following figure. If the pipe is
thin enough, the effect of initial awkward thermal contact is reduced as much as you
wish, and the subsequent heat contact can be as isothermal as possible.2

42C

25C

The thermal contact between counter
flows can be made indefinitely long by
making a tortuous route. Cooled water
is drained and warmed water is used for
your shower. Such a device is industrially
common to save energy,

1.3 [The fourth law of thermodynamics]
(1) For 0.5 moles of a certain substance the equation of state is obtained as:

E = κTV 1/2, (6.1.2)

where E is internal energy, V is volume, T is absolute temperature, and κ is a
constant. Write down the equation of state for N moles of this substance.
(2) We can define extensive quantities per molecule x = X/N , where X = E, S, V
and x = e, s, v. Write down the Gibbs relation for one mole (or a molecule) That is,
express de in terms of x and other extensive quantities per mole (or molecule).

Solution
(1) Let e and v be internal energy per mole and the volume per mole. The given
equation of state can be rewritten as

e/2 = κT (v/2)1/2 ⇒ e =
√

2κTv1/2, (6.1.3)

2There is a way to do gradual temperature change through preparing numerous heat baths with
various temperatures, but this is of course only for extremely rich people.
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so
(E/N) =

√
2κT (V/N)1/2 ⇒ E =

√
2κTN1/2V 1/2. (6.1.4)

(2) You could use d(E/N) = dE/N − (E/N)(dN/N) and E = TS − PV + µN
(because E is extensive), but a wiser method is to use

e = sT − Pv + µ (6.1.5)

and the Gibbs-Duhem relation, SdT − V dP +Ndµ = 0 or

sdT − vdP + dµ = 0. (6.1.6)

Differentiating (6.1.5) and using (6.1.6), we get

de = Tds− Pdv. (6.1.7)

1.4 [Asymmetric coin and limit theorem]
The law of large numbers applies to an unfair coin as well. Suppose the coin we use
has a probability 1/2 + ε to yield a head (H). Otherwise, a tail (T) is yielded. One
get $1 when H shows up and must pay $1, otherwise.
(1) Write down the generating function ωN(k) for the reader’s expected gain per one
coin-tossing sN for the length N coin-tossing sequence.
(2) Compute the mean and the variance of sN .
(3) Using the generating function technique, find the density distribution function
fN for the fluctuation of sN to demonstrate3 the law of large numbers and the central
limit theorem.

Solution
(1) Let Xi be your gain by the i-th tossing. Then, sN = (1/N)

∑
Xi.

ωN(k) ≡
〈

exp

(
ik

1

N

∑
Xi

)〉
, (6.1.8)

=
N∏〈

exp

(
ik

1

N
Xi

)〉
, due to statistical independence (6.1.9)

= ω(k/N)N , (6.1.10)

where ω is the generating function for the single tossing:

ω(k) =

(
1

2
+ ε

)
eik +

(
1

2
− ε
)
e−ik, (6.1.11)

= cos k + 2iε sin k. (6.1.12)

3Need not be mathematical; quite a theoretical physicist’s way is OK!
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(There is no point to streamline this expression.) Therefore,

ωN(k) = [cos(k/N) + 2iε sin(k/N)]N . (6.1.13)

(2) [Directly] This is straightforward: the mean is

MN = 〈sN〉 =
1

N

∑
〈Xi〉 = (1/2 + ε)− (1/2− ε) = 2ε. (6.1.14)

The variance is:

VN =
〈
(sN − 〈sN〉)2

〉
=

〈(
1

N

∑
(Xi − 2ε)

)2
〉
, (6.1.15)

=
1

N2

〈∑
i

(Xi − 2ε)2 + 2
∑
i>j

(Xi − 2ε)(Xj − 2ε)

〉
.

(6.1.16)

Xi and Xj are statistically independent, so we can average them separately. There-
fore, the cross terms in the above vanish and we obtain

VN =
1

N
〈(X1 − 2ε)2〉 =

1

N
(〈X2

1 〉 − 4ε2) =
1

N
(1− 4ε2). (6.1.17)

[Using the generating function] We use the generating function: (note that ω(0) =
1)

MN =
dωN(k)

dik

∣∣∣∣
k=0

= −iN [· · ·]N−1

[
− 1

N
sin

k

N
+ 2iε

1

N
cos

k

N

]
k=0

= 2ε. (6.1.18)

The variance is obtained by the logarithmic second derivative (the derivative is eval-
uated at k = 0 at the end; the calculation may be easier if you do it in terms of
e±ik):

VN = − d2

dk2
logωN(k) = −N d2

dk2
log[cos(k/N) + 2iε sin(k/N)], (6.1.19)

= − d

dk

− sin(k/N) + 2iε cos(k/N)

cos(k/N) + 2iε sin(k/N)
, (6.1.20)

=
1

N

{
cos(k/N) + 2iε sin(k/N)

cos(k/N) + 2iε sin(k/N)
+

[− sin(k/N) + 2iε cos(k/N)]2

[cos(k/N) + 2iε sin(k/N)]2

}
k=0

,

(6.1.21)

=
1

N
(1− 4ε2). (6.1.22)
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Here, in (6.1.21) the sign in front of the second term is +, because we have an overall
− before differentiation.
(3) Assuming N is large, so k/N is small, we Taylor expand ωN(k). It is far cleverer
to expand logω (partition function!; you should see how partition functions are
mathematically natural objects), because we have computed the derivatives.

logωN(k) = ikMN −
1

2
k2VN + o[k2]. (6.1.23)

Therefore, the inverse-Fourier transformation gives

fN(x) =
1

2πi

∫
dke−ikxωN(k) =

1

2πi

∫
dk exp

(
−ikx+ ikMN − (k2/2)VN

)
,

(6.1.24)

=
1

2πi

∫
dk exp

(
−(VN/2)[k2 − 2ik(x−MN)/VN ]

)
, (6.1.25)

=
1

2πi

∫
dk exp

(
−(VN/2)[k − i(x−MN)/VN ]2 − (1/2VN)(x−MN)2

)
,

(6.1.26)

∝ exp
(
−(1/2VN)(x−MN)2

)
. (6.1.27)

Needless to say, this is consistent with our calculation above, but this tells us that the
distribution is Gaussian with variance VN = O[1/N ]; the central limit theorem
is a refinement of the law of large numbers.

1.5 [How to use Chebyshev’s inequality]
(1) We wish to know whether a coin is fair or not. To estimate the probability of H
within ±0.01, how many throwings do you need? Let us tolerate larger errors once
in 100 runs. You may assume that the coin is not grossly unfair.
(2) Theoretically, it is known that if the coin is flipped rapidly, the final surface
agrees with the original surface with probability 0.51 (for example, if the original
surface is H, then with probability about 0.51 H is obtained). To confirm this bias
how many throwings do you think is needed?

Solution
(1) Let p be the true probability for H which is not very different from 1/2. Let χi

be the index function of the i-th trial to be up. Then

p = E(χ1).

Chebyshev’s inequality tells us

P

(∣∣∣∣∣ 1n
n∑

i=1

χi − p

∣∣∣∣∣ > ε

)
<

1

nε2
V (χ1).
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We know V (χ1) = p − p2 = p(1 − p) ' 1/4. Now, ε = 0.01 and the overall error
tolerance is 0.01. Therefore, we may assume

1

nε2
V (χ1) =

104

4n
= 0.01.

Therefore, n = 2.5 × 105 is needed. That is, if if you throw the coin 250,000 times,
you can estimate the head probability of the coin within the tolerance about ±2%.
Or, with confidence level 99% you can find p within 2%.
(2) The answer depends on the level of your precision demand. Since the unfairness
is of 1% order, you must be able to estimate p at least to this order. The answer
to (1) gives a practical answer, if you reduce the confidence level to, say, 95%. If
you wish to stick to the 99% confidence level, then 250,000 trials are not enough; ε
should be halved at least, and you need 106 trials. See Diaconis et al., “Dynamical
Bias in the Coin Toss,” SIAM Review 49, 211 (2007). The lesson is, “If we have this
much trouble analyzing a common coin toss, the reader can imagine the difficulty
we have with interpreting typical stochastic assumptions in an econometric analysis.”

1.6 [A Monte Carlo method to determine π]
There is a unit square (1× 1 square) and in it is inscribed a disk of radius 1/2 shar-
ing the centers of mass. Randomly dropping points uniformly on the square, and
counting the number of points landing on the disk, we can measure π (or rather π/4
directly). How many points do we need to obtain 3 digits below the decimal point
of π/4 with probability more than 99%?

Solution
Let us introduce an iid variable X such that X = 1 if the point lands on the disk and
0, otherwise, and uniformly distributed on the unit square. Then, we expect

〈X〉 = lim
N→∞

1

N

N∑
i=1

Xi = π/4. (6.1.28)

The variance of X is π(1− π/4)/4 < 3/16. Therefore, Chebyshev tells us that

Prob.

(∣∣∣∣ 1

N

∑
Xi −

π

4

∣∣∣∣ > 10−3

)
≤ 3/16

10−6N
. (6.1.29)

This upperbound should be less than 10−2, so N ' 2× 107 is needed.

1.7 [Law of large numbers does not hold, if the distribution is too broad (if fluc-
tuations are too wild)]
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The Cauchy distribution that is defined by the following density distribution func-
tion

p(x) =
1

π

a

x2 + a2
. (6.1.30)

does not satisfy E(|X|) < +∞ (needless to say, the variance is infinite). Actually,
the density distribution of

En =
X1 + · · ·+Xn

n
(6.1.31)

has exactly the same distribution function as X1, if {Xj} all obey the same Cauchy
distribution and are statistically independent. Let us demonstrate this.
(1) What is the characteristic function of the Cauchy distribution? You can look up
the result, but even in that case you must explain why the result is correct.
(2) Show what we wish to demonstrate.

Solution
(1)
We have only to compute

ω(k) =

∫ ∞
−∞

dx eikxp(x) =
1

2πi

∫ ∞
−∞

dx

(
1

x− ia
− 1

x+ ia

)
eikx = e−a|k|. (6.1.32)

It may be a good occasion to review contour integration, Cauchy’s theorem, etc.
(2) The characteristic function for En is given by ω(k/n)n. This is in our case exactly
ω(k) itself. QED!

1.8 [St. Petersburg Paradox by Daniel Bernoulli]
Let {Xi} be iid with

P (X1 = 2n) = 2−n (6.1.33)

for all positive integers n.
(1) Show that E(X1) =∞.
Thus, it seems that if X1 is the gambler’s gain, the reader can participate in this
gambling game with any entry price and still can expect a positive gain. However,
any sensible person would pay $1000 as a fair price for playing. Why? This is the
‘paradox.’
(2) Needless to say, the law of large numbers does not hold for En. This implies that
empirically obtainable expectation and theoretical one should have some discrepancy.
Indeed, it can be proved (the reader need not show this; not very easy) that for any
positive ε

P (|En/ log2 n− 1| > ε)→ 0 (6.1.34)

in the n→∞ limit. Recall that En is the expected payoff. Explain why the reader
does not with to pay $1000. (Or for this to be a fair price how many times does the
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reader have to play?)

Solution
(1) This is obvious:

E(X1) =
∑
m

2m2−m. (6.1.35)

(2) The above estimate implies with high probability (asymptotically) En ∼ log2 n.
That is, you must wait until log2 n = 1000 to have break-even. That is n = 21000 '
10300.

1.9. Explain ‘Bertrand’s paradox’ in about 10 lines (without using outrageous fonts).
What lesson can you learn? [You can easily find a detailed account in the web.]

Solution
Wikipedia: http://en.wikipedia.org/wiki/Bertrand’s_paradox_(probability)

gives a good account of this topic. In short, being random or uniform sampling is
a rather tricky idea. We need a detailed empirical analysis of what we mean by
‘uniform’ or ‘random’. This is the lesson.

However, this article may have given you an idea that there is a general principle
to ‘rescue’ the ambiguity inherent in the concept of ‘lack of knowledge’ following
Jaynes (‘maximum ignorance principle’ or, in essence, to use fully the symmetry in
the problem). This implies that we must perform a detailed analysis of what is NOT
known. If symmetry principles are used inadvertently, we can easily get nonsensical
result. A classic example is von Mises’ wine/water paradox. You can look this up
in the web, and perhaps will see proposals to resolve the paradox. The resolutions
require more detailed analysis of what is not known.

1.10 [System with dissipation]
There is a classical particle system described by the canonical coordinates {q, p} (q
and p are collective notations for position and momentum coordinates of all the par-
ticles in the system). In terms of the Poisson bracket and the system Hamiltonian
the equation of motion may be written as

dq

dt
= [q,H],

dp

dt
= [p,H]− αp,

where α is a small positive constant. That is, the system is not perfectly classical
mechanical, but contains a certain effect of dissipation.4

(1) Demonstrate that the Liouville’s theorem is violated for this system.
(2) Demonstrate that the system energy decreases. (Assume that H = K + U as

4This model may look artificial, but similar models are used to study nonequilibrium systems.
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usual and K is quadratic in p.)
(3) However, show that if H is time dependent, then the system energy may be
maintained.

Solution
(1) Let us check the incompressibility of the flow defined by this differential equa-
tion:

∂

∂q

dq

dt
+

∂

∂p

dp

dt
= −α∂p

∂p
= −3Nα, (6.1.36)

where N is the number of the point particles and 3 is the spatial dimensionality (3N
is the number of p coordinates).
(2) Let us compute

dH

dt
=
∂H

∂t
+ [H,H] +

∂H

∂p
· (−αp) = −2αK, (6.1.37)

where K is the kinetic energy and is positive definite. Therefore, H decreases. Here
K being a quadratic form (a homogeneous function of order 2) is used.
(3) As you can see from (6.1.37), if H is explicitly time dependent, you can do
whatever you want. (For example, although it is not physically interesting, H(t) =
U + e2αtK would do.)

1.11 The following can be read in a textbook. Point out the error in the argu-
ment.
“In general, there is no logical “room” for adding extra assumptions, such as equal
a priori probability. The evolution of an actual system is determined by the laws of
mechanics (or quantum mechanics). If the results of using any extra assumptions
always agree with the logical consequence of the laws of mechanics, and it should be
possible to show that fact. If they do not agree with the laws of mechanics, then the
extra assumptions are wrong.”

Solution
Dynamical laws are differential laws, so they must not be discussed without auxil-
iary conditions such as initial conditions. Such conditions are given independent of
the dynamical laws. That is, there is a room to introduce extra assumptions. For
example, when we sample from the phase volume, it seems that we can only sample
according to he probability measure absolutely continuous with respect to the Rie-
mann volume, but this has nothing to do with the dynamical laws. However, when
we study chaotic dynamical systems, observability condition of chaos is a condition
on the initial condition.

As can be seen from this example, it is simple minded or too haste to conclude
that some universal properties applicable to systems obeying dynamical laws is only
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due to dynamical laws. Another example is the unavoidable external disturbances.
Therefore, small stochastic perturbations are always there. That this is the reason
for the statistical nature of the system is logically perfectly legitimate assertion. If
the disturbance is universal, then the results would also be universal.

To be more precise, there is no verification of dynamical laws for many body sys-
tems. Therefore, at least purely logically no one can conclude that “If they do not
agree with the laws of mechanics, then the extra assumptions are wrong.”

1.12 Classically, the microcanonical distribution may be written as

Ŵ (E) =
1

N !h3N

∫
δ(H(q, p)− E)dqdp. (6.1.38)

Show that this can be expressed as follows:

Ŵ (E) =
1

N !h3N |gradH|
dσ, (6.1.39)

where σ is the area element of the constant energy surface and gradH is the 3N -
dimensional gradient vector of the system Hamiltonian H with respect to the canon-
ical variables (qi, pi).

Solution
Notice that dpdq = dσdE. If the 6N − 1 dimensional canonical coordinates in the
surface is collectively written as σ, then H can be written in terms of E and σ.
Notice that the following formula for the d-function holds:

δ(f(E)− E0) =
1

|f ′(E0)|
δ(E − E0). (6.1.40)

If as f(E) H(E,σ) is adopted, then we must use the partial derivative of H with
respect to E as f ′, but it is the directional derivative H perpendicular to the iso-
energetic surface, so its absolute value must be identical to the absolute value of the
gradient. Thus we have demonstrated (6.1.39).

1.13 [Equipartition of energy with the aid of microcanonical ensemble]
Within the microcanonical ensemble formalism5 for a classical fluid consisting of N
interacting but identical particles,
(1) Show that the temperature T can be expressed in terms of the average of the
reciprocal kinetic energy as (N � 1 may be assumed)

kBT =
2

3N〈K−1〉
, (6.1.41)

5Use W (E), the phase volume of the states with the total energy not exceeding E.
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where K is the total kinetic energy of the system.
Comment: We are NOT discussing ideal systems. The system can have any interac-
tion among particles. T is defined thermodynamically as 1/T = ∂S/∂E.
(2) In the thermodynamic limit show that this is equivalent to

kBT =
2

3
〈κ〉, (6.1.42)

where κ is the average kinetic energy par particle. This is essentially the equiparti-
tion of kinetic energy. [Hint. the reader may use intuitively the weak law of large
numbers.]

Solution
(1) Although I asked the case with N � 1 to use W (E) instead of the energy shell
volume (i.e., W (E + δE) −W (E)), if you carefully do a similar calculation below,
you get the result true for small N as well.

The phase volume W (E) of the states H =
∑
p2

i /2m + V (q) ≤ E is computed
as

W (E) =

∫
V (q)≤E

dq

∫
P

p2
i /2m≤E−V (q)

dp =

∫
V (q)≤E

dq CN [m(E − V (q))]3N/2 ,

(6.1.43)
where CN is a geometrical factor we need not calculate. Temperature is defined
by

1

T
= kB

d

dE
logW (E) =

3N

2

∫
dq (E − V (q))3N/2−1∫
dq (E − V (q))3N/2

. (6.1.44)

You may have expected the derivative to consist of two terms, but the derivative with
respect to the integration range for {q} vanishes, because the integrand vanishes
there: V (q) = E. The above formula is the average of (E − V (q))−1 over the
configuration space. It is not yet the desired result that is an average over the phase
space. Now, we use (again) the fact that for high-dimensions the total volume is
almost on the skin. Therefore,∫

K≤E
dpK−1 =

1

E

∫
K≤E

dp. (6.1.45)

That is, the configuration space average and the phase space average agree:6

β =
3

2
N〈K−1〉. (6.1.46)

6If you use the energy shell, perhaps the first step in the above calculation may be slightly more
complicated, but this last step is trivial.
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(2) Let ki be the kinetic energy of the i-th particle. K =
∑
ki. Notice that the law

of large numbers implies

N〈K−1〉 = N

〈
1∑
ki

〉
=

〈
1∑

i ki/N

〉
→ 1

〈ki〉
=

1

〈K〉/N
= N/〈K〉. (6.1.47)

Here, we intuitively assumed that ki are iid random variables.

1.14 [Generalized homogeneous function]
As we will learn much later, various thermodynamic quantities diverge near the
second-order phase transition point (critical point). The free energy density f as a
function of temperature τ ∝ T − Tc and pressure p behaves as7

f(λy1τ, λy2p) = λdf(τ, p), (6.1.48)

where λ (> 0) is a scaling factor, d is the spatial dimensionality, and y1 and y2 are
real constants (related to the so-called critical exponents). That is, f is a generalized
homogeneous function.8

Formulate the counterpart of Euler’s theorem and demonstrate it. You may freely
use the method of characteristics.

Solution
(1) Differentiating the given formula wrt λ and subsequently setting λ = 1 gives the
quasilinear PDE:

y1τ
∂f

∂τ
+ y2p

∂f

∂p
= d f. (6.1.49)

This must be a necessary and sufficient condition for a differentiable function f to
satisfy the (generalized) homogeneity relation. To prove sufficiency, we must solve
(6.1.49) with the aid of the method of characteristics.9 The characteristic equation
reads

dτ

y1τ
=

dp

y2p
=

df

d f
. (6.1.50)

You may combine these three fractions in any way, but here let us choose the least
sophisticated combinations:

dτ

y1τ
=

dp

y2p
,
dτ

y1τ
=

df

d f
. (6.1.51)

7Precisely speaking, this is the singular part of the free energy as we will learn later. Peculiar
phenomena near the critical point are governed by this part of the free energy.

8B. Widom realized from the empirical data that if f is a generalized homogeneous function,
then critical peculiar phenomena can be explained in a unified fashion.

9See Supplements
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The general solution to these ODEs are

τ 1/y1/p1/y2 = C1, τ
d/y1/f = C2, (6.1.52)

where C1 and C2 are integration constants. Hence, the general solution to (6.1.50)
is given by

f(τ, h) = τ d/y1g(τ 1/y1/p1/y2), (6.1.53)

where g is a well-behaved function (differentiable, bounded, etc.). Indeed,

f(λy1τ, λy2p) = (λy1τ)d/y1g((λy1τ)1/y1/(λy2p)1/y2) = λdτ d/y1g(λτ 1/y1/λp1/y2) = λdf(τ, p).
(6.1.54)

Another (much smarter) way to solve the characteristic equation (6.1.50) is to
introduced the so-called ‘dilation parameter’ λ as follows:

dτ

y1τ
=

dp

y2p
=

df

d f
=
dλ

λ
. (6.1.55)

This is solved as the following three ODEs:

dτ

y1τ
=
dλ

λ
, =

dp

y2p
=
dλ

λ
,
df

d f
=
dλ

λ
. (6.1.56)

The general solutions are

τ/λy1 = C1, p/λ
y2 = C2, f/λ

d = C3, (6.1.57)

where Ci are integration constants. Thus, the general solution to (6.1.49) reads

F (τ/λy1 , p/λy2 , f/λd) = 0, (6.1.58)

where F is a well-behaved function. In other words, for any λ (> 0)

f = λdG(τ/λy1 , p/λy2). (6.1.59)

Here, G is an appropriate differentiable function.

1.15. [Mixing entropy and Gibbs’ paradox]
We have two ideal gases with the same volume V , pressure P , and temperature T .
These two gases consist of different chemical species. Assume the whole system is
thermally isolated during the following processes.
(1) Two boxes containing the above gases are connected. That is, now the total vol-
ume of the mixture is 2V . Find the entropy change due to this procedure of joining
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two boxes.
(2) Find the entropy change if two gases are mixed into a single volume of V .
(3) How can you actually measure the entropy change in (1) experimentally?

Solution
(1) See the illustration at the end.
Before answering the question, let us consider the indistinguishable case. The entropy
formula for the gas in box V is

S1 = NkB

(
log

V

N
+

3

2
log

E

N
+ c

)
. (6.1.60)

If two boxes are joined, then

S1+2 = 2NkB

(
log

2V

2N
+

3

2
log

2E

2N
+ c

)
= 2S1 (6.1.61)

as expected.
Now, the distinguishable case.

S1+2 = (2N)kB

(
log

2V

N
+

3

2
log

E

N
+ c

)
= 2S1 + 2NkB log 2 (6.1.62)

This can be considered as the superposition of each gas expanded to 2V :

S ′1 = NkB

(
log

2V

N
+

3

2
log

E

N
+ c

)
= S1 +NkB log 2. (6.1.63)

Superposing these two, we have

S1+2 = 2S1 + 2NkB log 2. (6.1.64)

(2) Indistinguishable case:
Obviously

S1+2 = 2NkB

(
log

V

2N
+

3

2
log

2E

2N
+ c

)
= 2S1 − 2NkB log 2. (6.1.65)

This is the entropy decrease due to compression = halving the volume.
The distinguishable case: This is a simple superposition, so

S ′1+2 = 2S1 (6.1.66)
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That is, this is the result of Problem (1) compressed to the half volume: the entropy
decrease due to compression is 2NkB log 2, which exactly cancels the mixing entropy.
(3) Notice that there is no exchange of heat during the mixing process in either of the
two cases, distinguishable or indistinguishable. Therefore, to measure the mixing en-
tropy you must somehow connect the mixed final state to the initial separated state
(in a quasistatic way) and study this de-mixing process: for example, how much work
do you have to supply to do this (or gain by doing this). There is a possibility of
obtaining the absolute entropy of a gas with the aid of the Sackur-Tetrode formula.
However, there is no way to use the result for the present purpose.

The above conclusion implies that to measure the mixing entropy you must be
able to separate the mixture. If you did not know it is indeed a mixture, there would
be no way to separate the ‘mixture.’ That is, you must be able to distinguish the
components to measure the mixing entropy. You cannot use this experiment to tell
whether two gases are identical or not.

You might say someone gave you a semipermeable membrane to separate the two
components. However, since you have the membrane you can distinguish the com-
ponents already.

Δ S > 0

no change

no changeno change

< 0Δ S

< 0Δ S

no change

< 0Δ S

no change
< 0Δ S

before

superposition

before

superposition

1.16 [To check that Boltzmann’s formula does not contradict thermodynamics]
Let us check that Boltzmann’s principle (within classical physics) is indeed consistent
with thermodynamics: that is, if S = kB logw(E, V ),

dS =
dE + PdV

T
, (6.1.67)

where w(E, V ) is the number of microstates satisfying that the energy is in (E −
δE,E] and the volume is in (V − δV, V ]. Here, we clearly know what E and V
are in both mechanics and in thermodynamics. The pressure P can be computed
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mechanically, and T is related to the average kinetic energy K of the system.
Using the Boltzmann formula, we can write

dS = kB
1

w

∂w

∂E
dE + kB

1

w

∂w

∂V
dV. (6.1.68)

Therefore, if we can compute partial derivatives in the above and identify their
meanings, we should accomplish what we desire. This is actually what Boltzmann
did in 1864. The demonstration is not very trivial, so here we wish to use the
following relation

kB
1

w

∂w(E, V )

∂V
→ P

T
(6.1.69)

(in the thermodynamic limit) and consider only the energy derivative. We can
write

w(E, V ) =

∫
[E]

dqdp−
∫

[E−δE]

dqdp = δE
∂

∂E

∫
[E]

dqdp, (6.1.70)

where [E] denotes the phase volume with energy not larger than E. We assume that
the gas is confined in the volume V . Let E = K(p) + U(q), where K is the total
kinetic energy andU the total intermolecular potential energy. The phase integration
may be written as ∫

[E]

dqdp =

∫
dq

∫
K(p)≤E−U(q)

dp. (6.1.71)

Thus, the integration with respect to p is the calculation of the volume of the 3N -
sphere of radius

√
2m(E − U(q)).

(1) Show that

∂

∂E

∫
[E]

dqdp =

∫
dq
S3N

3N
2m

3N

2
[2m(E − U(q))]3N/2−1, (6.1.72)

where S3N is the surface area of the 3N − 1-dimensional unit sphere.
(2) Using this formula, we can differentiate the integrand with E. Obtain

1

w(E, V )

∂w(E, V )

∂E
= kB

(
3N

2
− 1

)〈
1

K(p)

〉
. (6.1.73)

(3) We know from the kinetic theory that the average kinetic energy of a point
particle is proportional to T (precisely speaking, the average of p2/2m = 3kBT/2).
Assuming that all the kinetic energies of the particles are statistically independent,10

10This is not really a trivial statement; we need that the system is ‘normal.’ That is, the
intermolecular interaction range must be very short, and the interactions are sufficiently repulsive
in the very short range.
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demonstrate that the formula in (2) is indeed equal to 1/T .

Solution
(1) The integration with respect to p in (6.1.71) is the calculation of the volume of

the 3N -sphere of radius
√

2m(E − U(q)).∫
[E]

dqdp =

∫
dqS3N

∫ √2m(E−U(q))

0

p3N−1dp =

∫
dq
S3N

3N
[2m(E − U(q))]3N/2,

(6.1.74)
where S3N is the area of the unit 3N − 1-sphere. From this,

∂

∂E

∫
[E]

dqdp =

∫
dq
S3N

3N
2m

3N

2
[2m(E − U(q))]3N/2−1 (6.1.75)

(2) The result of (1) gives us w, so we must differentiate this once more.

∂2

∂E2

∫
[E]

dqdp =

∫
dq
S3N

3N
(2m)2 3N

2

(
3N

2
− 1

)
[2m(E − U(q))]3N/2−2,(6.1.76)

=

∫
dq
S3N

3N
(2m)

3N

2

(
3N

2
− 1

)
[2m(E − U(q))]3N/2−1 1

K(p)
,

(6.1.77)

=
∂

∂E

∫
dq
S3N

3N

(
3N

2
− 1

)
[2m(E − U(q))]3N/2 1

K(p)
, (6.1.78)

=

(
3N

2
− 1

)
w(E, V )

〈
1

K(p)

〉
. (6.1.79)

That is,
1

w(E, V )

∂w(E, V )

∂E
=

(
3N

2
− 1

)〈
1

K(p)

〉
. (6.1.80)

(3) We wish to demonstrate in the N →∞ limit(
3N

2
− 1

)〈
1

K(p)

〉
=

1

kBT
. (6.1.81)

Obviously, (
3N

2
− 1

)〈
1

K(p)

〉
=

〈
1

(3K(p)/2)/N

〉
. (6.1.82)

The law of large numbers tells us (cf. 1.13) that

3K(p)/2)/N =
3

2

1

N

∑ p2

2m
→ 3

2

〈
p2

2m

〉
= kBT. (6.1.83)
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1.17 [Superrelativistic ideal gas]
Consider a super-relativistic gas consisting of particles whose energy ε = c|p|, where
c is the speed of light, and p is the particle translational momentum.
(1) We have learned that the equation of state and the constant volume specific heat
CV of an ideal gas may be obtained almost dimensional analytically, if we accept the
basic postulate of statistical mechanics. Following this logic, find the pressure and
CV .
(2) Calculate the entropy to determine the constant corresponding to ‘c’ (the con-
stant in the entropy formula).

Solution
(1) Classically, we have only to consider the phase volume W̃ (V,E) whose dimension
is [q]3N [p]3N . Therefore,

W̃ (V,E) ∼ V NE3N . (6.1.84)

(Quantum mechanically, [W ] = 1 = [q]3N/[h/p]3N ∼ [V ]N [E]3N .) This implies
that

S = kB log W̃ (V,E) = NkB(log V + 3 logE + cN) = NkB

[
log

V

N
+ 3 log

E

N
+ c

]
.

(6.1.85)
Therefore,

P

T
=

∂S

∂V

∣∣∣∣
E

=
NkB

V
⇒ PV = NkBT, (6.1.86)

and
1

T
=

∂S

∂E

∣∣∣∣
V

=
3NkB

E
⇒ E = 3NkBT. (6.1.87)

Therefore, CV = 3NkB.

(2) Let us do this honestly. |p| = h|n|/2L, where L is the edge length of the
box: L3 = V , and n is a 3-dim positive integer vector. Therefore,

w̃(E, V ) =
1

N !

∑
{ni}:

P
|ni|'2LE/ch

1. (6.1.88)

Here, ' implies the value between E− δE and E (thin shell); in this calculation this
is easier). This is not easy to evaluate directly, but a standard trick is to use the
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Laplace transformation (or to use the generating function):11

ω(t) =

∫ ∞
0

dE w̃(E, V )e−tE. (6.1.89)

Using (6.1.88), we can compute this as

ω(t) =
1

N !

∫ ∞
0

dE
∑

{ni}:
P
|ni|'2LE/ch

e−
P
|ni|cht/2L =

1

N !

(∑
n

e−|ni|cht/2L

)N

.

