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This is an introductory statistical thermodynamics course hopefully covering most
topics that those who graduate from physics should know. I wish to connect elemen-
tary gas kinetics and Brownian motion smoothly to equilibrium statistical thermo-
dynamics. Thus, as is clear, this course emphasizes three levels of description of the
world, microscopic, mesoscopic and macroscopic descriptions. It is also emphasized
that the latter two are closely related to large deviation and the law of large numbers,
respectively.

Needless to say, it is not very easy to cover these topics within one semester, so the
course is a jogging course. As an undergrad course in the US it is a bit challenging.
If 1/3 of the participating students think interesting and rewarding, the course is a
success.2

Self-study guide
(1) The best way to study is not to work when you do not wish to. If you wish to,

1While the previous version was, upon the suggestion of Cambridge University Press, expanded
into a full year course for advanced undergrads and published as Perspectives on Statistical Ther-
modynamics (Cambridge UP, 2017), but Cambridge and I agreed that I can continue to use the
original lecture version for my own course. This is a version with DISCUSSION problems added.

2⟨⟨Another Faraday effect⟩⟩ V. Arnold said, “M. Faraday arrived at the conclusion that
Lectures which really teach will never be popular; lectures which are popular will never teach. This
Faraday effect is easy to explain: according to N. Bohr, “clearness and truth are in a quantum
complementarity relation.” [Tribute to Vladimir Arnold: Arnold in his own words, Notices AMS
59, 378 (2012)] The quotation is from p379.
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concentrate on the study at least 15 minutes.3

(2) When you work, work as actively as possible, because effective learning is always
‘active learning’;4 Think what you would do if you encounter the problem as the first
person in the world.

Since I learned mathematics and physics without attending any course (beyond
200 in the US level) (because I was a wet chemist), I certainly wished to have books
with filled details and with all the problems solved. Thus, these lecture notes may be
followed without pencil and paper. However, I learned some will power was needed
to use such books effectively, because ‘muscle building’ always requires some load.
Therefore, always try to guess the next line or step in the derivation/transformation
of formulas before reading the lines. Footnotes with * are devoted to the derivation
of marked formulas or to more detailed explanations. The reader can regard them
as solutions to technical quizzes.

About every two sections accompanies one Discussion (table after the contents)
related to the two sections covered in the preceding week of lectures; Discussion is
a set of problems you can solve, discussing with your friends before reading the full
solutions with further remarks. After Discussion comes a ‘Homework = Exercise’ to
test your understanding that consists of problems often closely related to the ones
in Discussion.

Even with Homeworks and Discussions, there is not enough space to give all
the representative elementary problems. Therefore, to augment the book, I urge the
reader to consult the following two problem books:

R. Kubo, H. Ichimura, T. Usui and N. Hashitsume, Thermodynamics (North
Holland, 1968),

R. Kubo, H. Ichimura, T. Usui and N. Hashitsume, Statistical Mechanics (North
Holland, 1990 paperback).

I learned thermal physics from these books. All the problems are fully solved, but
many of them are not very easy. Try to solve at least the problems in [A] of these
books. These books will be (collectively) quoted as Kubo’s problem book (because
the original Japanese version is a single book).

3Because in your brain cells new coding and noncoding RNAs require at least about this order
of time to be transcribed.

4Read: Brown, P. C., Roediger III, H. L. and McDaniel, M. A. (2014). Make it stick: The
science of successful learning, Cambridge (MA): The Belknap Press.
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The international system of units (SI)

The official reference page is https://www.bipm.org/en/measurement-units/.
“This decision, made at the 26th meeting of the General Conference on Weights and
Measures (CGPM), means that from 20 May 2019 all SI units are defined in terms
of constants that describe the natural world. This will assure the future stability of
the SI and open the opportunity for the use of new technologies, including quantum
technologies, to implement the definitions.”

The seven defining constants of the SI and the seven corresponding units they define
are as follows:

Defining constant Symbol Numerical value Unit
cesium hyperfine frequency Δ𝜈Cs 9 192 631 770 Hz
speed of light in vacuum 𝑐 299 792 458 m/s
Planck constant ℎ 6.626 070 15 ×10−34 J·s
elementary charge 𝑒 1.602 176 634 ×10−19 C
Boltzmann constant 𝑘𝐵 1.380 649 ×10−23 J/K
Avogadro constant 𝑁A 6.022 140 76 ×1023 mol−1

luminous efficacy of visible radiation 𝐾cd 683 lm/W

The units in the table are: Hz = s−1, J = kg·m2s−2, C = A·s, lm = cd·m2 and W =
kg·m2s−3.

The definitions of the basic units we need are s, kg, and m defined as follows:

1 s = 9, 192, 631, 770/Δ𝜈Cs, (0.1)

1 m =
9, 192, 631, 770

299, 792, 458

𝑐

Δ𝜈Cs
≃= 30, 663, 319

𝑐

Δ𝜈Cs
, (0.2)

1 kg =
ℎ

6.62607015× 10−34
m−2s. (0.3)

Historically, 𝑁A = 𝑅/𝑘𝐵 and 𝑘𝐵 is the energy corresponding to one kelvin of
thermal energy to be equal to 1.380649 ×10−23 J. 𝑅 is the gas constant. Now, both
𝑁A and 𝑘𝐵 are defined numerically as in the above table. This determines the units
K (kelvin) and mole.

You must realize that time or the unit of time is extremely special. This means
that we do not have any natural universal quantity such as ℎ, 𝑐 or 𝑒 to determine
time or length.
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Discussions

Discussions are problem sets that you can work out while discussing with your friends.
Full solutions with remarks and comments are with them, so after discussions please
look at them critically.

Discussion 0 19
Discussion 1 Sections 1, 2 28
Discussion 2 Sections 3, 4 61
Discussion 3 Section 5 94
Discussion 4 Sections 6, 7 152
Discussion 5 Sections 8, 9 189
Discussion 6 Sections 10, 11 237
Discussion 7 Sections 12 264
Discussion 8 Sections 13 – 15 323
Discussion 9 Sections 16 – 19 386
Discussion 10 Sections 20, 21 433
Discussion 11 Section 22 466
Discussion 12 Section 23 491
Discussion 13 Sections 24 – 28 566

5



1 Outlook of the course

Summary
* Science is an empirical endeavor.
* Science and religion have fundamental conflict.
* Our world allows microscopic, mesoscopic and macroscopic descriptions.
* The law of large numbers and deviations from the law allow us to understand

macroscopic and mesoscopic worlds.

Key words5

Three levels of description: Microscopic, mesoscopic, macroscopic

What you should do
* Reflect on what science should be.

Now, everybody knows that the materials we see around us are made of atoms
and molecules. We could even see them by, for example, atomic force microscopes.
However, only 50 years ago no one could see atoms.6 About 100 years ago the exis-
tence of atoms was still disputed.

1.1 Atomisms, ancient and modern
The idea that the world is made of indivisible and unchanging minute particles
(atomism7) is, however, not a very creative idea.8 After all, it seems that there are
only two choices: (i) the world is infinitely divisible and continuous or (ii) the world
is made of indivisible units separated by void (and various easy ideas in between).
Ancient Greek and Indian philosophers reached atomism. Some philosophers may
have favored atomism, because it avoided paradoxes associated with continuum (say,

5You must be able to explain these words (hopefully to your lay friends).
6Are you really sure you can see them today? First of all, what do we mean by ‘see’? Thus,

the answer is not as straightforward as we naively expect, even if it is affirmative.
7atom ← atomos: a = “not”, tomos = “cutting”
8⟨⟨Appreciate asking questions; appreciate Anaximander⟩⟩ As we will see soon, the an-

cient atomism is not quite correct as a scientific idea, since important ingredients to make it as
a part of natural science are missing due to the limitation of mere philosophical considerations.
However, we should appreciate these philosophers for asking the questions that led them to these
ideas. We must appreciate those who have asked new questions. In this sense, according to Carlo
Rovelli, Anaximander was the first scientist: “I do not wish to overstate the importance of Anax-
imander. In the end, we know very little about him. But twenty-six centuries ago, on the Ionian
coast, somebody opened a new path to knowledge and a new route for humanity.” (C. Rovelli,
The first scientist: Anaximander and his legacy (Westholme, Yardley 2007; English version 2011
(translated by M. L. Rosenberg)), location 187, Introduction.
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Zeno’s paradox; perhaps even irrational numbers could be avoided).
Leucippus (5th c. BCE) is usually credited with inventing atomism in Greece.9

His student Democritus systematized his teacher’s theory. The early atomists tried
to account for the formation of the natural world by means of atoms and void alone.
The void space is described simply as nothing, or the negation of body. Atoms are,
by their nature, intrinsically unchanging, but can differ in size, shape, position (ori-
entation), etc. They move in the void and can temporarily make clusters according
to their shapes and surface structures.10 The changes in the world of macroscopic
objects were understood to be caused by rearrangements of the atomic clusters.

Thus, atomism explains changes in the macroscopic world without creating new
substance. Also all the macroscopic phenomena are naturally ephemeral (‘the second
law of thermodynamics’?).11

The most decisive difference between the modern atomism and the ancient atom-
ism is that the latter is devoid of dynamics.12 Indeed, the ancient atomism allowed
motions to displace atoms and to change their aggregate states, but no special mean-
ing was attached to movements themselves (quite contrary to the modern thermal
motion which we will learn soon).13

1.2 Two enemies of empiricism
As noted in 1.1 the modern science has two pillars: the fact-seeking empirical part
(in the narrow sense) and the fact-organizing part (based on the phylogenetic learn-
ing). These pillars are vulnerable, if we are not vigilant enough (to check (i) and
(ii) in 1.4), to naive versions of ‘just-so empiricism’ and ‘metaphysical influences’.

9http://plato.stanford.edu/archives/win2011/entries/atomism-ancient/ S. Berry-
man, “Ancient Atomism,” The Stanford Encyclopedia of Philosophy (Winter 2011 Edition), Edward
N. Zalta (ed.).

10No ‘interatomic’ forces were conceived. That is, it seems that they imagined interactions
between contacting bodies (atoms) but they never thought about forces through the void space.
Interactions without contact (through void) seem to be a Newtonian novelty as we will see in
Lecture 2.

11Since atomism understands that the world orders emerge from rearrangements of atoms, log-
ically this implies that we human beings as natural phenomena are also understood as special
arrangements of atoms. Consequently, ancient atomists were critical against institutionalized reli-
gions; atomism and secular humanism are rather harmonious as can be seen in Epicurus. If you
read Epicurus (e.g., http://epicurus.net), you will realize how ‘modern’ his various views are.

It is natural and legitimate to ask whether God is or Gods are made of atoms. If God exists in
or with the universe, It is made of atoms; if not, It has no effect on the universe, so irrelevant to
us.

12Recall that even the Archimedean mechanics was essentially statics.
13Epicurus grants atoms an innate tendency to move downward through the infinite cosmos.

The downward direction is simply the original direction of atomic fall. Interestingly, however, he
allows atoms occasionally to exhibit a slight, otherwise uncaused (stochastic!) swerve from their
downward path to avoid ‘ordered parallel motion.’
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‘Just-so empiricism’ means just what we observe is a reliable empirical fact. We
always need to reflect on what we (can) actually observe (because often what we
see is influenced by our metaphysical framework). The metaphysical biases come
from Zeitgeist and various traditional ideas including religions. In a certain sense
the former may be a more serious threat, because most scientists are unaware of the
prejudices they are raised with.14

1.3 What was beyond philosophers’ grasp?
The idea that everything is made of irreducible units is, as we have just argued,
rather natural; if not infinitely divisible, there must be a unit. However, it is hard
to identify what the actual unit is without empirical information. Notice that no
one ever imagined that we are made of cells:15 Recognize that the cell theory is one
of the two pillars of biology (the other is Darwinism). We should clearly recognize
that this indicates the limitation of philosophers who are not empirical enough. The
lack of the idea of ‘molecule’ from the ancient atomism is also an example of this
limitation. Perhaps, it is a sign of progress to recognize that the world does not have
the structures we ‘naturally’ expect.16

Mechanics is also beyond philosophers’ grasp. Therefore, modern atomism was
beyond the reach of any philosopher.

We must respect empirical facts. Science is an empirical endeavor. At the same
time, however, as you recognize from the works of Newton, Maxwell, Darwin, and
others, ‘pure empiricism’ is not at all enough to do good science.17

1.4 What is science?
The question what science is does not have any definitive answer. However, its

spirit, especially its empirical backbone, consists of

14⟨⟨Question the Zeitgeist⟩⟩ We usually believe that the smaller the scales the more funda-
mental the phenomena. Thus, the study of extremely small scales of the world is regarded as the
fundamental physics. How is this really scientific? Notice that the idea is closely related to the
‘just-so empiricism’ and its uncritical extension. Thus, we must critically review what we really
empirically know.

As to the ‘metaphysical influences’, recently, Sabine Hossenfelder eloquently questioned the
practice in high-energy physics. See S. Hossenfelder, Lost in Math: how beauty leads physics astray
(Basic Books, New York, 2018).

15You should know that the discovery of nucleus by Brown (of Brownian motion) was a key to
the proposal of the cell theory by Schwann and Schleiden in 1839.

16Kepler’s discovery that the circular orbit is not natural may be an example; this was never
accepted by Galileo.

17That is, as Confucius said: ‘he who learns but does not think, is lost.’ ‘he who thinks but
does not learn is in great danger.’ (Analect, Book 2). You can read more excerpts here (Analect
excerpts in English/Old Chinese).
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(i) the humility that constantly makes us reflect on whether we really know and
whether our methodology and logic are sound, and
(ii) the resultant skepticism.18

This science spirit must be universal beyond us human-beings wherever there are
intelligence and conscience; Science is a conscientious and intelligent way of life.19

1.5 Never forget fundamental conflict between science and religion
As seen in 1.4 there is a fundamental conflict between science and religion; the lat-
ter demands the unconditional acceptance of certain propositions. Thus, the faithful
can never emancipate himself from the burden of self-deception.

Unfortunately, a fundamentally wrong point of view can be found even in Physics
Today.20 There, it is argued that there was deep and constructive mutual engagement
of science and religion as exemplified by Newton.21 “Throughout most of history,
scientific investigation has gone hand in hand with a commitment to theism, at least
in the three Abrahamic faiths.”

However, this simply demonstrates that any (wrong) motivation would do, if one
is serious/genius (See the next 1.6).

18Also, the skepticism applied to itself is crucial: to cut the chain of skepticism off at appropriate
positions and ‘to experiment.’ I took these statements from Y Oono, The Nonlinear World (Springer
2011), mainly Chapter 5.

Unscientific attitudes and political radicalism are correlated: Read M. Rollwage, R. J. Dolan, S.
M. Fleming, Metacognitive Failure as a Feature of Those Holding Radical Beliefs, Current Biology
24, 4014 (2018). Radical participants—on both ends of the political spectrum—showed reduced
insight into the correctness of their choices.

19 ⟨⟨Faith is evil⟩⟩ “Faith is an evil precisely because it requires no justification and brooks no
argument.” [R. Dawkins, The God Delusion (Houghton Mifflin Company, 2006) Chap. 8]. “Even
mild and moderate religion helps to provide the climate of faith in which extremism naturally
flourishes.” “The take-home message is that we should blame religion itself, not religious extremism
as though that were some kind of terrible perversion of real, decent religion.” “Voltaire got it right
long ago: ‘Those who can make you believe absurdities can make you commit atrocities’.”

“As long as we accept the principle that religious faith must be respected simply because it is
religious faith, it is hard to withhold respect from the faith of Osama bin Laden and the suicide
bombers.” “What is really pernicious is the practice of teaching children that faith itself is a virtue.”

S. Weinberg said: “Religion is an insult to human dignity. With or without it, you’d have good
people doing good things and evil people doing evil things. But for good people to do evil things,
it takes religion.”

20T. McLeish, Thinking differently about science and religion, Physics Today 71(2) 10 (2018).
He claims, “Maintaining the view that science and religion are in conflict does no one any favors
and is hurting science.” He is right, IF you do not care about fundamental consistency and integrity
of ones intellectual life.

21As you can read in R. Ilffe, Priest of Nature, the religious worlds of Isaac Newton (Oxford,
2017), Newton was dead serious about showing that the central Christian doctrine of the Trinity
was a diabolical fraud. His atomism is deeply related to this.
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1.6 Let us not underrate the importance of error
Stefan Zweig wrote in a biography of Magellan, noting that “he planned and acted in
honest error”: Let us not underrate the importance of error. Through the prompt-
ings of genius, guided by luck, the most preposterous error may lead to the most
fruitful of truths. In every branch of science, hundreds of highly important discover-
ies have been the outcome of erroneous hypotheses.

We simply note that Newton was unable to pursue intellectual self-consistency
because of the shackles of the Zeitgeist.

Let us go back to narrower topics:

1.7 How numerous are atoms and molecules?
How many water molecules are there in a tablespoonful (15 cm3) of water? Although
we should discuss how to determine the size or mass of an atom (see Section 7), let
us preempt the result.

Suppose one person removes one molecule of water at a time from the tablespoon-
ful of water, and the other person use the tablespoon to scoop out the ocean water
to the outer space. If they perform their operations synchronously, starting simulta-
neously, which person will finish first?22 With a simple calculation you will realize
that the number of molecules in a spoonful of water is comparable (the ratio is less
than ca. 3) to the amount of ocean water measured in tablespoons.

Imagine you scoop out water of a 50 m swimming pool. You will not even try to
start.

1.8 Why are molecules so small?
Thus, molecules are numerous. They are numerous because they are tiny. Why is
an atom so tiny? This is not a meaningful question, however, because being small
or being large is only relative; we cannot say whether a 1 m stick is long or short
without comparing it with something else.23 Let us compare our size with the atom
size.24 The above question properly understood is: why is the size ratio between
atoms and us so big? Do not forget that we human beings are products of Nature.

22What if the tablespoons are replaced with teaspoons (5 cm3)?
23To recognize this trivial fact is the first step to dimensional analysis, an important way of

thinking in physics. Read “Introduction to Dimensional Analysis ”. In these lectures dimensional
analytic explanations will be attempted whenever dimensional analysis can be used.

24You might recall Protagoras, who said: Man is the measure of all things. However, the original
meaning of this statement seems to have been much more restricted, because the word ‘things’ in
the original only meant things human beings created (ideas, feelings, social entities, etc., not stars,
mountains, etc.). See http://en.wikipedia.org/wiki/Protagoras.
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Therefore, to compare us with atoms does not imply anthropocentric prejudice. Let
us try to understand our size relative to atoms.

1.9 Why are we made of so many atoms?
Large animals, or, more generally, the so-calledmegaeukaryotes, are often constructed
with repetitive units such as segments.25 The size of the repeating unit is at least
one order larger than the cell size. Consequently, the size of ‘advanced’ organisms
must be at least 2-3 orders as large as the cell size.

Thus, the problem is the cell size.26 We are complex systems,27 so we have our
parents and the crucial information and materials required to build us comes from
the preceding generation. Since there is no ghost in the world, information must be
carried by a certain thing (no ghost principle). Stability of the thing requires that
information must be carried by polymers. What polymer should be used? Such a
question is a hard question, so we simply imagine something like DNA. ‘No ghost
principle’ tells us that organisms require a certain minimal DNA length. This seems
to be about 1 m. As a ball its radius is about 0.5 ∼ 1 𝜇m. This implies that our cell
size (eukaryotic cell size) is ∼ 10 𝜇m (= 10−5 m).

Thus, the segment size is about 1mm, and the whole body size is about 1 cm (this
is actually about the size of the smallest vertebrates28). If we require a good eyesight,
the size becomes easily one to two orders more, so intelligent creatures cannot be
smaller than ∼ 1 m. That is, the atom size must be 10−10 as large as our size.

We have, at least roughly, understood why atoms are small or why we are big.

25It may well be the case that the so-called biocomplexity achieved by Metazoa is due to segments,
or a modular scheme to build a body.

26There is almost no paper discussing the cell size seriously, but recently a relevant paper ap-
peared: Marshall WF et al., BMC Biology 10, 101 (2012). It is an interesting collection of articles
discussing relevant topics to cell size, but no relation with the required information is discussed.
However, it has been recognized well that the amount of the DNA in a cell (the so-called C-number)
is well correlated with the cell size (see for a summary, T. R. Gregory, “Coincidence, coevolution,
or causation? DNA content, cell size, and the C-value enigma,” Biol. Rev. Camb. Philos. Soc. 76,
65-101 (2001)). Thus, we may safely claim that the lower bound of the cell size is determined by
the amount of DNA.

Interestingly, if a very small body must be constructed, nucleusless cells are used to make the
nervous system (see Wasp neurons lacking nuclei Nature 480, 294 (2014)).

27The so-called complex systems studies study spontaneous formation of certain (ordered) struc-
tures from disorder. Thus, they study only pseudo-complex systems, because spontaneous emer-
gence is a telltale sign of simplicity. In contrast, you did not spontaneously emerge, because to
make you was not very simple. Pasteur realized the fundamental complex nature of life: life comes
only from life, and never emerges spontaneously within a short time. Thus, unfortunately, no books
with titles containing the word ‘complexity’ really discuss complexity. See, e.g., Chapter 5 of Y.
Oono, The Nonlinear World (Springer, 2012).

28For example, Scherz et al., Morphological and ecological convergence at the lower size limit
for vertebrates highlighted by five new miniaturised microhylid frog species from three different
Madagascan genera. PLoS One 14, e0213314 (2019).

11



1.10 Our world is lawful to the extent of allowing the evolution of intel-
ligence
We have discussed, with the aid of atomism and cell theory, that science is an empir-
ical endeavor and that no correct world view is obtainable solely with philosophical
meditations without observing the world.

Who observes the world? We observe the world and are making science, so we
must be at least slightly intelligent. To be intelligent at least we are 109∼10 as large
as the atom. But our large size is not enough. The world must have allowed our
intelligence to evolve.

If there is no lawfulness at all, or in other words there is no order in the world,29

then intelligence is useless; calculation is useless. We use our intelligence to guess
what happens next from the current knowledge we have. If in a certain world organ-
isms’ guesses using their intelligence are never better30 than simple random choices
(say, following a dice), then intelligence would not evolve;31 recall that the human
brain is the most energy consuming very costly organ.32 This means that the macro-
scopic world (the world we observe directly on our space-time scale) must be at least
to some extent lawful with some regularity;33 we believe in the lawfulness of the
world to the extent that we are superstitious.34

However, if the law or regularity is too simple, then again no intelligence is useful.
If the world is dead calm, no intelligence is needed. The world must be just right
(the Goldilock principle or the principle of moderation). The macroscopic world we
experience is not violent but not dull.35

1.11 Microscopic world is unpredictable
In contrast, we know the world of atoms and molecules (the microscopic world) is a

29‘Order’ may be understood as redundancy in the world; knowing one thing can tell us something
about other things simply because everything is not totally unrelated.

30Here, ‘better’ means it is more favorable to the reproductive success of the organisms.
31You will not study, if your grade is randomly assigned.
32Its weight is 2% of the body weight, but it consumes about 20% of the whole body energy

budget.
Even our growth rate when we are very young seems to be considerably reduced to develop our

brains. See C. W. Kuzawa et al., Metabolic costs and evolutionary implications of human brain
development, Proc. Natl. Acad. Sci., 111, 13010 (2014).

33 Our logical brain must be a reflection of the logical nature of the environment we evolved.
This must be parallel to the fact that many fishes have hydrodynamically optimal shapes. Water
obeys hydrodynamics, not because fishes swim in it!

34Mistaking correlation as causality is an important ingredient of superstition.
35This is the meaning of the statement appearing later that the world is macroscopically phe-

nomenologically describable.
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busy and bustling world. They behave quite erratically and unpredictably (despite
deterministic nature of mechanics) by at least two reasons, chaos and external dis-
turbances.

Maxwell clearly recognized that molecules behave erratically due to collisions.
Perhaps the simplest model to illustrate the point is the Sinai billiard. A hard ball
(or rather you can imagine an ice hockey puck) is moving on the flat table, which has
a circular obstacle on it. The ball hit the obstacle and is bounced back specularly
(see Fig. 1.1).

Figure 1.1: Sinai billiard: Left: a motivation. Two hard elastic discs (pucks) are running around
on the table with a periodic boundary condition (if a disk disappears from one edge, it reappears
from the opposite edge with the same velocity), colliding from time to time with each other. This
is a toy model of a confined gas. Right: If the dynamic of the center of mass (CM) of one disk
is observed from the CM of the other disk, the former may be understood as a ballistic motion of
a point mass with occasional collisions with the central circular obstacle. This is called the Sinai
billiard, and is known to be maximally chaotic.

Roughly speaking, a small deviation of the direction of the particle is doubled
upon specular reflection at the central circle, so, for example, to predict the direc-
tion of the particle after 100 collisions is very hard.36 Imagine what happens if there
are numerous such particles colliding with each other. Thus, predictions would be
absolutely impossible. Further worse, it is very hard to exclude the effects of the
external world, in which we do not know what is going on at all. E. Borel pointed
out that the trajectory of a molecule after a very short time can be totally altered,
if one gram of mass moves by 1 cm on Sirius (11 ly away from us) due to the change
in gravitational field. This implies that you cannot even breath if you wish to study
the ‘intrinsic behavior’ of a collection of atoms.37

1.12 Kinetic theory
As discussed in 1.11 the microscopic world is full of noise, and everything looks
stochastic, even though the intrinsic mechanics is not at all stochastic. Consequently,
it is traditional that the microscopic world is handled with Kinetic Theory that grafts
space-time local collision dynamics (in many cases binary collision dynamics) and the

36It is convenient to remember that 210 ≃ 103, so 2100 ≃ 1030.
37Quantum mechanically, subtle entanglements are easily lost by perturbation, so the system is

much more fragile than the classical counterpart.
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statistical description of one particle properties (e.g., its position and momentum).
This line of approach was developed into quite a sophisticated theory by Boltz-

mann and subsequent researchers. The theory allows us to understand time-dependent
changes of a system, but since it is very hard to discuss simultaneous multiple col-
lisions, it can study only dilute systems; it is almost hopeless to study condensed
matter (e.g., liquid) honestly within the framework of kinetic theory,38 so in this
notes we do not discuss the theory at all.

1.13 Why our macroscopic world is lawful: the law of large numbers
The world on the scale of atoms is full of noise. We know our scale is quite remote
from the atomic scale. The time scales are also disparate; the time scale required
to describe molecular dynamics is 0.1 fs = 10−16 s, but the shortest time span we
can recognize must be longer than 10 𝜇s = 10−5 s. Lawfulness must come from
suppression of noise. Our size is crucial to suppress noise; even if particles in a small
droplet undergo quite erratic motion, if many particles are averaged, the erratic effect
would disappear. This statement may be formally expressed as follows.

Let 𝑋𝑛 be random variables.39 Here, 𝑛 is the suffix to specify the 𝑛th variable;
we consider a collection of numerous (𝑁) such variables, and 𝑋𝑛 is the 𝑛th among
them. Then,

𝑁∑︁
𝑛=1

𝑋𝑛 = 𝑁𝑚+ 𝑜[𝑁 ], (1.1)

where 𝑚 is the average value (= expectation value) of 𝑋𝑛.
40 This is the law of large

numbers,41 the most important pillar of probability theory and the key to under-
standing the macroscopic world (see Section 4).

You may imagine outcomes of coin tossing as an example: 𝑋𝑛 = 1 if the 𝑛th out-
come is a head; otherwise, 𝑋𝑛 = 0. By throwing a coin 𝑁 times, we get a 01 sequence
of length 𝑁 , say, 0100101101110101· · ·001. You can guess the sum is roughly 𝑁/2,
where 𝑁 must be sufficiently large. This is the law of large numbers. We clearly see
the importance of our being big (relative to atoms).

38The latest summary of difficulties may be found in Isabelle Gallagher, From Newton to Navier-
Stokes, or how to connect fluid mechanics equations from microscopic to macroscopic scales, Bull.
Amer. Math. Soc. 56, 65-85 (2019).

39We will discuss what we wish to mean by ‘random variables’ more carefully later, but here,
you have only to understand them as variables that take various values in an unpredictable fashion.

40⟨⟨𝑜⟩⟩ This standard symbol means higher order small quantities. In the limit being discussed,
if 𝑋/𝑌 → 0, then we write 𝑋 = 𝑜[𝑌 ], which is read: compared with 𝑌 , 𝑋 is a higher order small
quantity in the limit being discussed. This does not mean 𝑋 and 𝑌 themselves are infinitesimal.
For example, 𝑁0.99 is 𝑜[𝑁 ], if 𝑁 is large (in the 𝑁 →∞ limit), because 𝑁0.99/𝑁 = 𝑁−0.01 → 0.

41There are weak and strong laws of large numbers, but in statistical physics, generally we do
not need any distinction. The formulation here is in the strong version.

14



1.14 We live in a rather gentle world
You might object, however, that being big may not be enough; we know violent phe-
nomena in the macroscopic world like turbulence or perhaps the cores of galaxies. If
the variances are too big, perhaps we may not be able to expect the expectation val-
ues to settle within a reasonable narrow range.42 Also even if the expectation value
eventually converges, needed 𝑁 in the law of large numbers should not be too big;
if you can recognize the regularity of the world only after averaging the observations
during 1000 generations, probably the law of large numbers cannot favor intelligence
very much. Thus, as already discussed above, the world in which intelligence can
emerge cannot be too violent. We emerge in the world in which the law of large
numbers hold rather easily at large scales to allow macroscopic laws (actually the
world very close to no change from the molecular point of view). We live in the world
where space-time scale is not only quite remote from the microscopic world of atoms
and molecules, but also the extent of nonequilibrium is not too large.43

Now, an outline of our main topics:

1.15 Thermodynamics and statistical mechanics
The macroscopic world close to equilibrium44 can be described phenomenologically by
thermodynamics. Here, ‘phenomenologically’ implies that what we observe directly
can be organized into a single logical system without assuming any entities beyond
direct observations. Thermodynamics is distilled from empirical facts observable on
our scale, so it is the most reliable theoretical system we have in physics.45

As we will learn in Lecture 13, statistical mechanics obtains the Helmholtz free
energy 𝐴 (which will be explained in detail later; Lecture 11) as

𝐴 = −𝑘𝐵𝑇 log𝑍, (1.2)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the absolute temperature, and 𝑍 is the

42Technical terms in this sentence will be explained in Section 3.
43We need a stable simple macroscopic laws for feeble minds to work (recall the intelligence must

evolve). Our macroscopic world is so lawful that some of us can even believe in the benevolence of
God.

44Intuitively, you may consider a system is close to equilibrium, if all the rapid changes (from
our point of view) in it have subsided.

45Needless to say, classical mechanics, electromagnetism, quantum mechanics, etc., are also
reliable theoretical systems based on our empirical observations. While thermodynamics is used
with conscious recognition of its limitations (applicable only to macroscopic systems in equilibrium),
other theories are (were) often regarded valid unconditionally (i.e., without clear recognition of their
valid domains). In this sense these theories are less reliable. We must learn a lesson from the history
that classical electrodynamics was regarded as the ultimate theory until it was recognized not to
work in the microscopic world. Now, it is believed quantum mechanics is correct on all scales, and
so is the general theory of relativity. Therefore, the current big issue is to unify these two, but we
must admit that empirical facts recede from the foreground.
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(canonical) partition function

𝑍 =
∑︁

𝑒−𝐻/𝑘𝐵𝑇 . (1.3)

Here, 𝐻 is the system Hamiltonian (the energy function or energy operator in quan-
tum mechanics) and the summation is over all the microscopic states. We will discuss
thermodynamics and its relation to statistical mechanics in Lecture 12, and then will
learn how to use it subsequently.

1.16 Thermodynamic singularity and phase transition
We all know at least intuitively what a phase transition is. Think, for example, freez-
ing or boiling of water. Some properties change sharply when such transitions occur.
That is, thermodynamic quantities have singularities. In particular, the Helmholtz
free energy 𝐴 becomes singular (Section 24).46

Since 𝑒−𝐻/𝑘𝐵𝑇 is a smooth function of 𝑇 (> 0), if 𝑍 given by (1.3) consists of finitely
many summands, strictly speaking, nothing singular can happen in 𝐴 as a function of
𝑇 . This could mean that no phase transition occurs statistical-mechanically. How-
ever, if the system under study is very big (ideally, infinitely big, in the so-called
thermodynamic limit), 𝐴 (per particle or volume) can lose smoothness as a function
of 𝑇 ; the sum of infinitely many smooth functions need not be smooth. Thus, phase
transitions can be explained statistical-mechanically in the large-system size limit
(in the so-called thermodynamic limit; Section 24).

1.17 Mesoscopic world
What does the world look like if we observe it on the scale intermediate between
the microscopic and the macroscopic scales? In (1.1) the 𝑜[𝑁 ] term becomes not
ignorable. That is, fluctuation cannot be ignored. This is the world where Brownian
g dominates, where unicellular organisms live and where the cells making our bodies
function. Intelligence is useless, because fluctuation is still too large and prevents
agents from predicting what would happen. The best strategy is to wait patiently
for a miracle to happen, and if it happens, to cling to it. Molecular motors just do
this, crudely put.

In the mesoscopic world, the average of what we observe is consistent with our
macroscopic observation results; Onsager’s regression hypothesis asserts this. How-
ever, if we observe individual systems, observables fluctuate a lot around the expected
macroscopic behaviors. Although we will not have time to go into statistical mechan-
ics of such slow macroscopic changes, we will discuss Brownian motion and will give
an informal discussion of transport phenomena (Sections 6-7).

46Mathematically, for example, it could lose differentiability.
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1.18 Law of large numbers and probability
We are interested in statistical mechanics, so no one would doubt the relevance of
probability theory. What is probability? We will discuss this later (Lecture 3), but
let us proceed intuitively. We take statistics, and we know if the number of samples
is increased, then statistical results become more reliable. This is just the law of
large numbers 1.13 we have already encountered . The law of large numbers can be
written as

𝑃

(︂⃒⃒⃒⃒
1

𝑁

∑︁
𝑋𝑖 −𝑚

⃒⃒⃒⃒
> 𝜀

)︂
→ 0 (1.4)

as 𝑁 → ∞, however small positive 𝜀 we choose, where 𝑃 denotes probability of
the event in the parentheses. That is, if we obtain an empirical expectation value
(1/𝑁)

∑︀
𝑋𝑛 using 𝑁 samples, its deviation exceeding 𝜀 from the true average value

becomes increasingly unlikely as 𝑁 is increased, however small positive 𝜀 we choose.
If a system is in equilibrium, this limit describes the world of macroscopic equilib-
rium governed by thermodynamics.

1.19 Large deviation and fluctuation
Now, we ask what happens between the microscopic and macroscopic scales, so we
cannot take 𝑁 very large. We should study how the above probability goes to zero
as a function of 𝑁 . This is governed by the large deviation principle:

𝑃

(︂
1

𝑁

∑︁
𝑋𝑖 ∼ 𝑥

)︂
∼ 𝑒−𝑁𝐼(𝑥), (1.5)

where 𝐼 is called the large deviation function (or rate function), and may be ap-
proximated with a quadratic function when 𝑥 is close to the true expectation value
𝑚:

𝐼(𝑥) ≃ 1

2𝑉
(𝑥−𝑚)2. (1.6)

Here, 𝑉 is a positive constant (corresponding to variance) and 𝑚 is the expectation
value, where 𝐼(𝑚) = 0 implies the law of large numbers. (1.6) means that mesoscopic
noise is usually Gaussian. That is, with the aid of a Gaussian noise 𝑤 whose average
is zero and variance 𝑉/𝑁 , we can write

1

𝑁

∑︁
𝑋𝑖 = 𝑚+ 𝑤. (1.7)

As we will see later (Lecture 18), 𝐼 is related to the decrease of entropy from
equilibrium due to fluctuations, and the above relation is useful in understanding
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fluctuations we can observe spatially locally in a system (Einstein’s theory of ther-
modynamic fluctuations).

1.20 Time coarse-graining and Langevin equation
Even if the system reaches a state without any macroscopic change (i.e., an equilibrium
state), molecules and atoms continue to jump around, so the mesoscopic world is not quiet
and remains time-dependent even in equilibrium (that is, even if macroscopically the system
is quiet). Thus, we observe Brownian motion (Lecture 7). It is well known that the trajectory
of a Brownian particle is quite erratic and almost nowhere differentiable. However, we know
molecules and atoms obey ordinary mechanics, so the time derivative of their positions must
be well defined. This implies that the time derivative 𝛿𝑋/𝛿𝑡 at the mesoscopic scale is not
really the true mechanical derivative.47 It is a time average of the true time derivative during
a short span of time 𝛿𝑡 (perhaps ∼ 10−6 s, which is, however, very long for atoms; recall the
time scale difference): the following definition must be very natural:

𝛿𝑋

𝛿𝑡
=

1

𝛿𝑡

∫︁ 𝑡+𝛿𝑡

𝑡

𝑑𝑠

(︂
𝑑𝑋

𝑑𝑡
(𝑠)

)︂
𝑡𝑟𝑢𝑒

=
𝑋(𝑡+ 𝛿𝑡)−𝑋(𝑡)

𝛿𝑡
. (1.8)

Onsager’s regression hypothesis implies that if 𝛿𝑋/𝛿𝑡 is averaged over many observations (for
example, repeating the same experiment under the same condition many times), the result
(in the following formula, taking the average is denoted by ⟨ ⟩)⟨

𝛿𝑋

𝛿𝑡

⟩
= 𝐹 (𝑋) (1.9)

should describe the time dependence of macroscopic nonequilibrium phenomenology (macro-
scopic laws). Therefore, if we apply the large deviation principle to the time average (in the
present context 𝛿𝑡 corresponds to 𝑁 of (1.5)48), we may write

𝑃

(︂
𝛿𝑋

𝛿𝑡
∼ 𝑋̇

⃒⃒⃒⃒
𝑡

)︂
∼ 𝑒−𝛿𝑡𝐼(𝑋̇), (1.10)

where the large deviation function reads

𝐼(𝑋̇) ≃ Γ

2
(𝑋̇ − 𝐹 (𝑋))2, (1.11)

Γ being a positive constant. This implies that the time derivative on the mesoscopic time
scale obeys the equation quite parallel to (1.7):

𝛿𝑋

𝛿𝑡
= 𝐹 (𝑋) + noise. (1.12)

Such equations with the noise terms are called the Langevin equations. Here, the noise am-
plitude is represented by Γ−1. As we will learn later, the magnitude of the noise must be
chosen appropriately to describe the equilibrium fluctuations correctly. This correct relation
is provided by the fluctuation-dissipation relation. For example, the relation tells us a re-
lation between the diffusion constant of a Brownian particle and the temperature, which is
practically important in actual experiments. This course will cover at least the intuitively
understandable aspect of this relation.

47That is, the ‘infinitesimal displacement’ 𝛿𝑋 and the ‘infinitesimal time’ 𝛿𝑡 are not truly me-
chanically (= microscopically) infinitesimal, but only look infinitesimal on the mesoscopic scale.

48or, more precisely, if we write the infinitesimal time on the microscopic time scale as 𝑑𝑡, 𝑁 in
(1.5) corresponds to 𝛿𝑡/𝑑𝑡.
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Discussion 0

D0.1 [Hume, Smith, Watts, · · · and Scottish Renaissance]
David Hume is the key thinker who emphasized the source of our knowledge is our
experiences (i.e., the source lies outside our mind). Then, Emanuel Kant realized
that we still need some organization principle that is innate to every rational being.
Konrad Lorenz emphasized that this innate ‘a priori’ is the result of ‘phylogenetic
learning,’ that is, the result of evolution. In short, we are rational because the world
is rational just as fish is hydrodynamical because water is hydrodynamical.49

We should clearly recognize that Adam Smith and David Hume were very close
friends.50 They knew Watt; especially, Smith’s description of the division of labor
is influenced by this relation; Smith’s ideas on free economy came from Hume and
Hume’s ethics came from Smith. Furthermore, S. J. Gould claims, “I would advance
the even stronger claim that the theory of natural selection is, in essence, Adam
Smith’s economics transferred to nature.”51

The cultural background of thermodynamics was the Scottish Renaissance.

D0.2 [No absolute truth]
All the truths we accept as such are relative to our experiences. In this sense there
is no absolute truth. “God and truth are two sides of the same coin. Life and mental
well-being are hindered by both...”52

49Read K. Lorenz, “Behind The Mirror: A Search for a Natural History of Human Knowledge”
(Houghton Mifflin 1978).

50Read D. C. Rasmussen, “THE INFIDEL AND THE PROFESSOR DAVID HUME, ADAM
SMITH, AND THE FRIENDSHIP THAT SHAPED MODERN THOUGHT (Princeton University
Press, 2018).

51in S. J. Gould “Structure of Evolution Theory” (Belknap Press of Harvard UP, Cambridge,
MA, 2002) p122.

52 D./ L. Everett, “Don’t Sleep, There Are Snakes: Life and Language in the Amazonian Jungle”
(Vintage Departures, 2008) p272. Recommended.
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2 Atomic picture of gases

Summary53

* The biggest discovery about gases was the discovery of atmospheric pressure and
vacua.
* Gay-Lussac gave key empirical facts: 𝑃𝑉 ∝ 𝑇 , the law of constant temperature
(for adiabatic free expansion) and the law of combining volumes.
* Bernoulli related temperature and (translational) kinetic energy of molecules, but
to make kinetic theory precise, we need probability.

Key words
Law of partial pressure, D. Bernoulli’s kinetic theory, equipartition of energy,

What you should be able to do54

* Explain the law of constant temperature.
* Roughly reproduce Daniel Bernoulli’s logic.
* Derive the equipartition of energy (for the translational motion).

The following books are recommended for a historical background:
S. G. Brush, Statistical Physics and the Atomic Theory of Matter, from Boyle and
Newton to Landau and Onsager (Princeton UP, Princeton, 1983) esp., Chapter 1.
D. Lindley, Boltzmann’s Atom, The great debate that launched a revolution in physics
(The Free Press, New York, 2001).

2.1 Aristotelian physics and Galileo’s struggle
According to Aristotle’s (384-322 BCE) physics,55 the four properties, hot, cold, dry
and wet were irreducible properties, which corresponded to four elements of Empe-
docles (ca 490-430 BCE), fire, water, earth and air, respectively. The crucial point
is that what we observe directly by our sense has a direct materials basis.

This type of ideas is called ‘thingification’ or ‘reification.’ Chemistry is naturally
under its spell;56 one might say genomic biology is struggling to emancipate itself

53Historical comments in these lectures are heavily dependent on Y. Yamamoto, Historical De-
velopment of Thoughts of Heat Theory [in Japanese] (2007-8).

54This summarizes what you should be able to do in practice. Most things required in this course
are practical.

55Originally, ‘physica’ meant study of nature.
56Needless to say, the modern chemistry never thinks color and odor are the properties of the
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from this.57

Even Galileo (1564-1642) was initially under this influence, but later he clearly
established the mechanical view of Nature, asserting that what we could feel (e.g.,
color, odor, etc.) existed only in the relation between the sensing subjects and the
sensed objects and was thus subjective and secondary; only the (geometrical) shapes,
numbers, configurations (positions) and movements (position changes) of substances
were objective and were primary properties.

2.2 Archimedean mechanics
Mechanics, or more precisely, studying Archimedes was the key for Galileo and
Descartes to overcome the Aristotelian ‘physics’. Archimedes gave them the con-
viction that the natural laws could be formulated mathematically; indeed the world
is mathematically constructed.

2.3 Could Galileo conceive kinetic theory of gases?
Then, you might think Galileo could have invented a kinetic theory of gases and
could have conceived warmth as ‘thermal motion.’

This is ‘partially’ correct. Galileo conceived a special substance ‘fire particles,’
whose vigorous motion was regarded as heat/warmth. It seems that he wished to
distinguish ‘microscopic motion’ from ‘macroscopic motion.’ The relation between
motion and heat was in a certain sense recognized thanks to the fire arms, but it
may not be surprising that the relations of heat to the ordinary ‘slow’ motions and
to the motions of bullets may not have been identified.58

2.4 Boyle: the true pioneer of kinetic theory of heat
Boyle (1627-1691) was the first to accept the principle that matter and motion were
the primary things, and was truly free from the Aristotelian ‘reificationism.’ He
correctly asserted that there were microscopic and macroscopic motions. The former
was sensed as heat but could not be sensed by us as motion; the only motion we could
sense as such was the ‘progressive motion of the whole’ (i.e., the systematic motion),

substances themselves, but still it tends to explain properties of substances in terms of the properties
of the atoms and molecules more or less directly. For example, if you find an acidic organic
compound, you would likely think of COOH.

57e.g., such a superstition that there is a gene (as FoxP2) governing the capability to speak).
58Galileo never seems to have paid attention to the frictional heat, but even if he noted this, it

would not have been so trivial to go from there to the idea of converting heat to systematic motion.
As we will see later, it is doubtful that even Thomson clearly understood the relation when Clausius
established thermodynamics.
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which could not be felt by us as warmth even if it was vigorous. Thus, Boyle paved
the way to the discussion of mutual convertibility of heat and (macroscopic) motion.
Boyle was the true pioneer of the motional or the kinetic theory of heat.

2.5 Discovery of atmospheric pressure and vacua
The biggest discovery of modern physics about gases was the discovery of atmospheric
pressure and vacua by Torricelli (1608-1647), Pascal (1623-1662) and von Guericke
(1602-1686). This was a discovery demarcating the medieval and the modern ages, its
importance only second to heliocentrism. Do not forget that even Galileo explained
the impossibility of sucking water up more than 10 m in terms of the competition of
gravity and the abhorrence of vacua by air.

Within the Aristotelean system, air and fire were regarded essentially light ele-
ments, having the tendency to go away from the earth. Therefore, the idea of mass
(or weight) of air could not possibly be born. The discovery of vacua decisively dis-
credited Aristotle.

2.6 Daniel Bernoulli and modern dynamic atomism
Thus, a modern dynamic atomic theory should be possible at any time, and indeed,
Daniel Bernoulli’s (1700-1782) gas model59 (173860) was the first fully kinetic model.
We will discuss a simplified version (ignoring the size of atoms) in a modern fashion
shortly.

However, the success of Newtonian universal gravity almost derailed atomism
based on mechanics. Bernoulli’s work was forgotten for a hundred years.

2.7 Newton derailed kinetic theory of heat completely
Newton (1642-1727) tried to explain Boyle’s law (i.e., 𝑃𝑉 = constant, where 𝑃 is
the pressure, and 𝑉 the volume) in terms of (repulsive) forces acting between parti-
cles. The idea of forces among particles was a novel idea actually deviating from the
tradition of mechanistic theories. For Newton’s contemporary scientists (and also
for himself), introduction of gravitational force that explains the solar system was so
impressive that the take-home lesson of the Newton’s success was a program to find
forces that explain various phenomena as you can clearly read in author’s preface to
Principia.61

59This was in his book on hydrodynamics.
60J S Bach, Mass in B minor (BWV 232; about 110 min) was the same year.
61Newton wrote in author’s preface to Principia as follows: “I wish we could derive the rest of the

phenomena of nature by the same kind of reasoning from mechanical principles; for I am induced
by many reasons to suspect that they may all depend upon certain forces by which the particles
of bodies, by some causes hitherto unknown, are either mutually impelled towards each other, and
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Crudely put, somehow, Galileo’s fire particle, Newton’s ether,62 and the ‘pure
elemental fire’ of Boerhaave (1668-1738) were understood as analogues. Newton’s
repulsive (springy) molecules were imagined due to the clouds of such particles sur-
rounding the molecules.

2.8 A hundred year hiatus of kinetic theory and a lesson
For about 100 years, the Newton’s program 2.7 stifled the kinetic attempts.

You may have been surprised by this episode, but you will learn in your real life
how vulnerable the so-called scientists are to the current trend/fashion and authority.
This is quite unscientific, you might say. It is not surprising that the unfathomable
gap between science and religion is not properly recognized by many scientists.

Remember that fish advected by the stream is dead.

2.9 Between Bernoulli and Maxwell
Between Daniel Bernoulli (ca 1740) and the birth of the modern kinetic theory (due
to Maxwell (1831-1879) ca 1860) were the general acceptance of chemical atomic
theory (ca 1810) and the birth of physics in the modern sense.63 Also during this
period crucial empirical facts were accumulated, making kinetic theory almost the
sole consistent explanation of gasses.

2.10 Dalton
Dalton (1766-1844) asserted the law of partial pressure:64 the total pressure of a gas
mixture is simply the sum of the pressures each kind of gas would exert if it were
occupying the space by itself. As illustrated in Fig. 2.1, it is very naturally explained
from the atomic point of view.

cohere in regular figures, or are repelled and recede from each other; which forces being unknown,
philosophers have hitherto attempted the search of nature in vain; but I hope the principles here
laid down will afford some light either to this or some truer method of philosophy.’ (Principia,
author’s preface, May 8, 1686).

62Newton’s philosophical starting point was New Platonism of Cambridge and Alchemy; both
presupposed that the world is activated by the active principle. Ether was understood as the
protoplast created by God to ‘entrust’ His own activity. Initially, Newton conceived a pan-etherial
cosmology. See R. Ilffe, Priest of Nature, the religious worlds of Isaac Newton (Oxford, 2017).

63It is more experimental and mathematical rather than speculative with dedicated laboratories
and professionally trained ‘scientists.’

64Dalton arrived at his atomic theory not very inductively as is stressed by Brush on p32;
Dalton’s writings are sometimes hard to comprehend due to arbitrary thoughts and their outcomes
being nebulously mixed up with real experimental results (Yamamoto loc. cit. p194), quite different
from well-educated Gay-Lussac.
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Figure 2.1: The law of partial pressure due to Dalton

2.11 Gay-Lussac and three laws
Gay-Lussac (1778-1850) then established three important laws (ca 181065):
(i) The law of thermal expansion of gases (also called Charles’ law; 𝑃 ∝ 𝑇 if 𝑉 is
constant).
(ii) The law of constant temperature under adiabatic expansion: if a gas is suddenly
allowed to occupy a much larger space by displacing a piston, there is practically no
temperature change. You can simulate this nicely using http://falstad.com/gas/

with the free expansion setup.
(iii) The law of combining volumes: in gas phase reactions the volumes of reactants
and products are related to each other by simple rational ratios implying that ‘par-
ticles’ cannot generally be atoms.66

+

H O H  O22 2

Figure 2.2: The law of combining volumes indicating that generally gases are made of molecules
instead of atoms. The figure illustrates 2H2 + O2 → 2H2O.

2.12 Avogadro

65[1810: Napoleon married Marie Louise of Austria; Chopin was born; Beethoven Piano Trio
Archduke (Istomin-Stern-Rose)] Notice that Gay-Lussac was the first generation of professional
scientist trained professionally to be a scientist. He was a product of French Revolution.

66But Dalton rejected this interpretation, saying, Gay-Lussac’s experiments were inaccurate, etc.
This clearly indicates that Dalton was a metaphysicist more than a physicist.
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In 181167 Avogadro (1776-1856) proposed Avogadro’s hypothesis: every gas contains
the same number of molecules at the same pressure, volume, and temperature.

However, the molecular theory was not generally accepted until 1860, when Can-
nizzaro (1826-1910) advocated Avogadro’s proposal in the Karlsruhe Congress (How-
ever, Clausius accepted this by 1850;68 actually, Cannizzaro was triggered by Clau-
sius’ kinetic theory paper a year before69).

2.13 Build your intuition through simulation
http://falstad.com/gas/ is an excellent site to play with a gas dynamic model in
java with a heater/cooler, with or without gravity, etc.

2.14 Daniel Bernoulli’s kinetic theory
Let us look at Daniel Bernoulli’s work.

The (kinetic interpretation of) pressure 𝑃 on the wall is the average momentum
given to the wall per unit time and area by the gas. Consider the wall perpendicular
to the 𝑥-axis (see Fig. 2.3).

x

wall

vx

vx−

Impulse given to wall

        = 2m vx

Figure 2.3: Bernoulli’s theory (or mechanical model of gas). Particles are so small that they are
assumed not to collide with each other.

Let us proceed step by step. Assume that the mass of each particle is 𝑚, and
that the number density of the particles is 𝑛 = 𝑁/𝑉 , where 𝑉 is the volume of the
(uniform) gas and 𝑁 the total number of particles:
(i) For a single particle with velocity 𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑥) hitting the wall (𝑣𝑥 > 0) in
the figure, the momentum given to the wall upon collision (= the impulse) must be

67[1811: New Madrid earthquake, J. Austin published Sense and Sensibility.] This year Stevens
started the first steam-powered ferry service between New York City and Hoboken. As will be
noted later again, recognize how thermal physics had been left behind its practical applications.

68Brush p51
69C. Cercignani, “The rise of statistical mechanics,” in Chance in Physics, Lect. Notes Phys.

574 (edited by J. Bricmont, D. Dürr, M. C. Gallavotti, G. C. Ghirardi, F. Petruccione and N.
Zanghi) p25 (2001). This article gives a good summary of Boltzmann’s progress.
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2𝑚𝑣𝑥.
(ii) The total momentum given to the wall in one second is the force on the wall in
the 𝑥-direction, whose magnitude is equal to 𝑃𝐴, where 𝐴 is the area of the wall.
For a particle moving toward the wall to hit it within the next one second, it must
be within distance 𝑣𝑥 from the wall. Therefore, to contribute to the pressure the
particles with the 𝑥-component velocity around 𝑣𝑥

70 (> 0) must be in the volume of
𝐴× 𝑣𝑥.
(iii) Let 𝑛(𝑣𝑥) be the number density of the particles with its 𝑥-component velocity
around 𝑣𝑥. Then, the contribution of such particles to the pressure (times the wall
area) must be 𝑛(𝑣𝑥)× 𝐴𝑣𝑥 × 2𝑚𝑣𝑥 according to (i) and (ii).
(iv) Therefore, summing over all the incoming particles, we get

𝑃𝐴 =
∑︁
𝑣𝑥>0

2𝑛(𝑣𝑥)𝐴𝑚𝑣
2
𝑥. (2.1)

That is,

𝑃 =
∑︁
𝑣𝑥>0

2𝑛(𝑣𝑥)𝑚𝑣
2
𝑥 =

∑︀
𝑣𝑥>0 2𝑛(𝑣𝑥)𝑚𝑣

2
𝑥∑︀

𝑣𝑥>0 𝑛(𝑣𝑥)

∑︁
𝑣𝑥>0

𝑛(𝑣𝑥) = 2𝑛+𝑚⟨𝑣2𝑥⟩+, (2.2)

where 𝑛+ is the number of particles with positive 𝑣𝑥, and ⟨ ⟩+ means the average
over molecules with positive 𝑣𝑥 (to hit the wall).71

(v) We do not expect the mean square velocity of the left-going and right-going
particles are different, so ⟨𝑣2𝑥⟩+ = ⟨𝑣2𝑥⟩ (henceforth ⟨ ⟩ generally implies averaging, or
calculation of expectation values) and 𝑛+ = 𝑛/2 (just half of the particles move to
the right; notice that we have used the law of large numbers!). Therefore,

𝑃 = 𝑛𝑚⟨𝑣2𝑥⟩. (2.3)

(vi) Using the isotropy of the gas, we expect ⟨𝑣2𝑥⟩ = ⟨𝑣2𝑦⟩ = ⟨𝑣2𝑧⟩, so ⟨𝑣2⟩ = ⟨𝑣2𝑥⟩ +
⟨𝑣2𝑦⟩+ ⟨𝑣2𝑧⟩ = 3⟨𝑣2𝑥⟩. Therefore,

𝑃 =
1

3
𝑚𝑛⟨𝑣2⟩. (2.4)

Or, recalling 𝑛 = 𝑁/𝑉 , we have

𝑃𝑉 =
2

3
𝑁⟨𝐾⟩, (2.5)

where 𝐾 is the kinetic energy of a single gas particle. This equation is called
Bernoulli’s equation.

70We must write it to be in [𝑣𝑥, 𝑣𝑥 + 𝑑𝑣𝑥), precisely, but let us proceed as informally as possible.
71The astute reader should have noticed that the law of large numbers 1.13 is (implicitly) used

here.
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Comparing this with the equation of state of an ideal gas 𝑃𝑉 = 𝑁𝑘𝐵𝑇 ,
72

⟨𝐾⟩ = 3

2
𝑘𝐵𝑇. (2.6)

2.15 Equipartition of kinetic energy
Let us see that all the particles in a gas consisting of particles with different masses
have, on the average, identical translational kinetic energies. That is, (2.6) holds for
any particle in a gas mixture (if it is ‘in equilibrium’). As we will learn later, this is
almost self-evident, if we know the basic statistical mechanics, but we should also be
able to have elementary understanding. It may be inconvenient if you cannot drive
a good car at a high speed on a highway, but if you cannot walk, you will not be
able to explore the places where nobody has ever been.

Consider a two particle collision process. In equilibrium (i.e., if, on the average,
you cannot discern any change),

⟨𝑤 · 𝑉 ⟩ = 0, (2.7)

where 𝑤 is the relative velocity and 𝑉 is the center of mass velocity. If we write
these in terms of the velocities of two particles 𝑣1 and 𝑣2 and their respective masses
𝑚1 and 𝑚2, we have

𝑤 · 𝑉 = (𝑣1 − 𝑣2) ·
(𝑚1𝑣1 +𝑚2𝑣2)

𝑚1 +𝑚2

=
(𝑚1𝑣

2
1 −𝑚2𝑣

2
2) + (𝑚2 −𝑚1)𝑣1 · 𝑣2

𝑚1 +𝑚2

. (2.8)

We know ⟨𝑣1 · 𝑣2⟩ = 0, so we get the equality of the average kinetic energies.
The gas mixture can be simulated here: http://www.falstad.com/gas/ and

choose Setup: 2 (random speed). Small particles look really fast. Look at the energy
distributions.

Notice that Bernoulli’s formula and equipartition of translational kinetic energy
imply that even if all the particles in an ideal gas (non-interacting particle system)
are with different masses, still the ideal gas law holds.

Question. We have demonstrated the equipartition law, but we can give any initial
condition to the gas. Do you believe that the equipartition law eventually holds even
if the initial condition does not satisfy the law? ⊓⊔

72Here, the modern notations are used; what they knew at that time was that 𝑃𝑉 ∝ 𝑁𝑇 , but
they could not find 𝑁 .
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Discussion 1

D1.1 [Very elementary questions]
(1) The unit of pressure is ‘pascal’ Pa. Write this in terms of s, kg and m. [1 atm =
101,325 Pa.]73

(2) What is the total kinetic energy of the gas in the room where you are now? You
must supply reasonable values for 𝑃 , 𝑇 , etc.

Can you supply an explanation/illustration that makes the number more intu-
itively understandable?

(3) Estimate the number of molecules in the air of the discussion room. You may
assume the standard ideal gas equation of state 𝑃𝑉 = 𝑁𝑘𝐵𝑇 with the accepted
value for the Boltzmann constant 𝑘𝐵 = 1.380662×10−23 J/K. Clearly recognize that
without knowing this constant, you cannot get the number of molecules. Thus, a
fundamental question of physics is how to measure this value. This is (historically)
the topic of Brownian motion (Section 7).

(4) Suppose all the air molecules are condensed to a point mass of mass 𝑀 = 𝑁𝑚
(without any internal structure), where 𝑚 is the (average) mass of the gas molecule.
What is the speed of the point mass, if it has the same (total) kinetic energy 𝒦 as
obtained in (2)?

You cannot answer this question without knowing the mass of air in the room.74

Let us use the air density = 1.2 kg/m3.
Now, compare it with the mean square velocity (

√︀
⟨𝑣2⟩) of the molecules. What

is your observation?

(5) It is usually taught that the kinetic theory of gases was a triumph of atomism,
but is it really so? Consider the limit 𝑁 → ∞, keeping 𝑀 = 𝑁𝑚 constant. What
do you obtain?

What is the logical conclusion of this observation?
(6) Suppose you place a sphere of radius 1 m in the room. How many air molecules
collide its surface on the average in one second?

First outline how to obtain the formula for the number 𝑁𝐶 of molecules colliding
a one side of a plane with unit area on the average in one second in terms of the

73⟨⟨How to write units⟩⟩
* Units are always with upright fonts, e.g., volume 𝑉 m3, or distance 𝐿 km.
* There must be a space between the quantity (number) and the unit, e.g., 32 mK (32 millikelvins)
or 25.2 kg.
* The products of different units must be separated with a center dot, e.g., mg·s for milligram times
second. Notice that m·g means meter times gram.
* When fully spelled as ‘pascal’, ‘newton’ or ‘coulomb’, all the units start with lower case letters.
In this case you need plural ‘s’, e.g., 3.2 Pa is spelled out 3.2 pascals.

74This tells you how important it is that you can make a vacuum. Creating vacua was important
only second to heliocentrism, as noted in the lecture notes 2.5.
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quantities appearing in 2.14.
We may be able to estimate 𝑁𝐶 later more accurately, but here let us assume that

we know only (the modern interpretation of) Daniel Bernoulli’s kinetic theory.
What can you say or is there any way to estimate the number of particles imping-

ing on the sphere approximately?

Solution.
(1) Since the pressure is force/area, Pa = N/m2, where N is newton and N = kg·m/s2.
Therefore, Pa = kg/m·s2.
How to write units: As explained in footnote 67, notice that units are never ital-
icized. You must know how to correctly write units. The numerical value and the
unit must be separated by a space. k (kilo) must not be in upper case. Distinct units
in product must be separated by ‘ · ’; mK is ‘milikelvins’ and m·K is ‘meter times
kelvin’.

(2) According to Bernoulli’s equation (2.5), 𝑃𝑉 = (2/3)𝑁⟨𝐾⟩. Therefore, the total
kinetic energy is given by

𝒦 ≡ 𝑁⟨𝐾⟩ = 3

2
𝑃𝑉 =

3

2
101, 325𝑉 = 1.52× 105𝑉 J. (2.9)

Here, a reasonable value 𝑉 must be supplied in m3 to use the unit J (= joule).
If the room is 20 m × 10 m × 3 m, 𝒦 = 9 × 107 J. The average US car weighs

4,000 lb = 1,800 kg, so this means 𝒦 is the kinetic energy of a car running at 300
m/s (1,000 km/h or 670 mph). This is about the energy available from burning 1 kg
of gasoline (46.7 MJ/kg) [cf. 1 gallon of gas = 2.86 kg].

(3) Let 𝑉 be the volume of the room, the air pressure 𝑃 and its temperature 𝑇 .
Thus, 𝑁 = 𝑃𝑉/𝑘𝐵𝑇 . 𝑃 should be in pascals. Note: 1 atm = 1.013× 105 (101,325,
precisely) Pa. Here, 𝑇 must be room temperature, 300 K. Thus,

𝑁 =
𝑃𝑉

𝑘𝐵𝑇
=

101, 325

1.380662× 10−23 × 300
𝑉 = 2.45× 1025𝑉. (2.10)

In elementary courses we are told that 1 mole of gas occupies 24.5 liters of volume
under a similar condition:75 2.45× 1025 × 24.5× 10−3 = 6× 1023, our calculation is
reasonable.

(4)

𝒦 =
1

2
𝑀𝑣2 =

1

2
1.2𝑉 𝑣2 =

3

2
101, 325𝑉, (2.11)

so
𝑣2 = 3× 101, 325/1.2 = 253, 312.5 ⇒ 𝑣 = 503 m/s. (2.12)

Since ⟨𝐾⟩ = 𝑚⟨𝑣2⟩/2,
𝒦 =

1

2
𝑁𝑚⟨𝑣2⟩ = 1

2
𝑀⟨𝑣2⟩. (2.13)

75More precisely, 22.3 liters under 1 atm and 273 K.
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Thus,
√︀
⟨𝑣2⟩ is just the same!

Imagine ‘𝑀 ’ is divided into 100 equal (actually, need not be equal) particles.
Then, the ideal gas consisting of these 100 particles gives exactly the same equation
of state, the Bernoulli equation.

(5) We get just the same Bernoulli’s equation. Thus, Bernoulli’s theory could be
interpreted simply as a means to study continuum, so the success of kinetic theory
cannot tell us anything about the reality of atoms.

(6) According to Bernoulli the total number of particles colliding on the surface in
Fig. 2.3 in the lecture notes is given by (see (ii) in 2.14):

𝑁𝐶 =
∑︁
𝑣𝑥>0

𝑛(𝑣𝑥)𝑣𝑥. (2.14)

From symmetry, the answer to (6) is 4𝜋𝑁𝐶 .
To estimate (2.14) accurately, we need 𝑛(𝑣𝑥), which we will discuss only in Section

5. We can rewrite (2.14) as

𝑁𝐶 =
∑︁
𝑣𝑥>0

𝑛(𝑣𝑥)𝑣𝑥 =

∑︀
𝑣𝑥>0 𝑛(𝑣𝑥)𝑣𝑥∑︀
𝑣𝑥>0 𝑛(𝑣𝑥)

∑︁
𝑣𝑥>0

𝑛(𝑣𝑥) = ⟨|𝑣𝑥|⟩
1

2
𝑛. (2.15)

⟨|𝑣𝑥|⟩ and
√︀
⟨𝑣2𝑥⟩ =

√︀
⟨𝑣2⟩/

√
3 should be of the same order.76 Thus, our estimate

is

𝑁𝐶 ≈
1

2
√
3
𝑛
√︀
⟨𝑣2⟩ = 1

2
√
3

𝑁

𝑉

√︂
2𝑁⟨𝐾⟩
𝑀

=
1

2

𝑁

𝑉

√︂
𝑃𝑉

𝑁𝑚
=

1

2

𝑃

𝑘𝐵𝑇

√︃
𝑃

𝜌
. (2.16)

Here, 𝜌 = 1.2 kg/m3. Using the result in (3)

𝑁𝐶 ≈
1

2
2.45× 1025

√︂
1× 105

1.2
= 1.2× 1025 ×

√
8.25× 104 = 3.4× 1027. (2.17)

Thus, the answer is about 4× 1027.

D1.2 [Does gravity matter?].
The actual room is influenced by the gravitational field of the earth.

(1) What is the potential energy difference of an oxygen molecule between the floor
and the ceiling?

(2) Estimate the ratio of this potential energy and the kinetic energy. Is it the order
of 1%, 0.1 %, or · · ·? Is it ignorable? [Think of 0.1% of 𝑇 .]

Solution.
(1) Let ℎ be the height of the ceiling. Then,

ℎ𝑚𝑔 = ℎ× 9.8× (32× 10−3/6.02× 1023) = 5.2× 10−26ℎ J. (2.18)

76Can you tell which must be larger? Recall Cauchy’s inequality.
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(2) The ratio is 𝑚ℎ𝑔/(𝑚𝑣2/2) = 2𝑔ℎ/𝑣2 ∼ 50/5× 104 ∼ 0.1 %. This corresponds to
∼0.5 K. If such a difference exists, we cannot ignore it in a big lecture room.

(3) [‘open ended’ discussion topic] If a particle climbs up from the floor to the ceiling,
its kinetic energy would be converted into its potential energy, so the particle would
slow down.

Can you conclude that the temperature at the ceiling must be cooler (to the order
estimated in (2)) than on the floor (after the air in the room settles down to time-
independent state = equilibrium state)?

This is not a very trivial question, so I wish you to guess the answer, supplying
plausible supportive arguments.

Comments
Naively speaking, we may expect that the air is cooler near the ceiling than near the
floor. Indeed, there was a very famous scientist who concluded the existence of the
temperature difference. Actually, there is no temperature difference due to external
field. I wish to prove this later, but it is not very trivial, so here, I wish you to discuss
(i) what is the likely situation, Δ𝑇 = 0 or not?; (ii) Give justifying or plausibility
arguments for your guess.

A relatively elementary exposition, assuming Boltzmann/Maxwell distribution:77

In Fig. 2.4 the number in each box indicates the number density with a given kinetic energy
due to 𝑣𝑧.

𝑒−𝛽𝑚𝑣2
𝑧/2𝑑𝑣𝑧 ∝

1√
𝜀
𝑒−𝛽𝜀𝑑𝜀. (2.19)

Thus the number density of particles around energy 𝜀 is proportional to 𝑒−𝛽𝜀/
√
𝜀; we get the

table 2.4, where 𝑟 = 𝑒−𝛽𝑚𝑔ℎ.
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Figure 2.4:

Let us study the equilibrium between different heights (say, the green blocks between lower
cell with energy 𝑘𝑚𝑔ℎ (with number density 𝑛′) and the cell (with kinetic energy (𝑘−1)𝑚𝑔ℎ
and with the number density 𝑛′′) one ℎ higher into which the particle can move from the
original box. This transition should be proportional to 𝑣𝑧, so proportional to

√
𝜀 (i.e., going

77This is taken from H. Ezawa, “Who saw the atom?” (Iwanami 2013; original 1976) p305-
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up
√
𝑘 or down

√
𝑘 − 1). Therefore, in equilibrium

𝑛′
√︀
𝑘𝑚𝑔ℎ = 𝑛′′

√︀
(𝑘 − 1)𝑚𝑔ℎ, (2.20)

where 𝑛′ = 𝑛𝑟𝑘/
√
𝑘, so we get 𝑛′′ = 𝑛𝑟𝑘/

√
𝑘 − 1. The outcome is the green results in the

table. Note this is 𝑟 (the Boltzmann factor due to 𝑚𝑔ℎ) times the Maxwell distribution (the

lowest row). Thus, the second row must have the same temperature.

Of course, we can understand this from the canonical distribution trivially (Section 13),

but we cannot use it here, since no logic to justify its use is given yet.

D1.3 [Law of partial pressure from the kinetic point of view].
Demonstrate Dalton’s law of partial pressurewith the kinetic theory of D. Bernoulli.
If you think this is too trivial, you can skip it.

Solution.
Trivial.

D1.4 [Ideal gas in d-space].
What is Bernoulli’s equation of state in d-dimensional space? Again, a trivial ques-
tion, right?

Solution.
Almost trivial; you have only to replace ‘3’ with d. For such cases you need not write
down obvious things repeatedly, but you must be able to explain why it is trivial.

D1.5 [Equipartition-related]
(1) In an equilibrium78 mixture ideal gas maintained at temperature 𝑇 are two
molecules, 1 and 2, with mass 𝑚 and 𝑀 , respectively. Suppose 𝑚/𝑀 = 0.31. What
is the ratio between the mean square relative velocity of these two molecules and the
mean square velocity of molecule 1?

(2) What is ⟨(1/2)𝑚(𝑣1 − 𝑣2)
2⟩ in the 𝑀/𝑚 → ∞ limit? The answer should be

obvious, so state your answer first with your supporting argument and then confirm
it, using the formulas you should have used to answer (1).

Solution.
(1) Let the velocity of molecule 𝑖 be 𝑣𝑖. The relative velocity is 𝑤 = 𝑣1 − 𝑣2. We
wish to compute

⟨𝑤2⟩ = ⟨𝑣2
1⟩+ ⟨𝑣2

2⟩ − 2⟨𝑣1 · 𝑣2⟩. (2.21)

78We have not clearly defined what ‘equilibrium’ is, but here you may understand that the system
is isolated and left alone for a sufficiently long time. The molecules move in a mutually unrelated
manner, and, in particular, the equipartition of energy holds.
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Since two molecules are statistically independent, and since their mean velocities
must be zero (⟨𝑣1 · 𝑣2⟩ = ⟨𝑣1⟩ · ⟨𝑣2⟩ = 0 · 0 = 0),

⟨𝑤2⟩ = ⟨𝑣2
1⟩+ ⟨𝑣2

2⟩. (2.22)

Now, we use the equipartition of the translational kinetic energy

1

2
𝑚⟨𝑣2

1⟩ =
1

2
𝑀⟨𝑣2

2⟩ =
3

2
𝑘𝐵𝑇. (2.23)

Therefore,

⟨𝑤2⟩ = 3

𝑚
𝑘𝐵𝑇 +

3

𝑀
𝑘𝐵𝑇. (2.24)

Thus, the ratio is

⟨𝑤2⟩
⟨𝑣2

1⟩
=

(3/𝑚)𝑘𝐵𝑇 + (3/𝑀)𝑘𝐵𝑇

(3/𝑚)𝑘𝐵𝑇
=
𝑚+𝑀

𝑀
= 1.31. (2.25)

(2) ⟨𝑤2⟩ must be identical to ⟨𝑣2
1⟩ of molecule 1, so the answer is 3𝑘𝐵𝑇/2, since the

‘heavier’ molecule 2 is not moving at all! The ratio above goes indeed to 1 in the
desired limit.
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Exercises 1

E1.1 [How big is 𝑁𝐴]
Propose a way to show/illustrate how big Avogadro’s constant 𝑁𝐴 (or, more gen-
erally, the number of molecules in a macro object) is. My ‘spoon performance’ 1.7
was an example. One more illustration:
The total number of cells in human bodies on the earth at present is still less than
𝑁𝐴, even if you include your beloved gut microbes.

E1.2 [Otto von Guericke 1654]
The Magdeburg hemispheres79 has a 50 cm diameter. One of them had a tube con-
nection to attach the pump, with a valve to close it off. When the air was sucked out
from inside the hemispheres, and the valve was closed, the hose from the pump could
be detached, and the hemisphere were held firmly together by the air pressure of the
surrounding atmosphere. Estimate the force required to separate the hemispheres.

Soln.
The ‘opened-up’ illustration of the Magdeburg hemisphere system is in Fig. 2.5:

F

cross section

A

Figure 2.5: The Magdeburg hemispheres and the cross section with area 𝐴; 𝐹 is the total on
the left hemisphere due to atmosphere.

The total force on the left hemisphere 𝐹 must be the same (in magnitude) as the
force on one side of the cross section 𝐴 due to the atmospheric pressure, because
the hemisphere closed with the cross section 𝐴 does not start to move due to the
atmospheric pressure on it. Therefore, 𝐹 = 𝑃𝐴 = 105 × 𝜋(1/4)2 ≈ 2 × 104 N. This
is about equal to the force required to lift 2 tons of mass on the earth.

E1.3 [Phys 101 level question]
On a planet for the hydrogen molecule to escape from its surface (to infinity) it re-
quires the surface temperature 320 K. What is the temperature required for methane
to escape from the planet surface?

Solution.

79Wikipedia https://en.wikipedia.org/wiki/Magdeburg_hemispheres is nice. von Guerick
was a successful statesman for his town Magdeburg: “He often would not explain scientifically how
his shows worked leading people to believe in his wizardry, promoting his status as a great leader.”
(Wiki von Guericke).
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To escape the planet surface means to get the gravitational potential energy of

𝑈 = 𝐺𝑚𝑀/𝑅, (2.26)

where 𝑀 is the planet mass, 𝑅 the planet radius, and 𝑚 the mass of the hydrogen
molecule. This must be provided by the kinetic energy 3𝑘𝐵𝑇𝐻2/2. For methane we
need 𝑈 = 𝐺𝑚′𝑀/𝑅, where 𝑚′ is the methane mass, so 3𝑘𝐵𝑇𝐻2/2 × (𝑚′/𝑚) is the
required kinetic energy. That is 𝑇 = 𝑇𝐻2𝑚

′/𝑚 = 8𝑇𝐻2 = 2560 K.

E1.4 [Mean quare velocity].
There is a gas of mass 19 g in a container of 21 liters. In equilibrium, its pressure is
1.1 atm. What is the root mean-square velocity of the molecules in the gas?

Solution.
Our starting point is the formula due to Bernoulli

𝑃𝑉 = (2/3)𝑁⟨𝐾⟩ = (1/3)𝑀⟨𝑣2⟩, (2.27)

where 𝑀 is the total mass of the gas. You must convert all the units into the ones
in SI. 1 atm = 1.013× 105 Pa. Therefore,

⟨𝑣2⟩ = 3𝑃𝑉

𝑀
=

3× 1.013× 105 × 1.1× 21× 10−3

19× 10−3
= 3.60× 105. (2.28)

That is,
√
3.6× 105 = 600 m/s. This is a realistic value.

Notice that even if a gas consists of a single particle of mass 19 g, we get the same
equation of state if we interpret the (time) average of the force acting on the wall as
𝑃𝐴. Our calculation does not tell us anything about atoms.

E1.5 [Equipartition related].
In a mixture ideal gas maintained at temperature 𝑇 are two molecules, 1 of mass
𝑚 and 2 of mass 𝑀 (> 𝑚). The ratio between the mean square relative velocity of
these two molecules and the mean square velocity of molecule 1 is 1.2. What is the
mass ratio 𝑀/𝑚?