(6.1.90)
The sum may be calculated as an integral over the first octant in the 3D space:

∑
n

e−|ni|cht/2L =
1

8

∫ ∞
0

dn 4πn2e−|ni|cht/2L = (8π)

(
L

cht

)3

(6.1.91)

Therefore,

ω(t) =
1

N !
(8π)N

(
L

cht

)3N

. (6.1.92)

This implies (inverse Laplace transform; see an appropriate table. We ignore the
difference between nN and nN − 1)

w̃(E, V ) =

(
8π

c3h3

)N
V N

N !

E3N

(3N)!
. (6.1.93)

With the aid of Stirling’s formula this reads

w̃(E, V ) =

(
eV

N

)N (
eE

3N

)3N (
8π

c3h3

)N

. (6.1.94)

Therefore, entropy reads

S = NkB

(
log

V

N
+ 3 log

E

N
+ log

8e4π

9c3h3

)
. (6.1.95)

11Laplace transformation is not so popular among physicists, but it is only a variant of Fourier
transformation. However, it is extremely useful in solving linear constant coef ODEs. See Applicable
Analysis
http://web.me.com/oono/ApplicableMath/ApplicableMath files/AMII-33.pdf.



6.1. PROBLEMS FOR CHAPTER 1 373

1.18 [Application of the Sackur-Tetrode equation12]
The following data are all under 1 atm.
The melting point of mercury is 234.2 K and the heat of fusion is 2.33 kJ/mol. The
absolute entropy of solid mercury just at the melting temperature is 59.9 J/K·mol.
The entropy increase of liquid between the melting point and the boiling point is
26.2 J/K·mol. The boiling point is 630K and the evaporation heat is 59.3 kJ/mol.
(1) Calculate the absolute entropy of mercury gas just above the boiling point.
(2) Assuming that mercury vapor is a monatomic ideal gas, obtain Planck’s constant.
The reader may use the value of kB.
Solution
(1) We obtain the absolute entropy of mercury gas at 1 atm just above the boiling
point simply by adding required entropy increases:

S = 59.9 +
2330

234.2
+ 26.2 +

59300

630
= 190.1 J/mol·K.

(2) The translational entropy of an ideal gas is

S = NkB

{
log

V

N
+

3

2
log T +

5

2
+

3

2
log

2πmkB

h2

}
.

With the aid of the ideal gas law PV = NkBT this can be rewritten as

logP =
5

2
log T +

5

2
+ log

{
k

5/2
B

(
2πm

h2

)3/2
}
− S

NkB

.

Here S is the entropy in the vapor phase for which the classical ideal gas law holds.
Therefore, if this S is estimated correctly, then the above equation should be very
accurate.

log

{
k

5/2
B

(
2πm

h2

)3/2
}

=
S

NkB

+ log p− 5

2
log T − 5

2
= 22.84 + 11.52− 18.61 = 15.74

If we use the known parameter values, we get 15.82, an excellent agreement. m =
0.20059/NA and this gives h = 6.81×10−34 Js (6.623×10−34 Js is the accepted value).

1.19 [Negative temperature]
Let us consider the two state spin system containing 1 mole of spins as discussed

12The best elementary exposition is found in F. Mandl, Statistical Physics (Wiley, 1971) Section
7.6.
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in the text. Assume that under the magnetic field B, the energy gap between the
up and down spin states is 600 K per spin. Suppose the initial temperature of the
magnet is −500K.
(1) What is the temperature of this system measured with an ideal gas thermometer
containing 10−6 moles of monatomic gas particles?
(2) If, instead, the original negative temperature system is thermally equilibrated
with a 1 mole of ideal monatomic gas that is initially 200K, what is the equilibrium
temperature?

Solution
(1) The relation between the magnetization and the temperature can be solved
as

m = NA tanh
300

T
. (6.1.96)

We have already computed the problem

300NAkB tanh
300

500
= −300kBNA tanh

300

T
+

3

2
nkBT (6.1.97)

In this case we may expect that the temperature is extremely high, so

300NA tanh
300

500
= 161NA '

3

2
nT ⇒ T = 1.07× 108K. (6.1.98)

Since the temperature is outrageously high, we must pay attention to relativity. That
is, the gas must be superrelativistic. Then, is the temperature higher or lower? (You
can of course get the answer quantitatively easily.)
(2)

161NAkB +
3

2
200NAkB = −300NAkB tanh

300

T
+

3

2
NAkBT (6.1.99)

That is, we must solve

361 = −300 tanh
300

T
+

3

2
T (6.1.100)

That is, T = 374K.
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6.2 Problems for Chapter 2

2.1 [On derivation of canonical distribution]
A textbook of statistical mechanics has the following derivation of the canonical
distribution:
“The distribution function must not depend on the properties of particular systems,
but must be universal. That is, the probability P (EI) (resp., P (EII)) for the system I
(resp., II) to have energy EI (resp., EII) and the probability P (E) for the compound
system of I and II to have energy E = EI + EII must have the same functional
form. This must be so, as long as we expect statistical mechanics holds universally.
Therefore,

P (EI)P (EII) = P (EI + EII). (6.2.1)

For this equation to be valid, we can prove that P (E) must have the following
functional form:

P (E) = Ce−βE, (6.2.2)

where C is a constant.”
Is this argument correct?

Solution
Here, we must interpret C as the normalization constant. Therefore, C must be
a functional of E (or rather, the system Hamiltonian). This implies that P (E) is
not a simple function of E but a functional of the system Hamiltonian, so, although
(6.2.2) is a solution, we cannot conclude from (6.2.1), even if we assume smoothness
(recall Cauchy), that this is the only solution; we may conclude that logP is a linear
functional of H, but no further restriction is possible.

Everyone knows that (6.2.1) is incorrect, generally speaking, since
∑

EI
P (EI)P (EII) =

P (E). Precisely speaking, we must say that (6.2.1) holds for the most probable par-
tition of energy. As can be seen from the correct answer P = e−β(E−A),

PI(EI)PII(EII) = PI+II(EI + EII) (6.2.3)

holds for the most probable partition of energy.

2.2 [Elementary problem about spin system]
Due to the ligand field the degeneracy of the d-orbitals of the chromium ion Cr3+ is
lifted, and the spin Hamiltonian has the following form

H = D(S2
z − S(S + 1)/2), (6.2.4)
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where D > 0 is a constant with S = 3/2 (the cation is in the term 4F3/2).
(0) Why can you apply statistical mechanics to this ‘single’ ion?
(1) Compute the occupation probability of each energy level at temperature T (you
may use the standard notation β = 1/kBT ).
(2) Calculate the entropy.
(3) At high temperatures approximately we have C = kB(T0/T )2 with T0 = 0.18 K.
Determine D in K.

Solution
(0) Statistical mechanics exploits the fact that any macroscopic system may be con-
sidered as a set of numerous statistically independent collection of subsystems. That
is, if there is statistical independence and additivity, we may apply the statistical
mechanics framework to the collection.
(1) There are 4 states but there are only two energy levels with E = 3D/8 and
−13D/8. Therefore, Sz = ±3/2 is with p = 1/2(1 + e2βD) and Sz = ±1/2 is with
p = 1/2(1 + e−2βD).
(2) The easiest method is to use the Shannon formula:13

S = −2kB

[
1

2(1 + x)
log

1

2(1 + x)
+

x

2(1 + x)
log

x

2(1 + x)

]
= kB

{
log[2(1 + x)]− x

1 + x
log x

}
,

(6.2.5)
where x = e2βD.
(3) Setting x as above, we have

C = T
dS

dT
= −(2Dβ)

dS

d2Dβ
= −2Dβ

dx

d2Dβ

dS

dx
= −2Dβx

dS

dx
= kB(2Dβ)2 x

(1 + x)2
.

(6.2.6)
Therefore,

C = kB(D/kB)2/T 2. (6.2.7)

This implies D/kB = T0. That is, D is 0.18K.

2.3. [Vapor pressure of silicon]
The chemical potential µs of the atom in a solid is essentially given by the binding
energy ∆ of atom in the solid: µs = −∆. Obtain the formula for the equilibrium
vapor pressure of solid, and estimate the vapor pressure at room temperature of

13There are several ways to compute entropy. If you know probability explicitly, the Shannon
formula may be useful. In this case, you must not forget that the sum is over the elementary events.
The microcanonical way is probably the least useful in practice. When you compute S from the
canonical ensemble, use S = (E − A)/T with E being calculated by the Gibbs-Helmholtz relation
∂(A/T )/∂(1/T ) = −∂ logZ/∂β = E.



6.2. PROBLEMS FOR CHAPTER 2 377

silicon for which ∆ = 3eV.

Solution
This is a typical Physics 100 level question. We may assume that the gas is ideal,
so its chemical potential is given by µ = kBT log(n/nQ). The chemical potential of
the atom in the solid is −∆. Therefore the equilibrium condition (the identity of
chemical potentials in two phases) gives

n = nQe
−β∆ ⇒ p = kBTn (6.2.8)

We know m̂ = 28, so
nQ = 283/2 × 1030 ' 1.5× 1032. (6.2.9)

Therefore,

P = kBTnQe
−β∆ = 1.38× 10−23 × 300× 1.5× 1032e−3/0.026, (6.2.10)

= 4.8× 10−39 (Pa). (6.2.11)

2.4 [Specific heat]
Suppose that a (3D) classical mechanical system has the following Hamiltonian

H =
N∑

i=1

ak|pk + ck|s (6.2.12)

where ak (k = 1, · · · , N), s are positive constants, and ck are constant 3-vectors.
Without any explicit calculation compute the specific heat.

Solution
The partition function Z reads

Z =
V N

N !h3N

∏
k

∫
d3p e−βak|p+ck|s . (6.2.13)

Frist of all, ck may be ignored by shifting the integration ranges. You could use
the scaled variable λ defined by βakp

s = λs for each integral. However, the author
recommends you to use Dimensional Analysis.

A recommended solution begins here. βakp
s is dimensionless, so

[p] = [βak]
−1/s. (6.2.14)

On the other hand,

[Zh3N/V N ] = [p]3N ∝ [β−3N/s] = (kBT )3N/s. (6.2.15)
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Therefore, even the internal energy (the Gibbs-Helmholtz relation):

E =
∂βA

∂β
= −∂log β−3N/s

∂β
(6.2.16)

is independent of ak, so is C.
From the fact that ak is factored out, without any calculation you may conclude

that C is independent of ak.
Eq.(6.2.16) is correct, so you can proceed with this result, but let us proceed in

a more conventional way (although this is not a recommended approach). (6.2.13)
reads

Z =
V N

N !h3N

∏
k

(βak)
−3/s

∫
4πλ2e−λs

dλ ∝
∏

k

(βak)
−3/s. (6.2.17)

The Gibbs-Helmholtz relation immediately tells us that E is not dependent on ak.
E = 3NkBT/s and C = 3NkB/s.

The potential energy of a permanent electric dipole p is U = −p ·E in the electric
field E. Obtain the electric susceptibility of the system.

Solution
We must obtain the expectation value of the polarization P per unit volume of the
gas. In this case we ignore the interaction among gas particles, so the partition
function becomes a product of one particle partition functions. Furthermore, since
the translational motion of the particles has nothing to do with the polarization, we
have only to compute the canonical partition function for a single dipole:

z(E) =

∫
de eβpe·E =

∫
de eβpE cos θ, (6.2.18)

where e is the directional unit vector of the dipole moment with respect to the electric
field direction, E = |E|, and the angle between E and p (or e) is θ. The integration
is on the unit sphere and can be computed as

z(E) = 2π

∫
dθ sin θ eβpE cos θ = 2π

∫ 1

−1

dx eβpEx =
4π

βpE
sinh βpE. (6.2.19)

From the structure of z we can immediately see

〈p〉 = kBT
∂

∂E
log z(E) = pL(βpE)

E

E
(6.2.20)

where L(x) is the Langevin function

L(x) = coth x− 1

x
. (6.2.21)
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〈p〉 times the number of particle per volume n (= the number density) is the polar-
ization P = n〈p〉.

The correspondence to thermodynamics is as follows. −kBTN log z(E) is, as E
is written explicitly, not the Helmholtz free energy A(P ), but its Legendre transfor-
mation Φ(E) = A(P )− P ·E. That is,

dA = −SdT + E · dP , dΦ = −SdT − P · dE. (6.2.22)

Therefore,

P = − ∂

∂E
Φ(E) = kBTN

∂

∂E
log z(E), (6.2.23)

which is equivalent to (including the correct sign) (6.2.20).
To obtain the susceptibility (dielectric constant), we must differentiate P with

respect to E. It is a diagonal matrix proportional to the unit 3×3 matrix I as

ε = βp2NL′(βpN)I. (6.2.24)

2.6 [Internal degree of freedom]
There is a classical ideal gas of volume V consisting of N molecules whose inter-
nal degrees of freedom are expressed by a single (quantum-mechanical) harmonic
oscillator with a frequency ν. The frequency depends on the volume of the system
as

dlog ν

dlog V
= γ. (6.2.25)

(1) Obtain the pressure of the system.
(2) Obtain the constant pressure specific heat CP .

Solution
(1) The partition function is given by

Z = Z0ZI , (6.2.26)

where Z0 is the canonical partition function for the classical ideal gas, and ZI is the
partition function for the internal harmonic degree of freedom. You may use the
already computed results:

Z0 =
V N

N !

(
2mkBT

h2

)3N/2

(6.2.27)

and

ZI =

(
1

2 sinh βhν/2

)N

. (6.2.28)
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Therefore

P = − ∂A

∂V

∣∣∣∣
T

=
NkBT

V
+ PI , (6.2.29)

where

P1 =
∂kBT logZI

∂V

∣∣∣∣
T

= −NkBT
cosh βhν/2

sinh βhν/2

βh

2

∂ν

∂V
= −Nhν

2V
γ coth

βhν

2
. (6.2.30)

Notice that if we write the total energy of the internal degrees of freedom

U =
Nhν

2
coth

βhν

2
=
hν

2
+

hν

eβhν − 1
, (6.2.31)

then

PI = −γU
V
. (6.2.32)

That is,

P =
NkBT

V
− γU

V
. (6.2.33)

(2) The best way is to use enthalpy H = E + PV :

CP =
∂H

∂T

∣∣∣∣
P

. (6.2.34)

Again, you may use the results you know (you may assume there is only translational
and oscillatory degrees of freedom): the internal energy is

E =
3

2
NkBT +

Nhν

2
coth

βhν

2
. (6.2.35)

Therefore,

H =
5

2
NkBT + (1− γ)U. (6.2.36)

Use (6.2.31).

CP =
5

2
NkB + (1− γ)NkB

(
βhν

eβhν − 1

)2

eβhν . (6.2.37)

2.7 [Application of equipartition of energy]14

14original credit: B. Widom
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The internal motion of some ring puckering molecules (e.g., cyclobutanone) can be
described by the following Hamiltonian:

H =
p2

2m
+ ax4, (6.2.38)

where m is the effective mass of the oscillator and a is a positive constant. Obtain
the constant volume specific heat of this gas around the room temperature. Do not
forget the contribution of translational degrees of freedom, etc.

Solution
We use the equipartition of energy:

2

〈
p2

2m

〉
= kBT. (6.2.39)

and
4
〈
ax4
〉

= kBT. (6.2.40)

Therefore,

〈H〉 =
3

4
kBT. (6.2.41)

We must pay attention to the translational and rotational degrees of freedom. This
gives 3kBT . Therefore,

CV =
15

4
kB (6.2.42)

per molecule.

2.8. [Equipartition of energy for relativistic gas]
For a classical relativistic ideal gas show that the counterpart of the law of equipar-
tition of kinetic energy reads〈

1

2

mv2
x√

1− v2/c2

〉
=

1

2
kBT. (6.2.43)

Solution
The total energy of the particle ε is obtained from the Lorentz invariance p2−ε2/c2 =
−m2c2 as

ε = c
√

p2 +m2c2. (6.2.44)

We know the general relation to demonstrate the equipartition:〈
px
∂ε

∂px

〉
= 〈pxvx〉 = kBT. (6.2.45)
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Note that
pi =

mvi√
1− (v/c)2

, (6.2.46)

This concludes the demonstration.

2.9 [An equality about canonical ensemble]
Let Φ be the total potential energy of classical system. Show

〈∆Φ〉 = β
〈
(∇Φ)2

〉
. (6.2.47)

Here, the Laplacian and the nabla are understood as operators in the 3N-space.

Solution
Let H = K + Φ, where K is the total kinetic energy.

〈∆Φ〉 =
1

Z

∫
dΓ (div gradΦ)e−β(K+Φ),

=
1

Z

∫
dΓ div

(
e−βH∇Φ

)
− 1

Z

∫
dΓ∇Φ · ∇e−βH ,

= − 1

Z

∫
dΓ∇Φ · ∇e−βH = β〈(∇Φ)2〉.

The contribution from the boundary may be ignored thanks to the Boltzmann factor.

2.10 [Density operator for free particles: perhaps an elementary QM review]
The canonical density operator is given by

ρ =
1

Z
e−βH , (6.2.48)

where H is the system Hamiltonian and Z is the canonical partition function. Let
us consider a single particle confined in a 3D cube of edge length L. We wish to
compute the position representation of the density operator 〈x|ρ|x′〉 (x and x′ are
3D position vectors, and bras and kets are normalized).

Let U(β) = e−βH and H = p2/2m. There are two ways to compute 〈x|U(β)|x′〉:
A.
(1) Show that

∂

∂β
〈x|U(β)|x′〉 =

~2

2m
∆x〈x|U(β)|x′〉, (6.2.49)

where ∆x is the Laplacian with respect to the coordinates x.
(2) What is the initial condition (i.e., 〈x|U(0)|x〉)?
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(3) Solve the equation in (1) with the correct initial condition. You may use a
simple boundary condition assuming the volume is very large (and temperature is
not too low).
(4) Compute Z, using the result in (3). You may use (3) to study the finite volume
system as long as the temperature is not too low.

B.
We can directly compute 〈x|U(β)|x′〉 with the aid of the momentum representation
of U(β):

〈p|U(β)|p′〉 = e−βp2/2mδ(p− p′).
(5) We use

〈x|U(β)|x′〉 =

∫
d3p d3p′〈x|p〉〈p|U(β)|p′〉〈p′|x′〉.

What is 〈x|p〉? You may assume the infinite volume normalization (i.e., the δ-
function normalization: 〈p|p′〉 = δ(p− p′)).
(6) Perform the integral in (5).

Solution
A(1) We immediately obtain

− d

dβ
U = HU, (6.2.50)

so its position representation is obtained as given. Notice that

〈x|H|x′〉 = − ~2

2m
∆xδ(x− x′). (6.2.51)

(2) U(0) = 1, so 〈x|U(0)|x〉 = δ(x−x′) (if you use the continuum approximation) or
= δx,x′ (if you honestly treat the finiteness of the system).
(3) This is a diffusion equation, so the solution may be obtained by looking up any
standard textbook; it is the Green’s function with the vanishing boundary condition
at infinity

〈x|U(β)|x′〉 =

(
mkBT

2π~2

)3/2

e−mkBT (x−x′)2/2~2

.

This clearly exhibits that quantum effect becomes important at low temperatures
(as can easily be guessed from the thermal wave length proportional to 1/

√
T ).

(4) Z = TrU(β), so

Z =

∫
d3x〈x|U(β)|x〉 =

∫
d3x

(
mkBT

2π~2

)3/2

= V

(
mkBT

2π~2

)3/2

.
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This is consistent with (2.2.3).

(5) |p〉 is an eigenket of H belonging to the eigenvalue p2/2m: H|p〉 = (p2/2m)|p〉.
Therefore,

− ~2

2m
∆x〈x|p〉 =

p2

2m
〈x|p〉.

The boundary condition is a periodic boundary condition. The equation is essentially
the harmonic oscillator equation, so the solution must be proportional to eipx/~. We
need a normalization condition:∫

d3xei(p−p′)x/~ = h3δ(p− p′),

so

〈x|p〉 =
1

h3/2
eipx/~.

(6)

〈x|U(β)|x′〉 =

∫
d3p 〈x|p〉e−βp2/2m〈p|x′〉 =

∫
d3p e−βp2/2m+i(x−x′)p/~.

This is a simple Gaussian integral, so indeed the answer agrees with (3) above.

2.11 [Density operator for a spin system]
Let ρ be the density operator of a single 1/2 quantum spin system whose Hamilto-
nian15 is given by H = −γσ ·B, where σ is (σx, σy, σz) in terms of the Pauli spin
operators.
(1) Obtain the matrix representation of ρ that diagonalizes σz.
(2) Find the average of σy.
(3) Obtain the matrix representation of ρ that diagonalizes σx.

Solution
(1) We take the direction of B to be the z axis.

ρ =
1

C

(
eβγB 0

0 e−βγB

)
, (6.2.52)

where C is the normalization constant: the trace of the matrix in the above formula,
so C = 2 cosh βγH.

If you wish to do the original problem we need the following calculation. Notice
that (n · σ)2 = I, where n is a unit vector.

eγB·σ =
∞∑

n=0

1

(2n)!
(γB)2n +

∞∑
n=0

1

(2n+ 1)!
(γB)2n+1B

B
·σ = cosh γB +

B

B
·σ sinh γB.

(6.2.53)

15Precisely speaking, this is te interaction Hamiltonian of the system with the magnetic field.
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(2)

〈σy〉 = Trσyρ = Tr

(
0 ieβγB

−ie−βγB 0

)
= 0. (6.2.54)

This should be obvious without any calculation.

(3) With the basis that diagonalizes σz we have

σx =

(
0 1
1 0

)
. (6.2.55)

Therefore

σx

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
=

(
1 0
0 −1

)(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
. (6.2.56)

That is, the following orthogonal (actually, unitary as well) matrix:

U =

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
(6.2.57)

diagonalizes σx as U∗σxU . Therefore,

U∗
(

0 ieβγB

−ie−βγB 0

)
U =

1

2

(
1 − tanh βγB

− tanh βγB 1

)
. (6.2.58)

2.12 [Legendre vs Laplace]
Consider an ideal gas consisting of N atoms under constant pressure P and temper-
ature T .
(1) What is the most convenient partition function and the thermodynamic poten-
tial? Compute the partition function. You may use the ideal gas canonical partition
function.
(2) Obtain the enthalpy of the system.

Solution
(1) We should use the pressure ensemble:

Q =

∫
dV Z(T, V )e−βPV . (6.2.59)
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This is related naturally to the Gibbs free energy: A + PV = G = −kBT logQ.
(Since N � 1, you need not worry about ±1 in N .)

Q =

∫ ∞
0

dV
1

N !

(
2πmkBT

h2

)3N/2

V Ne−βPV =

(
2πmkBT

h2

)3N/2

(βP )−N . (6.2.60)

This gives

G = −NkBT log

(
2πmkBT

h2

)3/2

+NkBT log
P

kBT
, (6.2.61)

which is

G = A− kBT logN ! +NkBT log
PV

kBT
= A+NkBT = A+ PV. (6.2.62)

Consistent!
(2) We can use an analogue of the Gibbs-Helmholtz relation

H =
∂G/T

∂1/T
= −∂logQ

∂β
=

5

2
NkBT. (6.2.63)

Thermodynamically, H = E + PV = E + NkBT . Consistent. This is of course
consistent with the constant pressure specific heat.

2.13 [Constant magnetic field ensemble]
The following situation is the same as 1.18: N lattice sites have spins of S = 1 (in
the term 3P ), and the spin Hamiltonian has the following form:

H = DS2
z . (6.2.64)

(1) Consider this as the constant magnetic field (B) ensemble (also constant T is
assumed), and construct the corresponding generalized canonical partition function.
The magnetization is given by M = µ

∑
Szi.

(2) Compute the magnetization as a function of the magnetic field and temperature.

Solution
(1) Since

dS =
1

T
dE +

P

T
dV − B

T
dM + · · · , (6.2.65)

the generalized partition function reads

ZH = (1 + e−βD+βµB + e−βD−βµB)N . (6.2.66)
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(2) The resulting generalized Massieu function

ψ = kB logZH (6.2.67)

satisfies

dψ = −Ed
(

1

T

)
+Md

(
B

T

)
+ · · · . (6.2.68)

Therefore,

M =
∂ψ

∂(B/T )
= N

µ(e−βD+βµB − e−βD−βµB)

1 + e−βD+βµB + e−βD−βµB
= N

sinh βµB

e−βD/2 + cosh βµB
. (6.2.69)

2.14 [Absorption of mixed ideal gas, or convenient partition function]
There is a gas mixture consisting of two distinct atomic species A and B. The mix-
ture is an ideal gas and the partial pressures of X is pX(X = A or B). The gas is
in equilibrium with an adsorbing metal surface on which there are adsorption sites.
Atom X adsorbed at the site is with energy −EX on the average relative to the one
in the gas phase, where X = A or B. Each surface site can accommodate at most
one atom. Assume that [Hint: I assume that you know how to calculate the chemical
potentials of the atoms, knowing the molecular weights.]
(1) Write down the ‘partition function’ (use the most convenient one) for the single
site.
(2) Obtain the average surface concentration nX (X = A or B) of atoms A and B.
(3) Under a given (partial) pressures of A and B nE : nA : nB = 1 : 1 : 18 (here E
means empty). Find the maximum concentration nA obtainable with changing only
the partial pressure of B. (UIUC Qual F95).

Solution
(1) Each adsorption site has three states, empty, occupied by A and occupied by B.
Therefore, for a single site the grand partition function function reads

Ξ = 1 + eβ(EA+µA) + eβ(EB+µB), (6.2.70)

where µX is the chemical potential of X that can be written as

µX = kBT log(βpX/nQX) = kBT log(pX/pQX) (6.2.71)

Here, nQX is the ‘quantum density’ depending on T and the mass (see 1.4.5), and
pQX = nQXkBT may be called the ‘quantum pressure.’ Therefore,

Ξ = 1 + pAe
βEA/pQA + pBe

βEB/pQB. (6.2.72)
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You need not compute nQ that is a matter of simple calculation as in 1.4.5.
(2) As seen in 6-2 we may write

d(kBT log Ξ) = SdT + pdV +NAdµA +NBdµB + · · · , (6.2.73)

so if we apply this to each site NX may be interpreted as nX :

nA =
∂(kBT log Ξ)

∂µA

=
pAe

βEA/pQA

1 + pAeβEA/pQA + pBeβEB/pQB

, (6.2.74)

nB =
pBe

βEB/pQB

1 + pAeβEA/pQA + pBeβEB/pQB

, (6.2.75)

nE =
1

1 + pAeβEA/pQA + pBeβEB/pQB

, . (6.2.76)

(3) It should be intuitively obvious that A absorption is facilitated if there is no
competition. Hence, the maximum concentration should be accomplished by pB = 0.
Now, nA = nE for a given pB, so we must conclude that pAe

βEA/pQA = 1. Therefore,
the max conc must be 0.5.

2.15 [Absorption on catalytic surface]
There are N absorption centers on the catalyst surface exposed to a gas (ideal gas)
of a certain chemical. Each absorption center can accommodate at most two parti-
cles. The partition function for the single particle absorption state is a1 and the two
particle absorption state is a2.
(1) Write down the single site (grand) partition function.
(2) Let a1 = 0 (i.e., absorption is possible only when a pair is formed). The average
number of particles absorbed on the catalytic surface is n0. Find the chemical po-
tential of the particles.
(3) Now, the pressure of the chemical is doubled (with the temperature kept con-
stant) and the average number of particles absorbed on the catalytic surface is n1.
Find n1 in terms of N and n0. a1 is still assumed to be zero.
(4) If a1 > 0, does the number of absorbed molecules increase from n0 in (2) (i.e.,
the a1 = 0 case)? Demonstrate your answer and give a brief physical explanation.

Solution
(1)

Ξsingle = 1 + a1e
βµ + a2e

2βµ. (6.2.77)

(2) The average particle numbers in the system (= the catalytic surface; notice
that the gas phase is treated as a chemical reservoir) is obtained by ∂ log Ξ/∂(βµ)
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(Ξ = ΞN
single):

n0 = N
2a2x

2

1 + a2x2
, (6.2.78)

where x = eβµ (called fugacity). Therefore, we have two possibilities, but x cannot
be negative, since βµ ∈ R:

x =

√
n0/N

(2− n0/N)a2

. (6.2.79)

Therefore,

µ = kBT log

√
n0/N

(2− n0/N)a2

. (6.2.80)

(3) If the pressure is doubled, the fugacity doubles. Therefore, (6.2.79) tells us
that

2

√
n0/N

(2− n0/N)a2

=

√
n1/N

(2− n1/N)a2

. (6.2.81)

Solving this for n1, we get

n1 =
8n0

2 + 3n0/N
. (6.2.82)

(4) Equation (6.2.78) now reads

n = N
a1x+ 2a2x

2

1 + a1x+ a2x2
. (6.2.83)

This may be written as

n = N

(
1 +

a2x
2 − 1

1 + a1x+ a2x2

)
. (6.2.84)

a1x > 0 implies that if a2x
2 > 1 (i.e., n/N > 1), then increasing a1 (that is, favoring

monomers) decreases the number of the absorbed molecules; otherwise, opposite.
Physically (or intuitively), this should be natural, because if monomers are fa-

vored when dimers are also sufficiently favored, they compete the sites. Thus, the
double occupancy fraction decreases, so does the total number of absorbed molecules.

2.16 [Gas under a weight]
Suppose there is a vertical cylindrical container of cross section s whose top wall is
a movable piston of cross section s with mass M . The piston is assumed to move
only in the vertical direction (z-direction) and feels gravity. The container contains
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N (� 1) classical noninteracting particles with mass m.
(1) Write down the Hamiltonian of the gas + piston system (write the piston vertical
momentum as pM).
(2) Obtain the pressure P of the gas, and write the Hamiltonian in terms of P and
the volume of the gas V = sz, where z is the position of the piston from the bottom
of the container.
(3) Now, the mechanical variables are the phase variables of the gas system and the
piston momentum pM and z = V/s. Compute the canonical partition function of
the whole system.
(4) You should have realized that the calculation in (3), apart from the unimportant
contribution in the thermodynamic limit of the piston momentum, is the calculation
of the pressure ensemble. [That is, the heavy piston acts as a constant pressure
device.] Obtain the equation of state of the gas in the cylinder (a trivial question).

Solution
(1)

H =
N∑

i=1

pi
2

2m
+
p2

M

2M
+Mgz. (6.2.85)

(2) From the force balance, we have

Ps = Mg ⇒ PV = Mgz. (6.2.86)

Therefore, (6.2.85) can be rewritten as

H =
N∑

i=1

pi
2

2m
+
p2

M

2M
+ PV. (6.2.87)

(3)

Z =
1

N !h3N+1

∫
dNpdNqdpMdz e

−βH , (6.2.88)

=
1

N !