Solution.
Let the velocity of molecule 𝑖 be 𝑣𝑖. The relative velocity is 𝑤 = 𝑣1 − 𝑣2. We wish
to compute

⟨𝑤2⟩ = ⟨𝑣2
1⟩+ ⟨𝑣2

2⟩ − 2⟨𝑣1 · 𝑣2⟩. (2.29)

Since two molecules are statistically independent, and since their mean velocities
must be zero (⟨𝑣1 · 𝑣2⟩ = ⟨𝑣1⟩ · ⟨𝑣2⟩ = 0 · 0 = 0),

⟨𝑤2⟩ = ⟨𝑣2
1⟩+ ⟨𝑣2

2⟩. (2.30)

Now, we use the equipartition of the translational kinetic energy

1

2
𝑚⟨𝑣2

1⟩ =
1

2
𝑀⟨𝑣2

2⟩ =
3

2
𝑘𝐵𝑇. (2.31)
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Therefore,

⟨𝑤2⟩ = 3

𝑚
𝑘𝐵𝑇 +

3

𝑀
𝑘𝐵𝑇. (2.32)

Thus, the ratio is

⟨𝑤2⟩
⟨𝑣2

1⟩
=

(3/𝑚)𝑘𝐵𝑇 + (3/𝑀)𝑘𝐵𝑇

(3/𝑚)𝑘𝐵𝑇
=
𝑚+𝑀

𝑀
= 1.2. (2.33)

Therefore, 𝑀/𝑚 = 5.
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3 Introduction to Probability

Summary
* Probability is essentially the ‘volume’ of our confidence measured on the 0-1 scale.
Probability must satisfy additivity.
* Gamble called survival race forces our subjective probability to be consistent with
empirical probability.
* Understand how to describe events in terms of sets.

Key words
Probability, elementary event, sample space, event, conditional probability, (statis-
tical) independent event, stochastic (random) variable, expectation value, variance,
standard deviation, indicator, statistical independence of random variables

What you should be able to do80

* Be able to calculate expectation values and variances for simple cases.
* Understand 𝑃 (𝐴) = ⟨𝜒𝐴⟩.
* There is an appendix on the elementary combinatorics at the end of the lecture. Be
familiar with its content (esp., the binomial theorem and the multinomial theorem).

To go beyond Daniel Bernoulli, we need the idea of probability. When Maxwell
was 19 years old, he read an article introducing the continental statistical theory
into British science (e.g., Gauss’s theory), and was really fascinated by it. He wrote
to his friend: “the true logic for this world is the Calculus of Probabilities · · ·.”81

Following is an introduction to measure-theoretical probability theory, although no
formal introduction of measures will be discussed.82 You can simply understand that
‘measure’ is a precise concept corresponding to volumes and weights.

80This summarizes what you should be able to do in practice. Most things required in this course
are practical.

81Brush p59
82An introductory exposition of measure may be found in YO, The Nonlinear World (Springer,

2012) p66. Its electronic version can be downloaded, free of charge, from our library.
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3.1 Probability is a measure of confidence level
Suppose we have a jar containing 5 white balls and 2 black balls. What is the degree
𝐶𝑤 on the 0-1 scale of your confidence for you to pick a white ball out of the jar? We
expect that, on the average, 5 times out of 7 we will take a white ball out. Hence, it
is sensible to say that our confidence in the above statement is 5/7 on the 0-1 scale;
𝐶𝑤 = 5/7.

Figure 3.1: Take out one ball without looking in the jar with replacement. ‘How much’ are you
sure you get a white ball?

Suppose you can obtain a dollar if you pick a white ball out, but otherwise must pay
𝑋 dollars. Whether you wish to participate in this gamble or not depends on 𝑋.
What is the wise choice? With our confidence 𝐶𝑤 it is sensible to assume that we
may estimate the expected gain (in the long run) as:

𝐸𝑀 = 𝐶𝑤 − (1− 𝐶𝑤)𝑋. (3.1)

If 𝐸𝑀 is non-negative, i.e., if 𝑋 ≤ 𝐶𝑤/(1−𝐶𝑤), then we may play this gamble. Since
you are free to have any idea or belief, you may freely assume 𝐶𝑤 to be any number
between 0 and 1. However, there is no freedom of action, if you wish to stay happily
in this world. 𝐶𝑤 must be realistic. For our jar game 𝐶𝑤 = 5/7 is demanded. We
will soon learn why; we can check whether your confidence level is rational or not
empirically by repeating the gamble.

3.2 What if events are not repeatable?
However, probability seems to show up even in cases where we cannot repeat events.
How can we check our confidence level is rational or not? For example, the meaning of
the statement that the precipitation probability tomorrow is 70 % is that we should
have a confidence level of 0.7 in raining tomorrow (if you bet money on weather,
you’d better use this confidence estimate). However, we cannot repeat ‘tomorrow,’
so how can we check that the choice is good? In practice, the extent of confidence is
estimated relying on the past experiences of similar events.83

83Why does the estimated confidence level often match reality? It is thanks to the totality of
our 4 billion year experiences (this is called phylogenetic learning that relies on the stability or
even benevolence (recall 1.14) of our world). Even if an event does not seem to be repeatable,
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3.3 Events and sets
To make mathematical theory of probability, we must express events (= what can
happen) as sets.

An event which cannot be analyzed further, or need not be analyzed further for
our purpose, is called an elementary event. Elementary events need not be atomic
events that cannot be dissected further into more basic events. For example, when
we cast a dice, usually we regard a particular face, 1, 2, 3, 4, 5, or 6, to be up as
an elementary event. However, if we pay attention only to the even-odd properties
of the numbers, the elementary events could be even and odd only. On the other
hand, if you wish to use the direction of the edges or locations of the dice as well
as the faces, then 1, · · ·, 6 are no more elementary events. In statistical mechanics,
elementary events are mechanical events that are not dissected further in mechanics.

Denote by Ω the totality of elementary events (called the sample space) allowed
in the situation or to the system under study. Any (compound) event under consid-
eration can be identified with a subset of Ω (Fig. 3.2).

When we say an event corresponding to a subset 𝐴 of Ω occurs, we mean that one
of the elements (= elementary events) in 𝐴 actually occurs.
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Figure 3.2: In this illustration the sample space is Ω = {𝑎, 𝑏, 𝑐, · · · , 𝑥, 𝑦, 𝑧}, where letters denote
elementary events; one of the elementary events is what actually happens (or what is actually
sampled). Event 𝐴 = {𝑎, 𝑏, 𝑐} is said to occur, if 𝑎, 𝑏 or 𝑐 actually happens.

3.4 Venn diagrams and events
Events are illustrated conveniently with the aid of the Venn diagrams (Fig. 3.3).84

3.5 Probability is in [0, 1]

sufficiently many very similar events happened in the past. “What has been is what will be, and
what has been done is what will be done; there is nothing new under the sun.” (Eccles. 1-9) We
have been selected to be able to use the result of phylogenetic learning.

84due to John Venn (1834-1923) around 1860. who was a logician and a proponent of frequentist
interpretation of probability.
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A

B

C

Figure 3.3: The Venn diagram conveniently illustrates compound events. Left: The colored
portion denotes events in which only two events among 𝐴,𝐵 and 𝐶 occur. Right Stained glass
window at Gonville and Caius College, Cambridge, commemorating Venn and the Venn diagram.
(From Wikipedia, ‘John Venn.’).

Let us denote the probability of 𝐴 ⊂ Ω by 𝑃 (𝐴). Since probability should measure
the degree of our confidence on a 0-1 scale, we demand that

𝑃 (Ω) = 1; (3.2)

something must happen. Then, it is also sensible to assume

𝑃 (∅) = 0; (3.3)

the event that nothing happens never happens, because something surely happens.

3.6 Probability is additive for mutually exclusive events
Consider two mutually exclusive events, 𝐴 and 𝐵. That is, when 𝐴 occurs, 𝐵 never
occurs, and vice versa. Event 𝐴 happens implies that one of the elementary events
in 𝐴 actually occurs (recall 3.3). Since 𝐴 and 𝐵 never occur simultaneously, no ele-
mentary event in 𝐴 should be in 𝐵 (and vice versa). Hence, the mutual exclusiveness
of events 𝐴 and 𝐵 means

𝐴 ∩𝐵 = ∅. (3.4)

It is sensible to demand

𝑃 (𝐴 ∪𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵), if 𝐴 ∩𝐵 = ∅. (3.5)

This is the additivity of probability.
For example, for a dice the probability (or your confidence) for face 1 is 0.15 and

probability for face 2 or 3 is 0.4 (needless to say, this dice is not fair or you believe it
is not fair), the probability to observe faces with values not more than 3 should be
0.15 + 0.4 + 0.4 = 0.95.

As an example, let us consider a series of experiments tossing a coin three times.
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There are eight possible outcomes corresponding to the combination of three H and
T, so the sample space is

Ω = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}. (3.6)

The word “fair” means that all elementary events are equally likely. Or, it means
that we may live without any particular penalty even if we have the same confidence
levels 1/8 for the occurrence of any elementary event. However, if one firmly believes
that the world is created for H to continue, his confidence level in the occurrence of
HHH may be 0.5, and HHT or THH may be 0.2, respectively. Even for such a person
the totality of probability must be 1, and the probability for H not to continue must
be 1− 0.5− 2× 0.2 = 0.1.

The event 𝐴 that at least two H appear is 𝐴 = {HHH, HHT, HTH, THH}.
Since all the elementary events are mutually exclusive, 𝑃 (𝐴) = 1/2 for a person who
believes that the coin is fair, but it is obviously larger than 0.9 for the person with a
peculiar H belief. The difference between these two confidence levels is so large that
very quickly we can check (experimentally) which is realistic.

3.7 Probability is a measure with total measure unity
We know other quantities for which additivity (3.5) holds; length, area, volume, mass
(if discrete, number), etc. Thus, we see that the probability measuring the amount
of our confidence should be something like volume.

A function that assigns numbers to sets (or a map from sets to numbers) is called
a set function.

Roughly speaking, an additive non-negative set function is called a measure.
Above examples such as area, volume, etc., are mathematically refined as measures.
If a measure whose value on the total set is normalized to unity, it is called a prob-
ability (or a probability measure)

Suppose a shape is drawn in a square of area 1 (a unit square) (Fig. 3.4). If we
pepper it with points uniformly, then the probability = our confidence level of a
point to land on the shape should be proportional to its area.85 Thus, again it is
intuitively plausible that probability and area or volume are closely related.

A

Figure 3.4: Peppering the unit square evenly with points, we can estimate the area of 𝐴.

85This has a practical consequence. See 4.9.
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3.8 What is probability theory?
If an event is given, a certain confidence level in the occurrence of this event may
be expressed as a certain probability measure. Whether the confidence level is use-
ful/rational or not is not a concern of probability theory.

Probability theory is interested in the conclusions we can deduce from the condi-
tions any confidence belief encoded in 𝑃 must satisfy:
(i) 𝑃 ∈ [0, 1],
(ii) 𝑃 is additive in the sense of 3.6.
In other words, 𝑃 is a normalized measure (see 3.7).

3.9 Relation to combinatorics
As can be seen from the example in 3.6 (especially from the calculation of the
confidence levels for the one who believe the coin is fair), in many elementary cases,
to count the number of cases satisfying a certain condition is the technical core of
probability calculation. However, it is just a technical detail, and is not a crucial
part of probability theory. Still, we should be able to do practical calculations, so
elementary combinatorics is outlined in Appendix 3A.

3.10 Objectivity of subjective probability
Since probability is introduced as the confidence level, you might have thought that
probability is only subjective. Indeed, in the sense that probability theory is indif-
ferent to whether a particular probability (or confidence level) assignment is useful
or not to live in this world, probability may be subjective and not objective. Then,
such a subjective concept should not be relevant to objective science such as physics.
However, our subjective feeling (emotion underlying decisions) has been molded by
natural selection during the past 4 billion years, so our subjective probability esti-
mates (confidence levels) are very often consistent with objective probability.86

Probabilities appearing in physics should be objective. If we say they are objec-
tive, there must be a means to measure them. To this end, we must learn elementary
probability theory a bit further.

3.11 ‘Subadditivity’ of probability

86Even other animals have considerable capability of estimating probabilities; they are free from
strange religious beliefs, so their capability could be better than ours when our minds are clouded
by strange beliefs.
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From the additivity of probability (see 3.6), we can get

𝑃 (𝐴 ∪𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵)− 𝑃 (𝐴 ∩𝐵). (3.7)

This implies
𝑃 (𝐴 ∪𝐵) ≤ 𝑃 (𝐴) + 𝑃 (𝐵). (3.8)

This is the subadditivity of probabiulity.
If 𝐴 ⊂ 𝐵, then 𝐵 = 𝐴 ∩ (𝐵 ∖ 𝐴),87 so we conclude

𝐴 ⊂ 𝐵 ⇒ 𝑃 (𝐴) ≤ 𝑃 (𝐵). (3.9)

Denoting Ω ∖ 𝐴 by 𝐴𝑐 (complement), we get

𝑃 (𝐴𝑐) = 1− 𝑃 (𝐴). (3.10)

Exercise. Show, if 𝑃 (𝐴) = 1, then 𝑃 (𝐴 ∩𝐵) = 𝑃 (𝐵).
[Obvious! It is important to feel that this is obviously true, but you should be able
to give a logical proof as well. Notice that 𝑃 (𝐵) = 𝑃 (𝐴 ∩ 𝐵) + 𝑃 (𝐴𝑐 ∩ 𝐵). From
(3.9) 𝑃 (𝐴𝑐 ∩𝐵) ≤ 𝑃 (𝐴𝑐) = 0, so 𝑃 (𝐵) = 𝑃 (𝐴 ∩𝐵).]

3.12 Conditional probability
Suppose we know for sure that event 𝐵 has occurred. Under this condition what is
the probability of the occurrence of event 𝐴? Thus we need the concept of conditional
probability. We write this conditional probability as 𝑃 (𝐴|𝐵), and define it as

𝑃 (𝐴|𝐵) =
𝑃 (𝐴 ∩𝐵)

𝑃 (𝐵)
, (3.11)

so that 𝑃 (𝐵 |𝐵) = 1 should hold.

3.13 Statistical independence
When the occurrence of event 𝐴 does not tell us anything about event 𝐵 and vice
versa, we say two events 𝐴 and 𝐵 are (statistically) independent. Do not confuse
‘independent events’ and ‘mutually exclusive events.’ Since knowing about event 𝐵
does not help us to obtain more information about event 𝐴 if 𝐴 and 𝐵 are indepen-
dent, we should get

𝑃 (𝐴|𝐵) = 𝑃 (𝐴), (3.12)

where 𝑃 (𝐴 |𝐵) is the conditional probability just introduced in 3.12. Therefore, the
following formula must be an appropriate definition of independence of events 𝐴 and
𝐵:

𝑃 (𝐴 ∩𝐵) = 𝑃 (𝐴) · 𝑃 (𝐵). (3.13)

87⟨⟨Setminus⟩⟩ ‘Setminus’ ∖ denotes ‘subtraction’ as 𝐴 ∖𝐵 = 𝐴 ∩𝐵𝑐.
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For example, when we use two fair dice ‘a’ and ‘b’ and ask the probability for
‘a’ to exhibit a number less than or equal to 2 (event 𝐴), and ‘b’ a number larger
than 3 (event 𝐵), we have only to know the probability for each event 𝐴 = {1𝑎, 2𝑎}
and 𝐵 = {4𝑏, 5𝑏, 6𝑏}, where 𝑛𝑥 denotes the elementary event that dice 𝑥 gives face 𝑛.
Thus, the answer is 𝑃 (𝐴 ∩𝐵) = 𝑃 (𝐴) · 𝑃 (𝐵) = 1/3 · 1/2 = 1/6 for fair dice.

3.14 Stochastic variables
You must have heard of ‘stochastic processes.’ A stochastic process is a process in
which a ‘stochastic variable’ or ‘random variable’ takes various values as a function
of time. Then, what is a ‘stochastic variable’ or ‘random variable’?

Let Ω be a sample space and a probability 𝑃 is given on it.88 Then, a function
(map) from Ω to some mathematical entity (real numbers, vectors, etc.) is called a
stochastic variable or random variable.

Let Ω = {𝜔𝑖}. A real-valued stochastic variable 𝐹 is a map 𝐹 : Ω → R. It is
rational to write the probability for this stochastic variable to take a particular value
𝑓 as

Prob (𝐹 = 𝑓) = 𝑃 ({𝜔 |𝐹 (𝜔) = 𝑓}) = 𝑃 (𝐹−1(𝑓)). (3.14)

Since 𝐹−1(𝑓) is the totality of the elementary events 𝜔 such that 𝐹 (𝜔) = 𝑓 , summing
all the probabilities for these elementary events should be the probability of the set
𝐹−1(𝑓) = ‘event such that 𝐹 = 𝑓 ’ (see Fig. 3.5). Therefore, the above definition is
very reasonable.
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Figure 3.5: The probability for a stochastic variable 𝐹 to assume a particular value 𝑓

For example, suppose you cast a dice (Ω = {1, 2, 3, 4, 5, 6}), and you obtain $1
if the face is odd; otherwise, you must pay $1. Then, your gain 𝐹 is a random
variable 𝐹 : Ω → {−1,+1} such that 𝐹−1(−1) = {2, 4, 6} and 𝐹−1(+1) = {1, 3, 5}.
Therefore, Prob (𝐹 = +1) = 𝑃 ({1, 3, 5}) and Prob (𝐹 = −1) = 𝑃 ({2, 4, 6}).

88Here, that 𝑃 is given on Ω implies that the value of 𝑃 is given for all the elementary events in
Ω (if Ω is discrete; if it is continuous, then 𝑃 must be defined on an appropriate family of subsets
of Ω). (Ω, 𝑃 ) is called a probability space. If you read a respectable probability book, you will
encounter something like (Ω,ℬ, 𝑃 ), where ℬ is a family of ‘measurable sets.’ We will not discuss
this in these notes. (Not all the events should have probabilities to avoid something like 1 + 1 = 3,
so we must specify what events can have probabilities. This is the role of ℬ.)
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In short, if we write the probability for a stochastic variable 𝐹 to assume a value
𝑓 as 𝑃𝐹 (𝑓), then

𝑃𝐹 (𝑓) = 𝑃 (𝐹−1(𝑓)). (3.15)

3.15 Expectation values
The expectation value (= average) of 𝐹 is written as (if one wishes to express the
underlying probability 𝑃 explicitly) 𝐸𝑃 (𝐹 ) or ⟨𝐹 ⟩𝑃 and is defined by

𝐸𝑃 (𝐹 ) ≡ ⟨𝐹 ⟩𝑃 ≡
∑︁
𝜔∈Ω

𝑃 (𝜔)𝐹 (𝜔) =
∑︁
𝑓

𝑃𝐹 (𝑓)𝑓. (3.16)

Often the suffix 𝑃 is omitted. The last equality can be checked by a straight-
forward calculation (also see Fig. 3.5 above). Let us denote the event 𝐹 = 𝑓 as
𝑒𝑣(𝐹 = 𝑓) = {𝜔 |𝐹 (𝜔) = 𝑓)}:

∑︁
𝜔∈Ω

𝑃 (𝜔)𝐹 (𝜔) =
∑︁
𝑓

⎛⎝ ∑︁
𝜔∈𝑒𝑣(𝐹=𝑓)

𝑃 (𝜔)𝐹 (𝜔)

⎞⎠ =
∑︁
𝑓

⎛⎝ ∑︁
𝜔∈𝑒𝑣(𝐹=𝑓)

𝑃 (𝜔)𝑓

⎞⎠
=

∑︁
𝑓

⎛⎝ ∑︁
𝜔∈𝑒𝑣(𝐹=𝑓)

𝑃 (𝜔)

⎞⎠ 𝑓 =
∑︁
𝑓

𝑃 (𝑒𝑣(𝐹 = 𝑓))𝑓 =
∑︁
𝑓

𝑃𝐹 (𝑓)𝑓.

(3.17)

At the last step the definition of 𝑃𝐹 was used.
The sum becomes integration when we study events which are specified by a

continuous parameter. In this case,

𝐸𝑃 (𝐹 ) ≡ ⟨𝐹 ⟩𝑃 ≡
∫︁
𝜔∈Ω

𝐹 (𝜔)𝑃 (𝑑𝜔) =

∫︁
𝜔∈Ω

𝐹 (𝜔)𝑑𝑃 (𝜔), (3.18)

where 𝑃 (𝑑𝜔) is the probability of the volume element 𝑑𝜔; often 𝑃 (𝑑𝜔) is written as
𝑑𝑃 (𝜔). You may simply interpret this integral just as the Riemann integral.

3.16 Expectation value operator
𝐸 may be understood as an operator.89 Let 𝑓 and 𝑔 be stochastic variables, and 𝑎
and 𝑏 real numbers. Then, we have the following equality

𝐸(𝑎𝑓 + 𝑏𝑔) = 𝑎𝐸(𝑓) + 𝑏𝐸(𝑔). (3.19)

89‘Operator’ is a map that maps a function to another function or number. For example, the
differential operator 𝑑/𝑑𝑥maps a differentiable function 𝑓 to its derivative 𝑓 ′ and is a linear operator.

45



That is, the expectation value of a linear combination is a linear combination of
expectation values. An operator with this property is called a linear operator. The
expectation value operator 𝐸 is a linear operator.

3.17 Variance
We are also interested in the ‘spread’ of the variables. Its good measure is the
variance of 𝑋 defined as

𝑉 (𝑋) = 𝐸([𝑋 − 𝐸(𝑋)]2) = 𝐸(𝑋2)− 𝐸(𝑋)2. (3.20)

Its square root 𝜎(𝑋) =
√︀
𝑉 (𝑋) is called the standard deviation of 𝑋.

3.18 Indicator
The indicators 𝜒𝐴 of a set (= event in our context) 𝐴 is defined by

𝜒𝐴(𝜔) ≡
{︂

1 if 𝜔 ∈ 𝐴,
0 if 𝜔 ̸∈ 𝐴. (3.21)

This indicates the answer ‘yes’ or ‘no’ to the question: is an elementary event 𝜔 in
𝐴? 𝜒𝐴 = 1, if 𝐴 happens.

Notice that (apply (3.16) straightforwardly)

⟨𝜒𝐴⟩𝑃 =
∑︁
𝜔

𝜒𝐴(𝜔)𝑃 (𝜔) =
∑︁
𝜔∈𝐴

𝑃 (𝜔) = 𝑃 (𝐴). (3.22)

This is a very important relation for the computation of probabilities.

3.19 Random variable in terms of indicators
A random variable (= stochastic variable) is a function 𝑋(𝜔) (𝜔 ∈ Ω) defined on Ω.
If we denote the event 𝑋 = 𝑥 as 𝑒𝑣(𝑋 = 𝑥) = {𝜔 |𝑋(𝜔) = 𝑥}, then 𝑋 defined on Ω
may be written as

𝑋(𝜔) =
∑︁
𝑥

𝑥𝜒𝑒𝑣(𝑋=𝑥)(𝜔). (3.23)

(3.16) follows from this and (3.22):

⟨𝑋(𝜔)⟩ =
∑︁
𝑥

𝑥⟨𝜒𝑒𝑣(𝑋=𝑥)(𝜔)⟩ =
∑︁
𝑥

𝑥𝑃𝑋(𝑥), (3.24)

where 𝑃𝑋(𝑥) is the probability for 𝑋 to be 𝑥. Here, we have used the fact that the
expectation value operator ⟨ ⟩ is a linear operator and a similar calculation as (3.17):

⟨𝜒𝑒𝑣(𝑋=𝑥)(𝜔)⟩ =
∑︁
𝜔∈Ω

𝜒𝑒𝑣(𝑋=𝑥)(𝜔)𝑃 (𝜔) = 𝑃 (𝑒𝑣(𝑋 = 𝑥)) = 𝑃𝑋(𝑥) (3.25)
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3.20 Independence of stochastic variables
How should we define ‘independence’ (statistical independence) of two stochastic
variables 𝑋1 and 𝑋2? A reasonable answer is that

𝐸(𝐹 (𝑋1)𝐺(𝑋2)) = 𝐸(𝐹 (𝑋1))𝐸(𝐺(𝑋2)) (3.26)

holds for any functions90 𝐹 and𝐺 of the stochastic variables. In particular, if stochas-
tic variables 𝑋1 and 𝑋2 are independent,

𝐸(𝑋1𝑋2) = 𝐸(𝑋1)𝐸(𝑋2). (3.27)

If random variables 𝑋 and 𝑌 are independent, then

𝑉 (𝑋 + 𝑌 ) = 𝑉 (𝑋) + 𝑉 (𝑌 ). (3.28)

3.21 Covariance
If you have two random variables, you might wish to know their relations. For two
stochastic variables 𝑋 and 𝑌

𝐶(𝑋, 𝑌 ) = 𝐸([𝑋 − 𝐸(𝑋)][𝑌 − 𝐸(𝑌 )]) = 𝐸(𝑋𝑌 )− 𝐸(𝑋)𝐸(𝑌 ) (3.29)

is called the covariance between 𝑋 and 𝑌 , which shows up often when we wish to
study fluctuations.

If 𝑋 and 𝑌 are statistically independent variables, then 𝐶(𝑋, 𝑌 ) = 0, but the
converse is not true. Let 𝑌 = ±𝑋, where ± is randomly chosen by coin-tossing.
Then, 𝐶(𝑋, 𝑌 ) = 0, but we always have 𝑋2 = 𝑌 2, so they cannot be statistically
independent; they violate the definition of statistical independence, and also intu-
itively we cannot say 𝑋 and 𝑌 are unrelated.

90‘Any functions’ here means ‘any (Lebesgue) integrable functions.’
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Appendix 3A: Rudiments of combinatorics91

As noted above, often evaluation of elementary probabilities boils down to count-
ing the number of ways to arrange objects. In statistical mechanics we must be able
to count the number of elementary events (i.e., microscopic events) under various
constraints. How to count is the main topic of combinatorics.

Sequential arrangement (without repetition) of 𝑟 objects from 𝑛 distin-
guishable objects: 𝑛𝑃𝑟

Suppose there is a set of 𝑛 distinguishable objects. How many ways are there to
make sequential arrangements of 𝑟 objects taken from this set (without repetition)?
This number is denoted by 𝑛𝑃𝑟 ≡ 𝑃 (𝑛, 𝑟).

There are two ways to get an explicit formula for this number:
(i) There are 𝑛 ways in selecting the first object. To choose the second object,
there are (𝑛 − 1) ways, because we have already taken out the first one. Here, the
distinguishability of each object is crucial. In this way we arrive at

𝑃 (𝑛, 𝑟) = 𝑛 · (𝑛− 1) · · · (𝑛− 𝑟 + 1) =
𝑛!

(𝑛− 𝑟)!
, (3.30)

where 𝑛! = 1 · 2 · 3 · · · (𝑛− 1) · 𝑛; 𝑛 factorial is the number of ways 𝑛 distinguishable
objects can be arranged in a sequence. The following symbol is also often used:

(𝑛)𝑟 ≡ 𝑛 · (𝑛− 1) · · · (𝑛− 𝑟 + 1). (3.31)

(ii) The other derivation is an interpretation of the rightmost formula in (3.30).
We can imagine distinguishable objects as monomers and try to make a polymer of
length 𝑛 from these monomers. There are total 𝑛! different configurations (different
polymers). Now, let us classify these polymers according to the first 𝑟 monomer
arrangements. How many different polymers with a given first 𝑟 subpolymer? There
are (𝑛−𝑟)! ways to complete this subpolymer into a full length 𝑛 polymer. Therefore,
if we classify length 𝑛 polymers according to the initial 𝑟 monomer configuration,
there are 𝑛!/(𝑛− 𝑟)! kinds.

Also from the logic in (i), we know that the number of ways to arrange 𝑟 objects
taken from 𝑛 distinguishable objects with repetition allowed is 𝑛𝑟. We can show
(𝑛)𝑟/𝑛

𝑟 → 1, if 𝑛 becomes large with fixed 𝑟. That is, asymptotically the samplings
with and without replacement are the same (as intuitively expected).

Selection of 𝑟 objects from 𝑛 distinguishable objects: binomial coeffi-
cient, 𝑛𝐶𝑟

91W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, 1957) volume 1,
Chapter II is a useful reference.
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Under the same distinguishability condition, we now disregard the order in the ar-
rangement of 𝑟 objects. That is, we wish to answer the question: how many different
subsets can we make, if we choose 𝑟 elements without repetition from a set consisting
of 𝑛 distinguishable elements?

Since we disregard the ordering in each arrangement of 𝑟 distinguishable objects,
the answer should be

𝑛𝐶𝑟 ≡
(︂
𝑛

𝑟

)︂
≡ 𝑛𝑃𝑟

𝑟!
=

𝑛!

(𝑛− 𝑟)!𝑟!
. (3.32)

The number
(︀
𝑛
𝑟

)︀
is called the binomial coefficient due to a reason clear from (3.35)

below.

Exercise 1. Show the following equalities and give combinatorial explanations:

𝑛𝑃𝑟 =

(︂
𝑛
𝑟

)︂
· 𝑟𝑃𝑟, (3.33)

(︂
𝑛
𝑟

)︂
=

(︂
𝑛− 1
𝑟 − 1

)︂
+

(︂
𝑛− 1
𝑟

)︂
. (3.34)

⊓⊔

Binomial theorem
Consider the 𝑛-th power of 𝑥 + 𝑦. There exists an expansion formula called the
binomial expansion:

(𝑥+ 𝑦)𝑛 =
𝑛∑︁

𝑟=0

(︂
𝑛

𝑟

)︂
𝑥𝑛−𝑟𝑦𝑟. (3.35)

This can be seen easily as follows: We wish to expand the product of 𝑛 (𝑥 +
𝑦):

𝑛⏞  ⏟  
(𝑥+ 𝑦)(𝑥+ 𝑦)(𝑥+ 𝑦) · · · (𝑥+ 𝑦) · · · (𝑥+ 𝑦) . (3.36)

As an example take the term 𝑥2𝑦𝑛−2. To produce this term by expanding the above
product, we must choose 2 𝑥’s from 𝑛 (𝑥+ 𝑦). There are

(︀
𝑛
2

)︀
ways to do this, so the

coefficient must be
(︀
𝑛
2

)︀
.

Multinomial coefficient
Suppose there are 𝑘 species of particles. There are 𝑞𝑖 particles for the 𝑖-th species.
We assume that the particles of the same species are not distinguishable. The total
number of particles is 𝑛 ≡

∑︀𝑘
𝑖=1 𝑞𝑖. How many ways are there to arrange these par-

ticles in one dimensional array?
If we assume that all the particles are distinguishable, the answer is 𝑛!. However,

the particles of the same species cannot be distinguished, so we need not worry which
𝑖-th particle is chosen first. Hence, we have over-counted the number of ways by the
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factor 𝑞𝑖! for the 𝑖-th species. The same should hold for all species. Thus we arrive
at

𝑛!

𝑞1!𝑞2! · · · 𝑞𝑘−1!𝑞𝑘!
. (3.37)

This is called the multinomial coefficient.

Multinomial theorem
There is a generalization of (3.35) to the case of more than two variables and is called
the multinomial expansion:

(𝑥1 + 𝑥2 + 𝑥3 + · · ·+ 𝑥𝑚)
𝑛 =

∑︁
𝑞1+𝑞2+···+𝑞𝑚=𝑛, 𝑞𝑖≥0

𝑛!

𝑞1!𝑞2! · · · 𝑞𝑚!
𝑥𝑞11 𝑥

𝑞2
2 · · ·𝑥𝑞𝑚𝑚 , (3.38)

whose demonstration is very similar to that explained around (3.36).

Arrangement of indistinguishable objects into distinguishable boxes
Consider 𝑛 indistinguishable objects. We wish to distribute them into 𝑟 distinguish-
able boxes. How many distinguishable arrangements can we make?

Since the boxes are distinguishable, we arrange them in a fixed sequence, and then
distribute the indistinguishable objects (Fig. 3.6).

.........

..........

...

r distinguishable boxes

Figure 3.6: Indistinguishable objects

Hence, the problem is equivalent to counting the number of arrangements of 𝑛 indis-
tinguishable balls and 𝑟−1 indistinguishable bars on a line (Fig. 3.6 bottom). Apply
(3.37) to obtain the answer:

(𝑛+ 𝑟 − 1)!

𝑛!(𝑟 − 1)!
=

(︂
𝑛+ 𝑟 − 1

𝑛

)︂
. (3.39)

How about the arrangement of the distinguishable 𝑛 into 𝑟 distinguishable boxes?
The first particle can be put into one of 𝑟 boxes. Then, the second, etc. Thus, there
are 𝑟𝑛 ways.

There are two more conceivable cases:
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(i) How about the arrangement of 𝑛 distinguishable particles into 𝑟 indistinguishable
boxes?
(ii) How about the arrangement of 𝑛 indistinguishable particles into 𝑟 indistinguish-
able boxes? [This is not easy. This is related to the decomposition of 𝑛 into 𝑟 positive
integers = integer partition problem. http://en.wikipedia.org/wiki/Partition_
(number_theory)]
Exercise 2. How many ways are there to distribute 𝑛 distinguishable balls into 𝑛
distinguishable boxes?
Exercise 3. How many ways to distribute 𝑛 distinguishable balls into 𝑛 distinguish-
able boxes with exactly one box left empty? [

(︀
𝑛
2

)︀
𝑛!]

Exercise 4. There are 4 workers who produced total 4 defective products. What
is the probability of a particular person produced 3 defective products? Assume all
the workers are equally skilled.

Derangement
A derangement is a permutation of the elements of a set such that none of the ele-
ments appear in their original position [http://en.wikipedia.org/wiki/Derangement].
Let 𝐷𝑛 be the number of derangements of 𝑛 (distinguishable) objects. Then,

𝐷𝑛 = (𝑛− 1)𝐷𝑛−1 + (𝑛− 1)𝐷𝑛−2 (3.40)

for 𝑛 ≥ 3. Note that 𝐷1 = 0, 𝐷2 = 1. This gives

1

𝑛!
𝐷𝑛 =

𝑛∑︁
𝑘=2

(−1)𝑘 1
𝑘!

=
1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)𝑛 1

𝑛!
. (3.41)

This converges to 1/𝑒 in the large 𝑛 limit.
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Q3-1. [Fun problems]
(1) Which probability is larger, (a) or (b), assuming the 6-sided dice are fair?
(a) At least one ‘1’ face appears in one throw of 4 dice.
(b) Two ‘1’ faces appear simultaneously at least once in 25 throws of two dice.

(2) There are two kittens. You are told that at least one of them is a male. What
is the probability that the two kittens are both males? What is the probability that
one kitten is a female? (Assume that the sex ratio of kittens is 1 to 1.)

(3) There are 5 boxes A-E of which one contains a prize of $1000. You are asked
to choose one box. After you choose one of the five boxes, the ‘coordinator’ of the
gamble opens 3 of the remaining boxes which are all empty. Then, he tells you that if
you pay $250 you may switch your choice. What is a good choice for you (assuming
that you wish to get more money), and your expected gain?
Soln.
(1)
(a) The complement of the event ‘at least one’ is ‘none.’ That is, if we compute the
probability 𝑝 for the event that no ‘1’ face appears in one throw of 4 dice, 1−𝑝 must
be the answer (𝑃 (𝐴) = 1− 𝑃 (𝐴𝑐)). This is 1− (5/6)4 = 0.5177.

(b) This is very similar to (a). The probability 𝑝 of the complement (no simultaneous
‘1’ is (35/36)25). Therefore, 1− (35/36)25 = 0.5055. Thus, (a) is slightly more likely.

The French nobleman and gambler Chevalier de Méré suspected (purely empir-
ically, of course) that (a) was higher than (b) with 24 throws (in this case the
probability is 0.4914; about 5% difference) instead of 25, but his mathematical skill
was not great enough to demonstrate why this should be so. He posed the question
to Pascal, who solved the problem and proved de Méré correct.92 We did better:
even if we throw 25 times, still (a) is more likely.

(2) For two kittens (you must recognize kittens can be distinguished), there are 4
different sex combinations: mm, mf, fm, ff. You know one of three occurred: mm, mf
or fm, since one is male. These three cases occur with equal probability. Therefore,
with 1/3 of the probability the other is male.

(3) If you do not switch your choice, obviously your expected gain will be $200 =
1000× (1/5).
The remaining 4 boxes contain the prize with probability 4/5. After the coordina-
tor opens 3 empty boxes, this probability is ‘concentrated in’ the remaining box.
Therefore, if you switch your choice, then your expected gain would be $800. Thus,
definitely you should pay $250 and switch!

In this case, the new information changes the condition, under which you should
reconsider your ‘confidence level.’

The above solution assumes (as usual in this type of questions) that the coordi-

92basically from Wikipedia.
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nator knows where the prize is. What if the coordinator does not know where the
prize is? Or you can imagine a wind opens three boxes, and they happen to be all
empty. In this case, what is your choice? An elementary answer is as follows: (1) If
you choose the prize-containing boxes, there are

(︀
4
3

)︀
ways to open three boxes. (2) If

you choose the empty box, then there is only one way to choose three empty boxes
from the remaining 4 boxes. There are 4 ways for you to choose an empty box. That
is, both are equally probable. Thus, you should not switch the box.

Suppose you are told that your choice does not contain the prize, but then told
that if you pay $300, you may choose a new box. Will you pay this price?

It may be fun to read: J. Rosenhouse, The Monty Hall Problem (Oxford, 2009).

Q3-2. There were 400 students in an exam. A professor was interested in who
were cheating in the exam, so he watched out for rare agreements of wrong solu-
tions. He found a pair whose errors agreed exactly, and he could calculate that the
probability of this agreement was at most 10−5. Therefore, he accused the pair of
cheating. Is his decision rational?

Soln.
The number of pairs is

(︀
400
2

)︀
= 200 × 399 = 79800 ≃ 80000, so on the average we

always find at least 0.8 rare-agreement pair. What does this mean? Without any ill
intention, on the average almost one pair will be accused! Therefore, his decision is
irrational.

When there are numerous (statistically independent) samples simultaneously as
in most problems of bioinformatics (say, ca. 20,000 genes for us), we must be very
careful about false positives. There are many ways to cope with this problem, but
the simplest is the Bonferroni correction. Look this up.
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4 Law of large numbers

Summary
* The law of large numbers allows us to measure probability.
*We can use the law of large numbers to estimate integrals. Recognize the power of
randomness.

Key words
Chebyshev’s inequality, law of large numbers

What you should be able to do
* You must be able to use the law of large numbers to estimate how many samples
you need to determine the empirical average with a prescribed error tolerance level.

4.1 How can we measure probability?
Let us return to the problem in Fig. 3.4. Suppose 𝜒𝐴 is the indicator of the area 𝐴
in the unit square. We pepper dots on it evenly. If the 𝑖th dot (location 𝑥𝑖) is on 𝐴,
𝜒𝐴(𝑥𝑖) = 1, otherwise, 0. If we count the number 𝑁1 of points for which 𝜒𝐴 = 1 in
the total trial with 𝑁 dots, 𝑁1/𝑁 should be close to the area, which is the probability
𝑃 for the dot to land on 𝐴. We expect

1

𝑁

𝑁∑︁
𝑖=1

𝜒𝐴(𝑥𝑖)→ 𝐸(𝜒𝐴) = 𝑃 (𝐴) (4.1)

in the large 𝑁 limit. This can be verified by the most important theorem of proba-
bility theory: the law of large numbers.

The most important message above is that probabilities of events may be ob-
served experimentally. Although we introduced probability 𝑃 (𝐴) as a measure of
our (subjective) confidence in the occurrence of event 𝐴, whether the probability is
realistic or not can be determined empirically in many cases. Do not forget that our
intuition/emotional judgement is based on our nervous systems, which have been
subjected to rigorous selection processes in the past 1 billion years. Thus, inevitably,
our subjective judgements tend to be consistent with the objective world.

4.2 Bernoulli recognized the law of large numbers for coin tossing
For a fair coin let 𝑋𝑛 be the indicator of head (i.e., 𝑋𝑛 = 1 if the outcome of the 𝑛th
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tossing is a head, otherwise, 0) for the 𝑛-th tossing of the coin. Then, we expect

1

𝑁

𝑁∑︁
𝑛=1

𝑋𝑛 →
1

2
. (4.2)

Jakob Bernoulli (1654-1705) proved this (Fig. 4.1).93

N

Figure 4.1: Left: The law of large numbers illustrated: the percentage of H in 𝑁 trials [from
http://www.mathaholic.com/?tag=law-of-large-numbers. This article, ‘Why casinos don’t
lose money,” is recommended.]. Right: Jacob Bernoulli (1654-1705) proved the law of large num-
bers (published posthumously in 1713) [Swiss stamp in 1994, courtesy of Professor M. Börgens of
Technische Hochschule Mittelhessen].

The following URL illustrates the law of large numbers:
http://demonstrations.wolfram.com/IllustratingTheLawOfLargeNumbers/

You will realize that convergence is not very fast.

4.3 Precise statement of law of large numbers
A precise statement of the law of large numbers (LLN) is as follows:
Let {𝑋𝑖} be a collection of independently and identically distributed (often abbrevi-
ated as iid) stochastic variables. For any 𝜀 > 0,

lim
𝑁→∞

𝑃

(︃⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑋𝑛 − 𝐸(𝑋1)

⃒⃒⃒⃒
⃒ > 𝜀

)︃
= 0 (4.3)

holds under the condition that the distribution of 𝑋𝑖 is not too broad: 𝐸(|𝑋1|) <∞.
If 𝑉 (𝑋1) < +∞, the condition is satisfied.94 In the following, the law of large
numbers is demonstrated under this assumption.

The interpretation of (4.3) is as follows: We make a single run consisting of 𝑁

93published posthumously in Art Conjectandi (1713). 𝑒 was introduced by him as well.
94Since all 𝑋𝑛 are distributed identically, we use 𝑋1 as a representative, so 𝐸(|𝑋1|), etc., show

up in the statement.
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repetitions of sampling or trials. We can make the empirical average from this run
{𝑥𝑖}𝑁𝑖=1 as

∑︀𝑁
𝑖=1 𝑥𝑖/𝑁 . The probability for this empirical expectation value to be more

than 𝜀 away from the true expectation value is given by the probability in (4.3) before
taking the 𝑁 → ∞ limit. If this probability is 0.01 for a certain finite 𝑁 , it means
that if you make numerous runs each consisting of 𝑁 trials, you will encounter the
empirical expectation value deviating larger than 𝜀 from the true expectation once
in 100 runs on the average.

4.4 Another expression of law of large numbers
The following is also a precise expression:95

𝑁∑︁
𝑛=1

𝑋𝑛 = 𝑁𝐸(𝑋1) + 𝑜[𝑁 ]. (4.4)

The interpretation of (4.3) is as follows: we perform a series of 𝑁 experiments to
produce the empirical expectation value)(1/𝑁)

∑︀𝑁
𝑛=1 𝑥𝑛. This set of 𝑁 experiments

is understood as a single ‘run,’ and we imagine many such runs. Then, (4.3) tells
us that the probability that these runs produce empirical averages 𝑆𝑁/𝑁 deviating
from the true mean 𝐸(𝑋1) by more than (any positive number) 𝜀 goes to zero in the
limit of the infinite run length.

Remark: Suppose you find an empirical average 𝑆𝑁/𝑁 larger than 𝐸(𝑋1). Then,
you might expect more outcomes smaller than 𝐸(𝑋1) in the near future. This is the
famous gambler’s fallacy (or fallacy of the maturity of chances). See
http://en.wikipedia.org/wiki/Gambler’s_fallacy, especially, psychology be-
hind the fallacy. ⊓⊔

4.5 Why is the law of large numbers plausible?
Before going to a rigorous demonstration of LLN, let us understand why it is plau-
sible. We could expect that the average of 𝑆𝑁/𝑁 (the empirical average) should
fluctuate around 𝐸(𝑋1). Its width of fluctuation must be evaluated by the variance:
(notice that 𝑉 (𝑐𝑋) = 𝑐2𝑉 (𝑋) and ‘additivity’ (3.28) in the following calculation)

𝑉

(︃
1

𝑁

𝑁∑︁
𝑛=1

𝑋𝑛

)︃
=

1

𝑁2
𝑉

(︃
𝑁∑︁

𝑛=1

𝑋𝑛

)︃
=

1

𝑁2

𝑁∑︁
𝑛=1

𝑉 (𝑋𝑛) =
1

𝑁
𝑉 (𝑋1). (4.5)

Thus, the width of the distribution shrinks as 𝑁 is increased. That is why 𝑆𝑁/𝑁
clusters tightly around 𝐸(𝑋1) as 𝑁 →∞. This is the essence of LLN. This is illus-

95Note for the instructor: (4.3) and this (if properly stated as an almost sure convergence) are
different; the former is called the weak law of large numbers and the latter the strong law of large
numbers. However, in many realistic situations we encounter in statistical mechanics, whenever the
weak law holds, so does the strong law.
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trated in:
http://demonstrations.wolfram.com/ChebyshevsInequalityAndTheWeakLawOfLargeNumbersForIidTwoVect/

4.6 Chebyshev’s inequality
The key to an honest proof of LLN is Chebyshev’s inequality96

𝑎2𝑃 (|𝑋 − 𝐸(𝑋)| ≥ 𝑎) ≤ 𝑉 (𝑋). (4.6)

This can be shown as follows (let us redefine 𝑋 by shifting as 𝑋 − 𝐸(𝑋) to get rid
of 𝐸(𝑋) from the calculation).97 Fig. 4.2 illustrates the demonstration.
:

xx  f(x)

f(x)

22

a−a aa−
The second integral The third integralThe first integral

Figure 4.2: (4.9) illustrated. If we introduce the density distribution function 𝑓 , (4.9) reads
𝑉 (𝑋) =

∫︀
𝑋2𝑓(𝑋) 𝑑𝑋 ≥

∫︀
|𝑋|≥𝑎

𝑋2𝑓(𝑋) 𝑑𝑋 ≥ 𝑎2
∫︀
|𝑋|≥𝑎

𝑓(𝑋) 𝑑𝑋 = 𝑎2𝑃 (|𝑋| ≥ 𝑎). The integrals

appearing in this formula are shaded areas. The inequalities are apparent from the figures.

We start from the definition of the variance:

𝑉 (𝑋) =

∫︁
𝑋2𝑑𝑃 (𝜔). (4.7)

Here, the integration range is over all values of 𝑋. Now, let us remove the range
|𝑋| < 𝑎 from this integration range. The contribution of the removed portion to the
original integrand is positive, so obviously

𝑉 (𝑋) =

∫︁
𝑋2𝑑𝑃 (𝜔) ≥

∫︁
|𝑋|≥𝑎

𝑋2𝑑𝑃 (𝜔). (4.8)

On the integration range |𝑋| ≥ 𝑎, 𝑋2 ≥ 𝑎2, so∫︁
|𝑋|≥𝑎

𝑋2𝑑𝑃 (𝜔) ≥
∫︁
|𝑋|≥𝑎

𝑎2𝑑𝑃 (𝜔) = 𝑎2
∫︁
|𝑋|≥𝑎

𝑑𝑃 (𝜔). (4.9)

96In the following the assertion is proved under a stronger condition that 𝑉 (𝑋) is finite. To
prove the law under the condition 𝐸(|𝑋1|) <∞ requires some tricks.

97Or, you can use 𝑉 (𝑋) = 𝑉 (𝑋 − 𝑎) for any number 𝑎; the width does not change wherever the
distribution is placed.
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This implies
𝑉 (𝑋) ≥ 𝑎2𝑃 (|𝑋| ≥ 𝑎). (4.10)

Since we have shifted 𝑋 by 𝐸(𝑋), this implies Chebyshev’s inequality (4.6).

4.7 Proof of the law of large numbers
We wish to apply Chebyshev’s inequality (4.6) to the sample average (1/𝑁)

∑︀
𝑋𝑛.

Replacing corresponding quantities in (4.6) (𝑋 → (1/𝑁)
∑︀
𝑋𝑛, 𝑎 → 𝜀), and using

(4.5), we get

𝑃

(︃⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑛=1

𝑋𝑛 − 𝐸(𝑋1)

⃒⃒⃒⃒
⃒ ≥ 𝜀

)︃
≤ 𝑉 (𝑋1)

𝜀2𝑁
. (4.11)

Taking 𝑁 →∞, we arrive at LLN.

4.8 Detecting unfair coins
We have shown that indeed (4.1) can be used to observe the probability of an event.

How many times should we throw a coin to check its fairness? The empirical
probability for Head is given by 𝑁𝐻/𝑁 , where 𝑁 is the total number of trials and
𝑁𝐻 the number of trials resulting in Head. The expectation value of 𝑁𝐻/𝑁 is the
probability of Head 𝑝𝐻 . Let 𝑋𝑖 be the indicator of the Head event for the 𝑖-th trial.
Its expectation value is also 𝑝𝐻 and 𝑁𝐻 =

∑︀
𝑖𝑋𝑖. Let 𝑉 (≤ 1/4) be its variance.

Then, the Chebyshev inequality (4.11) implies

𝑃

(︂⃒⃒⃒⃒
𝑁𝐻

𝑁
− 𝑝𝐻

⃒⃒⃒⃒
≥ 𝜀

)︂
≤ 𝑉

𝜀2𝑁
. (4.12)

Therefore, the more unfair the easier to estimate 𝑝𝐻 accurately (because 𝑉 =
𝑝𝐻 − 𝑝2𝐻), but, for example, 10% unfairness is not very easy to detect.

Perhaps it is fun to simulate the experiments described above computationally.

4.9 Monte Carlo integration
Let us consider the problem of numerically evaluating a high-dimensional integral
(the Monte-Carlo integration method):

𝐼 =

∫︁ 1

0

𝑑𝑥1 · · ·
∫︁ 1

0

𝑑𝑥1000𝑓(𝑥1, · · · , 𝑥1000). (4.13)

If we wish to sample (only) two values for each variable, we need to evaluate the
function at 21000 ∼ 10300 points (you should remember 210 ≃ 103). Such sampling is
of course impossible.
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This integral can be interpreted as the average of 𝑓 over a 1000 dimensional unit
hypercube:

𝐼 =

∫︀ 1

0
𝑑𝑥1 · · ·

∫︀ 1

0
𝑑𝑥1000𝑓(𝑥1, · · · , 𝑥1000)∫︀ 1

0
𝑑𝑥1 · · ·

∫︀ 1

0
𝑑𝑥1000

. (4.14)

Therefore, randomly sampling the points 𝑟𝑛 in the hypercube, we can obtain

𝐼 = lim
𝑁→∞

1

𝑁

𝑁∑︁
𝑛=1

𝑓(𝑟𝑛). (4.15)

How many points should we sample to estimate the integral within 10−2 error, if we
allow larger errors at most once out of 1000 such calculations? We can readily know
the answer from (4.11): 𝑉 (𝑓(𝑋1))10

7.98 The variance of the value of 𝑓 is of order
max |𝑓 |2, a constant. Compare this number with 10300 above and appreciate the
power of randomness. This is the principle of the Monte Carlo integration. Notice
that the computational cost does not depend on the dimension of the integral.

How fast or slow the convergence of this method is may be felt from the estimation
of 𝜋 by peppering a disk:
http://demonstrations.wolfram.com/MonteCarloEstimateForPi/

4.10 Why LLN is important: no fluctuation of internal energy99

As we will learn the totality of mechanical energy of a macroscopic system is called
the internal energy. The law of large numbers and the equipartition of energy (Section
2) imply that for an ideal gas the internal energy does not fluctuate macroscopically.
Let us see why.

Let us take an ideal gas consisting of 𝑁 particles in an isolated volume. We have
demonstrated that all the particles have the same average kinetic energy 3𝑘𝐵𝑇/2
(equipartition of kinetic energy). Hence. the law of large numbers tells us

𝑃

(︃⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑛=1

1

2
𝑚𝑣2

𝑛 −
3

2
𝑘𝐵𝑇

⃒⃒⃒⃒
⃒ > 𝜀

)︃
<
𝑉 (𝑒)

𝜀2𝑁
, (4.16)

where 𝑉 (𝑒) is the variance of the kinetic energy of each particle. Or, since 𝐸 =∑︀
(1/2)𝑚𝑣2

𝑛 is the internal energy for the (monatomic) ideal gas,

𝑃

(︂⃒⃒⃒⃒
𝐸

𝑁
− 3

2
𝑘𝐵𝑇

⃒⃒⃒⃒
> 𝜀

)︂
<
𝑉 (𝑒)

𝜀2𝑁
. (4.17)

98Here, the inequality gives a sufficiently safe estimate. In practice, a smaller number of samples
might be OK.

99Very strictly speaking, we do not know yet how big 𝑁 is, although we have already discussed
this informally in 1.7. Empirically at this point, perhaps we could measure the temperature fluc-
tuation of the system and guess how many ‘statistically independent parts’ make up the system.

59

http://demonstrations.wolfram.com/MonteCarloEstimateForPi/


This implies that the probability that the internal energy lies in the following range

𝑁(3𝑘𝐵𝑇/2− 𝜀) < 𝐸 < 𝑁(3𝑘𝐵𝑇/2 + 𝜀) (4.18)

is larger than 1− 𝑉 (𝑒)/𝜀2𝑁 . Here, in practice, 𝑁𝜀 need not be microscopic. We are
dealing with a macroscopic body with 𝑁 ∼ 1020. Practically, we may need 𝐸 within
a 1% error (𝜀 = 0.01(3𝑘𝐵𝑇/2)). Notice that 𝑉 (𝑒) is of the same order of (𝑘𝐵𝑇 )

2.
This implies that the probability to observe 𝐸 in the range of (4.18) is larger than
1 − 𝑐/(0.01)2𝑁 , where 𝑐 = 𝑉 (𝑒)/(3𝑘𝐵𝑇/2)

2 and is a constant of order unity. Thus,
we have realized that ‘surely’ 𝐸 is constant within 1%. Actually, even if we increase
the observation accuracy to 10−5% still the situation does not change very much for
a 1 liter air around us.
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Discussion 2

D2.1. [Elementary combinatorics questions]
Although combinatorics is a side issue of probability theory, if all the elementary
events are equally probable, counting becomes the main problem of evaluation of
probabilities, so let us look at its rudiments. You must have read Appendix 3A
up to the multinomial theorem.

(1) How many ways
(i) to put 3 distinguishable balls into three distinguishable boxes? More generally,

how about 𝑛 balls and 𝑀 boxes?
(ii) to put 3 indistinguishable balls into three distinguishable boxes? General case?

This is to distribute energy quanta to three different molecules.
(iii) to put 3 distinguishable balls into three indistinguishable boxes? General

case? This is a grouping problem.100

(iv) to put 3 indistinguishable balls into three indistinguishable boxes?
This is related to a partition question of integers.101

Solution.
(i) Let us call distinguishable balls a, b and c, and distinguishable boxes A, B, and
C. Each ball has three choices A, B, and C irrespective of the choices of the other
two balls. Thus, there are 3× 3× 3 = 33 = 27 ways. The general case is 𝑀𝑛.
(ii) This is the problem of arranging two indistinguishable spacers and three indis-
tinguishable balls: the case of Fig. 3.6 in the notes. Therefore,(︂

5

3

)︂
=

5!

2! 3!
= 10 (4.19)

ways. The general case is just discussed in the notes (see (3.39)):

(𝑛+𝑀 − 1)!

𝑛!(𝑀 − 1)!
. (4.20)

If 𝑛≪𝑀 (i) and (ii) are not very different. Take log of the general formulas

log 𝑛𝑀 = 𝑛 log𝑀, (4.21)

log
(𝑛+𝑀 − 1)!

𝑛!(𝑀 − 1)!
= (𝑛+𝑀) log(𝑛+𝑀)− 𝑛 log 𝑛−𝑀 log𝑀

≃ 𝑛 log𝑀 − 𝑛− 𝑛 log 𝑛 ≃ 𝑛 log𝑀. (4.22)

100This is related to the partition of sets: https://en.wikipedia.org/wiki/Bell_number

[thanks to J A Claes].
101This is related to the number partition problem: https://en.wikipedia.org/wiki/

Partition_(number_theory)
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Here, we have used an easily obtained approximation log𝑁 ! = 𝑁 log𝑁 −𝑁 (see Section 13)
and assumed log𝑀 ≫ 1. If 𝑛≫𝑀 , then

log
(𝑛+𝑀 − 1)!

𝑛!(𝑀 − 1)!
= (𝑛+𝑀) log(𝑛+𝑀)−𝑛 log 𝑛−𝑀 log𝑀 ≃𝑀 log 𝑛−𝑀−𝑀 log𝑀 ≃𝑀 log 𝑛.

(4.23)

Thus, its growth rate as a function of 𝑛 is far smaller than (i); since 𝑛 particles are indistin-

guishable, this is natural.

(iii) Actually, this problem should be solved after (iv). We wish to group a, b, and c
into three subgroups that may be empty. Therefore, there are three kinds of group-
ing: 3 + 0 + 0, 2 + 1 + 0, and 1 + 1 + 1. For the first and the third cases, there are
only one case each, (abc) and (a)(b)(c). For 2+1+0, there are three cases (ab)(c),
(bc)(a) and (ca)(b). Thus, there are 5 ways. The general case is difficult.
(iv) If both are indistinguishable, what matters is to divide ‘3’ into the sum of three
non-negative integers. Thus, 3 is equal to 3 + 0 + 0 = 2 + 1 + 0 = 1 + 1 + 1. There
are three ways. In this case no clean general result exists.

(2) All the elementary particles of the same kind [and all the molecules of the same
chemical species with the same internal state] are indistinguishable.

If the number density is extremely low, then whether these particles are distin-
guishable or not is virtually irrelevant, so we may handle them just as ‘marbles.’

However, the number density is not too small, their indistinguishability manifests
itself. For example, suppose you have two particles and two distinguishable boxes
(= one-particle states). There is only one way to put one particle each in each box
(not two as the case of two marbles) (see Fig. 21.6).

Empirically, we know there are only two kinds of elementary particles from the
combinatorial point of view:

bosons: indefinitely many particles can assume a single identical one-particle
state (examples: 𝛼-particle, hydrogen atom, 4He atom);

fermions: all the indistinguishable particles must assume distinct one-particle
states [Pauli’s exclusion principle] (examples: electron, proton, 3He atom).

There are𝑀 distinguishable one-particle states and 𝑛 ≤𝑀 particles. Any particle
can assume any one-particle state in 𝑀 , if left alone. How many different combina-
tions of one-particle states102 are possible, if particles are

(i) marbles,
(ii) 𝛼-particles,
(iii) electrons?

Solution.
(i) This is the distinguishable case, so it is just as (i) in (1); each particle can choose

102We later call such combinations specified microscopically microstates; do not confuse mi-
crostates and one-particle states.
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any microstate without paying any attention to the choices of other particles: 𝑀𝑛

ways.
(ii) This is the boson case, so it is just as (ii) in (1). Therefore, as illustrated in Fig.
3.6, the answer must be (︂

𝑀 + 𝑛− 1

𝑛

)︂
=

(𝑀 + 𝑛− 1)

𝑛! (𝑀 − 1)!
. (4.24)

(iii) This is the fermion case, so if we can mark the one-particle states that will be-
come states of individual electrons, we can describe one possible microstate. There
are

(︀
𝑀
𝑛

)︀
ways to mark the distinguishable one-particle state. That is, there are

(︀
𝑀
𝑛

)︀
distinct microstates for the system.

D2.2 [Events and sets]
(1) Let Ω = {𝜔𝑖} be the sample space (= the totality of possible elementary events).
Let 𝐴 (⊂ Ω) = {𝜔1, 𝜔3, 𝜔4}. What is the meaning of the statement that event 𝐴
actually occurs?
(2) Let 𝐴 ⊂ Ω. Is event 𝐴 and event Ω statistically independent?

Perhaps, it is convenient to refurbish your knowledge of de Morgan’s law and the
distributive law about ∩ and ∪ (see algebra of sets) before proceeding further.

(3) Find simple expressions for
(i) (𝐴 ∪𝐵) ∩ (𝐴 ∪𝐵𝑐) (here 𝐵𝑐 = Ω ∖𝐵, the complement of 𝐵 in Ω).
(ii) (𝐴 ∪𝐵) ∩ (𝐵 ∪ 𝐶).

(4) Is (𝐴 ∪𝐵 ∪ 𝐶)𝑐 = 𝐴𝑐 ∩𝐵𝑐 ∩ 𝐶𝑐 true?
(5) There are three events 𝐴, 𝐵 and 𝐶 in the common Ω. Illustrate the following
events, using Venn diagrams:

(i) No more than two events occur.
(ii) At least two events occur.

Solution.
(1) That an event 𝐴 occurs means that actually an elementary event in 𝐴 occurs, so
𝜔1 or 𝜔3 or 𝜔4 actually occurs.
(2) The definition of statistical independence of two events 𝐴 and 𝐵 is 𝑃 (𝐴 ∩ 𝐵) =
𝑃 (𝐴)𝑃 (𝐵). Since 𝐴 ∩ Ω = 𝐴 and 𝑃 (Ω) = 1, indeed 𝑃 (𝐴 ∩ Ω) = 𝑃 (𝐴)𝑃 (Ω). Thus,
these two events are statistically independent. This is intuitively obvious, because
even if you know about Ω (that is, something happens), you cannot tell anything
about 𝐴. If 𝐴 happens, of course something happens, so we cannot know anything
new about Ω (worse, even if you know 𝐴 does not occur, you cannot know whether
anything happens or not).
(3) The distributive law tells us (if you wish, draw Venn diagrams)

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩𝐵) ∪ (𝐴 ∩ 𝐶), (4.25)

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪𝐵) ∩ (𝐴 ∪ 𝐶). (4.26)
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(i)
(𝐴 ∪𝐵) ∩ (𝐴 ∪𝐵𝑐) = 𝐴 ∪ (𝐵 ∩𝐵𝑐) = 𝐴 ∪ ∅ = 𝐴. (4.27)

(ii)
(𝐴 ∪𝐵) ∩ (𝐵 ∪ 𝐶) = (𝐵 ∪ 𝐴) ∩ (𝐵 ∪ 𝐶) = 𝐵 ∪ (𝐴 ∩ 𝐶). (4.28)

(4) Recall de Morgan’s law.

(𝐴 ∪𝐵 ∪ 𝐶)𝑐 = (𝐴 ∪𝐵)𝑐 ∩ 𝐶𝑐 = (𝐴𝑐 ∩𝐵𝑐) ∩ 𝐶𝑐 = 𝐴𝑐 ∩𝐵𝑐 ∩ 𝐶𝑐. (4.29)

Yes.
(5)

A

B

C

A

B

C

A

B

C

(i) (ii)

Figure 4.3: Solution to D2.2 (5).

D2.3 [Elementary probability questions]
(1) Try to understand Q3-1 thoroughly (i.e., try to solve it first by yourself with
sparingly consulting the solutions).
(2) Two fair coins are thrown but you cannot see them. You are told at least one
coin exhibits a Head (H) and that if there is a coin exhibiting a Tail (T), you will be
awarded $1,000. However, to participate in this game, you must pay a participation
fee of $500. Will you still play the game, expecting some monetary gain?103

Solution.
(2) The possible cases are (H, T), (T, H) and (H, H) just as the kitten problem. Thus,
with probability 2/3, you will win. The expected gain must be 1000 × 2/3 > 500.
Go ahead (if you wish to increase your income).

D2.4 [Law of large numbers]
Throwing a coin 1,000 times, you get 611 heads, so you suspect the coin is not fair.
How rational is this conclusion from the point of view of the law of large numbers?

Solution.
103Perhaps a discussion problem: there are two electrons and their spins, up or down, are mea-

sured. Let us consider the gambling problem with the coins H/T replaced with electrons U/D.
What will you decide?
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Let us assume that the coin is fair (the null hypothesis). If you use the law of large
numbers, we wish to estimate

𝑃

(︃⃒⃒⃒⃒
⃒ 1

1000

1000∑︁
𝑘=1

𝑋𝑖 − 0.5

⃒⃒⃒⃒
⃒ > 0.111

)︃
. (4.30)

We know 𝑉 (𝑋1) = 1/4, so the Chebyshev estimate is

𝑃

(︃⃒⃒⃒⃒
⃒ 1

1000

1000∑︁
𝑘=1

𝑋𝑖 − 0.5

⃒⃒⃒⃒
⃒ > 0.111

)︃
<

0.25

0.1112 × 1000
= 0.021. (4.31)

That is, even if the coin is fair, the obtained result can happen twice in 100 such trials.
Well, the judgement is up to you, depending on what you stake on the outcome.

You may have the following comment: we actually know the average is larger than
0.5, so we should estimate the probability of

𝑃

(︃
1

1000

1000∑︁
𝑘=1

𝑋𝑖 − 0.5 > 0.111

)︃
. (4.32)

Notice that

𝑃

(︃⃒⃒⃒⃒
⃒ 1

1000

1000∑︁
𝑘=1

𝑋𝑖 − 0.5

⃒⃒⃒⃒
⃒ > 0.111

)︃
> 𝑃

(︃
1

1000

1000∑︁
𝑘=1

𝑋𝑖 − 0.5 > 0.111

)︃
. (4.33)

Therefore, our estimate of the probability is a conservative one.

D2.5 [Monte-Carlo estimate]
Design a ‘dart-throwing experiment’ to estimate

√
2. To obtain two digits for

√
2

with the failing rate of once in 100 trials, how many darts do you have to throw? An
order of 100, 1000, or? Give a reasonable guess.

Solution.
Look at Fig. 4.4. The red rectangle has an area

√
2 and the green one 1. Therefore,

we can estimate 1/
√
2 =
√
2/2 probabilistically.

The failing probability is according to Chebyshev

𝑉

𝜀2𝑁
, (4.34)

where 𝑉 is product of the probability of a dart landing on the target area and the
probability otherwise, so it is about 1/4. 𝜀 in our case is about 0.1, so

0.25× 100/𝑁 < 1/100. (4.35)
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Figure 4.4: How to get
√
2/2 by peppering points on the red rectangle uniformly

That is, 𝑁 > 4000. Roughly a few thousands are required.

D2.6 [Borel-Cantelli lemma related] [Discussion problem]
Let us repeat coin-tossing infinitely many times. Then, irrespective of the fairness of
the coin (as long as both 𝐻 and 𝑇 are possible at all), we intuitively expect that we
will observe infinitely many heads. In other words, we expect that with probability
one we will not see only finitely many heads.

The relevance of this statement to statistical thermodynamics is: for macrosys-
tems what we actually observe with positive probability is determined by a set of
macroscopically many microstates.104

This should be intuitively obvious, but can you prove it from the ‘axioms’ of the
probability: 𝑃 is an additive set function whose range is [0, 1]?
(1) Let 𝐴𝑘 be the event that the 𝑘-th trial (throwing) gives a head. What is the
meaning of 𝐵𝑁 = ∩∞

𝑘=𝑁𝐴
𝑐
𝑘?

(2) In terms of 𝐵𝑁 express the event 𝐹 that only finitely many heads occur.
(3) Do you see 𝐵𝑁 ⊂ 𝐵𝑁+1? This means

𝑃 (𝐹 ) = lim
𝑁→∞

𝑃 (𝐵𝑁). (4.36)

(4) Show

𝑃 (𝐵𝑁) =
∞∏︁

𝑘=𝑁

(1− 𝑃 (𝐴𝑘)). (4.37)

This implies 𝑃 (𝐹 ) = 0.

Solution.

104As noted above, ‘microstate’ is a microscopically described state of the system. For example,
‘half the spins in a magnetic lattice are up’ does not describe a microstate, since the spins of the
atoms sitting at lattice points are not individually described; ‘the spins of the atoms sitting at
lattice points {𝑥𝑖} are up’ specifies a single microstate.
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(1) 𝐴𝑐
𝑘 means that the 𝑘-th trial is not H. Therefore, 𝐵𝑁 = ∩∞𝑘=𝑁𝐴

𝑐
𝑘 implies the event

that H never appears beyond the 𝑁th trial.
(2) 𝐹 means at least one of 𝐵𝑁 occurs for 𝑁 ≥ 1:

𝐹 = ∪∞𝑁=1𝐵𝑁 = ∪∞𝑁=1(∩∞
𝑘=𝑁𝐴

𝑐
𝑘). (4.38)

(3) Notice that {𝐵𝑁} is a monotone expanding sequence of sets: 𝐵𝑁 ⊂ 𝐵𝑁+1 → 𝐹 ,
because 𝐵𝑁+1 is less constrained than 𝐵𝑁 (one condition less). Therefore, {𝑃 (𝐵𝑁)}
is a monotone increasing sequence converging to 𝑃 (𝐹 ):

𝑃 (𝐹 ) = lim
𝑁→∞

𝑃 (𝐵𝑁) (4.39)

(4) Due to the statistical independence of 𝐴𝑘’s

𝑃 (𝐵𝑁) = 𝑃 (∩∞𝑘=𝑁𝐴
𝑐
𝑘) =

∞∏︁
𝑘=𝑁

𝑃 (𝐴𝑐
𝑘) =

∞∏︁
𝑘=𝑁

(1− 𝑃 (𝐴𝑘)). (4.40)

There are infinitely may 1/2 factors in this product, 𝑃 (𝐹 ) = 0.105

105This is almost a trivial use of Borel-Cantelli lemma: If events 𝐴𝑘 are statistically independent,
and

∑︀
𝑃 (𝐴𝑘) =∞, then infinitely many 𝐴𝑘’s occur.

67



Exercise 2

E2.1 [Elementary combinatorics]
There are 5 distinguishable containers106 and 5 particles.

(1) Obtain the numbers of ways to distribute these particles for the cases:
(i) protons,
(ii) candies,
(iii) hydrogen atoms.

(2) How many ways to put 3 3He atoms and 4He atoms atoms in 5 distinguishable
boxes? Ignore any energetic interactions among them.

Solution.
(1)
(i) This is a fermion case, so there is only 1 possibility: each proton is in each one-
particle state.
(ii) This is a distinguishable (classic) case, so 55 = 3125 ways.
(iii) This is a boson case, so

(︀
9
5

)︀
= 9 · 8 · 7 · 6/4 · 3 · 2 = 126 ways.

(2) Since the distinct particles do not interfere statistically, and since we assume
there is no physical interaction among the particles, we can simply superpose the
results for distinct particles.

3He are fermions and 4He are bosons. Therefore,(︂
5

3

)︂
×
(︂
7

3

)︂
= 10× 35 = 350 (4.41)

ways.

E2.2 [Sets and events]
Show the following statements:
(1) If two events 𝐴 and 𝐵 are statistically independent, then 𝐴𝑐 and 𝐵𝑐 are inde-
pendent as well.
(2) Any event 𝐴 and ∅ are statistically independent.

Solution.
(1) We wish to show 𝑃 (𝐴𝑐 ∩𝐵𝑐) = 𝑃 (𝐴𝑐)𝑃 (𝐵𝑐).

𝑃 (𝐴𝑐 ∩𝐵𝑐) = 𝑃 ((𝐴 ∪𝐵)𝑐) = 1− 𝑃 (𝐴 ∪𝐵) = 1− [𝑃 (𝐴) + 𝑃 (𝐵)− 𝑃 (𝐴 ∩𝐵)]

(4.42)

= 1− 𝑃 (𝐴 ∪𝐵) = 1− [𝑃 (𝐴) + 𝑃 (𝐵)− 𝑃 (𝐴)𝑃 (𝐵)] = (1− 𝑃 (𝐴))(1− 𝑃 (𝐵)).

(4.43)

(2) 𝑃 (𝐴 ∩ ∅) = 𝑃 (∅) = 0 = 𝑃 (𝐴)𝑃 (∅). Or any event and Ω are statistically in-
dependent as we have shown in D2.2, so, in particular, 𝐴𝑐 and Ω are statistically

106For particles, interpret the containers as one-particle states as in Discussion.
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independent, so (1) gives what we want.

E2.3 [Law of large numbers]
We wish to compute the following integral

𝐼 =

∫︁ 1

0

𝑑𝑥 (1− 𝑥2) (4.44)

by the Monte-Carlo method. That is, we draw the graph of (1−𝑥2) and consider the
area below it (between the graph and the 𝑥-axis in [0, 1]) in the square [0, 1]× [0, 1]
by peppering points uniformly on the square. To get 𝐼 within 1% relative error and
with a failing rate of once in 500 trials, how many points 𝑁 do you need?

Solution.
Let 𝜒 be the indicator of the set sandwiched between the 𝑥-axis and the graph of
𝑦 = 1− 𝑥2 in the square [0, 1]× [0, 1] (the red region in Fig. 4.5). Then. 𝐼 = ⟨𝜒⟩.

0 1
0

1

Figure 4.5: The curve is 1− 𝑥2 and 𝐼 is the area of the red portion, If you pepper points evenly
on the black-edged square, 𝐼 is exactly the probability for a point to land on the red portion.

Since Chebyshev’s inequality reads

𝑃

(︃⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑖=1

𝜒(𝑥𝑖)− 𝐼

⃒⃒⃒⃒
⃒ > 𝜀

)︃
<

𝑉

𝜀2𝑁
, (4.45)

where 𝑥𝑖 is the location of the 𝑖th point landing on the unit square and 𝑉 the variance
of 𝜒(𝑥𝑖). In our case, 𝜀 = 0.01𝐼 and the failure probability is 1/500, so

𝑉

10−4𝐼2𝑁
≤ 1

500
. (4.46)

We know 𝑉 = 𝐼(1− 𝐼), so

𝑁 ≥ 500× 104(1− 𝐼)/𝐼. (4.47)
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We know 𝐼 = 2/3, so 𝑁 ≥ 2.5× 106.

E2.4 [Apparent aftereffect]
Shooter A hits the target with probability 0.8 and B with probability 0.4. They
shoot simultaneously and one bullet hits the target. What is the probability that
the bullet is due to B?

Solution.
We need the conditional probability under the condition that one bullet hits the tar-
get. We may assume that the performance of the shooters is mutually statistically
independent, so the expected probabilities of the relevant events are

a: only A hits 0.8(1− 0.4) = 0.48,
b: only B hits (1− 0.8)0.4 = 0.08,
ab: both hit 0.8× 0.4 = 0.32
e: none hits (1− 0.8)(1− 0.4) = 0.12.

Therefore, event b under one bullet hitting the target must be the conditional prob-
ability of event b under the condition that a or b occurs: Thus, 𝑃 = 0.08/(0.48 +
0.08) = 0.143. Notice that this is much smaller than 0.4.
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5 Maxwell’s distribution

Summary
* Maxwell’s distribution of the particle velocity is derived.
* How to calculate Gaussian integral and averages is explained.
* Boltzmann factor 𝑒−𝛽𝑈 is derived and used to obtain Maxwell’s distribution (again).
* Although slightly advanced, try to understand how to use the 𝛿-function (how to
use practically: Appendix 5A).

Key words
Density distribution function, Maxwell’s distribution, Boltzmann factor, Gaussian
integral, 𝛿-function

What you should be able to do
* Be able to use distribution functions (to estimate expectation values). Recall the
use of indicators (see Appendix 5A).
* Recognize that the molecular speed in a gas is of the same order of the sound speed
in it.
* Be able to explain intuitively what the 𝛿-function is. Also you would better be
able to use it systematically to compute various distribution functions (say, the dis-
tribution of the kinetic energy).

In this lecture, some computational techniques (not mere tricks but the ones prac-
tically useful) will be explained. Even if these explanations are not understood, the
physics of the topics would be understandable, so the technical explanations are all
in fine letters. If you do not read them, you would not encounter big difficulties (but
you’d better browse through them at least).

5.1 Density distribution function
To make the kinetic theory quantitative, we must know the probability of a particle
to assume various velocities. For the velocity of a particle to be 𝑣 exactly is obviously
with probability zero.
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Figure 5.1: Volume element of the velocity space and the density distribution function

In the present case, the sample space is Ω = {𝑣 | 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 ∈ R} = R3.107 Thus, we
need a probability measure108 𝑃 defined on Ω. In the present case, for a set 𝐴 ⊂ Ω,
𝑃 (𝐴) → 0 as volume109 of 𝐴 → 0,110 so we may define the probability density;
symbolically (see Fig. 5.1),111

𝑓(𝑣) =
𝑃 (𝑑𝜏(𝑣))

𝑑𝜏(𝑣)
, (5.1)

where 𝑑𝜏(𝑣) is the volume element (of the 3-space) around 𝑣, which may be written
as 𝑑3𝑣 = 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧. Here, its volume is also denoted by the same symbol 𝑑𝜏(𝑣).
The probability 𝑃 (𝐴) of event 𝐴 ⊂ Ω may be expressed as

𝑃 (𝐴) =

∫︁
𝐴

𝑑3𝑣 𝑓(𝑣). (5.2)

5.2 Maxwell’s derivation of Maxwell’s distribution function: set up
In his “Illustrations of the dynamical theory of gases” (1860) Maxwell introduced the

107⟨⟨𝑛-object⟩⟩ Generally, ‘𝑛-object’ implies 𝑛-dimensional object. Thus, R3 is the 3-space con-
sisting of 3-vectors

108‘Probability measure’: You may interpret this as the correct use of the math terminology, if
you know what measure is. Here, however, you may simply understand it informally as the usual
probability, noting that the concept of probability is just the ‘volume of our confidence’ as we
discussed in Lect 3, esp., around 3.1 and 3.5.

109This is the actual volume of 𝐴 as a subset of 3-space, which mathematicians call the Lebesgue
measure of 𝐴.

110Mathematicians say that the probability measure 𝑃 is absolutely continuous.
111Actually, this notation is mathematically justified as the Radon-Nikodym derivative.
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density distribution function 𝑓(𝑣) of the velocity of gas particles, which is usually
called Maxwell’s distribution.

Let us follow Maxwell’s logic. He assumed that in equilibrium112 orthogonal com-
ponents of the velocity of particles are statistically independent. This implies (why?
recall 3.13) that we may write

𝑓(𝑣) = 𝜑𝑥(𝑣𝑥)𝜑𝑦(𝑣𝑦)𝜑𝑧(𝑣𝑧), (5.3)

where 𝜑𝑥, etc., are density distribution functions for individual components. Maxwell
also assumed the isotropy, so 𝑓 is a function of 𝑣2 ≡ |𝑣|2, 𝑓(𝑣) ≡ 𝐹 (𝑣2) and 𝜑𝑥, etc.,
do not depend on the suffixes specifying the coordinates: 𝜓(𝑠2) ≡ 𝜑𝑥(𝑠) = · · ·.
Therefore,

𝐹 (𝑥+ 𝑦 + 𝑧) = 𝜓(𝑥)𝜓(𝑦)𝜓(𝑧). (5.4)

5.3 Maxwell’s distribution: solving the functional equation
Maxwell originally assumed the differentiability of the functions, but here we only
assume that the density distribution function is continuous. Since we are interested
in the functional form of the density distribution function, and the normalization
constant can be determined later, let us assume 𝜓(0) = 1.113 Then, we get from
(5.4)

𝐹 (𝑥+ 𝑦) = 𝜓(𝑥)𝜓(𝑦) = 𝐹 (𝑥)𝐹 (𝑦). (5.5)

Let 𝐺(𝑥) = log𝐹 (𝑥). Then, (5.5) reads

𝐺(𝑥+ 𝑦) = 𝐺(𝑥) +𝐺(𝑦), (5.6)

which is called the Cauchy functional equation, whose general solution is 𝐺(𝑥) = 𝑐𝑥,
where 𝑐 is a constant, if we assume 𝐺 is continuous (or monotone) (as we see just
below 5.4).

This implies 𝐹 (𝑥) ∝ 𝑒𝑐𝑥; remember that normalization constant must be deter-
mined. That is, we may write with a new constant 𝑐 (> 0)

𝑓(𝑣) ∝ 𝑒−𝑐𝑣2

. (5.7)

We should not forget, however, that Maxwell actually did not like the above
derivation that assumed statistical independence of three orthogonal directions. He

112What is equilibrium? It is a state reached by a gas isolated in a box sufficiently long after
its preparation. There is no macroscopic flow in it and the gas is spatially uniform and time-
independent (if observed on the macroscale).

113If you do not like this, simply set 𝜓(0) = 𝑎 > 0, a constant. Then, instead of (5.6) you get
𝐺(𝑥+ 𝑦) = 𝐺(𝑥) +𝐺(𝑦)− 𝑏, where 𝑏 = 3 log 𝑎. Defining 𝑔 = 𝐺− 𝑏, we get 𝑔(𝑥+ 𝑦) = 𝑔(𝑥) + 𝑔(𝑦),
from which we obtain 𝐹 (𝑥) ∝ 𝑒𝑐𝑥.
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rederived it later with a different logic. Note that the above logic cannot work in
1-dimensional space.

5.4 Cauchy’s functional equation
𝐺(2𝑥) = 2𝐺(𝑥) is immediately obtained from (5.6). Repeating this, we get 𝐺(𝑛𝑥) = 𝑛𝐺(𝑥)
for positive integer 𝑛. This implies 𝑛𝐺(1/𝑛) = 𝐺(1) or 𝐺(1/𝑛) = 𝐺(1)/𝑛. Therefore,
𝐺(𝑚/𝑛) = 𝑚𝐺(1/𝑛) = (𝑚/𝑛)𝐺(1) for positive integers 𝑚 and 𝑛. Also, 𝐺(0) = 2𝐺(0), so
𝐺(0) = 0. This implies 𝐺(𝑥) = −𝐺(𝑥). Thus, we have demonstrated that for 𝑞 ∈ Q (rational
numbers) 𝐺(𝑞) = 𝑐𝑞, where 𝑐 = 𝐺(1) is a constant. Since we assume 𝐺 to be continuous
(because 𝐹 is positive and continuous), 𝐺(𝑥) = 𝑐𝑥 must hold for any real 𝑥.

5.5 Gaussian integral
We must compute the normalization constant and 𝑐 in (5.7). An easy way (the easiest
way?) to compute the normalization constant is the following elegant method.

Since the integral is positive, let us compute the square of what we want:[︂∫︁ ∞

−∞
𝑑𝑥 𝑒−𝑥2/2𝜎2

]︂2
=

∫︁ ∞

−∞
𝑑𝑥 𝑒−𝑥2/2𝜎2

∫︁ ∞

−∞
𝑑𝑦 𝑒−𝑦2/2𝜎2

=

∫︁
R2

𝑑𝑥𝑑𝑦 𝑒−(𝑥2+𝑦2)/2𝜎2

.

(5.8)
Now, we go to the polar coordinates (𝑥, 𝑦)→ (𝑟, 𝜃):∫︁

R2

𝑑𝑥𝑑𝑦 𝑒−(𝑥2+𝑦2)/2𝜎2

= 2𝜋

∫︁ ∞

0

𝑒−𝑟2/2𝜎2

𝑟𝑑𝑟 = 2𝜋

∫︁ ∞

0

𝑑𝑧 𝑒−𝑧/𝜎2

= 2𝜋𝜎2. (5.9)

Hence, ∫︁ ∞

−∞
𝑑𝑥 𝑒−𝑥2/2𝜎2

=
√
2𝜋𝜎. (5.10)

5.6 Gaussian density distribution function
The Gaussian density distribution function 𝑔(𝑥) generally has the following form:

𝑔(𝑥) =
1√
2𝜋𝜎

𝑒−(𝑥−𝑚)2/2𝜎2

, (5.11)

where 𝐸(𝑥) = 𝑚 and 𝑉 (𝑥) = 𝜎2 (recall the notations: 3.15, 3.17). Thus, we can
know a Gaussian (density) distribution function, if we know its expectation value
and variance.114

When the density distribution function for a quantity 𝑥 is given by the Gaussian

114We will discuss the general multivariate Gaussian distribution in Lecture 19. We will learn
that if we know the expectation value and the covariance matrix, we can determine the multivariate
Gaussian distribution.
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form (5.11), we say the quantity obeys a Gaussian distribution or, simply, is Gaussian.

5.7 Maxwell’s distribution
Since ⟨𝑣𝑥⟩ = 0 and 𝑉 (𝑣𝑥) = (2/𝑚)(𝑘𝐵𝑇/2) = 𝑘𝐵𝑇/𝑚 (thanks to the equipartition of
kinetic energy, 2.15), and since our distribution is Gaussian, we have

𝜑(𝑣𝑥) =

√︂
𝑚

2𝜋𝑘𝐵𝑇
𝑒−𝑚𝑣2𝑥/2𝑘𝐵𝑇 . (5.12)

That is,

𝑓(𝑣) =

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑣2/2𝑘𝐵𝑇 . (5.13)

This is Maxwell’s distribution function. You must be able to compute various prob-
abilities and expectation values with the aid of Maxwell’s distribution function (see
Appendix 5A also).

Up to this point we discussed in 3-space, but the general d-Maxwell distribution
should be obtained easily.

Exercise. The mode speed 𝑣𝑀 of the particles is the value of 𝑣 = |𝑣| for which
the probability for the particles to have the speed between 𝑣 and 𝑣 + 𝑑𝑣 becomes
the largest. What can you expect for ⟨𝑣⟩/𝑣𝑀 in the d → ∞ limit, where ⟨𝑣⟩ is the
average speed (the average of |𝑣|)? [See Appendix 5A]

5.8 Generating function
At this juncture, let us practice a basic trick. You must be able to compute the expectation
value of 𝑒𝛼𝑥 for a Gaussian distribution, where 𝛼 is generally a complex number:

⟨𝑒𝛼𝑥⟩ = 1√
2𝜋𝜎

∫︁ ∞

−∞
𝑑𝑥 𝑒𝛼𝑥−(𝑥−𝑚)2/2𝜎2

. (5.14)

If 𝛼 = −𝑠, it is the Laplace transform of the distribution function; if 𝛼 = 𝑖𝑘, where 𝑘 is
real, ⟨𝑒𝑖𝑘𝑥⟩ is the Fourier transform of the density distribution, and is called the generating
function.115

The standard trick to compute this integral is to complete the square as follows (to make
the form 𝐴(𝑥−𝐵)2 + 𝐶):

𝛼𝑥− 1

2𝜎2
(𝑥−𝑚)2 = 𝛼(𝑥−𝑚)+𝛼𝑚− 1

2𝜎2
(𝑥−𝑚)2 = − 1

2𝜎2
(𝑥−𝑚−𝜎2𝛼)2+

𝜎2𝛼2

2
+𝛼𝑚. (5.15)

Therefore, (5.14) can be rewritten as

⟨𝑒𝛼𝑥⟩ = 1√
2𝜋𝜎

∫︁ ∞

−∞
𝑑𝑥 𝑒−(𝑥−𝑚−𝜎2𝛼)2/2𝜎2+𝜎2𝛼2/2 +𝛼𝑚. (5.16)

115http://www.yoono.org/ApplicableMath/ApplicableMath.html, Chapters 32 and 33 give a
practical summary.
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We shift the integration range by 𝑚 + 𝜎2𝛼 (or you introduce a new integration variable
𝑥′ = 𝑥−𝑚−𝜎2𝛼 and rewrite the integral). Then, the integration just gives the normalization
factor, so

⟨𝑒𝛼𝑥⟩ = 𝑒𝜎
2𝛼2/2 +𝛼𝑚. (5.17)

Notice that
𝑑

𝑑𝛼
⟨𝑒𝛼𝑥⟩

⃒⃒⃒⃒
𝛼=0

= 𝐸(𝑥) = 𝑚, (5.18)

and
𝑑2

𝑑𝛼2
⟨𝑒𝛼(𝑥−𝑚)⟩

⃒⃒⃒⃒
𝛼=0

= 𝑉 (𝑥) = 𝜎2. (5.19)

5.9 Daniel Bernoulli revisited
Using Maxwell’s distribution function, let us review Bernoulli’s kinetic interpretation
of pressure 2.14.

The (kinetic interpretation of) pressure on the wall is the average momentum
(impulse) given to the wall per unit time and area. Consider the wall perpendicular to
the 𝑥-axis (just as was in the elementary discussion in Lecture 2). Then, the number
of particles with its 𝑥-component of the velocity being between 𝑣𝑥 and 𝑣𝑥 + 𝑑𝑣𝑥 that
can impinge on the unit area on the wall per unit time is given by

𝑛𝑣𝑥𝑑𝑣𝑥

∫︁ ∞

−∞
𝑑𝑣𝑦

∫︁ ∞

−∞
𝑑𝑣𝑧𝑓(𝑣), (5.20)

where 𝑛 is the number density (= number of particles in unit volume) of the gas
molecules. Each particle gives the momentum 2𝑚𝑣𝑥 upon hitting the wall, so

𝑃 =

∫︁
𝑣𝑥≥0

𝑑𝑣 2𝑚𝑛𝑣2𝑥𝑓(𝑣) =

∫︁
𝑑𝑣𝑚𝑛𝑣2𝑥𝑓(𝑣) =

1

3
𝑚𝑛⟨𝑣2⟩, (5.21)

where we have used the symmetry 𝑓(𝑣) = 𝑓(−𝑣), and the isotropy, ⟨𝑣2𝑥⟩ = ⟨𝑣2𝑦⟩ =
⟨𝑣2𝑥⟩ = (1/3)⟨𝑣2𝑥 + 𝑣2𝑦 + 𝑣2𝑥⟩. Or,

𝑃𝑉 =
2

3
𝑁⟨𝐾⟩, (5.22)

where 𝐾 is the kinetic energy of the single gas particle, and 𝑁 is the number of
particles in the volume 𝑉 . Thus, Bernoulli’s equation has been derived once more
(but rather mechanically).

5.10 Important Remark: 𝑁 was not known
Although the Boyle-Charles law is obtained, this does not tell us anything about
molecules, because we do not know 𝑁 . We cannot tell the mass of the particle, ei-
ther. Remember that 𝑘𝐵 was not known when the kinetic theory of gases was being
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developed.
A notable point is that with empirical results that can be obtained from strictly

equilibrium studies of uniform systems, we cannot tell anything about molecules,
even about their existence. We may interpret Bernoulli’s theory as a means to study
a continuum gas with a particulate approximation approach (you could take 𝑁 →∞
limit at the end, keeping the total energy constant).

Remember that the law of combining volumes for chemical reactions (2.11 (iii))
crucial to demonstrate the particular nature of chemical substances is about (often
violent) irreversible processes from the reactants to the products. If we make a tiny
hole on the wall of the container, we could make a molecular beam, so in principle,
we can measure ⟨𝐾⟩. However, this is a study of a system far away from equilibrium.

The (root-mean-square) speed of the molecules can be computed correctly, how-
ever, because we only need 𝑃𝑉/𝑁𝑚. Thus, in 1857 Clausius calculated the speed
of molecules at 0∘C: oxygen 461m/s, nitrogen 492m/s, and hydrogen 1,844m/s.116

Notice, that these speeds are not very different from the sound speeds in respective
gases.117

5.11 Sedimentation equilibrium
Take a vertical column of gas with cross-section 𝐴 in the gravitational field just
around us.

P

nm Adh

h

+

h+dh

dPP total mass  =
cross section = A

gravitational force  = nm Adh g
g

.

. .

Figure 5.2: Force balance along a gas column in gravity (5.23)

Consider the force balance on the slice between heights ℎ and ℎ+𝑑ℎ of a cylinder. If
𝑛 is the number density and 𝑚 the mass of the molecule, we have as a force balance
equation with the aid of 𝑃 = 𝑛𝑘𝐵𝑇

𝑛× 𝐴𝑑ℎ×𝑚𝑔 = −𝐴(𝑃 + 𝑑𝑃 ) + 𝐴𝑃 = −𝐴𝑑𝑃 = −𝐴𝑘𝐵𝑇𝑑𝑛 (5.23)

or
𝑑𝑛

𝑑ℎ
= −𝛽𝑛𝑚𝑔, (5.24)

116This is in his paper, “The Nature of the Motion which we call Heat” (Annalen der Physik,
100, 353 (1857); English translation in Phil Mag 14,108 (1857)). Millet’s The Gleaners is this year.

117Sound speeds (in the standard state): oxygen 317 m/s, nitrogen 337 m/s, hydrogen 1270 m/s.
As you see, this is about 2/3 of the molecular speed. For ideal gases, this ratio is exact.
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where 𝛽 = 1/𝑘𝐵𝑇 (a standard abbreviation we will use often). That is,

𝑛 = 𝑛0𝑒
−𝛽𝑚𝑔ℎ. (5.25)

This can describe the sedimentation equilibrium of colloidal particles.

Remark. In the above derivation, it is assumed that the temperature in equilibrium
is not dependent on the height. Is this correct? A particle going upward must lose
its kinetic energy, so aren’t particles with lower temperatures at higher locations?
This is not the case. We saw this already in D1.2.

5.12 The Boltzmann factor
The equation (5.25) suggests how the (relative) number of molecules depends on
the potential energy difference. More generally, the same logic derives for conserved
forces with potential 𝑈

𝑛(𝑟) = 𝑛(0)𝑒−𝛽[𝑈(𝑟)−𝑈(0)]. (5.26)

That is, the factor 𝑒−𝛽𝑈 called the Boltzmann factor tells us the ratio of particle
densities (or the probabilities to find particles) at different locations, when there is
a position-dependent potential energy 𝑈 .118

You can find the following elementary derivation of Maxwell’s distribution with the aid of
the Boltzmann factor in the Feynman lectures. The derivation may require some maturity
of the reader; elementary approaches need not be very simple, so do not worry to much even
if you do not understand this derivation of Maxwell’s distribution when you read it for the
first time.

5.13 Elementary derivation of Maxwell’s distribution
Consider a column of an ideal gas which is in equilibrium with gravity. Let 𝑛>𝑢(𝑧) be the
number of particles with 𝑣𝑧 > 𝑢 > 0 passing through height 𝑧 upward per second (Fig. 5.3).

z = h

z = 0

z

Figure 5.3: If 𝑚𝑢2/2 = 𝑚𝑔ℎ, then 𝑛>𝑢(0) = 𝑛>0(ℎ).

118This is true even if 𝑈 is extremely complicated. Thus, even if 𝑈 is not due to an external
effect but due to other molecules in the system, this relation holds. This is also explained in the
Feynman lectures. If you do not take the interactions with other molecules into account, then you
cannot use the ideal gas law, but the actual equation of state for the fluid.
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Since stationarity of the distribution implies 𝑛>𝑢(0) = 𝑛>0(ℎ), if 𝑚𝑔ℎ = (1/2)𝑚𝑢2,

𝑛>0(ℎ)

𝑛>0(0)
=
𝑛>𝑢(0)

𝑛>0(0)
. (5.27)

Since 𝑛>0(ℎ)/𝑛>0(0) = 𝑛(ℎ)/𝑛(0), we can use the Boltzmann factor just obtained:

𝑛>𝑢(0)

𝑛>0(0)
= 𝑒−𝛽𝑚𝑔ℎ = 𝑒−𝛽𝑚𝑢2/2. (5.28)

The derivation is for the case without collisions, but since we have only to track energies that
are conserved, collisions do not change the situation at all.

Let 𝑛(0, 𝑢) be the number density of particles at height 0 with the 𝑧-component of the
velocity being 𝑢. Notice that more numerous faster particles pass height 0 than slower ones,
so we must take care of the speed in the 𝑧-direction:

𝑛>𝑢(0) =

∫︁ ∞

𝑢

𝑢𝑛(0, 𝑢) 𝑑𝑢 ∝ 𝑒−𝛽𝑚𝑢2/2. (5.29)

Thus, differentiating this equation, we obtain 𝑛(0, 𝑢) ∝ 𝑒−𝛽𝑚𝑢2/2.

Now, we wish to go to a technical topic that will be crucial in more advanced physics,
and also make many calculations about distributions quite mechanical (no special
wisdom or insight is needed!).

How to read the rest of this lecture: You must clearly understand 5.14-??:
what the 𝛿-function is, and how it is related to the density distribution function.
The rest may be skipped for the first time reading.

5.14 What average gives the density distribution?
We have learned in 3.18 that the probability 𝑃 (𝐴) is given by the expectation value
of the indicator 𝜒𝐴 of event 𝐴:

𝑃 (𝐴) = ⟨𝜒𝐴⟩𝑃 . (5.30)

Therefore, we may write (5.1) formally as (suffix 𝑃 is omitted)

𝑓(𝑢) =

⟨
𝜒𝑑𝜏(𝑢)(𝑣)

𝑑𝜏(𝑢)

⟩
, (5.31)

where the average is over 𝑣, and 𝜒𝑑𝜏(𝑢) the indicator of the volume element 𝑑𝜏(𝑢)
located at 𝑢.

5.15 Let us introduce 𝛿-function
How does the quantity 𝜒𝑑𝜏(𝑢)(𝑣)/𝑑𝜏(𝑢) we formally obtained look like as a function
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of 𝑣? Here, 𝑢 is a fixed parameter and the variable 𝑣 denotes the ‘event.’ See Fig. 5.4
for the two-dimensional case. In the figure the actually infinitesimal volume element
𝑑𝜏(𝑢) is assumed to be a tiny finite square for the illustration sake.

Informally,
𝜒𝑑𝜏(𝑢)(𝑣)

𝑑𝜏
=

{︂
1/𝑑𝜏 =∞, if 𝑣 ∈ 𝑑𝜏(𝑢).

0, otherwise.
(5.32)

v

vx

y

χ      (v) 

dτ(u)

1/dτ(u)

/dτdτ(u)

.

u

Figure 5.4: 𝜒𝑑𝜏(𝑢)/𝑑𝜏(𝑣), where the indicator of the volume element is concentrated around 𝑢.
Its value is 1/𝑑𝜏(𝑢) on the volume element around 𝑢, but other wise zero.

Here, ∞ appears because 𝑑𝜏 is infinitesimally small. Then, following Dirac, let us
introduce the 𝛿-function (delta function) (in the d-dimensional space) concentrated
at 𝑢 (here 𝑣 is assumed to be the running variable, and 𝑢 is a fixed constant vector.
See Fig. 5.4.) to denote 𝜒𝑑𝜏(𝑢)(𝑣)/𝑑𝜏(𝑢) as 𝛿(𝑣 − 𝑢):

𝛿(𝑣 − 𝑢) 𝑑d𝑣 =

{︂
0, if 𝑣 ̸= 𝑢,
1, if 𝑣 = 𝑢.

(5.33)

This implies that for any continuous function 𝜙 of 𝑣∫︁
𝜙(𝑣)𝛿(𝑣 − 𝑢) 𝑑d𝑣 = 𝜙(𝑢). (5.34)

Intuitively, as a function of 𝑣 you can imagine 𝛿(𝑣 − 𝑢) as an infinitely thin but
infinitely long needle at 𝑣 = 𝑢 whose total volume is unity.

5.16 Formal expression of density distribution
Suppose we know the probability measure 𝑃 for a vector 𝑣. Then the density distri-
bution function 𝑓(𝑥) of 𝑥 = 𝐹 (𝑣) can be written as

𝑓(𝑥) = ⟨𝛿(𝑥− 𝐹 (𝑣)⟩𝑃 , (5.35)

80



because

𝑓(𝑥) =

⟨
𝜒𝑑𝑥(𝐹 (𝑣))

𝑑𝑥

⟩
𝑃

. (5.36)

The 𝛿-function in (5.35) is the 1-space 𝛿-function. Notice that ‘𝛿-function’ may be
regarded as an even function (see Fig. 5.5). You must keep in mind with respect to
what variable you are taking the expectation value; in the above case with respect
to 𝑣, not 𝑥.

As we will see soon, for example you can compute the distribution of the kinetic
energy easily with the aid of (5.35). To this end we would be better familiar with
the properties of the 1-space 𝛿-function.

5.17 1D 𝛿-function and its integral
Since 1D 𝛿-function is a needle located at 𝑥 = 0 with the ‘area’ unity

𝛿(𝑥) 𝑑𝑥 =

{︂
0, if 𝑥 ̸= 0,
1, if 𝑥 = 0,

(5.37)

if we integrate it, we get a (Heaviside) step function Θ(𝑥)∫︁ 𝑥

−∞
𝑑𝑦 𝛿(𝑦) = Θ(𝑥), (5.38)

where

Θ(𝑥) =

{︂
1, for 𝑥 ≥ 0,
0, for 𝑥 < 0.

(5.39)

5.18 Derivative of step function
The step function Θ(𝑥) is constant except at 𝑥 = 0, so its ‘derivative’ Θ′(𝑥) is zero, if
𝑥 ̸= 0. However, it cannot be 0 everywhere. Although it is impossible to ‘differentiate
a vertical wall,’ we intuitively see it to be Θ′(0) = +∞ (infinitely steep uphill). The
area between Θ′(𝑥) and the 𝑥-axis must be unity, because Θ(𝑥) jumps exactly by
1 at 𝑥 = 0. You may intuitively imagine an infinitely long needle at 𝑥 = 0 whose
‘area’ is 0×∞ = unity as noted in (5.37); Θ′(𝑥) should be identical to 𝛿(𝑥). Thus,
we wish to conclude

𝑑

𝑑𝑥
Θ(𝑥) = 𝛿(𝑥). (5.40)

Our intuition just explained may be illustrated as Fig. 5.5.119 Therefore, for any

119This is total nonsense! This cannot be mathematics! However, we can almost completely
rationalize our ‘intuitive picture’ with the aid of the theory of distributions due to Schwartz. Fig.
5.5 Right tells us that 0×∞ = 1 is not so absurd.
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continuous function 𝜙(𝑥) on the real line (see (5.34))∫︁ +∞

−∞
𝜙(𝑥)𝛿(𝑥− 𝑎)𝑑𝑥 = 𝜙(𝑎). (5.41)

−2 −1 0 1 2

1

−2 −1 0 1 2

5

10

Figure 5.5: The derivatives (Right) of increasingly steep cliffs (Left). Colors are correspondent.
Imagining such a limiting process, we can understand the 𝛿-function as the derivative of the step
function. Notice that the areas below the graphs in Right are always unity.

5.19 The most useful formula for theoretical physicists
Thus, the Fourier transformation of 𝛿(𝑥) is∫︁ +∞

−∞
𝑒𝑖𝑘𝑥𝛿(𝑥)𝑑𝑥 = 1. (5.42)

Inverse Fourier transforming this, we get120

𝛿(𝑥) =
1

2𝜋

∫︁ +∞

−∞
𝑒−𝑖𝑘𝑥𝑑𝑘. (5.43)

This is perhaps the most useful identity in theoretical physics.
The delta function is quite important in (theoretical) physics. A practical sum-

mary (as well as a short introduction to the general theory of such ‘hyperfunctions’
may be found in

http://www.yoono.org/ApplicableMath/ApplicableMath_files/AMI-14.pdf

In the following, a ‘practical minimum’ is outlined.

120All these formal calculations are justified by the theory of distribution. An elemen-
tary summary of this theory may be found here: http://www.yoono.org/ApplicableMath/

ApplicableMath_files/AMI-14.pdf.
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5.20 Key formula 1 to utilize the 𝛿-function
Let 𝛼 (̸= 0) be a real number. We have the following important identity:

𝛿(𝛼(𝑥− 𝑎)) = 1

|𝛼|
𝛿(𝑥− 𝑎). (5.44)

This may be shown as∫︁ ∞

−∞
𝑑𝑥 𝛿(𝛼𝑥− 𝛼𝑎)𝜙(𝑥) =

∫︁ ∞

−∞
𝑑(𝑦/|𝛼|) 𝛿(𝑦 − 𝛼𝑎)𝜙(𝑦/𝛼) = 1

|𝛼|
𝜙(𝑎), (5.45)

5.21 Key formula 2 to utilize the 𝛿-function
How about 𝛿(𝑔(𝑥)) for a differentiable function 𝑔? Suppose 𝑥0 is a simple real

zero of 𝑔(𝑥). That is, assume 𝑔(𝑥) ≃ 𝑔′(𝑥0)(𝑥 − 𝑥0) near 𝑥0. Then, (5.44) suggests
that near 𝑥 = 𝑥0, 𝛿(𝑔(𝑥)) must be

𝛿(𝑔(𝑥)) =
1

|𝑔′(𝑥0)|
𝛿(𝑥− 𝑥0). (5.46)

There might be more than one simple real zeros of 𝑔(𝑥) (i.e., 𝑔(𝑟1) = 𝑔(𝑟2) = · · · = 0).
Thus, we obtain

𝛿(𝑔(𝑥)) =
∑︁
𝑖

1

|𝑔′(𝑟𝑖)|
𝛿(𝑥− 𝑟𝑖) =

1

|𝑔′(𝑥)|
∑︁
𝑖

𝛿(𝑥− 𝑟𝑖), (5.47)

where the summation is over all the simple real zeros of 𝑔. For example, assuming
𝑎 > 0

𝛿(𝑥2 − 𝑎2) = 1

|2𝑥|
[𝛿(𝑥− 𝑎) + 𝛿(𝑥+ 𝑎)] =

1

2𝑎
[𝛿(𝑥− 𝑎) + 𝛿(𝑥+ 𝑎)]. (5.48)

5.22 Some practice
Let’s have some practice:∫︁ 10

0

𝑑𝑥 𝛿(𝑥− 𝜋/6) sin𝑥 =
1

2
, (5.49)∫︁ 1

−1

𝑑𝑥 𝛿(3𝑥) cos𝑥 =
1

3
, (5.50)
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∫︁ 1

−1

𝑑𝑥 𝛿(𝜋 − 6𝑥) cos𝑥 =
1

6
cos

𝜋

6
=

√
3

12
, (5.51)∫︁ 4

3

𝑑𝑥 𝛿(𝜋 − 6𝑥) cos𝑥 = 0, (5.52)∫︁ ∞

−∞
𝑑𝑥 𝛿(𝑥2 − 3𝑥− 10)𝑥3 =

1

7
(125− 8) =

117

7
. (5.53)

We will have more in D3.1.

5.23 Kinetic energy density distribution of 2D ideal gas
Since we have seen the energy distribution of a 2D gas in a demo simulation, let us
obtain its formula, and demonstrate that it is independent of the particle mass. Our
starting point is a formal expression of the density distribution:

𝑓(𝐾) = ⟨𝛿(𝑚𝑣2/2−𝐾)⟩, (5.54)

where the average is over the 2D Maxwell distribution. Therefore, we must cook

𝑓(𝐾) =

∫︁
𝑑𝑣𝑥𝑑𝑣𝑦

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂
𝑒−𝑚𝑣2/2𝑘𝐵𝑇 𝛿((𝑚/2)(𝑣2𝑥 + 𝑣2𝑦)−𝐾). (5.55)

Rewrite this into a 1D integral with the aid of the polar coordinates (𝑣, 𝜃). We know
the distribution must be isotropic, we can integrate over the direction 𝜃 to get 2𝜋, so

𝑓(𝐾) = 2𝜋

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂∫︁ ∞

0

𝑣𝑑𝑣 𝛿(𝑚𝑣2/2−𝐾)𝑒−𝑚𝑣2/2𝑘𝐵𝑇 (5.56)

= 2𝜋

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂∫︁ ∞

0

𝑣𝑑𝑣
1

𝑚𝑣
𝛿(𝑣 −

√︀
2𝐾/𝑚)𝑒−𝑚𝑣2/2𝑘𝐵𝑇 (5.57)

=

(︂
1

𝑘𝐵𝑇

)︂
𝑒−𝐾/𝑘𝐵𝑇 . (5.58)

This is just what we guessed from the simulation in http://falstad.com/gas/.
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Appendix 5A: More calculations related to
the Maxwell distribution

These days you may say no analytical muscle is needed thanks to Matlab, Math-
ematica, Maple, etc. However, wise use of these softwares requires good pattern
recognition capability and strategic thinking. Such skills may be largely innate (ge-
netic) but still can be nurtured considerably by practice.

The density distribution function of the particle velocity 𝑣 of mass 𝑚 at tem-
perature 𝑇 is given by the following Maxwell distribution function:

𝑓(𝑣) =

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑣2/2𝑘𝐵𝑇 . (5.59)

In this Appendix various expectation values and related distribution functions are
studied.

(1) The (density) distribution function 𝐹 (𝑢) of 𝑢 = |𝑣|. As noted in (??), we
have

𝐹 (𝑢) = ⟨𝛿(𝑢− |𝑣|)⟩ (5.60)

or

𝐹 (𝑢) = ⟨𝛿(𝑢− |𝑣|)⟩ =
∫︁
𝑣∈R3

𝑑3𝑣 𝛿(𝑢− |𝑣|)
(︂

𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑣2/2𝑘𝐵𝑇 (5.61)

=

∫︁ ∞

0

4𝜋|𝑣|2𝑑|𝑣| 𝛿(𝑢− |𝑣|)
(︂

𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚|𝑣|2/2𝑘𝐵𝑇 (5.62)

=

∫︁ ∞

0

4𝜋𝑣2𝑑𝑣 𝛿(𝑢− 𝑣)
(︂

𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑣2/2𝑘𝐵𝑇 (5.63)

= 4𝜋𝑢2
(︂

𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑢2/2𝑘𝐵𝑇 =

√︂
2

𝜋

(︂
𝑚

𝑘𝐵𝑇

)︂3/2

𝑢2𝑒−𝑚𝑢2/2𝑘𝐵𝑇 .(5.64)

From this we can compute the mode (= the most probable value) of 𝑣 = ‘𝑢 that
maximizes 𝐹 (𝑢)’ (use the logarithmic derivative for simplicity):

𝑑

𝑑𝑢
(2 log 𝑢−𝑚𝑢2/2𝑘𝐵𝑇 ) = 0, (5.65)

so
√︀
2𝑘𝐵𝑇/𝑚 is the mode speed (typical speed).

The average speed ⟨𝑣⟩ is

⟨𝑣⟩ =

∫︁ ∞

0

𝑑𝑣 𝐹 (𝑣)𝑣 =

∫︁ ∞

0

√︂
2

𝜋

(︂
𝑚

𝑘𝐵𝑇

)︂3/2

𝑣2𝑒−𝑚𝑣2/2𝑘𝐵𝑇𝑣 𝑑𝑣 (5.66)

= 2

∫︁ ∞

0

√︂
2

𝜋

(︂
𝑚

𝑘𝐵𝑇

)︂3/2

𝑥𝑒−𝑚𝑥/𝑘𝐵𝑇𝑑𝑥 (here 𝑥 = 𝑣2/2). (5.67)
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To compute this integral, we can use the following relations:∫︁ ∞

0

𝑥𝑒−𝛼𝑥𝑑𝑥 = − 𝑑

𝑑𝛼

∫︁ ∞

0

𝑒−𝛼𝑥𝑑𝑥 = − 𝑑

𝑑𝛼

1

𝛼
=

1

𝛼2
. (5.68)

Thus,

⟨𝑣⟩ = 2

√︂
2

𝜋

(︂
𝑚

𝑘𝐵𝑇

)︂3/2(︂
𝑘𝐵𝑇

𝑚

)︂2

=

√︂
8𝑘𝐵𝑇

𝜋𝑚
. (5.69)

(2) Energy distribution: for 𝐸 = 𝑚𝑣2/2 find its density distribution function 𝐹 (𝐸).
Just as above,

𝐹 (𝐸) = ⟨𝛿(𝐸 −𝑚𝑣2/2)⟩ =
∫︁ ∞

0

4𝜋𝑣2𝑑𝑣 𝛿(𝐸 −𝑚𝑣2/2)
(︂

𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑣2/2𝑘𝐵𝑇 .

(5.70)
Then, we use (5.47) to cook the delta function with a nontrivial variable:

𝛿(𝑔(𝑥)− 𝐸) = 𝛿(𝑥− 𝑥𝐸)
1

|𝑔′(𝑥𝐸)|
, (5.71)

where 𝑔(𝑥𝐸) = 𝐸. Applying this to our case, we have

𝛿(𝐸 −𝑚𝑣2/2) = 𝛿(𝑣 −
√︀
2𝐸/𝑚)

1√
2𝑚𝐸

. (5.72)

Therefore, (you can use the result of (1) as well)

𝐹 (𝐸) =

∫︁ ∞

0

4𝜋𝑣2𝑑𝑣 𝛿(𝑣 −
√︀

2𝐸/𝑚)
1√
2𝑚𝐸

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑣2/2𝑘𝐵𝑇 (5.73)

= 4𝜋
2𝐸

𝑚

1√
2𝑚𝐸

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝐸/𝑘𝐵𝑇 (5.74)

= 2

√︂
𝐸

𝜋

(︂
1

𝑘𝐵𝑇

)︂3/2

𝑒−𝐸/𝑘𝐵𝑇 . (5.75)

(3) Relative velocity distribution
Let us obtain the root-mean square relative velocity 𝑤 of two particles 1 and 2 with
mass 𝑚 in an ideal gas at 𝑇 .

Using the delta function technique, we can write the density distribution function
𝐹 (𝑤) for the relative velocity 𝑤 = 𝑣1 − 𝑣2 as

𝐹 (𝑤) = ⟨𝛿(𝑤 − (𝑣1 − 𝑣2))⟩𝑣1,𝑣2 (5.76)

=

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3 ∫︁
𝑑3𝑣1

∫︁
𝑑3𝑣2 𝛿(𝑤 − (𝑣1 − 𝑣2))𝑒

−𝑚𝑣2
1/2𝑘𝐵𝑇−𝑚𝑣2

2/2𝑘𝐵𝑇

(5.77)

=

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3 ∫︁
𝑑3𝑣1𝑒

−𝑚𝑣2
1/2𝑘𝐵𝑇−𝑚(𝑤−𝑣1)2/2𝑘𝐵𝑇 . (5.78)
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The integration over 𝑣1 is performed with the aid of completion of square (as ex-
plained in the lecture):

𝑚𝑣2
1 +𝑚(𝑤 − 𝑣1)

2 = 2𝑚𝑣2
1 +𝑚𝑤2 − 2𝑚𝑤 · 𝑣1 (5.79)

= 2𝑚 (𝑣1 −𝑤/2)2 +𝑚𝑤2 − (𝑚/2)𝑤2 (5.80)

= 2𝑚 (𝑣1 −𝑤/2)2 + (𝑚/2)𝑤2. (5.81)

Thus, we obtain

𝐹 (𝑤) =

(︂
𝑚

4𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑤2/4𝑘𝐵𝑇 . (5.82)

This means

⟨𝑤2⟩ = 6𝑘𝐵𝑇

𝑚
. (5.83)

Check that the answer agrees with the result obtained by the equipartition of energy
(and statistical independence of two particles).

(4) Root mean square velocity: we know an easy way, but here let us compute
⟨𝑣2⟩ honestly as

⟨𝑣2⟩ =
∫︁
𝑣∈R3

𝑑3𝑣 𝑣2

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑣2/2𝑘𝐵𝑇 . (5.84)

It is convenient to use the polar coordinate system with 𝑣 = |𝑣|. Then,

⟨𝑣2⟩ =
∫︁ ∞

0

4𝜋𝑣2𝑑𝑣 𝑣2
(︂

𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑣2/2𝑘𝐵𝑇 . (5.85)

Thus, the following integral is needed:

𝐼(𝑠, 𝛼) =

∫︁ ∞

0

𝑑𝑣 𝑣𝑠𝑒−𝛼𝑣2 , (5.86)

which can be written with the aid of the Γ-function, but we do not go into it. For
example,

𝐼(4, 𝛼) =
𝑑2

𝑑𝛼2

∫︁ ∞

0

𝑑𝑣 𝑒−𝛼𝑣2 =
𝑑2

𝑑𝛼2
𝐼(0, 𝛼) =

𝑑2

𝑑𝛼2

1

2

√︂
𝜋

𝛼
=

3

8

√
𝜋

𝛼5/2
. (5.87)

We know

⟨𝑣2⟩ = 𝐼(4, 𝛼)/𝐼(2, 𝛼) =
3

2

1

𝛼
=

3𝑘𝐵𝑇

𝑚
. (5.88)

87



Q5-1. Consider 𝐷-dimensional ideal gas (𝐷 > 1). That is, the velocity is a 𝐷-
vector 𝑣 = (𝑣1, 𝑣2, · · · , 𝑣𝐷), and the kinetic energy of a single particle is given by
(𝑚/2)𝑣2 = (𝑚/2)(𝑣21 + 𝑣

2
2 + · · ·+ 𝑣2𝐷), where 𝑚 is the mass of the particle. [Here, our

approach is elementary, but you can use the 𝛿-function technique already explained
in Appendix 4B. If the problem becomes more complicated as the next problem, the
𝛿-function is much easier than the elementary approach.]
(1) Write down the 𝐷-dimensional Maxwell distribution function (i.e., find the den-
sity distribution function of the velocity in 𝐷-space).
(2) What is the most probable speed 𝑣𝐷 in 𝐷-space? That is, what is the mode speed
(the speed for which the density distribution function for the speed is maximal)?
(3) What is the ratio of 𝑣𝐷 obtained in (2) and the root-mean-square velocity in the
𝐷 →∞ limit?
(4) Is your result in (3) consistent with the law of large numbers?

Solution.
(1) As you can guess from the 3D result, we have only to multiply 𝐷 1D results as (If
you do not like mere guessing, you can go back to Maxwell’s proof. You will realize
that the proof boils down to 𝐹 (𝑥+ 𝑦) = 𝐹 (𝑥)𝐹 (𝑦) just as in 3D.)

𝑓(𝑣) =

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂𝐷/2

𝑒−𝑚|𝑣|2/2𝑘𝐵𝑇 .

(2) We need the density distribution function 𝐹 (𝑣) of the speed 𝑣 = |𝑣|.

𝐹 (𝑢) = ⟨𝛿(𝑢− |𝑣|)⟩ =
∫︁
𝑑𝐷𝑣 𝛿(𝑢− |𝑣|)

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂𝐷/2

𝑒−𝑚|𝑣|2/2𝑘𝐵𝑇

Notice that to use the rule of the computation of the integral containing a 𝛿-function,
the independent variable in the 𝛿-function (in our case |𝑣|) must be the integration
variable. Thus we must convert the 𝛿-function or convert the integration variable (in
our case, we convert the integration variable from 𝑣 to |𝑣|).
Now we should go to the polar coordinate system in 𝐷-space:

𝑑𝐷𝑣 = 𝑆𝐷−1𝑣
𝐷−1𝑑𝑣,

where 𝑆𝐷−1 is the volume of the 𝐷−1-unit sphere (corresponding to 4𝜋 in 3D). This
actual form may be found in my grad course lecture notes (there is a clever way to
compute it as explained there), but we do not need its explicit form. Integrating
over the velocity, we get

𝐹 (𝑢) = 𝑆𝐷−1

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂𝐷/2

𝑢𝐷−1𝑒−𝑚𝑢2/2𝑘𝐵𝑇 .

This is the density distribution function for the speed. To find its peak, we have only
to maximize 𝑚𝑢2/2𝑘𝐵𝑇 − (𝐷 − 1) log 𝑢:

𝑚𝑢

𝑘𝐵𝑇
− (𝐷 − 1)

1

𝑢
= 0,
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Or 𝑢2 = (𝐷 − 1)𝑘𝐵𝑇/𝑚. That is,

𝑣𝐷 =

√︂
(𝐷 − 1)𝑘𝐵𝑇

𝑚
.

(3) The equipartition of kinetic energy tells us that⟨
1

2
𝑚𝑣2

⟩
=
𝑚𝐷

2
⟨𝑣2𝑥⟩ =

𝐷

2
𝑘𝐵𝑇.

That is, the root-mean-square velocity is
√︀
𝐷𝑘𝐵𝑇/𝑚. The ratio obviously converges

to unity.
(4) The LLN tells us that for any positive 𝜀

𝑃

(︂⃒⃒⃒⃒
𝑣2

𝐷
− 𝑘𝐵𝑇

𝑚

⃒⃒⃒⃒
> 𝜀

)︂
<
𝑉 (𝑣21)

𝜀2𝐷
.

That is, the probability for

𝐷

(︂
𝑘𝐵𝑇

𝑚
− 𝜀
)︂
< 𝑣2 < 𝐷

(︂
𝑘𝐵𝑇

𝑚
+ 𝜀

)︂
is asymptotically unity as 𝐷 → ∞ for any 𝜀 > 0. Since 𝐹 (𝑢) has peak(s) in this
range, the most probable value should be within this range as well. That is, the
mode speed is forced to agree with the root-mean square average.

Q5-2 [Density distribution of relative velocity]
(1) There are two particles 1 and 2 in an equilibrium pure ideal gas. Write down
the simultaneous density distribution function 𝑓(𝑣1,𝑣2) of their velocities 𝑣1 and 𝑣2.
You may assume the temperature of the gas is 𝑇 , and the mass of the individual
particles is 𝑚.
(2) Now, introduce the velocity 𝑉 of the center of mass of these two particles and
the relative velocity 𝑤 = 𝑣1− 𝑣2. Write down the simultaneous density distribution
function 𝑔(𝑤,𝑉 ) of 𝑤 and 𝑉 .
(3) Find the density distribution function of 𝑤. Compute ⟨|𝑤|⟩ and compare it with
the root-mean square of 𝑤 (i.e.,

√︀
⟨𝑤2⟩).

Solution.
(1) Maxwell’s (density) distribution function 𝑓(𝑣) implies

𝑃 (𝑑𝑣) = 𝑓(𝑣)𝑑𝑣, (5.89)

where 𝑑𝑣 is the volume element of the velocity space. Since we know two particles
are statistically independent,

𝑃 (𝑑𝑣1, 𝑑𝑣2) = 𝑃 (𝑑𝑣1)𝑃 (𝑑𝑣2), (5.90)
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the density 𝑓(𝑣1,𝑣2) must be a product of two Maxwellian distributions. There-
fore,

𝑓(𝑣1,𝑣2) =

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3

𝑒−𝑚(𝑣2
1+𝑣

2
2)/2𝑘𝐵𝑇 . (5.91)

(2) 𝑣1 = 𝑉 +𝑤/2 and 𝑣2 = 𝑉 −𝑤/2, so

𝑣2
1 + 𝑣2

2 = 2𝑉 2 +
1

2
𝑤2. (5.92)

Since we are computing the density distribution, we must demand

𝑓(𝑣1,𝑣2)𝑑𝑣1𝑑𝑣2 = 𝑔(𝑉 ,𝑤)𝑑𝑉 𝑑𝑤, (5.93)

or

𝑓(𝑣1,𝑣2)
𝜕(𝑣1,𝑣2)

𝜕(𝑉 ,𝑤)
= 𝑔(𝑉 ,𝑤). (5.94)

The Jacobian appearing in the above formula is unity, so

𝑔(𝑉 ,𝑤) =

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3

𝑒−(2𝑚𝑉 2
+(𝑚/2)𝑤2)/2𝑘𝐵𝑇 . (5.95)

Notice that the center of mass kinetic energy is (1/2)(2𝑚)𝑉 2, and the kinetic energy
of the relative motion is (1/2)(𝑚/2)𝑤2, where 𝑚/2 is the reduced mass. You can
read them off from the above formula.
(3) The marginal distribution 𝑔(𝑤) is obtained by integrating 𝑉 out, or simply
splitting 𝑔(𝑉 ,𝑤) using statistical independence of 𝑉 and 𝑤:

𝑔(𝑤) =

(︂
𝑚

4𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑤2/4𝑘𝐵𝑇 (5.96)

⟨|𝑤|⟩ =
(︂

𝑚

4𝜋𝑘𝐵𝑇

)︂3/2 ∫︁
𝑑𝑤|𝑤|𝑒−𝑚𝑤2/4𝑘𝐵𝑇 =

(︂
𝑚

4𝜋𝑘𝐵𝑇

)︂3/2

4𝜋

∫︁ ∞

0

𝑤3𝑒−𝑚𝑤2/4𝑘𝐵𝑇𝑑𝑤

(5.97)
The integral can be calculated analytically:

4𝜋

∫︁ ∞

0

𝑤3𝑒−𝑚𝑤2/4𝑘𝐵𝑇𝑑𝑤 = 2𝜋

(︂
4𝑘𝐵𝑇

𝑚

)︂2

. (5.98)

Therefore,

⟨|𝑤|⟩ = 2𝜋

(︂
4𝑘𝐵𝑇

𝑚

)︂2(︂
𝑚

4𝜋𝑘𝐵𝑇

)︂3/2

=
4√
𝜋

(︂
𝑘𝐵𝑇

𝑚

)︂1/2

. (5.99)

On the other hand

⟨𝑤2⟩ =
(︂

𝑚

4𝜋𝑘𝐵𝑇

)︂3/2

4𝜋

∫︁ ∞

0

𝑤4𝑒−𝑚𝑤2/4𝑘𝐵𝑇𝑑𝑤 =

(︂
𝑚

4𝜋𝑘𝐵𝑇

)︂3/2

48𝜋3/2

(︂
𝑘𝐵𝑇

𝑚

)︂5/2

=
6𝑘𝐵𝑇

𝑚
,

(5.100)
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or
√︀
⟨𝑤2⟩ = 3

√
2
√︀
𝑘𝐵𝑇/𝑚, which we will use in the next Lecture to estimate the

mean free path. This must be larger than ⟨𝑤⟩, because the variance of 𝑤 = |𝑤| (i.e,
⟨𝑤2⟩ − ⟨𝑤⟩2) must be positive.

Q5-3. Let us obtain the root-mean square relative velocity of two molecules with
different masses 𝑚 and 𝑀 in an equilibrium gas at temperature 𝑇 .
(1) Using the delta function trick, we can write the density distribution function
𝐹 (𝑤) for the relative velocity 𝑤 as

𝐹 (𝑤) =

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3/2(︂
𝑀

2𝜋𝑘𝐵𝑇

)︂3/2 ∫︁
𝑑3𝑣1

∫︁
𝑑3𝑣2 𝛿(𝑤−(𝑣1−𝑣2))𝑒

−𝑚𝑣2
1/2𝑘𝐵𝑇−𝑀𝑣2

2/2𝑘𝐵𝑇 .

(5.101)
Perform the integration over 𝑣2.
(2) Then, perform the integration over 𝑣1 to obtain 𝐹 (𝑤).
(3) Find ⟨𝑤2⟩ and check that the answer agrees with the result obtained by the
equipartition of energy.

Solution.
(1) This is straightforward. By inspection, we get

𝐹 (𝑤) =

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3/2(︂
𝑀

2𝜋𝑘𝐵𝑇

)︂3/2 ∫︁
𝑑3𝑣1𝑒

−𝑚𝑣2
1/2𝑘𝐵𝑇−𝑀(𝑤−𝑣1)2/2𝑘𝐵𝑇 .

(2) To perform the Gaussian integral we use the trick to complete the square:

𝑚𝑣21 +𝑀(𝑤 − 𝑣1)
2 = (𝑚+𝑀)𝑣2

1 +𝑀𝑤2 − 2𝑀𝑤𝑣1 (5.102)

= (𝑚+𝑀)

(︂
𝑣1 −

𝑀

𝑚+𝑀
𝑤

)︂2

+𝑀𝑤2 − 𝑀2

𝑚+𝑀
𝑤2(5.103)

= (𝑚+𝑀)

(︂
𝑣1 −

𝑀

𝑚+𝑀
𝑤

)︂2

+
𝑚𝑀

𝑚+𝑀
𝑤2. (5.104)

Thus, we obtain

𝐹 (𝑤) =

(︂
𝑚𝑀

2(𝑚+𝑀)𝜋𝑘𝐵𝑇

)︂3/2

𝑒−
𝑚𝑀
𝑚+𝑀

𝑤2/2𝑘𝐵𝑇 . (5.105)

Notice that the appearance of the reduced mass is quite natural.
(3) The expectation value can be read off from the formula as

⟨𝑤2⟩ = 3
𝑚+𝑀

𝑚𝑀
𝑘𝐵𝑇.

The result is of course consistent with the elementary results as follows:

⟨𝑤2⟩ = ⟨𝑣2
1⟩+ ⟨𝑣2

2⟩ =
3𝑘𝐵𝑇

𝑚
+

3𝑘𝐵𝑇

𝑀
= 3

𝑚+𝑀

𝑚𝑀
𝑘𝐵𝑇.
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Q5-4. We know, in equilibrium, the mean kinetic energy 𝐸 is given by the equipar-
tition of energy. What is the probability of a particle to have the kinetic energy more
than the average kinetic energy 3𝑘𝐵𝑇/2 (in equilibrium)?

Solution.
We know the density distribution of 𝐸 in Appendix 4B, so we can use it, but here
we proceed step by step.

𝑃 ≡ 𝑃 (𝐸 ≥ 3𝑘𝐵𝑇/2) = ⟨𝜒{𝑣:𝑣2≥3𝑘𝐵𝑇/𝑚}⟩ =
∫︁
{𝑣:𝑣2≥3𝑘𝐵𝑇/𝑚}

𝑓(𝑣)𝑑𝑣, (5.106)

where 𝑓 is Maxwell’s distribution. Therefore,

𝑃 = 4𝜋

∫︁ ∞

√
3𝑘𝐵𝑇/𝑚

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝑚𝑣2/2𝑘𝐵𝑇𝑣2𝑑𝑣 (5.107)

=
4√
𝜋

∫︁ ∞

√
3/2

𝑒−𝑥2

𝑥2𝑑𝑥 ≃ 0.39. (5.108)

This should be less than 1/2 because we can expect very high energy but rare par-
ticles.

Q5-5. There are 𝑁 particles which can be in one of the two states A and B. State
A has a potential energy about 𝑈 = 0.2𝑘𝐵𝑇 higher than B. How many particles 𝑁
do you need to estimate 𝑈 within 1% (relative) error from a single measurement of
the occupation probability of state A (i.e., 𝑁𝐴/𝑁) in equilibrium at temperature 𝑇
(according to the usual law of large numbers estimate)? [In this question, you must
assume your ‘failure tolerance level’, e.g., a larger than 𝜀 error once in 100 observa-
tions, or once in 500 observations, etc. Choose your tolerance level.]

Solution.
This is a LLN problem. 𝑝𝐴 = 𝑁𝐴/𝑁 is the empirical probability you can measure.
We know 𝑁𝐴/𝑁𝐵 = 𝑒−𝑈/𝑘𝐵𝑇 ≃ 𝑒−0.2 = 0.8187, and 𝑁 = 𝑁𝐴 +𝑁𝐵

𝑝𝐴 = 1/(1 + 𝑒𝛽𝑈) ≃ 0.45 (5.109)

LLN tells us for any 𝜀 (> 0), if 𝑃𝐴 is the true probability of state A (from which we
may compute accurate 𝑈)

𝑃 (|𝑝𝐴 − 𝑃𝐴| > 𝜀) <
𝑉 (𝑝𝐴)

𝜀2𝑁
, (5.110)

where 𝑉 (𝑝𝐴) is the variance of 𝑝𝐴: 𝑉 (𝑝𝐴) = 𝑃𝐴(1− 𝑃𝐴) ≃ 𝑝𝐴(1− 𝑝𝐴) = 0.248. We
tolerate the relative error of 1% in 𝑈 (i.e., Δ𝑈/𝑈 ∼ 0.01). The tolerated error is
estimated as

|Δ𝑝𝐴| = 𝑝2𝐴𝑒
𝛽𝑈𝛽𝑈(Δ𝑈/𝑈) = 0.452 × 𝑒0.2 × 0.2× 0.01 = 0.000494. (5.111)
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Therefore, 𝜀 = 0.0005. Thus, the error bound in the above formula reads

𝑉 (𝑝𝐴)

𝜀2𝑁
=

0.248

(0.0005)2𝑁
, (5.112)

If we allow one failure in 1000 observations, this must be less than 1/1000. There-
fore,

𝑁 > 248/(0.0005)2 = 1.× 109. (5.113)
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Discussion 3

We discuss the Maxwell distribution, the Boltzmann factor and the use of 𝛿-function.

D3.1 [Use of 𝛿-function]
Suppose we know how to compute the average ⟨ ⟩𝑢 over a random variable 𝑢. Then,
the density distribution function 𝑓 for 𝑥 = 𝜙(𝑢) is given by (see 5.16)

𝑓(𝑥) = ⟨𝛿(𝑥− 𝜙(𝑢))⟩𝑢. (5.114)

This is the most important formula for density distribution functions.

(1) You must be able to explain why this is so.
(2) Next, you should be able to use 𝛿-functions. Compute the following integrals.

(i)

∫︁ 2

0

𝑑𝑥 𝛿(𝑥− 1)(𝑥2 + 2𝑥− 3). (5.115)

(ii)

∫︁ 1

0

𝑑𝑥 𝛿(𝑥− 𝜋/3) cos𝑥. (5.116)

(iii)

∫︁ 2

0

𝑑𝑥 𝛿(3𝑥− 𝜋) cos𝑥. (5.117)

(iv)

∫︁ ∞

0

𝑑𝑥 𝛿(𝑥2 − 3𝑥− 4)𝑥3. (5.118)

(v)

∫︁ ∞

−∞
𝑑𝑥 𝛿(𝑥3 + 2𝑥2 − 𝑥− 2)𝑒𝑥. (5.119)

Solution.
(1) The density distribution function is defined by the following ‘derivative’121 in
terms of the indicator 𝜒𝑑𝑥 of the volume element 𝑑𝑥:

𝑓(𝑥) =
𝑃 (𝑑𝑥)

𝑑𝑥
. (5.120)

Therefore, we may perform the following formal calculation

𝑓(𝑥) =
⟨𝜒𝑑𝑥(𝜙(𝑢))⟩𝑢

𝑑𝑥
= ⟨𝛿(𝑥− 𝜙(𝑢))⟩𝑢, (5.121)

where 𝛿 may be intuitively understood as

𝛿(𝑥− 𝑦)𝑑𝑥 =

{︂
0, if 𝑥 ̸= 𝑦,
1, if 𝑥 = 𝑦.

(5.122)

121Actually, the Radon-Nikodym derivative.

94



(2)
(i) ∫︁ 2

0

𝑑𝑥 𝛿(𝑥− 1)(𝑥2 + 2𝑥− 3) = (𝑥2 + 2𝑥− 3)𝑥=1 = 0. (5.123)

(ii) ∫︁ 1

0

𝑑𝑥 𝛿(𝑥− 𝜋/3) cos𝑥 = 0, (5.124)

because 𝜋/3 ̸∈ [0, 1].

(iii) We use |𝑎|𝛿(𝑎𝑥) = 𝛿(𝑥), so 3𝛿(3𝑥− 𝜋) = 𝛿(𝑥− 𝜋/3):∫︁ 2

0

𝑑𝑥 𝛿(3𝑥− 𝜋) cos𝑥 =

∫︁ 2

0

𝑑𝑥
1

3
𝛿(𝑥− 𝜋/3) cos𝑥 =

1

3
cos

𝜋

3
=

1

6
. (5.125)

(iv) Since 𝑥2 − 3𝑥− 4 = (𝑥− 4)(𝑥+ 1), 𝑥 = 4 is only zero that matters in [0,∞), so
on this interval

𝛿(𝑥2 − 3𝑥− 4) =
1

|2𝑥− 3|
𝛿(𝑥− 4) =

1

5
𝛿(𝑥− 4). (5.126)

Therefore, ∫︁ ∞

0

𝑑𝑥 𝛿(𝑥2 − 3𝑥− 4)𝑥3 =
1

5

∫︁ ∞

0

𝑑𝑥 𝛿(𝑥− 4)𝑥3 =
64

5
. (5.127)

(v) Since 𝑥3 + 2𝑥2 − 𝑥− 2 = (𝑥− 1)(𝑥2 + 3𝑥+ 2) = (𝑥− 1)(𝑥+ 1)(𝑥+ 2),

𝛿(𝑥3 + 2𝑥2 − 𝑥− 2) =
1

|3𝑥2 + 4𝑥− 1|
[𝛿(𝑥− 1) + 𝛿(𝑥+ 1) + 𝛿(𝑥+ 2)]

(5.128)

=
1

6
𝛿(𝑥− 1) +

1

2
𝛿(𝑥+ 1) +

1

3
𝛿(𝑥+ 2). (5.129)

Therefore,∫︁ ∞

−∞
𝑑𝑥 𝛿(𝑥3 + 2𝑥2 − 𝑥− 2)𝑒𝑥 =

∫︁ ∞

−∞
𝑑𝑥

[︂
1

6
𝛿(𝑥− 1) +

1

2
𝛿(𝑥+ 1) +

1

3
𝛿(𝑥+ 2)

]︂
𝑒𝑥

(5.130)

=
𝑒

6
+
𝑒−1

2
+
𝑒−2

3
=

1

3
cosh(1) +

2𝑒−3/2

3
cosh(1/2).

(5.131)
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D3.2 [2D ideal gas]122

There is a 2D ideal gas in equilibrium at temperature 𝑇 .
Let us introduce the following notations:
𝑣: the root mean square velocity123 of the particles.
𝑣𝑝: the mode (= the most probable) speed124 of the particles.
𝑣𝑚: the median speed125 of the particles.
𝑣𝑠: the average speed126 of the particles.

(1) Calculate all the quantities. [Calculate the density distribution for the speed;
using the 𝛿-function is handy.]
(2) Show that generally 𝑣 ≥ 𝑣𝑠 (even if the gas is not in equilibrium).
(3) Is there any general inequality between 𝑣𝑝 and 𝑣𝑚 irrespective of the actual dis-
tribution?

Remark. You may use some software to perform integrals, BUT I strongly recommend you not to

do so blindly. Use it sparingly. My solution will not use it.

Solution.
(1) Since all are wrt the speed (even 𝑣 =

√︀
⟨𝑣2⟩ =

√︀
⟨|𝑣|2⟩ =

√︀
⟨𝑣2⟩), let us deter-

mine the density distribution function 𝑓(𝑣) for the speed 𝑣 = |𝑣|.

𝑓(𝑣) = ⟨𝛿(𝑣 − |𝑣|)⟩ =

∫︁
𝑣∈R2

𝑑2𝑣 𝛿(𝑣 − |𝑣|)
(︂

𝑚

2𝜋𝑘𝐵𝑇

)︂
𝑒−𝑚𝑣2/2𝑘𝐵𝑇 (5.132)

=

∫︁ ∞

0

2𝜋|𝑣|𝑑|𝑣| 𝛿(𝑣 − |𝑣|)
(︂

𝑚

2𝜋𝑘𝐵𝑇

)︂
𝑒−𝑚|𝑣|2/2𝑘𝐵𝑇(5.133)

=

∫︁ ∞

0

2𝜋𝑢𝑑𝑢 𝛿(𝑣 − 𝑢)
(︂

𝑚

2𝜋𝑘𝐵𝑇

)︂
𝑒−𝑚𝑢2/2𝑘𝐵𝑇 (5.134)

= 2𝜋𝑣

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂
𝑒−𝑚𝑣2/2𝑘𝐵𝑇 =

𝑚

𝑘𝐵𝑇
𝑣𝑒−𝑚𝑣2/2𝑘𝐵𝑇 .(5.135)

This can also be obtained easily with an elementary change of variables. Confirm
that this is indeed normalized.

Let us calculate a general formula:

⟨𝑣𝛼⟩ =

∫︁ ∞

0

𝑑𝑣
𝑚

𝑘𝐵𝑇
𝑣1+𝛼𝑒−𝑚𝑣2/2𝑘𝐵𝑇 (5.136)

=

∫︁ ∞

0

√︂
𝑘𝐵𝑇

2𝑚𝑥
𝑑𝑥

𝑚

𝑘𝐵𝑇

(︃√︂
2𝑘𝐵𝑇

𝑚

√
𝑥

)︃1+𝛼

𝑒−𝑥 (5.137)

122This is related to Q5-1.
123
√︀
⟨𝑣2⟩.

124the most frequent speed.
125the speed such that the probability of a particle to have the speed less than that is 1/2.
126⟨|𝑣|⟩.
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=

∫︁ ∞

0

1√︀
2𝑘𝐵𝑇𝑥/𝑚

𝑑𝑥

(︃√︂
2𝑘𝐵𝑇

𝑚

√
𝑥

)︃1+𝛼

𝑒−𝑥 (5.138)

=

∫︁ ∞

0

𝑑𝑥

(︃√︂
2𝑘𝐵𝑇

𝑚

√
𝑥

)︃𝛼

𝑒−𝑥 (5.139)

=

(︂
2𝑘𝐵𝑇

𝑚

)︂𝛼/2

Γ(1 + 𝛼/2), (5.140)

where Γ is the Gamma function defined by

Γ(𝑥) =

∫︁ ∞

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡 (5.141)

for 𝑥 whose real part is positive.127 Γ(1/2) =
√
𝜋 (just a disguised Gaussian integral),

Γ(1) = 1, and note that
Γ(𝑥+ 1) = 𝑥Γ(𝑥), (5.142)

because

Γ(𝑥+ 1) =

∫︁ ∞

0

𝑑𝑡 𝑡𝑥𝑒−𝑡 = −
∫︁ ∞

0

𝑑𝑡 𝑡𝑥
𝑑

𝑑𝑡
𝑒−𝑡 = 𝑡𝑥𝑒−𝑡

⃒⃒∞
𝑡=0

+ 𝑥

∫︁ ∞

0

𝑑𝑡 𝑡𝑥−1𝑒−𝑡 = 𝑥Γ(𝑥).

(5.143)
Therefore, for example, Γ(5/2) = (3/2)Γ(3/2) = (3/4)

√
𝜋, and Γ(𝑁 + 1) = 𝑁 ! for

positive integer 𝑁 .
As you see from the formula (5.139), if 𝛼 is an even positive integer, we can

perform the integral in an elementary fashion. Otherwise, I do not believe you can
do it easily; you need an integral table (obsolete now) or some software. However,
you should understand why the result is rather aesthetic with

√
𝜋 instead of an ugly

number. See
http://www.yoono.org/ApplicableMath/ApplicableMath_files/AMI-9.pdf

for a fairly quick study of the Gamma function, or the real reference http://dlmf.
nist.gov/5. The latter is a NIST applied math site, useful for practitioners.

Thus,

𝑣2 =
2𝑘𝐵𝑇

𝑚
Γ(2) =

2𝑘𝐵𝑇

𝑚
. (5.144)

That is,

𝑣 =

√︂
2𝑘𝐵𝑇

𝑚
. (5.145)

127and then is analytically continued to the complex plane except for non-positive integers.
Since Phys 427 is a course taken by those who are graduating from physics, I take it for granted
that you know elementary analysis (with multivariate functions), linear algebra, complex analysis
and differential equations.

97

http://www.yoono.org/ApplicableMath/ApplicableMath_files/AMI-9.pdf
http://dlmf.nist.gov/5
http://dlmf.nist.gov/5


This can be obtained immediately from the equipartition of kinetic energy 2.15
𝑚𝑣2/2 = 𝑘𝐵𝑇 (in 2D!).

𝑣𝑠 =

(︂
2𝑘𝐵𝑇

𝑚

)︂1/2

Γ(3/2) =

√︂
𝜋𝑘𝐵𝑇

2𝑚
≃
√︂

1.57𝑘𝐵𝑇

𝑚
(5.146)

The mode speed is obtained from the peak position of 𝑓(𝑣). It is wise to use the
logarithmic derivative to obtain

𝑑

𝑑𝑣

(︂
log 𝑣 − 𝑚𝑣2

2𝑘𝐵𝑇

)︂
=

1

𝑣
− 𝑚𝑣

𝑘𝐵𝑇
= 0. (5.147)

Therefore,

𝑣𝑝 =

√︂
𝑘𝐵𝑇

𝑚
. (5.148)

The median speed 𝑣𝑚 is obtained by

1

2
=

∫︁ 𝑣𝑚

0

𝑑𝑣 𝑓(𝑣) =

∫︁ 𝑣𝑚

0

𝑑𝑣
𝑚𝑣

𝑘𝐵𝑇
𝑒−𝑚𝑣2/2𝑘𝐵𝑇 =

∫︁ 𝑚𝑣2𝑚/2𝑘𝐵𝑇

0

𝑑𝑥 𝑒−𝑥 = 1− 𝑒−𝑚𝑣2𝑚/2𝑘𝐵𝑇 .

(5.149)
That is, 𝑚𝑣2𝑚/2𝑘𝐵𝑇 = log 2 or

𝑣𝑚 =

√︂
(2 log 2)𝑘𝐵𝑇

𝑚
≃
√︂

1.386𝑘𝐵𝑇

𝑚
. (5.150)

Thus, we have realized in equilibrium in 2-space

𝑣 > 𝑣𝑠 > 𝑣𝑚 > 𝑣𝑝 (5.151)

as illustrated in Fig. 5.6A.

In our case, because of the density distribution tail, 𝑣𝑠 is larger than 𝑣𝑚. If the
system is not in equilibrium, then 𝑣𝑠 can be smaller than 𝑣𝑚.

(2) 𝑣2 = ⟨𝑣2⟩. We know the variance of the speed ⟨𝑣2⟩−⟨𝑣⟩2 = 𝑣2−𝑣2𝑠 is non-negative,
so irrespective of the state of the gas, 𝑣 ≥ 𝑣𝑠.

(3) Anything goes, since for a given density distribution you can place the peak any-
where you wish without changing the median at all (anything is possible as demon-
strated by Fig. 5.6B).

D3.3 [Boltzmann factor]
We need the Boltzmann constant 𝑘𝐵 although we will discuss how to determine its
value later. Here is a summary:
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A
B

Figure 5.6: A: Illustration of (5.151). 𝑓(𝑣) is the shaded figure. B shows that you can place 𝑣𝑝
‘anywhere’ you wish without changing 𝑣𝑚 at all. The ‘spike’ is dug up from the left hand side and
‘grafted’ to the right.

Summary of the Boltzmann constant 𝑘𝐵
128

It would be practical to have some sense of the magnitude of the Boltzmann
constant.

𝑘𝐵 = 1.3806503× 10−23 J/K

= 1.3806503× 10−2 pN·nm/K

= 8.617343× 10−5 eV/K.

The gas constant 𝑅 is defined by

𝑅 ≡ 𝑁𝐴𝑘𝐵 = 8.314462 J/mol·K = 1.986 cal/mol·K. (5.152)

Here, 𝑁𝐴 = 6.02214078(18) × 1023/mol is Avogadro’s constant and 1 cal =
4.18605 J.

It is convenient to remember that at room temperature (300 K):129

𝑘𝐵𝑇 = 4.14 pN·nm
= 0.026 eV,

𝑅𝑇 = 2.49 kJ/mol = 0.6 kcal/mol.

(1) There is a potential step of height 4.2 pN·nm as shown in Fig. 5.7. The system is
assumed to be uniform (within the walls parallel to the sheet of paper). The particles
in the box barely interact with each other (i.e., as an ideal gas). What is the ratio
of the number densities in A and in B: 𝑛𝐵/𝑛𝐴 at 300 K? [See the summary of the
Boltzmann constant at the end.]

128⟨⟨Representative energy scales⟩⟩ 5∼10 pN is a typical force felt or exerted by molecular
machines; a few nm is a typical displacement of molecular motors. Cf., the diameter of DNA is
2 nm (its pitch is 3.4 nm); the 𝛼-helix pitch is 3.6 amino acid residues = 0.54 nm. To ionize an
atom, a few electron volts are needed, so, if 𝑇 is the room temperature (300 K), it is about 100
𝑘𝐵𝑇 . Note that even on the surface of the sun (with the temperature corresponding to the black
body radiation of about 6000 K; see 23.5), hydrogen atoms are not significantly ionized.

129Under physiological condition, hydrolysis of a single ATP molecule provides about 20𝑘𝐵𝑇 .
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ε0

A B

Figure 5.7: A box with a potential step of height 𝜀 = 4.2 pN·nm. The gray portion is with
potential energy 𝜀 higher relative to the white portion in the container.

(2) There are two one-particle states the energy gap between which is 150𝑘𝐵 (in K).
We have two particles that do not energetically interact. What is the probability to
find only one particle in the higher energy one-particle state at 𝑇 = 300 K (Recall
D2.1(2)),

(i) if the particles are identical fermions?
(ii) if the particles are identical bosons?
(iii) if the particles are not identical?

(3) A typical intermolecular force (in 3-space) is described by the Lenard-Jones
potential 𝜙(𝑟):

𝜙(𝑟) = 4𝜀

[︂(︁𝜎
𝑟

)︁12
−
(︁𝜎
𝑟

)︁6]︂
, (5.153)

which is illustrate in Fig. 5.8.

σ ε

en
er
g
y
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r

ϕ(r)

dr dr
2σ

5σ

Figure 5.8: Lenard-Jones potential

Let us assume realistic values130 𝜀/𝑘𝐵 = 150 (in K) and 𝜎 = 3.5×10−10 m. Estimate
the ratio of probabilities to find another particle (of the same chemical species)
around 2𝜎 and around 5𝜎 from the origin. Here, ‘around’ means the shells of thickness
𝑑𝑟. Do not forget that the particles are in 3-space.

Solution.
(1) This is a trivial question 𝑛𝐵 = 𝑛𝐴𝑒

−𝜀/𝑘𝐵𝑇 . 𝜀/𝑘𝐵𝑇 = 4.2/4.12 ≃ 1.014, so
𝑛𝐵/𝑛𝐴 = 𝑒−1.014 = 0.36.

(2) Let us illustrate the possible microstates:

130e.g., cf. E. Wilhelm and R. Battino, Estimation of Lennard-Jones (6,12) Pair Potential Param-
eters from Gas Solubility Data, J. Chem. Phys., 55, 4012 (1971).
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Figure 5.9: Two-level system; (i) fermions, (ii) bosons, (iii) distinguishable case. Red shaded
microstates meet the required condition.

All the possible cases are illustrated in Fig. 5.9.
(i) For fermions there is only one microstate, so with probability 1 (i.e., for sure) we
find one particle in the higher energy level (higher-energy one-particle state).
(ii) For bosons there are three states. To place a particle in the ‘excited state’ costs
you energy (or potential energy) 𝜀 = 150𝑘𝐵, so for 𝑇 = 300 K the probability to
find it relative to the ground level is 𝑒−𝜀/𝑘𝐵𝑇 = 𝑒−0.5 = 0.607. If you wish to put two
particles we need another Boltzmann factor 𝑒−𝜀/𝑘𝐵𝑇 . This means that exp(−total
energy needed/𝑘𝐵𝑇 ) is the ratio we need. Thus we, see in Fig. 5.9 (ii): (a) is the
lowest energy microstate. Relative to the probability of this state, the probability
of (b) is 𝑒−𝛽𝜀, and (c) 𝑒−2𝛽𝜀. (b) is the only state satisfying our requirement; the
probability of (b) is given by

𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀 + 𝑒−2𝛽𝜀
=

0.607

1 + 0.607 + 0.6072
=

0.607

1.975
= 0.31. (5.154)

(iii) From the calculation in (ii) you should have concluded that the answer should
be

2𝑒−𝛽𝜀

1 + 2𝑒−𝛽𝜀 + 𝑒−2𝛽𝜀
=

2× 0.607

1 + 2× 0.607 + 0.6072
=

1.214

2.585
= 0.47. (5.155)

(3) The Boltzmann factor gives us the ratio of the number density of the center of
the molecules around these locations. However, since the world is 3D, we must take
the difference in shell surface areas (actually the volume ratio of the thin shells of
thickness 𝑑𝑟) into account. The ratio is (5/2)2 = 6.25. The needed Boltzmann factor
is

𝑒−𝛽𝜙(5𝜎)/𝑒−𝛽𝜙(2𝜎), (5.156)

so the ratio of probabilities to find particle centers at distance 5𝜎 and at 2𝜎 from
the origin is

6.25× 𝑒−𝛽𝜙(5𝜎)+𝛽𝜙(2𝜎). (5.157)

101



Since the repulsive part (with the power 12) should not be effective, we have

𝛽𝜙(5𝜎) = −2
(︂
1

5

)︂6

= −0.0001, 𝛽𝜙(2𝜎) = −2
(︂
1

2

)︂6

= −0.0312. (5.158)

Thus we get 6.25𝑒−0.0311 ≃ 6.25× 0.97 = 6.06.

D3.4 [Harmonic potential]
A point mass of mass 𝑚 = 1.2 pg is tethered at the origin with a harmonic spring
with the spring constant 𝑘 = 3.2 pN/nm.131

(1) Find the (correctly normalized) density distribution function 𝑓(𝑟) of its location
𝑟 in 3-space.
(2) What is the density distribution function 𝑔(ℓ) of the length ℓ of the spring?
(3) What is the mean-square displacement of the point mass from the origin?
(4) What is the most probable ℓ?