(
2πmkBT

h2

)3N/2(
2πMkBT

h2

)1/2 ∫
V Ne−βPV dV

s
(6.2.89)

=

(
2πmkBT

h2

)3N/2(
2πMkBT

h2

)1/2

(βP )−N . (6.2.90)

Notice that this is almost the pressure ensemble for the ideal gas.
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(4) We know (see 2.12) the above Z is proportional to the pressure ensemble parti-
tion function Q:

Z = Q

(
2πMkBT

h2

)1/2

, (6.2.91)

where

Q =

(
2πmkBT

h2

)3N/2

(βP )−N . (6.2.92)

We know from the Laplace-Legendre correspondence that G = −kBT logQ:

G = −NkBT log

(
2πmkBT

h2

)3/2

+NkBT log
P

kBT
, (6.2.93)

dG = −SdT + V dP , so

V =
∂G

∂P

∣∣∣∣
T

=
NkBT

P
. (6.2.94)

This is the equation of state as expected. The enthalpy of the gas can be obtained
by the Gibbs-Helmholtz relation

H =
∂(G/T )

∂(1/T )

∣∣∣∣
P

=
5

2
NkBT. (6.2.95)

2.17 [Ideal gas with the aid of grand canonical ensemble]
Let us study the classical ideal gas with the aid of the grand canonical ensemble. Let
µ be the chemical potential.
(1) Compute the grand canonical partition function for a monatomic ideal gas. As-
sume that the mass of the atom is m.
(2) Find the internal energy and the pressure as a function of chemical potential µ.
(3) Suppose the expectation value of the number of particles is N . How is the chim-
ical potentialdetermined?
(4) Are the results obtained above (especially the results of (2)) consistent with what
you already know?

Solution
(1) By definition

Ξ =
∞∑

N=0

1

N !

(
2πmkBT

h2

)3N/2

V NebµN = exp

[(
2πmkBT

h2

)3/2

V ebµ

]
(6.2.96)
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(2) From this we get

P =
kBT

V

(
2πmkBT

h2

)3/2

V eβµ. (6.2.97)

Since
d(PV/T ) = −Ed(1/T ) + (P/T )dV +Nd(µ/T ), (6.2.98)

E = T 2 ∂kB log Ξ

∂T

∣∣∣∣
µ/T,V

=
3

2
kBT

(
2πmkBT

h2

)3/2

V eβµ. (6.2.99)

Noice that this is equal to 3PV/2.
(3) Since

N =
1

kB

∂

∂βµ

PV

T
=

∂

∂βµ
log Ξ =

(
2πmkBT

h2

)3/2

V eβµ, (6.2.100)

we obtain

µ = kBT log
N

V

(
2πmkBT

h2

)−3/2

. (6.2.101)

The result agrees with the result obtained in the text. If n � nQ (i.e., the classical
case without overlapping of de Broglie wave packets), µ deviates verymuch to the
negative side (µ� 0).
(4) Thus, as has already been stated at various places, the results of the grand canon-
ical ensemble completely reproduces the properties of the classic ideal gas.

2.18 [To obtain the microcanonical partition function with the aid of Laplace in-
verse transformation]
Starting from

Z =
V N

N !

(
2πmkBT

h2

)3N/2

, (6.2.102)

obtain the microcanonical partition fucntion w(E, V ) (with the aid of Laplace inverse
transformation).

Solution

w(E, V ) =
1

2πi

∫ β∗+i∞

β∗−9∞
Z(β)eβEdβ. (6.2.103)

If you can demonstrate the following formula, you may use it:

1

2πi

∫ s′+i∞

s′−i∞

esx

xk+1
ds =

xk

Γ(k + 1)
. (6.2.104)



6.2. PROBLEMS FOR CHAPTER 2 393

If k is an integer, this is almost self-evident with the aid of Goursat’s theorem, but
in our case k need not be an integer.

2.19 [Equivalence of canonical and grand canonical ensembles]
Let us check the equivalence of grand canonical and canonical ensembles. That is,
if we compute thermodynamic quantities in the thermodynamic limit, both give the
same answers. Even experimentalists should look at this proof at least once in their
lives.

The grand partition function Ξ(T, µ) and canonical partition function Z(T,N)
(the ground state energy is taken to be the origin of energy) are related as

Ξ(T, µ) =
∞∑

N=0

Z(T.N)eβµN .

Let us assume that the system consists of N (which is variable) particles in a box
of volume V and the total interaction potential Φ among particles is bounded from
below by a number proportional to the number of particles N in the system: Φ ≥
−NB, where B is a (positive) constant. (The system Hamiltonian generally has the
form of H = K + Φ, where K is the kinetic energy.)

Through answering the following almost trivial questions, we can demonstrate the
ensemble equivalence (rigorously).
(1) Show that there is a constant a such that

Z(T,N) ≤
(
aV

N

)N

. (6.2.105)

Actually, show (classically)

Z(T,N) ≤ Z0(T,N)eβNB,

where Z0 is the canonical partition function for the ideal gas (e.g., (1.7.3)). This is
just eq.(6.2.105) above
(2) Show that the infinite sum defining the grand partition function actually con-
verges. The reader may use eq.(6.2.105) and N ! ∼ (N/e)N freely.
(3) Choose N0 so that

∞∑
N=N0

Z(T,N)eβµN < 1.

Show that this N0 may be chosen to be proportional to V (that is, N0 is at most
extensive).
(4) Show the following almost trivial bounds:

max
N

Z(T,N)eβµN ≤ Ξ(T, µ) ≤ (N0 + 1) max
N

Z(T,N)eβµN .



394 CHAPTER 6. SOLUTIONS

(5) We are almost done, but to be explicit, show that PV/NkBT obtained thermo-
dynamically from the canonical partition function and that directly obtained from
the grand partition function agree.

Solution
(1) The canonical partition function reads

Z(T,N) =
1

N !

∫
dΓe−β(K+Φ) ≤ 1

N !

∫
dΓe−βKeβBN = Z0(T,N)eβNB, (6.2.106)

where Z0 is the canonical partition function of the ideal gas. We know the kinetic
part may be factorized into the individual particle contributions, and N ! ∼ (N/e)N ,
so there must be a satisfying the inequality.
Remark. The estimate is also correct quantum mechanically, so our proof being
checked here is quite general.
(2) The grand partition function is a positive term series, and each term is bounded
by the estimate in (1), so

Ξ(T, µ) =
∞∑

N=0

Z(T.N)eβµN ≤
∞∑

N=0

(
aV

N

)N

eβµN =
∞∑

N=0

(
aV eβµ

N

)N

.

That is, with the aid of Stirling’s formula,

Ξ(T, µ) ≤
∞∑

N=0

1

N !
(aV eβµ−1)N = exp

(
aV eβµ−1

)
.

The grand canonical partition function is a sum of positive terms, and bounded from
above, so it must converge to a positive number.

For many realistic systems the interaction potentials have sufficiently hard repul-
sive cores, so the convergence is much quicker.
(3) This is the tail estimation to majorize it. Any crude choice will do, so we first
‘overestimate’ the sum beyond N0 as

∞∑
N=N0

Z(T,N)eβµN ≤
∞∑

N=N0

1

N !
(aV eβµ−1)N '

∞∑
N=N0

(
aV eβµ

N

)N

(6.2.107)

Here, Stirling’s formula has been used. For example, if we assume

aV eβµ

N0

< 0.1, (6.2.108)
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then
∞∑

N=N0

Z(T,N)eβµN <

∞∑
N=N0

0.1N . (6.2.109)

The sum on the RHS is obviously bounded by 0.2 (by 1/9, at worst N0 = 1). Thus,
the choice (6.2.108) is enough. Such N0 can clearly be chosen proportional to V .
(4) The grand partition function is a sum of positive terms, so it must be larger than
any one term, especially larger than the largest term, in it:

max
N

Z(T,N)eβµN ≤ Ξ(T, µ). (6.2.110)

Notice that the largest term cannot be less than 1, because the N = 0 term is never
smaller than 1.16 To obtain the upper bound Ξ is divided into the sum up to N0− 1
and that beyond N0 − 1:

Ξ(T, µ) =

N0−1∑
N=0

Z(T,N)eβµN +
∞∑

N=N0

Z(T,N)eβµN . (6.2.111)

The second term on the right hand side is bounded by 1, which is not larger than the
maximum term in the sum, so it is bounded by maxN Z(T,N)eβµN . Therefore,

Ξ(T, µ) ≤
N0−1∑
N=0

Z(T,N)eβµN + max
N

Z(T,N)eβµN . (6.2.112)

The sum in the above inequality must be less than the number of terms × the largest
term:

N0−1∑
N=0

Z(T,N)eβµN ≤ N0 max
N

Z(T,N)eβµN . (6.2.113)

Therefore, we have

Ξ(T, µ) ≤ (N0 + 1) max
N

Z(T,N)eβµN . (6.2.114)

Combining this with (6.2.110) we get the desired result.

16Notice that Z(T, 0) ≥ 1: recall

Z(T,N) =
∑

w(E,N)E−βE ,

and N = 0 term is of course included, which is 1. This means maxZ(T,N)eβµN ≥ 1.
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(5) The grand canonical ensemble asserts

PV

NkBT
=

1

N
log Ξ(T, µ).

From the above inequality

1

N
log
(
max

N
Z(T,N)eβµN

)
≤ PV

NkBT
≤ 1

N
log
(
max

N
Z(T,N)eβµN

)
+

1

N
log(N0 + 1).

Notice that
1

N
log max

N
Z(T,N)eβµN =

1

N
max

N
{−βA+ βµN}

is a Legendre transformation of A (recall dA = −SdT − PdV + µdN or A =
−PV + µN). Therefore, minN{A− µN} = −PV . This is the PV obtained thermo-
dynamically with the aid of the canonical ensemble results. That is,(

PV

NkBT

)
th

≤ PV

NkBT
≤
(

PV

NkBT

)
th

+
1

N
log(N0 + 1).

log(N0 +1) is bounded by a number proportional to log V as demonstrated in (3), so
in the N →∞ limit the rightmost term behaves at worst as (logN)/N , and may be
ignored. Therefore, the pressure obtained thermodynamically from the Helmholtz
free energy (obtained by the canonical ensemble) and the pressure directly obtained
statistical mechanically with the aid of the grand canonical ensemble agree:(

PV

NkBT

)
th

=
PV

NkBT
.

2.20 [Legendre transformation in convex analysis]
(1) We know that −S is a convex function of internal energy E. Using the general
property of the Legendre transformation, show that Helmholtz free energy A is con-
vex upward as a function of T . You may assume any derivative you wish to compute
exists.
(2) When a phase transition occurs, the curve of S(E) has a linear part as a function
of E (that is, E can change under constant T = Te). Then, A as a function has a cusp
at T = Te (that is, all the states corresponding to the flat part is collapsed to a point,
the one-to-one nature of the Legendre transformation can be lost, if there is a phase
transition). To illustrate this point, let us consider the following toy function

f(x) =


2 tanh(x+ 1)− 2 for x < −1,

2x for − 1 ≤ x ≤ 1,
(x− 1)2 + 2x for x > 1.
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Sketch its Legendre transform f ∗(α) = supx[αx− f(x)]. [Do not try to compute the
explicit formula.]

Solution
(1) −S is a convex function of E, so that it is also a convex function of −E. We
know

− A

T
= sup

T
[−E/T − (−S)]. (6.2.115)

Therefore, −A/T is a convex function of 1/T . A dirty way to proceed is to perform
differentiation twice.

d(−A/T )

d1/T
= −A− 1

T

dA

d1/T
= −A+ T

dA

dT
. (6.2.116)

Therefore,

d2(−A/T )

d(1/T )2
= −T 2 d

dT

(
−A+ T

dA

dT

)
= −T 3d

2A

dT 2
> 0 (6.2.117)

Therefore, A is a concave function of T .
(2) We consider the Legendre transformation

f ∗(α) = sup
x

[αx− f(x)] (6.2.118)

For α > 2 this is easy, and we obtain f ∗(α) = α2/2− 1. Between −2 and 2 of x the
slope of f does not change and is 2, so α = 2, which means f ∗(2) = 0 is a cusp. For
α < 2, analytic calculation is not wise. We know α cannot be negative, and in the
α→ 0 limit, f ∗ → 4, because limx→−∞ f(x) = −4. Since f ∗ is convex, we can easily
sketch its overall shape as below:

Remember that convex functions are continuous.

2.21 [Information]
Suppose there are two fair dice. We assume that one dice is red and the other is
green (that is, distinguishable). Let us record the numbers that are up in this order
as (n,m) (n,m ∈ {1, 2, · · · , 6}).
(1) To know a particular pair of numbers (a, b) unambiguously what information (in
bits) do you need?
(2) You are told that the sum a+ b is not less than 5. What is the information you
gain from this message?
(3) Next, you are told, one of the dice shows the face less than 3. What is the



398 CHAPTER 6. SOLUTIONS
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x

α

Left: f , Right: f ∗.

information you gain? (You must know the info obtained from (2) already.)
(4) Now, you are told that actually, the one of the dice in (3) is the red one. What
is the information carried by this message?
(5) Finally, you are told that face pair is actually (2, 5). What is the information in
this final statement?

Solution
(1) There are 36 distinguishable states and they are all equally probable. Therefore,
the total uncertainty is log2 36 = 5.16 bits, or the surprisal you have when you are
told, say, (1, 1) actually happens is 5.16 bits. That is, you need 5.16 bits of informa-
tion to pinpoint a particular elementary event.
(2) There is no simpler way than actually to list all elementary states up: (1,1), (1,2),
(1,3), (2,1), (2,2), (3, 1). These 6 states are excluded. Remaining are 30 states, all
equally probably, so logs 30 = 4.91 bits is the uncertainty. That is, 5.16−4.91 = 0.25
bits is the information in the message.
(3) Red = 1: Green = 4, 5 or 6
Red = 2: Green = 3, 4, 5 or 6.
Therefore, there are 7× 2 = 14 states remaining. This uncertainty is log2 14 = 3.81.
We had 4.91 bits of uncertainty, so this message must have conveyed 1.1 bits.
(4) Obviously, 1 bit.
(5) There is no uncertainty remaining, so 2.81 bits (this is, needless to say, the sur-
prisal of an event of probability 1/7)

2.22 [Variational principle for free energy (classical case)17]
Let H = H0 + V be a system Hamiltonian.
(1) Show thatq

A ≤ A0 + 〈V 〉0,

17This holds quantum mechanically as well, but the proof is not this simple.
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where A is the free energy of the system with H and A0 that with H0. 〈 〉0 is the
average over the canonical distribution of the system with the Hamiltonian H0. The
inequality is (sometimes) called the Gibbs-Bogoliubov inequality.
(2) We can use the inequality to estimate A. If we can compute A0 and 〈V 〉0 (that is
the free energy for the system with H0 and the average with respect to this system),
then we can estimate the upper bound of A. Its minimum may be a good approx-
imation to A. This is the idea of the variational approximation. Let us study an
unharmonic oscillator with the Hamiltonian

H =
1

2m
p2 +

1

2
kx2 +

1

4
αx4,

where m, k and α are positive constants. Let us define

H0 =
1

2m
p2 +

1

2
Kx2.

Choose K to obtain the best estimate of A (you need not compute the estimate of
A; it is easy but messy). You may use all the available results in the text.

Solution
(1)

〈e−βV 〉0 =
1

Z0

∫
dΓe−βV e−βH0 =

Z

Z0

= e−β(A−A0).

Therefore, with the aid of Jensen’s inequality

e−β〈V 〉0 ≤ e−β(A−A0).

That is, we are done.
(2) We know

A0 = kBT log

[
~
√
K/m

kBT

]
and (with the aid of 〈x4〉0 = 3〈x2〉20 and equipartition of energy)〈

1

4
αx4

〉
0

=
3α

4K2
(kBT )2.

That is,

A ≤ kBT log

[
~
√
K/m

kBT

]
+

1

2
(k/K − 1)kBT +

3α

4K2
(kBT )2.
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Minimizing the right hand side wrt K, we obtain

1

2K
− k

2K2
− 3α

8K3
kBT = 0.

If α = 0 clearly we get the right answer K = k. Solving this, we obtain

K =
1

2

(
k +

√
k2 + 3αkBT

)
.

2.23 [Gibbs-Bogoliubov’s inequality (quantum case)]18

Gibbs-Bogoliubov’s inequality

A ≤ A0 + 〈H −H0〉0 (6.2.119)

holds in quantum statistical mechanics as well.
(1) Demonstrate Peierls’ inequaltiy:

Tre−βH ≥
∑

i

e−〈i|H|i〉, (6.2.120)

where {|i〉} is an arbitrary orthonormal basis.
(2) Let {|i〉} be the orthonormal basis consisting of the eigenstates foH0. Then,

e−βA ≥
∑

i

e−β〈i|H|i〉 = e−βA0

∑
i

eβ(A0−〈i|H0|i〉)e−β〈i|(H−H0)|i〉. (6.2.121)

Show Gibbs-Bogoliubov’s inequality with the aid of Jensen’s inequality.

2.24 (1) For any density operator P

A ≤ TrP (H + kBT logP ), (6.2.122)

where A is the free energy for the system whose hamiltonian is H.
(2) Suppose P is the canonical density operator P = eβ(A0−H0) for a system with the
Hamiltonian H0. Show that the above inequality is jsut Gibbs-Bogoliubov’s inequal-
ity.

2.25 [Convexity of free energy] (Ruellle)

A[
∑

λiHi] ≥
∑

A[λiHi]. (6.2.123)

18M D Girardeau and R M Mazo, “Variational methods in statistical mechanics,”
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Soluton
Hölder + Peierls proves this.

2.26 [Thermodynamic perturbation theory]
Suppose the system Hamiltonian is given as H = H0 + εH1, where ε is a (small)
constant. Demnonstratet the following expansion formula:

A = A0 + ε〈H1〉0 −
1

2
βε2〈(H1 − 〈H1〉0)2〉0 + · · · , (6.2.124)

where A is the free energy of the system, A0 is the free energy in case H1 = 0, and 〈
〉0 is the expectation with respect to the canonical distribution with the Hamiltonian
H0.

2.27 [Jarzynski’s equality].19

A single stranded DNA with a certain binding protein is stretched slowly until the
protein dissociates from the DNA. Then, the length of the DNA is returned slowly
to the rather relaxed state where the binding of the molecule does not affect the
DNA tension. The work W dissipated during the cycle is measured at 300K and the
experimental results were as follows:

W in pNnm number of times βW e−βW

78-82 4 19.3 4.04× 10−9

83-87 15 20.5 1.21× 10−9

88-92 7 21.74 3.62× 10−10

93-97 4 22.94 1.082× 10−10

98-102 1 24.15 3.23× 10−11

What is the best estimate of the (Gibbs) free energy change due to binding of the
protein in the relaxed state of the single stranded DNA? How is your estimate dif-
ferent from the simple average 〈W 〉?
Solution
Notice that kBT = 4.14pNnm. e−βW is written in the above table. Thus,∑

e−βW = 373.1× 10−10 ⇒
〈
e−βW

〉
= 1.2× 10−9 (6.2.125)

That is, our estimate of ∆A is 85.0 pNnm. If we directly average the result, we
obtain 87.4 pNnm. Of course, we have ‘confirmed’ the second law 〈W 〉 ≥ ∆A.

Although we wrote A in the above, its definition is complicated.

19Inspired by Rustem Khafizov and Yan Chemla’s experiment on SSB. The numbers are only
fictitious. although the magnitudes are realistic.
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2.28 [Fluctuation and spring constant]20

Inside the F1ATPase is a rotor γ to which a long actin filament (it is a straight stiff
bar of length 30 nm) is perpendicularly attached. Thus, the filament swings back
and forth when the ATPase is waiting for an ATP molecule.
(1) The root mean square angle fluctuation of the stiff filament was 30 degrees at
290K. If the temperature is raised by 10%, by what percentage will the angular
fluctuation change? Assume that the molecular structure is not affected by this tem-
perature change.
(2) What is the torsional spring constant of this rotor captured by the surrounding
ring?
(3) Now, adding an appropriate polymers to the ambient solution, the effective vis-
cosity of the solution is doubled. What is the mean square angle fluctuation of the
filament? You may assume that the polymers do not affect the ATPase itself.

Solution
(1) Suppose θ is the angular deviation around the equilibrium direction. Then, the
torsional spring constant k reads

τ = kθ, (6.2.126)

where τ is the torsion. Since, k−1 is the ‘susceptibility’ of θ against τ , the fluctuation-
response relation tells us

k−1 =
∂θ

∂τ

∣∣∣∣
T

= β〈(δθ)2〉. (6.2.127)

That is,
〈(δθ)2〉 = kBT/k. (6.2.128)

Since we may assume k does not depend on T , the fluctuation should change by
about 5%.
(2) You must measure the angle in radians.

k = 1.382× 10−23 × 290/(π/6)2 = 1.46× 10−20 (6.2.129)

The unit is J/rad. Is it reasonable? It is about 15 pNnm/rad, a reasonable value.
(3) No change. The formula does not depend on the viscosity, so the amplitude of
the fluctuation never changes. This is true however gooey the solution is. It is true
that the oscillation becomes slow, but then small fluctuations can be accumulated
to a size as large as when the viscosity is very low.

20If you wish to see the structure of the ATPase or to learn about how you can be alive, see K.
Kinosita, K. Adachi, and H. Itoh, “Rotation of F1ATPase: how an ATP-driven molecular machine
may work,” Ann. Rev. Biophys. Biomol. Struct., 33, 245 (2005).
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2.29 [Thermodynamic fluctuations]
(1) Suppose X and y are nonconjugate pair with respect to energy, X extensive and
y intensive. Prove that 〈δXδy〉 = 0.
(2) Let X and x be a conjugate pair (wrt energy). Show 〈δXδx〉 = kBT .
(3) Express 〈δµ2〉 in terms of a single thermodynamic derivative. The system is as-
sumed to be described in terms of S, V,N (or their conjugate variables).
(4) Show with the aid of grand partition function that

kBT
2 ∂E

∂T

∣∣∣∣
µ,V

= 〈δE2〉 − µ〈δEδN〉.

(5) Let X be an extensive quantity. What can you conclude about 〈δSδX〉? The
result is pedagogically suggestive, because entropy fluctuation means spatially local
heat transport: that is, local temperature change.

Solution
(1) Recall that you can choose any combination of variables as independent variables
as long as one variable is chosen from each conjugate pair {X, x}. We know 〈δXiδXj〉,
so in this case, we should use the all extensive independent variable set.

〈δXδy〉 =

〈
δX
∑
Y

∂y

∂
∑

Y

Y δY

〉
= kBT

∑
Y

∂Y

∂x

∂y

∂Y
= kBT

∂y

∂x
= 0.

In more detail for those who are skeptic:

dx =
∑

j

∂x

∂Xj

∣∣∣∣
X1···X̌j ···Xn

dXj, (6.2.130)

where X̌j implies to remove the variable under the check mark. Therefore,

∂xi

∂xk

∣∣∣∣
x1···x̌k···xn

=
∑

j

∂xi

∂Xj

∣∣∣∣
X1···X̌j ···Xn

∂Xj

∂xk

∣∣∣∣
x1···x̌k···xn

. (6.2.131)

We put (6.2.130) into 〈δXδy〉 (regarding X is a representative of {Xj} and y that
of {xk} (the derivatives are mere constants, so you can take them out of the average
symbol). Now, (6.2.131) tells you what you want.

(2)

〈δXδx〉 =

〈
δX

∂x

∂Y
δY

〉
= kBT

∑
Y

∂Y

∂x

∂x

∂Y
= kBT.
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(3) Taking into account of (1) above, we should choose µ, S, V as independent vari-
ables.

δ2S = − 1

2T
(δNδµ+ · · ·) = − 1

2T

∂N

∂µ

∣∣∣∣
S,V

δµ2 + · · · .

Therefore,

P (δµ · · ·) ∝ exp

{
− 1

2kBT

(
∂N

∂µ

∣∣∣∣
S,V

δµ2 + · · ·

)}
.

That is,

〈δµ2〉 = kBT
∂µ

∂N

∣∣∣∣
S,V

.

(4) Since

Ξ =
∞∑

N=0

ZN(T )eβµN =
∞∑

N=0

∫
dE wE,Ne

−βE+βµN ,

〈E〉 =
1

Ξ

∞∑
N=0

∫
dE wE,NEe

−βE+βµN .

Therefore,

d〈E〉
dβ

=
1

Ξ

∞∑
N=0

∫
dEWE,NE(µN − E)e−βE+βµN

− 1

Ξ2

∞∑
N=0

∫
dE wE,NEe

−βE+βµN

∞∑
N=0

∫
dE wE,N(µN − E)e−βE+βµN ,

= 〈δE(µδN − δE)〉

(5)

〈δSδX〉 = kBT
∂X

∂T

∣∣∣∣
x

.

That is, the temperature derivative is the cross correlation with entropy fluctuation.
This is, although trivial, worth remembering.

2.30 [Equilibrium fluctuation]
(1) Obtain 〈δSδV 〉.q
(2) Obtain 〈δPδT 〉.
Solution
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(1) Perhaps, the cleverest way is to us the fluctuation-response relation. We imme-
diately obtain

〈δSδV 〉 = kBT
∂V

∂T

∣∣∣∣
P

. (6.2.132)

There is no simple trick, if you wish to use thermodynamic fluctuation theory. Choose
S and V as independent variables.

1

2kBT
[δSδT − δPδV ] =

1

2kBT

[
∂T

∂S

∣∣∣∣
V

+ 2
∂T

∂V

∣∣∣∣
S

δV δS − ∂P

∂V

∣∣∣∣
S

δV 2

]
. (6.2.133)

Therefore, (with the aid of the formulas for 2 variate Gaussian distribution)

〈δSδV 〉 = kBT
1

∂(T,P )
∂(S,V )

∂T

∂V

∣∣∣∣
S

= −kBT
∂S

∂P

∣∣∣∣
T

= kBT
∂V

∂T

∣∣∣∣
P

. (6.2.134)

(2) There is no simple trick. Choose T and P as independent variables.

1

2kBT
[δSδT−δPδV ] =

1

2kBT

[
∂S

∂T

∣∣∣∣
P

δT 2 + 2
∂S

∂P

∣∣∣∣
T

δTδP − ∂V

∂P

∣∣∣∣
T

δP 2

]
. (6.2.135)

Therefore, (with the aid of the formulas for 2 variate Gaussian distribution)

〈δTδP 〉 = kBT
1

∂V
∂P

∣∣
T

∂S
∂T

∣∣
P

+ ∂S
∂P

∣∣2
T

∂S

∂P

∣∣∣∣
T

. (6.2.136)

This is OK as an answer, but we can go further, if we realize

〈δTδP 〉 = kBT
1

∂(V,S)
∂(P,T )

∂S

∂P

∣∣∣∣
T

= kBT

∂(S,T )
∂(P,T )

∂(V,S)
∂(P,T )

= kBT
∂(S, T )

∂(V, S)
= −kBT

∂T

∂V

∣∣∣∣
S

. (6.2.137)

2.31 [Fluctuation and Le Chatelier-Braun’s principle]
(1) Show that

〈δxδX〉2 ≤ 〈δx2〉〈δX2〉
where x and X are conjugate pair of thermodynamic variables (wrt energy).
(2) What is the relation between this inequality and the Le Chatelier-Braun princi-
ple?

Solution
(1) The easiest way is to use the following obvious inequality valid for any real t:

0 ≤ 〈(δX + tδx)2〉 = 〈δX2〉+ 2t〈δxδX〉+ t2〈δx2〉 (6.2.138)
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Since 〈δx2〉 ≥ 0, we have its discriminant to be negative:

〈δxδX〉2 − 〈δX2〉〈δx2〉 ≤ 0. (6.2.139)

(2) We know 〈δxδX〉 = kBT , and (use clever way of calculating fluctuations)

〈δX2〉 = kBT
∂x

∂X

∣∣∣∣−1

y

, 〈δx2〉 = kBT
∂X

∂x

∣∣∣∣−1

Y

. (6.2.140)

Therefore,
∂x

∂X

∣∣∣∣
y

≤ ∂x

∂X

∣∣∣∣
Y

. (6.2.141)

Thus we have learned that Le Chatelier-Braun principle is a realization of | cos θ| ≤ 1
(or Cauchy-Schwarz inequality) just as Hesenberg’s uncertainty relation.

2.32 [Fluctuation of internal energy]
For a classical monatomic ideal gas consisting of N atoms, compute the fluctuation
of its internal energy (under constant T and P ). Or show

〈(E − 〈E〉)2〉/〈E〉2 = 2/3N. (6.2.142)

Solution
The Gibbs relation dE = TdS − PdV implies

〈δE2〉 = T 2〈δS2〉 − 2TP 〈δSδV 〉+ P 2〈δV 2〉. (6.2.143)

The volume fluctuation can be found as

〈δV 2〉 = −kBT
∂V

∂P

∣∣∣∣
T

= kB
V

P
. (6.2.144)

The entropy fluctuation can be calculated with the aid of S and P as independent
variables, we conclude

δT =
∂T

∂S

∣∣∣∣
P

δS + · · · , (6.2.145)

so

〈δS2〉 = T
∂S

∂T

∣∣∣∣
P

= kBCP =
5

2
k2

BN. (6.2.146)

Therefore, we need a result we have already obtained:

〈δSδV 〉 = kBT
∂V

∂T

∣∣∣∣
P

= kBV. (6.2.147)
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Combining all the results, we obtain

〈δE2〉 = kBT
2CP − 2PkBT

2 ∂V

∂T

∣∣∣∣
P

− P 2kBT
∂V

∂P

∣∣∣∣
T

, (6.2.148)

= k2
BT

2

(
5

2
N − 2N +N

)
=

3

2
(kBT )2N. (6.2.149)

We know 〈E〉 = 3kBTN/2, so we arrive at the desired result.

2.33 [Stability and related topics, e.g., Le Chatelier-Braun]
(1) Suppose a phase transition from phase I to phase II occurs upon increasing the
magnetic field in the z-direction. What can you say about the relation between the
magnetisms of the phases?
(2) Suppose phase I is a low temperature phase and II a high temperature phase.
The phase transition I → II is first order. What can you say about the sign of the
latent heat ∆H of this phase transition?
(3) Which specific heat is larger, CB or CM (under constant magnetic field, and
under constant magnetization, respectively)?
(4) Suppose there is a dielectric material between a parallel plate capacitor. The two
plates of the capacitor may be short-circuited by a switch. What can you say about
the relation between the heat capacity of the dielectric material under the open- and
short-circuited conditions? Let ε be its dielectric constant, that may or may not
depend on temperature.
(5) Suppose there is a liquid that crystallizes upon heating. Discuss the latent heat
for this transition.21

Solution
(1) The internal energy must be convex, so the susceptibility must be nonnegative,
if M is differentiable with respect to B. At the phase transition this is not usually
the case, but still the convexity must hold, so M must increase in the second phase.
(2) The argument is the same as above (we did this problem before!). Increasing T
must increase S, so S is larger for II. Therefore, ∆H = T∆S > 0 if we go from I to
II. That is latent heat must be absorbed by the system.
(3) This can be answered with the aid of Braun’s principle:

∂x

∂X

∣∣∣∣
y

<
∂x

∂X

∣∣∣∣
Y

. (6.2.150)

21 Johari, et al., “Endothermic freezing on heating and exothermic melting on cooling,” J. Chem.
Phys., 123, 051104 (2005): α-cyclodextrin + water + 4-methylpyridine (molar ratio of 1:6:100).
For this system a liquid’s endothermic freezing on heating and the resulting crystal’s exothermic
melting on cooling occur. Cp decreases on freezing and increases on melting. Melting on cooling
takes longer than freezing on heating.
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Thus,
∂T

∂S

∣∣∣∣
B

=
T

CB

<
∂T

∂S

∣∣∣∣
M

=
T

CM

. (6.2.151)

That is, CB > CM : under constant B M is reorganized to absorb more heat. This
is a hint to the next problem.
(4) When short-circuited, the electric field across the dielectric material is maintained
to be constant (actually, zero). When, the circuit is open, then the surface charge
(if any) on the dielectric material is kept constant; electric flux D is maintained.
Therefore, thermodynamically we expect CE ≥ CD. Now, ε is given, so we know the
relation between D and E: D = εEV (D is extensive but E is not! D = εE is a
relation for a unit volume! Here, we assume V does not change). We should proceed
a step further. (E in this problem is, of course, not the internal energy).