Solution.
Notice that (3) may be answered without calculation, if you refer to (or mimic the
calculation of) the equipartition of the kinetic energy.
(1) The Boltzmann factor tells us the probability ratio for volume elements (of the
same volume) is

𝑒−𝛽𝑘𝑟2/2, (5.159)

which is a product of three independent Gaussian distributions just as 3-Maxwell
5.7: for 𝑟 = (𝑥, 𝑦, 𝑧)𝑇

𝑒−𝛽𝑘𝑥2/2𝑒−𝛽𝑘𝑦2/2𝑒−𝛽𝑘𝑧2/2. (5.160)

If you look at the expression for the Maxwell distribution 5.7 or 5.6, we get the
normalization constant easily without any new calculation: for 𝑥√︂

𝑘

2𝜋𝑘𝐵𝑇
𝑒−𝛽𝑘𝑥2/2. (5.161)

Hence,

𝑓(𝑟) =

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝛽𝑘𝑟2/2. (5.162)

(2) By definition, since ℓ = |𝑟|

𝑔(ℓ) = ⟨𝛿(ℓ− |𝑟|)⟩𝑟. (5.163)

There are many ways to compute this, but let us use the most mechanical way (trivial
way; the way you need not use your brain too much):

𝑔(ℓ) =

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2 ∫︁
R3

𝑑3𝑟 𝑒−𝛽𝑘𝑟2/2𝛿(ℓ− |𝑟|) (5.164)

131These units are convenient ones for biomacromolecules.
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= 4𝜋

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2 ∫︁ ∞

0

𝐿2𝑑𝐿 𝑒−𝛽𝑘𝐿2/2𝛿(ℓ− 𝐿) (5.165)

= 4𝜋

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2

ℓ2𝑒−𝛽𝑘ℓ2/2. (5.166)

(3) Comparing with the equipartition law, we can guess⟨
1

2
𝑘𝑥2
⟩

=
1

2
𝑘𝐵𝑇, (5.167)

so we have √︀
⟨𝑟2⟩ =

√︂
3
𝑘𝐵𝑇

𝑘
=
√︀
⟨ℓ2⟩. (5.168)

Let us check. Using 𝑔(ℓ) (5.166), we have (I did all the calculations here)

⟨ℓ2⟩ = 4𝜋

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2 ∫︁ ∞

0

𝑑ℓ ℓ4𝑒−𝛽𝑘ℓ2/2 (5.169)

= 4𝜋

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2 ∫︁ ∞

0

𝑑𝑧 23/2𝑧3/2𝑒−𝛽𝑘𝑧 (5.170)

= 4𝜋

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2

(𝛽𝑘/2)−5/21

2

∫︁ ∞

0

𝑑𝑥𝑥3/2𝑒−𝑥 (5.171)

= 4𝜋

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2

(𝛽𝑘/2)−5/21

2
Γ(5/2) (5.172)

=
4𝜋

𝜋3/2
(𝛽𝑘/2)−13

8

√
𝜋 = 3𝑘𝐵𝑇/𝑘. (5.173)

(4) Let us find the max for log 𝑔(ℓ): its derivative is

2

ℓ
− 𝛽𝑘ℓ = 0. (5.174)

Therefore,

ℓmode =

√︂
2𝑘𝐵𝑇

𝑘
. (5.175)

This can be guessed from the 3-Maxwell result [just below (5.70)].
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Exercise 3

E3.1 [𝛿-function exercise]
Evaluate the following expressions

(1)

∫︁ 19𝜋/10

𝜋/10

𝑑𝜃 𝛿(sin 𝜃) cos 𝜃. (5.176)

(2)

∫︁ ∞

−1/2

𝑑𝑥 𝑒−𝑥𝛿(sin(𝜋𝑥)). (5.177)

(3)

∫︁ ∞

−∞
𝑑𝑥 |𝑥| 𝛿(2𝑥2 − 5𝑥− 3). (5.178)

Solution.
(1) sin 𝜃 vanishes only at 𝜃 = 𝜋 in [𝜋/10, 19𝜋/10], so

𝛿(sin 𝜃) =
1

| cos 𝜃|
𝛿(𝜃 − 𝜋), (5.179)

∫︁ 19𝜋/10

𝜋/10

𝑑𝜃 𝛿(sin 𝜃) cos 𝜃 =

∫︁ 19𝜋/10

𝜋/10

𝑑𝜃
cos 𝜃

| cos 𝜃|
𝛿(𝜃 − 𝜋) = −1. (5.180)

(2) sin 𝜋𝑥 = 0 for any 𝑥 = 𝑛 ∈ N. Therefore, in [−1/2,∞)

𝛿(sin 𝜋𝑥) =
1

𝜋| cos𝜋𝑥|

∞∑︁
𝑛=0

𝛿(𝑥− 𝑛) = 1

𝜋

∞∑︁
𝑛=0

𝛿(𝑥− 𝑛). (5.181)

Hence,∫︁ ∞

−1/2

𝑑𝑥 𝑒−𝑥𝛿(sin(𝜋𝑥)) =

∫︁ ∞

−1/2

𝑑𝑥
1

𝜋

∞∑︁
𝑛=0

𝛿(𝑥−𝑛)𝑒−𝑥 =
1

𝜋

∞∑︁
𝑛=0

𝑒−𝑛 =
1

𝜋

𝑒

𝑒− 1
. (5.182)

(3) 2𝑥2 − 5𝑥− 3 = (2𝑥+ 1)(𝑥− 3), so

𝛿(2𝑥2−5𝑥−3) =
1

|4𝑥− 5|
[𝛿(𝑥−3)+ 𝛿(𝑥+1/2)] =

1

7
[𝛿(𝑥−3)+ 𝛿(𝑥+1/2)]. (5.183)

Therefore,∫︁ ∞

−∞
𝑑𝑥 |𝑥| 𝛿(2𝑥2− 5𝑥− 3) =

∫︁ ∞

−∞
𝑑𝑥 |𝑥| × 1

7
[𝛿(𝑥− 3)+ 𝛿(𝑥+1/2)] =

1

7
(3+ 0.5) =

1

2
.

(5.184)

E3.2 [3-Harmonic potential energy]
Find the potential energy distribution 𝐹 (𝑈) for the 3-harmonic oscillator already
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described in D3.4. Here, 𝑈 = 𝑘𝑟2/2.

Solution.
We have only to evaluate

𝐹 (𝑈) = ⟨𝛿(𝑈 − 𝑘𝑟2/2)⟩𝑟. (5.185)

We know the density distribution function 𝑓 for 𝑟 (see (5.162)). Thus

𝐹 (𝑈) =

∫︁
R
𝑑3𝑟

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2

𝑒−𝛽𝑘𝑟2/2𝛿(𝑈 − 𝑘𝑟2/2). (5.186)

You can simply mimic the Maxwell case, but here, let us proceed step by step.

It is convenient to convert the integral to a 1D integral. We use the spherical
symmetry of the system, so we may introduce the spherical coordinates and integrate
over the solid angle (obtaining 4𝜋):

𝐹 (𝑈) = 4𝜋

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2 ∫︁ ∞

0

𝑑ℓ ℓ2𝑒−𝛽𝑘ℓ2/2𝛿(𝑈 − 𝑘ℓ2/2). (5.187)

We know (note that ℓ ≥ 0)

𝛿(𝑈 − 𝑘ℓ2/2) = 1

𝑘ℓ
𝛿(ℓ−

√︀
2𝑈/𝑘). (5.188)

Thus,

𝐹 (𝑈) =
4𝜋

𝑘

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2 ∫︁ ∞

0

𝑑ℓ ℓ𝑒−𝛽𝑘ℓ2/2𝛿(ℓ−
√︀
2𝑈/𝑘) (5.189)

=
4𝜋

𝑘

(︂
𝑘

2𝜋𝑘𝐵𝑇

)︂3/2
√︂

2𝑈

𝑘
𝑒−𝛽𝑈 (5.190)

=
25/2

23/2𝜋1/2

(︂
1

𝑘𝐵𝑇

)︂3/2√
𝑈𝑒−𝛽𝑈 (5.191)

=
2

𝑘𝐵𝑇

√︂
𝑈

𝜋𝑘𝐵𝑇
𝑒−𝛽𝑈 . (5.192)

This you should have guessed.

E3.3 [Three level system]132

There are three one-particle states with energies 0, 𝜀 and 2𝜀, where 𝜀 = 150𝑘𝐵 (in
K). We have three particles that do not energetically interact. Assume 𝑇 = 300 K.

(1) What is the probability to find only one particle in the energy 2𝜀 one-particle

132Some questions are really trivial, or you may well say stupid.
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state,
(i) if the particles are identical fermions?
(ii) if the particles are identical bosons?

(2) What is the probability to find no particle in the one-particle ground state,
(i) if the particles are identical fermions?
(ii) if the particles are identical bosons?

Solution
It should be convenient to illustrate all the possible situations (or tabulate all the
possible situations). For the fermion case there is only one microstate. For the boson
case

(︀
3+3−1

3

)︀
= 10 distinguishable microstates.

ε
(i)

(ii)

one-particle first excited state

one-particle ground state 

a

b

c

ε
one-particle second excited state

ε

ε

c

0

ε

3ε 6ε

2ε 2ε 4ε 4ε 5ε

3ε

3ε

Figure 5.10: All the possible microstates: (i) is for fermions and (ii) for bosons. The energies of
the microstates relative to the lowest energy microstate are denoted below each microstate.

The red shaded microstates meet the condition in (1) and the green the condition in
(2).

(1)
(i) For the fermion case the possible microstate is unique: with probability one the
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first excited level is occupied by one particle.
(ii) There are three red-shaded states. We must pay attention to the Boltzmann
factors. The total sum 𝑍 of the Boltzmann factors is given by

𝑍 = 1 + 𝑒−𝛽𝜀 + 2𝑒−2𝛽𝜀 + 2𝑒−3𝛽𝜀 + 2𝑒−4𝛽𝜀 + 𝑒−5𝛽𝜀 + 𝑒−6𝛽𝜀. (5.193)

Since 𝜀 = 150𝑘𝐵, 𝛽𝜀 = 1/2, 𝑒−𝛽𝜀 ≃ 0.6. Therefore,

𝑍 = 1 + 0.6 + 2(0.6)2 + 2(0.6)3 + 2(0.6)4 + (0.6)5 + (0.6)6 (5.194)

= 1 + 0.6(1 + 0.6(2 + 0.6(2 + 0.6(2 + 0.6(1 + 0.6))))) (5.195)

= 3.14. (5.196)

Thus, the probability we want is given by

𝑃 ((1)) =
1

𝑍
(𝑒−2𝛽𝜀 + 𝑒−3𝛽𝜀 + 𝑒−4𝛽𝜀) = (0.62 + 0.63 + 0.64)/3.14 (5.197)

=
0.71

3.14
≃ 0.23. (5.198)

(2)
(i) 0, of course.
(ii) Now, we collect the green microstates: Thus, the probability we want is given
by

𝑃 ((2)) =
1

𝑍
(𝑒−3𝛽𝜀 + 𝑒−4𝛽𝜀 + 𝑒−5𝛽𝜀 + 𝑒−6𝛽𝜀) (5.199)

= 0.63(1 + 0.6 + 0.62 + 0.63)/3.14 (5.200)

= 0.63
1− 0.64

1− 0.6

1

3.14
=

0.47

3.14
≃ 0.15. (5.201)
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6 Mean free path and transport phenomena

Summary
* Clausius introduced the concept of mean free path.
* Linear transport phenomena are outlined. Fluxes are proportional to (−)gradients
of the density fields.
* Transport coefficients in the gas phase can be estimated with the aid of elementary
kinetic theory.
* Elementary transport theories and approximate equations of state allow us to es-
timate Avogadro’s constant and the molecular size (as Loschmidt and Maxwell did
for the first time).

Key words
Mean free path, linear transport phenomena, density, flux, gradient, divergence, con-
servation law, Laplacian, transport coefficient, diffusion, diffusion coefficient, shear
viscosity, heat conductivity

What you should be able to do
This lecture is a bit complicated for those who have never encountered partial differential equations

such as the diffusion equation. Those who feel this Lecture a bit too much (with, e.g., partial

differential equations) should understand the concepts such as the mean-free path, density, flux,

gradient and divergence at least intuitively, and try to understand the flow of Maxwell’s logic.

Those who have without much trouble with partial differential equations should pay attention

to the following:

* Rudimentary vector analysis should be reviewed (gradient, divergence, Laplacian;
you must be able to explain their intuitive meanings).
* Understand how to handle the averages of vector components.
* You should be able to understand how to derive the partial differential equation
describing the conservation law.
* Recognize that the law of large numbers is essential to describe the transport phe-
nomena.
* Recognize that there are some relations among transport coefficients; dimensional
analysis is useful.

6.1 Gas mixing is slow compared with molecular speed
Dutch meteorologist C. H. D. Buys-Ballot (1817-1890)133 noticed that if the molecules

133who noticed the Buys-Ballot law: In the Northern Hemisphere, if a person stands with his
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of gases really moved that fast as Clausius estimated (see 5.10), the mixing of gases
by diffusion should have been much faster than we observed it to be.

The (first half of the) following YouTube video about diffusion demonstrates the
point (too elementary for most of you):

http://www.youtube.com/watch?v=H7QsDs8ZRMI.134

6.2 Molecular collisions and mean free path
Upon this criticism, Clausius (1858135) realized that the gas molecules have large
enough diameters so a molecule cannot move very far without colliding with another
one. In this way Clausius defined a new parameter called the mean free path ℓ of
gas that describes the average distance a molecule can run between two consecutive
collisions. We can obtain it with the idea of ‘swept volume’ by a particle (see Fig.
6.1). The moving molecule sweeps a cylinder (‘swept volume’) of radius 𝑑 (= the
diameter of the molecule).

d

l

d

sw
ep

t v
olu

m
e

Figure 6.1: Intuitive explanation of (6.1). The swept volume is illustrated.

If this volume does not contain any center of mass of other molecules, no intermolec-
ular collision occurs. If it contains one, there is a collision. Therefore, if the swept
volume ×𝑛 ∼ 1, where 𝑛 is the number density, the height of the cylinder must be
the ‘mean free path’ length. Hence, we guess

ℓ = 1/𝑛𝜋𝑑2, (6.1)

if all other particles are fixed in space, where 𝜋𝑑2 is the cross-section of the swept
volume.

Actually, all the molecules are moving. When they collide, the average relative

back to the wind, the low pressure area will be on his left (published in 1857).
134However, you must take into account that the demo is affected by gravity, because Br2 is far

heavier than air.
135[1858: the Lincoln-Douglas debate, the Government of India Act. Planck (∼1947) was born.

However, the most important event was that the idea of natural selection was officially published
by Darwin and Wallace. Physicists should recognize that Boltzmann called the 19th century the
century of Darwin (not of Maxwell) (see E. Broda, Ludwig Boltzmann, Mensch·Physiker·Philosoph
(F Deuticke, 1955) Part III).]
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speed must be the relevant velocity, which is
√
2 times the mean velocity. That is,

the molecule collides
√
2 times more often than the case where all other molecules

are fixed in space. Therefore,

ℓ =
1√

2𝜋𝑛𝑑2
(6.2)

must be the true mean free path length.136

6.3 Why transport phenomena matter
Clausius did not have any method to estimate ℓ. However, as we can expect from
the criticism by Buys-Ballot, if we could study the so-called transport phenomena,
there is a hope to determine ℓ. This is a step toward estimating 𝑁 . This was ex-
actly the approach Loschmidt and Maxwell took to obtain the first realistic value of
Avogadro’s number 6.16. To understand what they accomplished, we must know a
bit about transport phenomena.

6.4 What is a (linear) transport phenomenon?
Suppose a macroscopic system is not far away from equilibrium. The system may be
spatially nonuniform, but is macroscopically only gently so. For example, the num-
ber density of the molecules in the system may not be spatially constant and may
be described as a number-density field 𝑛(𝑡, 𝑟), where 𝑡 is time and 𝑟 is the spatial
position vector.

If there is a gentle spatial nonuniformity in some physical quantity 𝑋,137 there is
a field of its density 𝑥̂(𝑡, 𝑟). We can expect a flow of this physical quantity to reduce
the nonuniformity. Thus, 𝑋 must be transported from one point to another. This
is generally called the transport phenomenon. If 𝜕𝑥̂/𝜕𝑡 is a linear functional of 𝑥̂,138

we say the transport phenomenon is linear.

6.5 Density
Let 𝑋 be a physical quantity carried by molecules. Its density around space-time

136If you sit on one particle and observe other particles, their mean speed is, on the average,
√
2

times the actual mean speed of the particles (relative to the coordinates fixed to the ground). Thus,
collisions become

√
2 times more frequent than when other particles are still.

137In transport phenomena, we are interested in ‘extensive quantities.’ We will learn what they
are later 8.6.

138𝐹 being a ‘linear functional’ implies the following: 𝐹 (𝑎𝑋1 + 𝑏𝑋2) = 𝑎𝐹 (𝑋1) + 𝑏𝐹 (𝑋2)
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point (𝑡, 𝑟) may be expressed as

𝑥̂(𝑡, 𝑟) =

∑︀
𝑟𝑖∈𝑑𝜏(𝑟) 𝑥𝑖

𝑑𝜏(𝑟)
, (6.3)

where 𝑥𝑖 is the amount of 𝑋 carried by the 𝑖th molecule whose spatial location is 𝑟𝑖

at time 𝑡. Here, 𝑑𝜏(𝑟) indicates the volume element around 𝑟, which is very small139

from the macroscopic point of view, but it is huge from the microscopic molecular
point of view. Its volume is also denoted by the same symbol 𝑑𝜏(𝑟). The summation
on the numerator means that we calculate the summation over particles whose cen-
ters of mass are in 𝑑𝜏(𝑟). The law of large numbers tells us that 𝑥̂(𝑡, 𝑟) thus defined
is not appreciably fluctuating, so we identify it with the density of 𝑋 at (around) 𝑟
at time 𝑡.

6.6 Flux
To describe the flow of 𝑋, we need the concept of flux. A flux 𝐽𝑋 of 𝑋 is a vector
pointing in the direction of the flow, whose magnitude is the amount of the quantity
going through the unit cross section per unit time (see Fig. 6.2). If the system is
quite uniform, then we may write 𝐽𝑋 to be the product of the density of 𝑋 and the
velocity of the underlying flow carrying it: 𝐽𝑋 = 𝑥̂𝑣.

J

A

X

Figure 6.2: The flux vector 𝐽𝑋 for the quantity 𝑋 (here, its density is denoted by 𝑥̂): its
direction is the transport direction, and its magnitude is the flow rate: the quantity of 𝑋 through
the area 𝐴 perpendicular to 𝐽𝑋 (converted to the amount per unit area) per unit time.

This expression may be microscopically written as

𝐽𝑋 =

∑︀
𝑟𝑖∈𝑑𝜏(𝑟) 𝑥𝑖𝑣𝑖

𝑑𝜏(𝑟)
. (6.4)

6.7 Gradient and nabla ∇
If the transport phenomenon is linear, the flux 𝐽𝑋 of 𝑋 is proportional to the

139But still macroscopic in the sense that the number of particles in it is, say, 1010. For an
ordinary gas in the so-called standard state (at 1 atm-273K), its volume is about 200× 10−6 mm3

≃ a cube with 60 𝜇m edge. It may be a bit larger than our cells.
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gradient of its density, grad 𝑥̂(𝑟) (its direction is opposite; cf. Fig. 6.3; here time 𝑡 is
suppressed):

𝐽𝑋 = −𝐿 grad 𝑥̂(𝑟), (6.5)

where 𝐿 is a positive constant called the transport coefficient.

grad x

x(r)

JX

^

^

Figure 6.3: Gentle nonuniformity causes linear transport phenomena. The gradient vector 𝑔𝑟𝑎𝑑 𝑥̂
points in the direction of increasing density 𝑥̂ (darker region), so the flux driven by the gradient
points in the −𝑔𝑟𝑎𝑑 𝑥̂ direction.

The gradient of 𝑥̂ is the following vector:

grad 𝑥̂ ≡ ∇𝑥̂ =
𝜕𝑥̂

𝜕𝑥
𝑒𝑥 +

𝜕𝑥̂

𝜕𝑦
𝑒𝑦 +

𝜕𝑥̂

𝜕𝑧
𝑒𝑧, (6.6)

where 𝑒𝑘 is the directional vector (unit vector) in the 𝑘-axis direction. That is,
componentwisely,

grad 𝑥̂ =

(︂
𝜕𝑥̂

𝜕𝑥
,
𝜕𝑥̂

𝜕𝑦
,
𝜕𝑥̂

𝜕𝑧

)︂
. (6.7)

∇ is an operator called nabla (usually it is read as ‘del’) and may be understood as
the following vector:

∇ = 𝑒𝑥
𝜕

𝜕𝑥
+ 𝑒𝑦

𝜕

𝜕𝑦
+ 𝑒𝑧

𝜕

𝜕𝑧
=

(︂
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧

)︂
. (6.8)

∇𝑥̂ may be understood as the product of a vector ∇ and a scalar 𝑥̂ (needless to say,
you cannot change the order of this product, since ∇ is operating on 𝑥̂).

Intuitively, you can imagine a landscape with altitude 𝑋 given as a function of the
position, and then a vector pointing the steepest ascending direction at a location 𝑟
with its size give by the slope of the landscape along the vector at 𝑟. The vector is
‘grad𝑋’ at 𝑟.

6.8 Divergence
If 𝑋 is conserved, the amount of change of this quantity at a given position must be
equal to the net influx of 𝑋 to that position. Therefore, if we introduce an operator
div (read as ‘divergence’) that allows us to compute the net output of 𝑋 from a point
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based on the flux 𝐽𝑋 at the position, the conservation law for 𝑋 may be expressed
as

𝜕𝑥̂(𝑟)

𝜕𝑡
= −div𝐽𝑋(𝑟). (6.9)

Here, ‘div’ is out-going quantity, so − is put. The divergence 𝑑𝑖𝑣 𝐽𝑋 of the flux 𝐽𝑋

of 𝑋 at point 𝑃 (the total amount of output per unit volume per unit time) may be
defined as:

div𝐽𝑋 = lim
𝑉→𝑃

∫︀
𝜕𝑉

𝐽𝑋 · 𝑑𝑆∫︀
𝑉
𝑑𝜏

. (6.10)

Here, lim𝑉→𝑃 implies the limit along the sequence of nested (singly connected) vol-
umes 𝑉 converging to point 𝑃 (Fig. 6.4Left) with its surface denoted by 𝜕𝑉 .140 𝑑𝑆 is
the surface area element, whose direction is the outward normal direction, and whose
magnitude (area) is 𝑑𝑆 (see Fig. 6.4Right). Thus, the numerator on the right-hand
side is the total amount of 𝑋 going out of the volume 𝑉 in unit time.

P

nested sequence of V
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Figure 6.4: The divergence of the flux 𝐽𝑋 at 𝑃 is defined by the limit over the nested sequence
of volumes 𝑉 converging to a point 𝑃 : 𝑑𝑖𝑣 𝐽𝑋 = lim𝑉→𝑃

∫︀
𝜕𝑉

𝐽𝑋 · 𝑑𝑆/
∫︀
𝑉
𝑑𝜏 .

6.9 Cartesian expression of divergence
We use the Cartesian coordinate system,

lim
𝑉→𝑃

∫︀
𝜕𝑉

𝐽𝑋 · 𝑑𝑆∫︀
𝑉
𝑑𝜏

=
[𝐽𝑥(𝑥+ 𝑑𝑥, 𝑦, 𝑧)− 𝐽𝑥(𝑥, 𝑦, 𝑧)]𝑑𝑦𝑑𝑧 + [𝐽𝑦(𝑥, 𝑦 + 𝑑𝑦, 𝑧)− 𝐽𝑦(𝑥, 𝑦, 𝑧)]𝑑𝑧𝑑𝑥+ [𝐽𝑧(𝑥, 𝑦, 𝑧 + 𝑑𝑧)− 𝐽𝑧(𝑥, 𝑦, 𝑧)]𝑑𝑥𝑑𝑦

𝑑𝑥𝑑𝑦𝑑𝑧
.

(6.11)

That is,

div𝐽𝑋 =
𝜕𝐽𝑥
𝜕𝑥

+
𝜕𝐽𝑦
𝜕𝑦

+
𝜕𝐽𝑧
𝜕𝑧

= ∇ · 𝐽𝑋 . (6.12)

The rightmost expression implies that divergence can be formally written as the
scalar product of ∇ and the flux vector. If you need a review of vector analysis, go

140𝜕𝐴 is the standard notation for the boundary of the set 𝐴.
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to, e.g., Section 2.C. of
https://www.dropbox.com/home/ApplMath?preview=AMI-2+DifferentiationRevisited.pdf

6.10 Local expression of conservation law
Suppose the density 𝑥̂ is conserved. The total amount of 𝑋 coming into the volume
element 𝑑𝜏 = 𝑑𝑥𝑑𝑦𝑑𝑧, that is, −div𝐽𝑋 𝑑𝑥𝑑𝑦𝑑𝑧 must be the increase of 𝑋 in it.
Therefore, we have

𝜕𝑥̂

𝜕𝑡
𝑑𝑥𝑑𝑦𝑑𝑧 = −div𝐽𝑋 𝑑𝑥𝑑𝑦𝑑𝑧, (6.13)

that is, the conservation equation (6.9) has been derived. If 𝑋 can be produced with
the rate 𝜎 per unit volume (say, due to a chemical reaction), (6.9) is modified to the
following general conservation law with production:

𝜕𝑥̂

𝜕𝑡
= −div𝐽𝑋 + 𝜎. (6.14)

6.11 Diffusion equation
Let us first study the simplest linear transport phenomenon: the diffusion of parti-
cles. We know the number of particles is conserved without any chemical reaction.
Therefore, if 𝐽 is the number flux, (6.9) is

𝜕𝑛

𝜕𝑡
= −div𝐽 . (6.15)

We assume linear transport of particles (called Fick’s law)

𝐽 = −𝐷 grad𝑛, (6.16)

where 𝐷 is the diffusion coefficient. Combining these two, we get

𝜕𝑛(𝑡, 𝑟)

𝜕𝑡
= −div(−𝐷 grad𝑛(𝑡, 𝑟)) = 𝐷∇ · (∇𝑛(𝑡, 𝑟)). (6.17)

This is the conservation law for the particle number density called the diffusion
equation. Introducing the Laplacian Δ as

Δ = ∇ · ∇ =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
, (6.18)

the diffusion equation reads

𝜕𝑛(𝑡, 𝑟)

𝜕𝑡
= 𝐷Δ𝑛(𝑡, 𝑟). (6.19)

A ‘pedestrian approach’ to the diffusion equation will be given in 7.14.
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6.12 The meaning of Laplacian
If you understand the meaning of the Laplacian, you will feel the diffusion equation very
natural. Let us consider the 1d Laplacian. It is nothing but 𝑑2/𝑑𝑥2. If we compute the
second derivative numerically, we use, for example, the following discretization

𝑑2𝑓(𝑥)

𝑑𝑥2
← 𝑓 ′(𝑥+Δ𝑥/2)− 𝑓 ′(𝑥−Δ𝑥/2)

Δ𝑥
=

1

Δ𝑥

(︂
𝑓(𝑥+Δ𝑥)− 𝑓(𝑥)

Δ𝑥
− 𝑓(𝑥)− 𝑓(𝑥−Δ𝑥)

Δ𝑥

)︂
,

(6.20)
so

𝑑2𝑓(𝑥)

𝑑𝑥2
∝ 𝑓(𝑥+Δ𝑥) + 𝑓(𝑥−Δ𝑥)

2
− 𝑓(𝑥). (6.21)

That is, 𝑑2𝑓/𝑑𝑥2 ∝ ‘local average of 𝑓 around 𝑥’ − 𝑓(𝑥). You can confirm this conclusion in
higher dimensional cases analogously. Generally, the Laplacian is an operator to compare the
central value and the average value surrounding it. Thus, in the particle number diffusion
the Laplacian computes the difference between the average 𝑛 surrounding 𝑟 and 𝑛(𝑟, 𝑡). If
this is positive, the diffusion equation increases 𝑛(𝑟, 𝑡) in order for this quantity to catch up
with the neighbors.

6.13 Intuitive computation of transport coefficient
To compute the transport coefficient for a quantity 𝑋 we need a microscopic de-
scription of 𝐽𝑋 . Maxwell carried out this step fairly intuitively. Although it is hard
to refine his argument quantitatively, as we will see soon, Maxwell’s rather crude
argument allows a fairly realistic estimation of Avogadro’s constant.

Here, we start with a crude microscopic interpretation of a flux as the product of
the flow velocity and the density (cf. 6.6). Basically, we understand that, on the av-
erage, a molecule brings the physical quantity of our interest adopted at the location
of its last collision to the location 𝑟 where it is now (see Fig. 6.5). If we write the
‘free vector’ (a displacement vector of a molecule between successive collisions) as 𝑙𝑖
for particle 𝑖, the last collision should have occurred at around 𝑟 − 𝑙𝑖.

l

v

r

−r

l

Figure 6.5: If a particle moves with velocity 𝑣 along the free path 𝑙 (‘free vector’), on the average,
the quantity of interest around 𝑟 − 𝑙 transports to 𝑟.

No new collision occurs until the molecule arrives at the volume element around 𝑟,
so the contribution of this molecule to the flux must be 𝑥𝑖(𝑟− 𝑙𝑖)𝑣𝑖, where 𝑥𝑖(𝑟− 𝑙𝑖)
is quantity 𝑋 the molecule 𝑖 acquired at its last collision. We use (6.4) to get

𝐽𝑋 =
∑︁

𝑟𝑖∈𝑑𝜏(𝑟)

𝑥𝑖(𝑟𝑖 − 𝑙𝑖)𝑣𝑖

⧸︃
𝑑𝜏(𝑟), (6.22)
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but usually it is further approximated as

𝐽𝑋 = ⟨𝑥̂(𝑟 − 𝑙)𝑣⟩ = ⟨𝑥̂(𝑟)𝑣⟩ − ⟨(𝑙 · ∇𝑥̂(𝑟))𝑣⟩+ · · · , (6.23)

where the average over 𝑙 and 𝑣 is taken for molecules around 𝑟. ⟨𝑥̂(𝑟)𝑣⟩ = 𝑥̂(𝑟)⟨𝑣⟩ =
0 and vanishes, because 𝑥̂(𝑟) is constant in the volume element.

To compute the second term in (6.23) let us consider

⟨(𝑙 ·𝐴)𝑣⟩ = ⟨𝑣(𝑙 ·𝐴)⟩ =

⟨
𝑣

∑︁
𝑖∈{𝑥,𝑦,𝑧}

𝑙𝑖𝐴𝑖

⟩
(6.24)

for an arbitrary vector 𝐴. 𝑣 and 𝑙 are parallel and each component of 𝑣 is statistically
independent, so141*

⟨𝑣𝑖ℓ𝑗⟩ ≃
1

3
𝑣ℓ𝛿𝑖𝑗 . (6.25)

Here, 𝑣 is the average speed of the particles and ℓ is the mean-free path. We have arrived at

⟨𝑣(𝑙 ·𝐴)⟩ = 1

3
𝑣ℓ𝐴. (6.26)

Thus, we have arrived at

𝐽𝑋(𝑟) = −
1

3
𝑣ℓ grad 𝑥̂(𝑟). (6.27)

This is the general formula within Maxwell’s approach for the flux.

6.14 Diffusion constant
For Fick’s law (6.16) 𝑥̂ = 𝑛, so the diffusion constant is obtained as

𝐷 =
1

3
𝑣ℓ, (6.28)

which may also be written as

𝐷 =
ℓ2

3𝜏
, (6.29)

where 𝜏 is the mean free time 𝜏 = ℓ/𝑣.

As can be seen from the derivation above, the numerical factor 1/3 is not quite a
definitive number.142 The main message is that 𝐷/𝑣ℓ is a numerical factor of order
unity. Then, this should be derivable dimensional-analytically. Try this derivation
(then read 6.18).

141*Each component of 𝑣 is statistically independent, so it assumes ± independently. Both ⟨𝑣⟩
and ⟨𝑙⟩ are zero, so if 𝑖 ̸= 𝑗, ⟨𝑣𝑖𝑙𝑗⟩ = 0. From the isotropy of the space we get ⟨𝑣1𝑙1⟩ = ⟨𝑣2𝑙2⟩ =
⟨𝑣3𝑙3⟩ = ⟨𝑣 · 𝑙⟩/3, but 𝑣 and 𝑙 are parallel vectors, so their scalar product becomes the product of
their lengths, i.e., mean speed 𝑣 and mean free path 𝑙. Thus, we have arrived at (6.25).

142Besides, what average speed 𝑣 to use is not very clear.
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The elementary theory for shear viscosity and heat conductivity may be fun, but
we will not use them in the following. Besides, as seen in 6.18, dimensional analysis
can give us equivalent results.

6.15 Shear viscosity
Suppose we have a shear flow with the velocity 𝑉 in the 𝑥-direction and the velocity
gradient in the 𝑧-direction as shown in Fig. 6.6.

V r( )l

z = 0

z

Figure 6.6: Shear flow: We consider a macroscopic shear flow, so the gradient of 𝑉 must be
microscopically (esp., on the scale of the mean-free path 𝑙) very small, but in the figure, it is
exaggerated.

To understand the decay of this velocity gradient we study the transport of the 𝑥-
component of the momentum. Due to exchange of particles between positions with
different 𝑧-coordinates, larger 𝑉𝑥 (or larger momentum density) and smaller 𝑉𝑥 layers
mix and the gradient in the 𝑧 direction decays. This is the effect of shear viscosity.

The derivation of (6.27) immediately tells us that if the transported density is 𝑥̂,
the corresponding flux reads

𝐽𝑋(𝑟) = −
1

3
𝑣ℓ grad 𝑥̂(𝑟). (6.30)

To apply this general formula to the quantity we are interested in, we must identify
what 𝑥̂ is. In our present case, it must be the 𝑥-component of the momentum density

𝑥̂ =
∑︁
𝑑𝜏

𝑚𝑣𝑥/𝑑𝜏, (6.31)

where the summation in the numerator means to take the summation of all the 𝑥-
components of the momentum of the particles in the volume element 𝑑𝜏 . Therefore,
(here we assume the number density 𝑛 is uniform) thanks to the law of large numbers
we expect only the expectation value is relevant, so

𝑥̂(𝑟) = 𝑛𝑚𝑉𝑥(𝑟) (6.32)

is the right density to study. Therefore, (6.30) (or its 𝑧-component) reads

𝐽𝑉 = −1

3
𝑣𝑙𝑛𝑚

𝜕𝑉𝑥
𝜕𝑧

, (6.33)
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where 𝐽𝑉 is the 𝑧-component of the ‘𝑥-component momentum flux’.143 Shear viscosity
𝜂 is defined by

𝐽𝑉 = −𝜂𝜕𝑉𝑥/𝜕𝑧, (6.34)

Comparing this with (6.33), we get the shear viscosity 𝜂:

𝜂 =
1

3
𝑚𝑛𝑣𝑙. (6.35)

With the already obtained estimate of 𝑙 (6.2) and 𝑣 =
√︀

8𝑘𝐵𝑇/𝜋𝑚, we obtain144

𝜂 =
2

3𝑑2

√︂
𝑚𝑘𝐵𝑇

𝜋3
. (6.36)

This is independent of the density 𝑛 as noted by Maxwell. We generally expect that
the viscosity increases with density, but in gases, higher densities imply shorter free
paths or a shorter mixing distance (actually the mean free path length is ∝ 1/𝑛)
and the expected density effect is cancelled. Also notice that the viscosity increases
with temperature. Although this is contrary to the behavior we usually encounter
in liquids, it is easy to understand because higher temperatures imply better mixing
in gases.

6.16 Elementary estimate of Avogadro’s constant
To establish the reality of atoms, we wish to determine the number of particles 𝑁
and their size 𝑑. Even if you could determine the mean-free path length, we can
determine only the combination 𝑁𝑑2. We need 𝑑 or 𝑁𝑑3 to get 𝑁 .

Maxwell’s first calculation of 1873145 followed the method proposed by Loschmidt
in 1865, who identified 𝜋𝑑3/6 as the volume per molecule in the liquid phase. There-
fore, (𝜋𝑑3/6)/(1/𝑛) = 𝑉𝐿/𝑉𝐺, where 𝑉𝐿 is the molar volume of the liquid phase and
𝑉𝐺 that of the gas phase. Thus, we obtain 𝑑 = 6

√
2(𝑉𝐿/𝑉𝐺)ℓ. Loschmidt estimated

this as 8(𝑉𝐿/𝑉𝐺)ℓ, where ℓ was obtained from diffusion experiments (see (6.28)).
Since we get 𝑑, we can count the number of molecules in 𝑉𝐿. Maxwell estimated
𝑁𝐴 ∼ 4.3× 1023.

In 1873 van der Waals (1837-1923) proposed his equation of state of imperfect
gases (explained in Section 25).

𝑃 (𝑉 − 𝑉0) = 𝑁𝑘𝐵𝑇 −
𝛼

𝑉
(1− 𝑉0/𝑉 ). (6.37)

143In a more advanced course, we use a tensor.
144If we assume that the particle mass, the cross section (𝑑2) and the particle thermal velocity

are only relevant quantities, dimensional analysis gives essentially this result. Even if we try to take
the density of the gas into account, it automatically drops out of the formula. This independence
was a bit of surprise. It is a good occasion to learn rudiments of dimensional analysis.

145Maxwell’s A Treatise on Electricity and Magnetism was published this year, so was Jules
Verne’s Around the World in Eighty Days.
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Figure 6.7: The idea of van der Waals.

His basic idea is as follows (see Fig. 6.7): Since molecules are not point masses
but have volumes, they cannot run everywhere they wish (at least they must avoid
each other). However, if we collect all the volumes of the molecules at a corner of
the container (its volume is 𝑉0), then, the centers of mass of the molecules could
freely move around in the ‘free volume’ 𝑉 −𝑉0. Therefore, if we ignore the attractive
interactions, the ‘hard-core’ gas would look like an ideal gas with a reduced volume:146

𝑃 (𝑉 − 𝑉0) = 𝑁𝑘𝐵𝑇. (6.38)

The remaining part of the van der Waals equation is to take care of the attractive
intermolecular forces. Thus, from 𝑉0 ≃ 𝑏𝑁𝜋𝑑3/6, where 𝑏 is a geometrical constant
of order unity, we can estimate the size of the molecules. Now, we know 𝑁𝑑2 and
𝑁𝑑3, so we can estimate 𝑁 and 𝑑. The method gives an estimate of Avogadro’s
constant 𝑁𝐴 ≃ (4 ∼ 6)× 1023.147

6.17 Heat conductivity
The heat conductivity 𝜆 is defined as

𝐽𝐻 = −𝜆 grad𝑇, (6.39)

where 𝐽𝐻 is the heat flux (the thermal energy flux). The transported density 𝑥̂ must
be the thermal energy contained in the unit volume. Let us assume that the gas is
a monatomic gas:

𝑥̂ =

∑︀
𝑑𝜏 𝑚𝑣2/2

𝑑𝜏
, (6.40)

146As we will show in Section 25, his idea is correct in 1-space.
147⟨⟨Definition of Avogadro’s constant⟩⟩ Since June 2019 Avogadro’s constant is fixed as

𝑁A = 6.022 140 76 ×1023 mol−1. It is no more the number of atoms in a 0.012 kg of 12C. Thus,
the measurement of Avogadro’s constant (such as quoted below) implies, since kg is defined as
1 kg = ℎ

6.62607015×10−34 m−2s, an accurate measurement of the molecular weight of a substance.

[“Determination of the Avogadro constant by counting the atoms in a 28Si crystal,” Phys. Rev.
Lett., 106, 030801 (2011). Cf. P. Beker, “History and progress in the accurate determination of
the Avogadro constant,” Rep Prog Phys 64 1945 (2001).]
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so

𝑥̂(𝑟) =
3

2
𝑛𝑘𝐵𝑇 (𝑟), (6.41)

where 𝑇 (𝑟) is the temperature field.
(6.30) reads

𝐽𝐻(𝑟) = −
1

3
𝑣𝑙 grad

(︂
3

2
𝑛𝑘𝐵𝑇 (𝑟)

)︂
= −1

2
𝑛𝑘𝐵𝑣𝑙 grad𝑇 (𝑟). (6.42)

Comparing this with (6.39), we obtain

𝜆 =
1

2
𝑛𝑘𝐵ℓ𝑣. (6.43)

Notice that 𝜂 = 𝑛𝑚𝐷, 𝜂/𝜆 = 2𝑚/3𝑘𝐵 and 𝜆/𝐷 = 3𝑛𝑘𝐵/2. The last relation
tells us 𝜆 = 𝑐𝑉𝐷, where 𝑐𝑉 is the specific heat per molecule of gas under constant
volume.148 Again, we should note that these relations do not tell us anything about
the microscopic properties of the gas particles.

6.18 Dimensional analysis of transport coefficients149

The dimension of a quantity 𝑋 is usually denoted by [𝑋]. The basic dimensions are
represented by the following symbols: length 𝐿, mass 𝑀 and time 𝑇 . For example,
[𝑑] = 𝐿. To obtain the dimension of a quantity, go back to its definition. For exam-
ple, [𝐷] is obtained from 𝐽 = −𝐷 𝑔𝑟𝑎𝑑 𝑛 as follows. The particle number flux is the
number of particles going through a unit area in unit time, so [𝐽 ] = 1/𝐿2𝑇 , because
the number of particles is dimensionless (a pure number). [𝑛] = 1/𝐿3. Gradient is
essentially differentiation with length, so [𝑔𝑟𝑎𝑑] = 1/𝐿 (differentiation is something
like division). Therefore, [𝐽 ] = 1/𝐿2𝑇 = [𝐷]/𝐿4, so [𝐷] = 𝐿2/𝑇 .

For [𝜂] let us go back to its definition: 𝐽𝑝 = −𝜂 𝑔𝑟𝑎𝑑 𝑣, where 𝐽𝑝 is the mo-
mentum flux, and 𝑣 is the velocity. Since the dimension of momentum is 𝑀𝐿/𝑇 ,
[𝐽𝑝] = (𝑀𝐿/𝑇 )/𝐿2𝑇 =𝑀/𝐿𝑇 2, [𝑣] = 𝐿/𝑇 , so [𝜂] = [𝐽𝑝]𝐿/[𝑣] =𝑀/𝐿𝑇 .

For [𝜆] again let us go back to its definition 𝐽𝐻 = −𝜆 𝑔𝑟𝑎𝑑 𝑇 (in this formula 𝑇
is temperature, so 𝑘𝐵𝑇 = 𝐸 is energy). Therefore, [𝐸]/𝐿2𝑇 = [𝜆][𝐸/𝑘𝐵]/𝐿, so we
obtain [𝜆/𝑘𝐵] = 1/𝐿𝑇 .

Thus, we obtain [𝐷/𝜂] = 𝐿3/𝑀 , so 𝜂/𝐷 ∼ 𝑚𝑛 is concluded. We get [𝑘𝐵𝐷/𝜆] =
𝐿3 = 1/[𝑛], which gives 𝜆 ∼ 𝑛𝑘𝐵𝐷 ∼ 𝑐𝑉𝐷. We also get [𝑘𝐵𝜂/𝜆] =𝑀 , which implies
𝜂/𝜆 ∼ 𝑚/𝑘𝐵. These are the relations mentioned above.

148𝑐𝑉 is the energy required to raise the temperature of the molecule by 1 K under constant
volume.

149⟨⟨Introduction to dimensional analysis⟩⟩ See, e.g., Appendix 3.5A of Oono, Y. (2013).
The Nonlinear World, Tokyo: Springer.

120



6.19 Significance of flux dependent on gradient
Due to collisions the particles cannot go straight for a long distance (actually, it is
a zig-zag random walk as we will see in the next lecture). If there were no collision,
the particles can move along their straight ‘ballistic’ trajectories, so the amount of
‘𝑋’ transported must be proportional to the difference of 𝑥̂ (not to the slope of 𝑥̂
called gradient as we learned for linear transport phenomena) irrespective of the
distance over which transportation occurs. Thus, the flux proportional to the gra-
dient is actually a clear sign of molecular collisions occurring on the microscopic scale.
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Q6-1.
(1) What is the dimension of the heat conductivity (or thermal conductivity) divided
by the Boltzmann constant 𝜆/𝑘𝐵? 𝜆 is defined by

𝐽 = −𝜆 grad𝑇,

where 𝐽 is the heat flux (the flux of kinetic energy; transported kinetic energy per
unit time through unit area).
(2) It is a natural guess that heat transport should be related to the amount of ther-
mal energy carried by molecules and the transport rate of the molecules. The former
may be represented by the specific heat per volume 𝑐 (times temperature) and the
latter by diffusion constant 𝐷. What can dimensional analysis tell you about the
relation among these quantities? We already discussed this in the lecture, but you
must rederive the relation purely dimensional-analytically.]

Soln.
(1) [𝐽 ] = 𝑀(𝐿/𝑇 )2/𝐿2𝑇 = 𝑀/𝑇 3, [grad 𝑘𝐵𝑇 ] = 𝑀(𝐿/𝑇 )2/𝐿 = 𝑀𝐿/𝑇 2. There-
fore

[𝜆/𝑘𝐵] = (𝑀/𝑇 3)/(𝑀𝐿/𝑇 2) = 1/𝐿𝑇. (6.44)

Thus [𝜆/𝑘𝐵] = 1/𝐿𝑇 . This is consistent with the unit of heat conductivity is W/m·K.
(2) We know [𝐷] = 𝐿2/𝑇 . The heat capacity is energy/(volume times temperature),
so [𝑐/𝑘𝐵] = 1/𝐿3. Therefore, [𝑐𝐷/𝑘𝐵] = 1/𝐿𝑇 . Thus, 𝜆 ∝ 𝑐𝐷 may be concluded.

Q6-2. There is a pure gas which roughly obeys a van der Waals equation of state
with the excluded volume 𝑉0 = 5.1× 10−5 m3/mole. Note that

𝑉0 = 𝑁𝐴
1

2

4𝜋

3
𝑑3 =

2𝜋

3
𝑁𝐴𝑑

3, (6.45)

where 𝑁𝐴 is Avogadro’s constant and 𝑑 is the diameter of the gas particle (atom or
molecule spherically approximated).

(1) This gas has a density of 5.894 kg/m3 under 1 atm at 𝑇 = 273 K. What is the
root-mean-square velocity of the gas particles for this gas?

(2) The diffusion coefficient was observed to be𝐷 = 4.8×10−6 m2/s. Using the simple
gas kinetic estimate of 𝐷 in the lecture notes (i.e., 𝐷 = 𝑙𝑣/3), obtain the mean free
path length 𝑙. Here, you may identify 𝑣 with the root-mean-square velocity just
computed in (i).

(3) Try to estimate Avogadro’s constant from the data given above.150

Soln.

150The data here is for xenon.
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(1) ⟨𝑣2⟩ = 3𝑃/𝜌, so
√︀

3× 1.013× 105/5.89 = 227 m/s.

(2) ℓ = 3𝐷/𝑣 = 6.34× 10−8 m.

(3) Let 𝑉 = 22.4× 10−3 m3 be the volume of this gas at 1atm:

𝑁𝐴𝑑
2 = 𝑉/

√
2𝜋ℓ, 𝑁𝐴𝑑

3 = 3𝑉0/2𝜋.

Therefore,

𝑑 =
3𝑉0
2𝜋

√
2𝜋ℓ

𝑉
=

3ℓ𝑉0√
2𝑉

,

which is 3.067× 10−10 m = 3.1 Å. A reasonable value. (van der Waals radius = 2.2
Å for xenon) and

𝑁𝐴 = 𝑉/
√
2𝜋ℓ𝑑2 =

𝑉√
2𝜋ℓ

2𝑉 2

9ℓ2𝑉 2
0

=

√
2𝑉 3

9𝜋ℓ3𝑉 2
0

= 8.466× 1023.
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7 Brownian motion

Summary
* Brown found the universal motion called the Brownian motion.
* Einstein recognized the Brownian motion is due to thermal motion, and estimated
𝑘𝐵 (or equivalently 𝑁𝐴).
* Langevin explains the Brownian motion in terms of the equation of motion with a
noise term ( called the Langevin equation).
* Brownian trajectories may be related to random walks and polymer chain confor-
mations. ⟨𝑟2⟩ = 2d𝐷𝑡.

Key words
Brownian motion, Langevin equation, mesoscopic, Fick’s law, Einstein’s relation,
diffusion equation, Laplacian, Einstein-Stokes relation, dimensional analysis

What you should be able to do
* Be able to explain the key idea of the mesoscopic approach using Einstein’s Brow-
nian motion theory as an example.
* Be able to derive Einstein’s relation.
* Be able to estimate the span of a random walk or a random chain polymer.

7.1 How mesoscopic particles behave
At the microscopic level molecules are colliding with the fellow molecules and are
recoiling forever. What if the particle we observe is much bigger than the molecules
surrounding it? The particles we can observe optically are about thousand times
linearly as large as the molecules (Fig. 7.1). This means that the mass ratio is ∼ 109.
Thus, numerous small impulses are imparted to the big particle from the surrounding
molecules. The law of large numbers tells us that the motion of the big particle must
be extremely slow compared with the gas particles, and its motion is due to the ‘𝑜[𝑁 ]’
part of the law of large numbers (4.4). That is, we observe a typical mesoscopic scale
motion, which we now call the Brownian motion.

7.2 Mr Brown discovered a universal motion (now) called the Brownian
motion
The Brownian motion was discovered in the summer of 1827151,152 by Robert

151[1827: Beethoven died in March; Democratic party was founded.]
152The work was published the next year. See P Pearle, B Collett, K Bart, D Bilderback, D
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1 nm

1 μm

Figure 7.1: Brownian particle (1 𝜇m radius) vs molecules (1 nm radius); The sun/the earth ratio
is about 110. The ratio of the radius of the orbit of the earth ( = 1 AU) and the radius of the sun
is 109 (150 Gm vs. 1.4 Gm). This means the ratio of our cell (eukaryotic cell) and the molecule
size is about the ratio of 1 AU and the size of the earth. Right from a nice site.

Brown.153 We are usually given an impression that he simply observed the “Brown-
ian motion.” However, he did a very careful and thorough research to establish the
universal nature of the motion.

Since the particles for which Brown first observed the motion came from living
cells (see Fig. 7.2), initially he thought that it was a vital phenomenon. Removing
the effects of advection, evaporation, etc., carefully, he tested many flowers. Then,
he tested old pollens in the British Museum (he was the (founding) director of the
Botanical Division), and still found active particles. He conjectured that this was
an organic effect, testing even coal with no exception found. This suggested him
that not only vital but organic nature of the specimens were irrelevant. He then
tested numerous inorganic specimens (including a piece of Sphinx; he also roasted
his specimens).

Let us watch some examples:

Nanoparticles in water:

Newman, and S Samuels, “What Brown saw and you can too,” Am. J. Phys. 78, 1278 (2010).
153⟨⟨Who was Mr Brown?⟩⟩ [See Cook, Banks, Humboldt, ..., Bates http://www.yoono.org/

PST_Cambridge/Section9.html for a (historical) background] Robert Brown (1773-1858) was per-
haps the greatest botanist (and a great microscopist; Alexander von Humboldt (1769-1859) called
him ‘the glory of Great Britain’) in the first half of the 19th century. He wrote (1810) a classic of
systematic botany describing the Australian flora, following his expedition (1801-5). He was the
first to recognize the two major classes of seed plants (1827) [P. B. Tomlinson, “Rescuing Robert
Brown—The Origins of Angio-Ovuly in Seed Cones of Conifers,” Bot. Rev. 78, 310 (2012)]. He
recognized the nucleus of the cell and so named it (1831; the terminology was later imported by N.
Bohr to atomic physics).

Before departing for his Beagle expedition (Dec., 1831-Oct., 1836), Charles Darwin (1809-1882)
asked for Brown’s advice in 1831, buying a portable dissecting microscope recommended by Brown;
after returning to England, Brown encouraged Darwin to visit him every Sunday morning. Later,
Brown was regularly invited to parties at Darwin’s home.

The participants of the now historical Linnean Society meeting, where the theory of natural
selection was first read (July 1, 1858), were there mainly to listen to Lyell reading the eulogy for
Brown who died on June 10 and to praise his career. Cf. J. Browne, Charles Darwin, voyaging
(Knopf, 1995), Charles Darwin, the power of place (Knopf, 2002); an authoritative biography of
Charles Darwin.
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Figure 7.2: The pollen tube Brown observed first was from Clarkia pulchella (flower reddish
purple, Oenotheraceae, Northwest US; the genus name commemorates Clark of the Lewis and
Clark expedition (1804-6)). He observed 1/4000-1/5000 in (0.5-0.6 𝜇m) particles in the pollen
tube. From the quoted booklet: “the first plant examined proved in some respects remarkably well
adapted to the object in view. This plant was Clarkia pulchella, of which the grains of pollen, taken
from antherae full grown, but before bursting, were filled with particles of granules of unusually
large size, perhaps slightly flattened, and having rounded and equal extremities. While examining
the form of these particles immersed in water, I observed many of them very evidently in motion
...” [USDA photo]

http://www.youtube.com/watch?v=cDcprgWiQEY&feature=topics

Simulations
http://www.youtube.com/watch?v=PtYP8uoN0lk&feature=topics (excellent; comparison of
small and large particles)
This may be the best (again):
http://falstad.com/gas/. Go to Setup Brownian motion.
http://labs.minutelabs.io/Brownian-Motion/ may be fun.

7.3 General properties of Brownian motion
Curiously enough, there was no work published about Brownian motion between
1831 and 1857, but the phenomenon was well known. From 1850s new experimental
studies began by Gouy (1854-1926) and others. The established facts included (you
would find them very easy to understand in terms of molecular bombardment on
mesoscopic particles):

(1) Its trajectory is quite erratic without any tangent lines anywhere.
(2) Two Brownian particles are statistically independent even when they come within
their diameters.
(3) Smaller particles move more vigorously.
(4) The higher the temperature, the more vigorous the Brownian motion.
(5) The smaller the viscosity of the fluid medium, the more vigorous the motion.
(6) The motion never dies out.
etc.154

In the 1860s there were experimentalists who clearly recognized that the motion

154What can you conclude from these observations and dimensional analysis?
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was due to the impact of water molecules. Even Poincaré (1854-1912) mentioned
this motion in 1900, but somehow no founding fathers of kinetic theory and
statistical mechanics paid any attention to Brownian motion.155

Due to the bombardment of water molecules, the Brownian particle executes a
zigzag motion, and eventually, say, its 𝑥-coordinate156 displaced as seen in Fig. 7.3;
its source video is worth watching.

Figure 7.3: Displacement of Brownian particles along one coordinate; the 𝑥-axis is the time
and the 𝑦 the position of various sample particles along a line. The rightmost figure schematically
describe the density of the particles at the end of the journeys. [From the video quoted above]

Figure 7.4: The left are four sample paths and their average is on the right. [Courtesy of Prof.
Nishizaka of Gakushuin Univ.]

155According to H. Ezawa, they never expected the particle fluctuations large enough to be
observable.

156This figure illustrates originally a 1D Brownian motion, but it also illustrates the behavior of
a particular component of the position vector of a single Brownian particle, since all the orthogonal
coordinates of a 3D Brownian particle position vector is statistically independent.
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As you see in Fig. 7.4 the salient feature of the Brownian displacement Δ𝑟 is

⟨Δ𝑟2⟩ ∝ 𝑡, (7.1)

where ⟨ ⟩ is the ensemble average (you repeat the experiment again and again or
do many (mutually not interfering) experiments simultaneously, and average the re-
sults) and 𝑡 is time. The proportionality constant is related to (proportional to) the
diffusion constant as we will see soon.

7.4 Langevin’s explanation of the Brownian motion
Closely following Paul Langevin’s argument,157 let us demonstrate indeed ⟨Δ𝑟2⟩ ∝ 𝑡.

Let us try to describe the motion of a Brownian particle classical mechanically.
Let 𝑟 be its position vector, and 𝑚 its mass. Newton’s equation of motion requires
the forces acting on the particle. Since the particle is being hit ‘randomly,’ we expect
a random force𝑤 (whose direction and magnitude change incessantly and erratically)
acting upon the particle. If the Brownian particle moves at a constant velocity 𝑣,
then it would be hit by more particles of the medium on its front than on its back
(imagine running in the rain). Therefore, it is natural to expect a force opposing
the motion (i.e., drag) whose magnitude is proportional to the speed. Therefore, the
equation of motion reads

𝑚
𝑑2𝑟

𝑑𝑡2
= −𝜁 𝑑𝑟

𝑑𝑡
+𝑤, (7.2)

where 𝜁 is a positive constant describing the relation between the particle velocity
and the resistive or frictional force the particle feels from the medium. Let us try to
make an equation for 𝑟2 = 𝑟 · 𝑟 by scalar-multiplying 𝑟 to this equation. Since

𝑟 · 𝑑
2𝑟

𝑑𝑡2
=

𝑑

𝑑𝑡

(︂
𝑟
𝑑𝑟

𝑑𝑡

)︂
−
(︂
𝑑𝑟

𝑑𝑡

)︂2

=
𝑑

𝑑𝑡

(︂
1

2

𝑑𝑟2

𝑑𝑡

)︂
−
(︂
𝑑𝑟

𝑑𝑡

)︂2

, (7.3)

we have
𝑚

2

𝑑2𝑟2

𝑑𝑡2
−𝑚

(︂
𝑑𝑟

𝑑𝑡

)︂2

= −𝜁
2

𝑑𝑟2

𝑑𝑡
+𝑤 · 𝑟. (7.4)

Let us ‘ensemble-average’ this equation. That is, we prepare many such Brownian
particles and average the equations for them. Let us denote this averaging procedure
by ⟨ ⟩. Since averaging procedure is linear and time-independent, we can exchange
the order of differentiation and averaging. Thus, we obtain

𝑚

2

𝑑2⟨𝑟2⟩
𝑑𝑡2

−𝑚

⟨(︂
𝑑𝑟

𝑑𝑡

)︂2
⟩

= −𝜁
2

𝑑⟨𝑟2⟩
𝑑𝑡

+ ⟨𝑤 · 𝑟⟩. (7.5)

157Paul Langevin, “Sur la théorie du mouvement brownien,” C. R. Acad. Sci. Paris 146, 530-533
(1908). A translation may be found in D. S. Lemons and A. Gythiel, “Paul Langevin’s 1908 paper
“On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci.
(Paris) 146, 530-533 (1908)],” Am. J. Phys., 65, 1079 (1997).
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Langevin says, “The average value of the term 𝑤 · 𝑟 is evidently null by reason of
the irregularity of the complementary forces 𝑤.” Also, thanks to the equipartition
of kinetic energy in equilibrium, the second term on the LHS is known:

1

2
𝑚

⟨(︂
𝑑𝑟

𝑑𝑡

)︂2
⟩

=
3

2
𝑘𝐵𝑇, (7.6)

where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the absolute temperature of the sys-
tem.158

If we introduce

𝑧 =
𝑑⟨𝑟2⟩
𝑑𝑡

, (7.7)

(7.5) reads
𝑚

2

𝑑𝑧

𝑑𝑡
+
𝜁

2
𝑧 = 3𝑘𝐵𝑇. (7.8)

Notice that this ‘3’ is the spatial dimensionality d. This implies after a sufficiently
long time,159 the time derivative 𝑑𝑧/𝑑𝑡 should vanish and 𝑧 = 6𝑘𝐵𝑇/𝜁 (note that 6
here is 2d), or

⟨𝑟2⟩ = 6𝑘𝐵𝑇

𝜁
𝑡 =

2d𝑘𝐵𝑇

𝜁
𝑡. (7.9)

That is, the absolute value of the displacement during time 𝑡 is proportional to
√
𝑡.

See Fig. 7.3.

7.5 Relation to random walk
As we have seen, due to random bombardment by fluid particles a Brownian particle
executes an erratic motion. Let Δ𝑟𝑖 be the total displacement between time (𝑖− 1)𝜏
and 𝑖𝜏 , where

𝜏 is a mesoscopic time scale which is very small from our point of view (say, 1 ms).
Then, we may model the movement of the particle by a random walk (Fig. 7.5). After
𝑛 steps (after 𝑡 = 𝑛𝜏), the total displacement of the Brownian particle is given by

𝑟(𝑡) = Δ𝑟1 +Δ𝑟2 + · · ·+Δ𝑟𝑛. (7.10)

Let us compute the mean square displacement:

⟨𝑟2⟩ =
∑︁
𝑖

⟨Δ𝑟2𝑖 ⟩+ 2
∑︁
𝑖<𝑗

⟨Δ𝑟𝑖 ·Δ𝑟𝑗⟩. (7.11)

158Since it is very hard to measure the velocity of the Brownian particles, the equipartition of
kinetic energy was hardly directly proved, so some people even doubted this.

159which is actually a mesoscopic scale relaxation time: 𝜏 ≃ 𝑚/𝜁. This is very short for a
macroscopic observer like us.
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Figure 7.5: Actual observation results of a latex particle trajectory for 3.3 sec. Left: every
1/8000 sec; Right: every 1/30 sec. [Courtesy of Prof. Nishizaka of Gakushuin U]

Since the movement of the Brownian motion is uniform (e.g., throughout the duration
of the motion the displacements are statistically the same), we may expect ⟨Δ𝑟21⟩ =
⟨Δ𝑟22⟩ = · · ·. Since there is no systematic direction to move into, ⟨Δ𝑟𝑖⟩ = 0. Since
Δ𝑟𝑖 are totally random (statistically independent), we expect that the average ⟨Δ𝑟𝑖 ·
Δ𝑟𝑗⟩ = ⟨Δ𝑟𝑖⟩ · ⟨Δ𝑟𝑗⟩ = 0 for 𝑖 ̸= 𝑗. Therefore, (7.11) implies

⟨𝑟2⟩ = 𝑛⟨Δ𝑟2𝑖 ⟩ ∝ 𝑡, (7.12)

which is consistent with (7.9).

7.6 Let us look at 3D random walk samples
Let us observe 3D random walks (NN = 10000 steps), using the following R program
(you can download R.app from CRAN https://cran.r-project.org):

install.packages("ggplot2")

Probably, you are asked to choose a CRAN mirror site. Choose, say, USA(KS).

install.packages("rgl")

library(ggplot2)

library(rgl)

The actual program begins here. (If you wish to reset the shape, simply rerun the
whole program by copying the following)

NN <- 10000

m <- matrix(numeric(3*NN), ncol = 3)

for (i in 2:NN)

{

q <- rnorm(3)

qn <- q/sqrt(q[1]^2 + q[2]^2 + q[3]^2)
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m[i, ] <- m[i-1, ] + qn

}

df <- setNames(data.frame(m, seq(1, NN)),c("x", "y", "z"))

plot3d(df, xlim = c(-sqrt(NN), sqrt(NN)), ylim = c(-sqrt(NN), sqrt(NN)),

zlim = c(-sqrt (NN), sqrt (NN)), type = "l")

Figure 7.6: The program in 7.6 gives a 3D rotatable figure like this.

7.7 Polymer chain as a trajectory of random walk
We can consider a random walk on a lattice (see a problem at the end of this lecture).
Let ℓ𝑖 be the 𝑖th step of the walk. This vector must be one of the bond vectors making
the lattice. Starting from the origin, a random walk of 𝑛 steps on a lattice would
reach

𝑅(𝑛) = ℓ1 + ℓ2 + · · ·+ ℓ𝑛. (7.13)

If the lattice spacing is 𝑎, then the consideration above (or (7.12)) tells us

⟨𝑅(𝑛)2⟩ = 𝑛𝑎2. (7.14)

We may interpret the trajectory of a random walk as a conformation of a polymer
consisting of 𝑛 monomers (without any steric interactions among monomer units
except perhaps for bond angle constraints). Then, 𝑅(𝑛) is the end-to-end vector of
the polymer chain, and the mean square end-to-end distance satisfies (7.14).

7.8 Einstein guessed the Brownian motion is due to thermal motion
That the cause of the Brownian motion is thermal motion of molecules was quan-
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titatively demonstrated for the first time by Einstein in 1905,160 three years before
Langevin’s work discussed above. You can understand the original paper in about a
month, but not yet, because Einstein invented statistical mechanics by himself and
used it to calculate the driving force for Brownian particles.

7.9 Einstein’s approach was consciously mesoscopic
Einstein did not invent the word ‘mesoscopic,’ but his work consciously treated the
Brownian particle as a mesoscopic object. This was the reason why his work was not
instantly understood as a key paper in thermal physics.

Einstein considered the diffusion process of a collection of Brownian particles. The
diffusion flux 𝐽 may be written as

𝐽 = −𝐷 grad𝑛, (7.15)

where 𝑛 is the number density of the Brownian particles. 𝐷 is defined by this equa-
tion (Fick’s law). We computed the diffusion constant in the gas phase through
computing the flux.161 Einstein did a similar thing for a suspended particle in a fluid
medium.

7.10 Einstein’s theory of Brownian particle flux
Einstein’s key idea was that a Brownian particle may be treated both as a large
molecule and as a tiny macroscopic particle at the same time (i.e., virtually, he
introduced the ‘mesoscopic scale’ description of Nature):
(a) Since we regard Brownian particles as molecules, we may apply Dalton’s law of
partial pressures. We assume the number density 𝑛 of the Brownian particles is very
small, so they do not interact with each other; we may regard the collection as an
ideal gas (the particles are treated microscopically):

𝑃 = 𝑛𝑘𝐵𝑇. (7.16)

(This 𝑃 corresponds to the osmotic pressure due to the solute = Brownian particles
as will be discussed in Lecture 20.)
(b) The average of mesoscopic quantities must be understandable macroscopically
(i.e., in terms of macroscopic laws); Einstein did not explicitly say this, but as
emphasized repeatedly, this is the key mesoscopic feature. Let 𝑓 be the average

160“Über die von der molekularkinetischen Theorie der Wärme geforderten Bewegung von in
ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 17, 549 (1905) [On the motion of
suspended particles in stationary fluid required by the molecular kinetic theory of heat.]

161However, do not confuse the formula obtained in 6.14 (i.e., 𝐷 = 𝑣ℓ/3, which describes the
diffusion of molecules in a gas) and Einstein’s formula for suspended particles in a fluid.
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force acting on each particle (see Fig. 7.7). The total force acting on the slice in the
figure is 𝑛𝑓𝐴𝑑𝑟, but this must be the same as the force due to the partial pressure
difference

𝑛𝑓𝐴𝑑𝑟 = −𝐴[𝑃 (𝑟 + 𝑑𝑟)− 𝑃 (𝑟)] = −𝐴 grad𝑃 𝑑𝑟, (7.17)

P(r)

P(r+dr)f

A

dr = |dr|

force per particle

Figure 7.7: The total force acting on the thin slice of thickness 𝑑𝑟 = |𝑑𝑟| may be understood
as the force due to the pressure difference, so 𝑛𝐴𝑓𝑑𝑟 = 𝐴(𝑃 (𝑟) − 𝑃 (𝑟 + 𝑑𝑟)) = −𝐴 grad𝑃 (𝑟)𝑑𝑟,
which gives (7.18).

That is,
𝑛𝑓 = −grad𝑃. (7.18)

On the average a Brownian particle behaves as a macroscopic particle, so its
(average) velocity 𝑣 due to pushing by 𝑓 must obey

𝜁𝑣 = 𝑓 , (7.19)

where 𝜁 is the friction constant between the particle and the surrounding fluid (drag
coefficient) (used in Langevin’s approach 7.4).

The diffusion flux 𝐽 is
𝐽 = 𝑛𝑣 = 𝑛𝑓/𝜁 (7.20)

so (7.18) tells us that (assuming the temperature is uniform)

𝐽 = −𝑘𝐵𝑇
𝜁

grad𝑛. (7.21)

7.11 Einstein’s formula
Comparing (7.21) with the definition of the diffusion constant (7.15), we obtain

𝐷 = 𝑘𝐵𝑇/𝜁, (7.22)

which is called Einstein’s relation. This equation allows us to obtain 𝑘𝐵 or, since the
gas constant 𝑅 is known, to calculate Avogadro’s constant 𝑁𝐴.

Einstein’s original paper used 𝜁 = 6𝜋𝑎𝜂, where 𝑎 is the radius of the Brownian

133



particle, and 𝜂 is the shear viscosity of the fluid. Thus, the original Einstein’s relation
reads (often called the Einstein-Stokes formula)

𝐷 =
𝑘𝐵𝑇

6𝜋𝑎𝜂
. (7.23)

Here, Stokes’ law is used that gives the drag force acting on a sphere of radius 𝑎
moving at velocity 𝑣 relative to the surrounding fluid: 𝑓 = 6𝜋𝑎𝜂𝑣.162

𝐷 ∝ 𝑘𝐵𝑇/𝑎𝜂 may be concluded with the aid of dimensional analysis. Since dimen-
sional analysis is quite important, let us derive this relation dimensional-analytically
(almost repeating a part of our discussion in 6.18. As noted before, an introduction
to dimensional analysis is available:
http://www.yoono.org/Y_OONO_official_site/LectureSlides_504_files/DAmemo.

pdf.

7.12 Dimensional analytic ‘derivation’ of Einstein’s formula
If you know the unit of a quantity, it is easy (pragmatic) to obtain its dimension from the
unit. For example, the diffusion constant is measured in the unit𝑚2/𝑠, so [𝐷] = 𝐿2/𝑇 . If you
do not know such information, you should go back to the definition. For example, to obtain
[𝜂] let us go back to its definition: 𝐽𝑝 = −𝜂 grad 𝑣, where 𝐽𝑝 is the momentum flux, and 𝑣 is
the velocity. Since the dimension of momentum is 𝑀𝐿/𝑇 , [𝐽𝑝] = (𝑀𝐿/𝑇 )/𝐿2𝑇 = 𝑀/𝐿𝑇 2,
[𝑣] = 𝐿/𝑇 , so [𝜂] = [𝐽𝑝]𝐿/[𝑣] =𝑀/𝐿𝑇 . 𝑘𝐵𝑇 has the dimension of energy, [𝑘𝐵𝑇 ] =𝑀(𝐿/𝑇 )2.

Let us determine 𝐷. In dimensional analysis, first we must itemize all the quantities we
believe relevant. In the present example, diffusion should be slow with large 𝑎 or large 𝜂,
and also it is related to thermal motion, so 𝑇 should matter; 𝑇 always appears with 𝑘𝐵 , so
we may conclude that 𝐷 should depend on 𝑎, 𝜂 and 𝑘𝐵𝑇 .

[𝐷] does not contain 𝑀 , so we should get rid of 𝑀 : [𝑘𝐵𝑇/𝜂] = (𝑀𝐿2/𝑇 2)/(𝑀/𝐿𝑇 ) =
𝐿3/𝑇 . Therefore, 𝑘𝐵𝑇𝜂/𝑎 must have the same dimension as 𝐷. Thus, 𝐷 ∝ 𝑘𝐵𝑇/𝑎𝜂. No
other combination is possible.

7.13 Displacement of particles by diffusion
Einstein’s relation (7.22) with (7.9) due to Langevin implies

⟨𝑟2⟩ = 2d𝐷𝑡. (7.24)

Einstein, before Langevin, derived this equation in a different way (as discussed
below), studying the time evolution of the number density 𝑛(𝑟, 𝑡) of the Brownian
particles that obeys the diffusion equation. We know the number density obeys the
diffusion equation (6.19):

𝜕𝑛

𝜕𝑡
= 𝐷Δ𝑛, (7.25)

where Δ is the Laplacian:

Δ =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
. (7.26)

162Its derivation is not very trivial; see, for example, Landau-Lifshitz, Fluid Dynamics.
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The easiest method to solve (7.25) is to use the Fourier transformation (see Ap-
pendix 6A), but here we simply quote the result. If 𝑛 is normalized with the total
number of particles, we get the probability density distribution of the Brownian par-
ticles 𝑃 (𝑟, 𝑡). Needless to say, 𝑃 obeys the same diffusion equation. Let us assume
at 𝑡 = 0, all the probability is concentrated at the origin. Then,

𝑃 (𝑟, 𝑡) =

(︂
1

4𝜋𝐷𝑡

)︂d/2

𝑒−𝑟
2/4𝐷𝑡. (7.27)

Therefore, after 𝑡, the mean square displacement must be163*

⟨𝑟(𝑡)2⟩ = 2d𝐷𝑡. (7.29)

That is, if we observe the mean square displacement of a particle, then the diffu-
sion constant 𝐷 of the collection of such particles may be measured. Jean Perrin
(1870-1942) implemented this measurement and obtained Avogadro’s constant (see
a problem at the end of this lecture Q7.1).164

Two more approaches to derive the diffusion equation are described below.

7.14 Pedestrian approach to diffusion equation
Let 𝜌(𝑡, 𝑟) be the density distribution function of a particular gas particle at position 𝑟 and
at time 𝑡.165 Then,

𝜌(𝑡+ 𝜏, 𝑟) = ⟨𝜌(𝑡, 𝑟 +Δ𝑟)⟩, (7.30)

where the average here is about the ‘next’ free vector Δ𝑟. Subtracting 𝜌(𝑡, 𝑟), the left-hand
side reads

𝜌(𝑡+ 𝜏, 𝑟)− 𝜌(𝑡, 𝑟) = 𝜕𝜌

𝜕𝑡
𝜏 + · · · . (7.31)

The right-hand side reads

𝜌(𝑡, 𝑟 +Δ𝑟)− 𝜌(𝑡, 𝑟) =
3∑︁

𝑖=1

Δ𝑥𝑖
𝜕

𝜕𝑥𝑖
𝜌(𝑡, 𝑟) +

1

2

3∑︁
𝑖,𝑗=0

Δ𝑥𝑖Δ𝑥𝑗
𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥𝑖
𝜌(𝑡, 𝑟) + · · · . (7.32)

163*Do not forget that (7.27) is a Gaussian density distribution in d-space. Since 𝑟2 = 𝑥21 +
𝑥22 + · · ·+ 𝑥2d, (7.27) is actually a product of d independent Gaussian density distributions for each
orthogonal component 𝑥𝑖:

𝑃 (𝑥𝑖, 𝑡) =

(︂
1

4𝜋𝐷𝑡

)︂1/2

𝑒−𝑥2
𝑖 /4𝐷𝑡. (7.28)

This is a one-dimensional Gaussian density distribution, so we immediately see ⟨𝑥2𝑖 ⟩ = 2𝐷𝑡. Con-
sequently, we have ⟨𝑟2⟩ = d⟨𝑥21⟩ = 2d𝐷𝑡.

164J. Perrin, Atoms (Constable, 1916) translated by D. L. Hammick.
Available on line: https://archive.org/details/atomsper00perruoft.

165You could write 𝜌(𝑡, 𝑟) = ⟨𝛿(𝑟 − 𝑟1(𝑡))⟩, where 𝑟1(𝑡) the location of particle 1 at time 𝑡 and
the average is the conditional probability that 𝑟1(0) = 0 with probability one and the rest of the
gas is in equilibrium.
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We must average this over possible free vectors (Δ𝑥1,Δ𝑥2,Δ𝑥3)
𝑇 :

⟨Δ𝑥𝑖⟩ = 0, (7.33)

⟨Δ𝑥𝑖Δ𝑥𝑗⟩ = 𝛿𝑖𝑗
1

3
⟨(Δ𝑟)2⟩. (7.34)

Thus, combining all the above we get a diffusion equation! Notice that 𝑛𝜌 is the number
density 𝑛(𝑡, 𝑟). Noting that our ‘3’ is actually the spatial dimensionality d, we have

𝜕𝜌

𝜕𝑡
=
⟨(Δ𝑟)2⟩
2d𝜏

Δ𝜌. (7.35)

From this, at least we may conclude that 𝐷 ∝ 𝑣ℓ.
7.15 Overdamped Langevin equation without external force
If there is no systematic force, the Langevin equation reads

𝑑𝑟

𝑑𝑡
= 𝜈. (7.36)

This should describe the trajectory of a Brownian particle = random walk. We assume

⟨𝜈⟩ = 0, ⟨𝜈(𝑡)𝑇𝜈(𝑠)⟩ = 𝐴𝐼𝛿(𝑡− 𝑠), (7.37)

where 𝐴 is a positive constant representing the noise amplitude (squared). This implies that
there is no memory in noise (different times are uncorrelated). Since three components are
uncorrelated,

⟨𝜈𝑥(𝑡)𝜈𝑦(𝑠)⟩ = 0, etc. (7.38)

In order to determine 𝐴, let us solve (7.158), assuming that the particle starts from the
origin:

𝑟(𝑡) =

∫︁ 𝑡

0

𝑑𝑠𝜈(𝑠). (7.39)

From this we obtain

⟨𝑟2(𝑡)⟩ =

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑡

0

𝑑𝑠′ ⟨𝜈(𝑠) · 𝜈(𝑠′)⟩ = d𝐴

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑡

0

𝑑𝑠′ 𝛿(𝑠− 𝑠′) (7.40)

= d𝐴

∫︁ 𝑡

0

𝑑𝑠 = d𝐴𝑡. (7.41)

Comparing this with Langevin’s result above, we conclude that

𝐴 =
2𝑘𝐵𝑇

𝜁
. (7.42)

However, still we cannot relate 𝐷 and 𝐴 directly.

7.16 Direct connection of Langevin’s and diffusion equations
We already know that the distribution of the particles governed by (7.158) should obey a
diffusion equation, whose diffusion constant should be proportional to 𝐴. Of course, if we
solve the diffusion equation honestly as Einstein did, we immediately know 𝐴 = 2𝐷, but let
us avoid the solution, and proceed ‘more physically.’

We can derive the equation for 𝑛 more directly because

𝑛(𝑡+ 𝑑𝑡, 𝑟) = 𝑛(𝑡, 𝑟 − 𝜈𝑑𝑡) (7.43)
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according to the overdamped Langevin equation. Thus, we see

𝜕𝑛

𝜕𝑡
𝑑𝑡 =

1

2d
⟨(𝜈𝑑𝑡)2⟩Δ𝑛 =

𝐴

2
Δ𝑛𝑑𝑡 (7.44)

That is, 𝐴 = 2𝐷. Thus, ‘without solving the diffusion equation’, we have related the noise
amplitude 𝐴 and the diffusion coefficient 𝐷 of particles driven by the noise.

7.17 Einstein’s fundamental idea: summary
Let us summarize Einstein’s fundamental idea, which is the key idea of the current
nonequilibrium statistical mechanics:

Microscopic fluctuations can build up mesoscopic fluctuations whose dy-
namics is on the average governed by the laws of macroscopic time evo-
lution.

The Brownian motion is a mesoscopic motion that is a result of building up of mi-
croscopic fluctuations. Its decay is described by a macroscopic dissipative dynamics.

This was later more clearly stated by Onsager as the regression hypothesis.

7.18 Noise in the Langevin approach
We started with Langevin’s theory based on a stochastic differential equation. If
there is an external force 𝐹 , it may be generalized as

𝑚
𝑑2𝑟

𝑑𝑡2
= −𝜁 𝑑𝑟

𝑑𝑡
+ 𝐹 +𝑤. (7.45)

Usually, we may assume that 𝑚 is small and 𝜁 is large (i.e., the over-damped con-
dition). Then, we may ignore the acceleration term, and the equation is rewritten
as

𝑑𝑟

𝑑𝑡
=

𝐹

𝜁
+ 𝜈, (7.46)

where 𝜈 is a noise. This equation is also called the Langevin equation (actually, this
is the usual one).

Now, we wish to model the noise 𝜈. We assume its all components are statistically
independent, so let us study its 𝑥-component 𝜈𝑥 as a representative. 𝜈𝑥(𝑡) as a
function of time changes quite rapidly and erratically, so we assume its ensemble
average to satisfy

⟨𝜈𝑥(𝑡)⟩ = 0, (7.47)

and
⟨𝜈𝑥(𝑡)𝜈𝑥(𝑠)⟩ = 𝐴𝛿(𝑡− 𝑠), (7.48)

where 𝐴 is a positive numerical constant. This implies that there is no memory in
noise (different times are uncorrelated). Since three components are uncorrelated,

⟨𝜈𝑥(𝑡)𝜈𝑦(𝑠)⟩ = 0, etc. (7.49)
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In order to determine 𝐴, let us solve (7.158), assuming that the particle starts
from the origin:

𝑟(𝑡) =

∫︁ 𝑡

0

𝑑𝑠𝜈(𝑠). (7.50)

From this we obtain

⟨𝑟2(𝑡)⟩ =

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑡

0

𝑑𝑠′ ⟨𝜈(𝑠) · 𝜈(𝑠′)⟩ = d𝐴

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑡

0

𝑑𝑠′ 𝛿(𝑠− 𝑠′) (7.51)

= d𝐴

∫︁ 𝑡

0

𝑑𝑠 = d𝐴𝑡. (7.52)

Comparing this with (7.9), we can determine 𝐴 as

𝐴 =
2𝑘𝐵𝑇

𝜁
= 2𝐷. (7.53)

This is called a fluctuation-dissipation relation, determining the noise (i.e., fluctua-
tion) ‘amplitude (squared)’ 𝐴 in terms of temperature 𝑇 and friction constant 𝜁 (i.e.,
dissipation).

7.19 Qualitative understanding of fluctuation-dissipation relation
Qualitatively, the fluctuation-dissipation relation (FDR) may be understood as fol-
lows (see Fig. 7.8). If the force in (7.158) is conservative (has a potential 𝑈) as

𝐹 = −grad𝑈 (7.54)

our Langevin equation becomes

𝑑𝑟

𝑑𝑡
= −∇𝑈

𝜁
+𝑤. (7.55)

Since the particle tends to be trapped in 𝑈 , in equilibrium, we should expect the
Boltzmann distribution ∝ 𝑒−𝛽𝑈 for the particle position 𝑟 when the system described
by (7.45) reaches an equilibrium state.

For example, if the viscosity of the suspending liquid is large, 𝜁 is large, and as can
be seen from (7.55), the effect of the systematic force due to the potential energy
becomes relatively small. If the noise amplitude is not reduced appropriately, then
obviously the distribution would spread too much. In other words, when the ambient
liquid is viscous, large noise pushes the particle away from the potential minimum.
Before the particle reaches the minimum, another noise kicks the particle further
away from the potential minimum. Thus, a larger damping effect must be balanced
with a smaller noise amplitude for the Langevin equation to describe the equilibrium
state correctly. This is actually (5) in the summary of observations of the Brownian
motion at the beginning of this lecture.
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Figure 7.8: Illustration of the fluctuation-dissipation relation for a Brownian particle in a
potential 𝑈 . 𝑃 is the probability density to find the particle at the given location with: Blue: too
small noise; Green: just right noise; Red: too large noise for a given 𝑇 and 𝜁. To reproduce the
correct equilibrium state, the noise must be carefully chosen.

7.20 Smoluchowski equation and Einstein relation
The fluctuation-dissipation relation is usually derived from the condition that the
equilibrium distribution of the particles is correctly described by the Boltzmann
factor.166 To close our discussion of the Brownian motion the approach to the
fluctuation-dissipation relation through the front door will be explained.

Let us derive the transport equation for the number density. This is what Einstein
did when there was no force. Now with an external force, how should we proceed?
Since our system is linear, the force is not strong. Thus the flux must be the super-
position of the flux due to the gradient of 𝑛 and the one driven by the force. The
latter reads (recall the flow velocity × the density of the quantity transported is the
flux, and the flow velocity due to the driving by the force due to the potential 𝑈
reads 𝜁𝑣 = −∇𝑈))

𝑛× 𝑣 = −𝑛1
𝜁
∇𝑈. (7.56)

Therefore, the total flux reads with the aid of (7.53)

𝐽 = −𝐴
2
∇𝑛− 1

𝜁
𝑛∇𝑈. (7.57)

The conservation of particles reads

𝜕𝑛

𝜕𝑡
= −div𝐽 . (7.58)

166Notice that even the above ‘back door’ derivation imports the equilibrium result as the equipar-
tition of energy or the formula for the pressure.

139



7.21 Smoluchowski equation and fluctuation-dissipation relation
Combining (7.58) and the formula for the flux (7.57) gives the following equation
called the Smoluchowski equation

𝜕𝑛

𝜕𝑡
= ∇ ·

(︂
𝑛
1

𝜁
∇𝑈 +

𝐴

2
∇𝑛
)︂
. (7.59)

In equilibrium, the time derivative must vanish, so

𝑛
1

𝜁
∇𝑈 +

𝐴

2
∇𝑛 = 0, (7.60)

because this must vanish far away from the potential, or

2

𝐴𝜁
∇𝑈 +∇ log 𝑛 = 0. (7.61)

This implies that
𝑛 ∝ 𝑒−2𝑈/𝐴𝜁 (7.62)

which must be proportional to the Boltzmann factor 5.12. Consequently, we must
conclude that

𝐴𝜁/2 = 𝑘𝐵𝑇. (7.63)

𝐴 = 2𝑘𝐵𝑇/𝜁 is the fluctuation-dissipation relation, but it is the Einstein relation
itself.
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Appendix 7A: How to obtain (7.27)
Use of Fourier transformation is the best. Fourier transformation ℱ is defined as
follows (in 3-space):

[ℱ𝑓 ](𝑘) ≡ 𝑓(𝑘) =

(︂
1

2𝜋

)︂3 ∫︁
𝑑3𝑥 𝑓(𝑥) 𝑒𝑖𝑘·𝑥. (7.64)

Notice that differentiation becomes multiplication:

[ℱ(∇𝑓)](𝑘) = −𝑖𝑘𝑓(𝑘). (7.65)

This can be demonstrated by (essentially an integration by parts)

[ℱ(∇𝑓)](𝑘) =

(︂
1

2𝜋

)︂3 ∫︁
𝑑3𝑥∇𝑓(𝑥) 𝑒𝑖𝑘·𝑥

=

(︂
1

2𝜋

)︂3 ∫︁
𝑑3𝑥

[︁
∇
(︁
𝑓(𝑥) 𝑒𝑖𝑘·𝑥

)︁
− 𝑖𝑘𝑓(𝑥) 𝑒𝑖𝑘·𝑥

]︁
. (7.66)

The first term in the second line above vanishes (assuming 𝑓 vanishes at infinity),
and we get (7.65).

From 𝑓 we can recover 𝑓 by the inverse transformation:

𝑓(𝑥) = [ℱ−1𝑓 ](𝑥) =

∫︁
𝑑3𝑘 𝑓(𝑘) 𝑒−𝑖𝑘·𝑥. (7.67)

Let us Fourier transform the diffusion equation (7.25). We get

𝑑𝑛̃(𝑡,𝑘)

𝑑𝑡
= −𝐷𝑘2𝑛̃(𝑡,𝑘). (7.68)

This is an ordinary differential equation (𝑘 is a mere parameter). The initial condi-
tion is 𝑛(0,𝑥) = 𝛿(𝑥) (i.e., initially all the particles are at the origin). Its Fourier
transform is

𝑛̃(0,𝑘) = 1/8𝜋3. (7.69)

Therefore, the solution to (7.68) is

𝑛̂(𝑡,𝑘) =
1

8𝜋3
𝑒−𝐷𝑘2𝑡. (7.70)

Now, we inverse-transform this to get

𝑛(𝑡, 𝑟) =

∫︁
R3

𝑑3𝑘
1

8𝜋3
𝑒−𝐷𝑘2𝑡−𝑖𝑘·𝑟 (7.71)

=
1

8𝜋3

∫︁
R3

𝑑3𝑘 𝑒−𝑡𝐷(𝑘+𝑖𝑟/2𝐷𝑡)2−𝑟2/4𝐷𝑡 (7.72)

=
1

8𝜋3

(︁ 𝜋

𝑡𝐷

)︁3/2
𝑒−𝑟2/4𝐷𝑡 =

(︂
1

4𝜋𝑡𝐷

)︂3/2

𝑒−𝑟2/4𝐷𝑡. (7.73)

The procedure from (7.71) to (7.72) is the completion of square in the exponent (see
5.8), and then the calculation from (7.72) to (7.73) is just the multiplication of three
1D normalization calculation results.
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Appendix 7B: Time scales, large deviation princi-
ple and Langevin equation

7.22 Three ‘infinitesimal times,’ 𝑑𝑡, 𝛿𝑡, Δ𝑡
Let us go back to the basic observation that our world often allows descriptions at
three levels with distinct length scales: macro- (1 m), meso- (1 𝜇m), and micro- (1
nm) scales.

Parallel to these length scales there should be representative time scales for these
three levels. Here, we are interested in the time scale to describe the changes (mo-
tions). For us macro-organisms two time points apart less than (∼)1 ms (= 1× 10−3

s) cannot be recognized as two separate tie points. Thus, to describe the macro
world surrounding us the time increment Δ𝑡 of this size is small enough. To describe
microscopic dynamics atomistically we need the time increment 𝑑𝑡 of 1 (∼)fs (=
1 × 10−15 s). This suggests that to describe mesoscopic scales we would need the
time increment 𝛿𝑡 of (∼)1 ns (= 1× 10−9 s). During this time a gas particle around
us runs about 0.1 𝜇m and the size of Brownian particle is about 1𝜇m, so to describe
fluctuations (noises) this 𝛿𝑡 is a reasonably sufficiently small time increment.167 The
three time increments (= time scales required to describe changes) are illustrated in
Fig. 7.9.

macroscopic time scale 

   = our ‘smallest’ time scale

     Δt

dt

δt
mesoscopic time scale

microscopic time scale

 of diffusion equationdt

dt of Langevin equation

=

=

= ‘true’ dt of mechanics.

Figure 7.9: 𝑑𝑡 is the microscopically infinitesimal time scale (perhaps 10−15 s or less). Δ𝑡 is the
‘infinitesimal time scale’ for us macroorganisms (perhaps, 10−3 s), which is usually written as 𝑑𝑡
from our point of view. 𝛿𝑡 is the ‘infinitesimal time scale’ in the mesoscopic world, and 𝑑𝑡 in the
Langevin equation may be this time scale.

7.23 We are almost eternal microscopically
Let us try to understand these time increments intuitively. The change occurring
at the ms scale may be regarded as ‘the change during an infinitesimal time’ (for
transport phenomena), so 𝑑𝑡 in the transport equation is actually Δ𝑡 (perhaps about
1 ms). To describe the true molecular dynamics 𝑑𝑡 is of order fs (= 10−15 s) or less,

167That is the ‘width’ of the 𝛿-function appearing in the characterization of the Gaussian noise
in the Langevin equation.

142



so from this ‘true 𝑑𝑡’ point of view, Δ𝑡 is almost eternal.
Note that 109 s is about 31.7 a (= years). If 𝑑𝑡 is 1 s, Δ𝑡 corresponds to 32 ka; If

𝑑𝑡 is 1 min, Δ𝑡 corresponds to 1.9 Ma; If 𝑑𝑡 is 1 d, Δ𝑡 corresponds to 2.74 Ga; cf.,
the Earth was born 4.56 Ga ago.

The macroscopic and microscopic time scales are very disparate. Connecting them
are mesoscopic phenomena characterized by a time scale 𝛿𝑡 of the order, perhaps,
1 ns. If 𝛿𝑡 is 1 d, Δ𝑡 is about 2.7 ka, 𝑑𝑡 is 0.86 sec. If 𝛿𝑡 is 1 s, Δ𝑡 corresponds
to 11.6 d and 𝑑𝑡 is 1 𝜇s. If 𝛿𝑡 is one day, then Δ𝑡 corresponds to 27 ka and 𝑑𝑡
corresponds to 0.86 s. If 𝛿𝑡 is 1 s, then Δ𝑡 corresponds to 100 days and 𝑑𝑡 is 1
𝜇s. We know many biophysical processes have mesoscopic time scales. For example,
throwing 20 coins to have all H is almost sure in our 1 sec, if the trial is done every 𝛿𝑡.

7.24 Time averaging to get mesoscopic results
At the macroscopic scale, if the deviation from equilibrium is gentle, we see trans-

port phenomena.168 The macro time derivative 𝜕𝑋/𝜕𝑡 in the diffusion equation is
actually the ratio of the change Δ𝑋 during Δ𝑡 and Δ𝑡:

macro derivative
𝑑𝑋

𝑑𝑡
=
𝑋(𝑡+Δ𝑡)−𝑋(𝑡)

Δ𝑡
, (7.74)

but the fundamental theorem of calculus tells us that this is the time average dur-
ing Δ𝑡 of the microscopic derivative (usually identified with the true mathematical
derivative):

Δ𝑋

Δ𝑡
=

1

Δ𝑡

∫︁ 𝑡+Δ𝑡

𝑡

𝑑𝑋

𝑑𝑡
𝑑𝑡. (7.75)

The relation between the mesoscale derivative and the microscopic true derivative is
analogous:

𝛿𝑋

𝛿𝑡
=

1

𝛿𝑡

∫︁ 𝑡+𝛿𝑡

𝑡

𝑑𝑋

𝑑𝑡
𝑑𝑡. (7.76)

Note, furthermore,
Δ𝑋

Δ𝑡
=

1

Δ𝑡

∫︁ 𝑡+Δ𝑡

𝑡

𝛿𝑋

𝛿𝑡
𝛿𝑡, (7.77)

which gives (7.75) with an appropriate succession of the 𝛿𝑡 time intervals.

7.25 Law of large numbers and macroscopic time change
The microscopic time derivative is deterministic but unpredictable, and it has only

168Here, ‘gentle’ means that the macroscopic observables changes sufficiently slowly that the law
of large numbers hold on the space-time scale where the macrovariable changes are infinitesimal.
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a microscopic time-scale memory (extremely forgetful from our time scale). That
is, after, say, 0.1 ps we may expect that 𝑑𝑋/𝑑𝑡 behaves statistically independently.
Thus, the ratio appearing on the right-hand-sides of (7.75) and (7.76) may be un-
derstood as empirical expectation values just as 𝑆𝑁/𝑁 in the law of large numbers.
Since Δ𝑡/𝑑𝑡 ≫ 1 is really large, for Δ𝑋/Δ𝑡 the law of large numbers should hold,
and we may ignore its fluctuations. This is the macroscopic phenomenological law.
It is deterministic. A typical example is the transport theory (Section 6).

7.26 Mesoscopics deviates from law of large numbers
In contrast, 𝛿𝑡/𝑑𝑡 is large but not huge, so we must worry about fluctuations (de-
viations from the ‘long-time’ average). Thus, at the mesoscopic time scale we see
Brownian motion and the equations describing this time scale are Langevin equations
(Section 7). The deviation from the law of large numbers is described with the aid
of the large deviation principle.

7.27 ABC of large deviation principle
The law of large numbers tells us that in the sample number 𝑁 → ∞ limit (here,
we stick to the same notation as in Section 4 to minimize complication)

𝑃

(︃⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑘=1

𝑋𝑘 − 𝐸(𝑋1)

⃒⃒⃒⃒
⃒ > 𝜀

)︃
→ 0. (7.78)

If 𝑁 is not sufficiently large, this asymptotic relation cannot be used for empirical
studies. We must refine this asymptotic law. Perhaps the most natural refinement
is to try to actually evaluate how small or large this probability is. For an iid169

stochastic variables {𝑋𝑛} with 𝑉 (𝑋1) < ∞, it is known that the decay rate of the
above probability is exponential:

𝑃

(︃⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑘=1

𝑋𝑘 − 𝐸(𝑋1)

⃒⃒⃒⃒
⃒ > 𝜀

)︃
≈ 𝑒−𝑁𝐼𝜀 , (7.79)

where ≈ implies that the ratio of the logarithms of the both sides converges to unity
in the large 𝑁 limit, and 𝐼𝜀 is a (𝜀-dependent) positive constant.

For physicists, the following form is convenient (statistical-mechanically explained
later):

𝑃

(︃
1

𝑁

𝑁∑︁
𝑘=1

𝑋𝑘 ∈ 𝑣(𝑦)

)︃
≈ 𝑒−𝑁𝐼(𝑦), (7.80)

169identically and independently distributed
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where 𝑣(𝑦) is a volume element around 𝑦, and 𝐼(𝑦) is called the rate function (or
large deviation function), satisfying

𝐼(𝑦)

{︂
> 0 if 𝑦 ̸= ⟨𝑋1⟩,
= 0 if 𝑦 = ⟨𝑋1⟩.

(7.81)

The second equality is the law of large numbers. (7.80) + (7.81) is called the large
deviation principle.170 The rate function often behaves as

𝐼(𝑦) ≃ 1

2𝐴
(𝑦 − ⟨𝑋⟩)2 (7.82)

for not too large |𝑦 − ⟨𝑋⟩|, where 𝐴 is a positive constant.
Notice that 𝑒−𝑁𝐼(𝑦) gives an estimate of the probability density of fluctuation 𝑁𝑦

(a large fluctuation). That is, when we study 𝑆𝑁 =
∑︀𝑁

𝑘=1𝑋𝑘, it is on the average
𝑁⟨𝑋1⟩, but there are fluctuations of significance, whose distribution can be inferred
from 𝐼(𝑦).171

7.28 Langevin equation as a result of large deviation theory
Let us study the overdamped Langevin equation that describes the motion of a
Brownian particle. If we respect the time scale, it should actually be written as
(here the conserved force is replaced with a general systematic force 𝐹 )

𝛿𝑥

𝛿𝑡
=

1

𝜁
𝐹 + 𝜈. (7.83)

If we average this over a macroscopic time scale, the result should yield the macro-
scopic law: 𝑣 = 𝐹 /𝜁, so

Δ𝑥

Δ𝑡
=

1

𝜁
𝐹 . (7.84)

This is due to the law of large numbers: Since Δ𝑡/𝑑𝑡≫ 1,

𝑃

(︂⃒⃒⃒⃒
Δ𝑥

Δ𝑡
− 𝐹

𝜁

⃒⃒⃒⃒
> 𝜀

)︂
≃ 0. (7.85)

It is natural to expect that the mesoscopic deviation from the macroscopic behav-
ior must be described by the large deviation principle 7.27.

170A further mathematical requirement is that the level sets of the rate function must be convex.
That is, 𝐼 is a convex function.

171⟨⟨Rate function summary⟩⟩ 𝐼(𝑦) has a unique minimum at 𝑦 = ⟨𝑋1⟩, its level set is convex,
and if 𝑋1 has a finite variance, 𝐼 is differentiable near the global minimum at 𝑦 = ⟨𝑋1⟩. There is
no book suitable to physicists, but two reviews may be accessible: a relatively new Tourchette, H.
(2009). The large deviation approach to statistical mechanics, Phys. Rep., 478, 1-69 and an old one:
Oono, Y. (1989). Large Deviation and Statistical Physics, Prog. Theor. Phys. Suppl., 99, 165-205.
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What form of large deviation principle should we expect? Since 𝛿𝑡 is a 𝛿𝑡/𝑑𝑡 col-
lection of 𝑑𝑡, 𝑁 in (7.80) must be proportional to 𝛿𝑡/𝑑𝑡. However, we do not know
precisely what 𝑑𝑡 is, so let us write

𝑃

(︂
𝛿𝑥

𝛿𝑡
− 𝐹

𝜁
∈ 𝑣(𝜈)

)︂
≈ exp [−𝛿𝑡 𝐼(𝜈)] , (7.86)

where 𝑣 denotes the volume element around 𝜈, and the large deviation function 𝐼
should read

𝐼(𝜈) =
1

2𝐴
𝜈2, (7.87)

where 𝐴 is a positive constant to be determined below (but, as we will learn, it turns
out to be exactly the same 𝐴 introduced in (7.32)). If we use this for (7.86), we
obtain the density distribution function 𝑓(𝜈) for the noise:

𝑓(𝜈) ∝ exp

{︂
− 𝛿𝑡

2𝐴
𝜈2

}︂
. (7.88)

Thus, fluctuations are Gaussian, and172*

⟨𝜈2⟩ = d𝐴/𝛿𝑡, (7.89)

where d is the spatial dimensionality.
The variance looks unpleasant with the mesoscopic infinitesimal 𝛿𝑡 appearing

downstairs, but we already know what its proper interpretation should be in Section
6: the 𝛿-function:

𝛿(𝑡− 𝑠) = 0 for 𝑡 ̸= 𝑠, (7.90)

𝛿(𝑡− 𝑠) 𝑑𝑡 = 1 for 𝑡 = 𝑠. (7.91)

In short, basically, the ‘needle’ of length 1/𝑑𝑡 located at 𝑡 = 𝑠 is 𝛿(𝑡− 𝑠). Thus, the
real meaning of (7.89) is173

⟨𝜈(𝑡) · 𝜈(𝑠)⟩ = d𝐴𝛿(𝑡− 𝑠), (7.92)

or
⟨𝜈(𝑡)𝜈𝑇 (𝑠)⟩ = 𝐴𝐼𝛿(𝑡− 𝑠), (7.93)

where 𝐼 is the d× d unit matrix (do not forget that our vectors are column vectors;
𝑇 implies transposition: ‘column ↔ row’). If we demand the fluctuation-dissipation
relation, we must impose

𝐴 = 2𝑘𝐵𝑇/𝜁. (7.94)

172*𝜈 is a d-dimensional (column) vector (𝜈𝑥, 𝜈𝑦, · · ·)𝑇 (𝑇 implies transposition) and each compo-
nent satisfies ⟨𝜈2𝑥⟩ = 𝐴/𝛿𝑡. Therefore, ⟨𝜈2⟩ = d𝐴/𝛿𝑡.

173Here ‘𝑑𝑡’ is really 𝛿𝑡, so the 𝛿(𝑡− 𝑠) is the delta function for the mesoscopic time scale. That
is, from the microscopic point of view it has a width of order 𝛿𝑡 (as we already discussed). For
simplicity, we use only one symbol for 𝛿-functions.

146



7.29 Langevin equation: practical summary
Let us write down the Langevin equation governing an overdamped Brownian particle
with a friction coefficient 𝜁 in the potential 𝑈 satisfying the fluctuation-dissipation
relation (e.g., (7.94)) at temperature 𝑇 as a summary. The equation reads (here 𝛿𝑡
is written as 𝑑𝑡)

𝑑𝑥

𝑑𝑡
= −1

𝜁

𝜕𝑈

𝜕𝑥
+ 𝜈(𝑡), (7.95)

with the Gaussian noise satisfying ⟨𝜈(𝑡)⟩ = 0 and

⟨𝜈(𝑡)𝜈(𝑠)𝑇 ⟩ = 2𝑘𝐵𝑇

𝜁
𝐼𝛿(𝑡− 𝑠), (7.96)

where 𝐼 is the d × d unit matrix. (7.96) tells us that the memory duration of the
noise is almost instantaneous at the mesoscopic time scale.
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Q7.1 [Modern version of Perrin’s experiment].
One experiment replicating Perrin’s experiment in a modern setting uses polystyrene
particles of diameter (i.e., 2𝑎) 0.5 𝜇m suspended in a buffer solution of viscosity
𝜂 = 1.03 × 10−3 Pa·s at 𝑇 = 300 K. A two-dimensional stage was recorded by a
microscope with a CCD camera, and its 𝑥 coordinate is measured as a function of
time. The mean square average displacement in 𝑥 is observed as ⟨𝑥2⟩ = 15.6×10−13𝑡
m2 after 𝑡 seconds. Assuming that you know the gas constant 𝑅 = 8.31 J/mol·K,
estimate Avogadro’s constant 𝑁𝐴.

Solution.
The relation we use is ⟨𝑥2⟩ = 2𝐷𝑡 and the Einstein-Stokes relation 𝐷 = 𝑘𝐵𝑇/6𝜋𝑎𝜂.
Therefore, 𝑘𝐵 = (3𝜋𝑎𝜂/𝑇 )×15.6×10−13 = 1.26×10−23, or 𝑁𝐴 = 𝑅/𝑘𝐵 = 6.58×1023.

Q7.2 [Lattice random walks]
On a triangular lattice or a honeycomb lattice (see Fig. 7.11) with the same edge
(i.e., lattice bond) length ℓ is a random walker.

O

O

y

x

Figure 7.10: Triangular lattice (left) and honeycomb lattice

The walker starts from the origin 𝑂 and walks along the edges. At every second she
chooses randomly any of the edges connected to her current position and moves to
the nearest neighbor lattice point along the chosen edge. You can assume that she
completely forgets at what lattice point she was previously (i.e., all the steps are
statistically independent). If her 𝑖th step displacement is denoted by vector 𝑎𝑖, the
total displacement during time 𝑡 seconds is given by

𝑅 = 𝑎1 + 𝑎2 + · · ·+ 𝑎𝑡. (7.97)

Here, all the step vectors 𝑎𝑖 are lattice bond vectors.
(1) After 𝑡 seconds on which lattice (𝑇 = triangular or 𝐻 = honeycomb) can she
be further away from the origin on the average? That is, choose the correct relation
from the following and justify your choice: 𝑇 > 𝐻, 𝐻 > 𝑇 or 𝐻 = 𝑇 .
(2) Now, on the triangular lattice due to a strong wind blowing constantly in the
+𝑥 direction, the walker tends to choose +𝑥 direction with probability 0.5, but still
chooses the remaining five directions randomly (with probability 0.1 for each).

(a) What is the average position (𝑥 and 𝑦 coordinates) of the walker after 𝑡
seconds?

(b) What is the variance of the 𝑦-coordinate after 𝑡 seconds?
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(c) What is the mean square displacement ⟨𝑅2⟩ of the walker after 𝑡 seconds?

Solution.
(1) Thanks to the statistical independence of steps and the average step displacement
being zero (i.e., ⟨𝑎𝑖⟩ = 0, so ⟨𝑎𝑖𝑎𝑗⟩ = ℓ2𝛿𝑖𝑗), we obtain

⟨𝑅2⟩ =
𝑡∑︁

𝑖=1

⟨𝑎2
𝑖 ⟩. (7.98)

Here, ⟨ ⟩ is an ensemble average. Obviously, ⟨𝑎2
𝑖 ⟩ = ℓ2, so ⟨𝑅2⟩ = 𝑡ℓ2. Does this

calculation depend on spatial dimension or the lattice structure?
We have 𝐻 = 𝑇 .
This might be slightly counterintuitive, because the honeycomb lattice walk seems

less ‘zig-zag’ than the other case. Do not forget that there is a significant probability
(1/3) to retrace the immediate-past step to return to the same position the walker
was 2 sec ago.
(2) (a) The position after 𝑡 seconds is given by (7.97). Therefore, the average position
is ⟨𝑅⟩ = 𝑡⟨𝑎1⟩.

⟨𝑎𝑖⟩ = 0.5(ℓ, 0) + 0.1ℓ
5∑︁

𝑘=1

(︂
cos

𝑘𝜋

3
, sin

𝑘𝜋

3

)︂
, (7.99)

but from the symmetry without actual calculation

⟨𝑎𝑖⟩ = 0.5(ℓ, 0) + 0.1(−ℓ, 0) = (0.4ℓ, 0). (7.100)

Therefore, ⟨𝑅⟩ = (0.4ℓ𝑡, 0).
(b) Let us write 𝑅 = (𝑋, 𝑌 ). Then, 𝑌 =

∑︀𝑡
𝑖=1 𝑦𝑖, where 𝑦𝑖 is the 𝑦-component of

the 𝑖th step vector. We know ⟨𝑌 ⟩ = 0, so using the statistical independence of steps,
we have

𝑉 (𝑌 ) = ⟨𝑌 2⟩ =
𝑡∑︁

𝑖=1

⟨𝑦2𝑖 ⟩, (7.101)

where

⟨𝑦21⟩ = 0.6× 0 + 0.4
(︁
ℓ sin

𝜋

3

)︁2
= 0.3ℓ2 (7.102)

Therefore, 𝑉 (𝑌 ) = 0.3ℓ2𝑡.
(c) We need

⟨𝑅2⟩ =
𝑡∑︁

𝑖=1

⟨𝑎2
𝑖 ⟩+

∑︁
𝑖 ̸=𝑗

⟨𝑎𝑖 · 𝑎𝑗⟩. (7.103)

Although each step is statistically independent (so you may write ⟨𝑎𝑖 · 𝑎𝑗⟩ = ⟨𝑎𝑖⟩ ·
⟨𝑎𝑗⟩), its average is not zero in this case, so you cannot ignore the cross terms. There
are 𝑡(𝑡− 1) cross terms, but they are all the same:

⟨𝑎𝑖 · 𝑎𝑗⟩ = ⟨𝑎𝑖⟩ · ⟨𝑎𝑗⟩ = ⟨𝑎1⟩2. (7.104)
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We have already computed ⟨𝑎1⟩ = (0.4ℓ, 0). Obviously, ⟨𝑎2
𝑖 ⟩ = ℓ2

⟨𝑅2⟩ = ℓ2𝑡+ 0.16ℓ2𝑡(𝑡− 1). (7.105)

What is the variance of 𝑅?

Q7.3 [Average position of Brownian particles]
Suppose two identical Brownian particles are released from the same point on a
two dimensional stage. Assume that the diffusion constant of the particles is 𝐷 =
1.5× 10−12 m2/s.
What is the root mean-square displacement of the average position of these two par-
ticles after 1 hr.

Solution.

(1/4)⟨(𝑟1+𝑟2)
2⟩ = (1/2)⟨𝑟2

1⟩ = 𝑑𝐷𝑡 = 2×1.5×10−12×3600 = 1.08×10−8. (7.106)

Therefore, the root mean-square displacement of the average position is 1.04× 10−4

m ≃ 104 𝜇m.

To answer such problems, first itemize what you need: two Brownian particles
are mentioned, so we need two position vectors 𝑟1 and 𝑟2. Since the position of the
center of mass is asked, let us express it as 𝑅 = (𝑟1+𝑟2)/2. Then, do simple algebra
without thinking:

⟨𝑅2⟩ = 1

4
⟨𝑟2

1 + 𝑟2
2 + 2𝑟1 · 𝑟2⟩ =

1

4
(⟨𝑟2

1⟩+ ⟨𝑟2
2⟩+ ⟨2𝑟1 · 𝑟2⟩). (7.107)

Now, you must look at the result and think about a bit of the actual situation. Both
the particles are identical, so the average should not depend on particles ⟨𝑟2

1⟩ = ⟨𝑟2
2⟩,

and as already noted far before Einstein, two Brownian particles are statistically
independent if apart more than their sizes. We study a long time behavior, so, except
for a very short time near the starting point, these two particles are statistically
independent. Consequently,

⟨𝑟1 · 𝑟2⟩ = ⟨𝑟1⟩ · ⟨𝑟2⟩. (7.108)

The space is isotropic, so there is no preferred direction to wander: ⟨𝑟1⟩ = ⟨𝑟2⟩ = 0.
Hence,

⟨𝑅2⟩ = 1

2
⟨𝑟2

1⟩. (7.109)

The rest is as above.

Q7.4 [Diffusion of proteins]
There are two proteins of mass 𝑚 and 𝑀 . Let us assume that the protein molecules
are spherical and its average densities are the same. We know 𝑀/𝑚 = 100. For a
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smaller molecule to diffuse across a fixed length 𝐿 in a cell it takes 0.23 s on the
average. What is the best guess of the time needed for the larger protein to diffuse
across the same distance 𝐿?

Solution.
⟨𝑟2⟩ = 2d𝐷𝑡, and 𝐷 = 𝑘𝐵𝑇/6𝜋𝑎𝜂. This means 𝐷𝑡 is the same, so 𝑡/𝑎 is the constant.
Since we assume that the proteins are spherical and with the same density, 𝑎 ∝𝑀1/3.
That is, 𝑡/𝑀1/3 is constant. Hence, 𝑡 = 0.23(𝑀/𝑚)1/3 = 1.07 s.

As warned repeatedly, do not use the gas phase formulas to calculate the diffusion
constant in liquids.
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Discussion 4
We discuss mean-free path, random walks and Brownian motion.

D4.1 [Mean free path and diffusion]
Consider a (ideal gas) mixture consisting of two chemically distinct species A and B.
The number density of chemical species A (resp., chemical species B) is 𝑛A (resp.,
𝑛B), the diameter of particle A (resp., particle B) is 𝑑A (resp., 𝑑B) and its mass is
𝑚A (resp., 𝑚B).
(1) Using the simple idea of the swept volume (Fig. 6.1), calculate the mean free
path for 𝐴 moving through the gas of B (i.e., 𝑛A = 0) step by step as:

(i) Get the cross section 𝜎AB of the cylinder: the cross section 𝜎AB of the cylinder
(the swept volume by A colliding with B) can be written in terms of 𝑑A and 𝑑B.
(ii) The number of B particles in this swept volume should be the number of
collisions experienced by a single A with B. This tells you how to compute the
mean free path ℓAB of particle A in gas B under the assumption that B molecules
are not moving.
(iii) How can you take the motion of B into account (approximately; cf. (6.1) →
(6.2)? We need the relative speed: the relative speed is, on the average, the
average relative speed of particles A and B that can be estimated as (5.69), where
𝑚 should be the reduced mass 𝜇 (you must write it in terms of 𝑚A and 𝑚B).

(2) What is the diffusion constant (correctly speaking, it is called the mutual diffu-
sion constant 𝐷AB) of minority A through majority B? Use our elementary result
(6.28).

(3) Suppose 𝐵 is shear minority and diffusing through the A gas. What is 𝐷BA?

(4) We imagine a particle of A is running and hitting B. Using the results of (i) - (iii)
in (1), estimate the total number 𝑍AB of collisions per unit time that occur between
particles A and B in a unit volume.

(5)* Obtain 𝑍AA, the number of collisions among A’s in a unit volume per unit time.

(6)* Can you obtain 𝐷AA (the so-called self-diffusion constant)? Is it a physical
quantity?

Solution.
(1)
(i) Particles A and B can collide, if their centers of mass is within distance (𝑑A +
𝑑B)/2, so the collision cross section is given by

𝜎AB =
𝜋

4
(𝑑A + 𝑑B)

2. (7.110)

(ii) The condition must be
𝜎AB × ℓAB × 𝑛B = 1 (7.111)

152



or

ℓAB =
1

𝜎AB𝑛B
=

1

𝜋[(𝑑A + 𝑑B)/2]
2𝑛B

. (7.112)

(iii) If B molecules are also moving, we must reduce (7.112) with the ratio of the
relative speed of A and B and the speed of A. (5.74) tells us the mean relative speed
𝑣AB must be

𝑣AB =

√︃
8𝑘𝐵𝑇

𝜋𝜇
=

√︃
8(𝑚A +𝑚B)𝑘𝐵𝑇

𝜋𝑚A𝑚B
. (7.113)

The latter is just (5.69) with 𝑚 = 𝑚A, so the ratio must be
√︀
(𝑚A +𝑚B)/𝑚B.

Thus we get

ℓAB =
1

𝜎AB𝑛B

√︂
𝑚B

𝑚A +𝑚B
=

√
𝑚B

[𝜋(𝑑A + 𝑑B)/2]
2
√︀
(𝑚A +𝑚B)𝑛B

. (7.114)

This indeed gives our formula (6.2), if A and B are identical.

(2) In (6.28) 𝑣 is the speed of A and ℓ must be ℓAB. Therefore,

𝐷AB =
1

3

1

𝜋[(𝑑A + 𝑑B)/2]
2𝑛B

√︃
8𝑘𝐵𝑇

𝜋𝑚A
. (7.115)

Here the numerical factor 2
√
2/3 ≈ 1 should not be paid much attention (so ignored

below).

(3) By symmetry, we get

𝐷BA =
1

𝜋[(𝑑A + 𝑑B)/2]
2𝑛A

√︃
𝑘𝐵𝑇

𝜋𝑚B
. (7.116)

(4) To count the number 𝑧AB of collisions between a particular particle of A and B
particles in one second, we can imagine a ‘swept cylinder’ of cross section 𝜎AB times
length 𝑣AB (see (7.113)) and then count all B particles in it:

𝑧AB = 𝜋

[︂
𝑑A + 𝑑B

2

]︂2√︃
8(𝑚A +𝑚B)𝑘𝐵𝑇

𝜋𝑚A𝑚B
𝑛B. (7.117)

This is for one particle of A and there are 𝑛A in a unit volume, so

𝑍AB = 𝑛𝐴𝑧AB = 𝜋

[︂
𝑑A + 𝑑B

2

]︂2√︃
8(𝑚A +𝑚B)𝑘𝐵𝑇

𝜋𝑚A𝑚B
𝑛A𝑛B. (7.118)

Notice that this is symmetric as you expect: 𝑍AB = 𝑍BA.

(5) Perhaps, you may think equating quantities with suffix A and those with B
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suffices by replacing B → A. Wrong, because A particles are indistinguishable. In
the case of A and B, a collision due to A coming from ‘right’ and B coming from
‘left’ and that due to B coming from ‘right’ and A coming from ‘left’ are distinct. If
B is A, then these two collisions are identical, so (7.118) with A = B double-counts
the number of AA-collisions. Therefore,174

𝑍AA =
1

2
𝜋𝑑2A

√︃
8𝑘𝐵𝑇

𝜋𝑚A
𝑛2
A = 𝜋𝑑2A

√︃
2𝑘𝐵𝑇

𝜋𝑚A
𝑛2
A. (7.119)

(6) Strictly speaking, the particle ‘self-diffusion’ coefficient 𝐷AA is meaningless, be-
cause we cannot track a particle A in the crowd (cloud?) of A’s. 𝐷AA is not
observable, so it is meaningless empirically.

If there is a spatial nonuniformity in the particle distribution, it diffuses away as
described by a diffusion equation, so there is some sort of diffusion constant 𝐷A.
This is sometimes called the collective diffusion constant, which is observable (so
meaningful). However, it is questionable that 𝐷A is related to the formula 𝐷AA.

D4.2 [Random walker with wind]
On a triangular lattice or a square lattice (see Fig. 7.11 A & B) with the edge length
𝑎 is a random walker.

OO x

y

A B

Figure 7.11: 2D random lattice walks: Triangular lattice (A) and square lattice (B)

The walker starts from the origin 𝑂 and walks along the edges. At every second she
chooses randomly any of the edges connected to her current position and moves to
the nearest neighbor lattice point along the chosen edge. You can assume that she
completely forgets what lattice point she was at less than 1 second (i.e., all the steps
are statistically independent).

(0)* After 𝑁 (∈ N+, positive integers) steps, on the average which random walker
can go farther away from the origin in Fig. 7.11 A or B? Justify your guess.

(1) What is the mean square displacement ⟨𝑅2⟩ of the walker after 𝑡 seconds on the
triangular lattice, where 𝑅 = (𝑋, 𝑌 ) is the location of the walker at time 𝑡?

(2) What is the mean square displacement ⟨𝑅2⟩ of the walker after 𝑡 seconds on the

174Although I said the numerical prefactor is not important, IF you use the same approximations,
the overall multiplier 1/2 in the result must be respected.
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square lattice?

(3) Now, on the square lattice due to a strong wind blowing constantly in the +𝑥
direction, the walker tends to choose +𝑥 direction with probability 0.5, but still
chooses the remaining three directions randomly (with probability 1/6 for each).

(i) What is the average position (𝑥 and 𝑦 coordinates) of the walker after 𝑡 sec-
onds?

(ii) What is the variance of the 𝑦-coordinate (i.e., 𝑉 (𝑌 )) after 𝑡 seconds?
(iii)* What is the mean square displacement ⟨𝑅2⟩ of the walker after 𝑡 seconds?
(iv)* Find the variance 𝑉 (𝑋) + 𝑉 (𝑌 ). Can this decrease due to the wind?

Solution.
(0) The same. Really? Isn’t the random walk trajectory on the triangular lattice
more folded than that on the square lattice? Explain (qualitatively).

(1), (2) Let 𝑟𝑖 be the vector denoting the 𝑖th step. The total displacement after 𝑡
steps 𝑅 reads

𝑅 =
𝑡∑︁

𝑖=1

𝑟𝑖. (7.120)

Therefore, thanks to the statistical independence of steps and the average step dis-
placement being zero, we obtain

⟨𝑅2⟩ =
𝑡∑︁

𝑖=1

⟨𝑟2
𝑖 ⟩. (7.121)

Obviously, ⟨𝑟2
𝑖 ⟩ = 𝑎2, so ⟨𝑅2⟩ = 𝑡𝑎2.

* Does this calculation depend on spatial dimensionality or the lattice structure?

(3)
(i) The position after 𝑡 seconds is

𝑅 =
𝑡∑︁

𝑖=1

𝑟𝑖. (7.122)

Therefore, the average position is ⟨𝑅⟩ = 𝑡⟨𝑟1⟩.

⟨𝑟1⟩ = 0.5(𝑎, 0) + [(−𝑎, 0) + (0, 𝑎) + (0,−𝑎)]/6 = (𝑎/3, 0). (7.123)

Therefore, ⟨𝑅⟩ = ((1/3)𝑎𝑡, 0).
(ii) 𝑌 =

∑︀𝑡
𝑖=1 𝑦𝑖, where 𝑦𝑖 is the 𝑦-component of the 𝑖th step vector. We know

⟨𝑌 ⟩ = 0, so using the statistical independence of steps, we have

𝑉 (𝑌 ) = ⟨𝑌 2⟩ =
𝑡∑︁

𝑖=1

⟨𝑦2𝑖 ⟩, (7.124)
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where
⟨𝑦21⟩ = (2/3)× 0 + (1/3)𝑎2 = 𝑎2/3. (7.125)

Therefore, 𝑉 (𝑌 ) = 𝑎2𝑡/3.
(iii) We need

⟨𝑅2⟩ =
𝑡∑︁

𝑖=1

⟨𝑟2
𝑖 ⟩+

∑︁
𝑖 ̸=𝑗

⟨𝑟𝑖 · 𝑟𝑗⟩. (7.126)

Although each step is statistically independent (so you may write ⟨𝑟𝑖·𝑟𝑗⟩ = ⟨𝑟𝑖⟩·⟨𝑟𝑗⟩),
its average is not zero in this case, so you cannot ignore the cross terms. There are
𝑡(𝑡− 1) cross terms, but they are all the same:

⟨𝑟𝑖 · 𝑟𝑗⟩ = ⟨𝑟𝑖⟩ · ⟨𝑟𝑗⟩ = ⟨𝑟1⟩2. (7.127)

We have already computed ⟨𝑟1⟩ = 𝑎/3. Obviously, ⟨𝑟2
𝑖 ⟩ = 𝑎2. Therefore, (7.126)

reads

⟨𝑅2⟩ = 𝑎2𝑡+
1

9
𝑎2𝑡(𝑡− 1) =

1

9
𝑎2𝑡2 +

8

9
𝑎2𝑡. (7.128)

(iv) The sum of the variances are

𝑉 (𝑋) + 𝑉 (𝑌 ) = ⟨𝑅2⟩ − ⟨𝑋⟩2 − ⟨𝑌 ⟩2 = 1

9
𝑎2𝑡2 +

8

9
𝑎2𝑡−

(︂
1

3
𝑎𝑡

)︂2

=
8

9
𝑎2𝑡, (7.129)

which is smaller than 𝑎2𝑡.175

D4.3 [Solving Langevin equation].
We wish to consider a Brownian particle suspended in an equilibrium fluid of tem-
perature 𝑇 . Let us start with the original176 Langevin equation in the following
form (but in the one dimensional space)

𝑚
𝑑𝑣

𝑑𝑡
= −𝜁𝑣 + 𝑤(𝑡), (7.130)

where 𝑣 is the 1D-velocity, 𝑚 is the mass of the Brownian particle, 𝜁 is the friction
constant, and 𝑤(𝑡) is the noise force due to bombardments by molecules of the fluid.

(1) Assuming that the noise 𝑤(𝑡) is given as a function of 𝑡, find 𝑣 as a function of
time. You may assume that the initial velocity is 𝑣0.

(2) If we wait for a sufficiently long time (that is, 𝑡 is sufficiently large), the initial
velocity should be totally forgotten, so in order to understand the long-time behavior
we may assume 𝑣0 = 0 without any loss of generality. After confirming this (or giving

175Of course, this is due to the artificial setting that the wind speed is really constant; in reality
probably the wind speed fluctuates wildly, so the variance could be much larger with the wind.

176not the overdamped version.
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your argument for this), compute the ensemble average ⟨𝑣(𝑡)2⟩ of 𝑣(𝑡)2 in terms of
the time correlation function of the noise 𝜙(𝑠− 𝑠′) = ⟨𝑤(𝑠)𝑤(𝑠′)⟩, where ⟨ ⟩ denotes
the ensemble average. Notice that since the fluid in which the particle is suspended
is in equilibrium, 𝜙 does not depend on the absolute time, but only on the time lapse
between 𝑠 and 𝑠′.

(3) We may assume that the noise changes so randomly and so rapidly that 𝑤(𝑠)
and 𝑤(𝑠′) at different times are statistically independent and their averages are zero.
Therefore, we may write

𝜙(𝑠− 𝑠′) = ⟨𝑤(𝑠)𝑤(𝑠′)⟩ = 𝐶𝛿(𝑠− 𝑠′), (7.131)

where 𝐶 is a positive constant (the square noise amplitude). After a long time (i.e.,
in the 𝑡→∞ limit) 𝑣(𝑡) must be compatible with the equipartition of translational
kinetic energy: ⟨𝑣2(𝑡)⟩ = 𝑘𝐵𝑇/𝑚, so we cannot choose 𝐶 arbitrarily. Find 𝐶 in terms
of 𝑘𝐵𝑇 and 𝜁.177

Solution.
(1) Solving the ODE

𝑑𝑣

𝑑𝑡
= −(𝜁/𝑚)𝑣 + 𝑤(𝑡)/𝑚, (7.132)

we get (see below, if you need an explanation)

𝑣(𝑡) = 𝑣0𝑒
−(𝜁/𝑚)𝑡 +

∫︁ 𝑡

0

𝑑𝑠 (𝑤(𝑠)/𝑚)𝑒−(𝜁/𝑚)(𝑡−𝑠). (7.133)

⟨⟨How to solve (7.130)⟩⟩
A standard way to get this is the variation of parameters: If 𝑤 ≡ 0, we easily get the general
solution as

𝑣(𝑡) = 𝐴𝑒−(𝜁/𝑚)𝑡. (7.134)

Now, we assume the integration constant 𝐴 is a function of 𝑡 as

𝑣(𝑡) = 𝐴(𝑡)𝑒−(𝜁/𝑚)𝑡 (7.135)

and put this in the original ODE. We obtain

𝐴′(𝑡)𝑒−(𝜁/𝑚)𝑡 − (𝜁/𝑚)𝐴𝑒−(𝜁/𝑚)𝑡 = −(𝜁/𝑚)𝐴𝑒−(𝜁/𝑚)𝑡 + 𝑤(𝑡)/𝑚 (7.136)

or
𝐴′(𝑡) = (𝑤(𝑡)/𝑚)𝑒(𝜁/𝑚)𝑡. (7.137)

This may be solved easily as

𝐴(𝑡) = 𝐴(0) +

∫︁ 𝑡

0

𝑑𝑠 (𝑤(𝑠)/𝑚)𝑒(𝜁/𝑚)𝑠. (7.138)

177This is also a fluctuation-dissipation relation. You might wonder why the answer is different
from the fluctuation-dissipation relation we discussed in the lecture. Note the difference in the
definitions of the noise for overdamped and not overdamped cases.
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Therefore, the general solution to the original ODE reads

𝑣(𝑡) = 𝐴(0)𝑒−(𝜁/𝑚)𝑡 +

∫︁ 𝑡

0

𝑑𝑠 (𝑤(𝑠)/𝑚)𝑒−(𝜁/𝑚)(𝑡−𝑠). (7.139)

We immediately identify 𝐴(0) = 𝑣0.

(2) If 𝑡 is sufficiently long, since 𝑚 and 𝜁 are positive, the first term in our solution
becomes indefinitely small, so we need not pay attention to the initial condition. We
may set 𝑣0 = 0:

𝑣(𝑡) =

∫︁ 𝑡

0

𝑑𝑠 (𝑤(𝑠)/𝑚)𝑒−(𝜁/𝑚)(𝑡−𝑠). (7.140)

From this we obtain

𝑣(𝑡)2 =

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑡

0

𝑑𝑠′ (𝑤(𝑠)/𝑚)𝑒−(𝜁/𝑚)(𝑡−𝑠)(𝑤(𝑠′)/𝑚)𝑒−(𝜁/𝑚)(𝑡−𝑠′), (7.141)

which, upon ensemble averaging, gives

⟨𝑣(𝑡)2⟩ = 1

𝑚2

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑡

0

𝑑𝑠′ 𝑒−(𝜁/𝑚)(2𝑡−𝑠−𝑠′)⟨𝑤(𝑠)𝑤(𝑠′)⟩ = 1

𝑚2

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑡

0

𝑑𝑠′ 𝑒−(𝜁/𝑚)(2𝑡−𝑠−𝑠′)𝜙(𝑠−𝑠′).

(7.142)
(3) Introducing (7.131) into the above equation, we get

⟨𝑣(𝑡)2⟩ = 𝐶

𝑚2

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑡

0

𝑑𝑠′ 𝑒−(𝜁/𝑚)(2𝑡−𝑠−𝑠′)𝛿(𝑠− 𝑠′). (7.143)

An easy integration gives

⟨𝑣(𝑡)2⟩ = 𝐶

𝑚2

∫︁ 𝑡

0

𝑑𝑠 𝑒−2(𝜁/𝑚)(𝑡−𝑠) =
𝐶

2𝑚𝜁

(︀
1− 𝑒−2𝜁𝑡/𝑚

)︀
. (7.144)

That is, in the 𝑡→∞ limit, we get

⟨𝑣(𝑡)2⟩ → 𝑘𝐵𝑇

𝑚
=

𝐶

2𝑚𝜁
. (7.145)

Thus, we have fixed 𝐶 as
𝐶 = 2𝑘𝐵𝑇𝜁. (7.146)

As noted in the footnote 165, this relates the noise (amplitude squared 𝐶) and
the dissipation (𝜁), so it is a respectable fluctuation-dissipation relation. The noise
𝜈 in the text (the overdamped version) is 𝜈 = 𝑤/𝜁, so the amplitude of 𝜈 is our 𝐶
obtained here divided by 𝜁2. Thus, our whole story is consistent.
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D4.4 [Following Perrin using the Boltzmann factor]
Perrin counted the number of suspended Brownian particles with radius 𝑟 = 0.212
𝜇m with density 1206 kg/m3. His result at 𝑇 = 288 K is shown in Fig. 7.12. Since
the gas constant 𝑅 = 8.314 J/mol·K is obtainable from the ideal gas law (you need
𝑃 , 𝑉 and 𝑇 , and the definition of mole), from his data we can estimate Avogadro’s
constant 𝑁𝐴. How good is it?

ε
5

height in   m

35

65

95

μ

conc．
100

4712
23

Figure 7.12: Sedimentation equilibrium observed by Perrin

In the figure the unit of the concentration may be anything, since we need only the
ratios.

Solution.
This is a simple Boltzmann factor question. The potential energy difference of the
particle of radius 𝑟 due to the height difference ℎ is, if the particle of density 𝜌 is
suspended in a fluid of density 𝜌0, (4𝜋𝑟

3/3)(𝜌− 𝜌0)𝑔ℎ; you must take the buoyancy
into account. Therefore, the number density 𝑛(ℎ) at height ℎ obeys

𝑛(ℎ) = 𝑛(0) exp

(︂
−(4𝜋𝑟3/3)(𝜌− 𝜌0)𝑔ℎ𝑁𝐴

𝑅𝑇

)︂
, (7.147)

where 𝑅 is measurable using an ideal gas. The experimental result can give 𝑎:

log
𝑛(ℎ)

𝑛(0)
= −(4𝜋𝑟3/3)(𝜌− 𝜌0)𝑔ℎ𝑁𝐴

𝑅𝑇
= −𝑎ℎ (7.148)

Therefore, we can calculate

𝑎 =
(4𝜋𝑟3/3)(𝜌− 𝜌0)𝑔𝑁𝐴

𝑅𝑇
=

(4𝜋(0.212× 10−6)3/3)(1206− 1000)× 9.8𝑁𝐴

8.314× 288
= 0.0337×10−18𝑁𝐴.

(7.149)
The slope is obtained from the graph Fig. 7.12; roughly,

𝑎 =

(︂
log

100

12

)︂⧸︂
95× 10−6 = 2.23× 104. (7.150)
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Thus, 𝑁𝐴 = (2.23× 104/3.37× 10−20) = 6.6× 1023. Perhaps, too good.
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Exercise 4

E4.1 [Elementary estimates for Argon gas]
At 300 K and 1 atm 1 mole of argon gas (molecular weight 40) occupies a volume
of 24.6 liters. The diameter of argon molecule is 2.9 Å. You may treat an argon
molecule as a hard ball.
(1) What is the root mean-square velocity

√︀
⟨𝑣2⟩ of an argon molecule?

(2) What is the average distance between nearest pair of argon molecules?
(3) What is the mean free path ℓ?
(4) How many collisions on the average each argon molecule experiences in one sec-
ond?
(5) What is your estimate of the isotope diffusion constant178 for 39Ar? You may
ignore the isotope mass difference.

Solution.
(1) We use Bernoulli’s equation

𝑃𝑉 =
1

3
𝑁𝑚⟨𝑣2⟩, (7.151)

where 𝑚 is the mass of argon molecule. Therefore, (𝑀 = 𝑁𝑚)

⟨𝑣2⟩ = 3𝑃𝑉

𝑀
=

3× 101325× 24.6× 10−3

0.04
= 1.87× 105. (7.152)

Thus,
√︀
⟨𝑣2⟩ = 432 m/s.

(2) If we can make a cube containing one molecule on the average, its edge length
should be the representative distance between the nearby pair of molecules. The
volume of the cube is

v = 24.6× 10−3/6.02× 1023 = 4.08× 10−26 ⇒ v1/3 = 3.4× 10−9, (7.153)

that is 3.4 nm.

(3) We use

ℓ =
1√

2𝜋𝑑2𝑛
. (7.154)

Since 𝑛 = 6.02× 1023/24.6× 10−3 = 2.44× 1025 (= 1/v),

ℓ =
1√

2𝜋(2.9× 10−10)22.44× 1025
=

1

91.2× 105
= 1.10× 10−7. (7.155)

Thus, ℓ = 110 nm.

(4) In one sec a molecule can cover about 430 m, so there are about 430/1.10×10−7 =

178It is almost self-diffusion, but here the diffusing particle is distinct from the ‘background’ argon
40.
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3.94× 109 collisions.

(5) Let us use 𝐷 =
√︀
⟨𝑣2⟩ℓ/3 with

√︀
⟨𝑣2⟩ given above ignoring the effect of the mass

difference:

𝐷 =
1

3

√︀
⟨𝑣2⟩ℓ = 1

3
× 432× 1.10× 10−7 = 1.58× 10−5 m2/s. (7.156)

E4.2 [Fluctuation-dissipation relation]
There is a 1D harmonic oscillator in a viscous fluid, obeying the following Langevin
equation:

𝑑𝑥

𝑑𝑡
= −1

𝜁
𝑘𝑥+ 𝜈, (7.157)

where 𝜁 and 𝑘 are positive constants (the viscous damping factor and the spring
constant, respectively). 𝜈 is an appropriate equilibrium thermal noise.

(1) What is the amplitude (squared) of the noise 𝜈 (i.e., what is 𝐴 (= ⟨𝜈2⟩𝑑𝑡)), if
the correct Boltzmann factor 𝑒−𝑘𝑥2/2𝑘𝐵𝑇 governs the equilibrium distribution of the
oscillator position along the 𝑥-axis at temperature 𝑇? [You may quote the relevant
formulas without working by yourself.]
(2) The distribution of 𝑥 is governed by the Boltzmann factor in (1), which is a
Gaussian function in this case. The root mean square displacement

√︀
⟨𝑥2⟩ of the

oscillator is 1.2 nm at 𝑇 = 295 K. What is the spring constant 𝑘? [Thus, observation
of fluctuations allows us to estimate some mesoscale (or sometimes smaller scale)
parameters.]
(3) If the viscosity of the fluid is large, then 𝜁 is large, so the noise becomes small,
but you must have realized that ⟨𝑥2⟩ is independent of 𝜁. Despite small noise why
the spread of the distribution is not small in this case? Explain this qualitatively
within a couple of lines (with the usual font).

Solution.
The aim of this problem is to understand the relation between the equilibrium noise
(or the random force) acting on a Brownian particle and the intensity of dissipation
(or the intensity of the brake) acting on it; to maintain the particle equilibrium dis-
tribution close to the one compatible with the Boltzmann factor these two quantities
cannot be arbitrarily chosen. For example, if dissipation is large and noise small,
then the particle would be very tightly captured by the potential. If dissipation
(brake) is small and noise large, the Brownian particle wanders off excessively.
(1) As the hint says, you can simply read off the answer: 𝐴 (= ⟨𝜈2⟩𝑑𝑡) = 2𝑘𝐵𝑇/𝜁
(the fluctuation-dissipation relation (FDR)).

Perhaps, the most elementary approach from scratch to justify FDR may be to
use

𝑑𝑥

𝑑𝑡
= 𝜈. (7.158)
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This should describe the trajectory of a Brownian particle = random walk. From
this we get

⟨𝑥2(𝑡)⟩ =

∫︁ 𝑡

0

𝑑𝑠

∫︁ 𝑡

0

𝑑𝑠′ ⟨𝜈(𝑠) · 𝜈(𝑠′)⟩ = 𝐴𝑡. (7.159)

On the other hand, we may follow the original Langevin argument leading to (7.8)
and conclude that

⟨𝑥2⟩ = 2𝑘𝐵𝑇

𝜁
𝑡. (7.160)

Comparing these two, we conclude that

𝐴 =
2𝑘𝐵𝑇

𝜁
. (7.161)

(2) The Boltzmann factor gives just the Gaussian distribution for 𝑥. By inspection,
you can read 𝜎2 = 𝑘𝐵𝑇/𝑘 off. Hence, ⟨𝑘𝑥2⟩ = 𝑘𝐵𝑇 or 𝑘 = 𝑘𝐵𝑇/⟨𝑥2⟩ (𝑘𝐵 = 1.38 ×
10−23 J/K).

𝑘 = 1.38× 10−23 × 295/(1.2× 10−9)2 = 2.83× 10−3 N/m. (7.162)

That is, 𝑘 = 2.83 pN/nm (pico newton/nanometer is just the right size for biomolecules).

(3) If the fluid is very viscous, a displacement from the origin cannot decay easily.
Therefore, small displacement due to small noise can accumulate to a significant total
displacement.
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8 Macrosystems

Summary
* If numerous particles gather, important observables are extensive (additive) or in-
tensive.
* Even though underlying mechanics is reversible, macroscopic systems exhibit irre-
versibility.
* For a macroscopic system its total mechanical energy is additive with high precision.

Key words
Internal energy, reversibility of mechanics, Poincaré recurrence

What you should be able to do
* Explain why the total mechanical energy of a macroscopic system is additive.
* Explain why irreversibility naturally occurs in systems with many particles.

8.1 How to describe a macroscopic system in mechanics
We do not need any special way to describe a macroscopic system, if we wish to
describe it purely mechanically. Mechanical entities are atoms and molecules, so
a system is mechanically described by the system Hamiltonian whose independent
variables are position and momentum vectors of particles.

The Hamiltonian of a system consisting of 𝑁 point particles of mass 𝑚 interacting
with a potential energy 𝑈(𝑥1, · · · ,𝑥𝑁) has the following form

𝐻 =
∑︁ 1

2
𝑚𝑥̇2

𝑖 + 𝑈(𝑥1. · · · ,𝑥𝑁). (8.1)

The first terms describe the kinetic energy 𝐾 (here, 𝐾 is the total kinetic energy).
Usually, we may assume that 𝑈 depends on the mutual positions of the particles and
not on the absolute positions of the particles. The value of 𝐻 is the total mechanical
energy of the system.

Since we are interested in the ‘intrinsic’ properties of the system, we are not
interested in the overall translation and rotation. Thus, we are interested in the
Hamiltonian of the system observed from the coordinate system relative to which
the system does not exhibit any overall translational and rotational motion (the co-
moving coordinate system). The total mechanical energy of the system observed
by the co-moving observer is understood as the ‘intrinsic’ mechanical energy of the
system.

8.2 Conservation of mechanical energy and the first law of thermody-
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namics
Unless there is an exchange of energy with the external world, the total ‘intrinsic’ me-
chanical energy (8.1) of a system sitting still relative to the observer should obviously
be conserved according to the conservation of mechanical energy. In thermodynam-
ics the total ‘intrinsic’ mechanical179 energy is called the internal energy. Thus, the
internal energy of a system must be a conserved quantity. This is the essence of the
first law of thermodynamics.180 This was recognized by Carnot, Mayer, Helmholtz
and others, but Helmholtz most clearly recognized the first law as a consequence of
the conservation of mechanical energy, especially due to the fact that intermolecular
interactions have potential functions.181

8.3 Two crucial features of macroscopic systems
What are the salient features of a system consisting of numerous particles? Two
features come to our mind: additivity of energy and irreversibility of time evolution.

8.4 Additivity of energy
The usual intermolecular interaction decays spatially sufficiently quickly (Fig. 8.1).
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ϕ(r)

Figure 8.1: The intermolecular force potential. The repulsive portion is very steep (any steep
function will do to describe it, say, 1/𝑟12), which is due to electron-cloud overlap. The attractive
potion is 1/𝑟6, which is due to the induced dipole-dipole interaction (the London force). Roughly
speaking, the binary intermolecular force is characterized by the repulsive (or hardcore) diameter
𝑑 (the representative length scale) and the depth of the potential well 𝜀 (the representative energy
scale).

If a system volume is split into two 𝑉1 + 𝑉2 with a simple boundary surface,182 the

179If there are electromagnetic effects, this energy must be expanded to include the electromag-
netic energy.

180Strictly speaking, thermodynamics discusses the systems in equilibrium, so the first law is a
restricted version of the low of conservation of energy.

181Since no one can verify all the particles indeed obey microscopic mechanics, a more precise
statement is that the empirically established first law strongly suggests that the microscopic me-
chanical model of a system is in terms of conserved intermolecular forces.

182not a fractal surface, for example; we say we split the volume into two volumes in a van Hove
way.
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sum of the total mechanical energies of the volumes is very close to the total me-
chanical energy of the whole system before splitting.

If the interaction energy between two particles decays faster than 𝑟−d in d-space,
where 𝑟 is the interparticle distance,183 then the total interaction energy of a single
molecule 𝑖 near the boundary of 𝑉1 with those in 𝑉2 may be estimated as (see Fig.
8.2)

R

V

V1

2

boundary 

interface

Figure 8.2: How to estimate the ‘interface energy.’

∑︁
𝑗∈𝑉 *

2

1
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𝑖𝑗

≃
∫︁
𝑉 *
2

𝑑𝑦
1

|𝑦|d+𝜀
∝
∫︁ 𝐿

𝛿

𝑅d−1𝑑𝑅
1

𝑅d+𝜀
∼
∫︁ 𝐿

𝛿

𝑑𝑅
1

𝑅1+𝜀
∼ 𝐿−𝜀 + const. (8.2)

Here, 𝑟𝑖𝑗 is the distance between particles 𝑖 and 𝑗, 𝑉 *
2 is the subset of 𝑉2 such that

the portion within distance 𝛿 from particle 𝑖 is removed from 𝑉2. This calculation
shows that the relative contribution of the interaction energy that depends on the
system size 𝐿 becomes smaller as the system size becomes bigger. Of course, we
cannot ignore the close-range contributions from the portion within distance 𝛿 of the
particle as well as the constant term in (8.2), but even if we collect such contributions
from all the molecules on or near the boundary, they are only proportional to 𝐿d−1

(i.e., the surface area), so we may ignore them relative to the bulk energy ∝ 𝐿d for
macroscopic systems.

Thus, if the interaction potential decays faster than 𝑟−d, then we may assume that
the total energy is proportional to the volume of the system.

8.5 How about forces with potential ∝ 1/𝑟?
The Coulomb and gravitational interaction energies decay as 1/𝑟. For the Coulomb
interaction, thanks to the shielding effect, if the system is charge-neutral, the effec-
tive interaction decays exponentially, so we need not worry about it.

For the gravity, there is no way to shield it, but the usual macroscopic objects we
are interested in in statistical physics is not huge (usually about 1 m3 or less with not

183Since the interactions are not totally binary, precisely speaking, we need to assume that the
total interaction energies among particles is about the same order as the total contribution of the
binary interactions. This is a bit delicate, but usually this is true.
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a huge density like a neutron star), so we may ignore it (unless we discuss sedimen-
tation equilibrium; even in such cases we may safely ignore gravitational interactions
among the particles in the system).184

8.6 Why we are interested in additive quantities
To study a macroscopic system we often study additive observables that is propor-
tional to the system size (think of internal energy). This is natural, because such
observables are big for big systems. If an observable becomes smaller for larger sys-
tems, we need not pay attention to such quantities to understand the macroscopic
world. Thus, we are interested in observables that are independent of the system
size (intensive quantities) and those proportional to the amount of materials in the
system (extensive quantities).

8.7 Time-reversal symmetry of mechanics
The world of mechanics is time-reversal symmetric (the world in which the movies
played backward do not look funny). In the case of classical mechanics, Newton’s
equation of motion of a closed (isolated) system is an autonomous differential equa-
tion of second order without any first order derivative: For an 𝑁 -particle system,
generally we have

𝑑2𝑥𝑖

𝑑𝑡2
= 𝐹 𝑖(𝑥1, · · · ,𝑥𝑁) (8.3)

for 𝑖 = 1, · · · , 𝑁 . Since the forces 𝐹 𝑖 are 𝑡 independent in the closed system, 𝑡→ −𝑡
does not change the equations.

The Schrödinger equation for an isolated system reads

𝑖~
𝜕𝜓

𝜕𝑡
= 𝐻𝜓, (8.4)

where 𝐻 is a Hermitian operator independent of time. In this case 𝑡 → −𝑡 might
seem to alter physics, but what we observe is real, so the physics must be intact un-
der complex conjugation.185 Thus, quantum physics is also intact under time reversal.

8.8 In the long run we are all dead
But in the long run we are all dead and will never be resurrected. The world we live
in is definitely irreversible. How come?

184If the system really becomes huge, our ordinary statistical thermodynamics does not work.
185Hermitian conjugation, more precisely.

167



8.9 Irreversibility from mechanics?
All the ambitious young men (Boltzmann 1844-1906, Einstein, 1879-1955, ...) tried
to explain irreversibility from mechanics.

Boltzmann derived in 1872186 from a pure microscopic mechanical description of
atoms an equation (called the Boltzmann equation) that governs the irreversible
time evolution of dilute gasses by ignoring some statistical correlations. His col-
league Loschmidt (1821-1895) asked why Boltzmann could derive an irreversible
equation from a reversible equation. This question made Boltzmann realize that his
derivation included a sort of coarse-graining. Boltzmann explained that the initial
‘non-equilibrium’ states always contain more order (so inevitably subtle correlations
as well), so the time evolution always drives the system to the less ordered direction;
thus his equation correctly captures this tendency.

Then, in 1896, came Zermelo (1871-1953), an assistant to Planck (1858-1947)
those days, who, utilizing Poincaré’s recursion theorem,187 pointed out that Boltz-
mann’s argument was logically flawed: even if the system is coarse-grained, sooner or
later the state of a closed system returns to a state indefinitely close to the starting
state, so no irreversibility occurs. Boltzmann admitted the flaw, but since he was
a theoretical physicist, he responded: “Young man, you know math, but you don’t
know physics. Think how long it takes for that to happen? It would take far longer
than the age of the universe even for a very small system.”

8.10 What is the lesson?
What we have learned from these debates are:
(1) Very often the initial state is special (away from equilibrium) so (even following
the pure mechanics) for a long time irreversible behaviors are observed. The reason
why the initial state cannot be recovered in various theories is that they discard
subtle correlations (coarse-grain the system).
(2) However, if we can wait for long enough, any finite system (even after coarse-
graining) almost comes back to its initial special state, but the required time is
enormous, and we never experience this for macroscopic objects.

8.11 A toy model illustrating the lessons
A toy model can illustrate these points. Suppose a point is going around a unit circle
with period 1 uniformly. The point is subjected to a noise that makes its angular
speed fluctuate (see Fig. 8.3).

186[1872: Yellowstone NP established as the first NP in the world; G. Elliot: Middlemarch (in
which Brown’s famous booklet on Brownian motion showed up); C Monet: Impression Sunrise]

187Irrespective of time reversibility or irreversibility, a measure-theoretical dynamical system can
return to a state indefinitely close to its initial condition.
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Figure 8.3: Ensemble of points with angular speeds slightly fluctuating around 2𝜋 rad/s. The
averaged position spirals toward the center.

If there are only two such oscillators, their average position may become close to
the origin, but then the average recovers its original amplitude fairly easily. If we
have many (𝑁 ≫ 1) such oscillators, after the average becomes close to zero, it stays
small for an enormously long time, and then will return close to the original value.
The waiting time for this recovery is likely to be of order 𝑒𝑐𝑁 , where 𝑐 is a positive
constant of order 1. [I do not know the precise quantitative results.]

Thus, as long as the system is finite, Zermelo is right, but as to the waiting time
Boltzmann is right.
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9 Thermodynamics: Principles

Summary
* Phenomenological approach is a respectable and basic method for understanding
the world
* Equilibrium states may be described by the thermodynamic coordinates consisting
of the internal energy and the work coordinates. The space spanned by the thermo-
dynamic coordinates is called the thermodynamic space.
* Even if the change from one equilibrium state to another is irreversible, by devis-
ing a quasistatic path between them, changes in thermodynamic quantities may be
computed thermodynamically.
* The first law is essentially the conservation of energy, but to describe it in terms
of small number of macroscopic variables, changes (or processes) must be sufficiently
slow.
* The second law implies that the thermodynamic space is foliated into adiabats =
constant-entropy surfaces.

Key words188

Phenomenological approach, zeroth law, fourth law, thermodynamic coordinates,
work coordinates, thermodynamic space, quasiequilibrium process, reversible pro-
cess, state function, thermal contact, thermal equilibrium, temperature, conjugate
pair, Clausius’ law, Kelvin’s law, Planck’s law, adiabatic process, adiabat, Gibbs
relation

What you should be able to do
* Explain why the thermodynamic coordinates are privileged coordinates.
* Understand that all three expressions of the second law mentioned here are equiv-
alent.
* Demonstrate that we can introduce a state function called entropy. Also be able
to explain its relation to heat.

9.1 Mechanics is not enough
As we have discussed in the last lecture, important characterization of macroscopic
systems, extensivity of internal energy and irreversibility, may be understood from
mechanics, so perhaps you may think mechanics can explain everything thermal as
well. Unfortunately, however, we cannot confine ourselves to the discussion of closed
(or isolated) systems. For example, we must discuss heat transfer, which is hard to

188There are many for the present section, but they are important, so you should try to memorize
them at least once.
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describe in terms of mechanics.189

We have learned that, although Brownian dynamics may well be due to under-
lying particle mechanics, we could set up a reasonable model (Langevin’s equation)
with the aid of the fluctuation-dissipation relation without directly referring to the
underlying mechanics. This suggests that with a small number of postulates we
can describe the key features of the macroscopic level. Such a description is a phe-
nomenological description (phenomenology).

9.2 Phenomenological description of macrosystems
A phenomenological description of macroscopic systems is a description solely in
terms of quantities that may be observed, described and defined on the macroscopic
scale. If we could make a closed (complete) system of theory in terms of such quan-
tities, the result is called a phenomenology. The phenomenology of macroscopic
systems in equilibrium we now have is called thermodynamics. The reader must
clearly recognize that, in contrast to (the supposedly more fundamental) statistical
mechanics, thermodynamics survived the quantum revolution unscathed; actually it
helped launching the revolution. Quantum mechanics has no problem with thermo-
dynamics (for now), but even if quantum mechanics will be replaced by something
more ‘advanced,’ thermodynamics will remain intact.

9.3 What is phenomenology, generally?
In physics, ‘phenomenology’ has not necessarily been respected; often it is almost
a pejorative (e.g., in high-energy physics). However, notice that when underlying
microscopic descriptions are impossible or only approximate, phenomenology may
be the only realistic rational means for the human-beings to understand the world.

More generally, we may say that a self-contained description of phenomena at
a given space-time scale is the general feature of phenomenology. Thus, quantum
mechanics is a phenomenology at the microscopic scale. 190

A phenomenology is not an approximate way to understand the world nor a crude
version of something more accurate; thermodynamics is not an approximation of a
certain more advanced and accurate theory.

189Also we saw that the effect of the external world of the system cannot be completely eliminated.
The long time limit (𝑡→∞) and the ‘external noise zero’ limit (i.e., the pure mechanical limit) are
not commutative, so purely mechanical description may well fail to describe the system reaching
equilibrium after a long time.

190In this case, unfortunately, however, we the creator of the description is not on the same level,
so a lot of difficulties ensue. Connecting different levels is always a source of conundrums and
paradoxes.
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9.4 Equilibrium states
A macroscopic system (a system with extremely many particles191) can take a spe-
cial state called a thermodynamic equilibrium state (called an equilibrium state for
simplicity). To specify the state, we introduce the concept, generalized isolation: a
system is subjected under a generalized isolation condition if it is isolated but may
be coupled to uniform field(s) conjugate to work coordinates (to be defined shortly).
A macrosystem is in an equilibrium state, if it is left under a generalized isolated
condition and eventually reaches a time-independent state.192 Macro-observables
observed at any time in equilibrium will take unchanging values forever.

A macroscopic system in equilibrium is partitioning-rejoining invariant: if a macro-
scopic system in equilibrium state is divided into two halves (of about the same sizes),
the halves are themselves in equilibrium and if they are joined again, the result is
indistinguishable from the original system as long as the thermodynamic observables
are concerned (Fig. 9.1).

Equilibrium as a whole in isolation

Each piece is in equilibrium 

in isolation even after 

separation

Combining A and B recovers a macrostate

indistinguishable from 1

A B

A B

A B

1

2

3

Figure 9.1: Partitioning-rejoining invariance of equilibrium states

Most textbooks are wrong: A traditional characterization of an equilibrium state
is as follows: if a macrosystem is isolated and is left undisturbed for a long time, it
would reach a macroscopic state (which is characterized by macroscopic observables)
which would not change any further (if observed through macroscopic observables).
This final state is a thermodynamic equilibrium state.

191⟨⟨What is macroscopic?⟩⟩ From the strictly macroscopic phenomenological point of view,
since whether atoms and molecules exist or not is an irrelevant issue, it is more logical to say, “a
system around us that we can see by our naked eyes” (as explained in Section 1, this characterization
is actually scientific), but the book should be practical as well, so anything useful will be used to
understand thermal physics.

192⟨⟨Equilibrium: another possible characterization⟩⟩ Equivalently, a macrosystem is in an
equilibrium state, if we can devise a (macroscopically) constant and spatially uniform environment
(without any dissipative currents) into which we can embed the system (with appropriate boundary
conditions) and still the state does not change in time. Total isolation is a possible environment.
However, not all the equilibrium states of a given system may be realized under the total isolation
condition. Notice that this characterization of equilibrium never requires the isolation of a system
from the external world. Also it never asks how the equilibrium state is realized. The state may be
prepared in contact with a heat bath, for example.

172



Unfortunately, many states thermodynamics wish to consider cannot be reached
this way. Thus, the traditional definition is, if not wrong, grossly incomplete.

9.5 The fourth law of thermodynamics
As already discussed intuitively 8.6, macroscopically important observables are ex-
tensive or intensive. All the thermodynamic observables are either extensive or in-
tensive. This is called the fourth law of thermodynamics.

Notice that partitioning-rejoining invariance in 9.4 makes the fourth law opera-
tionally meaningful.