∂S

∂T

∣∣∣∣
E

=
∂S

∂T

∣∣∣∣
D

+
∂S

∂D

∣∣∣∣
T

∂D

∂T

∣∣∣∣
E

. (6.2.152)

With the aid of a Maxwell’s relation we obtain

∂S

∂D

∣∣∣∣
T

= − ∂E

∂T

∣∣∣∣
D

=
D

ε2V

dε

dT
. (6.2.153)

Also
∂D

∂T

∣∣∣∣
E

=
D

ε

dε

dT
. (6.2.154)

Therefore,

CE = CD + T
ED

ε2

(
dε

dT

)2

. (6.2.155)

This tells us that if ε does not depend on T , then there is no difference between the
two specific heat. This should be intuitively obvious, because no ‘reorganization’ of
the material is expected upon heating.
(5) The original paper contains the answer.

2.34 [Chemical equilibrium constant22]
The reaction

A
k+

−→
←−
k−

B. (6.2.156)

22A. B. Adib, “Symmetry Relations in Chemical Kinetics Arising from Microscopic Reversibil-
ity,” Phys. Rev. Lett., 96, 028307 (2006).
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may be described as follows, if A and B are sufficiently dilute:

d[A]

dt
= k−[B]− k+[A] = −d[B]

dt
. (6.2.157)

For all t > 0 show that
[B]F (t)

[A]B(t)
= K, (6.2.158)

holds. Here, F denotes the forward reaction starting with pure A, and R denotes the
reverse reaction starting with the same moles of B as A. That is, if these two reactions
are started simultaneously, then the concentration ratio at time t as (6.2.158) is time-
independent and equal to the chemical equilibrium constant. [However, this cannot
be a general relation, but holds only under ideal solution and reaction conditions.]

Solution
Since [A] + [B] = C (constant), [B]F (t) obeys

d[B]F (t)

dt
= −(k+ + k−)[B]F (t) + k+C

with the initial condition [B]F (0) = 0. Similarly,

d[A]B(t)

dt
= −(k+ + k−)[A]B(t) + k−C

with the initial condition [A]B(0) = 0. Therefore,

[B]F (t) =
k+

k− + k+

C
(
1− e−(k−+k+)t

)
,

[A]B(t) =
k−

k− + k+

C
(
1− e−(k−+k+)t

)
.

These formulas tell us what we wish to have, becauseK = k+/k− = [B]eq/[A]eq.
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6.3 Problems for Chapter 3

3.1 [Fermions and bosons; the ultimate elementary problem]
There is a system with only three states with energies 0, ε and ε (ε > 0, i.e., excited
states are degenerate). There are three identical particles without spin.
(1F) If the particles are fermions, write down the canonical partition function.
(2F) Find the probability of finding N particles in the ground state.
(3F) Compute the average occupation number N0 of the ground state.
(1-3B) Repeat the same problems assuming that the particles are bosons.
(4) Consider the high temperature limit. (UIUC Qual Spring00)

Solution
(1F) Since all the one-particle states must be occupied, and there is only one mi-
crostate for the system:

Z = e−2βε. (6.3.1)

(2F) Since the one-particle ground state is always occupied by a particle, P (N) =
δN,1.
(3F) 1; there is no fluctuation at all.
(1-3B) The microstates of the system may be classified according to the number of
particles occupying the one-particle ground state: n = 3, 2, 1, or 0. They respectively
correspond to the microstates with the total energy 0, ε, 2ε or 3ε. The degeneracy of
the macrostate designated by n is

(
3−n+1

1

)
= 4−n. Therefore, the canonical partition

function is given by
Z = 1 + 2e−βε + 3e−2βε + 4e−3βε. (6.3.2)

The probability that the one-particle ground state is occupied by n particles is given
by

P (n) =
1

Z
(4− n)e−(3−n)βε. (6.3.3)

The expectation value 〈n〉 is

〈n〉 =
3 + 4e−βε + 3e−2βε

1 + 2e−βε + 3e−2βε + 4e−3βε
. (6.3.4)

(4) For the fermion case nothing changes even at high temperatures. For bosons in
the β → 0 limit, all 10 microstates are equally probable:

P (n) = (4− n)/10, 〈n〉 = 1. (6.3.5)
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3.2 [Elementary problem for boson systems]
There are 100 identical spinless bosons whose s-th one-particle state has an energy
Es = sε (s ∈ N) and is described by a wave function φn(r) (normalized). These
particles do not interact.
(1) How many microstates with the energy 4ε does the system have?
(2) When the system is in equilibrium with the particle reservoir (chemostat) of
temperature T and chemical potential µ, on the average 99 particles occupy the
one-particle ground state (s = 0), and one particle occupies the one-particle first
excited state (s = 1). The other one-particle states are negligibly occupied, Find µ
and β = 1/kBT in terms of ε.

Solution
(1) This is a problem of partitioning an integer. The microstates with the total
energy 4ε are

4 = 1 + 1 + 1 + 1, (6.3.6)

= 1 + 1 + 2, (6.3.7)

= 2 + 2, (6.3.8)

= 1 + 3, (6.3.9)

= 4. (6.3.10)

That is, there are 5 distinct microstates.
(2) Since

〈n0〉 =
1

e−βµ − 1
= 99, (6.3.11)

〈n1〉 =
1

eβ(ε−µ) − 1
= 1, (6.3.12)

we have

− βµ = log(100/99) = 1.005× 10−2, (6.3.13)

β(ε− µ) = log 2 = 0.693. (6.3.14)

Hence, β = 0.692/ε and µ = −0.01445ε. Clearly recognize that µ is negative (does
not exceed the ground state energy)!

3.3 [Basic problem for quantum ideal gas: isothermal compression]
In a cylinder with a piston are N identical particles. The temperature is maintained
constant.
The fermion case:
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(1) Suppose the system is maintained at T = 0, and the volume has been reversibly
halved. What is the relation between the initial energy ei per particle and the final
energy ef per particle?
(2) In the process described in (1) what is the ratio Pf/Pi, where Pi is the initial
pressure and Pf the final pressure.
(3) Now, suppose the system is maintained at a positive temperature T . As in (1)
we halve the volume of the system reversibly . How does the ratio ef/ei change as a
function of T? You may assume T is sufficiently close to T = 0.
The boson case:
(4) Suppose the density of the condensate is positive at the initial temperature. After
the volume is halved reversibly does the density of the condensate remain positive?
(5) Suppose T = 0 when the volume is reversibly halved. Find the ratio Pf/Pi ,
where Pi is the initial pressure and Pf the final pressure.

Solution
(1) Let us write gDt(ε) = aV ε1/2 with a numerical constant a. We know the following
relation:

N =
2

3
gDt(µ(0))µ(0) =

2

3
aV µ(0)3/2, (6.3.15)

E =
2

5
gDt(µ(0))µ(0)2 =

2

5
aV µ(0)5/2. (6.3.16)

From these formulas we get the relation

E/N =
3

5
µ(0) (6.3.17)

we already know. Since N is constant, µ(0) ∝ V −2/3, so

ef/ei = (V/2)−2/3/V −2/3 = 22/3. (6.3.18)

(2) We use the universal relation P ∝ E/V for any ideal gas

Pf/Pi = 2(ef/ei) = 25/3, (6.3.19)

where the factor 2 comes from the volume ratio Vf/Vi.
(3) In contrast to the T = 0 case, the particles need not be pushed up with the
energy levels. Consequently, the increase ratio of the energy is expected to decrease
with T .
(4) If the volume is decreased, the energy level spacings widen. Therefore, more
particles fall to the ground state. That is, N0 should increase. Quantitatively, we
have only to look at N1 = AV T 3/2. Since T is kept constant, N1 halves.
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(5) Since E ∝ V T 5/2, P = (2/3)(E/V ) does not depend on the system volume.
Hence, there is no pressure change: the ratio is unity. We can regard the ground
state as a pressure buffer.

3.4 [Basic problem for quantum ideal gas: adiabatic free expansion]
In a thermally isolated cylinder with a piston is an ideal gas, whose initial tempera-
ture is Ti. The piston is pulled suddenly to increase the volume by 10%.

The fermion case: Suppose the ideal gas is fermionic.
(1F) Find the final pressure Pf in terms of Pi, the initial pressure.
(2F) Which is correct, Ti < Tf , Ti = Tf or Ti > Tf?
(3F) Suppose the initial temperature is T = 0. Express the final temperature Tf

approximately in terms of the Fermi temperature TF before the expansion.

The boson case: Suppose the ideal gas is bosonic.
(1B) Find the final pressure Pf in terms of Pi, the initial pressure.
(2B) Suppose the initial temperature is sufficiently low and the condensate does not
disappear by expansion. What is the final temperature Tf?
(3B) Suppose the initial temperature is less than Tc. After expansion, the final tem-
perature becomes exactly Tc (for the expanded system). Find the initial temperature
Ti in terms of the Tc before expansion.

Solution
(1F) The internal energy E does not change, because the system is adiabatic and
free expansion does not do work. Therefore,

PV =
2

3
E (6.3.20)

implies
PiV = Pf (1.1V ). (6.3.21)

Hence, Pf = 0.91Pi.
(2F) Expansion makes packing energy level denser, so to keep the total energy the
only way is to occupy more excited states. Therefore, Ti < Tf .

This relation cannot be obtained purely thermodynamically. We have

∂T

∂V

∣∣∣∣
E

=
∂(T,E)

∂(V, T )

∂(V, T )

∂(V,E)
= − 1

CV

∂E

∂V

∣∣∣∣
T

, (6.3.22)

(this is thermodynamics) and

∂E

∂V

∣∣∣∣
T

=
3

2

[
∂P

∂V

∣∣∣∣
T

V + P

]
(6.3.23)
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(this is no more a thermodynamic relation, since we have used (??)). To proceed
further, we need the equation of state. Let us first consider the classical case PV =
NkBT :

V
∂P

∂V

∣∣∣∣
T

= −NkBT

V
= −P (6.3.24)

That is, Ti = Tf for the classical case. Compared with this case, fermionic ideal gas
should be harder to compress, so (∂E/∂V )T < 0, which implies (∂T/∂V )E > 0. We
could use an explicit energy formula as you can see in the following discussion.
(3F)

E =
3

5
Nµ(0) + ζ(2)

3

2µ(0)
N(kBT )2 + · · · , (6.3.25)

where

µ(0) =
h2

2m

(
3N/V

4π

)2/3

. (6.3.26)

If V is increased, the Fermi energy Fermi µ(0) goes down, so the first term of the
above formula decreases. Therefore, to keep E constant, we must increase the second
term. That is, T goes up. The Fermi temperature after expansion of the volume is
Ferm (1/1.1)2/3TF = 0.938TF , so approximately

T 2 ' 4

3π2
0.062(µ(0)/kB)2 =

4

3π2
0.062T 2

F = 0.00838T 2
F , (6.3.27)

or T = 0.092TF .
(1B) This is the same as (1F).
(2B) This is due to E ∝ V T 5/2. Tf = 1.1−0.4Ti ' 0.962Ti, so Tf < Ti. In this
case as well the expansion makes the energy level packing denser, so consequently
excitations become easier and the amount of condensate should decrease. However,
this does not imply the increase of temperature, because the total energy can be
maintained constant by occupying lower energy states with more particles.
(3B) (3.4.23) implies that the Tc before expansion is (here, m is the mass of the
particle)

Tc =
h2

2πkBm

(
n

ζ(3/2)

)2/3

(6.3.28)

Therefore, 1.1(T ∗c )5/2 = T
5/2
i , where T ∗c is the critical temperature after expansion.

Hence,

1.1−2/5Ti = T ∗c =
h2

2πkBm

(
n/1.1

ζ(3/2)

)2/3

, (6.3.29)
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where n is the number density before expansion. In terms of Tc

1.1−2/5+2/3Ti = Tc ⇒ Ti = 1.1−4/15Tc = 0.975Tc (6.3.30)

3.5 [Basic problem for quantum ideal gas: adiabatic quasistatic expansion]
In a thermally isolated cylinder with a piston is an ideal gas, whose initial tempera-
ture is Ti and initial pressure is Pi. The piston is pulled slowly to double the volume.

The fermion case: Suppose the ideal gas is fermionic.
(1F) Obtain the final pressure Pf in terms of Pi.
(2F) What is the final temperature Tf , if Ti = 0?
(3F) More generally, obtain Tf in terms of Ti.

The boson case: Suppose the ideal gas is fermionic.
(1B) Obtain the final pressure Pf in terms of Pi.
(2B) Obtain Tf in terms of Ti, assuming that the condensate does not disappear.
(4B) Let N0i be the initial number of particles in the condensate. Does the final
number of particles N0f in the condensate increase or decrease?

Solution
(1F) In this case, entropy does not change, so dE = −PdV . For any ideal gas
PV = (2/3)E, so

dE = −2

3

E

V
dV. (6.3.31)

This implies that EV 2/3 is constant. As can be seen from this derivation, the ration
is independent of statistics. Since EiV

2/3 = Ef (2V )2/3, we get Ef = 2−2/3Ei. That
is,

Pf (2V ) =
2

3
Ef =

2

3
2−2/3Ei = 2−2/3PiV, (6.3.32)

or

Pf =
1

25/3
Pi. (6.3.33)

(2F) We can expect Tf = 0. Indeed, at T = 0

E =

∫ µ(0)

0

dεDt(ε)ε =
3

4
µ(0)N ∝ N5/3V −2/3. (6.3.34)

That is, EV 2/3 is kept constant (adiabatic and isothermal processes can agree only
at T = 0). This result is an example of the general rule that the gas temperature
never goes up through quasistatic expansion.
(3F) This can be solved with the aid of (6.3.25).
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(1B) Exactly the same as (1F).
(2B) Since BCE occurs, µ = 0 and

E =

∫ ∞
0

dεDt(ε)
ε

eβε − 1
∝ V T 5/2. (6.3.35)

We know EV 2/3 is maintained constant irrespective of statistics, V 5/3T 5/2 is invari-
ant. That is, V 2/3T is constant. Hence, Tf = 2−2/3Ti; the system temperature goes
down.

Notice, however, that if we admit that the pressure increases with temperature,
thermodynamics can tell this:

∂T

∂V

∣∣∣∣
S

= − T

CV

∂S

∂V

∣∣∣∣
T

= − T

CV

∂P

∂T

∣∣∣∣
V

< 0. (6.3.36)

(4B) Since the process we are interested in is quasistatic and adiabatic, the average
occupation number of the one-particle ground state should not change. If you realize
this no calculation is needed, but if you wish to confirm this by computation, use

N0i = N −N1i and N1i = cV T
3/2
i :

N1f = c(2V )T
3/2
f = cV T

3/2
i = N1i. (6.3.37)

Hence, N0 cannot change.

3.6 [Basic problem for quantum ideal gas: compression under constant internal en-
ergy]
In a cylinder with a piston is an ideal gas consisting of N particles, whose initial
temperature is Ti. The piston is pushed in slowly to halve the volume while remov-
ing thermal energy appropriately to keep the internal energy constant. Let Tf be the
final temperature.

I.The case of spinless bosons: assume that there is a Bose-Einstein condensate ini-
tially.
(1) Find the number of particles N0 in the condensate before compression. You may
use the critical temperature Tc.
(2) Which is true, Tf < Ti, Tf = Ti or Tf > Ti?
(3) Does the number of particles in the condensate increase or decrease?

II. The case of spin 1/2 fermions.
(4) Find the final pressure Pf .
(5) Is there a minimum temperature (> 0) below which this process becomes impos-
sible?
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(6) Which is true, Tf < Ti, Tf = Ti or Tf > Ti?

Solution
(1)

N0 = N(1− (T/Tc)
3/2), (6.3.38)

where Tc ∝ n2/3.
(2) Below Tc we know E ∝ V T 5/2. Therefore,

V T
5/2
i = (V/2)T

5/2
f . (6.3.39)

That is, Tf = 22/5Ti or Tf > Ti.
(3) Since Tc ∝ n2/3, Tcf = Tci2

2/3 and Tf = 22/5Ti hold. Therefore,

Tf/Tcf = 22/5−2/3Ti/Tci < Ti/Tci. (6.3.40)

Consequently, the ration in (6.3.38) decreases and N0 increases. This is also under-
standable from the widening of the energy level spacings.
(4) Since

PiV = 2E/3 = Pf (V/2), (6.3.41)

we get Pf = 2Pi = 4E/3V .
(5) At T = 0, we know E ∝ n2/3, so E increases if the system is compressed; this
should be intuitively obvious because the level spacings increase. We cannot cool the
system further if T is very low. Therefore, quasiequilibrium constant energy process
becomes impossible at some low but positive temperature.
(6) We can generally write

∂E

∂V

∣∣∣∣
T

= T
∂P

∂T

∣∣∣∣
V

− P =
2

3V

[
T
∂E

∂T

∣∣∣∣
V

− E
]
. (6.3.42)

For ideal Fermi gases the graph of E(T ) (Fig. 3.3.3) implies

E

T
>
∂E

∂T

∣∣∣∣
V

. (6.3.43)

The difference converges to zero in the high temperature limit; the inequality is
not due to thermodynamics. This inequality combined with (6.3.42) implies that
(∂E/∂V )T < 0. That is, if T were kept constant and the system volume decreased,
then E would increase. Therefore, to maintain E, heat would have to be discarded.
Thus, the final temperature must be smaller: Ti > Tf . This conclusion can also be
obtained by noting that the energy level spacing increases upon compression.
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3.7 [Qualitative properties of quantum ideal gases]
Assume the particles do not interact. Answer the following qualitative questions and
give your justification for your answers. All the processes are quasistatic.

The boson case: there are N bosons in a volume V .
(1B) The volume is increased under constant energy. Does the temperature de-
crease?
(2B) The volume is increased under constant entropy. Does the temperature de-
crease?
(3B) Can we decrease the volume while keeping the internal energy?

The fermion case: there are N fermions in a volume V .
(1F) The volume is increased under constant energy. Does the temperature de-
crease?
(2F) The volume is increased under constant entropy. Does the temperature de-
crease?
(3F) Can we decrease the volume while keeping the internal energy?

Solution
(1B) Below Tc we can write explicitly as E ∝ V T 5/2 (5/2 = d/α + 1), so we im-
mediately see that T decreases. If the volume is increased, the energy level spacing
decreases, so excitations become easier (consequently Tc goes down), so the number
of particles occupying the one-particle ground state decreases. If you wish to keep
the system energy despite this, you have to decrease the system temperature. What
could happen above Tc is subtle, as can be seen from the behavior of CV . If the
temperature is sufficiently high, then the system is close to a classical ideal gas, so
the temperature dependence diminishes.
(2B) If S is kept, the particles must follow the behavior of the energy levels. The
level spacings decrease, so this is possible only by decreasing the temperature.
(3B) This is possible, if heat is supplied appropriately to warm up the system.
(1F) The energy level spacings decrease, so the total energy cannot be maintained
without increasingly occupying the excited states. Hence, the temperature goes up.
(2F) To keep S, the shape of the ‘cliff’ of the fermi distribution, but since the Fermi
energy goes down, this is possible only through cooling the system.
(3F) This is generally impossible.

3.8 [Conversion of fermion into bosons]
There is an ideal Fermi gas with the total energy 10 eV in an adiabatic container.
The fermion particles are actually metastable and turn into bosons without adding
any energy. Assume that the conversion is done quasistatically and adiabatically.
Does the container explode? [UIUC qual]

Solution



6.3. PROBLEMS FOR CHAPTER 3 419

Irrespective of statistics PV = 2E/3. Since E and V are constant, the pressure does
not change.

We know, if N and T are identical PFD > PMB > PBE (→(3.1.17)). Since E
is an increasing function of T , the pressure of the gas is an increasing function of
T (however, (∂P/∂T )V > 0 is NOT a thermodynamic inequality; think of counter
examples). Therefore, we must conclude TFD < TMB < TBE. This suggests that
we may handle the boson system as a classical ideal gas system; we can easily guess
T ∼ TF . Indeed, we can estimate the system temperature after conversion as

E = (3/5)µ0n = (3/2)nkBT ⇒ T = 2TF/5. (6.3.44)

This is an extreme high temperature, so the container melts away, and there is an
explosion.

3.9 [Equation of state of ideal gases]
We know the relation between PV and the internal energy does not depend on par-
ticle statistics.
(1) Is this still true for ideal gas mixtures?
(2) Compute PV/E in d-space (this is already mentioned in the text).

Solution
(1) You may use the law of partial pressure. Let Pi be the partial pressure due to
chemical species i. If its internal energy is Ei, PiV = (2/3)Ei holds for all i. Since the
internal energy is additive PV = (2/3)E must also hold for the ideal gas mixtures.
(2) You have only to trace the proof of PV = 2E/3. See up to (3.1.24). Let Dt(ε)
be the density of translational states in d-space. The key element of the derivation
of (3.1.24) is the relation between d(εD(ε))/dε and D(ε). In d-space we can write
D(ε) = Aεd/2−1 with an appropriate numerical factor A, so

d

dε
{εD(ε)} =

d

2
D(ε). (6.3.45)

Hence, we get PV/E = 2/d.

3.10 [Effective interaction due to statistics]
Fig. 3.1.1 illustrates how we can intuitively understand the effective interactions
between particles: compared with classical particles, between bosons there is an ef-
fective attraction, and between fermions there is an effective repulsion. Let us make
this understanding slightly quantitative. Here, we proceed step by small step, re-
viewing elementary quantum mechanics.

We wish to consider a two-particle system in terms of canonical ensemble theory.
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The system Hamiltonian reads

H =
p2

1

2m
+

p2
2

2m
, (6.3.46)

and the canonical partition function is

Z = Tre−βH , (6.3.47)

where the trace is with respect to the microstates specified by two momenta |p,p′〉.
To compute this trace semi-classically, we introduce a single-particle momentum
state |p〉.
(1) Express |p,p′〉 both for the boson and fermion cases in terms of single particle
kets |p〉. You may regard two momenta are distinct, but the obtained states must
be properly normalized.
(2) Assuming that the system is in a sufficiently big box of volume V , find the
position representation 〈r|p〉 (i.e., the wave function) of the momentum ket |p〉.
(3) Let ri be the position vector of the i-th particle. Find the position representation
of |p,p′〉. [This is of course virtually the same question as (1).]
(4) For an N -particle system in the semi-classical limit, the calculation of trace in Z
may be performed as follows:

Tr → 1

N !

∫
V N

d{rk}
N∏

k=1

〈rk| · · ·
N∏

k=1

|rk〉 (6.3.48)

=
1

N !

∫
V N

d{rk}
N∏

k=1

〈rk|

∑
{pi}

|{pi}〉〈{pi}|

 · · ·
∑
{pi}

|{pi}〉〈{pi}|

 N∏
k=1

|rk〉

(6.3.49)

If the volume is big enough, we should be able to replace the summation over mo-
menta by integration over them. The replacement rule is∑

{pi}

→ V N

h3N

∫
d{pi}. (6.3.50)

Justify this for N = 1 in 1-space.
(5) Write Z down using h−3/2eir·p/~ = 〈ri|p〉. Beyond this point, let us simplify
formulas by taking the V →∞ limit. You need not perform the integration.
(6) The outcome of (5) must have the following form:

1

2h6

∫
dr1dr2dpdp

′e−β(p2+p′2)/2m[· · ·]. (6.3.51)
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Perform the integral in this expression and find F in the following formula:

Z =
1

2h6

∫
dr1dr2dpdp

′ e−β(p2+p′2)/2mF (6.3.52)

(7) F may be interpreted as the Boltzmann factor coming from the effective inter-
action originating from particle statistics. Sketch the potential (×β) of this effective
interaction for bosons and fermions.

Solution
(1) The ket |p〉|p′〉 must be correctly symmetrized; + is for bosons and − for
fermions:

|p,p′〉 =
1√
2
(|p〉|p′〉 ± |p′〉|p〉). (6.3.53)

(2) |p〉 describes a plane wave of wave vector k = p/~:

〈r|p〉 ∝ eip·r/~. (6.3.54)

The normalization condition is

δpp′ =
1

~

∫
V

d3r 〈p′|r〉〈r|p〉. (6.3.55)

Therefore,

〈r|p〉 =

√
~
V
eip·r/~. (6.3.56)

(3)

(〈r1|〈r2|)|p,p′〉 =
1√
2
(〈r1|p〉〈r2|p′〉 ± 〈r1|p′〉〈r2|p〉). (6.3.57)

(4) The left-hand side is the sum over all the states in the volume V . If we adopt a
periodic boundary condition k = (2π/L)n (n ∈ Z).

∞∑
n=−∞

n '
∫ ∞
−∞

dn =
L

2π

∫
2π

L
dn =

L

2π

∫
dk =

L

h

∫
dp. (6.3.58)

The 3-dimensional version reads ∑
p

' V

h3

∫
dp. (6.3.59)
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If you do not like the periodic boundary condition, k = (π/L)n ( n ∈N ) and

∞∑
n=1

'
∫ ∞

1

dn =
L

π

∫ ∞
1

π

L
dn =

L

π

∫ ∞
0

dk =
L

h

∫ ∞
−∞

dp. (6.3.60)

(5) Using the results of (2) and (3), we get (the overall factor 1/2 comes from 1/N !
in the definition of trace)

Z = Tr e−βH =
1

2

∫
dr1dr2〈r1|〈r2|e−βH |r1〉|r2〉, (6.3.61)

=
1

2

∫
dr1dr2

∑
p,p′

e−β(p2+p′2)/2m|(〈r1|〈r2|)|p,p′〉|2, (6.3.62)

=
1

2

∫
dr1dr2

∑
p,p′

e−β(p2+p′2)/2m|(〈r1|〈r2|)|p,p′〉|2, (6.3.63)

=
1

2

∫
dr1dr2

∑
p,p′

e−β(p2+p′2)/2m 1

2
|〈r1|p〉〈r2|p′〉 ± 〈r1|p′〉〈r2|p〉|2.(6.3.64)

If we write the matrix elements explicitly,

Z =
1

2

∫
dr1dr2

∑
p,p′

e−β(p2+p′2)/2m 1

V 2
[1±Re exp(i(p− p′) · (r1 − r2)/~)],

(6.3.65)

=
1

2h6

∫
dr1dr2

∫
dpdp′e−β(p2+p′2)/2m[1±Re exp(i(p− p′) · (r1 − r2)/~)].

(6.3.66)

(6) To obtain F we compute∫
dp e−β(p2/2m)+ip·r/~∫

dp e−β(p2/2m)
= e−mkBTr2/2~2

. (6.3.67)

Hence,

F = 1± e−mkBT (r1−r2)2/~2

. (6.3.68)

(7) If we introduce the effective potential φ by F = e−βφ, we get

βφ(r) = − log[1± e−mkBT (r1−r2)2/~2

]. (6.3.69)
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fermions

bosons

-log 2

The sketches of the potential are given in the attached figure.

As expected, the effective interaction is attractive for bosons, and repulsive for
fermions.

3.11 [Elementary low temperature formulas for fermions]
The following questions ask for standard elementary calculations, but you should do
them once in your life.
(1) Obtain the chemical potential (the Fermi level) to order T 2 around T = 0.
(2) Obtain the pressure P to order T 2 around T = 0.

Solution
(1) Let us apply

∫ +∞

0

dε φ(ε)f(ε) =

∫ µ(T )

0

φ(x)dx+ (kBT )2ζ(2)φ′(µ) + · · · (6.3.70)

to the following calculation:

N =

∫ ∞
0

dε gDt(ε)f(ε) =

∫ µ(T )

0

dx gDt(x) + ζ(2)
dgDt(ε)

dε

∣∣∣∣
ε=µ

(kBT )2 + · · · .

(6.3.71)
We know the T = 0 result:

N =

∫ µ(0)

0

dε gDt(ε). (6.3.72)



424 CHAPTER 6. SOLUTIONS

This determines the Fermi energy µ(0).∫ µ(0)

0

dε gDt(ε) =

∫ ∞
0

dε gDt(ε)f(ε) =

∫ µ(T )

0

dx gDt(x)+ζ(2)
dgDt(ε)

dε

∣∣∣∣
ε=µ(T )

(kBT )2+· · · ,

(6.3.73)
so we can expect µ(T ) = µ(0) + aT 2 + o[T 2]:∫ µ(T )

0

dx gDt(x) =

∫ µ(0)+aT 2

0

dx gDt(x) =

∫ µ(0)

0

dx gDt(x) + aT 2 gDt(µ(0)).

(6.3.74)
Now, combining (6.3.73) and (6.3.74), we obtain∫ µ(0)

0

dε gDt(ε) =

∫ µ(0)

0

dx gDt(x)+aT
2 gDt(µ(0))+ζ(2)

dgDt(ε)

dε

∣∣∣∣
ε=µ(0)

(kBT )2+· · · ,

(6.3.75)
or

aT 2 gDt(µ(0)) + ζ(2)
dgDt(ε)

dε

∣∣∣∣
ε=µ(0)

(kBT )2 = 0. (6.3.76)

Therefore,

a = −ζ(2)
dlogDt(ε)

dε

∣∣∣∣
ε=µ(0)

k2
B = −π

2

6

dlogDt(ε)

dε

∣∣∣∣
ε=µ(0)

k2
B. (6.3.77)

Thus, the final result is

µ(T ) = µ(0)− π2

6

d

dε
logDt(ε)

∣∣∣∣
ε=µ(0)

(kBT )2 + · · · . (6.3.78)

(2) P is required, but it is easier to compute E. Utilizing (6.3.70), we get

E(T ) =

∫
dε gDt(ε)εf(ε), (6.3.79)

=

∫ µ

0

dεgDt(ε)ε+ ζ(2)(kBT )2dgDt(ε)ε

dε

∣∣∣∣
µ

+ · · · . (6.3.80)

We must expand µ(T ) using the result of (1):∫ µ(T )

0

dεgDt(ε)ε =

∫ µ(0)

0

dεgDt(ε)ε−
π2

6

dlogDt(ε)

dε

∣∣∣∣
ε=µ(0)

gDt(µ(0))µ(0)(kBT )2,

(6.3.81)

= E(0)− π2

6
gD′t(µ(0))µ(0)(kBT )2 (6.3.82)
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Comparing this with (6.3.80), we can write

E(T ) = E(0)− π2

6
gD′t(µ(0))µ(0)(kBT )2 + ζ(2)(kBT )2dgDt(ε)ε

dε

∣∣∣∣
µ

+ · · · ,

(6.3.83)

= E(0) +
π2

6
gDt(µ(0))(kBT )2. (6.3.84)

Since P = 2E/3V

P (T ) = P (0) +
π2

9V
gDt(µ(0))(kBT )2. (6.3.85)

3.12 [Derivation of Maxwell’s distribution]
Maxwell derived in his Illustrations of the Dynamical Theory of Gases (1860) the
density distribution function f(v) of the gas particle velocity.