9.6 Thermodynamic coordinates, a privileged set of variables
Since thermodynamics must be a phenomenology on the macroscopic scale, to con-
struct a closed (self-contained) theoretical framework, we must carefully choose the
physical quantities we deal with. The most fundamental of them are the thermody-
namic coordinates. They are extensive quantities (= additive quantities that become
important for macrosystems) and consist of internal energy 𝐸 and other variables
(called work coordinates) required to describe the macroscopic work supplied to the
system that we can observe and control mechanically (electrodynamically) macro-
scopically. The system volume 𝑉 is often among them. For a magnetic system,
magnetization 𝑀 is included.

Thermodynamic coordinates are a very special set of variables to describe equi-
librium states that is privileged in the following sense:
(i) To understand thermodynamic coordinates we need only (macroscopic) mechan-
ics and electromagnetism. The work that a system does or that a system is supplied
can be described through the changes of these coordinates and is quantified solely
electrodynamically.

Notice that we need not understand what ‘heat’ or ‘temperature’ is. Thus, as long
as the thermodynamic properties are concerned, a macroscopic system is regarded
as a black box with mechanically controllable handles.
(ii) The thermodynamic coordinates uniquely specify the equilibrium state. You
could understand the meaning of this statement from Figure 9.2. Notice that 𝑇 or
𝑃 is not included in the thermodynamic coordinates.

9.7 Thermodynamic space
The space spanned by the thermodynamic coordinates is called the thermodynamic
space. For a given macroscopic system, its each equilibrium state uniquely corre-
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A B C

Figure 9.2: A-C contain the same amount of water at 0∘C under 1 atmospheric pressure.
However, their internal energies are distinct; A has the least internal energy and C the most. In
elementary thermodynamics, often the temperature 𝑇 appears as a key variable instead of internal
energy 𝐸, but these examples clearly tell us that 𝑇 cannot distinguish equilibrium states that are
distinct. Analogously, in the liquid-gas phase transition under constant pressure 𝑃 and 𝑇 , 𝐸 and 𝑉
change. These examples indicate that thermodynamic coordinates are the fundamental ‘privileged’
set of variables to describe thermodynamic equilibrium state; generally speaking intensive variables
such as 𝑇 and 𝑃 fail to describe states uniquely.

sponds to a point in the thermodynamic space of its own.193

Very Important Warning.
However, the converse is not true. That is, although any equilibrium state has its
unique representative point in the thermodynamic space, even the same point may
correspond to a nonequilibrium state. The crucial point is that the point in the ther-
modynamic space itself cannot tell us how it is changing (reversibly or irreversibly).
For example, a hot coffee in a high-quality thermos very gradually cools toward the
room temperature. The process could be indefinitely slow, so its state can always
be infinitesimally close to a certain equilibrium state for a certain length of time.
However, it is patently a state undergoing an irreversible process. Whether a point
in the thermodynamic space is in equilibrium or not depends on the context (and
the time scale).

9.8 Quasistatic processes
Thermodynamics wishes to study changes of equilibrium states by various processes.
Not all (actually most) processes allowed to the system cannot be described in the
thermodynamic space, because every point actually realizable in the thermodynamic
space describes an equilibrium state of the system. Only processes that are extremely
(infinitesimally) close (experimentally indistinguishably close) to equilibrium states
at every moment may be expressed as continuous curves in the thermodynamic space
(Fig. 9.3). In order for a process to be always close to equilibrium states it must be
sufficiently slow.

However, the slowness of a process does NOT guarantee reversible changes.194 A

193Some readers might question that there are much more macroscopic observables we can observe
for a given object, shapes, orientation, etc. Precisely speaking, thermodynamic states are equiva-
lence classes of macroscopically distinguishable states according to the values of the thermodynamic
coordinates.

194Think of a hot coffee in a thermos.
Whether a given path in the thermodynamic space is reversible or not depends on the context.
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A

B

quasistatic

noneq process

equilibrium states

thermodynamic

space

Figure 9.3: A and B are equilibrium states. A quasistatic process connecting A and B is in the
thermodynamic space. From A to B a process need not be quasistatic. Then, most such processes
cannot be described in the thermodynamic space (red).

quasistatic processes is a process along which both the system and its environment
are (infinitesimally) close to equilibrium and can retrace their evolution precisely,
i.e., ‘reverse their footsteps.’ Thus, a quasistatic process is also called a retraceable
processes. Here, ‘retracing’ means that, after retracing the process, the world returns
exactly to the original (macro)state. Thus, ‘retraceable’ means that, after retracing,
the world returns to the state before the process occurs.

9.9 State functions
If the value of a macroscopic quantity of an equilibrium state is uniquely specified
by the corresponding point in the thermodynamic space, the macroscopic quantity
is called a state function.. That is, any observable that is a function defined on the
thermodynamic space is a state function. Its value is indifferent to how the state
is realized. For example, the equilibrium volume of a system is a state function;
temperature is another example.

9.10 Simple system
An equilibrium system need not be spatially homogeneous at the macroscopic scale.
If a system is spatially homogeneous, we call it a simple system.195

In the case of thermos, the process is undoubtedly irreversible. However, you could cool your coffee
by removing heat reversibly by producing work. The path for your coffee may not be different from
the case just above.

195If we need spatially inhomogeneous states, the system will be partitioned into sufficiently
homogeneous macroscopic subsystems; if this is impossible, we will not discuss it thermodynamically
in this book.
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9.11 Compound system
Two or more simple systems considered as a single system with or without certain
interactions among them is called a compound system. Even if the component simple
systems are in equilibrium, the compound system as a whole may not be in equilib-
rium. The thermodynamic space of the compound system is the direct product of the
thermodynamic spaces of the constituent simple systems. Just as in the thermody-
namic space of a simple system, a point in the thermodynamic space of a compound
system may correspond to a nonequilibrium state. We have to specify carefully the
interactions among the constituent subsystems.

9.12 Why thermodynamics can be useful
When an initial state and a final equilibrium state are given, the change of a state
function between these two states does not depend on the actual process but only
on these initial and final equilibrium states. Even if the actual process connecting
these two states is not a quasistatic process (i.e., does not lie in the thermodynamic
space), we can thermodynamically compute the change of any state function during
the process with the aid of an appropriate (appropriately devised) quasistatic process
connecting the same end points. This makes thermodynamics extremely useful in
practice.

9.13 Thermal contact
Empirically we know that even if there is no exchange of work or matter, two sys-
tems in contact can exchange their energies. Such a special contact is called thermal
contact. If two systems A and B are in thermal contact and are in equilibrium as a
compound system, we say A and B are in thermal equilibrium.

If the systems A and B are in thermal equilibrium, and if B and C are in thermal
equilibrium, then so are the systems A and C. That is, the thermal equilibrium rela-
tion is an equivalence relation. This is called the zeroth law of thermodynamics. We
can say that this equivalence relation is expressed as the equality relation between
the temperatures of the systems.

Traditionally, the existence of (empirical) temperature is apparently deduced from
the zeroth law, but actually, the argument is not even water tight. Besides, we do
not need the zeroth law.

9.14 The first law of thermodynamics
As we have already noted, the first law of thermodynamics is essentially the con-
servation of mechanical energy (= internal energy) of the system. Mayer, Joule,
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Helmholtz and others established that the conservation of mechanical energy implies
the existence of a state function 𝐸 called internal energy. Its change Δ𝐸 cannot be
explained solely in terms of the net work 𝑊 supplied to the system, and the deficit
𝑄 is understood as the net heat given to the system:

Δ𝐸 = 𝑊 +𝑄. (9.1)

Thus, in terms of thermodynamic coordinates that can be understood and quantified
solely electrodynamically something called ‘heat’ whose ‘true nature’ is not very clear
is macroscopically quantified. Notice that although 𝐸 is a state function, neither 𝑊
nor 𝑄 is a state function; they depend explicitly on the path connecting the initial
and the final equilibrium states (the path may not be in the thermodynamic space).

9.15 Sign convention
Let us make the sign convention explicit. The sign is seen from the system’s point
of view: everything imported to the system is positive, and exported negative. For
example, if you do work to the system, 𝑊 > 0. If you get some useful work from the
system 𝑊 < 0.

9.16 Volume work
When the change is quasistatic, 𝑊 and 𝑄 are determined by the equilibrium states
of the system along the quasistatic path.

For example, the work 𝑑′𝑊 required to change the system volume from 𝑉 to
𝑉 + 𝑑𝑉 is given by (see Fig. 9.4)

𝑑′𝑊 = −𝐹𝑑𝑙, (9.2)

if the infinitesimal displacement of the piston is 𝑑𝑙 and the external force is 𝐹 .

dl

AP F

piston

Figure 9.4: Work done by volume change.

Here, the differential expressing the infinitesimal work is written as 𝑑′𝑊 instead of
𝑑𝑊 to indicate clearly that the infinitesimal is not the differential of a state function
(not a perfect differential). According to our sign convention, if the system is done
a work, then 𝑑′𝑊 > 0, but this happens when the volume shrinks, that is, when
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𝑑ℓ < 0. Therefore, (9.2) has a minus sign. If the volume change is quasistatic, then
the system pressure 𝑃 and the external force 𝐹 is always in balance,

𝐹 = 𝐴× 𝑃, (9.3)

where 𝐴 is the cross section of the piston. Thus, we have arrived at the formula
applicable to the quasistatic process:

𝑑′𝑊 = −𝑃𝐴𝑑𝑙 = −𝑃𝑑𝑉 . (9.4)

If the process is fast, there would not be sufficient time for the system to equilibrate.
For example, when we compress the system rapidly, the force necessary and the force
given by (9.3) can be different; even the pressure 𝑃 may not be well defined. Conse-
quently, (9.4) does not hold (the work actually done is larger than given by (9.4)).

Thus, although the first law is essentially the conservation of mechanical energy, to
write it in terms of a small number of variables, the change must be slow (quasiequi-
librium).

9.17 Magnetic work
The electromagnetic work can be written as (see Q9-2 at the end of this section)

𝑑′𝑊 = 𝐵 · 𝑑𝑀 , (9.5)

𝑑′𝑊 = 𝐸 · 𝑑𝑃 , (9.6)

where 𝐵 is the magnetic field, 𝑀 the magnetization, 𝐸 the electric field, and 𝑃 the
polarization.

9.18 Prehistory of the second law
Joule quantitatively demonstrated (in 1847196) that work can be converted into
heat,197 and believed that work and heat were equivalent, but long before him Carnot
(1796-1832) had already established (published in 1824198) the impossibility of com-
plete conversion of heat into work. His brother told him (in 1844199) to pay attention

196[1847: C. Bronte, Jane Eyre, E. Bronte, Wuthering Heights and W. H. Prescott, A History of
the Conquest of Peru were published.]

197⟨⟨Work equivalent was established by Mayer⟩⟩ The work equivalent of heat was obtained
by Mayer five years before Joule in 1842 with the aid of Mayer’s cycle in 10.11.

198[1824: Beethoven’s 9th Symphony (Karajan+BPO) premiered ; Thomson (also Kirchhoff and
Smetana) was born.]

199[1844: The first electrical telegram was sent by Morse; Goodyear patented vulcanization;
Notice that Turner’s famous Rain, Steam and Speed, The Great Western Railway (National Gallery,
London) was this year (see footnote 189 below). Mozart died]
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to the work of Carnot. Thomson (later Lord Kelvin) recognized the importance of
Joule’s work, but since he also accepted Carnot he did not believe work and heat
were equivalent (Joule rejected Carnot). Thomson realized that Carnot’s work could
establish a universal scale of temperature, and introduced the concept of absolute
temperature, but he failed to grasp the real relation between heat and work. To
resolve the conflict between Joule and Carnot Thomson looked for further empirical
facts, and failed to establish thermodynamics.

Clausius did not think further empirical facts were needed to resolve the conflict
between Joule and Carnot. Carnot clearly recognized that only when there are hot-
ter and colder heat baths can we produce work; there is a fundamental asymmetry
between heat and work. Clausius understood this as follows: Temperature is the
‘price’ of energy. You cannot simply promote the price of energy (you cannot trans-
fer energy from a colder to a hotter bath). Work corresponds to heat at 𝑇 = ∞.
Thus, thermodynamics was established by Clausius.

Now, it seems generally accepted that Clausius and Thomson (independently)
constructed thermodynamics. But this is largely due to the British propaganda by
Tait.200 If Great Britain were defeated instead of Germany in WWI, the history
would not have been distorted so easily.

Perhaps, a much more important prehistoric fact is that industry was far ahead.201

Turner’s painting of 1839, “The fighting Temeraire tugged to her last berth to be
broken up, 1838,” (Fig. 9.5) is emblematic of the era. Read the explanation on the

200Peter Guthrie Tait (1831-1901).
201⟨⟨Industry was far ahead⟩⟩ The reader should compare the years in this footnote and those

in the main text of this entry. Watt’s steam engines were 1760-70, Trevithick’s steam locomotive
(‘Puffing Devil’) was 1804 and Stephenson’s Locomotion for Stockton and Darlington Railway was
1825. Steamboats were earlier. Robert Fulton’s boat with a Watt steam engine was 1807 (between
New York and Albany 240 km for 32 hrs) [this year, Beethoven 4th symphony premiered; Jacques-
Louis David, The Coronation of Napoleon].
Good animation of the Newcomen engine: https://www.youtube.com/watch?v=9GqVQPMCtY4
Only working Newcomen’s engine at Black Country Living Museum is
https://www.youtube.com/watch?v=HC6LUWSBXjk

All above ‘in one’: https://www.youtube.com/watch?v=QltRwiu4U2Q

Watt was a versatile inventor: copying machine: https://www.youtube.com/watch?v=

bKERVTLpGM0. Actually, this was to record the voluminous correspondence that building each
engine entailed, everything had to be copied longhand [according to B. Russell, James Watt: mak-
ing the world anew (Reaktion Books, London, 2014)].

J Hutton and Scottish Renaissance, which is the backdrop of study of heat and Watt’s invention,
is described in the following (geology) video (with Kelvin’s blunder) https://www.youtube.com/
watch?v=FYfuI2uZLmg

Robert Fulton https://www.youtube.com/watch?v=2w6x5QdswYE

Glass Stevenson’s engine https://www.youtube.com/watch?v=73txXT21aZU
Replica Rocket https://www.youtube.com/watch?v=yNn0LC_9imY

no brakes https://www.youtube.com/watch?v=3woUopc1ZS4
History up to ‘Rocket.’ https://www.youtube.com/watch?v=wOGYZC-IJPQ
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side of the painting in the National Gallery.

Figure 9.5: The fighting Temeraire tugged to her last berth to be broken up, 1838 (The National
Gallery, London) [YO, 2019]

9.19 The second law of thermodynamics
The second law of thermodynamics summarizes what Carnot and Clausius clearly
understood as follows. Two famous expressions are:

Clausius’ principle: Heat cannot be transferred from a colder to a hotter body spon-
taneously.

Kelvin’s principle: A process cannot occur whose only effect is the complete conver-
sion of heat into work. (No existence of perpetum mobile of the second kind; there is
no engine which can produce work without a radiator.)

Notice that Clausius’ principle contains Kelvin’s principle, if we understand work
as the heat energy at 𝑇 =∞ as Clausius recognized.

Here, we use the second law in the following form:

9.20 Planck’s principle and adiabatic process
Planck’s law: In an adiabatic process if all the work coordinates return to their
original value, Δ𝐸 ≥ 0.

Here, ‘adiabatic process’ must be explained. In short, it is a process without any
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exchange of heat with the surroundings (a process realized in a Dewar jar).202

A

B

X

X

E

1

2

if adiabatic 

Figure 9.6: Planck’s principle: A vertical move implies a purely thermal process. Adiabatically,
there is no way to move from a state B to another state A that is vertically below it according to
Planck’s principle. Here, 𝑋1, 𝑋2 represent work coordinates.

The first law implies adiabatically and quasistatically203

𝑑𝐸 =
∑︁
𝑖

𝑥𝑖𝑑𝑋𝑖, (9.7)

where (𝑥𝑖, 𝑋𝑖) are conjugate pairs for work coordinates (non-thermal variables). The
variables 𝐸 and 𝑋𝑖 span the thermodynamic space (of the system under study).

9.21 Planck’s principle, Kelvin’s principle and Clausius’ principle are
equivalent
None is more fundamental than the rest:

If Planck’s principle is violated, then adiabatic work can reduce the system energy.

202There is a special wall called an adiabatic wall such that for a system surrounded by this wall
the necessary work to bring the system from a given initial equilibrium state to a specified final
equilibrium state is independent of the actual process but is dependent only on these two end states
of the process. A process that can be realized in a system surrounded by adiabatic walls is an
adiabatic process. Furthermore, even if a process is realized without surrounded by adiabatic walls
but the same process can be realized surrounded by adiabatic walls, it is an adiabatic process.
This turned about to be identical to the process without (net) heat exchange with its environment.
Thus, even if a system is attached to a heat bath, a process in the system can be adiabatic. Notice
that adiabatic process need not be describable in terms of pure mechanics.

203often ‘quasistatically’ is not mentioned explicitly, but to describe the process in terms differ-
entials of state variables, the process must be sufficiently slow.
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That is, work can be produced by a single heat bath. Therefore, Kelvin’s principle
is violated.

If Kelvin’s principle is violated, then we can get work from a cold bath and do
work on a hotter bath to increase its energy. Thus, Clausius’ principle is violated.

If Clausius’ principle is violated, then we can convert a uniform system into colder
and hotter portions and produce work to make the portions to be the same temper-
ature again by a cyclic change of the work coordinates. Thus, Planck’s principle is
violated.

We have roughly demonstrated, symbolically, P ⇒ C ⇒ K ⇒ P. That is, all the
principles mentioned here are equivalent.

9.22 Entropy was not understood by British scientists
Now, we wish to demonstrate that the second law implies the existence of a state
function called ‘entropy’ which was introduced by Clausius. In introductory ther-
modynamics it seems unanimously recognized that entropy is a difficult concept to
grasp. This may also be a misconception/misunderstanding spread by the British.

British people resisted to recognize entropy for a while. Even Maxwell, who used
entropy correctly for the first time in England, misunderstood it initially. In reality,
English speaking scientists were rescued by Gibbs who correctly understood thermo-
dynamics.

In summary, Clausius recognized the following. The constant entropy surfaces
foliate the thermodynamic space. These surfaces are called ‘adiabats’ or ‘isentropic
hypersurfaces.’ If state A has a larger entropy than state B, then we can never go
from A to B adiabatically.

9.23 Unique adiabat goes through an equilibrium state
At least once in your life you should try to reproduce the following explanation of
the existence of entropy to your intelligent lay friends.

Choose an arbitrary point 𝑃 and a vertical line L in the realizable portion of the
thermodynamic space. This line is parallel to the energy axis (all the work coordi-
nates are kept constant), along which we can change the states only by exchanging
heat with the external world. Let us find a quasistatic adiabatic and reversible
path204 connecting 𝑃 and L.

Suppose the path lands on L at point 𝑄. Can we also reach other points on
L in the same fashion? Planck tells us A is inaccessible; if possible, we can adia-

204Why is such an awkward description of the path? Reversibility does not logically guarantee
quasiequilibrium; quasiequilibrium does not mean reversible. This is the reason. However, intu-
itively, we may say ‘reversible path,’ because not quasistatic reversible process is not very realistic.
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Figure 9.7: Let Q be a state on a vertical line L (along which we can move with heat exchange
alone) that can be reached from state P adiabatically and reversibly. If state A can be reached by
an adiabatic process from P, then adiabatically we can go from Q to A via P, violating Planck’s
principle. Thus, the shaded portion is inaccessible from P adiabatically. If B can be reached by
an adiabatic reversible process from P, then adiabatically we can go from B to Q via P, violating
Planck’s principle, again. Thus, Q is unique: there is only one point on L that can be reached
from P adiabatically and reversibly. (We can adiabatically go from P to B, but it is an irreversible
process.)

batically go to A from Q, contradicting Planck. If we could go to B adiabatically
and reversibly from P, then we can go to Q adiabatically via P, again contradicting
Planck’s principle. Thus, we have learned that the point on L we can reach from P
adiabatically and reversibly is only Q.

Now, moving the stick L throughout the space keeping it parallel to the energy
axis, we can construct a hypersurface consisting of points adiabatically and qua-
sistatically accessible from point P (reversibility is included since it is retraceable).
This is an adiabat containing P.

9.24 Adiabats stratify the thermodynamic space
Adiabats foliate the thermodynamic space. That is, no two different adiabatic sur-
faces cross each other. See Fig. 9.8 Left to understand that these sheets = adiabats

cannot cross; crossing means ‘Planck’ is violated. This implies that we can define a
state function 𝑆, whose level sets are given by these sheets (𝑆 = constant defines an
adiabat).

The adiabats do not have any ‘overhangs.’ As you can see from Fig. 9.8 Right,
the reason is the same as that for no crossing.

Thus we have realized that the thermodynamic space is stratified (or foliated) into
layers vertically stacked respecting their order.
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Figure 9.8: Left: If two adiabats cross or touch, then we can make a cycle that can be traced in
any direction, because 𝑃𝑄, 𝑃 ′𝑄 can be traced either directions, so can be 𝑃𝑃 ′. Planck’s principle
is violated. Right: An overhang violates Planck’s principle with the same reason.

9.25 Entropy can be defined
Thermodynamic space is stratified (or foliated) into layers vertically stacked respect-
ing their order along a line perpendicular to the work-coordinate plane (especially
along the energy axis), so we can define a state function by appropriately assigning
real numbers continuously according to their heights along a vertical line; in other
words, we can define a state function called ‘entropy’ ‘𝑆’ which is an increasing and
continuous function of 𝐸 under constant work coordinates. How can we change the
value 𝑆 of this function?

Obviously, we can change 𝑆 by going up or down along 𝐿 in Fig. 9.7 while the
work coordinates being kept fixed; that is, we can change 𝑆 by adding or subtracting
heat 𝑄. Since we have assumed that 𝑆 increases with 𝐸, for 𝑑′𝑄 > 0 we must have
𝑑𝑆 > 0. Therefore, we may define 𝑆 so that 𝑑𝑆 ∝ 𝑑′𝑄 holds. Since 𝑄 is extensive,205

so must be 𝑆. This also tells us that we can assume 𝑆 is a once differentiable function
of 𝐸.

9.26 Entropy and heat
Suppose two systems are in contact through a wall that allows only the exchange
of heat (that is, in thermal contact 9.13), and they are in thermal equilibrium.
Exchange of heat 𝑑′𝑄 between the thermally equilibrated systems is a reversible
process (say, system I gains 𝑑′𝑄I = 𝑑′𝑄 and II 𝑑′𝑄II = −𝑑′𝑄), so this process
occurs within a single adiabat of the compound system (9.11, i.e., the two systems
considered together as a single system). If we write 𝑑′𝑄X = 𝜃X𝑑𝑆X (X = I or II),
with the aid of the additivity of 𝑆,

0 = 𝑑𝑆I + 𝑑𝑆II = 𝑑′𝑄

(︂
1

𝜃I
− 1

𝜃II

)︂
. (9.8)

This implies 𝜃I = 𝜃II. If I and II are not in thermal equilibrium initially, then the

205That is, if we double the system, we must double the heat to reach the same thermodynamic
state characterized by the same intensive parameters and densities (= extensive variables per vol-
ume).
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contact causes some irreversible change, so the state of the compound system leaves
the original adiabat, so 𝜃I ̸= 𝜃II. That is, 𝜃I = 𝜃II if and only if I and II are in thermal
equilibrium. Hence, we may interpret the proportionality factor 𝜃 as an empirical
temperature (cf. the zeroth law).

The introduced temperature can be chosen as a universal temperature 𝑇 called
the absolute temperature. Hence, in the quasistatic process we can write206

𝑑′𝑄 = 𝑇𝑑𝑆. (9.9)

9.27 Gibbs relation
Now we can write down the infinitesimal version of the first law of thermodynamics
for the quasistatic process as follows:

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 +𝐵 · 𝑑𝑀 + · · · . (9.10)

This is called the Gibbs relation.
The chief concern of thermodynamics up to Gibbs was to formulate the second

law and to prove the existence of entropy. Gibbs then utilized entropy and reformu-
lated thermodynamics as a system even practically useful. The very starting point
of this new formulation was this relation, which Gibbs wrote down for the first time.
Notice that each term consists of a product of a conjugate pair: an intensive quantity
and 𝑑[the corresponding (i.e., conjugate) extensive quantity]. Also do not forget the
minus sign in front of 𝑃𝑑𝑉 (recall 9.16).

206⟨⟨Thermodynamic 𝑇 = ideal gas 𝑇?⟩⟩ Precisely speaking, we must show that this 𝑇 is
identical to the 𝑇 appearing in the ideal gas law. To this end we have only to consider the Carnot
cycle, or to compute the efficiency 𝜂 of an ideal engine. This will be done in the next lecture, but
we will obtain 𝜂 = 1−𝜃1/𝜃2 (assuming that 𝜃1 < 𝜃2) [This is Thomson’s fundamental idea to define
temperature in a materials-free fashion]. If we use an ideal gas we obtain 𝜂 = 1− 𝑇1/𝑇2, so 𝜃 and
𝑇 are identical (up to the choice of units).

As we will see ideal gases contradict the third law of thermodynamics, so there are people who
assert ideal gases are unphysical and should not be used to develop the basic theoretical framework;
Thomson clearly thought particular material should not be used to develop basic theories. However,
if pressure is sufficiently reduced, then any real gas becomes an ideal gas however low its temperature
is. Therefore, as long as we clearly recognize this condition, there is no fundamental difficulty in
using ideal gases to develop fundamental theories.
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Q9-1 [Why thermodynamic coordinates are important].
An equilibrium state of a macroscopic system can be phenomenologically described
by thermodynamics. There is a special set of variables called the thermodynamic
coordinates to describe equilibriums states. Briefly explain within 10 lines (with an
ordinary letter size, please) what a thermodynamic coordinate system is and why it
is special.

Soln.
The thermodynamic coordinate system consists of internal energy 𝐸 and (extensive)
work coordinates describing macroscopic mechanical work that can be done to the
system.
1. [Pure mechanical nature] Since 𝐸 is essentially the mechanical (including elec-
tromagnetic) energy of the particles in the system and since work coordinates are
described, controlled and measured with the aid of macroscopic mechanics (including
electromagnetism), thermodynamic experiments can be described in terms of these
coordinates without clear characterization of heat.
2. [Unique specification of equilibrium states] If two states have identical thermo-
dynamic coordinates, then these states cannot be distinguished thermodynamically.
Or you can say thermodynamic coordinates specify equilibrium states uniquely.

Q9-2 [Magnetic work]
The work required to increase the magnetization (= the total magnetic moment in
the system) of a block in the external magnetic field 𝐻 is written as 𝑑′𝑊 = 𝐻 ·𝑑𝑀 .
We have not shown this. This is not very trivial, because not all the energy is stored
in the block under study; some portion is stored as potential energy in the ‘relation’
between the block and the system creating the external magnetic field. We know
that this potential energy is −𝐻 ·𝑀 (probably, you remember that the energy of a
magnetic dipole 𝜇 is minimum, when 𝐻 and 𝜇 are parallel: 𝐸 = −𝜇 ·𝐻).

Since 𝑀 =
∑︀

𝜇, where the summation is over all the magnetic dipoles in the
block, let us study individual magnetic moment. We assume that the (size of the)
magnetic dipole changes due to the magnetic field.

S
x

B

Figure 9.9: The magnetic field 𝐻 is prepared by a large constant bar magnet, and the magnetic
dipole initially at infinity is brought to position 𝑥 along the 𝑥-axis. The field is parallel to the axis.

At position 𝑥 the (𝑥-component of the) force acting on the small magnetic dipole
parallel to the 𝑥-axis (see Fig. 9.9) is given by (+ in the +𝑥-direction)

𝐹 = 𝜇(𝐻(𝑥))
𝑑𝐻(𝑥)

𝑑𝑥
. (9.11)

Since we are doing thermodynamics, we must bring the magnetic dipole from infinity
slowly to the present position 𝑥. To perform such an experiment, you must apply a
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force opposing the above force (i.e., −𝐹 ) while moving the magnetic dipole.
(1) What is the work 𝑊 you do to the whole system (the dipole + the bar magnet)
while dragging the dipole from −∞ to 𝑥? [This simply asks your work expenditure.
Since the force you exert and the displacement are both given, it is an elementary
question.]
(2) However, this energy 𝑊 is stored not only in the block containing the magnetic
dipoles, but also between the bar magnet and the dipole as the potential energy at
𝑥 (as given above). Show that the energy stored in the dipole is

𝑊 + 𝜇(𝐻(𝑥))𝐻(𝑥) =

∫︁ 𝜇(𝐻(𝑥))

𝜇(0)

𝐻(𝑥′)𝑑𝜇(𝐻(𝑥′)). (9.12)

Therefore, 𝑑𝐸 = 𝐻𝑑𝑀 if only the magnetization (the total dipole moment
∑︀
𝜇) is

changed among the work coordinates.

Solution.
(1) The force you exert is −𝐹 (not 𝐹 ; without your application of brake, the ‘block’
would fly to the bar magnet)

𝑊 = −
∫︁ 𝑥

−∞
𝐹𝑑𝑥′ = −

∫︁ 𝐻(𝑥)

0

𝜇(𝐻(𝑥′))𝑑𝐻(𝑥′). (9.13)

Here, the dependence of 𝜇 on 𝐻 is explicitly written. This implies that the total
work done to the system consisting of the block (containing dipoles) and the bar
magnet reads

𝑊 = −
∫︁ 𝐻(𝑥)

0

𝑀(𝐻)𝑑𝐻. (9.14)

(2) Let us honestly compute this sum (9.12).

−
∫︁ 𝐻(𝑥)

0

𝜇(𝐻(𝑥′))𝑑𝐻(𝑥′) + 𝜇(𝐻(𝑥))𝐻(𝑥) = −
∫︁ 𝐻(𝑥)

0

𝜇(𝐻(𝑥′))𝑑𝐻(𝑥′) +

∫︁ 𝐻(𝑥)

0

𝑑[𝜇(𝐻(𝑥′))𝐻(𝑥′)]

= −
∫︁ 𝐻(𝑥)

0

𝜇𝑑𝐻 +

∫︁ 𝐻(𝑥)

0

𝑑[𝜇𝐻] =

∫︁ 𝜇(𝐻(𝑥))

0

𝐻(𝑥′)𝑑𝜇(𝐻(𝑥′)).

If we sum this over all the dipoles in the block, we get∫︁ 𝑀(𝐻(𝑥))

𝑀(0)

𝐻(𝑥′)𝑑𝑀(𝐻(𝑥′)). (9.15)

Therefore, 𝑑𝐸 = 𝐻𝑑𝑀 if only the magnetization (the total dipole moment
∑︀
𝜇) is

changed among the work coordinates.

Q9-3 [Entropic equation of state]
Suppose we know the following equations of state of a gas:

𝑇 =
√︀
𝐸/𝑉 , 𝑃 = 𝐸/𝑉. (9.16)
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Find 𝑆 = 𝑆(𝐸, 𝑉 ) up to an additive constant that you cannot fix.

Solution.
Let us write down 𝑑𝑆 (i.e., the Gibbs relation)

𝑑𝑆 =
1

𝑇
𝑑𝐸 +

𝑃

𝑇
𝑑𝑉. (9.17)

Introducing the given equations of state, we obtain

𝑑𝑆 =
𝑉 1/2

𝐸1/2
𝑑𝐸 +

𝐸1/2

𝑉 1/2
𝑑𝑉. (9.18)

Since 𝑆 is a state function, for example, 𝑆(𝐸, 𝑉 ) − 𝑆(1, 1) does not depend on the
integration paths along which we integrate this differential form from (𝐸, 𝑉 ) = (1, 1)
to (𝐸, 𝑉 ). Therefore, let us use a convenient path that is piecewise parallel to the
coordinate axes. First, let us go from 𝐸 = 1 to 𝐸 along 𝑉 = 1, and then, we go from
𝑉 = 1 to 𝑉 along 𝐸 = constant:

𝑆(𝐸, 𝑉 )− 𝑆(1, 1) =
∫︁ 𝐸

1

1

𝐸1/2
𝑑𝐸 +

∫︁ 𝑉

1

𝐸1/2

𝑉 1/2
𝑑𝑉 = 2(𝐸1/2 − 1) + 2𝐸1/2(𝑉 1/2 − 1).

(9.19)
In the first integral 𝑉 is fixed at 1, and in the second 𝐸 is fixed at its final value.
Thus, we have obtained

𝑆(𝐸, 𝑉 ) = 2𝐸1/2𝑉 1/2 + const. (9.20)

Notice that ‘miraculously’ the term dependent on the starting position is cleanly
separated out as a constant term. [This is, of course, guaranteed by a Maxwell’s
relation. You’d better check this.]
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Discussion 5

We discuss basic thermodynamics (+ linear algebra we need for understanding ele-
mentary quantum mechanics).

D5.1* [How to kill Thomson?]207

In a very long thin cylinder is a gas (see Fig. 9.10). We assume that the cylinder
is diathermal and everything is performed under constant temperature in a uniform
gravitational field. Initially,
(I) the cylinder is horizontal. Then,
(II) the cylinder is rotated to a vertical position (slowly). Due to the gravity the top
portion becomes thin.
(III) We push in the piston till the pressure at the piston is the same as in (I). Then,
(IV) the system is rotated back to the original horizontal position with the piston
position fixed relative to the cylinder.
(V) After the gas density becomes uniform, let us allow the system to do work till
the pressure at the piston becomes identical to that in (I).

(I)

(II) (III)

(IV)
(V)

Figure 9.10: Let us kill Thomson!

Thus, we have completed a cycle. Since, the work we do in (III) is less than that
we gain from (V) → (I), we have killed Thomson!208

Is this OK?

207Taken with slight modification from H. Tasaki Thermodynamics (Baifukan 2000).
208Of course, you should clearly recognize that what we now call Thomson’s principle was a

special case of the original Clausius’ principle (according to him, heat at 𝑇 =∞ is work), and that
Thomson failed to formulate thermodynamics.
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D5.2 [Adiabatic curves]
On the 𝑃𝑉 -diagram of any gas, two distinct adiabatic curves never cross. Demon-
strate this. [This is almost a trivial question.]

Solution.
Look at the ‘triangular’ region surrounded by a high temperature isotherm and two
adiabats in Fig. 9.11.

isotherm

isotherm

ad
iab
at

a
d
ia
b
a
t

P

V
Figure 9.11: Black curves are isotherms (𝑇 const), and red curves are adiabats (actually, 𝑆
const). In this diagram, two adiabats cross, but such crossing never occurs.

If we go around this cycle in the clockwise direction.

−
∮︁
𝑃𝑑𝑉 = − the area surrounded by these three curves < 0, (9.21)

which is the work gained by the gas, but it is negative. That is, it can perform work
using a single heat bath, violating Kelvin’s law.

D5.3 [Exact and not exact differentials]
Consider a function 𝑓 defined on a region 𝐷 ⊂ R𝑛. If its gradient is well defined
on 𝐷, we say 𝑓 is (strongly) differentiable.209 We can write the first differential of 𝑓
as

𝑑𝑓 = grad 𝑓 · 𝑑𝑥, (9.22)

where 𝑥 ∈ 𝐷 is an 𝑛-vector (independent variables 𝑥1, · · · , 𝑥𝑛).
Let 𝐶 be any continuous curve in 𝐷 connecting 𝑥1 and 𝑥2. Then,

𝑓(𝑥2)− 𝑓(𝑥1) =

∫︁
𝐶

grad 𝑓 · 𝑑𝑥 (9.23)

does not depend on 𝐶. Thus, for any closed curve 𝐶 in 𝐷∮︁
𝐶

grad 𝑓 · 𝑑𝑥 = 0. (9.24)

209When we say a function is differentiable, it is always in this (strong) sense throughout these
lectures. See Section 17.
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If 𝑔 = (𝑔1, · · · , 𝑔𝑛) is a differentiable vector, the Gauss-Stokes-Green theorem tells us for any
2-surface 𝐴 ∫︁

𝐴

∑︁
𝑖<𝑗

(𝜕𝑖𝑔𝑗 − 𝜕𝑗𝑔𝑖)𝑑𝑥𝑖𝑑𝑥𝑗 =
∫︁
𝜕𝐴

∑︁
𝑖

𝑔𝑖𝑑𝑥𝑖. (9.25)

Therefore, if the integral from point 𝑃 to 𝑃 ′ of 𝜀 =
∑︀

𝑖 𝑔𝑖𝑑𝑥𝑖 is independent of the paths
connecting these two points in a domain 𝐷 (without a hole, or more precisely, contractible
to a point), then210

𝜕𝑖𝑔𝑗 = 𝜕𝑗𝑔𝑖. (9.26)

If 𝑓 is twice differentiable (i.e., all the first order partial derivatives of 𝑓 are
differentiable), then for any 2-surface 𝐴 in 𝐷 such that 𝜕𝐴 = 𝐶 (Gauss-Stokes-
Green theorem)∮︁

𝐶

grad 𝑓 · 𝑑𝑥 =

∫︁
𝐴

∑︁
𝑖<𝑗

(︂
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
− 𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖

)︂
𝑑𝑥𝑖𝑑𝑥𝑗 = 0. (9.27)

This is true for any closed curve 𝐶 in 𝐷, so we must conclude (called Young’s
theorem) in 𝐷

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
. (9.28)

This is called a Maxwell’s relation in thermodynamics as we will study in detail
later.211

The first law of thermodynamics implies that the energy form 𝑑𝐸 is closed (so the
formulas corresponding to (9.28) holds).

(1) Consider
𝜀 = 𝑦2𝑑𝑥+ 2𝑥(𝑦 + 1)𝑑𝑦. (9.29)

(i) Check that this is not closed.212

(ii) Integrate 𝜀 along 𝑦 = 𝑥2 from the origin to (1, 1).
(iii) Integrate 𝜀 along a part of a circle 𝑥2 + (𝑦 − 1)2 = 1 from the origin to (1, 1)

counterclockwisely.

Solution.

210Remark. If you know differential forms, you can say 𝜀 is closed (𝑑𝜀 = 0) and there is a
function 𝑔 such that 𝑑𝑔 = 𝜀 (i.e., 𝜀 is exact; Poincaré’s lemma).

211A 1-form 𝜔 satisfying 𝑑𝜔 = 0 is called a closed form. Thus, an exact form is a closed form (i.e.,
𝑑2 = 0). The converse is true on an orientable contractible domain (Poincaré’s lemma: if 𝑑𝜔 = 0,
there is 𝑓 such that 𝑑𝑓 = 𝜔).

212If you know differential forms, 𝑑𝜀 ̸= 0 is what you have to show. That is, check something like
(9.28).
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(i) We check the symmetry (9.28):

𝜕𝑦2

𝜕𝑦
= 2𝑦,

𝜕

𝜕𝑥
2𝑥(𝑦 + 1) = 2(𝑦 + 1), (9.30)

so 𝜀 is not closed.

Or more directly,

𝑑𝜀 = 2𝑦𝑑𝑦 ∧ 𝑑𝑥+ 2(𝑦 + 1)𝑑𝑥 ∧ 𝑑𝑦 = [2(𝑦 + 1)− 2𝑦]𝑑𝑥 ∧ 𝑑𝑦 ̸= 0. (9.31)

(ii) Let us parameterize the curve as 𝑥 = 𝑡 and 𝑦 = 𝑡2 (𝑡 ∈ [0, 1]).213 The integral
reads∫︁

𝑦=𝑥2 for 𝑥=0→1

[𝑦2𝑑𝑥+ 2𝑥(𝑦 + 1)𝑑𝑦] =

∫︁ 1

0

𝑑𝑡 [𝑡4𝑑𝑡+ 2𝑡(𝑡2 + 1)2𝑡𝑑𝑡] (9.32)

=

∫︁ 1

0

𝑑𝑡 (5𝑡4 + 4𝑡2) = 1 + 4/3 = 7/3 ≈ 2.33.

(9.33)

(iii) We set 𝑥 = sin 𝑡, 𝑦 = 1− cos 𝑡 (𝑡 ∈ [0, 𝜋/2]):∫︁ 𝜋/2

0

[(1− cos 𝑡)2 cos 𝑡𝑑𝑡+ 2 sin 𝑡(2− cos 𝑡) sin 𝑡𝑑𝑡] (9.34)

=

∫︁ 𝜋/2

0

𝑑𝑡 [4− cos 𝑡− 6 cos2 𝑡+ 3 cos3 𝑡] (9.35)

= 2𝜋 − 1− 6× 𝜋

4
+ 3× 2

3
=
𝜋

2
+ 1 ≈ 2.57. (9.36)

(2) Consider
𝜀 = 𝑦2𝑑𝑥+ 2𝑥𝑦𝑑𝑦. (9.37)

(i) Check that this is closed.
(ii) Integrate 𝜀 along 𝑦 = 𝑥2 from the origin to (1, 1).
(iii) Integrate 𝜀 along a part of a circle 𝑥2 + (𝑦− 1)2 = 1 from the origin to (1, 1).

Needless
to say, you expect the answer agrees with that to (ii).

(iv) It is easy to see 𝜀 = 𝑑(𝑥𝑦2), so any integral of 𝜀 from the origin to (𝑥, 𝑦) is
just 𝑥𝑦2 irrespective of the actual integration path.

Solution.
(i) We check the symmetry (9.28):

𝜕𝑦2

𝜕𝑦
= 2𝑦,

𝜕

𝜕𝑥
2𝑥𝑦 = 2𝑦, (9.38)

so 𝜀 is closed.213You can simply replace 𝑦 with 𝑥2 in the integral to get the answer more easily in this case.
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Or more directly,

𝑑𝜀 = 2𝑦𝑑𝑦 ∧ 𝑑𝑥+ 2𝑦𝑑𝑥 ∧ 𝑑𝑦 = [2𝑦 − 2𝑦]𝑑𝑥 ∧ 𝑑𝑦 = 0. (9.39)

(ii) Let us parameterized the curve as 𝑥 = 𝑡 and 𝑦 = 𝑡2 (𝑡 ∈ [0, 1]). The integral
reads ∫︁

𝑦=𝑥2 for 𝑥=0→1

[𝑦2𝑑𝑥+ 2𝑥𝑦𝑑𝑦] =

∫︁ 1

0

𝑑𝑡 [𝑡4𝑑𝑡+ 2𝑡(𝑡2)2𝑡𝑑𝑡] (9.40)

=

∫︁ 1

0

𝑑𝑡 5𝑡4 = 1.

(9.41)

(iii) We set 𝑥 = sin 𝑡, 𝑦 = 1− cos 𝑡 (𝑡 ∈ [0, 𝜋/2]):∫︁ 𝜋/2

0

[(1− cos 𝑡)2 cos 𝑡𝑑𝑡+ 2 sin 𝑡(1− cos 𝑡) sin 𝑡𝑑𝑡] (9.42)

=

∫︁ 𝜋/2

0

𝑑𝑡 [2− cos 𝑡− 4 cos2 𝑡+ 3 cos3 𝑡] (9.43)

= 𝜋 − 1− 4× 𝜋

4
+ 3× 2

3
= 1. (9.44)

(iv) 𝑥𝑦2(𝑥 = 𝑦 = 1)− 𝑥𝑦2(𝑥 = 𝑦 = 0) = 1, of course.

(3)* Let us ‘prove’ that under constant volume the pressure of any material is inde-
pendent of temperature. The demonstration goes as follows:

The heat form 𝑑𝑄 satisfies, according to the first law of thermodynamics,

𝑑𝑄 = 𝑑𝐸 + 𝑃𝑑𝑉. (9.45)

This implies
𝜕𝑄

𝜕𝑇

⃒⃒⃒⃒
𝑉

=
𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑉

,
𝜕𝑄

𝜕𝑉

⃒⃒⃒⃒
𝑇

= 𝑃 +
𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

. (9.46)

Therefore,
𝜕2𝐸

𝜕𝑉 𝜕𝑇
=
𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

+
𝜕2𝐸

𝜕𝑇𝜕𝑉
. (9.47)

This implies (𝜕𝑃/𝜕𝑇 )𝑉 = 0. The result obviously contradicts the ideal gas law.
Why?

Solution.
To go from (9.46) to (9.47) the closedness of 𝑑𝑄 is assumed, but we know heat is
path dependent, so Young’s theorem (Maxwell’s relation) cannot be used.
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D5.4 [Very elementary questions]214

(1) Aluminum has a density 2700 kg/m3 at 300 K under 1 atm. Its isothermal com-
pressibility 𝛽 is 0.01385 GPa−1. Assuming the compressibility is constant, estimate
the work needed to compress 1 kg of aluminum block from 1 atm to 500 atm?

(2) Ammonia gas under 1 atm at 300 K flows into a heating pipe with a flow speed of
41 cm3/s. The pipe contains a 100 Ω resistor carrying an electric current of 50 mA.
The flowing ammonia gas comes out at temperature 304.1 K. What specific heat can
you observe from this (and obtain it in J/K·mol)?

(3) The internal energy of one mole of a gas is given by

𝐸 =
3

2
𝑅𝑇 − 𝑎

𝑉
, (9.48)

where 𝑎 is a positive constant. Let us adiabatically freely expand this gas from
volume 𝑉1 to volume 𝑉2. What is the final temperature 𝑇2, if the initial temperature
is 𝑇1?

The parameter 𝑎 describes the effect of attractive interactions among gas particles.
Is your result consistent with this meaning of the parameter 𝑎?

Solution.
(1) The work 𝑊 we must supply satisfies

𝑑𝑊 = −𝑃𝑑𝑉 = −𝑃 𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

𝑑𝑃 (9.49)

According to the definition

𝛽 = − 1

𝑉

𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

, (9.50)

and we may assume this to be constant, so we may use the following approxima-
tion:

𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

= −𝛽𝑉0, (9.51)

where 𝑉0 is the volume under 1 atm, which is (in m3)

𝑉0 = 1/2700. (9.52)

Therefore,

𝑊 = 𝛽𝑉0

∫︁ 𝑃1

𝑃0

𝑃𝑑𝑃 =
1

2
𝛽𝑉0(𝑃

2
1 − 𝑃 2

0 ) =
1

2
× (0.01385× 10−9)× 1

2700
(5× 107)2

= 6.4 J. (9.53)

214Adapted from Moor’s Physical Chemistry.
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(2) Everywhere the pressure is constant, so the specific heat we obtain from this
experiment is a specific heat under constant pressure 𝐶𝑃 . The flow rate in moles
is

41/(22.41× 103(300/273)) = 1.66× 10−3 mol/s. (9.54)

The heat energy introduced in one sec is 𝐼2𝑅 = 0.052 × 100 = 0.25 W, and the
temperature increase due to this is 4.09 K. Therefore,

𝐶𝑃 =
0.25

1.66× 10−3 × 4.09
= 0.0368× 103 = 37 J/K·mol. (9.55)

(3) There is no input of heat nor work, so 𝐸 must be constant:

3

2
𝑅𝑇1 −

𝑎

𝑉1
=

3

2
𝑅𝑇2 −

𝑎

𝑉2
. (9.56)

Therefore,

𝑇2 = 𝑇1 +
2𝑎

3𝑅

(︂
1

𝑉2
− 1

𝑉1

)︂
. (9.57)

We see the temperature decreases by expansion. Since volume expansion results
in the increase of interparticle distances, the potential energy goes up, because the
interaction is attractive. Therefore, the kinetic energy must go down, resulting in
cooling. The effect is actually small; doubling the volume may give you order of 0.1
K temperature decrease for usual gases.
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Exercise 5

E5.1 [Disparate time scales; easy question but important].
We organisms live, taking advantage of miracles (extremely rare events). Our bio-
logical time (increment) scale is 1 msec and the molecular time scale is 1 fs. Suppose
you can throw 40 coins (assume all are fair) at once every 1 ps. How many times can
you experience ‘all up simultaneously’ in 1 s on the average? If you do the throwing
once every second, how many years do you expect to take for all the 40 coins to ex-
hibit heads simultaneously? [This is an easy question; only I wish you to remember
the vast time scale difference between micro and macro scales.]

Solution.
If every trial takes 1 ps, our microsystems can try 1012 times in one second. The
probability to have all H for 40 fair coins at once is one over 240 ≃ 1012. Thus,
on the average this ‘miracle’ can happen once every second. Thus, for us it is only
banal, but for an enzyme the event that it can promote a certain reaction could be
a miracle.

1012 s is about 32 ka, so with 30 thousand years we are pretty sure this happens.

E5.2 [Elementary problem].
One mole of an ideal gas expands adiabatically against the external constant pressure
𝑃0 = 1.7 atm. The gas is initially at temperature 𝑇1 = 273 K and the pressure is
3𝑃0 = 5.1 atm. After expansion the gas reaches a final equilibrium state. You may
assume that the gas is an ideal monatomic gas. What is the final temperature 𝑇2?

Solution.
The work done by the gas is 𝑃0(𝑉2 − 𝑉1), where 𝑉1 is the initial volume and 𝑉2 is
the final volume. The final pressure must be 𝑃0, so 3𝑃0𝑉1 = 𝑅𝑇1 and 𝑃0𝑉2 = 𝑅𝑇2.
Since the system is adiabatic,

Δ𝐸 = −𝑃0(𝑉2 − 𝑉1). (9.58)

The internal energy of an ideal gas is directly related to its temperature, so

Δ𝐸 = 𝐶𝑉 (𝑇2 − 𝑇1). (9.59)

These formulas imply
𝑅𝑇1/3−𝑅𝑇2 = 𝐶𝑉 (𝑇2 − 𝑇1). (9.60)

Therefore, noting that 𝐶𝑉 = (3/2)𝑅,

𝑇2 =
𝑅 + 3𝐶𝑉

3(𝑅 + 𝐶𝑉 )
𝑇1 =

1 + 9/2

3(5/2)
× 273 =

11

15
× 273 = 200.2 (9.61)

That is, 200 K.
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E5.3 [Reviewing the existence of entropy].
Let us take an ideal gas system consisting of 𝑛 moles of point particles (monatomic
gas) and demonstrate the existence of entropy 𝑆 for this system. The convenient
thermodynamic space for this system is spanned by the internal energy 𝐸 and the
volume 𝑉 . Notice that for this system the reversible infinitesimal work has the ex-
pression: 𝑑′𝑊 = −𝑃𝑑𝑉 , where 𝑃 is the pressure.
(1) The internal energy 𝐸 of this system depends only on the temperature 𝑇 . How
can you justify this statement? [Hint: a trivial question, so do not think too much.
Go back to the kinetic theory. You could answer (1) and (2) at once.]
(2) Let 𝐶𝑉 be the constant volume specific heat of this ideal gas (don’t forget that
it is 𝑛 moles) defined by 𝑑𝐸/𝑑𝑇 = 𝐶𝑉 . Compute it. You must know the answer,
so you must be able to derive it from what we have learned up to this point in this
course. [Hint: 𝐸 is the total energy of the gas. What is it as a function of 𝑇?]
(3) In the figure below (Fig. 9.12; cf. Fig. 9.7) choose a point P at (𝐸0, 𝑉0). The
work coordinate (i.e., 𝑉 in our case) of the vertical line L is 𝑉 .

E

V

L

P
E

V

0

0

Q

V

Figure 9.12: The red curve is the adiabatic and reversible process starting from P. Q is unique
on L according to Planck’s law.

You can reach Q reversibly and adiabatically from P. Explain why there is no point
other than Q on L that can be reached from P adiabatically and reversibly.
(4) Find the 𝐸 coordinate of Q in terms of 𝑉 , 𝑉0 and 𝐸0.
(5) The surface (the red curve in Fig. 9.12) consisting of points (= equilibrium states)
that may be reached from P reversibly and adiabatically should be described by a
relation 𝑓(𝐸, 𝑉 ) = constant, where 𝑓 is an appropriate function. Find or choose
such a function 𝑓 . (You should have virtually obtained this in (4).)215 Show that
different such curves do not cross (that is, 𝑓(𝐸, 𝑉 ) = 𝑐1 and 𝑓(𝐸, 𝑉 ) = 𝑐2 ̸= 𝑐1 do
not have any common point), and also that each curve defines a function of 𝑉 (i.e.,
there is no overhang; cf. Fig. 9.8).
(6) Thus, you have constructed ‘isentropic surfaces’ 𝑓(𝐸, 𝑉 ) = const., and you may

215We define 𝑑𝑆 to be proportional to 𝑑′𝑄 without any change of work coordinates 9.25, so 𝑆
must be extensive. That is, even if you double the system size 𝐸 → 2𝐸, 𝑉 → 2𝑉 , 𝐶𝑉 → 2𝐶𝑉 ,
𝑛→ 2𝑛, the formula for 𝑑𝑆 should be intact with doubling the increments 𝑑𝑆, 𝑑𝐸 and 𝑑𝑉 . If you
take this condition into account, there is almost no freedom of choice for 𝑓 , but this will not be
required here, so invent your ‘𝑆’ freely.

197



define your entropy as 𝑆 = 𝑓(𝐸, 𝑉 ). Show that if the ideal gas gets energy only
through thermal contact, then you can write the transferred heat as 𝑑′𝑄 = Θ𝑑𝑆,
where Θ is proportional (perhaps identical) to 𝑇 with 𝑆 being your entropy.

Solution.
(1) The average particle energy (monatomic ideal gas!) is (3/2)𝑘𝐵𝑇 . Since there is
no interaction among particles, the energy of the system consists of kinetic energy
alone. Thus, the law of large numbers tells us that the total energy is very closed to
(3/2)𝑘𝐵𝑇 times the number of particles 𝑛𝑁𝐴. Thus, 𝐸 = 3𝑛𝑅𝑇/2.

(2) We have almost answered the question in (1): 𝐶𝑉 = 3𝑛𝑅/2. Notice that such a
result cannot be obtained by thermodynamics.

(3)
(a) If we could reach from P reversibly and adiabatically to a point B above Q (cf.
Fig. 9.7), then we can go to Q from B reversibly and adiabatically, violating Planck’s
law.
(b) If we could reach from P adiabatically to a point A below Q, then we can adia-
batically reach A from Q, violating Planck’s law again.
Therefore there is at most one point on L that can be reached from P reversibly and
adiabatically. Notice that ‘reversibility’ is crucial.

(4) Since the process is quasistatic and adiabatic, we can change the system energy
only by modifying the volume 𝑉 . As noted at the beginning 𝑑′𝑊 = −𝑃𝑑𝑉 is the
only way to change 𝐸. Therefore,

𝑑𝐸 = −𝑃𝑑𝑉 = −𝑛𝑅𝑇
𝑉

𝑑𝑉, (9.62)

but our coordinates are 𝐸 and 𝑉 , so we must write 𝑇 as a function of 𝐸 (and 𝑉 ,
generally speaking). (1) and (2) tell us that 𝑇 = 𝐸/𝐶𝑉 . Therefore,

𝑑𝐸 = −𝑛𝑅𝐸
𝐶𝑉 𝑉

𝑑𝑉, (9.63)

or
𝐶𝑉 𝑑 log𝐸 + 𝑛𝑅𝑑 log 𝑉 = 0. (9.64)

Integrating this, we get

𝐶𝑉 log𝐸 + 𝑛𝑅 log 𝑉 = const. (9.65)

This constant is determined by the ‘initial condition’ P:

𝐶𝑉 log𝐸0 + 𝑛𝑅 log 𝑉0 = const. (9.66)

Therefore,

𝐶𝑉 log
𝐸

𝐸0

+ 𝑛𝑅 log
𝑉

𝑉0
= 0. (9.67)
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Solving this, we get

𝐸 = 𝐸0(𝑉/𝑉0)
−𝑛𝑅/𝐶𝑉 = 𝐸0(𝑉/𝑉0)

−2/3 (9.68)

(5) For example, we may choose

𝑓(𝐸, 𝑉 ) = 𝐶𝑉 log𝐸 + 𝑛𝑅 log 𝑉. (9.69)

𝑓(𝐸, 𝑉 ) = const. implies 𝐸3/2𝑉 = constant. This is a monotone decreasing curve of
𝑉 , so there cannot be any overhang. 𝐸3/2𝑉 = 𝑐1 and 𝐸3/2𝑉 = 𝑐2 ̸= 𝑐1 cannot have
any common point, since these simultaneous equations cannot have any solution (or
if there were, obviously 𝑐1 = 𝑐2). Thus, 𝑓 foliates (or stratifies) the thermodynamic
space of the ideal gas.

(6) 𝑆 = 𝑓(𝐸, 𝑉 ) or my entropy is

𝑆 = 𝐶𝑉 log𝐸 + 𝑛𝑅 log 𝑉. (9.70)

Now, thermal contact means we cannot change 𝑉 . 𝐸 may be changed only through
transfer of heat 𝑑𝐸 = 𝑑′𝑄, so

𝑑𝑆 = 𝐶𝑉 𝑑 log𝐸 =
𝐶𝑉

𝐸
𝑑𝐸 =

1

𝑇
𝑑𝐸 =

1

𝑇
𝑑′𝑄. (9.71)

Here, you may perhaps say that I chose too convenient a function (knowing the
standard result). For example, I could invent my entropy 𝑆 as

𝑆 = 𝑓(𝐸, 𝑉 ) = log𝐸 +
2

3
log 𝑉. (9.72)

Now, quasiequilibrium thermal contact implies 𝑑𝐸 = 𝑑′𝑄, and 𝑑𝑉 = 0 (no work),
so

𝑑𝑆 =
1

𝐸
𝑑𝐸 =

1

𝐸
𝑑′𝑄 (9.73)

In our case 𝐸 ∝ 𝑇 , so, although in this case the temperature scale is not the standard
K scale, 𝐸 is still a respectable absolute temperature.

However, as noted in footnote 1, in reality, we must respect the extensivity of 𝑆.
Look at (9.72):

𝑑𝑆 =
1

𝐸
𝑑𝐸 +

2

3𝑉
𝑑𝑉 (9.74)

This unfortunately does not satisfy the ‘doubling invariance’ mentioned in the foot-
note: 𝑑𝑆 is intact under system doubling in this case. Therefore, ‘my’ choice is
actually ‘unthermodynamic.’

In contrast the choice (9.70) gives

𝑑𝑆 =
𝐶𝑉

𝐸
𝑑𝐸 +

𝑛𝑅

𝑉
𝑑𝑉. (9.75)
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Therefore, all the coefficients of differentials are intensive (invariant), and doubling
all the differential is consistent. That is, this formula is intact under doubling the
system size.
𝐸/𝐶𝑉 is 𝑇 in our case, so Θ = 𝑇 , actually in our case.
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10 Thermodynamics: General consequences

Summary
* What you should remember about thermodynamics is summarized.
* Under an adiabatic condition, spontaneous changes imply increasing entropy.
* Under an adiabatic condition, a system reaches equilibrium when its entropy be-
comes maximum (the principle of maximum entropy).
* There is a general logic to extend the results for adiabatic systems to non-adiabatic
systems. This gives you Clausius’ inequality.
* The crux of thermodynamic computation is to devise quasistatic processes.
* The efficiency to convert heat into work is bounded by a maximum value deter-
mined by the temperatures of the heat sources (Carnot’s theorem).
* If Δ𝑆 = 0, try to devise adiabatic reversible processes.
* 1 J/K·mol = 0.173 bits/molecule.

Key words
Clausius’ inequality, entropy maximization principle, equilibrium conditions, reversible
engine, Carnot’s theorem, heat pump, entropy of mixing

What you should be able to do
* To compute entropy changes for simple processes.
* Remember the key features of the ideal gas.
* To be able to compute the efficiencies of an ideal engine.
* To show that the reversible engine is the best engine.
* To estimate the entropy change due to various irreversible processes.
* To understand entropy change intuitively in terms of the number of Yes-No ques-
tions.
* To draw the general 𝐸 = 𝐸(𝑆) curve under constant work coordinates.

10.1 Summary of basic principles216

The basic laws of thermodynamics are the summary of the experiences of us macro-

216⟨⟨Nernst’s joke on the three principles⟩⟩ Kurt Mendelssohn writes, “When lecturing on
‘his’ heat theorem, Nernst was careful to point to an interesting numerical phenomenon concerning
the discovery of the three fundamental laws of thermodynamics. The first one had three authors,
Mayer, Joule and Helmholtz; the second had two, Carnot and Clausius; whereas the third was the
work of one man only, Nernst. This showed conclusively that thermodynamics was now complete
since the authorship of a hypothetical fourth law would have to be zero.” (The world of Walther
Nernst: the rise and fall of German Science 1864-1941 (ebook form from Plunket Lake Press, 2015;
the original 1973) Chapter 4.
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scopic organisms ([N] indicates the closest traditional ‘N-th law’):

[O] There is a state called an equilibrium state. Equilibrium states of a system may
be described in terms of thermodynamic coordinates (𝐸,𝑋𝑖), where 𝐸 is the internal
energy and 𝑋𝑖 are work coordinates. The equilibrium state exhibits partitioning-
rejoining invariance 9.4.
[I] The conservation of energy: Δ𝐸 = 𝑄 +𝑊 , or for infinitesimal changes 𝑑𝐸 =
𝑑′𝑄 − 𝑃𝑑𝑉 + 𝐵𝑑𝑀 + 𝑥𝑑𝑋;217 the variables appear in ‘conjugate pairs’: (−𝑃, 𝑉 ),
(𝐵,𝑀), (𝑥,𝑋) (for a generic pair), etc. See 9.14.
[II] The thermodynamic space is foliated into 𝑆 = constant (hyper)surfaces. With
adiabatic quasistatic (thus reversible) processes we cannot get out of a given 𝑆 =
const. surface. With work only, Δ𝑆 < 0 never happens; to reduce entropy we
definitely need cooling. For a quasistatic process the Gibbs relation holds: 𝑑𝐸 =
𝑇𝑑𝑆 +

∑︀
𝑖 𝑥𝑖𝑑𝑋𝑖. Often 𝑑𝑆 = 1

𝑇
𝑑𝐸 + 𝑃

𝑇
𝑑𝑉 − 𝑥

𝑇
𝑑𝑋 + · · · is convenient. See 20.3.

[III] 𝑆 = 0 in the limit 𝑇 → 0. This is the third law we will encounter in 16.5.
[IV] Thermodynamic variables are either extensive or intensive. The total amount
of an extensive quantity of a compound system is the sum of the extensive quantities
of the subsystems (additivity) 9.5.

Practically,
(i) Thermodynamics can be used to compute the state function change caused by
any process connecting an initial equilibrium state A and a final equilibrium state
B.
(ii) To this end we devise a convenient quasistatic path from A to B in the thermo-
dynamic space along which we can use the Gibbs relation mentioned in [II] above.

10.2 Entropy maximization principle
Entropy cannot be reduced by any adiabatic process. Therefore, if an equilibrium
state changes into another equilibrium state through modification of only the work
coordinates under an adiabatic condition,218 the entropy of the system generally in-
creases.

Suppose the initial system is in equilibrium but with some constraints (say, com-
partmentalized with internal walls). If we remove the constraints, the system would
evolve to a new equilibrium state (Fig. 10.1). Since the change is spontaneous,
generally, this final state has a larger entropy. This is the principle of increasing

217⟨⟨Standard state function symbols⟩⟩ We stick to the standard notations:
𝐸: internal energy, 𝑆: entropy, 𝑇 : temperature, 𝑃 : pressure, 𝑉 : volume, 𝐵 (𝐵 or ℎ): magnetic
field, 𝑀 (𝑀): magnetization, 𝜇: chemical potential, 𝑁 : number of particles. We use𝑋 for a generic
work coordinate (extensive quantity) and 𝑥 for its intensive conjugate (with respect to energy).

218‘Adiabatic’ implies no exchange of heat. Then, the reader may infer that thermal contact
with a single heat bath is admissible if there is no net heat exchange. This is correct. Notice that
‘adiabatic condition’ does not mean 𝑅→ 0 (external noise zero) limit (Section 12).
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entropy.219

S SS

initial equilibrium

with constraints

final equilibrium 

after constraint removal

1 2

generally, 

entropy increases

Figure 10.1: Initially, assume that the system is in equilibrium in the presence of a wall, which
may be understood as a symbol of a certain constraint. The total entropy of this system as a whole
(i.e., as a compound system 9.11) is 𝑆1 + 𝑆2. The whole system is under an adiabatic condition.
When the wall is removed (i.e., the constraint is removed), the system evolves to a new equilibrium
state with a larger entropy spontaneously (irreversibly). That is, the final entropy 𝑆 must satisfy
𝑆 ≥ 𝑆1 + 𝑆2 (the principle of increasing entropy).

A spontaneous change in an adiabatic system increases its entropy, so if the sys-
tem entropy reaches the maximum under a given constraint, the system reaches its
equilibrium state under the constraint. This is the entropy maximization principle.220

Thus, the change 𝛿𝑆 of the system entropy due to any virtual change (perturbation)
of the system tells us that (stability and evolution criteria):

𝛿𝑆 < 0 ⇐⇒ the state is thermodynamically stable, (10.1)

𝛿𝑆 > 0 ⇐⇒ the state spontaneously evolves. (10.2)

Therefore, the second law gives us a variational principle in terms of entropy to find
a stable equilibrium state for an adiabatic system.

In the above description of the stability criterion, we mentioned ‘virtual changes
or perturbations’.221 In reality, however, they are not virtual in most cases, but are
actually produced spontaneously by thermal fluctuations. Thus, as long as thermal

219However, this does not claim the system entropy increases at every intermediate time during
the evolution process, because thermodynamic entropy is defined only for equilibrium states.

220⟨⟨Remark on entropy max principle⟩⟩ Astute readers would say that under an adiabatic
condition, if entropy is maximum, then the state is in equilibrium, but the converse: if equilibrium,
its entropy is maximum is not demonstrated. This is true. However, in the usual thermodynamics,
this converse is postulated.

Generally speaking, even if thermodynamics tells us that a process is not forbidden, whether
the system actually spontaneously realizes the process or not is a matter of kinetics or dynamics,
and, logically speaking, thermodynamics cannot say anything about it. Still, in the overwhelming
majority of cases thanks to thermal fluctuations, such a process actually occurs spontaneously.
Therefore, we may assume that the entropy max condition is equivalent to the equilibrium condition
under adiabatic conditions.

221𝛿𝑆 up to this point is due to perturbations that are uniform throughout the system. However,
as will be noted later in Section 19, the perturbations can be spatially non-uniform (can be localized
in small regions).
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fluctuations are not suppressed, whenever the system entropy can increase, the sys-
tem evolves to maximize its entropy; behind any variational principle are fluctuations
to substantiate it.

10.3 Entropy is concave
Let us join two systems made of the same substances to make a single system. The
entropy maximization principle tells us that the entropy of the resultant compound
system is given by

𝑆(𝐸,𝑋) = max[𝑆(𝐸1, 𝑋1) + 𝑆(𝐸2, 𝑋2)], (10.3)

where the maximum is taken over all the partitions of 𝐸 and 𝑋 between the two
systems as 𝐸 = 𝐸1+𝐸2 and 𝑋 = 𝑋1+𝑋2 (𝑋 collectively denotes work coordinates).
This implies with the aid of the extensivity of 𝑆 (i.e., 𝑆(𝛼𝐸, 𝛼𝑋) = 𝛼𝑆(𝐸,𝑋))

𝑆((1− 𝛼)𝐸 + 𝛼𝐸 ′, (1− 𝛼)𝑋 + 𝛼𝑋 ′) ≥ (1− 𝛼)𝑆(𝐸,𝑋) + 𝛼𝑆(𝐸 ′, 𝑋 ′) (10.4)

for any 𝛼 ∈ [0, 1]. That is, 𝑆 is a concave function (its graph is convex upward)
of all the thermodynamic coordinates (see Fig. 10.2A). This implies that the local
stability criterion (10.1) holds globally as well (under the adiabatic condition).

x y
(1−α)x+αy

f(x)

f(y)
f((1−α)x+αy)

(1−α)f(x)+αf(y)

x y
(1−α)x+αy

f(x)

f(y)

f((1−α)x+αy)

(1−α)f(x)+αf(y)

concave

function

convex

function

A B

Figure 10.2: An example of the concave function A and that of the convex function B are
illustrated; the resultant inequality for B is called Jensen’s inequality. The black dots correspond
to the right-hand sides of (10.4) and (10.8), respectively.

10.4 Internal energy minimization principle
The entropy maximization principle implies for any deviation Δ𝑋 of 𝑋 from the
equilibrium value222

𝑆(𝐸,𝑋𝑒𝑞)− 𝑆(𝐸,𝑋𝑒𝑞 +Δ𝑋) ≥ 0. (10.5)

222Since entropy is defined only for equilibrium states, this means, precisely speaking, that if,
with some constraints, we make a new equilibrium state with 𝑋 +Δ𝑋 and 𝐸, then (10.5) holds.

204



Therefore, since 𝑆 is an increasing function of energy, we can increase the internal
energy 𝐸 in the second term to 𝐸 ′ ≥ 𝐸 under the 𝑋 = 𝑋𝑒𝑞+Δ𝑋 condition to satisfy

𝑆(𝐸,𝑋𝑒𝑞)− 𝑆(𝐸 ′, 𝑋𝑒𝑞 +Δ𝑋) = 0. (10.6)

This implies that under the constant entropy condition, if an extra constraint to fix
𝑋 at 𝑋𝑒𝑞 +Δ𝑋 is removed, then the internal energy surely decreases in equilibrium,
since 𝐸 ≤ 𝐸 ′. That is, if the internal energy is minimized under a constant entropy
condition, the system must be in equilibrium.

10.5 Internal energy is convex
Let us join two systems made of the same substances to make a single system.
The energy minimization principle tells us that the internal energy of the resultant
compound system is given by

𝐸(𝑆1 + 𝑆2, 𝑋) = min[𝐸(𝑆1, 𝑋1) + 𝐸(𝑆2, 𝑋2)], (10.7)

where the minimum is taken over all the partitions of 𝑆 and 𝑋 between the two
systems as 𝑆 = 𝑆1 + 𝑆2 and 𝑋 = 𝑋1 + 𝑋2. This implies with the aid of the
extensivity of 𝐸

𝐸((1− 𝛼)𝑆 + 𝛼𝑆 ′, (1− 𝛼)𝑋 + 𝛼𝑋 ′) ≤ (1− 𝛼)𝐸(𝑆,𝑋) + 𝛼𝐸(𝑆 ′, 𝑋 ′) (10.8)

for any 𝛼 ∈ [0, 1]. That is, 𝐸 is a convex function (its graph is convex downward) of
all the variables (= entropy and work coordinates) (see Fig. 10.2B).

Let us extend our inequalities for thermally isolated systems to thermally non-
isolated systems. The following argument exemplifies a standard strategy that we
use repeatedly throughout statistical thermodynamics.

10.6 Extension to non-adiabatic systems
Let us extend our inequalities for thermally isolated systems to thermally non-
isolated systems. The following argument is a standard strategy that we use re-
peatedly throughout statistical thermodynamics. To consider a system which is not
isolated, that is, a system which is interacting with its environment, we construct
a bigger isolated system composed of the system itself (I) and its interacting envi-
ronment (II) (Fig. 10.3). We assume that both systems are macroscopic, so we may
safely ignore the surface effect.
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I
II

reservoir

Figure 10.3: The system II is the environment for the system I we are interested in. II is
sufficiently large so even if changes in I are irreversible, II remains infinitesimally close to equilibrium
(i.e., any change in I causes a quasistatic change in II).

The environment is stationary (in equilibrium), whose intensive thermodynamic
variables such as temperature are kept constant. To realize this we take a sufficiently
big system (called a reservoir like a thermostat or a chemostat) as the environmental
system II.223 Even if a change is a rather drastic one for the system I itself, it would
be negligible for the system II, because it is huge. Therefore, we may assume that
any process in the system I is a quasistatic process for system II.

10.7 Clausius’ inequality
The entropy change of the compound system I+II is given by the sum of the entropy
change of the system I denoted by Δ𝑆I and that of the environment II denoted by
Δ𝑆II. Since the whole system I + II is adiabatic, a natural process occurring in the
whole system must satisfy (see 10.2)

Δ𝑆I +Δ𝑆II ≥ 0. (10.9)

Let 𝑄 (> 0) be the heat transferred to the system I from the environment II. From
our assumption, we have

Δ𝑆II = −𝑄/𝑇𝑒, (10.10)

where 𝑇𝑒 is the temperature of the environment (system II). The minus sign is because
II is losing heat to I. Combining (10.9) and (10.10) yields the following inequality:

Δ𝑆I ≥ 𝑄/𝑇𝑒. (10.11)

This is Clausius’ inequality for non-adiabatic systems. This tells us when something
spontaneously happens with heat exchange allowed, the actual entropy change is
larger than that due to a reversible process. Of course, for adiabatic systems 𝑄
vanishes, so we recover the principe of maximum entropy 10.2.

223Usually, the amount of heat transferred from a system is obtained from its temperature and
heat capacity. Therefore, you might claim that if a system is huge, it would be impossible to mea-
sure its temperature change accurately, so consequently heat 𝑄 transferred may not be accurately
determined. In reality, we can use a thermometer and electric heater to construct a surface (ther-
mostat) that is maintained very accurately at a given temperature and we can measure the needed
electricity to maintain it to obtain 𝑄. Thus, virtually we can realize an ideal heat bath.
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If the change in I is reversible, then Δ𝑆I = 𝑄/𝑇𝑒 should hold; (10.11) implies that
‘excessive entropy’ has been produced in I by the irreversibility of the process.

10.8 Equilibrium conditions between two systems: energy exchange pos-
sible
As an application of the entropy maximization principle, let us study the equilibrium
conditions for two systems I and II interacting through various walls.

I II

Figure 10.4: The thick vertical segment denotes the wall that selectively allows the exchange of
a certain extensive quantity.

Consider a rigid impermeable wall which is diathermal. Thus, the two systems in
contact through this wall exchange energy (internal energy) in the form of heat. The
total entropy of the system 𝑆 is the sum of the entropy of each system 𝑆I and 𝑆II.
The total internal energy 𝐸 is also the sum of subsystem internal energies 𝐸I and 𝐸II
(extensivity). We isolate the compound system and ask the equilibrium condition
for the system. We should maximize the total entropy with respect to the variation
of 𝐸I and 𝐸II:

𝛿𝑆 =
𝜕𝑆I
𝜕𝐸I

𝛿𝐸I +
𝜕𝑆II
𝜕𝐸II

𝛿𝐸II =

(︂
𝜕𝑆I
𝜕𝐸I
− 𝜕𝑆II
𝜕𝐸II

)︂
𝛿𝐸I = 0, (10.12)

where we have used that 𝛿𝐸 = 0 or 𝛿𝐸I = −𝛿𝐸II. Hence, the equilibrium condition
is

𝜕𝑆I
𝜕𝐸I

=
𝜕𝑆II
𝜕𝐸II

, (10.13)

or 𝑇I = 𝑇II.

10.9 Equilibrium conditions between two systems: volume exchange pos-
sible
Consider a diathermal impermeable wall which is movable. In this case the two sys-
tems can exchange energy and volume. If we assume that the total volume of the
system is kept constant, the equilibrium condition should be

𝛿𝑆 =
𝜕𝑆I
𝜕𝑉I

𝛿𝑉I +
𝜕𝑆II
𝜕𝑉II

𝛿𝑉II =

(︂
𝜕𝑆I
𝜕𝑉I
− 𝜕𝑆II
𝜕𝑉II

)︂
𝛿𝑉I = 0, (10.14)
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and 𝑇I = 𝑇II, that is,
𝜕𝑆I
𝜕𝑉I

=
𝜕𝑆II
𝜕𝑉II

(10.15)

and 𝑇I = 𝑇II. Therefore, 𝑃I = 𝑃II is also required.

Remark If the wall is adiabatic, then it cannot exchange heat, so there is no way
to exchange entropy. This suggests that to use the Gibbs relation (9.10) directly is
convenient. 𝑃I = 𝑃II is the condition; we cannot say anything about the tempera-
tures.

10.10 Equilibrium system has its ‘individual’ heat bath
It is almost never emphasized but perhaps the most important characteristic of an
equilibrium macrosystem is that there is always a heat bath contact with which does
not alter the equilibrium system. I call it the private (or individual) heat bath for
the state.

Notice that a system attached to a heat bath cannot be described by any me-
chanics.224 Thus, we may say, in equilibrium at least, thermodynamics transcends
mechanics (quantum or not). Following the 19th and the 20th century tradition, we
still believe smaller scales are more basic without firm empirical supporting argu-
ments. Of course, this point of view may well be the correct way even empirically
to understand our world, we should be skeptical to be faithful to the fundamental of
science.

Thermodynamics through examples

Let us get familiar with thermodynamics through basic practice problems:

10.11 Mayer’s relation
Demonstrate Mayer’s relation: 𝐶𝑃 = 𝐶𝑉 + 𝑅, where 𝐶𝑃 is the constant pressure
molar specific heat and 𝐶𝑉 the constant volume molar specific heat of an ideal gas.

First of all, we must identify the quantities in terms of thermodynamic variables.
The specific heat under constant 𝑉 and constant 𝑃 are defined as

𝐶𝑉 =
𝜕𝑄

𝜕𝑇

⃒⃒⃒⃒
𝑉

, 𝐶𝑃 =
𝜕𝑄

𝜕𝑇

⃒⃒⃒⃒
𝑃

. (10.16)

224The traditional approach is to describe the heat bath as a much bigger isolated purely me-
chanical system. However, we must not forget that the larger the system the harder to maintain
it in isolation; there is no isolated macroscopic quantum system in the world. Needless to say, you
cannot enclose the system with a bigger pure mechanical system.
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The first law tells us 𝑑𝐸 = 𝑑′𝑄− 𝑃𝑑𝑉 , so

𝐶𝑉 =
𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑉

, 𝐶𝑃 =
𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑃

+ 𝑃
𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

. (10.17)

For an ideal gas 𝐸 is dependent only on 𝑇 (recall that 𝐸 is the kinetic energy of
unhindered molecular motion for idea gases), so 𝑑𝐸 = 𝐶𝑉 𝑑𝑇 . 𝑉 = 𝑅𝑇/𝑃 , so

𝐶𝑃 =
𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑃

+ 𝑃
𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

= 𝐶𝑉 +𝑅. (10.18)

Mayer obtained this relation with the aid of Mayer’s cycle (Fig. 10.5). Recall that
ideal gas has only kinetic energy which is uniquely determined by temperature as
𝐸 = 𝐶𝑉 𝑇 .

adiabatic

free expansion
irreversible

 and not on 

the PV-plane

V

P

P

VV

T

P2

1

1 2

1

2 3

AB

C

1

T2

T2

Figure 10.5: Mayer’s cycle consists of isobaric compression 1, constant volume heating 2, and
adiabatic free expansion (recall the law of constant temperature due to Gay-Lussac) 3.

Notice that 3 in Fig. 10.5 does not change 𝐸, so for the ideal gas A and C are at
the same temperature, say, 𝑇2 (recall the law of constant temperature 2.11 (ii)). Let
the temperature at B be 𝑇1. The work supplied by the isobaric compression process
1 is 𝑊 = 𝑃1(𝑉2 − 𝑉1). The heat is discarded during this process simultaneously:
𝐶𝑃 (𝑇2 − 𝑇1). During the process 2 heat 𝐶𝑉 (𝑇2 − 𝑇1) is absorbed. Therefore, for the
cycle as a whole, we have

0 = 𝑃1(𝑉2−𝑉1)+𝐶𝑃 (𝑇1−𝑇2)+𝐶𝑉 (𝑇2−𝑇1) = 𝑅(𝑇2−𝑇1)+𝐶𝑃 (𝑇1−𝑇2)+𝐶𝑉 (𝑇2−𝑇1).
(10.19)

That is, 𝑅− 𝐶𝑃 + 𝐶𝑉 = 0.

10.12 Poisson’s relation
Show that along an adiabatic quasistatic path 𝑃𝑉 𝛾 = const., where 𝛾 = 𝐶𝑃/𝐶𝑉 .
This is called Poisson’s relation.

The first law implies 𝑑𝐸 = −𝑃𝑑𝑉 (adiabatic and quasistatic!). Also 𝑑𝐸 = 𝐶𝑉 𝑑𝑇
(ideal gas). Therefore,

0 = 𝐶𝑉 𝑑𝑇 +𝑃𝑑𝑉 = 𝐶𝑉 𝑑(𝑃𝑉/𝑅)+𝑃𝑑𝑉 = (𝐶𝑉 /𝑅+1)𝑃𝑑𝑉 +(𝐶𝑉 /𝑅)𝑉 𝑑𝑃. (10.20)
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That is, 𝛾𝑑 log 𝑉 + 𝑑 log𝑃 = 0 with the aid of Mayer’s relation.

10.13 Reversible engine: Carnot’s theorem
Obtain the efficiency 𝜂 (see (10.22) for the definition) of a reversible heat engine,
and demonstrate that there is no engine more efficient than the reversible engine
(Carnot’s theorem).

A heat engine is a device that absorbs heat from a high temperature heat bath
(temperature 𝑇𝐻) and converts a portion into work. The remaining energy is dis-
carded to a low temperature heat bath (temperature 𝑇𝐿). See Fig. 10.6. Let 𝑄𝐻 and

Q

Q
W

T

TL

H

H

L

Figure 10.6: A heat engine operating between two heat baths. We assume the standard sign
convention seen from the engine (the circle in the figure). Thus, 𝑄𝐻 > 0, 𝑊 < 0 and 𝑄𝐿 < 0.

𝑄𝐿 be the heats the engine absorbs from the high and low temperature heat baths,
respectively, per one cycle, and 𝑊 the work the engine obtains per one cycle (we
expect 𝑄𝐻 > 0, 𝑄𝐿 < 0 and 𝑊 < 0). The first law implies (since the engine does
not produce energy)

𝑊 +𝑄𝐻 +𝑄𝐿 = 0. (10.21)

The efficiency of an engine is the ratio of the work the engine produces (the benefit
we get) to the heat it absorbs from the high-temperature reservoir (the expenditure
we pay). Therefore, we define the engine efficiency as (be careful with the sign
convention)

𝜂 ≡ |𝑊 |
𝑄𝐻

= − 𝑊

𝑄𝐻

= 1 +
𝑄𝐿

𝑄𝐻

. (10.22)

Let Δ𝑆𝐻 be the entropy increase of the engine in a single cycle due to the import of
heat from the high-temperature bath, and Δ𝑆𝐿 due to the import of heat from the
low-temperature bath. Clausius’ inequality (10.11) tells us that

Δ𝑆𝐻 ≥
𝑄𝐻

𝑇𝐻
, Δ𝑆𝐿 ≥

𝑄𝐿

𝑇𝐿
. (10.23)

Since the engine returns to the original state after a single cycle, Δ𝑆 = Δ𝑆𝐻+Δ𝑆𝐿 =
0:

0 = Δ𝑆𝐻 +Δ𝑆𝐿 ≥
𝑄𝐻

𝑇𝐻
+
𝑄𝐿

𝑇𝐿
⇒ 𝑄𝐻

𝑇𝐻
≤ −𝑄𝐿

𝑇𝐿
, (10.24)
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which implies 𝑇𝐿/𝑇𝐻 ≤ −𝑄𝐿/𝑄𝐻 . Thus, we have

𝜂 = 1 +
𝑄𝐿

𝑄𝐻

≤ 1− 𝑇𝐿
𝑇𝐻

. (10.25)

If the engine is reversible, it attains the maximum efficiency 𝜂 = 1 − 𝑇𝐿/𝑇𝐻 . This
statement is called Carnot’s theorem.225

10.14 Absolute temperature scale
Thomson saw in (10.25) a possibility of introducing the universal temperature scale
based solely on the thermodynamic principles free from any materials; he reached
the concept of the absolute temperature in terms of the maximum efficiency.

10.15 The original Carnot’s argument using the Carnot cycle of an ideal gas.226

Carnot conceived the following engine (the Carnot engine) which utilizes an ideal gas (in this
exposition, 1 mole of it) as its working substance (Fig. 10.7). This original demonstration of
Carnot’s theorem is much harder than the one we just saw, but may be a good elementary
thermodynamics exercise:
(i) The engine does work through expansion while absorbing heat from the high temperature
heat source (at 𝑇𝐻) (A→B in Fig. 10.7).
(ii) Then, it continues to expand while doing work and cools from 𝑇𝐻 to 𝑇𝐿 (B→C). Notice
that this portion was Watt’s novelty.
(iii) Next, the engine volume isothermally shrinks (i.e., some positive work is supplied to the
engine) while discarding heat to the low temperature heat source at 𝑇𝐿 (C→D).
(iv) Finally, the system is compressed adiabatically (again some positive work is supplied to
the engine) and its temperature goes up from 𝑇𝐿 to the original 𝑇𝐻 (D→A).

The work added to the system (engine) is

𝑊 = −
∮︁
𝐴𝐵𝐶𝐷𝐴

𝑃𝑑𝑉, (10.26)

so it is equal to (−1)× the area surrounded by the warped red-hsaded quadrangle ABCD in
Fig. 10.7. That is, the work done by the engine during its one cycle is the area of ABCD.

During the isothermal process A→B the engine does some work to the environment, but
its internal energy is constant, because this is an isothermal process for an ideal gas; the
work must be paid by the heat 𝑄𝐻 absorbed from the high temperature heat source at 𝑇𝐻 .
Therefore, (notice 𝑑𝐸 = 𝑑′𝑄− 𝑃𝑑𝑉 = 0)

𝑄𝐻 =

∫︁
𝐴→𝐵

𝑃𝑑𝑉 =

∫︁
𝐴→𝐵

𝑅𝑇𝐻
𝑉

𝑑𝑉 = 𝑅𝑇𝐻 log
𝑉𝐵
𝑉𝐴

> 0. (10.27)

225If 𝑇𝐻 = +∞, then the reversible efficiency is 1. Recall 9.19, according to Clausius, that work
is heat from a bath at 𝑇 =∞.

226⟨⟨Carnot’s original used the caloric theory⟩⟩ The actual original argument due to Carnot
relied on the caloric theory (which regarded heat as a substance called caloric), so the exposition
given here cannot literally be his original argument, but a correct transliteration was done by
Clausius. We need this demonstration to identify the absolute temperature introduced by the ideal
gas law and 𝜃 we introduced to relate heat and entropy change in Section 9.
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Figure 10.7: The Carnot cycle: AB and CD are quasistatic isothermal processes, and BC and
DA are quasistatic adiabatic processes. BC is the key element of Watt’s engine. The working
substance is an ideal gas, so during the isothermal process its internal energy is constant. This
implies that during isothermal processes the work the system does (or is supplied to the system)
and the heat it absorbs (or it discards) must be identical. Understanding the Carnot engine with
the 𝑃𝑉 -diagram was originally due to Clapeyron (1834, thus this diagram is called Clapeyron’s
graph), who advocated Carnot’s work. The work done by the engine in one cycle is the area of the
pale-red warped quadrangle.

Similarly, during the isothermal process C→D the heat |𝑄𝐿| discarded (i.e., 𝑄𝐿 (< 0) ab-
sorbed) by the system to the low temperature heat source at 𝑇𝐿 must be identical to the
work done to the system, so we have

|𝑄𝐿| = −
∫︁
𝐶→𝐷

𝑃𝑑𝑉 = −
∫︁
𝐶→𝐷

𝑅𝑇𝐿
𝑉

𝑑𝑉 = 𝑅𝑇𝐿 log
𝑉𝐶
𝑉𝐷

. (10.28)

To relate these two formulas, we need the ratios of the volumes related by quasistatic
adiabatic processes. Poisson’s relation 10.12 𝑃𝑉 𝛾 = const. implies 𝑇𝑉 𝛾−1 = const. Con-
sequently, 𝑇𝐻𝑉

𝛾−1
𝐴 = 𝑇𝐿𝑉

𝛾−1
𝐷 and 𝑇𝐻𝑉

𝛾−1
𝐵 = 𝑇𝐿𝑉

𝛾−1
𝐶 hold. This implies that 𝑇𝐻/𝑇𝐿 =

𝑉 𝛾−1
𝐷 /𝑉 𝛾−1

𝐴 = 𝑉 𝛾−1
𝐶 /𝑉 𝛾−1

𝐵 , or 𝑉𝐵/𝑉𝐴 = 𝑉𝐶/𝑉𝐷. Using this relation in (10.27) and (10.28),
we obtain the equality in (10.24). The rest is identical to the argument above, and we get
𝜂 = 1− 𝑇𝐿/𝑇𝐻 .
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Figure 10.8: The reversible engine R (Left) is now used as a heat pump, and is driven by a
(imaginary) better engine B (Right) that can produce work |𝑊 ′| > |𝑊 | using the identical heat
sources.

Carnot’s original proof of his theorem went as follows. Suppose we have an engine B bet-
ter (more efficient) than the reversible engine R, which can be driven backward by supplying
work. Let us drive the reversible engine R backward with engine B and use R as a ‘heat
pump’ (see Fig. 10.8).
|𝑊 ′| > |𝑊 |, so if we use the output of the ‘better engine’ to drive the reversible engine,
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we can still utilize the work |𝑊 ′|− |𝑊 |. Since the net heat imported to the two engines from
the hotter bath is zero, inevitably, |𝑄′

𝐿| < |𝑄𝐿|. That is, |𝑄𝐿| − |𝑄′
𝐿| is absorbed from the

colder bath. This implies that work has been extracted from a single heat bath, violating
Kelvin’s principle. Hence, there cannot be any better engine than the reversible engine.

10.16 Ideal gas: thermodynamic equation of state
The thermodynamic space of an (1 mole) ideal gas is spanned by internal energy 𝐸
and volume 𝑉 . Compute the entropy difference between the initial equilibrium state
(𝐸1, 𝑉1) and the final equilibrium state (𝐸2, 𝑉2) for a 1 mole of ideal gas.

Since entropy is a state function 9.9, to compute its change between two equilib-
rium states, we may invent a convenient process connecting these two states. The
process we can compute in detail is a quasistatic process.

The first law (or the Gibbs relation) tells us along a quasistatic process

𝑑𝑆 =
1

𝑇
𝑑𝐸 +

𝑃

𝑇
𝑑𝑉. (10.29)

Since for a (1 mole) ideal gas 𝐸 = 𝐶𝑉 𝑇 and 𝑃𝑉 = 𝑅𝑇 ,

𝑑𝑆 =
𝐶𝑉

𝐸
𝑑𝐸 +

𝑅

𝑉
𝑑𝑉 = 𝐶𝑉 𝑑 log𝐸 +𝑅𝑑 log 𝑉. (10.30)

𝑑𝑆 is a perfect differential, so we have only to integrate this along a convenient path
(this is the meaning of inventing a convenient process):

𝑆(𝐸2, 𝑉2) = 𝑆(𝐸1, 𝑉1) + 𝐶𝑉 log
𝐸2

𝐸1

+𝑅 log
𝑉2
𝑉1
. (10.31)

In contrast to the usual equation of state 𝑃𝑉 = 𝑅𝑇 , the relation (which should
be called the true equation of state) 𝑆 = 𝑆(𝐸, 𝑉 ) gives you ‘everything’ you wish to
know about the ideal gas:

𝑃

𝑇
=

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝐸

=
𝑅

𝑉
,

1

𝑇
=

𝜕𝑆

𝜕𝐸

⃒⃒⃒⃒
𝑉

=
𝐶𝑉

𝐸
. (10.32)

Poisson’s relation 𝑃𝑉 𝛾 = const. must imply Δ𝑆 = 0. Since we derived Poisson’s
relation assuming Δ𝑆 = 0, this should be, but in any case, let us check this. 𝑃 =
𝑅𝑇/𝑉 = 𝑅𝐸/𝐶𝑉 𝑉 , so Poisson’s relation implies 𝐸𝑉 𝛾−1 = const. for an adiabatic
quasistatic process. If this relation holds, then, since 𝑅 = 𝐶𝑃 − 𝐶𝑉 , the system
entropy does not change:

𝑆(𝐸2, 𝑉2) = 𝑆(𝐸1, 𝑉1) + 𝐶𝑉

[︂
log

𝐸2

𝐸1

+ (𝛾 − 1) log
𝑉2
𝑉1

]︂
= 𝑆(𝐸1.𝑉1). (10.33)

or we may write with an appropriate base point 𝐸0 and 𝑉0 in the thermodynamic
space

𝑆(𝐸, 𝑉 ) = 𝑆(𝐸0, 𝑉0) + 𝐶𝑉 log(𝐸/𝐸0) +𝑅 log(𝑉/𝑉0). (10.34)
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10.17 Heat exchange between two blocks: set up
There are two blocks with the same heat capacity 𝐶 at temperature 𝑇𝐿 and at 𝑇𝐻 ,
respectively. If we bring these blocks to thermal equilibrium reversibly or irreversibly,
what is the final common temperature 𝑇𝐹 (Fig. 10.9)?

T TTT
FFL H

reversibly 

or

irreversibly

Figure 10.9: Initially, two blocks have different temperatures. What is the common temperature
𝑇𝐹 when the blocks reach a thermal equilibrium?

10.18 Heat exchange: Irreversible case
If we make a thermal contact between them (assume that the system as a whole is
thermally isolated = under an adiabatic condition), a ‘perfectly’ irreversible process
occurs, and the final temperature is 𝑇𝐹 = (𝑇𝐿 + 𝑇𝐻)/2 due to the first law and the
result we obtained above. Needless to say, the final entropy of this system must be
larger than the initial one, i.e., Δ𝑆 > 0 (Δ always means ‘final’ − ‘initial’). To use
thermodynamics, we must invent a quasistatic process connecting the initial and the
final equilibrium states. We bring one block from 𝑇𝐿 to 𝑇𝐹 , and the other from 𝑇𝐻 to
𝑇𝐹 quasistatically, and then join these two. This last step does not change anything.
Let us study each block separately.

An important observation is that if the heat exchange is across infinitesimal tem-
perature difference 𝑑𝑇 , then the heat transfer is a quasistatic process (no increase
of entropy).227 Therefore, we may prepare numerous heat baths at various temper-
atures, and use them appropriately in turn to change the temperature of the block
gradually (quasistatically). Along this process, we may use thermodynamics. Since
𝑑𝑄 = 𝐶𝑑𝑇 , 𝑑𝑆 = 𝐶𝑑𝑇/𝑇 :

Δ𝑆1 =

∫︁ 𝑇𝐹

𝑇𝐿

𝐶𝑑𝑇

𝑇
= 𝐶 log

𝑇𝐹
𝑇𝐿
. (10.35)

We can perform quite an analogous calculation for the other box, so combining the

227The entropy change due to the irreversible process of thermal contact between 𝑇 + 𝑑𝑇 and
𝑇 − 𝑑𝑇 is Δ𝑆 = 𝐶 log[𝑇 2/(𝑇 2 − 𝑑𝑇 2)] = −𝐶 log[1 − (𝑑𝑇/𝑇 )2] ≃ 𝐶(𝑑𝑇/𝑇 )2, so it is a higher-oder
infinitesimal, and may be ignored. That is, we may ignore the entropy change. See a summary
starting from 10.20.
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answers, we get

Δ𝑆 = Δ𝑆1 +Δ𝑆2 = 𝐶 log
𝑇 2
𝐹

𝑇𝐿𝑇𝐻
= 2𝐶 log

𝑇𝐹√
𝑇𝐿𝑇𝐻

. (10.36)

Here, 𝑇𝐹 = (𝑇𝐿 + 𝑇𝐻)/2. As can be seen from Fig. 10.10,

Δ𝑆 = 2𝐶

[︂
log

𝑇𝐿 + 𝑇𝐻
2

− log 𝑇𝐿 + log 𝑇𝐻
2

]︂
> 0. (10.37)

log T

T

TTL H(T+   )/2 THL

Figure 10.10: Star denotes log[(𝑇𝐿 + 𝑇𝐻)/2] and square denotes (1/2)[log 𝑇𝐿 + log 𝑇𝐻 ], demon-
strating (𝑇𝐿 + 𝑇𝐻)/2 >

√
𝑇𝐿𝑇𝐻 .

10.19 Heat exchange: reversible case
(10.36) implies that if 𝑇𝐹 =

√
𝑇𝐿𝑇𝐻 , then Δ𝑆 = 0. There must be a reversible

process to realize this. How can you do this? Notice that the internal energy of the
system is not conserved:

Δ𝐸 = 2𝐶𝑇𝐹 − (𝐶𝑇𝐿 + 𝐶𝑇𝐻) = 2𝐶

(︂√︀
𝑇𝐿𝑇𝐻 −

𝑇𝐿 + 𝑇𝐻
2

)︂
< 0. (10.38)

Indeed this |Δ𝐸| must be exported; the system can (must) do work.
To realize this reversible process we can set up a reversible engine between the

two blocks and operate it until there is no temperature difference. Let us assume
that 𝑇 ′

𝐻 is the temperature of the hotter block, and 𝑇 ′
𝐿 that of the colder block at

some time point. Since by operation of the engine, the block temperatures change,
so we analyze the engine working when the hotter block temperature is between 𝑇 ′

𝐻

and 𝑇 ′
𝐻 + 𝑑𝑇 ′

𝐻 (notice that 𝑑𝑇 ′
𝐻 < 0). The entropy change must be zero (a reversible

engine) during this temperature change:

𝑑𝑆 =
𝑑𝑄𝐻

𝑇 ′
𝐻

+
𝑑𝑄𝐿

𝑇 ′
𝐿

= 𝐶
𝑑𝑇 ′

𝐻

𝑇 ′
𝐻

+ 𝐶
𝑑𝑇 ′

𝐿

𝑇 ′
𝐿

= 0. (10.39)

This implies 𝑑 log(𝑇 ′
𝐻𝑇

′
𝐿) = 0 or 𝑇 ′

𝐿𝑇
′
𝐻 = constant. That is, 𝑇 2

𝐹 = 𝑇 ′
𝐻𝑇

′
𝐿 = 𝑇𝐿𝑇𝐻 , or,

as we know, the final temperature must be 𝑇𝐹 =
√
𝑇𝐿𝑇𝐻 .

We know the efficiency of the reversible engine, so

− 𝑑′𝑊

𝑑′𝑄𝐻

= 1− 𝑇 ′
𝐿

𝑇 ′
𝐻

, (10.40)
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or

−𝑑′𝑊 =

(︂
1− 𝑇 ′

𝐿

𝑇 ′
𝐻

)︂
𝑑′𝑄𝐻 . (10.41)

Here, 𝑑′𝑄𝐻 = −𝐶𝑑𝑇 ′
𝐻 , because decrease of 𝑇 ′

𝐻 implies positive 𝑑′𝑄𝐻 . Therefore,

−𝑑′𝑊 = −
(︂
1− 𝑇 ′

𝐿

𝑇 ′
𝐻

)︂
𝐶𝑑𝑇 ′

𝐻 =

(︂
1− 𝑇 ′

𝐿𝑇
′
𝐻

𝑇 ′2
𝐻

)︂
𝐶(−𝑑𝑇 ′

𝐻). (10.42)

That is, the work we can take out from the system is (note that 𝑇𝐹 =
√︀
𝑇 ′
𝐿𝑇

′
𝐻)

−Δ𝑊 = 𝐶(𝑇𝐿 − 𝑇𝐹 ) + 𝐶𝑇𝐻 − 𝐶
𝑇𝐿𝑇𝐻
𝑇𝐹

= 2𝐶

(︂
𝑇𝐿 + 𝑇𝐻

2
−
√︀
𝑇𝐿𝑇𝐻

)︂
. (10.43)

This is positive as shown before. Of course, this is a stupid way to compute Δ𝑊 ;
the answer is obvious from the first law. Trust thermodynamics.

In any case a (great) lesson is: if Δ𝑆 = 0, there must be a reversible process to
realize the change. Devise it.

We will see such an example in the next lecture.

A summary of heat and its relation to entropy changes is given here with small letters.

10.20 Heat exchange between systems with infinitesimal temperature difference
is reversible
If the system exchanges no work but only heat, and if the process is quasistatic, then

𝑑𝑆 =
1

𝑇
𝑑𝑄. (10.44)

Consider the situation in Fig. 10.11, where the system is initially at temperature 𝑇0. Suppose
the specific heat of the system (assuming it is a block of material) is 𝐶.

Heart bath
System

T +δT0

Figure 10.11: Heat contact with bath

Then, 𝑑𝑄 = 𝐶𝑑𝑇 . Therefore, the entropy increase of the system is, if we can realize a
quasistatic process to ‘warm up’ the block,

𝛿𝑆sys =

∫︁ 𝑇0+𝛿𝑇

𝑇0

𝐶

𝑇
𝑑𝑇 = 𝐶 log

𝑇0 + 𝛿𝑇

𝑇0
= 𝐶 log

(︂
1 +

𝛿𝑇

𝑇0

)︂
= 𝐶

𝛿𝑇

𝑇0
− 𝐶

2𝑇 2
0

(𝛿𝑇 )2 +𝑂[(𝛿𝑇 )3].

(10.45)
The entropy increase of the heat bath is, since it does not change its temperature,

𝛿𝑆bath = − 𝐶𝛿𝑇

𝑇0 + 𝛿𝑇
= −𝐶 𝐶𝛿𝑇

𝑇0(1 + 𝛿𝑇/𝑇0)
= −𝐶 𝛿𝑇

𝑇0
+

𝐶

𝑇 2
0

(𝛿𝑇 )2 +𝑂[(𝛿𝑇 )3]. (10.46)
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Therefore, the entropy change due to this heat contact is

𝛿𝑆 = 𝛿𝑆sys + 𝛿𝑆bath =
𝐶

2𝑇 2
0

(𝛿𝑇 )2 +𝑂[(𝛿𝑇 )3]. (10.47)

It is indeed positive (irrespective of cooling or warming!) in harmony with the second law,
but it is 𝑂[(𝛿𝑇 )2], so it is a higher order infinitesimal and does not add up to a finite amount.
That is, the heat exchange between the systems with infinitesimal temperature difference is
reversible.

10.21 Quasistatic temperature change due to heat
Exploiting the fact that the heat exchange between the systems with infinitesimal tempera-
ture difference is reversible 10.20, we can devise a means to change the temperature of any
system in a quasistatic manner (i.e., reversibly). We prepare numerous heat baths with tem-
peratures 𝑇0 + 𝛿𝑇 , 𝑇0 + 2𝛿𝑇 , · · ·, 𝑇1 − 𝛿𝑇 , 𝑇1 and bring the system with initial temperature
𝑇0 in contact with these heat baths successively to reach the final temperature 𝑇1.

10.22 Exchanging (finite) heat with heat bath is always irreversible
However, generally heat transfer is irreversible. Consider the effect of a single heat bath
of temperature 𝑇𝐹 . Then system whose initial temperature is 𝑇0 will reach temperature
𝑇1 = 𝑇𝐹 with the total entropy change given by

Δ𝑆 =

∫︁ 𝑇𝐹

𝑇0

𝐶

𝑇
𝑑𝑇 − 𝐶𝑇𝐹 − 𝑇0

𝑇𝐹
= 𝐶 log

𝑇𝐹
𝑇0
− 𝐶𝑇𝐹 − 𝑇0

𝑇𝐹
= 𝐶

[︂
log

𝑇𝐹
𝑇0

+
𝑇0
𝑇𝐹
− 1

]︂
. (10.48)

For 𝑓(𝑥) = log 𝑥 − 1/𝑥 + 1 𝑓(1) = 0 and 𝑓 ′(𝑥) = (𝑥 − 1)/𝑥2, so 𝑓 is minimum at 𝑥 = 1.
Therefore, if 𝑥 ̸= 1, 𝑓(𝑥) > 0. This means our Δ𝑆 > 0 as long as 𝑇𝐹 ̸= 𝑇0; irrespective of
cooling or warming, heat conduction is irreversible.

10.23 Effects of intermediate temperature heat baths
Let us choose one more heat bath with temperature 𝑇1 between 𝑇0 and 𝑇𝐹 . The total entropy
change is given by

Δ𝑆 = 𝐶 log
𝑇1
𝑇0
− 𝐶𝑇1 − 𝑇0

𝑇1
+ 𝐶 log

𝑇𝐹
𝑇1
− 𝐶𝑇𝐹 − 𝑇1

𝑇𝐹
. (10.49)

T

1/T

T T T0 1 F
T

1/T

T T0 F

Figure 10.12: Left: One intermediate heat bath; Right: more numerous intermediate heat baths.
The pale red shaded area is Δ𝑆/𝐶.

Assuming 𝑇𝐹 > 𝑇0, let us illustrate this case and the case with more intermediate heat baths
(Fig. 10.12).

In the figure the pale red shaded area is Δ𝑆/𝐶, so increasing the intermediate heat baths
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filling the temperature gap reduces the ‘extent of irreversibility’ of head conduction; the ul-
timate version was already discussed in 10.21; it is just the Riemann sum approximation of
the integral.

10.24 If Δ𝑆 = 0, there ought to be a reversible process
Suppose, there are two identical containers A and B containing identical amount of
water, but their temperatures are distinct: A is at 𝑇𝐻 and B at 𝑇𝐿 (< 𝑇𝐻). A differ-
ent state that A is at 𝑇𝐿 and B at 𝑇𝐻 obviously has the same entropy as the former
case. There must be a way to change the initial state to the second one reversibly,
i.e., there must be a reversible way to exchange the temperatures only. Can you do
this only with heat transfer without using engines?

You can use this device to utilize the thermal energy in the used water in a bath
tub to warm up the shower water, which may be the usual tap water.

10.25 Sudden doubling of volume
We know adiabatic free expansion is irreversible. Let us double the volume of an
ideal gas from 𝑉𝐼 = 𝑉 to 𝑉𝐹 = 2𝑉 by adiabatic sudden expansion (say, by removing
the wall in Fig. 10.13).

If the gas is an ideal gas, the total kinetic energy is conserved, so the internal
energy of the gas cannot change 2.11 (ii). This is an irreversible process. Since the
process does not change the internal energy of the gas, we can compute the entropy
change, using the formula we derived last time 10.16, or integrating 𝑑𝑆 = (𝑃/𝑇 )𝑑𝑉 ;
this latter approach is equivalent to devising an appropriate quasistatic process. For
one mole of the gas

Δ𝑆 = 𝑅 log
𝑉𝐹
𝑉𝐼

= 𝑅 log 2. (10.50)

𝑅 = 8.31 J/K·mol, and log 2 = 0.693, so Δ𝑆 = 5.75 J/K·mol.

V V V2

Figure 10.13: If the volume is doubled, to locate a molecule as accurately as before expansion
we need to know which 𝑉 (left half or right half) it is in.

10.26 Information: sneak preview
Entropy change and gain or loss of ‘information’ are closely related as we will see in
Section 15. Here is a sneak preview.
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If the volume is doubled, to locate a molecule as accurately as before the expansion
we need to know which 𝑉 (left or right) it is in before knowing at what location inside
of one of 𝑉 s the particle is. This knowledge is obtained from a question answered by
a single Yes or No (“is it in the left box?”, a single YN question), so the expansion
makes a state that requires one bit per molecule228 extra information to describe it
relative to the original state (molecules have acquired more freedom, obviously).

Therefore, it is sensible to conclude that the entropy change 5.75 J/K·mol (1
J/K·mol) is interpreted as (converted to) the information of 1 bit/molecule (0.174bit/molecule).
1 J/K·mol entropy increase corresponds to 0.174 bit/molecule of information. Notice
that it is per molecule (not per mole); we are asking questions about each molecule.

10.27 What happens if we expand the gas from 𝑉 to 2𝑉 reversibly?
This is nothing but adiabatic reversible expansion we have already discussed, but let
us look at it from a slightly different angle. Δ𝑆 = 0, so the internal energy must
be reduced. That is, the gas can do work. You can devise a quasistatic path to
𝑉𝐹 = 2𝑉 . Or, we can consider the final state (2𝑉,𝐸𝐹 ) in the thermodynamic space,
and demand the process from (𝑉,𝐸𝐼) to this final state to satisfy Δ𝑆 = 0, using the
equation of state 𝑆 = 𝑆(𝑉,𝐸) we already know.

First, let us devise a quasistatic process. We must gently expand the gas, so we
must apply a force counterbalancing the pressure of the gas. The work done by the
gas during this process is

Δ𝑊 = −
∫︁ 2𝑉

𝑉

𝑃 (𝑉 ′) 𝑑𝑉 ′. (10.51)

Although 𝑃𝑉 = 𝑅𝑇 may be used, the temperature would change. Notice that this
is a reversible adiabatic process, so we may use Poisson’s relation 𝑃𝑉 𝛾 = constant
= 𝑃𝐼𝑉

𝛾. Therefore,

Δ𝑊 = −𝑃𝐼

∫︁ 2𝑉

𝑉

(︂
𝑉

𝑉 ′

)︂𝛾

𝑑𝑉 ′ = −𝑃𝐼𝑉
𝛾 1

1− 𝛾
[︀
(2𝑉 )1−𝛾 − 𝑉 1−𝛾

]︀
(10.52)

= −𝑃𝐼𝑉
1

𝛾 − 1
(1− 1/2𝛾−1). (10.53)

This is certainly negative.
Now, let us use the equation of state 𝑆 = 𝑆(𝐸, 𝑉 ) derived in 10.16. We know

𝑆(𝐸𝐼 , 𝑉 ) = 𝑆(𝐸𝐹 , 2𝑉 ), so

𝐶𝑉 log
𝐸𝐹

𝐸𝐼

+𝑅 log
𝑉𝐹
𝑉𝐼

= 0. (10.54)

228‘bit’ is the unit of information we can obtain from an answer of one yes-no question (YN
question). We will discuss this after the introduction of canonical distribution. Here, simply accept
this intuitively.
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Since 𝑅/𝐶𝑉 = 𝛾 − 1, this reads

log
𝐸𝐹

𝐸𝐼

+ log 2𝛾−1 = 0 ⇒ 𝐸𝐹 = 𝐸𝐼/2
𝛾−1. (10.55)

Indeed, 𝐸𝐹 < 𝐸𝐼 . Can you show Δ𝑊 = 𝐸𝐹 − 𝐸𝐼 is identical to (10.53)?

10.28 Mixing entropy
Mixing of two different substances (even without any interactions between them as
in the case of ideal gases) also causes an increase of entropy (Thomson ignored this
aspect of entropy). Suppose there are two kinds of ideal gas A and B (𝑁 particles
each in a separate container of the same volume 𝑉 ). They are at the same 𝑇 and
𝑃 , and can be mixed at constant 𝑇 and 𝑃 (due to Dalton’s law of partial pressures
2.10) by removing the separating wall at the midpoint of the box (see Fig. 10.14).

Figure 10.14: The mixing process may be considered as two irreversible volume doublings and
subsequent superposition of the expanded gases; the last superposition step does not cause any
thermodynamic change, because these gas particles do not interact.

If we use the information-entropy relation above, we can guess the mixing entropy.
After mixing, if you pick up a single molecule, you must know whether it is A or B.
Before mixing, this information was given ‘for free’, if you know the particle position.
That is, mixing process prepares a state that requires one more bit (one extra YN
question, say, “is it A?”) to specify the state of its individual molecules. Therefore,
Δ𝑆 = 2𝑁𝑘𝐵 log 2 is our guess (there are 2𝑁 particles).

The mixing process may be decomposed into the processes illustrated in Fig.
10.14. First, we expand each gas separately to prepare the state at temperature
𝑇 and pressure 𝑃/2 (you can do so by adiabatic ‘free’ expansion as discussed just
above), and then superpose these two gases to make the final mixture;229 since they
are ideal gases, they do not feel each other (recall Dalton’s law of partial pressures).
Therefore, the final superposition step does not cause any thermodynamic change
and Δ𝑆 must be just the sum of the ‘𝑉 → 2𝑉 ’ expansion entropy changes; our guess
is correct.

229This is realizable with the aid of semipermeable membranes (walls that can allow only A or B
to go through).
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10.29 A more general case
A more general case is that the amount of A and B are different; 𝑇 and 𝑃 are the
same but the volumes are 𝑉𝐴 and 𝑉𝐵, respectively. Then, the final volume is 𝑉𝐴+𝑉𝐵,
so the free expansion entropies for A and B are

Δ𝑆𝐴 = 𝑁𝐴𝑘𝐵 log
𝑉𝐴 + 𝑉𝐵
𝑉𝐴

, Δ𝑆𝐵 = 𝑁𝐵𝑘𝐵 log
𝑉𝐴 + 𝑉𝐵
𝑉𝐵

. (10.56)

That is, the mixing entropy is given by (notice that 𝑃 , 𝑇 constant ⇒ 𝑁 ∝ 𝑉 )

Δ𝑆 = 𝑁𝐴𝑘𝐵 log
𝑁𝐴 +𝑁𝐵

𝑁𝐴

+𝑁𝐵𝑘𝐵 log
𝑁𝐴 +𝑁𝐵

𝑁𝐵

. (10.57)

If we introduce the mole fraction 𝑥𝐴 = 𝑁𝐴/(𝑁𝐴 + 𝑁𝐵) and 𝑥𝐵 = 𝑁𝐵/(𝑁𝐴 + 𝑁𝐵),
we can rewrite as

Δ𝑆 = (𝑁𝐴 +𝑁𝐵)𝑘𝐵(−𝑥𝐴 log 𝑥𝐴 − 𝑥𝐵 log 𝑥𝐵). (10.58)

We have learned that if we mix distinct gases A and B, entropy increases. Suppose
you have two gases C and D, and wish to know whether they are distinct gases or
not. OK, let us measure the mixing entropy. Is this feasible?

10.30 Entropy changes due to phase transition
Another way to change the system entropy is phase transition, e.g., melting or
evaporation.230 When a solid melts, a latent heat 𝑄𝑚 is absorbed at a constant
temperature (= melting temperature 𝑇𝑚), so the system entropy changes by

Δ𝑆𝑚 = 𝑄𝑚/𝑇𝑚. (10.59)

Notice that 𝑄𝑚 is measured as the enthalpy change of the system. We have a similar
formula for boiling:

Δ𝑆𝑏 = 𝑄𝑏/𝑇𝑏, (10.60)

where 𝑄𝑏 is the latent heat of evaporation (boiling heat) and 𝑇𝑏 is the boiling temper-
ature. For water Δ𝑆𝑚 = 21.9 J/K·mol = 3.7 bits/molecule and Δ𝑆𝑏 = 109 J/K·mol
= 18 bits/molecules.

Can we understand these entropy changes? Upon melting, water molecules can
freely orient in the 3D space. If we simply specify the orientation direction by one
of the octants, 3 bits/molecules may not be unreasonable. When evaporated, the

230We will discuss what phase transition is statistical-mechanically in Section 25.
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volume is expanded by about 1300 times, so even specifying where a molecule is
requires extra log2 1300 ≃ 10 bits. Therefore, although we cannot quantitatively
explain this 18 bits by such a crude idea, still we can partially understand why Δ𝑆𝑏

is much larger than Δ𝑆𝑚.
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Q10.1 [Fridge for camper].
There is a refrigerator that uses external heating process (such as used in campers
with the use of LPG). Let us imagine an ideal fridge (i.e., reversible fridge) importing
heat 𝑄𝐻 from the high temperature heat reservoir (say, a burner) at temperature
𝑇𝐻 .

T

M

H

LQ

Q

Q

T

TM

H

L refrigerator box

burner

campsite

Figure 10.15: An idealized LPG fridge.

Let 𝑇𝑀 be the temperature of the campsite. The temperature inside the cooled box
is 𝑇𝐿 (𝑇𝐻 ≫ 𝑇𝑀 > 𝑇𝐿 is the usual case). The energy balance of the device may be
depicted as in Fig. 10.15. For this device to work as a fridge, 𝑄𝐻 and 𝑄𝐿 must be
positive (i.e., the device absorbs these heats) and 𝑄𝑀 must be negative (this heat
must be discarded). Since 𝑄𝐻 is supplied by some energy source, the ‘goodness’ of
the fridge may be measured by the cost-performance ratio:

𝜂 = 𝑄𝐿/𝑄𝐻 . (10.61)

(1) Write down the energy balance equation (i.e., Δ𝐸 = 0 for a cycle). We strictly
apply our sign convention: in +, out −.
(2) Write down the reversibility condition (i.e., Δ𝑆 = 0).
(3) Using these equations, obtain 𝜂 in terms of 𝑇𝐻 , 𝑇𝑀 and 𝑇𝐿.
(4) If you look at the obtained 𝜂, you will realize that this ‘goodness measure’ im-
proves (increases) as 𝑇𝐻 is raised: hotter the burner, cooler the box! Isn’t it counter-
intuitive? Explain very briefly why it is not counterintuitive. A hint is the following
‘dissection’ of the fridge in Fig. 10.16 (I do not mean every such fridge contains an
engine. The dissection is a conceptual dissection.)

Solution.
(1) I recommend you to stick to the algebraic sign convention: 𝑄𝐻 +𝑄𝑀 +𝑄𝐿 = 0.
(2) Since reversibility may be assumed for the ideal case, we may use 𝑑𝑆 = 𝑑′𝑄/𝑇 :

𝑄𝐻

𝑇𝐻
+
𝑄𝑀

𝑇𝑀
+
𝑄𝐿

𝑇𝐿
= 0

(3) Getting rid of 𝑄𝑀 , we get

𝑄𝐻

𝑇𝐻
+
𝑄𝐿

𝑇𝐿
=
𝑄𝐿 +𝑄𝐻

𝑇𝑀
,
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Figure 10.16: Conceptual dissection of the LPG fridge.

so
1

𝑇𝐻
+ 𝜂

1

𝑇𝐿
= (1 + 𝜂)

1

𝑇𝑀
,

or (recall 𝑇𝐿 < 𝑇𝑀 < 𝑇𝐻) (︂
1

𝑇𝐿
− 1

𝑇𝑀

)︂
𝜂 =

1

𝑇𝑀
− 1

𝑇𝐻

Therefore,

𝜂 =
1

𝑇𝑀
− 1

𝑇𝐻

1
𝑇𝐿
− 1

𝑇𝑀

=

(︂
1− 𝑇𝑀

𝑇𝐻

)︂
𝑇𝐿

𝑇𝑀 − 𝑇𝐿
.

This is just the product of the reversible heat engine efficiency working between 𝑇𝐻
and 𝑇𝑀 and the reversible refrigerator efficiency working between 𝑇𝑀 and 𝑇𝐿. Thus,
Fig. 10.16 is quite natural. This answers (4) as well. Increasing 𝑇𝐻 makes the engine
efficiency better, so the overall efficiency increases. Thus, the hotter the burner, the
cooler the fridge (although we are not actually lowering 𝑇𝐿 in this problem).

Q10.2 [Explosion in box]
Inside a thermally insulated (i.e., adiabatic) empty (i.e., vacuum) box of volume 10𝑉
is a small can of volume 𝑉 containing a one mole of an ideal gas at temperature 𝑇 .
Now, the can is punctuated and the gas leaks out into a larger box and eventually
reaches a new equilibrium state (see Fig. 10.17).

10V

V

Figure 10.17: Initially, the can is filled with a gas (left) and is inside a vacuum box of volume
10𝑉 . Then it is punctuated and the gas leaks to reach the final equilibrium state in the Right.

(1) What is the change of the total internal energy of the system due to punctuation
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of the can?
(2) What is the total entropy change due to punctuation of the can?
(3) How many extra yes-no questions (i.e., how many bits/molecule) do you expect
to need to specify the state (microscopic state) of a molecule compared with the
state before the punctuation?

Solution.
(1) No heat nor work is exchanged with the outside world, so Δ𝐸 = 0. Since our
gas is ideal, this implies that the temperature (when definable) is invariant.
(2) We may use the equation of state 𝑆 = 𝑆(𝐸, 𝑉 ). Thus,

Δ𝑆 = 𝑅 log 10.

(3) Since 𝑅 log 2 corresponds to 1 bit/molecule, log 10/ log 2 = log2 10 = 3.32 bits.
Thus, on the average 3.3 questions.231 [Recall that doubling of the volume increased
the number of yes-no questions needed to specify the microscopic state of a particular
molecule by one.]

We will discuss information later in more detail, but this question should be
answerable, if you understand the volume doubling and volume quadrupling cases
(already discussed). In the former case Δ𝑆 = 𝑅 log 2 for a one mole ideal gas. This
increase corresponds to one extra question about a particular molecule: is it in the
right half? In the quadrupling case, Δ𝑆 = 𝑅 log 4. We must ask two extra questions:
is it on the right half? Then, subsequently, is it on the upper half? Thus, Δ𝑆/𝑅 log 2
gives you the number of Yes-No questions you must further ask.

What if the hole made by punctuation is extremely small and molecules can go
through it only one by one? No change, because Δ𝐸 = 0 does not change, and the
final volume does not change, so whatever the process is as long as the system is
energetically isolated, the result cannot change. However, you may be suspicious.
OK, we can actually compute the entropy change along the actual process.

This is a quasi equilibrium process BUT is not reversible. Actually, if we pay
attention to a small portion 𝛿𝑁 ′ of the gas going out from the can into the box,
the process is patently an irreversible expansion. Thus, entropy increases. This
increase may be computed, and after integrating all these infinitesimal increases 𝛿𝑆
of entropy, we get exactly the same result (as demonstrated below).

The following detailed calculation is not at all recommended, but let us follow the
quasistatic process just described. Suppose 𝑁 ′ molecules have already leaked out
from the can (assume that the leakage is very slow and quasistatic). Then, the can
pressure is 𝑃 = (𝑁 −𝑁 ′)𝑘𝐵𝑇/𝑉 . Let 𝛿𝑁 ′ be the further small amount of leak from
the can. Before going out of the can, this portion 𝛿𝑁 ′ occupies the volume

𝛿𝑉𝑖 =
𝛿𝑁 ′

𝑁 −𝑁 ′𝑉 (10.62)

231This means if you ask 33 yes-no questions about 10 molecules, you can get enough information.
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in the can. The pressure of the outer box is 𝑃 = 𝑁 ′𝑘𝐵𝑇/9𝑉 , so the volume of the
escaping molecules 𝛿𝑁 ′ is

𝛿𝑉𝑓 =
𝛿𝑁 ′

𝑁 ′ 9𝑉. (10.63)

That is, the leaked 𝛿𝑁 ′ changes its volume from 𝛿𝑉𝑖 to 𝛿𝑉𝑓 . Therefore, the entropy
increase due to this escape is (notice that the amount of molecules going out is
𝛿𝑁 ′)

𝛿𝑆 = 𝑘𝐵𝛿𝑁
′ log

𝛿𝑉𝑓
𝛿𝑉𝑖

= 𝑘𝐵𝛿𝑁
′ log

9(𝑁 −𝑁 ′)

𝑁 ′ . (10.64)

We should integrate this from 𝑁 to 𝑁/10 (= the remaining amount in the can):

Δ𝑆 =

∫︁ 𝑁/10

𝑁

𝑑𝑁 ′ 𝑘𝐵 log
9(𝑁 −𝑁 ′)

𝑁 ′ = 𝑁𝑘𝐵 log 10. (10.65)
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11 Isothermal systems

Summary
* Helmholtz’ free energy gives us the reversible work under isothermal condition.
Generally, Δ𝐴 ≤ 𝑊 (pay attention to our sign convention).
* Legendre transformation 𝑓 → 𝑓 * has a deep meaning.
* Legendre transformation preserves thermodynamics: 𝑓 ** = 𝑓 .

Key words
Helmholtz free energy, Legendre transformation, the Gibbs free energy, enthalpy,
free-energy minimum principle

What you should be able to do
* Understand the meaning of free energies.
* To understand the significance of convexity of 𝐸.
* To understand the meaning of Legendre transformation to preserves thermody-
namics.

11.1 Relaxing isolation/adiabatic conditions
In reality, the variables 𝑆, 𝑉,𝑋, · · · for the ordinary Gibbs relation (9.10) are often
hard to control or at least awkward. For example, to keep volume constant may
be more difficult than to keep pressure constant. To keep the temperature constant
may be easier than an adiabatic condition.

11.2 Isothermal system
Under 𝑇 constant (an isothermal condition) we should allow ‘free’ exchange of heat
between the system and its ambient world to maintain the system temperature.
Therefore, we wish to pay attention to the RHS of

𝑑𝐸 − 𝑑′𝑄 = 𝑑′𝑊 = −𝑃𝑑𝑉 + 𝑥𝑑𝑋. (11.1)

Since (11.1) holds under a quasistatic condition, 𝑑′𝑄 = 𝑇𝑑𝑆. 𝑇 is constant, so (11.1)
reads

𝑑𝐸 − 𝑇𝑑𝑆 = 𝑑(𝐸 − 𝑇𝑆) = −𝑃𝑑𝑉 + 𝑥𝑑𝑋. (11.2)

This implies that the introduction of the quantity

𝐴 = 𝐸 − 𝑇𝑆, (11.3)

called the Helmholtz free energy,232 is convenient. Notice that for an isothermal

232Old literatures use 𝐹 .

227



process
𝑑𝐴 = 𝑑′𝑊. (11.4)

Thus, Δ𝐴 is the work the system obtains by a reversible process under constant
temperature (i.e., a reversible isothermal process).

11.3 Δ𝐴 by an irreversible process
Work 𝑊 is always measurable with the aid of mechanics. What happens if the work
exchange is not reversible under isothermal conditions?233

If we inject work𝑊 into the system irreversibly (= that allows some dissipation of
work), the system must discard heat to the heat reservoir to maintain its temperature
of the final equilibrium state. This implies that, even if you do actual work of 𝑊 ,
effectively the system receives less energy as work. Therefore, we conclude

Δ𝐴 ≤ 𝑊. (11.5)

Pay attention to the sign convention: ‘coming in is +’ ! Therefore, (11.5) implies
that the work the system can do cannot be larger than |Δ𝐴|.

Suppose the system does work of amount |𝑊 | (𝑊 < 0) to the outside. This
implies that the system is supplied with the work of −|𝑊 | = 𝑊 , so according to
(11.5) Δ𝐴 < −|𝑊 | must hold. Since Δ𝐴 < 0, and |Δ𝐴| is the amount of decrease
of the system free energy, when the system does work to outside, (11.5) implies

|Δ𝐴| ≥ |𝑊 |. (11.6)

That is, the work produced by the system cannot exceed the amount of the free
energy lost by the system. The work we can gain from the system is bounded by
|Δ𝐴|.

11.4 Relation to Clausius’ inequality
You might have felt that the above argument sounds like a hand-waving argument (actually,
it is not), so let us derive (11.5) from Clausius’ inequality

Δ𝑆I ≥ 𝑄/𝑇. (11.7)

Here, we assume 𝑇𝑒 = 𝑇 . 𝑄 is the heat given to system I, so the heat bath loses 𝑄 or gains
−𝑄. Let us assume system II also does work 𝑊 to system I. That is, system II gains −𝑊
(however, there is no guarantee that this work is completely received by system I as work).
The first law applied to heat bath II reads

Δ𝐸II = −𝑊 −𝑄. (11.8)

233Strictly speaking, temperature is not definable if a system is not in equilibrium, so you may
well question what an isothermal irreversible process means. It means that the initial and the final
temperatures are the same. Anything can happen in between. You can also understand the process
as occurring in a system immersed in an isothermal bath (thermostat); still there is no guarantee
that the system temperature is always well defined.
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The definition of the Helmholtz free energy and an isothermal condition imply

Δ𝐸𝐼 = Δ𝐴I + 𝑇Δ𝑆I. (11.9)

Since the total energy is conserved (isolation),

0 = Δ𝐸 = Δ𝐴I + 𝑇Δ𝑆I −𝑊 −𝑄. (11.10)

Clausius’ inequality implies 𝑇Δ𝑆I −𝑄 ≥ 0, so this implies

Δ𝐴I −𝑊 = 𝑄− 𝑇Δ𝑆I ≤ 0. (11.11)

This is what we wished to have.

11.5 Free energy minimum principle
If there is no exchange of work, irreversibility under isothermal condition implies

𝛿𝐴 ≤ 0. (11.12)

This implies that, if there is no spontaneous change (i.e., the state is stable), then

𝛿𝐴 > 0. (11.13)

That is, in the stable equilibrium state under constant 𝑇, 𝑉, · · · the Helmholtz free
energy must be the global minimum. This is the free energy minimum principle.

11.6 Gibbs relation for 𝐴
The Gibbs relation now reads

𝑑𝐴 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝑥𝑑𝑋, (11.14)

so we see, as designed, the natural set of independent thermodynamic variables is
(𝑇, 𝑉,𝑋) instead of (𝑆, 𝑉,𝑋).

11.7 Gibbs free energy and enthalpy
It is often more convenient to study systems not only under constant temperature
but also under constant pressure. Now, the system is placed in a constant pressure
thermostat. Then, the work due to the volume change (the volume work −𝑃𝑑𝑉 )
must be freely exchanged between the system and the external world, so we should
rewrite the Gibbs relation as

𝑑𝐸 − 𝑇𝑑𝑆 + 𝑃𝑑𝑉 = 𝑥𝑑𝑋 + · · · , (11.15)
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but since 𝑇 and 𝑃 are constant, it is convenient to introduce the following Gibbs free
energy 𝐺

𝐺 = 𝐸 − 𝑇𝑆 + 𝑃𝑉 (11.16)

Quite an analogous argument as the case of the Helmholtz free energy tells us that
under constant 𝑇 and 𝑃 , if no work other than due to volume changes exists, then

𝛿𝐺 < 0, ⇐⇒ spontaneous changes can occur, (11.17)

𝛿𝐺 > 0, ⇐⇒ the equilibrium is stable. (11.18)

Again, this is the principle of minimum free energy.
The Gibbs free energy may be written as

𝐺 = 𝐻 − 𝑇𝑆, (11.19)

where
𝐻 = 𝐸 + 𝑃𝑉 (11.20)

is called the enthalpy.

If there is only volume works, then 𝑑′𝑊 = −𝑃𝑑𝑉 , so under constant pressure the
first law reads

𝑑𝐻 = 𝑑𝐸 + 𝑃𝑑𝑉 = 𝑑′𝑄. (11.21)

That is, the increase of enthalpy is the heat absorbed by the system under constant
pressure. Thus, for example, if a chemical reaction occurs in a system, then the
change of enthalpy is the reaction heat under constant pressure.

11.8 Legendre transformation
Formally, we can say that 𝐸 → 𝐴 = 𝐸 − 𝑇𝑆 allows us to change the independent
variables from (𝑆, 𝑉,𝑋) to (𝑇, 𝑉,𝑋). This is called (in most introductory textbooks)
a Legendre transformation. This is, probably, one of the most mysterious parts of
thermodynamics, because usually instructors do not know the true meaning of this
transformation.234

11.9 Geometrical meaning of Legendre transformation
The transformation 𝐸 → 𝐴 = 𝐸 − 𝑇𝑆 assumes that 𝑇 in this relation satisfies
𝜕𝐸/𝜕𝑆 = 𝑇 . Then, to obtain 𝐴 may be understood geometrically as follows

As can be seen from Fig. 11.1, for a given 𝑇 , to find on the curve 𝐸 = 𝐸(𝑆) a
point where the tangent is 𝑇 is to find the point where the curve 𝐸 = 𝐸(𝑆) and

234It is shocking that even an expository article of Legendre transformation in Am. J. Phys. does
not mention this at all. Any reasonable instructor should know the rudiments of convex analysis.
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the line 𝐸 = 𝑇𝑆 are the closest. Therefore, the (signed) distance between the curve
𝐸 = 𝐸(𝑆) and the line 𝐸 = 𝑇𝑆 is 𝐴. In other words, we are actually computing
𝐴 = min𝑆[𝐸 − 𝑇𝑆], because to draw a tangent whose slope is 𝑇 for curve 𝐸 = 𝐸(𝑆)
is to minimize the difference between the curve and the line 𝐸 = 𝑆𝑇 .
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Figure 11.1: If we fix 𝑋’s, 𝐸 is a monotone increasing convex function of 𝑆.

11.10 Mathematically more rational definition of Legendre transforma-
tion
The true essence of the Legendre transformation is: a convex curve can be recon-
structed from the totality of its tangent lines (→Fig. 11.2 Left), where a tangent
line of a convex curve is a line sharing at least one point with the curve, and all the
points on the curve are on one side of the line or on it (i.e., none on the other side).
𝐸 = 𝐸(𝑆) and −𝐴 = −𝐴(𝑇 ) are both convex curves.
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y = f (x)
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Figure 11.2: Left: The totality of tangent lines can recover a convex function. Right: 𝑙 is the
maximum gap between the dotted line 𝑦 = 𝛼𝑥 and the convex curve 𝑦 = 𝑓(𝑥) (we pay attention
to its sign; maximum of 𝛼𝑥 − 𝑓(𝑥)). Therefore, if we choose 𝑓*(𝛼) = max𝑥[𝛼𝑥 − 𝑓(𝑥)], then
𝑦 = 𝛼𝑥− 𝑓*(𝛼) is the tangent line in the figure. This gives a geometrical meaning of the Legendre
transformation 𝑓 → 𝑓*.
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A line with a slope 𝛼 is specified by its 𝑦-section −𝑓 *(𝛼): 𝑦 = 𝛼𝑥− 𝑓 *(𝛼). If this
line is tangent to 𝑓 , 𝑓 *(𝛼) is given by the Legendre transformation of 𝑓 (Fig. 11.2
Right):235

𝑓 *(𝛼) = max
𝑥

[𝛼𝑥− 𝑓(𝑥)]. (11.22)

This formula is the mathematically standard definition of the Legendre transforma-
tion 𝑓 → 𝑓 *. Although the exposition here is for a function with one independent
variable, 𝛼𝑥 may be understood as a scalar product of vector 𝛼 and 𝑥 if 𝑓 is a
function of 𝑛 variables 𝑥 = (𝑥1, · · · , 𝑐𝑛). Thus the general definition is

𝑓 *(𝛼) = max
𝑥

[𝛼 · 𝑥− 𝑓(𝑥)]. (11.23)

11.11 If 𝑓 is convex, then 𝑓* is convex, and 𝑓** = 𝑓
The inverse Legendre transformation may be given by a symmetric procedure 𝑓(𝑥) =
max𝛼[𝛼𝑥− 𝑓 *(𝛼)]. This can be illustrated by Fig. 11.3. This graphic demonstration
uses the fact that any convex function is a primitive function of an increasing func-
tion 𝑔: 𝑓(𝑥) =

∫︀ 𝑥
𝑔(𝑥′)𝑑𝑥′.
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Figure 11.3: Illustration of the relation between 𝑓 and 𝑓* in 1D.

In (a) of Fig. 11.3 the pale gray area is 𝑓(𝑥). Legendre transformation maximizes
the signed area 𝛼𝑥 − 𝑓(𝑥), the dark gray area, by changing 𝑥, that is, the (signed)
area bounded by the 𝛼-axis, the horizontal line through 𝛼, the vertical line through
𝑥, and the graph of 𝑔(𝑥). When 𝛼 = 𝑔(𝑥), this dark gray area becomes maximum.
This is realized in (b): 𝑓 *(𝛼)+ 𝑓(𝑥) = 𝛼𝑥 (this equality is called Fenchel’s equality).

From these illustrations it should be obvious that the relation between 𝑓 and 𝑓 *

is perfectly symmetric, so 𝑓 * is convex, and 𝑓(𝑥) = max𝛼[𝛼𝑥− 𝑓 *(𝛼)], or 𝑓 ** = 𝑓 .

235‘max’ in such formulas are ‘sup’ in mathematics, but do not worry too much.
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11.12 Application of Legendre transformation to thermodynamics
Thermodynamically conventional Legendre transformation tells us (recall 11.9)

𝐴 = min
𝑆

[𝐸 − 𝑇𝑆] (11.24)

This may be rewritten as
−𝐴 = max

𝑆
[𝑇𝑆 − 𝐸]. (11.25)

This is a mathematically proper Legendre transformation. We know 𝐸 is a convex
function, so this implies that −𝐴 is a convex function of 𝑇 . Therefore, 𝑓 = 𝑓 **

implies that
𝐸 = max

𝑆
[𝑆𝑇 − (−𝐴)] = max

𝑆
[𝑆𝑇 + 𝐴]. (11.26)

We can completely recover the thermodynamic equation of state from 𝐴.
Analogously, the Gibbs free energy 11.7 is given by

−𝐺 = max
𝑆,𝑉

[𝑇𝑆 + (−𝑃 )𝑉 − 𝐸]. (11.27)

Therefore, the inverse transformation gives

𝐸 = max
𝑇,𝑃

[𝑆𝑇 − 𝑃𝑉 +𝐺]. (11.28)

Notice that −𝑃 is the conjugate variable of 𝑉 . This means −𝐺 is a convex function
of 𝑇 and 𝑃 , simultaneously.236

Remark 𝐸 is a convex function of 𝑆, 𝑉,𝑋, · · · (𝑆 and all the work coordinates). −𝐴
is a convex function of 𝑇 when other variables are fixed, and 𝐴 is a convex function
of work coordinates when 𝑇 is fixed. However, 𝐴 itself is neither convex nor concave
as a function fo 𝑇, 𝑉,𝑋, · · ·.

Analogously, −𝐺 is convex as a function of 𝑇 and 𝑃 when other variables are
fixed. Also 𝐺 is a convex function of 𝑋 (work coordinates other than 𝑉 ) when 𝑇
and 𝑃 are fixed, but 𝐺 itself is usually neither convex nor concave; only when the
thermodynamic space is spanned by 𝐸 and 𝑉 only, −𝐺 is a convex function.

236if (Note that if 𝑓(𝑥) is a convex function, 𝑓(−𝑥) is also convex.

233



Q11.1 [Compression by weights]
A vertical cylinder of cross section 𝐴 containing an ideal gas is equipped with a
piston and is placed in a room at temperature 𝑇 . Initially, on the piston is a weight
of mass 𝑀 (ignore the ambient pressure, or we do this experiment in the vacuum as
illustrated in Fig. 11.4). Now we put another identical weight on the piston. The
cylinder is rigid but does not isolate the content thermally. What is the percentage
of the potential energy of the weights lost as heat, etc., to the environment?

vacuum

gas

gas
isothermal

gas

initial

equilibrium 

state

just after

adding 

another 

weight
final

equilibrium

state

Figure 11.4: Left: the initial state; Center: just before the irreversible sinking occurs; Right:
the final state.

Solution.
Let 𝑉 be the initial volume. The initial pressure is 𝑀𝑔/𝐴 = 𝑃 . The piston moves
by 𝑉/2𝐴, so 𝑊 = 2𝑀𝑔(𝑉/2𝐴) = 𝑛𝑅𝑇 is the potential energy lost from the weights
between the initial and the final states. The increase of the free energy of the gas is
(notice Δ𝐸 = 0 for isothermal process for an ideal gas)

Δ𝐴 = Δ𝐸 − 𝑇Δ𝑆 = −𝑇Δ𝑆 = −𝑇𝑛𝑅 log
𝑉/2

𝑉
= 𝑛𝑅𝑇 log 2

Hence, 100 − 69.3 = 31%. We can directly obtain Δ𝐴 as well since 𝑑𝐴 = −𝑆𝑑𝑇 −
𝑃𝑑𝑉 . 𝑇 is constant, so

Δ𝐴 = −
∫︁ 𝑉/2

𝑉

𝑛𝑅𝑇

𝑉
𝑑𝑉 = 𝑛𝑅𝑇 log

𝑉

𝑉/2
= 𝑛𝑅𝑇 log 2. (11.29)

A more detailed explanation is in Fig. 11.5. In this figure, A is the situation we
are discussing. The work 𝑊 done by the weights is the loss of their potential energy
=𝑊 = 𝑛𝑅𝑇 according to our calculation above. This process is not a gentle process.
Let us do this process gently by applying an appropriate force 𝐹 (B in the figure).
Then, the work 𝑊𝑟𝑒𝑣 (reversible work) done to the gas is the reversible work, so
Δ𝐴 = 𝑊𝑟𝑒𝑣. 𝑊𝑟𝑒𝑣 is the potential energy difference − the work you did through 𝐹 ,
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so clearly 𝑊 > 𝑊𝑟𝑒𝑣 = Δ𝐴. Without your assistance, it is clear that the potential
energy of the weights is lost as heat (and perhaps sound), and the loss should be
𝑊 −Δ𝐴.

vacuum

gas

gas

vacuum

gas

gas

isothermal

F

A B

isothermal

Figure 11.5: A: The actual irreversible process; Left: just after starting the dropping process;
Right: the final state. B: By adjusting the force 𝐹 , we wish to lower the weights quasistatically
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Discussion 6

We will discuss basic thermodynamics, especially entropy change due to irreversible
and mixing processes.

D6.1 [Drinking bird]*

Estimate the efficiency of the ‘drinking bird’ toy. Assume that the room temperature
is 300 K and the liquid in the bird is dichloromethane CH2Cl2 (boiling point is about
40 ∘C, density = 1.33 g/cm3). The humidity of the room may be around 50%.

Figure 11.6: How diligent is the birdy?

Solution.
The upper limit is given by Carnot’s theorem. The bird works between the room
temperature 𝑇𝐻 = 300 K and the temperature of the cooled head 𝑇𝐿, which may be
10 K lower than the room temperature. Let us assume 𝑇𝐿 = 290 K.

𝜂 ≃ 1− 290

300
=

1

30
. (11.30)

This is probably too good for the actual bird, because the cooled liquid is mixed
with the hot bottom liquid at every drinking (like the Newcomen engine). Thus, the
effective heat bath temperatures are perhaps 292 - 298 K:

𝜂 = 1− 292

298
≃ 1

50
. (11.31)

In any case the ‘ideal’ efficiency is of order 1%.
How can we actually measure it? The amount of heat going through the system

may be estimated from the amount of water evaporated from the head. The work
actually produced may be obtained from the volume of the dichloromethane (1.333
g/cm3) liquid column pushed up in one cycle: 2 cm3 for 1.5 cm per 15 sec (= period).
20 cm3 of water (Δ𝐻 = 2 J/g) is gone over 12 hrs. This seems to give about 2% (too
good, perhaps). If you search a paper, there is at least one relevant, which measured
‘the actual value’ of 10−2% (but I do not trust it very much).
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D6.2 [Irreversible expansion]
A rigid cylinder is initially separated by a piston held at location P initially as in
Fig. 11.7. Both the compartments contain one mole of identical ideal gases.

P

V

T

4 V

T T’ T’1 2

V’

P P’ P’1 2

P

V5  − V’

Figure 11.7: Left: the initial state; Right: the final state.

In the following no numerical calculation is required.
(1) Assume that the cylinder and the piston is diathermal, and the ambient temper-
ature is held at 𝑇 . You may assume 𝑇1 = 𝑇2 = 𝑇 . The piston is suddenly allowed
to move freely.

(i) What is the final state of the system (That is, what are 𝑉 ′ and 𝑃 ′ in terms of
𝑇 )?

(ii) What is the entropy change?

Solution.
Notice that thanks to the constraint holding the piston at P, the whole system is in
equilibrium (as a compound system) initially. When this constraint is removed, the
system is no more in equilibrium, so no thermodynamic quantities are well defined,
but eventually the system reaches a new equilibrium and all the thermodynamic
quantities are again well defined. To calculate the change in any state function, you
can use any path connecting the initial and the final states in the thermodynamic
space.
(i) Obviously 𝑉 ′ = 5𝑉/2. Therefore,

𝑉 ′𝑃 ′ = 𝑅𝑇 (11.32)

implies

𝑃 ′ =
𝑅𝑇

𝑉 ′ =
2𝑅𝑇

5𝑉
. (11.33)

(ii) On the left-hand side the volume is changed from 4𝑉 to 5𝑉/2, but 𝐸 does not
change, because there is no 𝑇 change. On the right-hand side the volume is changed
from 𝑉 to 5𝑉/2.

Since entropy is a state function, we may apply

Δ𝑆 = 𝑆(𝐸2, 𝑉2)− 𝑆(𝐸1, 𝑉1) = 𝑛𝐶𝑉 log
𝐸2

𝐸1

+ 𝑛𝑅 log
𝑉2
𝑉1

(11.34)

237



to each side separately. We have

Δ𝑆L = 𝑅 log(5/8), Δ𝑆R = 𝑅 log(5/2). (11.35)

Therefore,
Δ𝑆 = Δ𝑆L +Δ𝑆R = 𝑅 log(25/16). (11.36)

(2) Assume that the cylinder is adiabatic and the piston is diathermal. The temper-
atures are initially different, 𝑇1 on the left-hand side and 𝑇2 on the right-hand side.
The piston is suddenly allowed to move freely as in (1).

(i) What is the final state of the system (That is, what are 𝑉 ′ and 𝑃 ′ in terms of
𝑇1, 𝑇2 and 𝑉 )? You may assume the gas is a monatomic gas.

(ii) What is the entropy change?
(iii)* Which entropy change is larger, case (1) or case (2)? Is the answer obvious?

Solution.
(i) The initial total internal energy is (𝐶𝑉 = 3𝑅/2)

𝐸 = 𝐶𝑉 𝑇1 + 𝐶𝑉 𝑇2. (11.37)

Notice that this is invariant, because no work nor heat is added to or extracted from
the system. Therefore, we get the final temperature 𝑇 ′ as

𝑇 ′ =
𝑇1 + 𝑇2

2
. (11.38)

This should be obvious from symmetry.
After equilibration the pressures of the compartments are identical 𝑃 ′. Also the

temperatures must be identical, so the volumes are both 5𝑉/2. Therefore,

(5/2)𝑉 𝑃 ′ = 𝑅𝑇 ′ (11.39)

or

𝑃 ′ =
2𝑅𝑇 ′

5𝑉
=
𝑅(𝑇1 + 𝑇2)

5𝑉
. (11.40)

(ii) The entropy change may be calculated just as in (1), but we must pay attention
to the temperature change that causes the change in 𝐸.

On the left-hand side the internal energy changes from 𝑇1𝐶𝑉 to 𝑇 ′𝐶𝑉 . Thus,

𝐸 ′
1

𝐸1

=
𝑇 ′

𝑇1
=
𝑇1 + 𝑇2
2𝑇1

. (11.41)

Therefore,

Δ𝑆L = 𝐶𝑉 log
𝑇1 + 𝑇2
2𝑇1

+𝑅 log(5/8). (11.42)
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Analogously, we have

Δ𝑆R = 𝐶𝑉 log
𝑇1 + 𝑇2
2𝑇2

+𝑅 log(5/2). (11.43)

Therefore,

Δ𝑆 = Δ𝑆L +Δ𝑆R = 2𝐶𝑉 log
𝑇1 + 𝑇2

2
√
𝑇1𝑇2

+𝑅 log(25/16). (11.44)

(cf 10.19 for the temperature contribution to Δ𝑆 or the significance of
√
𝑇1𝑇2.)

(iii) Δ𝑆 for (2) is always larger than that for (1) as long as 𝑇1 ̸= 𝑇2, because
(𝑥+ 𝑦)/2 ≥ √𝑥𝑦 (for nonnegative 𝑥 and 𝑦; prove it.237 It should be obvious without
any calculation, since more difference is eliminated in (2) than in (1).

(3)* The same as (2) but this time the piston is also adiabatic. What can you
say about the final state?

Solution.
To determine the final state, we can use the conservation of 𝐸, (11.37). Thus we
have

𝑇1 + 𝑇2 = 𝑇 ′
1 + 𝑇 ′

2. (11.45)

The final pressures must be identical on both sides. Thus,

𝑃 ′𝑉 ′ = 𝑅𝑇 ′
1, 𝑃

′(5𝑉 − 𝑉 ′) = 𝑅𝑇 ′
2 (11.46)

or
5𝑉 𝑃 = 𝑅(𝑇1 + 𝑇2). (11.47)

Thus, 𝑃 is determined, but, unfortunately, we cannot claim 𝑉 ′ = 5𝑉/2, because we
cannot know 𝑇 ′

1. Thus, we cannot go further, thermodynamically. Thus, thermody-
namically there is no definite prediction.

It is not hard to understand that the final outcome depends on the details such
as how the heat generated by the friction of the piston against the cylinder wall is
distributed to each compartment. That is why we cannot know the final tempera-
tures without further information.

Important Remark
Those who did not really understand thermodynamics wrote papers to remove this
‘defect’ from thermal physics. You must recognize that the conclusion that there is
no definite outcome is a prediction of thermodynamics; you must respect it. This
uncertainty is NOT the weakness of thermodynamics; on the contrary it reinforces
how powerful and reliable thermodynamics is.

237Using the convexity of − log 𝑥 is the best as shown in Fig. 10.10).
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D6.3 [Mixing two chemically distinct ideal gases]238

(1) Assume that the system is, as a whole, adiabatic. Initially, the left-hand half
(volume 𝑉 ) contains one mole of a monatomic ideal gas A (red) at temperature 𝑇
and the right-hand half (volume 𝑉 ) contains two moles of monatomic ideal gas B
(green) at temperature 2𝑇 (Fig. 11.8). After the separating wall is removed, even-
tually, the system reaches a new uniform equilibrium state.
(i) Find the final temperature 𝑇𝐹 and pressure 𝑃𝐹 .
(ii) What is the entropy increase?

Figure 11.8: The mixing process of one + two mole distinct gases.

Solution.
(i) This is not really hard. Since the internal energy must be conserved:

𝐸 = 𝐶𝑉 𝑇 + 2𝐶𝑉 × 2𝑇 = 5𝐶𝑉 𝑇 = 3𝐶𝑉 𝑇𝐹 . (11.48)

Thus, the final temperature is 𝑇𝐹 = (5/3)𝑇 . As to the pressure, mixture or not does
not matter; what matters is the total number of particles. Thus the final pressure
must satisfy

𝑃𝐹 (2𝑉 ) = 3𝑅𝑇𝐹 = 5𝑅𝑇. (11.49)

That is, 𝑃𝐹 = 5𝑅𝑇/2𝑉 .
(ii) To find the entropy change we must find a quasistatic process that can connect
the intial and the final states. Thus, we invent a process illustrated in Fig. 11.9:

Figure 11.9: The mixing process may be considered as two expansions and subsequent superpo-
sition of the expanded gases; the last superposition step does not cause any thermodynamic change,
because these gas particles do not interact. Entropy changes only along the colored arrows. The
‘intermediate’ states these arrows reach must have the final temperature 𝑇𝐹

Superposition of the end states of the colored arrows is adiabatic and reversible, so

238See the figure posted as a supplement to Lect 12 associated with the examples discussed in
the lecture.
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there is no entropy change along the black arrows. All the changes are along the
colored arrows.

For the red arrow the volume of the red gas is changed from 𝑉 to 2𝑉 and the
temperature 𝑇 to 𝑇𝐹 = 5𝑇/3, that is, the internal energy is from 𝐶𝑉 𝑇 to 5𝐶𝑉 𝑇/3.
Therefore,

Δ𝑆red = 𝐶𝑉 log
5

3
+𝑅 log 2. (11.50)

For the green arrow the volume of the green gas is changed from 𝑉 to 2𝑉 and the
temperature 2𝑇 to 5𝑇/3, that is, the internal energy is from 4𝐶𝑉 𝑇 to 10𝐶𝑉 𝑇/3 (2
moles!). Therefore,

Δ𝑆green = 2𝐶𝑉 log
5

6
+ 2𝑅 log 2. (11.51)

Therefore, the total entropy change is

Δ𝑆 = 𝐶𝑉 log
125

108
+𝑅 log 8. (11.52)

(2) Suppose the two gasses are indistinguishable. What is Δ𝑆?

Figure 11.10: Indistinguishable gases are joined.

That is, on the left-hand side is 1 mole and the right 2 moles of identical gases.
Although the volumes are identical (𝑉 ), initially, the right-hand side has temperature
2𝑇 and the left 𝑇 . The membrane is broken and eventually the system reaches a
uniform equilibrium state. Assume that the system is, as a whole, adiabatic. What
is Δ𝑆?

(*) Can you understand the difference in Δ𝑆 for (1) and (2) intuitively?

Solution.
To find the final state 𝑇 and 𝑃 , there is no difference from (1): Since the internal
energy must be conserved:

𝐸 = 𝐶𝑉 𝑇 + 2𝐶𝑉 × 2𝑇 = 5𝐶𝑉 𝑇 = 3𝐶𝑉 𝑇𝐹 . (11.53)

Thus, 𝑇𝐹 = (5/3)𝑇 . The final pressure must satisfy

𝑃𝐹 (2𝑉 ) = 3𝑅𝑇𝐹 = 5𝑅𝑇. (11.54)

That is, 𝑃𝐹 = 5𝑅𝑇/2𝑉 .
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(ii) To find the entropy change we must find a quasistatic process that can con-
nect the intial and the final states. Thus, we invent a process illustrated in Fig.
11.11:

V V

V V4 /3/32

Figure 11.11: From each side we prepare the state with temperature 𝑇𝐹 and pressure 𝑃𝐹 with
the same number densities. The last joining step does not cause any thermodynamic change.

After the processes denoted by the color arrows we prepare the gases with the
same temperatures 𝑇𝐹 and pressures 𝑃𝐹 . The mole ratio is 1:2, so the volume ratio
of the final states is also 1:2. Then, we join these two. At this final step there is no
entropy change, so we have only to compute the entropy change along the colored
arrows.

For the left-hand side along the blue arrow the volume changes from 𝑉 to 2𝑉/3,
and the temperature changes from 𝑇 to 𝑇𝐹 = 5𝑇/3. Therefore,

Δ𝑆L = 𝐶𝑉 log
5

3
+𝑅 log

2

3
. (11.55)

For the right-hand side along the green arrow the volume changes from 𝑉 to 4𝑉/3,
and the temperature changes from 2𝑇 to 𝑇𝐹 = 5𝑇/3. Therefore, (there are 2
moles!)