Maxwell assumed that orthogonal components of the velocity are statistically in-
dependent. This implies that we may write

f(v) = φx(vx)φy(vy)φz(vz), (6.3.86)

where φx, etc., are density distribution function for each component. Maxwell also
assumed isotropy. Hence, f is a function of v2 ≡ |v|2, so we may regard f(v) ≡ F (v2),
and φx’s do not depend on suffixes. Let us introduce ψ(s2) ≡ φx(s). Then, the above
functional equation reads

F (x+ y + z) = ψ(x)ψ(y)ψ(z). (6.3.87)

If Fand ψ are both once differentiable, we obtain

F ′(x+ y + z) = ψ(x)ψ(y)ψ′(z). (6.3.88)

Setting y = z = 0, we have

F (x) = ψ(x)ψ(0)ψ(0), F ′(x) = ψ(x)ψ(0)ψ′(0), (6.3.89)

so F ′(x)/F (x) must be a constant. This implies that the distribution is Gaussian.
(1) Is there any other solution? If we do not assume the differentiability of F (that
is, if we assume only the continuity of F ), what do you get?23

(2) Since we know the result of equilibrium statistical mechanics, if the particle

23If we do not assume the continuity of F , there would be uncountably many solutions.
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energy is E, then the distribution function is proportional to e−βE. This is derived
from the consistency of mechanics and thermodynamics. On the other hand, the
above derivation of the Maxwell distribution uses only the statistical independence
of the orthogonal components and its isotropy, and mechanics is never used. Then,
this seems to imply that Maxwell’s logic determines the form of the kinetic energy
K in terms of velocity from statistically natural assumption + thermodynamics; at
least K ∝ v2 is concluded. This sounds incredible, even if thermodynamics is great.
What is wrong? [Hint: think of relativistic case.]
[Comment] Maxwell himself did not like the above derivation we criticize here,24 so
he rederived the distribution a few years later. He this time used the detailed balance
argument (as explained in the text). Pay due respect to Maxwell’s sound instinct.

Solution
(1) Needless to say, if we assume differentiability there is no other solution. Maxwell
was correct.

Let us try to solve the problem assuming only continuity (and isotropy). Let us
introduce g = logF and φ = logψ; this is admissible because F and ψ are positive.
We have

g(x+ y) = φ(x) + φ(y) + φ(0) = φ(x+ y) + 2φ(0). (6.3.90)

Therefore, if we define f(x) = φ(x)− φ(0), then we get

f(x) + f(y) = f(x+ y). (6.3.91)

Since we assume f to be continuous, the solution is f(x) = cx for some constant c.
Thus, we can get only a Gaussian form.
(2) If we consider the relativistic case, the velocity distribution function reads

P (v) ∝ exp(mc2/
√

1− v2/c2). (6.3.92)

Obviously, it does not have the structure (6.3.86). That is, orthogonal components
are not statistically independent, although isotropy is still correct.

3.13 [2-dimensional neutron system]
1018 neutrons are confined in a square of edge length 1 m. If we regard this as a
2-dimensional system, estimate the needed temperature required for this system to
be regarded as a classical system.25

Solution

24However, even strict Pauli uncritically repeat the above argument in W. Pauli, Thermodynam-
ics and the Kinetic Theory of Gases (edited by C. P. Enz), Section 25.

25cf ProblWS p176.
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Non-classical behavior is observed if the interparticle distance is comparable to the
thermal wave length of the particle. This happens when the number density becomes
comparable to the so-called quantum number density nQ (the quantum density must
be computed in 2-space):

nQ = 2πmkBT/h
2. (6.3.93)

Since m = 1.65 × 10−27kg, kB = 1.38 × 10−23J/K, h = 6.63 × 10−34 Js, n/nQ ∼ 1
implies T ∼ 3.1K. That is, if the temperature is as high as 30 K, the system behaves
classically.

3.14 [2-dimensional fermion system]
The density of translational states of a 2D fermion system confined in a volume
(area) V may be written as c D(ε) = cV with a positive constant c.
(1) Find the chemical potential µ in terms of the number density ρ and (inverse)
temperature β.
(2) In the high density limit, we have µ ∝ ρ. Explain why this form is plausible.
(3) What is the classical limit? Does the obtained result consistent with the classical
ideal gas result?

Solution
(1) We can write

ρ = c

∫ ∞
0

dε
1

eβ(ε−µ) + 1
. (6.3.94)

To integrate this, recall:

1

eβ(ε−µ) + 1
=

d

d(βµ)
log[1 + e−β(ε−µ)]. (6.3.95)

Therefore,

ρ = c

∫ ∞
0

dε
1

eβ(ε−µ) + 1
= −c

∫ ∞
0

dε
d

d(βε)
log[1 + e−β(ε−µ)] = (c/β) log[1 + eβµ].

(6.3.96)
That is,

µ = β−1 log(eβρ/c − 1). (6.3.97)

In the high density limit, µ ' ρ/c.
(2) The high density limit implies high degeneracy for a Fermi gas.26D We may

26The slope of the cliff of the Fermi distribution in the present case is 4/kBT , so you might think
it is not sharp. However, the width of the cliff (∼ 5kBT ) must be compared with the width of the
plateau µ(0) = kBTF , which becomes indefinitely large as the density increases, so the distribution
is after all close to a step function of the low temperature limit.
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approximate the distribution as a step function going from 1 to 0 around the Fermi
level µ. Therefore, the integration range of (6.3.94) is essentially from 0 to µ. Hence,
ρ = cµ is very plausible.
(3) We certainly have

µ→ kBT log(βρ/c); (6.3.98)

consistent!

3.15 [Quantum gas with internal degrees of freedom]
Let us consider a quantum gas consisting of N particles. Individual particles have
internal states consisting of two levels: the ground state and the non-degenerate ex-
cited state with energy ε (> 0).
(1) Suppose the particles are fermions. How does the Fermi energy µF (i.e., the
chemical potential) behave as a function of ε?
(2) Suppose the particles are bosons. How does the Bose-Einstein critical tempera-
ture Tc depends on ε? Give a clear argument even if it is qualitative.

Solution
(1) The Fermi energy µ is determined by

N =

∫
dED(E)

1

eβ(E−µ) + 1
. (6.3.99)

If ε is increase, then the occupation number of the one-particle states with internal
excitation. If the number of particles is constant, then to accommodate these in-
ternally non-excited particles, the Fermi level must be increased. Therefore, µ is an
increasing function of ε.
(2) Consider the total number of internally excited particles (note that µ = 0):

N1 =

∫
dED(E)

1

eβE − 1
. (6.3.100)

If ε is increased, N1 decreases, so this favors the formation of condensate. That is,
Tc increases with ε.

3.16 [Zeemann splitting]
The outer shell of an ion has a magnetic moment µB of 1 Bohr magneton. In a
magnetic field B this outer shell state splits into two energy states with energies
E = E0±µBB. Let nu (resp., nd) be the occupancy number of up-spin (resp., down-
spin) states. Then the magnetization reads M = µB(nu − nd). You may ignore the
electron-electron interactions.
(1) Find 〈M〉 and 〈N〉 (N = nu +nd) with the aid of the grand canonical formalism.
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(2) Find the magnetization when the outer shell has one electron for each ion. Com-
pare the result with the result of (1) for µ = E0.

27

Solution
(1) Since

nu =
1

eβ(E0+µBB−µ) + 1
, nd =

1

eβ(E0−µBB−µ) + 1
, (6.3.101)

〈M〉 and 〈N〉 can be written down immediately.
(2) Define x = eβ(ε−µ) and y = eβµBH . Then, 〈N〉 = 1 can be written as

1 = nu + nd =
2 + x(y + 1/y)

1 + x(y + 1/y) + x2
. (6.3.102)

If we set x = 1, this equality holds for any y. Therefore, E0 = µ is the condition,
and

〈M〉 = µB

(
1

1 + xy
− 1

1 + x/y

)
= µB

1− y2

1 + y2
. (6.3.103)

3.17 [Electron paramagnetism]
Due to the spin, each electron in a magnetic field B (assumed to be pointing the
z-direction) has the potential energy ±µ̃B. Let Dt(ε)be the one-particle transla-
tional density of states (however, the electrons may be in a crystal field, so we do
not specify its form).
(1) The magnetization M of this system M is the expectation of the magnetic mo-
ment due to electron spins. Express M in terms of Dt(ε± µ̃B).
(2) Express the magnetic susceptibility χ in terms of D′t(ε), assuming that µ̃B is not
too large.
(3) Obtain χ to order T 2 around T = 0 with the aid of logDt(ε).

Solution
(1) The contribution of the up-spin electrons to the magnetization is

M+ = µ̃

∫
dεDt(ε)

1

eβ(ε−µ̃B−µ) + 1
= µ̃

∫
dεDt(ε+ µ̃B)

1

eβ(ε−µ) + 1
. (6.3.104)

We can easily obtain the analogous formula for down-spin electron, so we get

M = M+ +M− = µ̃

∫
dε [Dt(ε+ µ̃B)−Dt(ε− µ̃B)]

1

eβ(ε−µ) + 1
. (6.3.105)

27UIUC QualFall 95
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(2) µ̃B is assumed to be not too large, we may Taylor expand as

M = µ̃

∫
dε [Dt(ε+ µ̃B)−Dt(ε− µ̃B)]

1

eβ(ε−µ) + 1
= 2µ̃2B

∫
dεD′t(ε)

1

eβ(ε−µ) + 1
.

(6.3.106)

(3) From the definition

χ =
∂M

∂B

∣∣∣∣
T

= 2µ̃2

∫ ∞
0

dεD′t(ε)
1

eβ(ε−µ) + 1
. (6.3.107)

To expand this around T = 0 we use, setting φ = 2µ̃2D′t(ε),∫ ∞
0

dε φ(ε)
1

eβ(ε−µ) + 1
=

∫ µ

0

dε φ(ε) + (kBT )2ζ(2)φ′(µ). (6.3.108)

That is,

χ = 2µ̃2Dt(µ) + 2µ̃2(kBT )2ζ(2)D′′t (µ). (6.3.109)

This is, however, not yet the final result. Since

µ = µ0 − ζ(2)
d

dε
logDt(ε)

∣∣∣∣
ε=µ0

, (6.3.110)

(6.3.109) reads

χ = 2µ̃2Dt(µ0)− 2µ̃2(kBT )2ζ(2)D′t(µ0)
d

dε
logDt(ε)

∣∣∣∣
ε=µ0

+ 2µ̃2(kBT )2ζ(2)D′′t (µ).

(6.3.111)
This can be streamlined to the following form:

χ = 2µ̃2Dt(µ0) + 2µ̃2(kBT )2ζ(2)Dt(µ0)
d2

dε2
logDt(ε)

∣∣∣∣
ε=µ0

= 2µ̃2Dt(µ0)

[
1 + ζ(2)(kBT )2 d2

dε2
logDt(ε)

∣∣∣∣
ε=µ0

]
. (6.3.112)

3.18 [Do we have only to treat the ground state special below Tc?]
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For a bose gas in 3-space we know the following integral expression is not always
correct:

〈N〉 =
∞∑
i=0

〈n̂i〉 =

∫ ∞
0

dεDt(ε). (6.3.113)

It is because the expression ignores a large number of particles in the one-particle
ground state. Thus, we are taught that if we count the number N0 of the particles
occupying the one-particle ground state and if we add this to N1, then the number of
particles in the system may be expressed correctly. However, ther may be the people
who are not so convinced yet: why only ground state? Don’t we have to consider
the first excited state? Don’t we actually have to perform the following calculation
· · ·:

〈N〉
V

=
1

V
〈n̂0〉+

1

V
〈n̂1〉+

1

V

∫ ∞
0

dεDt(ε). (6.3.114)

Let us perform a slightly more honest calculation (to recognize clearly that Einstein
is always correct!):
(1) Our energy coordinate convention is that the ground state is always 0: ε0 = 0.
Let us assume that the system is a cube of edge length L: V = L3. The lowest
excited one-particle state energy ε1 as a function of V .
(2) Compare the occupation number of the one-particle ground state and the one
particle first excited states (which is triply degenerate). That is, compute the ratio
(〈n̂0〉/(〈n̂1〉+ 〈n̂2〉+ 〈n̂3〉) = 〈n̂0〉/3〈n̂1〉 for a very small negative chemical potential
µ28 required by the Bose-Einstein condensation. How big is it as a function of V ?
(3) We just saw in (2) except for 〈n̂0〉 other expectation values are not extensive. That
is, the ground state is really special. Excited states cannot contribute an extensive
quantity unless infinitely many of them are collected. Explain that the contribution
of all the excited states may be obtained accurately by replacing the summation with
integration (as usual).

Solution
(1) This calculation is just as we did in Chapter 1:

εn =
h2

8mV 2/3
(n2

x + n2
y + n2

z), (6.3.115)

where n’s are positive integer quantum numbers. Therefore, the energy difference
between the ground state and the first excited state is

∆ε = 3
h2

8mV 2/3
. (6.3.116)

28which is not zero, because the system is finite.
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This is ε1 according to our convention.
(2) We have

〈n̂0〉
3〈n̂1〉

=
eβ(ε1−µ) − 1

e−βµ − 1
. (6.3.117)

We know below Tc βµ = O[N−1] (< 0). Furthermore, we know ε1 = O[V −2/3]. Since
T > 0 is a fixed temperature, however small it is (or however large β is), if we take a
sufficiently large V , we may regard βε1 to be sufficiently small (βµ is much smaller
than this), so we may expand as

〈n̂0〉
3〈n̂1〉

=
ε1 − µ
−3µ

=
1

3
(1− ε1/µ) = O[N1/3]� 1. (6.3.118)

Thus, we see that only the one-particle ground state is occupied by an extensive
number of particles; any finite some of the occupation numbers of one-particle excited
states is far less than N0 for large systems.
(3) Let {f(i)} be a monotone decreasing sequence of positive integers and assume∑
f(i) converge. Define monotone decreasing (piecewise linear ) functions fL(x) as

fL(i − 1) = f(i) for i = 1, 2, · · · and fU(x) as fU(i) = f(i) for i = 1, 2, · · · and
fU(0) = fU(1) (see the graphs below). Then,∫ ∞

0

fL(x)dx ≤
∞∑
i=1

f(ε) ≤
∫ ∞

0

fU(x)dx. (6.3.119)

The thick curve in the center is fU ; that in the right is fL.

As can easily be seen from the figure∫ ∞
0

fU(x)dx−
∫ ∞

0

fL(x)dx < f(ε1). (6.3.120)

Therefore, the difference divided by V is extremely small.
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3.19 [Ideal boson gas slightly warmer than Tc]
Fig. 3.4.2 illustrates that the specific heat Cv of the ideal Bose gas has a cusp. Let
us demonstrate this. To compute Cv we need the internal energy of the system. Let
us compute it.
(1) What is the internal energy below Tc? (This is an easy question.)
(2) If we compute the internal energy assuming µ = 0 and write its value as E0,
show

∂E0

∂µ
' 3

2
N0(T ), (6.3.121)

where

N0(T ) ≡ N(T, 0) =
V

h3

∫ ∞
0

1

eβp2/2m − 1
4πp2dp. (6.3.122)

Therefore, for T (> Tc) we could approximate the true internal energy at T as
E(T ) = E0 + (3/2)N0(T )µ. This implies that to obtain E as a function of T , we
need µ as a function of T . To this end let us write the number of particles for T > Tc

(µ < 0) as

N = N0(T ) +
V

h3

∫ ∞
0

{
1

eβ(p2/2m−µ) − 1
− 1

eβp2/2m − 1

}
4πp2dp. (6.3.123)

(3) Show that we may approximate the second term of (6.3.123) as∫ ∞
0

{
1

eβ(ε−µ) − 1
− 1

eβε − 1

}√
εdε ' kBTµ

∫ ∞
0

dε
1√

ε(ε+ |µ|)
= −πkBT

√
|µ|.

(6.3.124)
Do not forget that µ < 0. [This allows us to obtain µ in terms of N0(T ) which is
obtainable from (6.3.122) as a function of T .]

Solution
(1) Simply copy the formula:

E =

∫
dεgDt(ε)

ε

eβε − 1
=

3

2
kBTV

(
2πmkBT

h2

)3/2

ζ(5/2) ∝ V T 5/2, (6.3.125)

(2) Since

E =
V m3/2

21/2π2~3

∫ ∞
0

ε3/2

eβ(ε−µ) − 1
dε, (6.3.126)

we have

∂E

∂µ
=

V m3/2

21/2π2~3

∫ ∞
0

ε3/2 ∂

∂µ

1

eβ(ε−µ) − 1
dε, (6.3.127)
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= − V m3/2

21/2π2~3

∫ ∞
0

ε3/2 ∂

∂ε

1

eβ(ε−µ) − 1
dε, (6.3.128)

=
V m3/2

21/2π2~3

∫ ∞
0

(
∂

∂ε
ε3/2

)
1

eβ(ε−µ) − 1
dε, (6.3.129)

=
3

2

V m3/2

21/2π2~3

∫ ∞
0

ε1/2

eβ(ε−µ) − 1
dε. (6.3.130)

Comparing this with (6.3.122), we get (6.3.121).
(3) The first approximate relation in (6.3.124) is due to simple Taylor expansion.
The integral in the second formula could be computed with the aid of complex
analysis (you must respect the branching due to

√
ε), but an easier way may be to

set
√
ε = x:∫ ∞

0

dε
1√

ε(ε+ |µ|)
= 2

∫ ∞
0

dx
1

x2 + |µ|
=

∫ ∞
−∞

dx

x2 + |µ|
. (6.3.131)

3.20 [Bose-Einstein condensation in a harmonic trap]
Let us consider an ideal bose gas consisting of N particles confined in a 3D harmonic
potential.29 It is hard to treat this in terms of the canonical ensemble, so we dis-
cuss this with the aid of the grand canonical theory; if N is larger than 103, then
logN/N30 is not large, so this approach must not be bad.
(1) Suppose the angular frequency of the trapped boson is ωt. Find the density D(ε)
of one-particle state as a function of energy ε. Measure the energy from the ground
state and ignore the zero-point energy.
(2) Find the number of particles N1 in the non-condensate as a function of the chem-
ical potential. Show that the integral (or N1) is bounded from above in 3-space (no
explicit integration required). Thus, Bose-Einstein condensation is possible in this
system.
(3) The number of particles occupying the one-particle ground state approaches zero
as

N0(T ) = N

(
1−

(
T

Tc

)γ)
, (6.3.132)

when T ↗ Tc. Find γ.
(4) Find Tc as a function of N . For N = 3000, and ωt = 103 rad/s estimate Tc. (Use
ζ(3) = 1.2020569031595 · · ·.)

29Actually, BEC is observed in a collection of Rb atoms confined in a (not spherically symmetric)
3D harmonic potential.

30It is emphasized again that the error is not of order
√
N/N = 1/

√
N , but logN/N .
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(5) If a 2D harmonic potential can trap 2D Bose gas,31 can we observe Bose-Einstein
condensation?

Solution
(1) The one particle energy in a 3D harmonic potential may be written as ε =
~ωt(nx + ny + nz), where nx are nonnegative integers. The number of energy levels
up to energy ε is the volume of a cone x+ y + z ∈ [0, ε/~ωt] within the first octant,
we get ∫ ε

0

D(ε′)dε′ =
1

3!

(
ε

~ωt

)3

. (6.3.133)

That is,

D(ε) =
ε2

2(~ωt)3
. (6.3.134)

(2) By using D obtained in (1), the number of particles in the excited states is given
by

N1 =

∫ ∞
0

dεD(ε)
1

eβ(ε−µ) − 1
=

∫ ∞
0

dε′
ε′2

2(~ωt)3

1

eβ(ε′−µ) − 1
. (6.3.135)

This is an increasing function of µ, so by setting µ = 0 an upper bound of N1 may
be obtained:

N1 ≤
1

2

(
kBT

~ωt

)3 ∫ ∞
0

dx
x2

ex − 1
. (6.3.136)

This integral from 1 to ∞ converges and∫ 1

0

dx
x2

ex − 1
≤
∫ 1

0

xdx =
1

2
. (6.3.137)

Therefore, N1 is bounded from above. We may estimate it as

N1(T ) ≤ AT 3, (6.3.138)

where A (> 0) is an appropriate constant. Hence, BEC must occur.
(3) If µ = 0, we know from (2) that N1(T ) ∝ T 3. Therefore, γ = 3.
(4) To estimate Tc we need the value of A in N1 = AT 3

c : at Tc

N = N1 =

∫ ∞
0

dε′
ε′2

2(~ωt)3

1

eβε′ − 1
=

1

2

(
kBT

~ωt

)3 ∫ ∞
0

x2

ex − 1
dx = ζ(3)

(
kBT

~ωt

)3

.

(6.3.139)

31This is virtually realized on graphene.
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Therefore, we conclude

Tc = (1.2)−1/3 ~ωt

kB

N1/3 = 9.02× 10−8 K. (6.3.140)

(5) For 2D harmonic potential

D(ε) = ε/(~ωt)
2. (6.3.141)

Therefore, N1 is computed as

N1 =

∫ ∞
0

dε′
ε′

(~ωt)2

1

eβ(ε′−µ) − 1
≤
∫ ∞

0

dε′
ε′

(~ωt)2

1

eβε′ − 1
, (6.3.142)

which is bounded from above (bounded by some AT 2). Therefore, BEC can occur
in 2D if harmonically bound (quite different from the free space).

3.21 [Expanding universe]
At present, the cosmic background radiation is at 3 K. Suppose the volume of the
universe doubles adiabatically. What is the temperature of the cosmic background
radiation after this expansion?

Solution
We know the entropy of the radiation field is S ∝ V T 3. If the system expand
quasistatically, the entropy is constant, so (2V )T 3 = V 33. That is, T = 3/21/3 K.
Actually, the process may not be quasistatic, so this estimate must be the lower
bound.32

3.22 [Specific heat of hydrogens]
Consider a 1 mole of ideal gas at 10 K consisting of pure HD, pure HT or pure DT.
Whose specific heat CV is the largest? Give your answer without detailed computa-
tion. You may assume that the length of the chemical bonds are all the same.

Solution
We may totally ignore the the contribution of oscillations. There is no difference
in the contribution of translational motions. These are all heteronuclear molecules,
so we need not worry about spin-rotation coupling. Therefore, we have only to pay
attention to the rotational contributions. The molecules with the largest moment of
inertia is the easiest to excite, so their rotational specific heat is the largest (notice
that the peak of the rotational specific heat occurs around 40 K or above). Therefore,

32This is virtually a monatomic ideal gas problem, but do not forget that the particles are
superrelativistic.
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the specific heat of DT must be the largest around 10K. This is indeed the case.

3.23 [Internal degree of freedom of heavy hydrogen]
The potential energy function describing the chemical bond in a heavy hydrogen D2

may be approximately described as

φ(r) = ε
[
e−2(r−d)/a − 2e−(r−d)/a

]
, (6.3.143)

where ε = 7× 10−19 J, d = 8× 10−11 m and a = 5× 10−11 m.
(1) Evaluate the smallest energy required to excite the rotational motion, and esti-
mate the temperature Tr for which the rotation starts to contribute significantly.
(2) Evaluate the smallest energy required to excite the vibrational motion, and esti-
mate the temperature Trv for which the vibration starts to contribute significantly.

Solution
(1) The moment of inertia is

I =
1

2
md2 = (1/2)× (1.66× 10−27)× (8× 10−11)2, (6.3.144)

so Θr = ~2/2kBI ' 150K.
(2) The vibrational quantum is ~ω/kB ' 6300K.

3.24 [Computation of inertial moment tensor]
Obtain the moment of inertia tensor for CH3D around its center of mass, and com-
pute its rotational partition function classically. [You have only to state your strategy
without actually estimating the components of the tensor.]

Solution
The inertial moment tensor around the center of mass ACM and that AO around an
arbitrary point O is related as

A = AO − ACM , (6.3.145)

where
ACM = M

[
r2
CMI − rCMrT

CM

]
. (6.3.146)

Here, M is the total mass, rCM is the CM coordinate vector relative to O. AO is
computed as

AO =
∑

i

mi

[
r2
i I − rir

T
i

]
, (6.3.147)

where mi is the mass of atom i, ri it its position vector relative to O.
Let us compute the inertial moment tensor of CH3D. The molecule may be consid-

ered to be a regular tetrahedron, so it is convenient to compute the inertial moment
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tensor around the central carbon. H and D sits at the apices of the tetrahedron and
the cC is at its geometrical center. Take the position of the carbon as O. Let us
write the length of the CH (or CD) bond as r0. Let us take r0/

√
3 as the length unit.

Three H’s are placed at (1,−1,−1), (−1,−1, 1) and (−1, 1,−1), and D at (1, 1, 1).
Then, we have

AO =

 10 −1 −1
−1 10 −1
−1 −1 10

m2
H(r2

0/3). (6.3.148)

The position of the center of mass is rCM = (1, 1, 1)/17, so

ACM =
1

17

 2 −1 −1
−1 2 −1
−1 −1 2

m2
H(r2

0/3). (6.3.149)

Combining these results, we have

A =

 10− 2/17 −16/17 −16/17
−16/17 10− 2/17 −16/17
−16/17 −16/17 10− 2/17

m2
H(r2

0/3). (6.3.150)

To compute the rotational partition function, we have only to compute the determi-
nant of this matrix.
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6.4 Problems for Chapter 4

4.1. [Kac potential]
There is an imperfect classical gas with a binary potential φ given by

φ(|r|) =


∞ if |r| < a,
−ε/l3 if a ≤ |r| < l,

0 otherwise.
(6.4.1)

Here, ε > 0, a is a length scale of atom size, and the l →∞ limit is taken. (This is
an example of the Kac potential.)
(1) Compute the second virial coefficient (in the l→∞ limit).
(2) Compute the Joule-Thomson coefficient (∂T/∂P )H , where H is enthalpy. The
reader may assume that the heat capacity CP under constant pressure is a constant
and is known.

Solution
Since

B(T ) =
1

2

∫ ∞
0

[
1− e−βφ(r)

]
4πr2dr, (6.4.2)

we have

2B(T ) =

∫ a

0

4πr2dr +

∫ l

a

(1− eβε/l3)4πr2dr, (6.4.3)

→ 4

3
πa3 − 4

3
πβε. (6.4.4)

That is,

B(T ) =
2π

3
(a3 − βε). (6.4.5)

(2)
∂T

∂P

∣∣∣∣
H

=
∂(T,H)

∂(T, P )

∂(T, P )

∂(P,H)
= − ∂H

∂P

∣∣∣∣
T

/
∂H

∂T

∣∣∣∣
P

. (6.4.6)

(∂H/∂T )P = CP and

∂H

∂P

∣∣∣∣
T

= T
∂S

∂P

∣∣∣∣
T

+ V = −T ∂V

∂T

∣∣∣∣
P

+ V. (6.4.7)

Since the equation of state is

PV = NkBT

(
1 +B(T )

N

V
+ · · ·

)
, (6.4.8)
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we obtain
V

N
=
kBT

P
+B +O[ρ], (6.4.9)

where ρ is the number density, and

∂V

∂T

∣∣∣∣
P

=
NkB

P
+NB′ + · · · . (6.4.10)

Therefore, (again higher order terms in ρ are ignored)

T
∂V

∂T

∣∣∣∣
P

= V + TNB′ + · · · , (6.4.11)

so the Joule-Thomson coefficient reads

∂T

∂P

∣∣∣∣
H

=
N

CP

(
T
dB(T )

dT
−B

)
. (6.4.12)

Now, introduce B obtained in (1) and we get

∂T

∂P

∣∣∣∣
H

=
2πN

3CP

(
2

ε

kBT
− a3

)
. (6.4.13)

From this we see that if the temperature is sufficiently low, we can cool the gas using
the Joule-Thomson effect (as the ordinary gases).

4.2 [van der Waals equation of state]
(1) Show that the critical point is defined by

∂P

∂V

∣∣∣∣
T

=
∂2P

∂V 2

∣∣∣∣
T

= 0. (6.4.14)

(2) For the van der Waals equation of state, find the universal ratio PcVc/kBTc.
(3) Obtain the reduced equation of state Pr = f(Vr, Tr) for the van der Waals gas.
Here, Pr = P/Pc, Vr = V/Vc and Tr = T/Tc are reduced variables. [The reader can
work with a 1 mole gas.]
(4) Near the critical point Pr − 1 may be expanded in powers of Tr − 1 and nr − 1,
where nr = 1/Vr is the reduced number density. Find the coefficients A - C (we will
see a close relation of this to the Landau theory of phase transition later).

Pr − 1 = A(Tr − 1) +B(Tr − 1)(nr − 1) + C(nr − 1)3 + · · · . (6.4.15)
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(5) For hydrogen gas H2, b = 26.61 cm3/mol. This volume can be interpreted as the
smallest volume that the molecules can be squeezed into. Assuming that Avogadro’s
constant is known, estimate Planck’s constant (use dimensional analysis to guess the
atom size in terms of electron charge e, mass m, h and 4πε0).

Solution
(1) The condition for the criticality is for the van der Waals loop to become a single
point. Therefore, the critical point corresponds to the inflection point of the PV -
curve (the point where te local max and min points coalesce). This implies the two
conditions stated in the problem.
(2) The equation of state we start with is

P =
NkBT

V −Nb
− aN2

V 2
, (6.4.16)

and the two conditions in (1) read

− NkBTc

(Vc −Nb)2
+ 2

aN2

V 3
c

= 0, (6.4.17)

2
NkBTc

(Vc −Nb)3
− 6

aN2

V 4
c

= 0. (6.4.18)

Taking the ratio of these two equations, we get Vc−Nb = 2Vc/3. That is, Vc = 3Nb.
From the first equality (6.4.17)

kBTc

(2bN)2
= 2

aN

(3bN)3
⇒ kBTc =

8a

27b
. (6.4.19)

Now, with the aid of the equation of state, we get

Pc =
N(8a/27b)

2Nb
− aN2

9N2b2
=

a

27b2
. (6.4.20)

Combining all the results, we get

PcVc

NkBTc

=
(a/27b2)(3Nb)

N(8a/27b)
=

3

8
. (6.4.21)

That is, unless the ratio is 3/8, a gas does not obey the van der Waals equation of
state.
(3) Introducing P = (a/27b2)Pr, kBT = kBTr(8a/27b) and V = (3b)Vr into the van
der Waals equation of state, we get

Pr
a

27b2
=
NTr(8a/27b)

3bNVr −Nb
− aN2

9N2b2V 2
r

, (6.4.22)
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that is,

Pr =
(8/3)Tr

Vr − (1/3)
− 3

V 2
r

. (6.4.23)

(4) If you are confident about your analytical muscle, you may leave all the following
calculation to, e.g., Mathematica.

Using Pr = π+1, Tr = τ +1, and Vr = 1/(1+n), we can rewrite (6.4.23) as

π + 1 =
(8/3)(1 + τ)

1/(n+ 1)− 1/3
− 3(1 + n)2 =

8(1 + τ)(1 + n)

2− n
− 3(1 + n)2, (6.4.24)

= 4(1 + τ)(1 + n)

(
1 +

n

2
+
n2

4
+ · · ·

)
− 3(1 + n)2, (6.4.25)

= 4(1 + τ + n+ nτ)

(
1 +

n

2
+
n2

4
+
n3

8
+ · · ·

)
+ (3 + 6n+ 3n2),(6.4.26)

= 4

(
1 + τ +

3n

2
+

3

2
nτ +

3

4
n2 +

3

4
n2τ +

3

8
n3 + · · ·

)
− 3− 6n− 3n2,

(6.4.27)

= 1 + 4τ + 6nτ +
3

2
n3 + 3n2τ + · · · . (6.4.28)

That is,

π = 4τ + 6nτ +
3

2
n3 + · · · . (6.4.29)

This implies that A = 4, B = 6 and C = 3/2.
(5) The radius of the atom may be dimensional-analytically estimated as follows:
[m] = M , [e2/4πε0] = ML3T−2 and [h] = ML2T−1, so the quantity with the dimen-
sion of length that can be constructed from these quantities is

[(h/m)2/(e2/4πmε0)] = (L2T−1)2/(L3/T−2) = L. (6.4.30)

That is, the radius of an atom may be evaluated as a = 4πε0h
2/me2. This a is

something like (b/NA)1/3. Therefore,

h =

√
me2

4πε0

(
b

NA

)1/3

= 2.2× 10−34 Js. (6.4.31)

This is not very bad (taking the crudeness of the argument into account, it is not at
all bad).
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4.3 [The free energy of the van der Waals gas]
The Helmholtz free energy of the van der Waals gas may be expressed as

A = −NkBT
{

log
[nQ

N
(V −Nb)

]
+ 1
}
− aN2

V
. (6.4.32)

(1) Comparing this with the free energy formula for the ideal gas, explain why this
form is natural.
(2) Compute the internal energy and the entropy of the van der Waals gas.

Solution
(1) If we forget about the effect of the attractive forces, the fundamental idea of the
van der Waals gas is the ideal gas in the effective volume (= free volume) V − Nb,
that is, the actual space − the excluded volume due to molecules. The first term of
A is, as you can see by comparing it with the ideal gas formula, just the term for such
an ideal gas. The second term is the effect of attractive forces: since ∂A/∂V = −P ,
the effect of the attractive forces may be computed as (integrating −PdV )

−
∫ V

∞

[
−aN

2

V 2

]
= −aN

2

V
. (6.4.33)

(2)

S = −A
T

= N

{
log
[nQ

N
(V −Nb)

]
+

5

2

}
. (6.4.34)

E = A+ ST is

E =
3

2
NkBT −

aN2

V
. (6.4.35)

They are very natural expressions.

4.4 [Thermodynamically respectable derivation of Maxwell’s rule]
If the temperature is sufficiently low, the PV -curve given by the van der Waals
equation of state implies

∂P

∂V
= − NkBT

(V −Nσ)2
+ a

N2

V 3
> 0. (6.4.36)

That is, it is thermodynamically unrealizable. Actually, gas-liquid coexistence oc-
curs when this ‘unphysical behavior’ happens, and the coexistence temperature T is
determined by the Maxwell rule. This is what Maxwell proposed and an ‘explana-
tion’ was given in the text but was with a remark that the argument is an abuse
of thermodynamics. Many textbooks argue that Maxwell’s rule cannot be derived
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thermodynamically properly, because the argument in the text (the usual one) uti-
lizes thermodynamics where the states are unstable. However, it is possible to avoid
this abuse and still we can thermodynamically demonstrate Maxwell’s rule. The
coexistence condition for phase A and phase B is the agreement of P , T and µ.
µB(T, P )− µA(T, P ) of the difference of the Gibbs free energy must be computable
along the path in the phase diagram through only stable phases (that is, the broken
curve in the following figure).

A B

P

Since
G = E − ST + PV, (6.4.37)

if we compute EB − EA and SB − SA, then GA = GB allows us to compute the
difference of PV , that is, P (VA − VB).
(1) Compute EB − EA.
(2) Compute SB − SA.
(3) Since GB−GA = 0, these results allow us to compute P (VB−VA). Confirm that
this and the result obtained by the naive abuse of thermodynamics:∫ B

A

PdV (6.4.38)

agree.

Solution
(1) We compute the internal energy difference as

EB − EA =

∫ B

A

dE =

∫ B

A

[
∂E

∂V

∣∣∣∣
T

dV +
∂E

∂T

∣∣∣∣
V

dT

]
, (6.4.39)

where the temperatures at A and at B are identical. To compute the second term we
need the constant volume specific heat CV . CV for the van der Waals gas is identical
with that for a (monatomic) ideal gas (the effect of the attractive interaction depends
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only on the density, so it does not contribute to CV as can explicitly be seen from
(6.4.35)). Since TA = TB, the second term is always zero. From dE = TdS − PdV
we get

∂E

∂V

∣∣∣∣
T

= T
∂S

∂V

∣∣∣∣
T

− P = T
∂P

∂T

∣∣∣∣
V

− P =
1

2
a

(
N

V

)2

. (6.4.40)

Therefore,

EB − EA =

∫ B

A

1

2
a

(
N

V

)2

dV =
aN2

2

(
1

VA

− 1

VB

)
. (6.4.41)

(2) This can also be obtained, if we note TA = TB. The temperature derivative gives
(CV /T )dT , but this is a function of T only, so if the initial and the final temperatures
are the same, it cannot contribute to the integral. Therefore,

SB − SA =

∫ B

A

dS =

∫ B

A

∂S

∂V

∣∣∣∣
T

dV. (6.4.42)

Thus, we get

T (SB − SA) = T

∫ B

A

∂P

∂T

∣∣∣∣
V

dV =

∫ B

A

NkBT

V −Nσ
dV = NkBT log

VB −Nσ
VA −Nσ

. (6.4.43)

(3) Since GB−GA = 0 and since the initial and the final T and P are the same,

P (VB − VA) = T (SB − SA)− (EB − EA). (6.4.44)

If we introduce (6.4.43) and (6.4.41) into this, along the broken curve in the above
figure

P (VB − VA) = NkBT log
VB −Nσ
VA −Nσ

− aN2

2

(
1

VA

− 1

VB

)
. (6.4.45)

The RHS of this formula agrees exactly with the naive computation of (6.4.38) along
the van der Waals curve. Therefore, Maxwell’s rule has been justified thermodynam-
ically. Notice that this happy consequence depends on a peculiar feature of the van
der Waals gas that its specific heat is not volume dependent at all.

4.5 [Grand canonical approach to 1D van der Waals gas]
Let us study the 1D Kac model with the aid of the grand canonical approach.
(1) If there are N particles in the container of volume V , the canonical partition
function reads

ZN(V ) =

∫ V−σ

(N−1)σ

dxN · · ·
∫ x3−σ

σ

dx2

∫ x2−σ

0

dx1

∫
dp1 · · · dpne

−
PN

i=1 p2
i /2mkBT+aN2/kBTV .

(6.4.46)
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After checking the formula is correct, actually compute this.
(2) Using the result of (1) write down the grand partition function (you cannot per-
form the summation in a closed form).
(3) The grand partition function written down in (2) has the following structure:

Ξ =
M∑

N=0

eV A(N/V ), (6.4.47)

where M is the maximum number of particles we can push into the volume V . Show
that if the temperature is sufficiently high, there is only one n = N/V that maximizes
A(n). Also demonstrate that if the temperature is sufficiently low, there can be three
extrema for A(n).
(4) What do you expect the grand partition function looks like, if n that maximizes
A(n) are not unique?
(5) There is a text book which writes explicitly as follows:

Ξ = eβPV + eβP ′V . (6.4.48)

Here, we have assumed that A(n) have two maxima, and the two terms correspond
respectively to the two maxima. Is this correct?

Solution
(1) Let us start with the N = 2 case:

Z2(V ) =
1

h2

∫ V−σ

σ

dx2

∫ x2−σ

0

dx1

∫
dp1dp2e

−
P2

i=1 p2
i /2mkBT+aN2/2kBTV

(6.4.49)

=

(
2πmkBT

h2

)2/2 ∫ V−2σ

0

dy2

∫ y2

0

dy1e
2aV kBT (6.4.50)

=

(
2πmkBT

h2

)2/2
1

2
(V − 2σ)2e2aV kBT . (6.4.51)

In the above calculation the interparticle distances y2 = x2−x1 and y1 = x1−0 have
been introduced.

For N = 3, introducing y3 = x3 − x2 as well we get

Z3(V ) =
1

h3

∫ V−σ

2σ

dx3

∫ x3−σ

σ

dx2

∫ x2−σ

0

dx1

∫
dp1dp2dp3e

−
P3

i=1 p2
i /2mkBT+aN2/kBTV

(6.4.52)
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=

(
2πmkBT

h2

)3/2 ∫ V−3σ

0

dy3

∫ y3

0

dy2

∫ y2

0

dy1e
9a/2V kBT (6.4.53)

=

(
2πmkBT

h2

)3/2
1

3!
(V − 3σ)3e9a/2V kBT . (6.4.54)

Now, it is easy to guess the following general formula:

ZN(V ) =
1

N !

(
2πmkBT

h2

)N/2

(V −Nσ)NeaN2/2V kBT . (6.4.55)

It is not hard to show that this is correct in 1D if you plot possible trajectories of
particles as a function of time.
(2)

Ξ =
M∑

N=0

1

N !
(V −Nσ)N(2πmkBT/h

2)N/2eaN2/2V kBT eµN/kBT . (6.4.56)

(3) From (6.4.56) we obtain

A(N) = N log(V−Nσ)−N logN+N+
N

2
log(2πmkBT/h

2)+aN2/2V kBT+µN/kBT,

(6.4.57)
so

A(n) = V [n log(1/n− σ) + n+
n

2
log(2πmkBT/h

2) + an2/2kBT + µn/kBT ]

(6.4.58)

= V [n log(1/n− σ) + nΛ + an2/2kBT ], (6.4.59)

where Λ = 1+ (1/2) log(2πmkBT/h
2)+µ/kBT . Differentiating this wrt to n, we get

the condition for a maximum:

∂A(n)

∂n
= V

[
log

(
1

n
− σ

)
− 1

1− nσ
+ Λ + an/kBT

]
= 0. (6.4.60)

The first two terms in the brackets are

log(1/n) + log(1− nσ)− 1

1− nσ
. (6.4.61)

This is a monotone decreasing function from +∞ (at n = 0) to −∞ (at n = 1/σ, the
maximum packing density). Therefore, if T is sufficiently large, then there is only
one solution to (6.4.60). Also we see there could be three solutions for this equation
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if T is sufficiently small; they correspond to two maxima and one minimum between
them of A(n).
(4) At high temperatures there is only one maximum for A(n), so we may use the
maximum term to estimate (6.4.56). This is just as we have seen in the proof of
ensemble equivalence in the text.

Ξ ' ePV/kBT . (6.4.62)

If T is sufficiently low (with an appropriate chemical potential), as noted in (3) there
are two maxima. If the heights of these maxima are different, then thanks to the
multiplicative V in the exponent of (6.4.56) only one maximum can contribute. Only
when these two maxima have exactly the same heights can they both contribute to
the grand partition function, and this corresponds to the phase coexistence temper-
ature.
(5) As already explained in (4) this form holds only at the phase transition temper-
ature. At other temperatures one term is overwhelmingly smaller than the other,
and around the taller maximum are numerous higher A(n)’s than the secondary
maximum, so if we do not pay attention to the former, there is no point to keep
the secondary maximum contribution. Thus, if we interpret eβPV as representative
term(s) among the summands we cannot write such a formula. However, if you in-
terpret each term to be the sum below or above some n (intermediate value of the
two coexisting phases), you might be allowed to write such a formula symbolically.

4.6 [Hard sphere fluid]
The virial equation of state for a fluid interacting with 2-body potential reads

P

nkBT
= 1− 2π

3
βn

∫ ∞
0

φ′(r)g(r)r3dr. (6.4.63)

Using this formula, derive the equation of state for the hard sphere fluid:

PH

nkBT
= 1 +

2π

3
ng(σ)σ3, (6.4.64)

where σ is the diameter of the sphere. Strictly speaking, g(σ) is limr↘σ g(r).

Solution
Notice that φHg is zero inside the sphere.

− 2π

3
n

∫ ∞
0

βφ′H(r)g(r)r3dr =
2π

3
n

∫ ∞
0

df(r)

dr
eβφg(r)r3dr (6.4.65)

=
2π

3
n

∫ ∞
0

δ(r − σ)eβφg(r)r3dr (6.4.66)

=
2π

3
ng(σ)σ3 (6.4.67)
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4.7 [Internal energy of fluid interacting with binary forces]
(1) Suppose the interactions among spherical particles can be expressed in terms of
the two-body interaction potential φ(r) = φ(r). Write down its internal energy in
terms of E φ, the number density n and the radial distribution function g(r).
(2) Obtain the internal energy of the Kac fluid (i.e., the fluid interacting via the Kac
potential). Set σ = 1.
(3) Using the virial equation of state

P/nkBT = 1− 2π

3
nβ

∫ ∞
0

φ′(r)g(r)r3dr, (6.4.68)

obtain the augmented van der Waals equation of state for a Kac fluid:

βP = βPH +
n2

2
β

∫
d3r φ(r). (6.4.69)

Notice that the radial distribution function of the Kac fluid is the same as the had
sphere fluid with the same number density.33

Solution
(1) The internal energy is the expectation value of the system Hamiltonian. The
expectation value of the kinetic energy is simple:〈∑

p2/2m
〉

= (3/2)NkBT. (6.4.70)

The expectation value of the potential energy is

〈U〉 =

〈
1

2

∑
i6=j

φ(|ri − rj|)

〉
=

∫
dxdy φ(|x− y|)

〈
1

2

∑
i6=j

δ(x− ri)δ(y − rj)

〉
(6.4.71)

=
1

2

∫
dxdy n(2)(x,y)φ(|x− y|). (6.4.72)

Therefore,

E =
3

2
NkBT + 2πnN

∫
dr r2φ(r)g(r). (6.4.73)

33However, we cannot derive the Maxwell’s rule requirement.
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(2) For the Kac potential case, the hard-core part of the potential does not contribute
to the energy, so we have only to consider the attractive part in the γ → 0 limit:

U =
1

2
nN4π

∫ ∞
1

γ3φ(γr)g(r)r2dr =
1

2
nN4π

∫ ∞
γ

φ(y)g(y/γ)y2dy. (6.4.74)

g(y/γ)→ 1 for any finite y in the γ → 0 limit, so

U =
1

2
nN4π

∫ ∞
0

φ(y)y2dy =
1

2
Nnφ. (6.4.75)

Therefore,

E =
3

2
NkBT +

1

2
nNφ. (6.4.76)

(3) consider the contribution of the interaction potential to the pressureβ∆P (we
perform the limit γ → 0 at a convenient stage of calculation):

β∆P = −β 2π

3
n2

∫ ∞
0

φ′(r)g(r)r3dr (6.4.77)

= −β 2π

3
n2

∫ ∞
0

[φ′H(r) + γ4φ′(γr)]g(r)r3dr. (6.4.78)

We have already computed the contribution of the hard-core portion:

− 2π

3
n2

∫ ∞
0

βφ′H(r)g(r)r3dr =
2π

3
n2g(σ)σ3. (6.4.79)

The contribution from the foothill of the potential is

− β 2π

3
n2

∫ ∞
1

γ4φ′(γr)g(r)r3dr = −β 2π

3
n2

∫ ∞
γ

φ′(y)g(y/γ)y3dy (6.4.80)

→ −β 2π

3
n2

∫ ∞
0

φ′(y)y3dy, (6.4.81)

where we have used g → 1 at infinity. Therefore,

β∆P = +
2π

3
n2g(σ)σ3 + 2πn2β

∫ ∞
0

φ(y)y2dy. (6.4.82)

4.8 [Functional differentiation]
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Compute the following functional derivative.

δ

δψ(x)

∫
d3r

[
1

2
(∇ψ(r))2 − 1

2
τψ2(r) +

1

4
ψ4(r)

]
, (6.4.83)

where τ is a constant.
(2) [Green’s function and functional differentiation] Consider a differential equation
(partial or ordinary) Lϕ = f , where L is a linear differential operator acting on the
functions of x.34 Show that δϕ/δf is the Green’s function for the initial boundary
value problem defined by the linear operator L. (This is a problem immediately
solved by inspection, but the fact is not meaningless. The method of Green’s function
is actually a method to solve a differential equation by the first order functional
Taylor expansion approach explained in the text; in this case the problem is linear,
so the method gives an exact solution.)
(3) Regard the entropy S of a fluid interacting with the binary potential φ as its
functional, and express the functional derivative

δS

δφ(r)
(6.4.84)

in terms of the radial distribution function (and its appropriate partial derivatives).
It may be easy to compute the corresponding functional derivative of the Helmholtz
free energy.

Solution
(1)

δ

δψ(x)

∫
d3r

[
1

2
(∇ψ(r))2 − 1

2
rψ2(r) +

1

4
ψ4(r)

]
=

∫
d3r

[
(∇ψ(r))∇δ(r − x)− rψ(r)δ(r − x) + ψ3(r)δ(r − x)

]
= −∇2ψ(x)− rψ(x) + ψ3(x)

(6.4.85)

(2) The first order Taylor expansion approximation reads

δϕ =

∫
d • δϕ

δf(•)
δf(•), (6.4.86)

34If (Lf)(x) is determined by the value of f at x and the values of various derivatives of f at x,
L is called a differential operator.
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where dummy variables are expressed by •. The integration wrt the dummy is
written as

∫
. If the problem is linear, ϕ does not depend on f , so ‘integrating’ the

above formula, we find

ϕ =

∫
d • δϕ

δf(•)
f(•) (6.4.87)

Functionally differentiating Lϕ = f wrt f (recall that we may always exchange the
order of functional calculus procedures and ordinary calculus procedures), we obtain
(in the following L is written as Lx to emphasize that it acts on the functions of
x)

Lx
δϕ(x)

δf(y)
= δ(x− y) (6.4.88)

(under the same linear auxiliary conditions), Hence, we have G(x|y) = δϕ(x)/δf(y).
Indeed,

Lx

∫
G(x|y)f(y)dy = Lx

∫
d • δϕ(x)

δf(•)
f(•) =

∫
d • δ(Lϕ)(x)

δf(•)
f(•) (6.4.89)

=

∫
d • δf(x)

δf(•)
f(•) =

∫
d • δ(x− •)f(•) = f(x).

(6.4.90)

(3) Let us write dΓN = (1/h3NN !)d(phase volume) and differentiate the free energy
first:

δA

δφ(r)
=

δ

δφ(r)
(−kBT log

∫
dΓN e

−β(K+
P

φ(xi−xj)) (6.4.91)

=
1

Z

∫
dΓN

∑
i<j

δ(r − (xi − xj))e
−β(K+

P
φ(xi−xj)) =

〈∑
i<j

d(r − (xi − xj))

〉
(6.4.92)

=
1

2

〈∑
i6=j

∫
dy δ(r + y − xi)δ(y − xj)

〉
=

1

2

∫
dy n(2)(r + y, y). (6.4.93)

Since the system is expected to be translationally symmetric and isotropic, we can
simplify this as

δA

δφ(r)
=

1

2
V n(2)(r, 0) =

1

2
Nng(|r|). (6.4.94)

Incidentally, this formula gives a perturbative way to compute A.
Since S = −∂A/∂T (notice that n is a constant)

δS

δφ(r)
= −1

2
Nn

∂

∂T
g(|r|). (6.4.95)
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4.9 [Functional derivatives of canonical partition function]
Redo the calculations (4.4.26)-(4.4.28) using the canonical formalism; this is slightly
easier than the grand canonical approach given in the text.

4.10 [Debye-Hückel theory]
Let us perform the functional Taylor approximation approach explained in Section
4.4 with A = n and B = U .
(1) Within this approach find the equation governing the radial distribution function
g.
(2) Obtain the Fourier transform of the indirect correlation function in the present
approximation.
(3) Let φ be the Coulomb potential. Its Fourier transform may be written as
φk = Q/k2. What is the functional form of the indirect correlation function h(r)?

Solution
(1) From the formulas in the text,we can almost write down the solution as

h = −β(nh ∗ φ+ φ). (6.4.96)

First, (4.4.31) tells us(
δn(x|U)

δ−βU(y)

)
U=0

= n2h(x− y) + nδ(x− y), (6.4.97)

so the Taylor approximation reads

n(x|φ)− n(x|0) =

∫
dy[n2h(x− y) + nδ(x− y)](−βφ(y)− 0). (6.4.98)

That is,

nh(x) = −βn2

∫
dyh(x− y)φ(y)− βnφ(x). (6.4.99)

This leads to the answer given above.
(2) Fourier transforming (6.4.96), we get

hk =
−βφk

1 + βnφk

. (6.4.100)

(3) For the Coulomb potential

hk =
−βQ

k2 + βnQ
. (6.4.101)
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Therefore,

h ∝ 1

r
e−r
√

βnQ. (6.4.102)

This is a Yukawa potential. That is, the Coulomb force is shielded by many-body
effects. Recall that log g ∼ h is the effective two-body interaction.

4.11 [Toy integral equation for liquid]
Let us make a prototype closure for the radial distribution.
(1) Make the first order approximation (i.e., the first order functional Taylor expan-
sion approximation) of n(1)(x|U) in terms of the Boltzmann factor exp[−βU(x)].
(2) What is the direct correlation function?
(3) Find the Fourier transform of the indirect correlation function.
(4) Find the equation of state with our approximation with the aid of compressibility
or its reciprocal. Assume that the diameter of the hard core is a.
Solution
Let A = n(1)(x|U) and B = exp[−βU(x)]. We need the following calculation:

δA(x|U)

δB(y|U)
= −eβU(x) δn

(1)(x|U)

δβU(y)
(6.4.103)

= eβU(x)[n(2)(x,y|U)− n(1)(x|U)n(1)(y|U) + n(1)(x|U)δ(x− y)].

(6.4.104)

Let us estimate this at U = 0:

δA(x|U)

δB(y|U)

∣∣∣∣
U=0

= n2g(x− y)− n2 + nδ(x− y). (6.4.105)

Let φ be the potential created by the particle placed at the origin. Then, A(x|φ) =
n(1)(x|φ) = ng(x), A(x|0) = n(1)(x|0) = n, B(x|φ) = exp[−βφ(x)] and B(x|0) = 1.
Using these formulas, the linear Taylor approximation reads

ng(x)− n = n

∫
dy[ng(x− y)− n+ δ(x− y)] (exp[−βφ(y)]− 1) . (6.4.106)

Using h and Mayer’s f , we have

h(x) =

∫
dy [nh(x− y) + δ(x− y)]f(y), (6.4.107)

or

h(x) = f(x) + n

∫
dy h(x− y)f(y). (6.4.108)
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This is our final result. This is already a closed equation for h.
(2) Comparing (6.4.108) and the Ornstein-Zernike equation, we immediately see
c = f .
(3) (6.4.108) is linear in h, so we can solve it with the aid of Fourier transforma-
tion:

f(k) =

∫
d3re−ik·rf(r). (6.4.109)

Its inverse is

f(r) =
1

(2π)3

∫
d3keik·rf(k). (6.4.110)

The most important feature we use is that the convolution is converted into prod-
uct:

(f ∗ g)(k) = f(k)g(k). (6.4.111)

Using this, we have
h(k) = f(k) + nh(k)f(k). (6.4.112)

That is,
h(k) = f(k)/(1− nf(k)). (6.4.113)

(4) The compressibility equation gives ∂P/∂n:

β
∂P

∂n

∣∣∣∣
T,V

= 1− n
∫
cdx = 1 + n

4π

3
a3. (6.4.114)

Therefore,
P

nkBT
= 1 +

2π

3
a3n. (6.4.115)

4.12. [Scaled particle theory of hard core fluid]35

As we know well by now, for a spherical hard core fluid

P/nkBT = 1 +
2π

3
nσ3g(σ), (6.4.116)

where σ is the diameter of the spherical core. Therefore, to know the hard core
equation of state we need g only at r = σ.

Let p0(r) be the probability of observing a bubble of radius r. Let nG(r) be
the expected number of the centers just outside the bubble (nGdr is the expected

35R. J. Baxter, in Physical Chemistry an advanced treatise volume VIIIA Liquid State (edited
by H. Eyring, D. Henderson and W. Jost, Academic Press 1971) Chapter 4, Section VIII.
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number of particle centers in the spherical shell between r and r + dr). When the
bubble is of radius σ, it just behaves as the exclusion zone by the hard sphere at the
origin. Therefore,

g(σ) = G(σ). (6.4.117)

We have only to determine G to know the hard-core fluid pressure.
(1) Derive

p0(r + dr) = p0(r)[1− 4πnr2G(r)dr]. (6.4.118)

That is,
d

dr
log p0(r) = −4πnr2G(r). (6.4.119)

(2) We can determine G for very large r. According to the fluctuation theory, the
probability of fluctuation that creates a bubble of radius r may be written in terms
of the reversible work W (r) required to make it. Therefore,

p0(r) = e−βW (r). (6.4.120)

Using this and the thermodynamic result for large r (i.e., for the usual macroscopic
bubble!)

dW (r) = PdV + f [1− (2δ/r)]dA, (6.4.121)

where A is the surface area of the bubble, and f(1− 2δ/r) is the surface tension of
the curved surface of mean curvature 1/r. Using (6.4.119)-(6.4.121), find G(r) as a
function of r.
(3) If r < σ/2, only 1 particle center can come in the bubble. What is this probabil-
ity? This must be 1− p0(r) for r < σ/2.
(4) Determine G(r) for r < σ/2.
(5) Unfortunately, G(r) is not a smooth function, but it is known that it is contin-
uously differentiable at r = σ/2. Let us make an approximation that the unknown
parameters f and δ may be determined by matching G obtained in (2) and in (4) at
r = σ/2 smoothly (match G and G′ there). Derive, under this approximation,

P

nkBT
=

1 + η + η3

(1− η)3
, (6.4.122)

where η is the packing density: η = πσ3n/6 as usual.
[This is identical to PY-C! Furthermore, f obtained is quite reasonable.]

Solution
(1) If we assume that there is no more than a single particle in a thin shell, then
4πr2dr × nG(r) is the expectation value of the number of particles in the shell
immediately outside the bubble of radius r. Poisson distribution tells us that the



6.4. PROBLEMS FOR CHAPTER 4 457

probability to find no particle in the shell is e−4πnr2G(r)dr = 1− 4πnr2G(r)dr.
(2)

− β d
dr
W (r) = −4πnr2G(r). (6.4.123)

A and V must be expressed in terms of r: V = (4π/3)r3, A = 4πr2. Therefore,

dW

dr
= 4πPr2 + 8πf [1− (2δ/r)]r = 4πkBTnr

2G(r). (6.4.124)

That is,

G(r) =
P + (2f/r)− (4fδ/r2)

nkBT
. (6.4.125)

(3) (4π/3)nr3 is the expectation value of the number of (the centers of the) particles.
Here, the sphere of radius r does not contain any particle (with probability p0) or
contains only one particle (with probability p1 = 1− p0), and the expectation value
of the number of particle is equal to p1. Therefore,

p0(r) = 1− 4

3
πnr3. (6.4.126)

(4) If we use p0 obtained in (3) in (6.4.119), we get

G(r) =
1

1− (4π/3)r3n
. (6.4.127)

(5) If we demand G just obtained and (6.4.125) agree at r = σ/2:

1

1− (4π/3)(σ/2)3n
=
P + (4f/σ)− (16fδ/σ2)

nkBT
. (6.4.128)

Introducing the following variable

X = P/nkBT, Y = 4f/nσkBT, Z = 4δ/σ, (6.4.129)

the above equality reads
1

1− η
= X + Y − Y Z. (6.4.130)

If we further demand the agreement of G′ there, we have

4πr2n

(1− (4π/3)r3n)2
=
−(2f/r2) + 2(4fδ/r3)

nkBT
, (6.4.131)
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or
4πr3n

(1− (4π/3)r3n)2
=
−(2f/r) + 2(4fδ/r2)

nkBT
. (6.4.132)

This can be rewritten as follows:

3η

(1− η)2
= −Y + 2Y Z. (6.4.133)

We need one more relation. It is the expression of the pressure in terms of G(σ):

X = 1 + 4ηG(σ) = 1 + 4η(X + Y/2− Y Z/4), (6.4.134)

where the second equality is obtained with the aid of (6.4.125).
From (6.4.130) and (6.4.133) we get

Y Z =
1

1− η
+

3η

(1− η)2
−X, (6.4.135)

Y =
2

1− η
+

3η

(1− η)2
− 2X. (6.4.136)

Introducing these into (6.4.134) gives

X = 1 + 4ηX + 2ηY − ηY Z, (6.4.137)

= 1 + 4ηX +
3η

1− η
+

3η2

(1− η)2
− 3ηX. (6.4.138)

Therefore,

(1− η)X = 1 +
3η

1− η
+

3η2

(1− η)2
=

1 + η + η2

(1− η)2
. (6.4.139)

We’ve done it!

4.13 [Quantum effect on the second virial coefficient]36

The second virial coefficient for a spherical symmetrical particle is, classically,

B = 2π

∫ ∞
0

(1− e−βφ(r))r2dr. (6.4.140)

Its quantum version should be obtained by replacing the Boltzmann factor e−βφ with
the diagonal element of the 2-body density operator ρ(r):

B = 2π

∫ ∞
0

(1−Nρ(r))r2dr, (6.4.141)

36This is based on T. Kihara, Molecular forces.
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where N is the normalization constant to make Nρ(r)→ 1 in the r →∞ limit.37

Thus, the calculation has been reduced to that of ρ. Let us perform this through
small steps. The difference of fermions and bosons can be ignored except for helium
below 25 K. Therefore, we totally ignore the effect of particle symmetry on the wave
function. The following calculation was done for the first time by E. Wigner in the
1930s. For 4He, below 50 K the quantum correction increases the classical value by
about 50%, but by about 10% around 100 K, so the quantum correction is not very
small.
(1) Let us assume that two-body Hamiltonian to be

H = − ~2

2m
(∆1 + ∆2) + φ(|r1 − r2|), (6.4.142)

where ∆i is the Laplacian wrt the position coordinates of the i-particle. The two-
body density operator is given by ρ = e−βH . Show that the matrix element 〈r1, r2|ρ|r′1, r′2〉
of the 2-body density operator satisfies the following equation:

∂

∂β
〈r1, r2|ρ|r′1, r′2〉 = −H〈r1, r2|ρ|r′1, r′2〉. (6.4.143)

If we use the normalized eigenket |i〉 (H|i〉 = Ei|i〉) of H, we can write

〈r1, r2|ρ|r′1, r′2〉 =
∑

i

〈r1, r2|i〉e−βEi〈i|r′1, r′2〉. (6.4.144)

Here, the summation may include integration.
(2) For the case with φ = 0 (i.e., for the ideal gas case) obtain 〈r1, r2|ρ|r′1, r′2〉. As
already noted, you can totally forget about the particle exchange symmetry. You
must specify the initial and the boundary conditions correctly to solve the above
parabolic equation.
(3) Let us introduce the deviation Ψ from the case without interactions as

〈r1, r2|ρ|r′1, r′2〉 =

(
2π~2β

m

)−3

exp

[
− m

2~2β
[(r1 − r′1)

2 + [(r2 − r′2)
2] + Ψ(r1, r2; r

′
1, r
′
2)

]
.

(6.4.145)
Note that −kBTΨ corresponds to the ‘quantum-corrected two-body interaction. Ψ
satisfies the following equation:

φ+
∂Ψ

∂β
+kBT [(r1−r′1) ·∇1 +(r2−r′2) ·∇2]Ψ =

~2

2m
[(∇1Ψ)2 +∆1Ψ+(∇2Ψ)2 +∆2Ψ].

(6.4.146)

37As we will see below, the diagonal element of the position representation of the density operator
is proportional to the probability of finding particles, so it is proportional to the Boltzmann factor
semi-classically. Therefore, normalizing the density operator appropriately, we can interpret it as a
quantum statistical extension of the spatial Boltzmann factor.
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This equation can be obtained from (6.4.143) by substituting (6.4.145); nothing
special has not been done at all.

To obtain the quantum correction we expand Ψ as

Ψ = Ψ0 +
~2

2m
Ψ1 + · · · (6.4.147)

and then introduce this into (6.4.146). Requiring the order by order agreement of
the substituted result, we get

φ+
∂

∂β
Ψ0 + kBT [(r1 − r′1) · ∇1 + (r2 − r′2) · ∇2]Ψ0 = 0, (6.4.148)

∂

∂β
Ψ1 +kBT [(r1−r′1) ·∇1 +(r2−r′2) ·∇2]Ψ1 = (∇1Ψ0)

2 +∆1Ψ0 +(∇2Ψ0)
2 +∆2Ψ0,

(6.4.149)
etc. First, we must solve the zeroth order equation. Show that the diagonal element
of the only meaningful solution is Ψ0(β, r1, r2; r1, r2) = −βφ(|r1 − r2|).
(4) We have only to obtain the diagonal element of Ψ1. Solve the simplified equation
that can be obtained by taking the diagonal limit of (6.4.149):

∂

∂β
Ψ1 = lim

{r′
i}→{ri}

[
(∇1Ψ0)

2 + ∆1Ψ0 + (∇2Ψ0)
2 + ∆2Ψ0

]
. (6.4.150)

As can immediately be seen, to compute the RHS of this equation, we cannot use
Ψ0(β, r1, r2; r1, r2) = −βφ(|r1−r2|) that is already in the diagonal limit. The deriva-
tive must be computed from the original expression of Ψ0. Find lim{r′

i}→{ri}∇1Ψ0

and lim{r′
i}→{ri}∇2Ψ0.

(5) To obtain ∆1Ψ0 we could perform a similar calculation. However, our purpose
is not to practice calculation (although this practice is also meaningful), the needed
result is provided:

∆iΨ0 = −1

3
β∆iφ, (6.4.151)

where i = 1, 2.
Obtain the diagonal element 〈r1, r2|Ψ1|r1, r2〉. Then compute the quantum cor-

rection to the second virial coefficient to order ~2. Show that the correction is positive
for any T (as stated for helium, quantum correction always increases the second virial
coefficient).
(6) The quantum correction starts with the term of O[~2]. Why, or why is’t there
any correction of odd order in h?

Solution
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(1) Obviously,
d

dβ
e−βH = −He−βH . (6.4.152)

If we position represent this, we get the desired equation. The result is a parabolic
partial differential equation.
(2) We must solve the following partial differential equation:

d

dβ
f(β, {ri}, {r′i}) =

~2

2m
(∆1 + ∆2) f(β, {ri}, {r′i}), (6.4.153)

where the primed vector variables are regarded as constant parameters in this equa-
tion. The initial condition at β = 0 can be obtained immediately from the definition
of the density matrix:

f(0, {ri}, {r′i}) =
∑

i

〈r1, r2|i〉〈i|r′1, r′2〉 = 〈r1, r2|r′1, r′2〉 = δ(r1 − r′1)δ(r2 − r′2).

(6.4.154)
The boundary condition is that the solution goes to zero if {ri} and {r′i} are far
apart.

This equation can be totally separated for different particles (as can be guessed
from physics), so we have only to solve

∂

∂β
ϕ(β, r, r′) =

~2

2m
∆ϕ(β, r, r′). (6.4.155)

This is an elementary diffusion equation (the simplest way to solve it is to use Fourier
transformation):

ϕ(β, r, r′) =

(
2π~2β

m

)−3/2

exp

[
− m

2~2β
(r − r′)2

]
. (6.4.156)

Therefore, the answer is (6.4.145) without Ψ. We immediately see that N can be
chosen to cancel the numerical factor in front of the exponential function.
(3) The characteristic equation of this linear first order partial differential equation
is

dβ

1
= −dΨ0

φ
=

βdx1

x1 − x′1
=

βdy1

y1 − y′1
= · · · , (6.4.157)

where · · · denote similar equations for al the remaining particles. From this we see
that the diagonal element is Ψ0 = −βφ+ const. The answer must agree with the
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ideal case in th βφ→ 0 limit, the constant must be zero.
(4) If we apply ∇1 to the zeroth order equation (6.4.148), we get

∇1φ+
∂

∂β
∇1Ψ0 +

1

β
∇1Ψ0 + kBT [(r1−r′1) ·∇1 +(r2−r′2) ·∇2]∇1Ψ0 = 0. (6.4.158)

Its diagonal element is

∇1φ+
∂

∂β
∇1Ψ0 +

1

β
∇1Ψ0 = 0. (6.4.159)

This is an ordinary differential equation, so its general solution reads

∇1Ψ0 = −1

2
β∇1φ+ kBTc, (6.4.160)

where c is an arbitrary function of r. However, we know that both Ψ and Ψ0 must
vanish in the β → 0 limit, c = 0. Similarly,

∇2Ψ0 = −1

2
β∇2φ. (6.4.161)

(5) Since

〈r1, r2|Ψ1|r1, r2〉 =
β3

6
(∇φ)2 − β2

3
∆φ, (6.4.162)

we now know the ‘quantum-corrected’ two-body potential. Therefore, we can write

B(T ) =
1

2

∫
V

dr(1−eΨ) = Bc(T )− ~2

4m

∫
V

(
β3

6
(∇φ)2 − β2

3
∆φ

)
e−βφd3r, (6.4.163)

where Bc is the classic value. If we perform integration by parts, the result becomes
cleaner. Using Gauss’ theorem, we have

(∆φ)e−βφ = ∇ · ((∇φ)e−βφ)−∇φ · ∇e−βφ, (6.4.164)

so ∫
(∆φ)e−βφ =

∫
S

e−βφ∇φ · dS −
∫
d3r∇φ · ∇e−βφ = +β

∫
d3r(∇φ · ∇φ)e−βφ.

(6.4.165)
Thus, we have arrived at the desired result:

B(T ) = Bc(T ) +
~2

4m

∫
V

β3

6
(∇φ)2e−βφd3r. (6.4.166)
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Thanks to the spherical symmetry ∇φ(r) = (r/r)φ′(r) (the chain rule!), we can
further rewrite this as

B(T ) = Bc(T ) +
πβ3~2

6m

∫ ∞
0

(φ′)2e−βφr2dr. (6.4.167)

The correction term is clearly positive for any T .
(6) Perform h → −h in quantum mechanics. For the system with spatial inversion
symmetry, this corresponds to the time reversal operation. We are discussing equi-
librium states, so the situation should not be affected by time reversal. Therefore,
quantum correction must be even in h. [What if the system is chiral?]
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6.5 Problems for Chapter 5

5.1 [Phase transition and analyticity]
If there is no phase transition in a range of fugacity z = eβµ, P/kBT is, by definition,
holomorphic in z, so we may expand it as

P

kBT
=
∞∑

`=1

b`z
`, (6.5.1)

where b` is called the `-body cluster coefficient. They are smooth (actually real ana-
lytic) functions of T and positive for lower temperatures, so each b` has the smallest
real positive zero T`. It is known that {T`} is a monotone decreasing sequence of `.
It is demonstrated38 that
(i) b`(Tc) > 0 if ` is sufficiently large.
(ii) There are infinitely many T` between any T (> Tc) and Tc.
Let Ta be the accumulation point of {T`}. Show Tc = Ta.

39

Solution
(ii) implies that Tc is an accumulation point of {T`}. Needless to say, {T`} is bounded
from below and monotone decreasing, its accumulation point is unique. Therefore,
Tc = Ta. (i) is unnecessary.

5.2 [Crude version of rigorous Peierls’ argument]
Let us impose an all up spin boundary condition to the 2-Ising model on the finite
square. Then, we wish to take a thermodynamic limit. If the spin at the center of
the square is more likely to be up than to be down, we may conclude that there is a
long-range order.

Let γ be a closed Bloch wall (i.e., the boundary between up and down spin do-
mains; this does not mean that the domain enclosed by γ is a totally up or down
domain (lakes can contain islands with ponds with islets, etc.; the wall corresponds
to the shore lines.) The probability PV (γ) to find such a wall in the system with
volume V has the following estimate (we used this in our discussion on Peierls’ ar-
gument):

PV (γ) ≤ e−2βJ |γ|, (6.5.2)

where |γ| is the total length of the contour γ, β = 1/kBT , and J is the usual
ferromagnetic coupling constant. [This naturally looking inequality needs a proof; it

38T. Kihara and J. Okutani, Chem. Phys. Lett., 8, 63 (1971).
39This problem asks a mathematically trivial question, but the main point is the fact stated

here.
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is not trivial.]
(1) Since the outside boundary is all up, there must be a Bloch wall encircling the
origin for the spin at the origin to be down. Therefore, the probability P 0

V of the
spin at the origin to be down must be smaller than the probability of the occurrence
of at least one contour encircling the origin. Show

P 0
V ≤

∑
γ

e−2βJ |γ|, (6.5.3)

where the summation is over all the possible contours surrounding the origin. [Hint:
Don’t think too much. If event A occurs when at least one of B and C occurs, then
A ⊂ B ∪ C.]
(2) Estimate the number of contours with circumference |γ| crudely as the total
number of random walks of length |γ| starting from appropriate neighborhood points
of the origin. Use this crude estimate and show that if β is sufficiently large, P 0

V < 1/2
for large V .

Solution
The argument here is, although simplified, almost rigorous.
(1) The event that the spin at the origin is down occurs only if at least one Bloch
wall surrounds the origin. Let P (γ) be the probability that there is a closed Bloch
wall γ surrounding the origin. Then,

P 0
V ≤ P (at least there is one Bloch wall surrounding the origin) = P (∪{∃γ}) ≤

∑
γ

P (γ),

(6.5.4)
where ∪{∃γ} is the event that there is at least one closed wall around the origin ir-
respective of its shape. The left-most inequality is due to P (A∪B) ≤ P (A)+P (B).
The sum is over all the closed curves around the origin. We use (6.5.2) to get (6.5.3).
(2) Again we perform extremely excessive estimate: to draw a closed curve surround-
ing the origin of length |γ|, we must start at some point. Let the starting point be
the closest point on γ to the origin. The number of candidate points for this cannot
exceed |γ|2. Let us start a random walk of length |γ|. There is no guarantee that the
walk makes a closed curve, but all the curves satisfying the desired condition can be
drawn in this fashion. Since the number of distinct walks is 4× 3|γ|−1, we have

P 0
V ≤

∑
γ

e−2βJ |γ| ≤
∞∑
|γ|=4

|γ|23|γ|e−2βJ |γ|. (6.5.5)

Here, we have used the fact that the smallest closed curve on the lattice surrounding
the origin has length 4 (the smallest square on the dual lattice; notice that the wall
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is a curve on the dual lattice). Therefore, if β is sufficiently large,for any V we can
make P 0

V < 1/2. The key point of the argument is that [logC|γ|]/|γ| is uniformly
bounded from above, where Cn is the total number of closed curves of length n sur-
rounding the origin.

(6.5.5) tells us that the spin at the origin points upward more likely than down-
ward. The required β is unrealistically large due to the crudeness of the estimation,
but still it is finite (that is, T > 0). Thus, we have shown that the system orders at
some low but positive temperature.

Now, we demonstrate (6.5.2).40 This is called Peierls’ inequality. The statement
of the proposition is:
Let V be a finite domain. On its boundary all the spins are fixed to point upward.
Under this condition the probability PV (γ) of formation of a Bloch wall γ is bounded
from above as

PV (γ) ≤ e−β2J |γ|, (6.5.6)

where |γ| is the total length of γ.
To demonstrate this, the energy in the volume V is estimated (let us denote the

number of lattice points in V by the same symbol V ):

HV (φ) = −2JV + 2J |∂φ(V )|, (6.5.7)

where ∂φ denotes the totality of the Bloch walls appearing in the spin configuration
φ. We may write

PV (γ) =

∑
φ(V ):γ⊂∂φ(V ) e

−βHV (φ)∑
φ(V ) e

−βHV (φ)
. (6.5.8)

Here, in the numerator the sum is over all the spin configurations containing the
Bloch wall γ. Next, the spin configurations on V is divided into the ones includ-
ing γ denoted by Φγ and the rest denoted by Φ−γ . Let us define a one-to-one map
χ : Φγ → Φ−γ that flips all the spins inside γ (see the figure below).

γ

Configurations with and without γ.
This correspondence is one-to-one.

40Chapter 2 Section 1 of Ya G Sinai, Theory of Phase Transitions: Rigorous Results (Pergamon
Press, 1982).
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The map χ reduce the number of adjacent up-down spin pairs by |γ|, so the Boltz-
mann factor must be multiplied by e2β|γ|. Therefore, if we replace every element in
Φγ with the corresponding element in Φ−γ , we must multiply e−2β|γ| to cancel this
Boltzmann factor:

P+
V (γ) =

∑
Φγ
e−βHV (φ)∑

φ(V ) e
−βHV (φ)

. (6.5.9)

= e−2β|γ|

∑
Φ−

γ
e−βHV (φ)∑

φ(V ) e
−βHV (φ)

≤ e−2βJ |γ|. (6.5.10)

5.3 [Phase transition in 1D long-range system]
Using Peierls’ argument, discuss the phase transition in a 1d spin system whose cou-
pling constant behaves as r−q (q < 2) beyond some distance r0 (you may assume that
the coupling constant for r < r0 is J , constant). No rigorous argument is wanted.

Solution
Assume initially all the spins are up. Then, we flip L contiguous spins. The required
energy is estimated as

∆E = 2

∫ ∞
L/2+δ

dx

∫ L/2

−L/2

dy
1

(x− y)q
. (6.5.11)

The contribution of the short-range interactions is ∼ 2Jδ, so it is ignored. It is easy
to see ∫ ∞

L

dx

∫ L/2

−L/2

dy
1

(x− y)q
= O[L2−q]. (6.5.12)

This energy increases indefinitely with L if q < 2. As we have seen for the nearest
neighbor interaction system in the text, the contribution of entropy that fatally crip-
ple system ordering is of order logL, so the entropy effect cannot destroy the order
even at finite temperatures.

According to a rigorous argument even for q = 2 phase transition occurs at a finite
temperature.

5.4 [Griffiths’ inequality]
Empirically, it is known that there is the following relation among critical expo-
nents:

α+ β(1 + δ) = 2. (6.5.13)
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(1) Thermodynamically, demonstrate the following inequality (Griffiths’ inequal-
ity)

α+ β(1 + δ) ≥ 2. (6.5.14)

[Hint: You may proceed just as the case of Rushbrooke’s inequality, but use m ∼ h1/δ

(at T = Tc) to differentiate wrt H under constant temperature. At τ = 0 and h = 0
the (vertical) line T = Tc is tangent to m = m(τ, h = 0), so m may be parameterized
by τ .]
(2) Using the scaling relation or Kadanoff’s argument (that is, using the expression
of the magnetization as a generalized homogeneous function of h and τ), show that
the equality actually holds. [Hint: the wisest approach may be to use βδ = β + 1.
You may use such as α+ 2β + γ = 2 we have already discussed.]

Solution
(1) We start with the following inequality (just as in the case of Rushbrooke’s in-
equality):

∂S

∂T

∣∣∣∣
H

∂M

∂H

∣∣∣∣
T

≥ ∂S

∂H

∣∣∣∣
T

∂M

∂T

∣∣∣∣
H

=
∂M

∂T

∣∣∣∣2
H

. (6.5.15)

Using m ∼ h1/δ at Tc, very close to Tc we have

T−1|τ |−αh1/δ−1 = |τ |−αm1−δ ≥ |τ |2(β−1), (6.5.16)

where the T in the LHS is almost Tc, so we may ignore it. Using the hint, we
have

|τ |−α|τ |β(1−δ) ≥ |τ |2(β−1). (6.5.17)

This requires that the LHS of the following formula must be larger than some con-
stant:

|τ |−(α+β(1+δ)−2) ≥ const, (6.5.18)

which implies α+ β(1 + δ)− 2 ≥ 0.
(2) Using the following result we have obtained in the text:

β = (d− y2)/y1, δ = y2/(d− y2), γ = (2y2 − d)/y1, (6.5.19)

we get
βδ = y2/y1 = β + γ. (6.5.20)

This with α+ 2β + γ = 2 gives what we want.
[In Griffiths’ original (PRL 14 623 (1965)), primed and unprimed quantities are
undistinguished. This distinction corresponds the values below and above Tc. Now,
we believe this distinction is not needed, so in the present exposition, primes were
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removed.]

5.5 [A toy illustration of Lee-Yang theory]41

Suppose the grand partition function of a fluid in a volume V is given by

ΞV = (1 + z)V 1− zV

1− z
, (6.5.21)

where z is the fugacity.
(1) Find the zeros of ΞV . How does the distribution of the zeros change as V →∞?
(2) Obtain P for real positive z and locate the phase transition.
(3) Find the volume v per particle as a function of z.
(4) Find the P -v relation, and demonstrate that phase coexistence does happen.

Solution
(1) Zeros are −1 and e−2πik/V (k = 1, 2, · · · , V ). Therefore, as V → ∞, the density
of zeros on the unit circle increases. In particular on the real positive axis, z = 1 is
an accumulation point of zeros. Therefore, z = 1 must be a phase transition point.
(2) Let us take the thermodynamic limit. If |z| < 1,

βPV =
1

V
log

[
(1 + z)V 1− zV

1− z

]
→ log(1 + z). (6.5.22)

If |z| > 1,

βPV =
1

V
log

[
(1 + z)V 1− zV

1− z

]
=

1

V
log

[
(1 + z)V zV z

−V − 1

1− z

]
→ log z + log(1 + z).

(6.5.23)
Therefore,

βP =

{
log(1 + z) z < 1,

log z + log(1 + z) z > 1.
(6.5.24)

As expected, z = 1 is a singularity and phase transition occurs there.
(3) Since

∂βPV

∂log z
=

z

1 + z
− zV

1− zV
+

1

V

z

1− z
, (6.5.25)

we have
1

v
= lim

V→∞

∂βPV

∂log z
=

{
z/(1 + z) z < 1,

(2z + 1)/(1 + z) z > 1.
(6.5.26)

41S similar question can be found in Reichl
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Notice that for z > 1 and for z < 1 the number densities (or the specific volumes)
are distinct; of course, the smaller z corresponds to gas.
(4) For z < 1, we have v = 1 + 1/z, so v > 2, and

βP = log
v

v − 1
. (6.5.27)

Notice that this is equal to log 2 at v = 2.
For z > 1 since z = (1− v)/(2v − 1), 1/2 < v < 2/3 and

βP = log
v(1− v)
(2v − 1)2

. (6.5.28)

This gives log 2 at v = 2/3. Therefore, in the interval v ∈ [2/3, 2] the pressure is
constant: βP = log 2; we expect a phase coexistence. The equation of state can be
plotted as

βP

v
1/2 2/3 2

log 2

5.6 [The Lee-Yang circle theorem illustrated
The theorem is proved in Supplementary Pages. Here, let us check its content for
simple cases.
(1) According to the theorem the root of p(z) = 1 + 2az + z2 must be on the unit
circle as long as a ∈ [−1, 1]. Confirm this.
(2) On the apices of a triangle are spins interacting with each other. For this system
construct the polynomial of z, and confirm that as long as the interactions are fer-
romagnetic, all the zeros are on the unit circle.

Solution
(1) This is the circle theorem for the two spin system. The roots can be computed
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explicitly and −a± i
√

1− a2, so they are on the unit circle.
(2) The polynomial in the theorem reads

p(z) = 1 + 3az + 3az2 + z3, (6.5.29)

where a = e−2βJ (even if the interactions are different for different spin pairs, the
modification of the following argument is easy and no different argument is needed),
which is less than 1 for ferromagnetic interactions. This polynomial is a real positive
coefficient polynomial, so according to the theorem −1 must be a root. It is indeed
the case: we can factorize the polynomial as

p(z) = (z + 1)(z2 + (3a− 1)z + 1). (6.5.30)

The complex roots are

1

2

{
(1− 3a)± i

√
4− (1− 3a)2

}
, (6.5.31)

which are actually on the unit circle. Very interestingly, as soon as the intereaction
ceases to be ferromagnetic, the theorem breaks down.

5.7 [A derivation of mean field theory]
A mean field approach may be obtained with the aid of a variational principle for
free energy. If the (density) distribution function of microstates is f (we consider
classical case) the Helmholtz free energy may be written as:

A = 〈H〉+ kBT

∫
dΓf(Γ) log f(Γ). (6.5.32)

Here, the integration is over the whole phase space. 〈H〉 is the expectation value of
the system Hamiltonian with respect to f . Let us apply this to the Ising model on
a N ×N square lattice. Its Hamiltonian is as usual

H = −J
∑
〈i,j〉

SiSj. (6.5.33)

If we could vary f unconditionally and minimize A, then the minimum must be
the correct free energy, but this is in many cases extremely hard or plainly impossi-
ble. Therefore, we assume an approximate form for f and the range of variation is
narrowed. For example, we could introduce a ‘single-body’ approximation:

f = φ(S1)φ(S2) · · ·φ(SN), (6.5.34)
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where φ is a single-spin (density) distribution function.
(1) Under this approximation write down A in terms of φ. That is, find X1 and X2

in the following formula:

A = X1

[∑
S

φ(S)S

]2

+X2

∑
S

φ(S) log φ(S), (6.5.35)

where N and N ± 1 need not be distinguished.
(2) Minimize A wrt φ. φ must be normalized. What is the equation determining φ?
(3) Using the obtained formula, write down the magnetization per spin. The used
Lagrange’s multiplier must be determined.

Solution
(1) We have only to compute each term honestly:

〈H〉 = −J
∑
〈i,j〉

∑
Sk=±1

SiSj

∏
k

φ(Sk) (6.5.36)

= −J
∑
〈i,j〉

〈Si〉〈Sj〉 = −2JN2〈S〉2. (6.5.37)

Hence, X1 = 2JN .
The entropy part reads

kBT
∑

Si=±1

∏
k

φ(Sk)
∑

k

log φ(Sk) = N2kBT
∑
s=±1

φ(s) log φ(s). (6.5.38)

Therefore, X2 = N2kBT .
(2) Introducing a Lagrange’s multiplier λ to impose the normalization condition, we
must minimize

A+λ
∑

S=±1

φ(S) = −2N2J

[∑
S=±1

φ(S)S

]2

+N2kBT
∑

S=±1

φ(S) log φ(S)+λ
∑

S=±1

φ(S).

(6.5.39)
The minimization condition reads

− 4N2JS〈S〉+N2kBT (1 + log φ(S)) + λ = 0, (6.5.40)

so we see

φ(S) ∝ exp(−4βJmS), (6.5.41)
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where 〈S〉 = m.
(3) We can get rid of λ from the formula for m with the aid of 〈S〉 = m:

m = tanh 4Jβm. (6.5.42)

This is nothing but the self-consistency equation.

5.8 [Gibbs-Bogoliubov’ inequality and mean field]
(1) Derive the following inequality (called the Gibbs-Bogoliubov inequality) with the
aid of Jensen’s inequality for classical systems [This question has already been asked
in Chapter2, but is reproduced here]:

A ≤ A0 + 〈H −H0〉0. (6.5.43)

Here, A is the free energy of the system with the Hamiltonian H, A0 is the free
energy of the system with the Hamiltonian H0, 〈 〉0 is the average over the canonical
distribution wrt H0. [Hint: compute

〈
e−(H−H0)

〉
0
; the temperature may be absorbed

or we could use the unit system with kB = 1.]
All the variational approximations for statistical thermodynamics are applications

of this inequality.42 Let H be the Hamiltonian of the system we are interested in, and
H0 be the Hamiltonian of a system whose free energy A0 we can compute exactly.
We introduce variational parameters in H0 and tehn try to make the RHS of (6.5.43)
as small as possible.
(2) As H we adopt the N ×N 2-Ising model Hamiltonian (without a magnetic field;
even with it there is almost no change), and

H0 =
∑

i

hsi. (6.5.44)

Derive the equation for h that minimizes the RHS of (6.5.43).

Solution
(1) See the solution to 2.22.
(2) Let us first compute A0 and m = 〈si〉0:

A0 = −kBT log[2 cosh βh]N
2

, (6.5.45)

m = − tanh βh. (6.5.46)

42See, for example, M. D. Girardeau and R. M. Mazur, “Variational methods in statistical
mechanics,” Adv. Chem. Phys. XXIV, eds. I. Prigogine and S.A. Rice (Academic, New York,
1974), p187-255.
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Consequently, since the number of nearest neighbor pairs is 2N2,

〈H〉0 = −J(2N2) tanh2 βh. (6.5.47)

Also we have
〈H0〉0 = −N2h tanh βh. (6.5.48)

Combining all the results, we can write the Gibbs-Bogoliubov inequality as

A ≤ −N2kBT log[2 cosh βh]− J(2N2) tanh2 βh+N2h tanh βh. (6.5.49)

Differentiating the RHS wrt h, we have

−N2 sinh βh

cosh βh
− 4JN2 tanh βh

sinh βh

cosh2 βh
+N2 tanh βh+N2h

sinh βh

cosh2 βh
= 0, (6.5.50)

so we obtain
4J tanh βh = h. (6.5.51)

If we multiply β to the both sides and taking their tanh, we get

tanh(4βJ tanh βh) = tanh βh, (6.5.52)

but if we use (6.5.46), this turns out to be our familiar formula:

m = tanh 4βJm. (6.5.53)

5.9 [Exact mean field for 1-Ising model]
The starting point of the mean-field theory can be the following exact relation for
the 1-Ising model:

〈s0〉 = 〈tanh βJ(s−1 + s1)〉, (6.5.54)

where 〈 〉 is the equilibrium expectation. Utilizing s2 = 1 and translational symmetry
of the system, write down a closed equation form = 〈s〉, and then discuss the possible
phase transitions.

Solution
The odd powers of s1 and s−1 are identical to the original s1 and s−1, respectively,
we can write

tanh βJ(s−1 + s1) = A(s−1 + s1), (6.5.55)

where A is a numerical constant. If we set s1 = s−1 = 1, we have tanh 2βJ = 2A,
which fixes A, and we get the following identity:

m = (tanh 2βJ)m. (6.5.56)
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Unless β = ∞, tanh 2βJ < 1, so m = 0 for any positive temperature; we know
there is no phase transition for T > 0. If β → ∞, the equation reads m = m, so
the theory does not exclude the possibility of Tc = 0, but it seems we cannot say
anything further.

5.10 [2-Ising model on the honeycomb lattice]
Let us consider a 2-Ising model on the honeycomb lattice whose coupling constant
is J . Assume there is no magnetic field.
(1) Find the equation corresponding to (5.8.4).
(2) Find Tc with the aid of the approximation corresponding to (5.8.6).
(3) Then, using a more accurate mean field theory corresponding to (5.8.13) com-
pute Tc. Which Tc obtained by (2) or this question should be lower? Is your result
consistent with your expectation?

Solution
(1) The coordination number of the honeycomb lattice is 3, so

〈s0〉 = 〈tanh[βJ(s1 + s2 + s3)]〉. (6.5.57)

(2) The approximation gives
m = tanh 3βJm. (6.5.58)

That is,
x = 3βJ tanh x. (6.5.59)

This gives 3βcJ = 1 or Tc = 3J/kB.
(3) The equation corresponding to (5.8.10) is

tanh βJ(s1 + s2 + s3) = a(s1 + s2 + s3) + bs1s2s3, (6.5.60)

and the coefficients are determined by the following simultaneous equation

tanh 3βJ = 3a+ b, (6.5.61)

tan βJ = a− b. (6.5.62)

We get

a =
1

4
(tanh βJ + tanh 3βJ), b =

1

4
(tanh 3βJ − 3 tanh βJ). (6.5.63)

Thus, the mean-field equation reads

m = 3am+ bm3, (6.5.64)
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or

m =

√
1− 3a

b
. (6.5.65)

This implies Tc is determined by a = 1/3:

tanh βJ + tanh 3βJ = 4/3. (6.5.66)

A more accurate calculation is expected to take the effect of fluctuations more accu-
rately into account. Fluctuations oppose ordering, so better approximation should
give lower Tc. That is, we can expect that the Tc from the current approximation
method is lower than that obtained in (3), i.e., Tc = 3J/kB.

It is not hard to prove that the Tc according to the ‘better’ approximation is indeed
lower than 3J/kB, but here let us use a numerical result: βcJ = .47 or Tc = 2.13J/kB.
The exact answer is known to be Tc = 1.52J/kB; the improvement is considerable.

5.11 [1-Gaussian model]
At each lattice point i of a one-dimensional lattice lives a real variable qi, and the
system Hamiltonian is given by

H =
∑

j

[
1

2
q2
j −Kqjqj+1

]
. (6.5.67)

The partition function reads

Z =

(∏
j

∫ ∞
−∞

dqj

)
N−1∏
j=1

exp[w(qj, qj+1)], (6.5.68)

where

w(x, y) = −1

4
(x2 + y2) +Kxy. (6.5.69)

The partition function should be evaluated just as the 1-Ising model with the aid of
the eigenvalue problem:

λf(x) =

∫ ∞
−∞

dy f(y) exp

[
−1

4
(x2 + y2) +Kxy

]
. (6.5.70)

The integral kernel is Gaussian, so the eigenfunction belonging to the largest eigen-
value should be of constant sign [Hint: you can see a correspondence to the transfer
matrix approach; actually, there is a counterpart of Perron-Frobenius theorem for
positive definite integral kernels]. Therefore, we may assume that f is also Gaussian.
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(1) Find f(x) (its multiplicative numerical coefficient may be ignored).
(2) Find the free energy per lattice point. Is there any phase transition? y
Solution
(1) Since he integral kernel is L2 (square integrable), the integral operator is com-
pact (a Hilbert-Schmidt operator), so the spectrum is discrete.43 The integral ker-
nel is positive definite, so the largest eigenvalue is positive and non-degenerate (a
counterpart of the Perron-Frobenius theorem holds for compact operators). We are
discussing an integral operator, so there are infinitely may eigenvalues, but they
accumulate at 0. We have only to consider the eigenvalue corresponding to the
Perron-Frobenius eigenvalue. Assume

f(x) = e−ax2/2. (6.5.71)

Then, we have∫
dy e−ay2/2 exp

[
−1

4
(x2 + y2) +Kxy

]
=

√
2π

a+ 1/2
exp

(
−1

2
+

K2

a+ 1/2

)
x2.

(6.5.72)
If we choose a as

a =
1

2
− K2

a+ 1/2
, (6.5.73)

or
a =

√
(1/4)−K2, (6.5.74)

f becomes an eigenfunction belonging to the following eigenvalue:

λ =

√
4π

1 +
√

1− 4K2
(6.5.75)

(2) The problem is quite parallel to the ordinary spin problems; the free energy per
lattice is given by

f = −1

2
kBT log

4π

1 +
√

1− 4K2
. (6.5.76)

If f is holomorphic wrt K, there is no phase transition. A candidate singularity is at
K = ±1/2, and it is a branching point. In the current problem, the system loses sta-
bility for |K| > 1/2 (the free energy is not bounded from below), so we conclude that
there is no phase transition in the range of parameters where the model is meaningful.

43Kolmogorov-Fomin, Introductory Functional Analysis )Dover) is an excellent textbook to re-
view such common-sense knowledge.
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5.12 [Correlation function by mean field theory, or mean field for nonuniform space]
(1) Let us assume that the coupling constant and the magnetic field depend on spatial
position:

H = −
∑
〈i,j〉

Jijsisj −
∑

i

hisi. (6.5.77)

Derive the basic equation for the mean-field theory for a square lattice:

〈si〉 =

〈
tanh(β

∑
j

Jijsj + βhi)

〉
. (6.5.78)

If we introduce the crude approximation like (5.8.6), we obtain

〈si〉 = tanh

(
β
∑

j

Jij〈sj〉+ βhi

)
. (6.5.79)

(2) We wish to compute the spatial correlation 〈sisj〉. First, demonstrate that

∂〈si〉
∂hk

= kBT 〈sisk〉 (6.5.80)

without any approximation.
(3) Applying this to the following form of (6.5.79), obtain the equation for {〈sisk〉}:

Arctanh〈si〉 = β
∑

j

Jij〈sj〉+ βhi. (6.5.81)

(4) Now, let us go over to the continuum limit, assuming that the system has a
translational symmetry. If we write the correlation as g, the equation obtained in
(3) becomes ∫

dy

(
δ(x− y)
1−m2

− βJ(x− y)
)
g(y − z) = δ(x− z). (6.5.82)

We have already assumed the spatial translational symmetry and set m(x) = m.
The Fourier transform of the coupling constant reads

J(k) =
∑

j

eik·rjJ(rj) = 2dJ cos kx cos ky · · · . (6.5.83)
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Find the Fourier transform G(k) of the correlation function g.
(5) If we are interested in global features, we have only to pay attention to small
k. Determine the coefficients A and B in the following formula (you may assume
T > Tc):

G(k) ' 1

A+Bk2
. (6.5.84)

(6) Determine the critical exponent ν.

Solution
(1) no explanation should be needed.
(2) This is an exact relation without any approximation.

∂

∂hk

〈si〉 =
∂

∂hk

∑
si exp (βJ

∑
sjsk + β

∑
hksk)∑

exp (βJ
∑
sjsk + β

∑
hksk)

(6.5.85)

= β

∑
sisk exp (βJ

∑
sjsk + β

∑
hksk)∑

exp (βJ
∑
sjsk + β

∑
hksk)

− β〈si〉〈sk〉. (6.5.86)

(3) Differentiating (6.5.81) with hk, we obtain

β
1

1− 〈si〉2
〈sisk〉 = β2

∑
j

Jij〈sjsk〉+ βδik. (6.5.87)

That is,
1

1− 〈si〉2
〈sisk〉 = β

∑
j

Jij〈sjsk〉+ δik. (6.5.88)

(4) Fourier transformation is defined as follows:

G(k) =

∫
dx eikxg(x). (6.5.89)

(6.5.88) becomes (
1

1−m2
− βJ(k)

)
G(k) = 1, (6.5.90)

so we obtain

G(k) =
1

1/(1−m2)− βJ(k)
. (6.5.91)

(5) Since we may assume T > Tc, m = 0. An approximation of J(k) for small k is
obtained from (6.5.83) as

J(k) = 2dJ

(
1− 1

2
k2 + · · ·

)
, (6.5.92)
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so

G(k) ' 1

1− 2dβJ + 2d−1βJ
∑
k2

i

. (6.5.93)

Therefore,
A = 1− 2dβJ, B = 2d−1βJ. (6.5.94)

(6) The mean-field critical point is determined by 2dβJ = 1 so we may write A ∝
(T − Tc). On the other hand B is almost a constant, so taking positive constants a
and b, the Fourier transform of the correlation function reads

G(k) =
1

a(T − Tc) + bk2
. (6.5.95)

Therefore, the critical exponent for the correlation length is ν = 1/2.

5.13 [Lattice gas on honeycomb lattice]
Let us relate the 2-Ising model on the honeycomb lattice and the lattice gas on the
same lattice. The Ising Hamiltonian H and the lattice gas Hamiltonian HL as just
as given in the text:

H = −J
∑
〈i,j〉

sisj − h
∑

i

si, (6.5.96)

HL = −J ′
∑
〈i,j〉

ninj. (6.5.97)

Let V (� 1) be the total number of lattice points and down spins are regarded
particles.
(1) Following the procedure around p260, rewrite the canonical partition function of
the Ising model in therms of the number of down spins [D] and that of down spin
pairs [DD].
(2) Express the lattice gas pressure in terms of magnetic field h and the free energy
per spin f .
(3) Demonstrate that the lattice gas pressure P is a continuous function of h.
(4) Sketch the free energy V f = −kBT logZ44 of the Ising model for a few repre-
sentative temperatures. Next, sketch the pressure of the lattice gas as a function of
log z (this is essentially the chemical potential) for a few representative temperatures.
Then, explain their noteworthy features succinctly.

Solution
(1) V = [U ] + [D] so ∑

i

si = −[D] + [U ] = V − 2[D]. (6.5.98)

44Notice that this free energy is G rather than A, since h is on.
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The total energy is

− J
∑
〈i,j〉

sisj − h
∑

i

si = J([UD]− [UU ]− [DD]) + h(2[D]− V ). (6.5.99)

Since
2[UU ] + [UD] = 6[U ], 2[DD] + [UD] = 6[D], (6.5.100)

we have

[UD]− [UU ]− [DD] = [UD]−
(

3[U ]− 1

2
[UD]

)
−
(

3[D]− 1

2
[UD]

)
= 2[UD]− 3V.

(6.5.101)
Therefore (subtracting the energy −J from each spin energy),

H = 2J [UD] + h(2[D]− V ) = −hV + (12J + 2h)[D] + 4J [DD]. (6.5.102)

This equation happens to be identical to (5.3.14). The canonical partition function
for the spin system reads

Z =
∑

C

exp{−β(−hV + (2h+ 12J)[D]− 4J [DD])}, (6.5.103)

where
∑

C implies the some over all the spin configurations.
(2) since [D] is the total number of particles, e−β(2h+12J) = z is the fugacity. HL =
−4J [DD] and

Ze−βhV = e−βV (h+f) =
∑

z[D]e4βJ [DD]. (6.5.104)

That is, the Pressure of the lattice gas is given by P = −h− f .
(3) We know from the result of the Ising model that f is a continuous function of h.
Therefore, P is continuous. Even if we lack such knowledge about the Ising model,
we may use the logic explained below (5.3.5). Needless to say, the number density
is bounded from above. If V is finite, then P is differentiable, and its derivative is
uniformly bounded from above. Therefore, P in the thermodynamic limit must be
continuous.
(4) If the temperature T is very high, there is no phase transition, so f is a smooth
function (actually a holomorphic function) of h. If |h| is increased, f decreases. f is
an even function of h. If we lower T , eventually we encounter a second-order phase
transition, and then first order phase transitions. This happens for h = 0, so f starts
to have a kink at h = 0. Thus, the sketch of f is as in the left of the following figure.

As a function of log z P = −h− f may be guessed easily, since log z is essentially
−h. The crucial point is that the P -log z curve exhibits a kink corresponding to the
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h

f

Thigh

Tlow

cT

log z

p

Tlow

highT

gas-liquid phase transition.

See Fig. 2 of the first paper by Lee and Yang: Phys. Rev., 87, 404 (1952).

5.14 [RG by Migdal approximation45]
When we discussed ‘decimation’, we have realized that the procedure is not very
good in the space higher than 1D. For example, if we apply the method to the
2-Ising model (taking ` = 2, i.e., thin half of spins), we obtain

K ′ =
1

4
log cosh 4K, (6.5.105)

where the Hamiltonian is written in the following form:

H = −
∑

Ksisj (6.5.106)

and the temperature is absorbed in the parameter. The fixed point of this transfor-
mation is K = 0 (i.e., the high temperature limit), so there is no ordering.

Migdal proposed to remedy the defect of underestimating the interactions as fol-
lows (see the figure below).

y-bond move x-decimation x-bond move y-decimation

45
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(i) [y-bond moving step] Every other vertical bonds (y-bonds) are combined with
their right-neighboring bonds . If the coupling constant in the y-direction is Ky, the
coupling constant due to the new bonds made by combining two vertical couplings
is 2Ky.
(ii) [x-decimation step] For the x-direction, one dimensional thinning is performed.
For the new x-directional coupling constant is computed by the 1D thinning result
we obtained (5.10.10).
(iii) [x-bond moving step] Next, every other x-bonds are merged with their lower
neighbor x-bonds.
(iv) [y-decimation step] Apply one-dimensional decimation in the y-direction.
Thus, we have arrived at the square lattice with the lattice spacings doubled (i.e.,
` = 2). If we halve the spatial scale we can complete a renormalization group trans-
formation.
(1) Let us put ′ to the parameters after the procedure (i)-(iv). Show that

K ′x = log cosh(2Kx), (6.5.107)

K ′y =
1

2
log cosh(4Ky). (6.5.108)

Here, the ‘initial values’ are K for both the x and y couplings. Notice that in two
different directions, the step-cycle of the procedure is ‘out of phase,’ so to speak. In
the x-direction, the decimation is applied first and then the bond are moved, while
in the y-direction the bonds are merged first, and then decimation follows. Conse-
quently, the fixed points of these two equations have different fixed points (marked
with ∗): K∗x = 2K∗y .46

(2) Find all the fixed points K∗x. Which corresponds to the critical fixed point?
(3) Linearizing the renormalization transformation around the fixed point, we can
calculate critical exponents; we have only to compute d log cosh(2Kx)/dKx. This
corresponds to `y1 . Determine ν. We cannot say the result is impressive, but still
there is an improvement from the mean-field approach.

Solution
(1) These formula should be obvious, if you understand the 1D decimation.
(2) 0 and ∞ are stable fixed points and they correspond to the high and low tem-
perature limits, respectively. If you draw the graph of the LHS, there is one more
fixed point, which is unstable. This must be the most interesting fixed point. This
is determined by (1/2)Arc cosh ex = x (iterative substitution could solve this): we
have K∗ = 0.609.
(3) The derivative is 2 tanh 2K, which is 1.678 at K∗. Therefore, 1.678 = 21/ν or

46This might be remedied by changing the ordering every other RG step; that is, with obvious
abbreviations: My → Dx →Mx → Dy →Mx → Dy →My → Dx.
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1/ν = 0.746, that is, ν = 1.339. The mean field result is 1/2, and the exact result is 1.

5.15 [Finite size effect]
The specific heat of a certain magnetic system behaves C ∼ |τ |−α near its critical
point without external magnetic field, if the specimen is sufficiently large. If the
magnet is not very large, or more concretely, if it is a sphere of radius R, near its
critical point, its maximum specific heat is C(R). Compute the ratio C(2R)/C(R)
in terms of critical indices.

Solution
We expect that C would depends on R, but the dependence must be only through
a dimensionless parameter. The most natural dimensionless quantity near Tc must
be its ratio against the correlation length. Thus, C = τ−αf(R/ξ). Since ξ ∼ τ−ν ,
we have

C = τ−αf(τ νR). (6.5.109)

If we are sufficiently close to the critical point, the effect of the size (i.e., R) becomes
prominent, and the temperature effect should be masked: in the τ → 0 limit C must
not depend on τ . To this end, the function f(x) around x = 0 must be a power:
f(x) ∝ xq. τ−α(τ ν)q ∼ 1 implies q = α/ν. Consequently, we see

C ∼ Rα/ν . (6.5.110)

Hence, C(2R)/C(R) ' 2α/ν .

5.16 [Use of block spins in 1-Ising model]
Let us construct an RG transformation for a 1-Ising model with a similar approach
as is applied to the triangle lattice1-Ising model. We start with (5.10.12). The figure
corresponding to Fig. 5.10.2 os as shown below:

1 2 31 23

α β

The equation corresponding to (5.10.13) is

K ′s′αs
′
β = Ksα3sβ1, (6.5.111)

and s′ is the block spin of ±1 determined by the majority rule. This relation cannot
literally be realized, so just as in the triangle lattice case, we need an analogue of
(5.10.14).
(1) Write down φ(K) corresponding to (5.10.16).
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(2) Write down the RG equation corresponding to (5.10.19) and (5.10.21).
(3) Find the fixed points.
(4) What can you conclude from these calculations?

Solution
(1) We wish to demand that

K ′s′αs
′
β = Ksα3sβ1 (6.5.112)

is an identity, but this is impossible, so we demand that the identity holds on the
average. Therefore, we demand

K ′s′αs
′
β = K〈sα3〉s′α〈sβ1〉s′β , (6.5.113)

where 〈sα3〉s′α is the conditional expectation value of sα3 under the condition s′α = 1
or −1. The up-down symmetry of the spin system (for simplicity we consider the
case with h ' 0, so you may assume h = 0), so if we understand the s′α = 1 case, the
rest is obvious. We can trace what we have done for the triangle lattice. The table
corresponding to the one just above (5.10.16) reads

+ + + + +− +−+ −+ +
sα2 +1 +1 −1 +1
sα3 +1 −1 +1 +1
E −2J 0 +2J 0

(6.5.114)

Following the logic in the text, we have

〈sα3〉s′α =
e2K + e−2K

2 + e2K + e−2K
s′α =

cosh 2K

1 + cosh 2K
s′α. (6.5.115)

〈sα1〉s′α is quite the same.

(2) From the above result, we get

K ′ = K

(
cosh 2K

1 + cosh 2K

)2

. (6.5.116)

Actually, we also need 〈sα2〉s′α :

〈sα2〉s′α =
e2K − e−2K + 2

2 + e2K + e−2K
=

1 + sinh 2K

1 + cosh 2K
. (6.5.117)

This gives

h′ = h
1 + sinh 2K + 2 cosh 2K

1 + cosh 2K
. (6.5.118)
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(3) We have to solve

KF = KF

(
cosh 2KF

1 + cosh 2KF

)2

. (6.5.119)

KF = 0 and cosh 2KF = +∞ that is KF = +∞ are the fixed points. hF = 0 is
obvious. Hence, (0, 0) is a stable fixed pint and (+∞, 0) an unstable fixed point.47

(4) Obviously, (0, 0) corresponds to the high temperature limit. (∞, 0) corresponds
to T ↘ 0. Since it is a repeller, we expect that the fixed point corresponds to a
critical point at T = 0.

5.17 [‘Democracy’]48

Let us consider a hierarchical organization in which the decision at the kth level
depends on the decisions of the s cells of the k− 1st level. Assume that the 0th level
corresponds to individual members of the organization, and the decision at level F is
the decision of the organization. If there are sufficiently many levels (actually 5 levels
are enough), the system may be understood as a system to coarse-grain individual
opinions. To be frank, any political organization is a coarse-graining mechanism of
opinions, and it is usually the case that conscientious subtle voices do not reach the
top.

In the following, we assume there are two options A and B that must be chosen.
Consider the fraction pn of the cells at level n that support B.
(1) Suppose s = 3 and strict majority rule is applied. Find all the fixed points of
this system and study their stability.
(2) Suppose s = 4. Majority rule is applied but if two opinions A and B are equally
supported, A is always selected. For B to be the decision of the organization, at least
how many % of the people should support B? In the extreme case, if s = 2, what
happens?
(3) Suppose s = 5. Majority rule is applied, but due to the organizational propa-
ganda at every level there is always at least one cell that supports A. For B to win
despite this arrangement, what is the minimum % of the supporters of B?

Solution
(1) If 3 or 2 cells vote for B, the choice of the cell is B, so if pn is the fraction of
B-supporter at the nth level,

pn+1 = p3
n + 3p2

n(1− pn). (6.5.120)

47Here, KF = −∞ is also a fixed point, and this corresponds to the antiferromagnetic case.
However, we ignore this, because, if the initial system (the actual system we wish to study) is
ferromagnetic and K > 0 the RG flow never go into the K < 0 region.

48cf. S. Galam and S. Wonczk, “Dictatorship from majority rule voting,” Eur. Phys. J. B 18,
183 (2000). The paper contains some trivial calculation errors, so trust your own result.
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The fixed point f obeys
f = f 3 + 3f 2(1− f), (6.5.121)

or
f(1− f)(2f − 1) = 0. (6.5.122)

Therefore, f = 0, 1 and 1/2. 0 and 1 are stable fixed points, and 1/2 is unstable. This
scheme is fair in the sense that the the majority (whose fraction is 1/2 + infinitesimal
number) regulated the whole organization, and can change the regime. [Really? Of
course, voting or democracy can decide only not very serious questions; you cannot
nationalize foreign companies only by voting.]
(2) In this case to choose B 4 or 3 cells must choose B:

pn+1 = p4
n + 4p3

n(1− pn). (6.5.123)

This case is discussed in the quoted paper. The fixed point fractions f obey

f(1− f)(1 + f − 3f 2) = 0, (6.5.124)

so 0, 1 and (1+
√

13)/6 = 0.76759 are the fixed points. It is very hard (77% support
required) to change the regime.

If s = 2, then
pn+1 = p2

n, (6.5.125)

so it is impossible to change the regime.
As you have already realized, the problem is a caricature of constructing block

spins or Kadanoff transformation K. What if we choose a coarse-graining procedure
that destroys the system Hamiltonian? In this case, automatically the field appears
that tries to restore the system symmetry.
(3) This is exactly the case of (2).
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measure theoretical dynamical system, 25
thermodynamic fluctuation theory, 39

abduction, 317
absolute temperature, positivity, 62
absolute zero, 63
acoustic phonon, 324
activity, 153
additivity, 27, 28
adiabatic cooling, 79
adiabatic process, 58
adiabatic theorem, 58
adiabatic wall, 92
Alder transition, 255
algebraic function, 306
anharmonicity, 206
annealed system, 210
annihilation operator, 177
argument principle, 278
asymptotic equipartition, 134
Avogadro’s constant, 46

ball, volume of, 67
Bayesian statistics, 30
Bernal, J. D., 239
bifurcation, 301
binary mixture, 282
Bloch-de Dominicis theorem, 180
block spin, 299, 313

Bochner’s theorem, 35
Bohr-van Leeuwen theorem, 108
Bohr-vanLeeuwen theorem, 197
Boltzmann, 24, 30, 47, 118
Boltzmann and Zermelo, 20
Boltzmann constant, 11
Boltzmann’s principle, 45, 53, 66
Bose-Einstein condensation, 111, 174, 195
Bose-Einstein distribution, 172, 184
boson, 169
Braun, K. F. 1850-1918, 147
bridge function, 255

canonical correlation function, 139
canonical density operator, 94
canonical distribution, 94
canonical partition function, 11, 94
canonical partition function, classical, 102
canonical transformation, 123
Carnahan-Stirling equation, 252
Carnot cycle, 68
Casimir effect, 199
central limit theorem, 36, 37, 299
central limit theorem vs. large deviation,

299
centrifugal force, 110
centrifugal potential, 111
characteristic function, 34
Chebyshev’s inequality, 32
chemical affinity, 152
chemical equilibrium constant, 153
chemical potential, 152

488
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chemical reaction, 149
classical ideal gas, 64, 101
coarse-graining, 295, 310
coexistence temperature, 328
coherence, 240
complex analysis, 278
compressibility, 253
compressibility equation, 251
conditional expectation value, 31
conditional probability, 29
configuration space, 102
configurational partition function, 102, 225
conjugate pair, 21
conserved order parameter (COP), 337
convex analysis, 100
convex curve, 99
convex function, 121
convexity, 146
coordination number, 241
coordination shell, 242
COP, 337
Coriolis force, 110
correlation, 32
correlation length, 286
correlation length, of 1-Ising model, 308
coupling constant, 268, 269
covariance matrix, 143
creation operator, 176
critical divergence, 284
critical fluctuation, 140
critical index, 288, 289
critical point, 238, 274
critical surface, 297
crowding effect, 255
cumulant, 228
cumulant expansion, 227

de Broglie thermal wave length, 68, 101
de Broglie wave, 64, 225
Debye approximation, 202

Debye frequency, 202
Debye temperature, 203
Debye’s T 3 law, 203
decimation, 311
degree of polymerization, 73
density, 21
density distribution function, 35
density operator, 50
detailed balance, 149, 183
diagram, 230
diathermal wall, 92
diatomic molecules, 206
dimensional analysis, 319
direct correlation function, 245
disordered state, 269
distribution function, 35
DLR equation, 274
doubly stochastic, 124
Dulong-Petit law, 203
dynamical system, 25, 297

easy axis, 269
easy direction, 269
Einstein, 118, 139
elementary event, 27
endoergic, 151
endothermic, 151
energy-time uncertainty principle, 144
ensemble equivalence, 130, 329
entire function, 306
entropic elasticity, 74
entropy, 44
entropy maximum principle, 56
ε-expansion, 319
ε-expansion method, 320
equilibrium, 14
equipartition of energy, 67, 111, 206
ergodic measure, 25
ergodic theory, 24
ergodicity, 24
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Euler’s theorem, 151
Euler’s theorem (for homogeneous func-

tions), 22
Euler-MacLaughlin summation formula,

207
event, 27
evolution criterion, 145
exoergic, 151
exothermic, 151
expectation value, 31
extensive quantity, 21
extent of reaction, 151

Fekete’s lemma, 278
Fenchel’s equality, 100
Fermi energy, 184
Fermi level, 184
Fermi-Dirac distribution, 172
fermion, 169
ferromagnet, 16
fetish problem, 204
field, 21
field theory, 317
finite size scaling, 294
first law of thermodynamics, 42
first law of thermodynamics, open sys-

tem, 150
first order phase transition, 285, 328, 330
fixed point, 298, 315
fluctuation, 139, 142
fluctuation-response relation, 137, 143
Fock space, 178
4-potential, 108
fourth law of thermodynamics, 17, 21
free energy density, 336
free energy, work and, 12
fugacity, 153, 276
functional, 246
functional analysis, 246
functional derivative, 246

functional Taylor expansion, 239

Gamma function, 60
gas constant, 46
gas thermometer, 71
generalized canonical partition function,

136, 141
generalized enthalpy, 98
generalized Gibbs free energy, 99, 285
generalized homogeneous function, 23
generating function, 34, 102
Gibbs measure, 274
Gibbs measures, totality of, 275
Gibbs paradox, 98
Gibbs relation, 22, 44, 60, 127
Gibbs’ paradox, 58, 59
Gibbs-Duhem relation, 22
Gibbs-Helmholtz relation, 97, 106, 153
Gibbs-Shannon formula, 185
Ginzburg criterion, 320
Ginzburg-Landau Hamiltonian, 319, 336
glass, 241
grand canonical ensemble, 170
grand canonical partition function, 128
grand partition function, 170
Griffiths’ inequality, 286, 344
Griffiths’s inequality, 291

Hadamard’s notation, 228
Hamiltonian density, 317
harmonic function, 272
harmonic oscillator, 103
harmonic system, 112
Hartman-Grobman theorem, 298
heat bath, 91
heat capacity, 77
heat of reaction, 153
Heisenberg model, 325
Helmholtz free energy, 95
heteronuclear, 206
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high dimensional object, 65
holomorphic function, 276
holomorphy, 276
homogeneous functions, 21
homonuclear, 206
homonuclear diatomic molecule, 208
Hooke’s constant, 129
humanistic fallacy, 29
hyperbolic fixed point, 298
hypernetted chain closure, 254
hyperscaling law, 293

ideal liquid, 240, 254
ideal polymer chain, 73
ideal spin system, 73
iid, 26
independent events, 29
indicator, 31
indirect correlation function, 244
inertial moment tensor, 110
inf, 95
information, 114, 115
intensive quantities, 21
internal degrees of freedom, 205
invariant measure, 25
ionization potential, 205
irreducible cluster integral, 233
irrelevant parameters, 321
Ising model, 268
Ising spin, 269
Ising-lattice-gas correspondence, 280
isolated system, 15
isolation sensu lato, 16
isothermal process, 13
isotope effect, 225

Jacobian technique, 77
Jarzynski’s equality, 119
Jensen’s inequality, 120
Jordan normal form, 305

Josephson relation, 293

Kac potential, 236
Kac, M, 29
Kadanoff construction, 291, 295, 316
Kadanoff, L. P/ , 291, 310
Kamerlingh-Onnes, 197, 226
Kapitza, 197
Khinchin, 21
KMS condition, 275
Kolmogorov’s 0-1 law, 36
Kramers’ q, 128, 170
Krylov-Bogoliubov theorem, 25
Kullback-Leibler entropy, 117

Landsburg, P T, 21
Langevin function, 129
Laplace, 30
Laplace transformation, 127
Laplace’s demon, 30
Laplace’s method, 59
Laplacian, 271
large deviation, 118
large deviation function, 39
large deviation theory, 36
lattice gas model, 280
law of correspondence state, 238
law of large numbers, 27, 117
law of mass action, 153
law of small numbers, 148
Le Chatelier’s principle, 146, 151
Le Chatelier, H. L. 1850-1936, 146
Le Chatelier-Braun’s principle, 147
Lebesgue-Stieltjes integral, 31
Lee-Yang circle theorem, 281
Lee-Yang theory, 279
Legendre transformation, 99, 127, 328
Lenard’s theorem, 124
Lenz, W. 1888-1957, 268
lever rule, 338, 340
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Lie-Trotter formula, 138
linearized exponential function, 227
Liouville’s theorem, 52

magnetic susceptibility, 288
many-body distribution function, 242
marginal parameter, 320
mass action, 149
Massieu function, 127
Maxwell’s distribution, 48, 135
Maxwell’s relation, 75, 78, 138
Maxwell’s rule, 234
Mayer’s f -function, 226
mean field, 300
mean field theory, possible improvement,

302
mean field theory, reliability, 303
mechanical momentum, 108
Meissner effect, 197
Mermin-Wagner theorem, 326
mesoscopic free energy, 337
metaphysical framework, 26
metastability, 333
metastable phase, 333
microcanonical distribution, 51
microcanonical partition function, 95
microstate, 14
minimax principle, 133
mixed Gibbs state, 275
mode, 198
molar quantity, 151
mole, 150
moment generating function, 227
Monte Carlo integration, 34
µ-space, 135
multiatomic molecular gas, 112
multinomial theorem, 229
multivariate Gaussian distribution, 143
multivariate Taylor expansion, 228

Nambu-Goldstone bosons, 324

NCOP, 337
NCRI, 109
negative temperature, 71
Nernst, W. H. 1864-1941, 63
NG boson, 324
non-conserved order parameter (NCOP),

337
nonclassical rotational inertia, 109, 111,

197
nuclear spin, 205
number operator, 177
number representation, 176

occupation number, 171
Onsager, 309
Onsager solution, 283
Onsager, L. 1903-1976, 304
order parameter field, 317
Ornstein-Zernike equation, 245
orthodic distribution, 49

particle exchange, 169
partition, 31
Pauli’s exclusion principle, 169
P (φ)d-model, 320
Peierls’ argument, 270
Peirce, C. S. 1839-1914, 317
Percus-Yevick closure, 251
Percus-Yevick integral equation, 250
Perron-Frobenius eigenvalue, 306
Perron-Frobenius theorem, 306
phase, 279
phase rule, 330
phase transition, 275, 279
phase volume element, 69
phenomenological theory, 322
phenomenology, 322
φ4

d model, 319
phonon, 198
phonon, acoustic, 202
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photon, 198
phylogenetic learning, 30
Planck, 201
Planck’s principle, 43
Planck’s radiation law, 201
Poincarë time, 20
Poisson distribution, 148, 181
polyatomic gas, 211
polymer chain, 322
Pomeranchuk effect, 146
potential of mean force, 244
Potts model, 333
pressure ensemble, 127
principle of equal probability, 51, 117
probability, 27
probability measure, 28
probability space, 30
probability, measure theoretical, 27
progress variable, 151
proton spin, 210
pure Gibbs state, 275

quadratic form, positive definite, 145
quadratic Hamiltonian, 198
quantum mechanical adiabatic process, 41
quantum number density, 68
quasi free energy density, 336
quasiequilibrium process, 43
quasistatic reversible adiabatic process, 43
quenched system, 210

radial distribution function, 241
rate function, 39
ray, 14
Rayleigh, 202
relevant parameter, 319
renormalizability, 321
renormalization group, 295
renormalization group flow, 295
renormalization group transformation, 295

response, 136
retraceable process, 43
reversible process, 43
Richards, T. W. 1868-1928, 63
rigidity, 324
rotation, 109
rotation-vibration coupling, 206
rotational motion, 205
roughening transition, 284
rubber band, 128
rubber elasticity, 74
Rubens, H, 202
ruled surface, 329
Rushbrooke’s inequality, 291

Sanov’s theorem, 117
scaling argument, 295
Schottky type specific heat, 107
second law of thermodynamics, 42, 68,

118
second law of thermodynamics, open sys-

tem, 150
second order phase transition, 285
second quantization, 176
semipermeable wall, 149
set function, 28
Shannon information formula, 115
Shannon’s formula, 113
σ-additivity, 28
simple system, 42
singular part, 313
singularity, 276, 279, 327
small world, 288
spherical average theorem, 272
spin-statistics relation, 170
spinodal curve, 341, 342
spontaneous symmetry breaking, 17, 324
Stückelberg-Petermann renormalization group

method, 323
stability criterion, 145
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stability of matter, 170
stable manifold, 298
standard deviation, 32
statistical field theory, 318
statistical principle, 51
Stefan, 200
Stefan-Boltzmann law, 200
Stirling’s formula, 59
stochastic variable, 30
stoichiometric coefficient, 150
subadditive, 277
sum function, 21
sup, 95
super-relativistic, 199
superconductivity, 197
superfluidity, 197
superrelativistic gas, 67
surprisal, 115

Takahashi, H. , 305
tangent lines, 99
thermal contact, 91, 92
thermal isolation, 16
thermodynamic coordinate, 40, 327
thermodynamic densities, 18
thermodynamic field, 18
thermodynamic fluctuation theory, 140
thermodynamic limit, 17, 277
thermodynamic space, 43
Thiele-Wertheim solution, 251
third law of thermodynamics, 63, 68
tiling problem, 257
Tonks’ gas, 237
transfer matrix, 304
triple point, 239, 329
trivial universalities, 204
Trotter’s formula, 138
typicality, 96

ultrafine structure, 205

unitary transformation, 123
universal structure, 322
universality, 204
unstable phase, 333

van der Waals, 234
van der Waals equation of state, augmented,

236
van der Waals model, 334
van der Walls equation of state, 234
van Hove limit, 273
van’t Hoff’s equation, 153
variance, 32
variational principle, 39
vector potential, 108
virial coefficient, 226
virial equation of state, 252
virial expansion, 226
virial expansion of equation of state, 233
virial theorem, 251
Vitali-Montel’s theorem, 278
Vitali-Porter’s theorem, 278
von Neumann equation, 123

Weber-Fechner law, 115
whole event, 27
Wien, 201
Wilson-Kadanoff renormalization group method,

323
work coordinate, 40
work, required to create fluctuations, 143

Zermelo, E., 1871-1953, 20
zeroth law of thermodynamics, 15, 119
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