Δ𝑆R = 2𝐶𝑉 log
5

6
+ 2𝑅 log

4

3
. (11.56)

Therefore,

Δ𝑆 = 𝐶𝑉 log
125

108
+𝑅 log

32

27
. (11.57)

As you see the energetic contribution is the same as before (since energy is ‘color-
blind’). The entropy difference is

Δ𝑆mix −Δ𝑆pure = 𝑅 log
8× 27

32
= 𝑅 log

27

4
. (11.58)

Can we understand this intuitively? Yes. The difference is just the mixing entropy
we can understand information theoretically: do not forget there are 3 moles of
particles.

Δ𝑆inf = −3𝑅×
(︂
1

3
log

1

3
+

2

3
log

2

3

)︂
= −𝑅 log

1

3
− 2𝑅 log

2

3
= 𝑅 log

27

4
. (11.59)

242



D6.4 [Mixing and irreversibility]
Suppose mixing process is reversible. Then, show that we can violate Thomson’s
principle (i.e., we can do work with a single heat source).

Solution.
Through isothermally expanding the red and green gases separately (cf. the solution
to D6.3), we can take out work from each process. Now we merge (superpose) the
two gases reversibly without any work nor exchange of heat. Then, we can reversibly
and adiabatically demix the mixture to go back to the original state. Thus, cyclically
the heat taken from a uniform-temperature environment can be converted to work,
violating Thomson.

[Comment] The question is often asked in the following manner: Suppose there is no
increase of entropy due to mixing. · · ·. Unfortunately thermodynamics cannot tell
us whether this process with Δ𝑆 = 0 can be actually performed or not, so strictly
speaking we cannot say anything conclusive. I must hastily add, however, that ac-
cording to our experience, we can always ingenuously devise such a process. “All the
thermodynamically allowed processes are realizable” is, strictly speaking, an extra
principle.

D6.5 [Equation of state and entropy]
As we have learned, thermodynamics cannot give you any ‘concrete information’
(e.g., equations of state) for any system. These must be obtained experimentally
or by microscopic modeling with the aid of statistical mechanics. Still, after de-
termining the thermodynamic equation of state such as entropy as a function of
thermodynamic coordinates, we can know every macroscopic thermal properties of
the system. This is the reason why thermodynamics is emphasized in practice.

(1) For one mole of pure substance the following two relations have been empirically
obtained:

𝑇 = 𝑐𝐸2/3/𝑉 1/2, (11.60)

𝑃 ∝ 𝐸/𝑉, (11.61)

where 𝑐 is a positive constant.
(i) Write down the corresponding equations for 𝑁 moles of the same substance.
(ii) Find the entropy as a function of the thermodynamic coordinates 𝐸, 𝑉 , 𝑁 and
𝑐.

Solution.
(i) Thermodynamic variables are extensive or intensive (the fourth law 9.14), so 𝐸
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in the above equation is actually 𝐸/𝑁 , and 𝑉 𝑉/𝑁 . Therefore,

𝑇 = 𝑐(𝐸/𝑁)2/3/(𝑉/𝑁)1/2 = 𝑐𝐸2/3/𝑉 1/2𝑁1/6, (11.62)

𝑃 = 𝑎𝐸/𝑉, (11.63)

where we write the proportionality relation as an equality with a multiplicative con-
stant 𝑎, which we must fix eventually. Notice that 𝑇 is indeed intensive (check this
by doubling the system size).
(ii) The Gibbs relation for entropy reads

𝑑𝑆 =
1

𝑇
𝑑𝐸 +

𝑃

𝑇
𝑑𝑉. (11.64)

Therefore,

𝑑𝑆 =
𝑉 1/2𝑁1/6

𝑐𝐸2/3
𝑑𝐸 +

𝑎𝐸1/3𝑁1/6

𝑐𝑉 1/2
𝑑𝑉 =

1

𝑐
𝑉 1/2𝑁1/6𝐸−2/3𝑑𝐸 +

𝑎

𝑐
𝐸1/3𝑁1/6𝑉 −1/2𝑑𝑉.

(11.65)
Let us integrate this from (𝐸0, 𝑉0) to (𝐸, 𝑉 ). Since 𝑑𝑆 is exact, we can choose any
integration path. Let us use (𝐸0, 𝑉0)→ (𝐸, 𝑉0)→ (𝐸, 𝑉 ):

𝑆(𝐸, 𝑉 )−𝑆(𝐸0, 𝑉0) =
3

𝑐
𝑉

1/2
0 𝑁1/6(𝐸1/3−𝐸1/3

0 )+
2𝑎

𝑐
𝐸1/3𝑁1/6(𝑉 1/2−𝑉 1/2

0 ) (11.66)

The result should not depend on the mid point location (𝐸, 𝑉0). This implies that
2𝑎 = 3. Thus,

𝑆(𝐸, 𝑉 )− 𝑆(𝐸0, 𝑉0) =
3

𝑐
(𝐸1/3𝑁1/6𝑉 1/2 − 𝑉 1/2

0 𝑁1/6𝐸
1/3
0 ). (11.67)

𝑎 may be determined before integration from the closedness of 𝑑𝑆 as well:

1

2𝑐
𝑉 −1/2𝑁1/6𝐸−2/3 =

𝑎

3𝑐
𝐸−2/3𝑁1/6𝑉 −1/2. (11.68)

D6.6 [Intuitive meaning of entropy: information preview].
The amount of information you can get from the answer to a YES-NO question for
which you cannot guess the answer at all (‘even’ yes-no question) is 1 bit.239

If a system changes from state A to B and if we need an answer to one extra
(even) yes-no question to specify the state of a molecule in system state B (say, gas
phase) as accurately as in A (say, liquid phase), we say 𝑆B − 𝑆A = 𝑅 log 2 per 1
mole of molecules (𝑅 = 8.314 J/K·mol). That is, 1 bit/molecule ⇐⇒ 5.8 J/K·mol

239In other words, the maximum information you can get from a single yes-no question is one bit.
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or 0.17 bit/molecule ⇐⇒ 1 J/K·mol.

The boiling temperature of acetic acid under 1 atm is 391 K, and the evaporation
heat (= latent heat of evaporation) is about 23.7 kJ/mol.
(1) What is the entropy increase due to evaporation?
(2) Roughly, how many yes-no questions do you have to ask to specify the (single)
molecular state in the gas phase as accurately as in the liquid phase?
(3)* The evaporation entropy of ethanol is about 110 J/K·mol. You should have re-
alized a big difference between this value and the value you obtained in (1). This is
said to be due to dimerization: acetic acid gas (around the boiling point) consists of
dimers (CH3COOH)2 (due to strong hydrogen bonding, but ethanol does not make
dimers in the gas phase).240 Is the entropy difference roughly consistent with this
explanation (or not)? Give your opinion with your supporting argument.

Soln.
(1) The entropy change due to evaporation is Δ𝑆 = 23700/391 = 60.6 J/K·mol.
(2) This corresponds to 60.6× 0.17 = 10.3 bits/molecule. That is, we need about 10
Yes-No questions to determine the state of each molecule as precisely as we can do
so in the liquid phase. The volume of the gas (under the condition we are interested
in) is about 200 times as large as that of the liquid.241 This explains about 7 to 8
bits. Not very bad.
(3) Ethanol evaporation corresponds to almost 19 bits/molecule increase of entropy,
so we may say that the number of questions required for ethanol is almost doubled.
If we assume that roughly two molecules behave together, then the knowledge about
one molecule tells us about one more molecule, so this is reasonable.

240Precisely speaking, there are also tetramers, and the average acetic acid molecules in a single
gas particle seems about 105/60 ≃ 1.75.

241According to a very crude estimate, 1 mole of acetic acid just above its boiling point occupies
about 10 l, which is about 170 times as large as the liquid volume.
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Exercise 6

E6.1 [Heat pump]
We could import heat from the external world (outdoors) into a room to warm it
up. The set up of the analysis is always the same, Fig. 11.12:

Q

Q
W

T

TL

H

H

L

Figure 11.12: Heat pump operation requires: 𝑄𝐿 > 0, 𝑊 > 0 and 𝑄𝐻 < 0.

𝑊 is what we invest, and |𝑄𝐻 | is our gain, so |𝑄𝐻 |/𝑊 is called the coefficient of
performance. If the room temperature 𝑇𝐻 = 298 K and the low-temperature heat
source is the 𝑇𝐿 = 288 K underground device, what is the limit of the coefficient of
performance?

Solution.
For one cycle the total energy input to the heat pump must be zero:

𝑄𝐻 +𝑄𝐿 +𝑊 = 0. (11.69)

For a single cycle the entropy increase of the device must be zero, so with the aid of
Clausius’ inequality (Δ𝑆 ≥ 𝑄/𝑇 , 10.7), we have

𝑄𝐻

𝑇𝐻
+
𝑄𝐿

𝑇𝐿
≤ 0. (11.70)

Thus,
𝑄𝐻

𝑇𝐻
+
−𝑊 −𝑄𝐻

𝑇𝐿
≤ 0 (11.71)

or

𝑄𝐻

(︂
1

𝑇𝐻
− 1

𝑇𝐿

)︂
= |𝑄𝐻 |

(︂
1

𝑇𝐿
− 1

𝑇𝐻

)︂
≤ 𝑊

𝑇𝐿
. (11.72)

Therefore, the coefficient of performance is

|𝑄𝐻 |
𝑊
≤ 1

𝑇𝐿

⧸︂(︂
1

𝑇𝐿
− 1

𝑇𝐻

)︂
=

𝑇𝐻
𝑇𝐻 − 𝑇𝐿

. (11.73)

For our case this is 298/10, about 30, a tremendous gain.
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E6.2 [Explosion in a cylinder with a piston]
Inside a thermally insulated (i.e., adiabatic) empty (i.e., vacuum) cylinder of volume
10𝑉 is a small can of volume 𝑉 containing one mole of an ideal gas at temperature
15𝑇 . The one wall of the cylinder can move outward, if the internal pressure is
higher than the external one which is 𝑃ex = 𝑅𝑇/𝑉 . The can is punctured and the
gas escapes and eventually reaches a new equilibrium state (see Fig. 11.13).

10V

V

Figure 11.13: Initially, the can is filled with a gas (Left) and is inside a vacuum box of volume
10𝑉 . Then, it is punctured and the gas escapes to reach the final equilibrium state (Right).

(1) Find the final temperature 𝑇𝐹 and the volume 𝑉𝐹 of the gas in the cylinder.
(2) What is the total entropy change due to puncturing the can?

Solution.
(1) The initial internal energy is 𝐸 = 15𝐶𝑉 𝑇 . Let 𝑉𝐹 be the final volume of the
gas. Then, 𝑉𝐹 − 10𝑉 is the volume of the displaced external gas. This requires the
system to do work: |𝑊 | = 𝑃𝑒𝑥(𝑉𝐹 − 10𝑉 ), so the final internal energy of the gas in
the cylinder is

𝐸 − 𝑃𝑒𝑥(𝑉𝐹 − 10𝑉 ). (11.74)

Thus the final temperature of the gas is

𝑇𝐹 = (𝐸 − 𝑃𝑒𝑥(𝑉𝐹 − 10𝑉 ))/𝐶𝑉 = 15𝑇 − 2

3
𝑇 (𝑉𝐹/𝑉 − 10). (11.75)

Since the equation of state implies that

𝑃𝑒𝑥𝑉𝐹 = 𝑅𝑇𝐹 ⇒
𝑉𝐹
𝑉

=
𝑇𝐹
𝑇
, (11.76)

we get

𝑇
𝑉𝐹
𝑉

= 15𝑇 − 2

3
𝑇 (𝑉𝐹/𝑉 − 10). (11.77)

That is,
5

3

𝑉𝐹
𝑉

= 15 +
20

3
=

65

3
(11.78)
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or
𝑉𝐹
𝑉

=
65

5
= 13. (11.79)

Therefore,

𝑇𝐹 =
𝑃𝑒𝑥𝑉𝐹
𝑅

=
𝑅𝑇𝑉𝐹
𝑅𝑉

= 13𝑇. (11.80)

Or,

𝑇𝐹 = 15𝑇 − 2

3
𝑇 (13− 10) = 13𝑇, (11.81)

consistent.

(2) We may use the equation of state 𝑆 = 𝑆(𝐸, 𝑉 ). Thus,

Δ𝑆 = 𝐶𝑉 log
13

15
+𝑅 log 13. (11.82)

E6.3. [General ideal gas]
Experimentally, the internal energy of a gas is volume-independent under constant
temperature, and 𝑃𝑉 is a function of 𝑇 only, say 𝑃𝑉 = 𝜑(𝑇 ). Show that 𝜑(𝑇 ) ∝ 𝑇 .
You may use the following Maxwell’s relation

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

, (11.83)

which we will show in a month.242

Solution.
The first law tells us

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉. (11.84)

It is said that the internal energy of a gas is volume-independent under constant
temperature:

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

= 0. (11.85)

Thus, (11.84) implies

0 = 𝑇
𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

− 𝑃 = 𝑇
𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

− 𝑃. (11.86)

242You will understand (in Section 17) the following simple algebra:

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
𝜕(𝑆, 𝑇 )

𝜕(𝑉, 𝑇 )
=
𝜕(𝑆, 𝑇 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )
=
𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )
=
𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

.
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𝑃𝑉 = 𝜑(𝑇 ) implies

𝑉
𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

= 𝜑′(𝑇 ). (11.87)

Therefore, multiplying 𝑉 to (11.86) gives us

𝑇𝜑′(𝑇 ) = 𝜑(𝑇 ) ⇒ 𝑑𝜑/𝜑 = 𝑑𝑇/𝑇. (11.88)

That is, 𝜑 ∝ 𝑇 .

E6.4 [Mixing diatomic and monatomic gases]
Assume that the system is, as a whole, adiabatic. Initially, the left-hand half (volume
𝑉 ) contains one mole of a monatomic ideal gas A (red) (𝐶𝑉 = 3𝑅/2) at tempera-
ture 𝑇 and the right-hand half (volume 𝑉 ) contains one mole of diatomic ideal gas
B (green) (𝐶𝑉 = 5𝑅/2) at temperature 2𝑇 . After the separating wall is removed,
eventually, the system reaches a new uniform equilibrium state as illustrated in Fig.
11.14.

(1) Find the final temperature 𝑇𝐹 and pressure 𝑃𝐹 .
(2) What is the entropy increase? You need not get the numerical answer but may
keep 𝑅 as a symbol.

Figure 11.14: The mixing process.

Solution.
(1) Since the internal energy must be conserved:

𝐸 =
3

2
𝑅𝑇 +

5

2
𝑅× 2𝑇 =

13

2
𝑅𝑇 =

(︂
3

2
𝑅 +

5

2
𝑅

)︂
𝑇𝐹 = 4𝑅𝑇𝐹 . (11.89)

Thus, 𝑇𝐹 = (13/8)𝑇 . As to the pressure, mixture or not does not matter; what
matters is the total number of particles; there are two moles. Thus the final pressure
must satisfy

𝑃𝐹 (2𝑉 ) = 2𝑅𝑇𝐹 =
13

4
𝑅𝑇. (11.90)

That is, 𝑃𝐹 = 13𝑅𝑇/8𝑉 .

(2) To find the entropy change we must find a quasistatic process that can con-
nect the initial and the final states. Thus, we invent a process illustrated in Fig.
11.15 (as usual!).
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Figure 11.15: The mixing process may be considered as two expansions and subsequent superpo-
sition of the expanded gases; the last superposition step does not cause any thermodynamic change,
because these gas particles do not interact. Entropy changes only during expansion processes. The
expanded states must have the final temperature 𝑇𝐹

Superposition of the expanded states is adiabatic and reversible, so there is no en-
tropy change in the final step. All the changes are during expansions.

For the red arrow the volume of the red gas is changed from 𝑉 to 2𝑉 and the
temperature 𝑇 to 𝑇𝐹 = 13𝑇/8, that is, the internal energy is from (3/2)𝑅𝑇 to
(3/2)𝑅× 13𝑇/8. Therefore,

Δ𝑆red =
3

2
𝑅 log

13

8
+𝑅 log 2. (11.91)

For the green arrow the volume of the green gas is changed from 𝑉 to 2𝑉 and
the temperature 2𝑇 to 13𝑇/8, that is, the internal energy is from (5/2)𝑅(2𝑇 ) to
(5/2)𝑅× 13𝑇/8 . Therefore,

Δ𝑆green =
5

2
𝑅 log

13

16
+𝑅 log 2. (11.92)

The total entropy change is thus

Δ𝑆 =
3

2
𝑅 log

13

8
+

5

2
𝑅 log

13

16
+𝑅 log 4. (11.93)
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12 Introduction to statistical mechanics

Summary
* If we have a translation table between mechanical and thermodynamic quantities,
we can calculate thermodynamic quantities with the aid of mechanics.
* The table must include not only mechanical (i.e., thermodynamic coordinates)
but thermal quantities. The latter is supplied by Boltzmann’s principle: 𝑆 =
𝑘𝐵 log𝑤(𝐸,𝑋).
* With very natural observations as to thermodynamics and mechanics, we can un-
derstand this principle from 𝑑𝑆 = 𝑑′𝑄/𝑇 [as Einstein did].

Key words
phase space, microstate (classical and quantum), microcanonical ensemble, micro-
canonical partition function, Boltzmann’s principle

What you should be able to do
* Tell what thermodynamics can and cannot do.
* Clearly explain the meaning of the quantities appearing in Boltzmann’s principle.
* Be able to use Boltzmann’s principle for simple examples.
* Explain why the conventional justification of statistical mechanics in terms of er-
godic theory is totally absurd.

12.1 Power and limitation of thermodynamics
We have learned rudiments of thermodynamics. As you have realized, thermody-
namics is very powerful when right inputs are introduced, but it cannot tell you
anything specific to a particular system. For example, the equation of state or the
functional form of 𝑆 = 𝑆(𝐸, 𝑉 ) cannot be supplied by thermodynamics; when we
computed this, even for an ideal gas, we relied on 𝐸 = 𝐶𝑉 𝑇 and 𝑃𝑉 = 𝑅𝑇 , neither
of which is thermodynamically obtained.

You must clearly know what thermodynamics can do and what not. Thermo-
dynamics can compute the changes of state functions (state variables) between
two equilibrium states irrespective of the actual processes that have happened, IF
the equation of state of the system is known. Thermodynamics cannot calcu-
late materials-specific (or system-specific) properties, which must be supplied extra-
thermodynamically.

12.2 Why statistical mechanics?
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We believe that the microscopic world underlies the world we experience daily (=
the macroscopic world), and their descriptions in terms of mechanics is much more
detailed than what the macroscopic phenomenology can offer. Then, we can have
hope that looking at the microscopic details, we may be able to obtain the informa-
tion thermodynamics needs but cannot provide.

Since the microscopic world is described by mechanics governing numerous parti-
cles, we should try to compute thermodynamic quantities in terms of mechanics. To
describe a macrosystem in terms of particle mechanics, we must expect that we need
numerous variables far more than the dimension of the thermodynamic space (recall
scooping out water on the earth by a tablespoon!). Thus, it is a natural guess that
we need some statistical means: statistical mechanics.

12.3 What do we really need?
However, as is emphasized repeatedly, the macroscopic world is the world governed
by the law of large numbers, so if you know how to get the expectation values, we do
not need statistics explicitly. We need only the translation table of thermodynamic
quantities in terms of mechanical quantities.

We have learned that the most fundamental description of any equilibrium state
is in terms of thermodynamic coordinates (𝐸,𝑋), where 𝐸 is the internal energy
and 𝑋 (collectively) are the work coordinates. We know 𝐸 is the system mechanical
energy. 𝑋 may be the volume 𝑉 , magnetization 𝑀 , etc., and can be described in
terms of microscopic mechanical variables easily and/or naturally; we only need their
expectation values (no distribution needed). Thus, we can write down the transla-
tion table for thermodynamic coordinates relatively easily.

12.4 Boltzmann’s principle
However, thermodynamics is ‘thermo’dynamics. Indeed, we have learned that en-
tropy 𝑆 = 𝑆(𝐸,𝑋) is the fundamental quantity we need in order to use thermody-
namics. Therefore, the translation table must include 𝑆.

The translation table was completed by Boltzmann in the following form, the
Boltzmann principle:243

𝑆 = 𝑘𝐵 log𝑤(𝐸,𝑋), (12.1)

where 𝑘𝐵 is the Boltzmann constant (see D3.3), and 𝑤(𝐸,𝑋) is the ‘number’ of
‘microscopic states (= microstates)’ compatible with the macrostate (𝐸,𝑋) (hence-

243Some authors define entropy by this formula. However, 𝑆 is thermodynamically defined,
and we know how to measure Δ𝑆 (entropy change). The definition of entropy not referring to
thermodynamics is empty as a physical concept, because we cannot measure it. The correctness of
the translation table is only guaranteed by the fact the it gives correct thermodynamics.
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forth, the same symbol 𝑤(𝐸,𝑋) will be used to denote the collection of microstates
compatible with (𝐸,𝑋) as well). To understand this statement precisely, we must
clarify what ‘microstate’ means.244

Thermodynamic 

space

Phase space

w(E,X)

(E,X)

Figure 12.1: For each equilibrium state (𝐸,𝑋) in the thermodynamic space, we can imagine
a subset 𝑤(𝐸,𝑋) of the phase space consisting of microstates that give the same thermodynamic
coordinates.

12.5 Classical microstates
Classical-mechanically,245 the most detailed description of a system is in terms of a
set of the canonical variables. The most popular canonical variables are the position
and momentum vectors. For an 𝑁 -point-mass system, the 6𝑁 -dimensional vector
(𝑟1, · · · , 𝑟𝑁 ,𝑝1, · · · ,𝑝𝑁), where 𝑟𝑖 is the position vector of the 𝑖th particle and 𝑝𝑖

the momentum vector of the 𝑖th particle, gives the ultimately detailed description
of the system. The space spanned by these 6𝑁 coordinates (the totality of these
6𝑁 -dimensional vectors) is called the phase space of the system, and a point in this
space is classically the elementary event = microstate.

12.6 Quantum microstates
Quantum-mechanically,246 an elementary state is (roughly speaking) a state ket, but
physically | · ⟩ and 𝑐 | · ⟩ for any complex number 𝑐 are indistinguishable, so actually,
an elementary state is a ray (= 1D subspace spanned by a ket). We may take a
convenient orthonormal basis of the vector space spanned by all the state kets and

244You may understand that a ‘microstate’ corresponds to an ‘elementary event’ in probability.
245The Feynman Lectures I is a good classical mechanics introduction. Then, read the first volume

of the Landau-Lifshitz series.
246The Feynman lectures III is a good quantum mechanics introduction. However, if you wish

to finish the rudiments as quickly as possible, read Griffiths. At a more leisurely pace, if you are
interested in a more historical development, see the beginning part (Part I) of my lecture notes
https://www.dropbox.com/home/IntroQM/contents_files.
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interpret any vector in this basis set as a microstate. In particular, normalized eigen-
kets of the system Hamiltonian may be interpreted as microstates.247

12.7 How to obtain microcanonical partition function
Thus, to obtain 𝑤(𝐸,𝑋), for classical cases, we calculate the volume of the subset of
the phase space compatible with the thermodynamic coordinates (𝐸,𝑋). Recall that
for any phase point we can compute (𝐸,𝑋) (at least in principle). If the computed
𝐸 ′ and 𝑋 ′ nearly agree with (that is, are macroscopically indistinguishable from)
the thermodynamic coordinates of a macrostate (𝐸,𝑋), we say that the microstate
is compatible with this macrostate (see Fig. 12.1). Thus, we can find the subset
𝑤(𝐸,𝑋) of the phase space consisting of such microstates.

Quantum-mechanically, we make observables corresponding to 𝐸 (that is, the
system Hamiltonian) and 𝑋 (we may write such an operator as 𝑋̂), and then col-
lect eigenkets | · ⟩ of the Hamiltonian whose eigenvalues are close to 𝐸 and also
⟨ · |𝑋̂| · ⟩ ≃ 𝑋.

The set 𝑤(𝐸,𝑋) is called a microcanonical ensemble, and the numerical value
𝑤(𝐸,𝑋) (phase volume or number of states) is called a microcanonical partition
function.

12.8 Statistical Mechanics is completed!
We have completely specified the statistical mechanical rule to compute thermody-
namics. The rest is taken care of by the Gibbs relation

𝑑𝑆 =
1

𝑇
𝑑𝐸 +

𝑃

𝑇
𝑑𝑉 − 𝜇

𝑇
𝑑𝑁 − 𝑥

𝑇
𝑑𝑋 + · · · . (12.2)

In practice, use statistical mechanics sparingly, and use thermodynamics whenever
you can.

Of course, there are two problems remaining: How to use Boltzmann’s principle
and how to understand the principle. First, let us use the principle a bit.

12.9 Let us study an ideal gas (classically)
We can use the completed translation table to compute 𝑆 from mechanics. Let us
study a classical ideal gas. It consists of 𝑁 non-interacting mass points of mass 𝑚

247Any unitary transformation of the basis set is again a basis set, so in quantum mechanics the
choice of the microstates is not unique. The situation is not different for classical cases; we may
apply any canonical transformation to the phase space coordinates.
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in a volume 𝑉 . The system Hamiltonian is the pure kinetic energy:

𝐻 =
∑︁
𝑖

𝑝2
𝑖

2𝑚
. (12.3)

Precisely speaking, 𝑤(𝐸, 𝑉 ) collects all the microstates in the volume 𝑉 with energy
in (𝐸 −Δ𝐸,𝐸], where Δ𝐸 is a (macroscopically small) leeway. What we should do
first is to formally write down 𝑤(𝐸, 𝑉 ).

𝑤(𝐸, 𝑉 ) =

∫︁
𝑟𝑖∈𝑉,𝐸−Δ𝐸<

∑︀
𝑝2

𝑖 /2𝑚≤𝐸

𝑑Γ, (12.4)

where 𝑑Γ = 𝑑𝑟1 · · · 𝑑𝑟𝑁𝑑𝑝1 · · · 𝑑𝑝𝑁 is the volume element of the 6𝑁 -dimensional
phase space. The space and momentum integrals can be totally decoupled, so

𝑤(𝐸, 𝑉 ) =

∫︁
𝑟𝑖∈𝑉,

∑︀
𝑝2

𝑖 /2𝑚∈(𝐸−Δ𝐸,𝐸]

𝑑Γ (12.5)

=

∫︁
𝑉

𝑑𝑟1 · · ·
∫︁
𝑉

𝑑𝑟𝑁

∫︁
∑︀

𝑝2
𝑖 /2𝑚∈(𝐸−Δ𝐸,𝐸]

𝑑𝑝1 · · · 𝑑𝑝𝑁 (12.6)

= 𝑉 𝑁

∫︁
∑︀

𝑝2
𝑖 /2𝑚∈(𝐸−Δ𝐸,𝐸]

𝑑𝑝1 · · · 𝑑𝑝𝑁 . (12.7)

The last integral is the volume of the skin of thickness ∝ Δ𝐸 of a 3𝑁 dimen-
sional ball (3𝑁 − 1-sphere248) of radius

√
2𝑚𝐸, which must be proportional to

𝐸(3𝑁−1)/2(
√
𝐸 +Δ𝐸 −

√
𝐸) ∝ 𝐸3𝑁/2−1Δ𝐸,249 so

𝑤(𝐸, 𝑉 ) ∝ 𝑉 𝑁𝐸3𝑁/2Δ𝐸. (12.8)

Here, 𝑁 ≫ 1, so 1 is ignored. Therefore, Boltzmann tells us that

𝑆 = 𝑘𝐵 log𝑤(𝐸, 𝑉 ) = 𝑁𝑘𝐵 log 𝑉 +
3

2
𝑁𝑘𝐵 log𝐸 + 𝑘𝐵 logΔ𝐸 + · · · , (12.9)

where the remaining terms are 𝑁× a constant.250 Using thermodynamic relations,

1

𝑇
=

𝜕𝑆

𝜕𝐸

⃒⃒⃒⃒
𝑉

=
3

2

𝑁𝑘𝐵
𝐸

(12.10)

or 𝐸 = (3/2)𝑁𝑘𝐵𝑇 . Also
𝑃

𝑇
=

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝐸

=
𝑁𝑘𝐵
𝑉

, (12.11)

248Notice that in mathematics, 1-sphere is the edge of a disk, 2-sphere is the skin of a 3D ball (=
the ordinary sphere), etc.

249Dimensional analysis can give you this answer as well.
250By the way, Δ𝐸 can be pretty much anything, if not too small (as Δ𝐸 = 𝑂[𝐸/𝑒𝛼𝑁 ] for some

𝑎 > 0).
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which is the equation of state. It works!

Incidentally, (12.9) does not satisfy the fourth law 9.14: if you double extensive
quantities (experimentally, we have only to join two identical systems to make a
compound system): 𝑁 → 2𝑁 , 𝐸 → 2𝐸, 𝑉 → 2𝑉 , then we must also have 𝑆 → 2𝑆,
but this does not hold. When you use statistical mechanics, a wise practice is to
make a shortcut with the aid of thermodynamics. We demand that the fourth law
holds. Then, we are forced to accept the following form:

𝑆 = 𝑘𝐵 log𝑤 = 𝑁𝑘𝐵 log
𝑉

𝑁
+

3

2
𝑁𝑘𝐵 log

𝐸

𝑁
+ 𝑘𝐵 logΔ𝐸 + · · · . (12.12)

This corresponds to replacing 𝑤 with 𝑤/𝑁 !. Boltzmann also noted in his original
paper that the latter choice is convenient, because the extensivity of entropy is sat-
isfied. We will come back to this problem in Section 14.

12.10 Basis of Boltzmann’s formula: key observations
Boltzmann’s formula works, so don’t ask any question and get good grades and pub-
lish papers. Wise professors may well preach like this. Well, science should not
tolerate incantations. Every black box must be opened.

Let us go to a derivation(!) of Boltzmann’s principle starting from empirical facts
and some general observations about mechanics. Since we are physicists, and not
metaphysicists, let us be as empirical as possible.

The facts we wish to rely on are:
[O] If we (in a constant environment thermally) isolate a system, it will eventually
arrive at a system that does not depend on time macroscopically (actually this must
be the main part of the zeroth law).
[X] The needed observation time for thermodynamic coordinates is very short (say,
1 𝜇s or much less if the system is large enough).

A general picture of microscopic dynamics is that the instantaneous microstate
wanders around the phase space; in particular, if the macrostate is in (𝐸,𝑋), it
wanders around in 𝑤(𝐸,𝑋). Traditionally, ‘statistics’ of ‘statistical mechanics’ was
understood as taking statistics over all the microstates in 𝑤(𝐸,𝑋). Consequently,
a misconception was spread that the key to statistical mechanics was the even me-
chanical sampling over 𝑤(𝐸,𝑋) (the ergodic theoretical justification of statistical
mechanics).

For the ordinary macro object containing 𝑁 ∼ 1023 particles, what is the time
scale required to sample 𝑤 evenly? It is roughly the time scale of the Poincaré cycle
∼ 𝑒𝑁 .251 [X] implies that during one thermodynamic observation, only an extremely
tiny fraction of 𝑤 is sampled. However, [O] implies that if you repeat this experiment

251The time scale of the Poincaré cycle is roughly the time scale required for a given closed
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after 1 billion years later, we get the same thermodynamic result. A 1 𝜇s observation
in 109 CE will cover again only very tiny portion of 𝑤 (Fig. 12.2).

Phase space

w(E,X)

Figure 12.2: Repeating thermodynamic observation samples extremely tiny subsets (black dots)
of 𝑤, but they all give the same thermodynamic results.

What is the most natural conclusion? Suppose we prepare an isolated macrosys-
tem reaching an equilibrium state (𝐸,𝑋). Since it is isolated, we may interpret it
as a mechanical system as well. If you sample a microstate (mechanically instanta-
neous state), and compute the thermodynamic coordinates, almost surely they agree
with (𝐸,𝑋) and give the correct thermodynamic relation. That is, if you wish to
know thermodynamics, you have only to sample a single microstate; almost every
microstate gives the same thermodynamics. This is the secret of equilibrium statisti-
cal mechanics.

Remark As we will learn later (Section 14) the identical particles are indistinguish-
able, so the two phase points that are indistinguishable under particle permutation
must be counted as a single microstate. Then, 𝑤/𝑁 ! must be the number of states,
which is vastly smaller than 𝑤 itself. Therefore, one might expect that ‘ergodicity’
holds for this true phase space. Suppose we have 𝑁 particles packed loosely in the
space. Due to the indistinguishability we can largely ignore the exchange of parti-
cles, so the number of microstates is determined by the local configuration of each
particle (e.g., the location of the particle in a local cell just as in the cell model of
liquids). Even if there are only two local states, we have total more than 2𝑁 ∼ 10𝑁/3

microstates, so the estimate of the needed Poincarë time is ‘not much different’ from
𝑒𝑁 .

12.11 Derivation of Boltzmann’s formula
Let us derive Boltzmann’s principle from thermodynamics (and mechanics).
For simplicity, only 𝐸 is written explicitly; you can repeat the following argu-
ment with𝑋 restored. The phase volume 𝑤(𝐸) compatible with the microstates

dynamical system to return to its intial condition. Poincar’e’s recurrence theorem guarantees that
any state can return to its any neighborhood
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whose energy is in (𝐸 −Δ𝐸,𝐸] may be written as

𝑤 =

∫︁
𝑑Γ𝜒Δ𝐸(𝐻 − 𝐸), (12.13)

where 𝜒Δ𝐸 is the indicator of the leeway set, (−Δ𝐸, 0], and 𝑑Γ is the phase
volume element.252 Here, the integration is over all the phase space of the
system. Let us assume that the Hamiltonian contains a parameter 𝜆 that can be
controlled externally (to do macroscopic work, or to regulate work coordinates;
𝜆 is something like a handle). The change of the Hamiltonian due to the
change of the parameter 𝜆 → 𝜆 + 𝛿𝜆 (averaged over the original equilibrium
distribution) is identified with work 𝛿′𝑊 by Einstein. We can also change 𝐸
by 𝛿𝐸. Thus, notice that

⟨𝐻(𝜆+ 𝛿𝜆)−𝐻(𝜆)⟩ − 𝛿𝐸 = 𝛿′𝑊 − 𝛿𝐸, (12.14)

where ⟨ ⟩ is the equilibrium average. In terms of this variation, we have

𝛿𝑤 =

∫︁
𝜒′
Δ𝐸(𝐻 − 𝐸)(𝐻(𝜆+ 𝛿𝜆)−𝐻(𝜆)− 𝛿𝐸) 𝑑Γ. (12.15)

Since almost all the microstates give the same thermodynamic results as already
argued, 𝛿′𝑊−𝛿𝐸 is almost always the same for any microstate compatible with
a given thermodynamic state. Therefore, we obtain

𝛿𝑤 = (𝛿′𝑊 − 𝛿𝐸)
∫︁
𝜒′
Δ𝐸(𝐻 − 𝐸) 𝑑Γ, (12.16)

or with the aid of the first law 𝛿′𝑊 − 𝛿𝐸 = −𝛿′𝑄, after dividing with 𝑤,

𝛿 log𝑤 = −𝛿′𝑄
∫︀
𝑑Γ𝜒′

Δ𝐸(𝐻 − 𝐸)∫︀
𝑑Γ𝜒Δ𝐸(𝐻 − 𝐸)

. (12.17)

Defining

𝜂 ≡ 𝜕log𝑤

𝜕𝐸

⃒⃒⃒⃒
𝑋

= −
∫︀
𝑑Γ𝜒′

Δ𝐸(𝐻 − 𝐸)∫︀
𝑑Γ𝜒Δ𝐸(𝐻 − 𝐸)

, (12.18)

we get (under constant 𝑋)
𝑑 log𝑤 = 𝜂𝑑′𝑄. (12.19)

What is 𝜂? Let us compute this quantity for an ideal gas. Actually, we have
already done that in (12.10):

𝑘𝐵
𝜕log𝑤(𝐸, 𝑉 )

𝜕𝐸
=

3𝑘𝐵𝑁

2𝐸
. (12.20)

252A quantum version is in PST 17.12.
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We know this is 1/𝑇 even before thermodynamics was established (recall the
Maxwell distribution). Now we can use thermodynamics 𝛿𝑆 = 𝛿′𝑄/𝑇 , (and
adjusting the units, if needed), we conclude

𝑑𝑆 = 𝑘𝐵𝑑 log𝑤. (12.21)

Integrating this, we obtain Boltzmann’s principle.253

12.12 Derivation of Boltzmann’s formula: quick way
If we accept that entropy is a functional of 𝑤, then (12.21) is an inescapable con-
clusion.

A crucial observation is that entropy is an extensive quantity. If we form a com-
pound system by combining two systems I and II already in thermal equilibrium
with each other, the entropy of the compound system is the sum of that of each
component (the fourth law).

The interaction introduced by the contact of the two systems is, for macroscopic
systems, a very weak one. In any case, the effect is confined to the boundary layer
whose thickness is microscopic. Thus, the two subsystems may be regarded statis-
tically independent. Therefore, the total number of microstates of the compound
system must be very close to the product of the total numbers of microstates for I
and II: 𝑤 = 𝑤I𝑤II.

Combining the above considerations, we have arrived at the following functional
relation:

𝑆(𝑤I𝑤II) = 𝑆(𝑤I) + 𝑆(𝑤II), (12.22)

where suffixes denote subsystems.
Assuming that 𝑆 is an increasing function of 𝑤, we may conclude from the relation

that 𝑆 is proportional to log𝑤. Therefore, we have arrived at (12.21). The propor-
tionality coefficient 𝑘𝐵 must be positive, because entropy should be larger with larger
𝐸 that corresponds to larger 𝑤.

12.13 Entropy and information
We have already discussed the meaning of entropy in terms of the number of yes-no
questions to specify the molecular state. From this idea, notice that 𝑆 ∝ log𝑤 is
quite natural. 𝑆 in bits is the number of YN questions you must ask to pinpoint the
microstate when you know the system is in a particular macrostate.

12.14 Why traditional justification is meaningless

253How can we choose the integration constant? It is an excellent question. Also look at the
factor 𝑁 ! we discussed briefly above.
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When Boltzmann arrived at his statistical mechanics framework, he initially thought
that thermodynamic observables were the average value over 𝑤. To average, the tra-
jectory of the system as a mechanical system should sample the subset 𝑤 evenly, so
he conceived the so-called ergodicity: the trajectory can visit in any neighborhood
of any point in 𝑤. Almost all the currently popular textbooks explain this totally
wrong idea. You should have already realized this.

As we have seen in Lecture 7, every ambitious young man attempted to derive the
irreversibility from mechanics. Boltzmann studied the gas dynamic in detailed and
‘demonstrated’ irreversibility. His colleague Loschmidt questioned why time-reversal
symmetric mechanics could give rise to a system losing this symmetry. Boltzmann
realized that there is an approximation to discard memory. Then came Zermelo who
pointed a logical error out: even if memory is discarded, still any trajectory can
return in any neighborhood of the starting point (Poincaré’s recurrence theorem), so
irreversibility cannot be concluded. Boltzmann countered that the young man (=
Zermelo) should know physics; can you wait for that long time of order 10𝑁? Thus,
in practice, irreversibility is real, even if the system is finite.

However, you must have quickly realized that this counterargument backfires. For
an even sampling of the phase space, you must observe the system for an extremely
long time. That is, ergodicity cannot justify statistical mechanics! Actually, Boltz-
mann seems to have realized that there was a serious problem with the ergodicity
argument to found statistical mechanics long before Zermelo’s criticism. He even
realized the secret of equilibrium statistical mechanics: every microstate gives the
same thermodynamic observables!

Boltzmann’s followers all ignored (or could not understand) this insight. The total
absurdity of the ergodicity argument should be obvious from the fact that larger sys-
tems require shorter observation times for accurate determination of thermodynamic
observables. This is basically the law of large numbers.

Although the theoretical system we have arrived at is called ‘statistical mechan-
ics’, we need only the law of large numbers as Khinchin realized long ago.
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Q12.1 [How Boltzmann introduced his principle].
Let us taste the original paper.254 Main steps are stated as questions (and answers
to them). Let us consider a gas consisting of 𝑁 particles in a container with volume
𝑉 . Let 𝑤𝑛 be the number of particles with the (one-particle) energy between (𝑛−1)𝜀
and 𝑛𝜀 (𝜀 > 0). Thus, the set {𝑤𝑛} specifies a collection of microstates of the system
with 𝑤𝑛 particles in the one particle energy bin with the energy in ((𝑛− 1)𝜀, 𝑛𝜀].
(1) Show that maximizing the number of ways (‘Komplexionszahl’) to realize a collec-
tion of microstates (‘Komplexion’) specified by {𝑤𝑛} is equivalent to the minimization
condition for

𝑀 =
∑︁

𝑤𝑛 log𝑤𝑛. (12.23)

(2) Write 𝑤𝑖 = 𝑤(𝑥)𝜖 and simultaneously take the 𝑛 → ∞ and 𝜀 → 0 limits,
maintaining 𝑥 = 𝑛𝜀 finite. Show that minimizing𝑀 is equivalent to minimizing

𝑀 ′ =

∫︁
𝑤(𝑥) log𝑤(𝑥)𝑑𝑥. (12.24)

(3) We should not ignore the constraints that the total number of particles is 𝑁 and
the total energy is 𝐸. Under this condition, derive Maxwell’s distribution in 3-space
by minimizing 𝑀 ′.
(4) Now, Boltzmann realized that log𝑍𝐾 = log𝑁 ! − 𝑀 ′ gives the entropy of the
ideal gas. Based on this finding, he proposed

𝑆 ∝ log (Number of ‘Komplexions’). (12.25)

Compare this and the formula for 𝑆 obtained thermodynamically, as Boltzmann did,
to confirm his proposal.

Remark. Usually, the story ends here (so did Boltzmann’s original paper). However,
being a much deeper thinker than is usually regarded, Boltzmann later confirmed for
macrosystems described by 𝐸 and 𝑉 that his formula of entropy (12.1) satisfied the
Gibbs relation for general classical many-body systems; in particular, (𝑑𝐸+𝑃𝑑𝑉 )/𝑇
is a complete differential.255

Solution.
(1) The Komplexionszahl reads

𝑍𝐾 =
𝑁 !

𝑤1!𝑤2! · · ·𝑤𝑛! · · ·
, (12.26)

254L. Boltzmann, “Über die Beziehung zwischen dem zweiten Hauptsatze der mech-
anischen Wärmetheorie und der Wahrscheinlichkeitsrechinung respective den Sätzen über
Wärmegleichgewicht,” Wiener Berichte 76, 373 (1877) (“On the relation between the second law
of thermodynamics and probability calculation concerning theorems of thermal equilibrium”)
[1877: Accession of Queen Victoria to ‘Empress of India’; Tchaikovsky Swan Lake debuts; Crazy
Horse was killed; Lewis H. Morgan, Ancient Society; Shen Fu: Six Records of a Floating Life; G.
Caillebotte Paris Street; Rainy Day (Art Institute, Chicago)]

255For a detail, see Q17.3 in PST.
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so maximizing this is equivalent to minimizing the denominator or its logarithm (here
Stirling’s formula (13.6) is used):

log(𝑤1!𝑤2! · · ·𝑤𝑛! · · ·) =
∑︁
𝑛

log𝑤𝑛! =
∑︁

(𝑤𝑛 log𝑤𝑛 − 𝑤𝑛) =𝑀 −𝑁. (12.27)

The original paper kindly discusses that we can discard numerical factors, etc., in
Stirling’s formula, which we will derive in the next lecture.
(2) Substituting the quantities in 𝑀 as indicated, we have∑︁

𝑛

𝑤𝑛 log𝑤𝑛 =
∑︁
𝑛

𝑤(𝑥)𝜀 log[𝑤(𝑥)𝜀] =
∑︁
𝑛

𝑤(𝑥)𝜀 log𝑤(𝑥) +
∑︁
𝑛

𝑤(𝑥)𝜀 log 𝜀 (12.28)

The first term is a Riemann sum, so we obtain (12.24). The second term is 𝑁 log 𝜀
and is unrelated to the number of complexions, so we may ignore it.
(3) In the original paper Boltzmann regarded the variable 𝑥 as the three components
of velocity vector 𝑣𝑥, 𝑣𝑦, 𝑣𝑧. Here, we take the momentum 𝑝 and the position 𝑟 as 𝑥:
𝑤(𝑥) = 𝑤(𝑟,𝑝). The constraints are

𝑁 =

∫︁
𝑑𝑟𝑑𝑝𝑤(𝑟,𝑝), 𝐸 =

∫︁
𝑑𝑟𝑑𝑝𝑤(𝑟,𝑝)𝐸(𝑝), (12.29)

where 𝐸(𝑝) = 𝑝2/2𝑚 is the energy of a single particle state 𝑝 with 𝑚 being the
mass of a gas particle. Using Lagrange’s technique, we should maximize (𝛼 and 𝛽
are multipliers) ∫︁

𝑑𝑟𝑑𝑝𝑤(𝑟,𝑝)[log𝑤(𝑟,𝑝) + 𝛼 + 𝛽𝐸(𝑝)]. (12.30)

Hence, (𝐸 = (3/2)𝑁𝑘𝐵𝑇 is used to fix 𝛽)

𝑤(𝑟,𝑝) =
𝑁

𝑉

1

(2𝜋𝑚𝑘𝐵𝑇 )3/2
𝑒−𝑝2/2𝑘𝐵𝑇𝑚. (12.31)

Thus, we have obtained the Maxwell distribution.
(4) If we compute (12.25) (i.e., 𝑁 log𝑁 −𝑀 ′) with the aid of 𝑤 in (12.31)

𝑆 = 𝑁 log 𝑉 +𝑁

(︂
3

2
+

3

2
log(2𝜋𝑘𝐵𝑇𝑚)

)︂
= 𝑁 log 𝑉 𝑇 3/2 + const. (12.32)

This agrees with the entropy obtained thermodynamically (apart from log𝑁 !; the
formula is not extensive). Indeed, the Gibbs relation is

𝑑𝑆 =
1

𝑇
𝑑𝐸 +

𝑃

𝑇
𝑑𝑉, (12.33)

so with the aid of the internal energy 𝐸 = (3/2)𝑁𝑘𝐵𝑇 and the equation of state, we
have

𝑆 = 𝑁𝑘𝐵 log 𝑇 3/2 +𝑁𝑘𝐵 log(𝑉/𝑁) + const. (12.34)
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Discussion 7

We review intuitive understanding of entropy, various thermodynamic potentials and
Boltzmann’s principle.

D7.1 [Legendre transformation]
Let 𝑓(𝑥) be a convex function. Then, Legendre transformation 𝑓 → 𝑓 * is defined
as256

𝑓 *(𝑦) = max
𝑥

[𝑥𝑦 − 𝑓(𝑥)]. (12.35)

We know (𝑓 *)* ≡ 𝑓 ** = 𝑓 , so Legendre transformation perfectly preserves the func-
tional information. Notice that no differentiability is required for 𝑓 ; only its convex-
ity is required.257 We know internal energy 𝐸 is a convex function of 𝑆. Therefore,
𝐸* = −𝐴 is well-defined:

−𝐴(𝑇 ) = max
𝑆

[𝑆𝑇 − 𝐸(𝑆)], (12.36)

so −𝐴 is again convex: that is, 𝐴(𝑇 ) is a concave function of 𝑇 . We can recover 𝐸
from 𝐴 by Legendre transformation

𝐸(𝑆) = max
𝑇

[𝑇𝑆 − (−𝐴)]. (12.37)

All the thermodynamic potentials are connected with each other by a certain
Legendre transformation, so if you know one of them, you can know all the rest.
Notice that no differentiability of thermodynamic potentials is required; this is quite
important, because, if there are phase transitions, thermodynamic potentials often
lose differentiability.

Find the Legendre transform of 𝑓(𝑥) = 5|𝑥|.
Solution.
See Fig. 12.3:

For the red line with slope 𝑦 less than −5 the vertical distance (red arrow: upward
positive) 𝑦𝑥 − 5|𝑥| is indefinitely large, since we can make 𝑥 as small (far left) as
possible (i.e., as 𝑥 → −∞). Thus 𝑓 *(𝑦) = +∞ for 𝑦 < −5. For green line with the
slope 𝑦 > −5, since the line is below 𝑓 the (signed) distance 𝑥𝑦 − 𝑓(𝑥) is maximum
when the line touches 𝑓(𝑥). Thus, 𝑓 *(𝑦) = 0 for 5 > 𝑦 > −5.

However, if the slope 𝑦 becomes larger than 5 (blue line) the situation similar to

256This convention is at variance with the thermodynamic tradition, but I strongly recommend
you to get rid of the old irrational convention and adopt the mathematically rational definition
given here, because you will learn this is indeed natural for statistical mechanics.

257Convex functions are inevitably continuous.
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Figure 12.3: 𝑓(𝑥) = 5|𝑥|. Red line is with slope 𝑦 < −5 and green with slope in [−5, 5].

the red line occurs (look at the blue arrow). Thus 𝑓 *(𝑦) = +∞, Thus, we can draw
a symmetric 𝑓 *(𝑦) as in Fig. 12.3 Right; formally,

𝑓 *(𝑦) =

⎧⎨⎩
+∞ for 𝑦 < −5,
0 for 𝑦 ∈ [−5, 5],

+∞ for 5 < 𝑦.
(12.38)

This is indeed convex.

Can you show 𝑓 = 𝑓 **?

D7.2. [Elementary questions about various thermodynamic potentials]
(1) Which change is zero for the following processes, Δ𝐸, Δ𝐻, Δ𝐴, or Δ𝐺? If not
zero, think whether we can fix their signs.

(i) In Fig. 12.4 adiabatically a gas on the left side of a plug is pushed with a
constant pressure 𝑃1 into a chamber with another constant pressure 𝑃2 (you
can interpret this as a throttle experiment)

porous plug

P1

V1

P
2

V
2

initial state final state

Figure 12.4: Throttle experiment

(ii) In an adiabatic cylinder sulfur is burnt.
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(iii) Ethanol boils at its equilibrium boiling temperature (78 ∘C) under 1 atm (of
its own gas).

Solution.
(i) Thanks to the plug, there is no systematic flow with appreciable macroscopic
kinetic energy. The change of the internal energy is solely due to the volume work:
𝑃1𝑉1 is added to the system and 𝑃2𝑉2 is done to the external world by the system.
Thus, the first law says

𝐸2 = 𝐸1 + 𝑃1𝑉1 − 𝑃2𝑉2 (12.39)

Thus, 𝐸 + 𝑃𝑉 , that is, enthalpy 𝐻 is conserve: Δ𝐻 = 0. Certainly, Δ𝐸 ̸= 0.
Since it is an adiabatic irreversible change, Δ𝑆 > 0. Therefore, generally, Δ𝐺 =
Δ𝐻−Δ(𝑇𝑆) ̸= 0; I do not think its sign can be fixed without any further information.
Since there is no particular relation between 𝑃𝑉 and 𝑇𝑆, generally Δ𝐴 ̸= 0.

This is the setup of Joule-Thomson experiment, disproving Newton’s repulsive
interaction theory of the gas pressure.

𝜕𝑇

𝜕𝑃

⃒⃒⃒⃒
𝐻

(12.40)

is called the Joule-Thomson coefficient.

(ii) The reaction has no exchange of energy with its environment, so Δ𝐸 = 0.
Δ𝐻 = Δ𝐸 + 𝑉Δ𝑃 , because 𝑉 is constant. The reaction S + O2 → SO2 does not
change the number of particles in the gas phase, but the temperature of the system
should have increased, so Δ𝐻 > 0 is expected. This is irreversible, so Δ𝑆 > 0.
Δ𝑇 > 0, so Δ𝐴 = Δ𝐸 −Δ(𝑇𝑆) < 0. To understand Δ𝐺 we must compare Δ(𝑆𝑇 )
and 𝑉Δ𝑃 , so we need more information about the reaction, but there is no particular
relation between these changes, so, generally, Δ𝐺 ̸= 0. I do not think a definite sign
can be claimed without any further details.

(iii) This is an equilibrium process under constant 𝑇 and 𝑃 , so Δ𝐺 = 0. Ethanol
absorbs its boiling heat, so Δ𝐻 > 0. Δ𝐴 = Δ𝐺 − 𝑃Δ𝑉 < 0. Δ𝐸 = Δ𝐻 − 𝑃Δ𝑉
has no reason to vanish; I do not think we can tell its sign without further details.

(2) Initially, we have one mole of a monatomic ideal gas at 273 K at 1 atm (thus,
its volume is 22.4 l). Find the changes of Δ𝐸, Δ𝐻, Δ𝐴 and Δ𝐺 for adiabatic free
expansion to the final volume 300 l.

Solution.
We know Δ𝐸 = 0 (no work, no heat).
The final temperature is 273 K (unchanged) and the final volume is 300 l. There-
fore,

Δ𝑆 = 𝑅 log
𝑉F
𝑉I

= 8.3 log
300

22.4
= 8.3× 2.59 = 21.6 J/K. (12.41)
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This means
Δ𝐴 = Δ𝐸 − 𝑇Δ𝑆 = −273× 21.6 = −5897 J. (12.42)

Notice that the temperature does not change so 𝑃𝐹𝑉𝐹 = 𝑃𝐼𝑉𝐼 . Therefore,

Δ𝐻 = Δ𝐸 +Δ(𝑃𝑉 ) = 0. (12.43)

From this
Δ𝐺 = Δ𝐴. (12.44)

(3) 100 g of ice at 250 K is thrown into 100 g of boiling water under 1 atm. Assume
the whole system is under adiabatic condition and the pressure is maintained at 1
atm. What is the total entropy change? You may assume that the specific heat of
ice is 2 J/g·K, that for water 4.2 J/g·K and the equilibrium melting enthalpy change
is 333 J/g.

Solution.
The process is patently irreversible, so in order to use thermodynamics
(i) Identify the initial and the final equilibrium states.
(ii) Invent a convenient quasistatic process connecting these two states.

Initially, the state is ice at 250 K + water at 373 K (under 1 atm) (in equilibrium
as a compound system).

To determine the final state, we use the first law. First, 100 g ice must be brought
to ice at 273 K. This requires 100 × 2 × (273 − 250) = 4600 J. To make 0∘C water
we need 100× 333 = 33, 300 J. Mixing 100 g of 100∘C water and 100 g of 0∘C water
makes 200 g of 50∘C water. Now, we must supply 4,600 +33,300 = 37,900 J from
the ‘warmth’ this water has. Then, it is cooled by Δ𝑇 :

200× 4.2×Δ𝑇 = 37, 900 (12.45)

or Δ𝑇 = 45.1 K. Thus, the finial state is 200 g of water with 𝑇F = 277.9 K.
The next task is to invent a convenient quasistatic path connecting the initial and

the final states. Perhaps, the easiest way is to bring 100 g of cold ice to 100 g of
water at 𝑇 = 277.9 K. On the other hand, 100 g water at 373 K is cooled to 277.9
K. Then, simply join these two waters.

Heat the ice to its equilibrium melting temperature, and then melt it at its equilib-
rium temperature. Then, the resultant water is heated up to the final temperature.
Thus,

Δ𝑆 =

∫︁ 273

250

200

𝑇
𝑑𝑇 +

33, 300

273
+

∫︁ 278

273

420

𝑇
𝑑𝑇 = 200 log

273

250
+ 122 + 420 log

278

273

= 17.6 + 122 + 7.6 = 147 J/K. (12.46)

On the other hand cooling the other 100 g water requires

Δ𝑆 =

∫︁ 278

373

420

𝑇
𝑑𝑇 = −420 log 373

278
= −123 J/K. (12.47)
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Therefore, 147− 123 = 24 J/K is the overall entropy change.

D7.3 [Einstein model with microcanonical formalism]
The total energy of the system is 𝐸 =𝑀𝜀, where 𝜀 is the size of the energy quantum
and 𝑀 is the number of energy quanta (phonons originally). There are 𝑁 lattice
sites and each lattice site can accommodate some energy quanta.258 Each microstate
is distinguished by the distribution of energy quanta over the lattice sites.
(1) Obtain the entropy 𝑆 as a function of 𝐸 (or 𝑀).
(2) Obtain the average number 𝑀/𝑁 of energy quanta (phonons) for each lattice
site (𝑀𝜀/𝑁 is the average energy per lattice site) as a function of 𝑇 .
(3)* Prepare two identical such systems, 1 and 2, and put them into thermal contact.
Suppose the total energy is 2𝑀𝜀. How sharp is the most likely energy partition (i.e.,
an even partition of energy between the two identical systems) in equilibrium?

Solution.
Notice that the system has only one thermodynamic coordinate 𝐸.
(1) The problem is equivalent to distributing 𝑀 indistinguishable objects into 𝑁
distinguishable bins. See Appendix 3A. Hence,

𝑤(𝐸) =

(︂
𝑀 +𝑁 − 1

𝑀

)︂
. (12.48)

We may ignore 1, since 𝑀 and 𝑁 are both macroscopic. Boltzmann’s principle tells
us that

𝑆(𝐸)/𝑘𝐵 = log𝑤(𝐸) = (𝑁 +𝑀) log(𝑁 +𝑀)−𝑀 log𝑀 −𝑁 log𝑁, (12.49)

where we have used Stirling’s approximation with 𝑀 = 𝐸/𝜀.

(2) To introduce 𝑇 we use the Gibbs relation:

1

𝑇
=
𝑑𝑆

𝑑𝐸
=

1

𝜀

𝑑𝑆

𝑑𝑀
=
𝑘𝐵
𝜀

log
𝑁 +𝑀

𝑀
. (12.50)

From this, we get the average number of energy quanta per site:

𝑀

𝑁
=

1

𝑒𝛽𝜀 − 1
. (12.51)

The distribution is called the Bose-Einstein distribution.

(3) To study the probability of deviation from the even partition of energy, let us

258The model is equivalent to the Einstein model of insulating solids. Einstein introduced a
collection of 𝑁 quantized harmonic oscillators to explain the low temperature behavior of the
specific heat of solids. Each oscillator localized at a lattice point is understood as a container of
phonons (energy quanta) of energy 𝜀 = ~𝜔. [We ignore the zero-point energy.]
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define𝑀1 =𝑀+𝑥 (resp.,𝑀2 =𝑀−𝑥). Then, the microcanonical partition function
(= the number of all the microstates compatible with the constraints) of the whole
system 𝑤(𝑥) = 𝑤(𝑀1,𝑀2) is given by

𝑤(𝑥) =

(︂
𝑁 +𝑀 + 𝑥

𝑁

)︂(︂
𝑁 +𝑀 − 𝑥

𝑁

)︂
. (12.52)

Let us compute log[𝑤(𝑥)/𝑤(0)] with the aid of the following Taylor expansion:

(𝐴+ 𝑥) log(𝐴+ 𝑥) = 𝐴 log𝐴+ (log𝐴+ 1)𝑥+ 𝑥2/2𝐴+ 𝑜[𝑥2]. (12.53)

log

(︂
𝑁 +𝑀 ± 𝑥

𝑁

)︂
= (𝑁 +𝑀 ± 𝑥) log(𝑁 +𝑀 ± 𝑥)− (𝑀 ± 𝑥) log(𝑀 ± 𝑥)−𝑁 log𝑁

= log

(︂
𝑁 +𝑀

𝑁

)︂
± (log(𝑁 +𝑀) + 1)𝑥∓ (log𝑀 + 1)𝑥

+
𝑥2

2

[︂
1

𝑁 +𝑀
− 1

𝑀

]︂
. (12.54)

Therefore,

log[𝑤(𝑥)/𝑤(0)] = −𝑥2
[︂
1

𝑀
− 1

𝑁 +𝑀

]︂
= − 𝑁

𝑀(𝑁 +𝑀)
𝑥2. (12.55)

This implies that 𝑤(𝑥) obeys a Gaussian distribution of mean 0 and variance𝑀(𝑁+
𝑀)/2𝑁 . You might think the variance is very large, but we must compare it with
the equilibrium expectation (= the most probable) 𝑀 . The ratio√︀

⟨𝑥2⟩
𝑀

=
1√
2𝑁

√︀
1 +𝑁/𝑀 (12.56)

implies, as long as 𝑇 is not extremely small, the width of the central peak scales
as 1/

√
system size. That is, the internal energy is evenly partitioned very sharply

between the two macrosystems.
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D7.4 [Ensemble equivalence and max term approximation].
A lattice consists of a spatially fixed 𝑁 identical (indistinguishable) particles each
of which can assume three energy states: the ground state 0, and the two excited
states of energy 𝜀 and 2𝜀, respectively.

ε

2ε

0

(1) Find the microcanonical partition function (= the total number of microstates)
𝑊 (𝐸), where 𝐸 is the (internal) energy of the system. I am pretty sure you cannot
sum the formula, so you have only to write down the definition of 𝑊 (𝐸) in the
following form

𝑊 (𝐸) =
∑︁

𝑛1+2𝑛2=𝐸/𝜀

𝑤(𝑛1, 𝑛2), (12.57)

where 𝑛1 (resp., 𝑛2) is the number of particles with energy 𝜀 (resp. 2𝜀). You must
write down 𝑤(𝑛1, 𝑛2) explicitly. Use 𝑛0 to denote the number of ground state particles
(𝑛0 + 𝑛1 + 𝑛2 = 𝑁). [Almost trivial.]

Solution.
Let 𝑛0 be the number of particles in the ground state and 𝑛1 (resp., 𝑛2) that in
the first (resp., second) excited state. 𝑛0 + 𝑛1 + 𝑛2 = 𝑁 , and 𝐸 = (𝑛1 + 2𝑛2)𝜀.
Therefore,

𝑊 (𝐸) =
∑︁

𝑛1+2𝑛2=𝐸/𝜀

𝑁 !

𝑛0!𝑛1!𝑛2!
. (12.58)

That is,

𝑤(𝑛1, 𝑛2) =
𝑁 !

𝑛0!𝑛1!𝑛2!
. (12.59)

(2)* [Max term approximation works: quite important] Let 𝑤𝑀 be the largest
value of 𝑤(𝑛1, 𝑛2) under the condition that 𝐸 = (𝑛1 + 2𝑛2)𝜀. Show that 𝑆 =
𝑘𝐵 log𝑤𝑀 is an extremely good approximation formula (the relative error is of order
log𝑁/𝑁) for 𝑆 = 𝑘𝐵 log𝑊 (𝐸).

Solution.
Since all the summands are positive, obviously,

𝑤𝑀 ≤
∑︁

𝑛1+2𝑛2=𝐸/𝜀

𝑤(𝑛1, 𝑛2) ≤ the number of terms× 𝑤𝑀 . (12.60)
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The number of the terms in the summation cannot be larger than 𝑁2 (actually
𝑁 + 1, since if you fix 𝑛1, 𝑛2 is fixed as well, but any fairly crude estimate will do;
thermodynamics is very robust), so we have

𝑤𝑀 ≤ 𝑊 (𝐸) ≤ 𝑁2𝑤𝑀 . (12.61)

Therefore,
𝑘𝐵 log𝑤𝑀 ≤ 𝑆 ≤ 𝑘𝐵 log𝑤𝑀 + 2𝑘𝐵 log𝑁. (12.62)

Notice that 𝑆 is extensive (of order 𝑁), so log𝑁 should be ignorable. Thus,

𝑆 = 𝑘𝐵 log𝑤𝑀 (12.63)

is very accurate, if 𝑁 > 103.

(3) Let us compute 𝑤𝑀 with the aid of the Lagrange multiplier 𝛽. That is, maxi-
mize

log𝑤(𝑛1, 𝑛2)− 𝛽(𝑛1 + 2𝑛2)𝜀 (12.64)

with respect to 𝑛1 and 𝑛2 (do not forget that 𝑛0 = 𝑁 −𝑛1−𝑛2), and find 𝑛1/𝑛0 and
𝑛2/𝑛0, using 𝛽 (do not try to determine 𝛽).

Solution.
Let us find the maximum value of 𝑤(𝑛1, 𝑛2) under the given 𝐸 (and 𝑁). With the
aid of Stirling’s formula, we obtain

log𝑤(𝑛1, 𝑛2) = −𝑁

[︃ ∑︁
𝑖=0,1,2

𝑛𝑖

𝑁
log

𝑛𝑖

𝑁

]︃
. (12.65)

Let us use Lagrange’s multiplier: we maximize (𝑛0 = 𝑁 − 𝑛1 − 𝑛2 is used)

log𝑤(𝑛1, 𝑛2)− 𝛽(𝑛1 + 2𝑛2)𝜀. (12.66)

Therefore,

log
𝑁 − 𝑛1 − 𝑛2

𝑛1

− 𝛽𝜀 = 0, log
𝑁 − 𝑛1 − 𝑛2

𝑛2

− 2𝛽𝜀 = 0. (12.67)

This means
𝑛1 = 𝑛0𝑒

−𝛽𝜀, 𝑛2 = 𝑛0𝑒
−2𝛽𝜀, (12.68)

so
𝑛0𝑒

−𝛽𝜀 + 2𝑛0𝑒
−2𝛽𝜀 = 𝐸/𝜀 (12.69)

and
𝑛0 + 𝑛0𝑒

−𝛽𝜀 + 𝑛0𝑒
−2𝛽𝜀 = 𝑁. (12.70)
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These two equations fix 𝛽 and 𝑛0 implicitly (I cannot solve them in a neat form).

(4) Using the obtained 𝑛1 and 𝑛2 in (3) we can write entropy 𝑆 = 𝑘𝐵 log𝑤𝑀 in the
following form:

𝑆 = 𝑛0(𝑒
−𝛽𝜀 + 2𝑒−2𝛽𝜀)𝑘𝐵𝛽𝜀+𝑁𝑘𝐵 log Φ. (12.71)

Find Φ in terms of 𝑁 and 𝑛0.

Solution.

𝑆 = −𝑁𝑘𝐵
[︁𝑛0

𝑁
log

𝑛0

𝑁
+
𝑛1

𝑁
log

𝑛1

𝑁
+
𝑛2

𝑁
log

𝑛2

𝑁

]︁
= −𝑁𝑘𝐵

[︁𝑛0

𝑁
log 𝑛0 +

𝑛1

𝑁
log 𝑛1 +

𝑛2

𝑁
log 𝑛2

]︁
+𝑁𝑘𝐵 log𝑁.

= −𝑁𝑘𝐵
[︂
log 𝑛0 +

𝑛1

𝑁
log

𝑛1

𝑛0

+
𝑛2

𝑁
log

𝑛2

𝑛0

]︂
+𝑁𝑘𝐵 log𝑁.

= −𝑁𝑘𝐵
[︂
𝑛1

𝑁
log

𝑛1

𝑛0

+
𝑛2

𝑁
log

𝑛2

𝑛0

]︂
+𝑁𝑘𝐵 log

𝑁

𝑛0

.

Using the above results, we get

𝑆 = 𝑛0(𝑒
−𝛽𝜀 + 2𝑒−2𝛽𝜀)𝑘𝐵𝛽𝜀+𝑁𝑘𝐵 log

𝑁

𝑛0

. (12.72)

That is, Φ = 𝑁/𝑛0.

The following two subquestions should be considered after Section 13.

(5) Find the canonical partition function 𝑍(𝑇 ) for this system at temperature 𝑇 and
explicitly calculate the Helmholtz free energy.

Solution.

𝑍(𝑇 ) = (1 + 𝑒−𝛽𝜀 + 𝑒−2𝛽𝜀)𝑁 , (12.73)

so
𝐴 = −𝑁𝑘𝐵𝑇 log(1 + 𝑒−𝛽𝜀 + 𝑒−2𝛽𝜀). (12.74)

(6) [Ensemble equivalence] Show that the entropy obtained from 𝐴 in (5) and the
formula in (4) are consistent.

Solution.

𝐸 = 𝑁
𝑒−𝛽𝜀 + 2𝑒−2𝛽𝜀

1 + 𝑒−𝛽𝜀 + 𝑒−2𝛽𝜀
𝜀, (12.75)

so

𝑆 = 𝑁
𝑒−𝛽𝜀 + 2𝑒−2𝛽𝜀

1 + 𝑒−𝛽𝜀 + 𝑒−2𝛽𝜀

𝜀

𝑇
+𝑁𝑘𝐵 log(1 + 𝑒−𝛽𝜀 + 𝑒−2𝛽𝜀). (12.76)
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Thus, with an identification 𝛽 = 1/𝑘𝐵𝑇 , we see these two results agree, if we no-
tice

1 + 𝑒−𝛽𝜀 + 2𝑒−2𝛽𝜀 = 𝑁/𝑛0. (12.77)
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Exercise 7

E7.1 [Intuitive entropy]
There is a solid made of fairly spherical molecules. They freely tumble in the liquid
phase, but cannot rotate in the solid phase. With a small chemical modification the
steric hindrance against molecular rotation in the solid phase can be removed with
almost no altering of molecular interaction energies. Thanks to this modification,
now the new molecules can rotate fairly freely even in the solid phase below the
melting temperature of the solid of the unmodified molecules.

What can you guess about the melting point of the new chemical substance rela-
tive to that of the unmodified substance?

Solution.
Any answer is OK, if your answer is consistent with your physically plausible expla-
nation. However, probably the most natural answer would be as follows.

Since molecular interaction energies do not change, the latent heat should not
be very different with and without the chemical modification. However, the melting
entropy change must be reduced due to the chemical modification, because molecules
already tumbles in the solid, increasing its entropy (you must ask more questions to
determine what a molecule is doing). Δ𝑆 = Δ𝐻/𝑇𝑚, where Δ𝐻 is the heat of melt-
ing. To reduce Δ𝑆 without changing Δ𝐻, the only way is to increase 𝑇𝑚. That is,
the melting temperature should go up (in actual examples this can be considerable,
a few tens of K).

E7.2 [Elementary calculation of thermodynamic changes]
Initially, we have one mole of a monatomic ideal gas at 273 K at 1 atm (thus, its vol-
ume is 22.4 l). Find the changes of Δ𝐸, Δ𝐻, Δ𝐴 and Δ𝐺 for reversible isothermal
expansion to the final volume 300 l.

Solution.
This is reversible isothermal expansion, so Δ𝐸 = 0. 𝑃𝑉 = 𝑅𝑇 does not change:
Δ(𝑃𝑉 ) = 0. Therefore, Δ𝐻 = 0 as well.

Δ𝑆 = 𝑅 log
300

22.4
= 21.6 J/K. (12.78)

𝑇 does not change, so

Δ𝐴 = Δ𝐸 − 𝑇Δ𝑆 = −273× 21.6 = −5889 J. (12.79)

That is, Δ𝐴 = −5.9 kJ. Notice that 5.9 kJ is the work done by the system. It
absorbed this much of heat from the environment, and converted it into work (of
course, this does not mean the violation of Thomson’s law. Why?). Δ𝐺 = Δ𝐴.
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E7.3 [Independent spin in magnetic field with microcanonical formalism]
The total energy of the system is 𝐸 =𝑀𝜀, where 𝜀 is the size of the energy quantum
and 𝑀 is the total number of energy quanta. There are 𝑁 lattice sites and each
lattice site can accommodate at most one energy quanta.259 Each microstate is dis-
tinguished by the distribution of energy quanta over the lattice sites.
(1) Obtain the entropy 𝑆 as a function of 𝐸 (or 𝑀).
(2) Obtain the average number 𝑀/𝑁 of energy quanta for each lattice site (𝑀𝜀/𝑁
is the average energy per lattice site) as a function of 𝑇 .
(3) Prepare two identical such systems, 1 and 2, and put them into thermal contact.
Suppose the total energy is 2𝑀𝜀. How sharp is the most likely energy partition (i.e.,
an even partition of energy between the two identical systems) in equilibrium? [As
in Discussion 4 study the distribution of the deviation 𝑥 from 𝑀 .]

Solution.
Notice that the system has only one thermodynamic coordinate 𝐸.
(1) The problem is equivalent to choosing 𝑀 lattice sites to place the energy quanta
from 𝑁 distinguishable lattice sites. Hence,

𝑤(𝐸) =

(︂
𝑁

𝑀

)︂
. (12.80)

Boltzmann’s principle tells us that

𝑆(𝐸)/𝑘𝐵 = log𝑤(𝐸) = 𝑁 log𝑁 −𝑀 log𝑀 − (𝑁 −𝑀) log(𝑁 −𝑀), (12.81)

where we have used Stirling’s approximation with 𝑀 = 𝐸/𝜀.

(2) To introduce 𝑇 we use the Gibbs relation or:

1

𝑇
=
𝑑𝑆

𝑑𝐸
=

1

𝜀

𝑑𝑆

𝑑𝑀
=
𝑘𝐵
𝜀

log
𝑁 −𝑀
𝑀

. (12.82)

From this, we get the average energy of the site:

𝑀

𝑁
=

1

𝑒𝛽𝜀 + 1
. (12.83)

This is called the Fermi-Dirac distribution. Notice that this cannot be larger than
𝜀/2, if 𝛽 > 0.260

(3) To study the probability of deviation from the even partition of energy, let us

259The model is equivalent to a lattice of non-interacting two state spins in an external magnetic
field that makes the ‘up’ and ‘down’ states have energy difference 𝜀.

260For this system the so-called negative temperature state is possible, for which the above formula
gives the value larger than 𝜀/2.
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define𝑀1 =𝑀+𝑥 (resp.,𝑀2 =𝑀−𝑥). Then, the microcanonical partition function
of the whole system 𝑤(𝑥) = 𝑤(𝑀1,𝑀2) is given by

𝑤(𝑥) =

(︂
𝑁

𝑀 + 𝑥

)︂(︂
𝑁

𝑀 − 𝑥

)︂
(12.84)

Let us compute log[𝑤(𝑥)/𝑤(0)] with the aid of the following Taylor expansion:

(𝐴+ 𝑥) log(𝐴+ 𝑥) = 𝐴 log𝐴+ (log𝐴+ 1)𝑥+ 𝑥2/2𝐴+ 𝑜[𝑥2]. (12.85)

log

(︂
𝑁

𝑀 ± 𝑥

)︂
= 𝑁 log𝑁 − (𝑁 −𝑀 ∓ 𝑥) log(𝑁 −𝑀 ∓ 𝑥)− (𝑀 ± 𝑥) log(𝑀 ± 𝑥)

= log

(︂
𝑁

𝑀

)︂
± (log(𝑁 −𝑀) + 1)𝑥∓ (log𝑀 + 1)𝑥

− 𝑥2

2

[︂
1

𝑁 −𝑀
+

1

𝑀

]︂
(12.86)

Therefore,

log[𝑤(𝑥)/𝑤(0)] = −𝑥2
[︂
1

𝑀
+

1

𝑁 −𝑀

]︂
= − 𝑁

𝑀(𝑁 −𝑀)
𝑥2. (12.87)

This implies that 𝑤(𝑥) obeys a Gaussian distribution of mean 0 and variance𝑀(𝑁−
𝑀)/2𝑁 . you might think the variance is very large, but if 𝑀 is macroscopic as 𝑁 .
The ratio √︀

⟨𝑥2⟩
𝑀

=
1√
2𝑁

√︀
1−𝑁/𝑀 (12.88)

is 1/
√
system size. That is, the internal energy is evenly partitioned very sharply

between the two macrosystems.
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13 Statistical mechanics of isothermal systems

Summary
* Isothermal systems are handled by the canonical formalism: 𝐴 = −𝑘𝐵𝑇 log𝑍.
*Microcanonical and canonical formalisms give identical results if the system is large
(if log𝑁/𝑁 ≪ 1) [Ensemble equivalence].
* The principle of equal probability allows us to estimate the probabilities of a col-
lection of microstates.

Key words
canonical partition function, microcanonical partition function, Gibbs-Helmholtz for-
mula, ensemble equivalence, Stirling’s formula, Schottky defect, Schottky type spe-
cific heat.

What you should be able to do
* You must be able to compute the microcanonical partition functions and canonical
partition functions for simple systems.
* You must remember the Gibbs formula for 𝑆 (i.e., 𝑑𝑆 = · · ·).
* Understand the significance of the ensemble equivalence.

13.1 What we have now
We have constructed the statistical mechanics for isolated systems = the translation
table between mechanical and thermodynamic quantities: for the thermodynamic
coordinates the correspondence is straightforward. To utilize the Gibbs relation

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 + 𝑥𝑑𝑋 + · · · , (13.1)

we need the interpretation of 𝑆 in terms of mechanics. We have derived Boltzmann’s
principle:

𝑆 = 𝑘𝐵 log𝑤(𝐸,𝑋). (13.2)

𝑤 is not very easy to compute, so we will not discuss how to use this formula very
much, but let us look at a simple example.

13.2 Another practice: Schottky defects
Let us consider an isolated crystal with point defects (vacancies) on the lattice sites
(Schottky defects). To create one such defect we must move an atom from a lattice
point to the surface of the crystal. The energy cost for this is assumed to be 𝜀.
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Although the number 𝑛 of vacancies are macroscopic, we may still assume it to be
very small compared to the number 𝑁 of all lattice sites. Hence, we may assume
that the volume of the system is constant. Therefore for this example, the (internal)
energy 𝐸 of the system is a macroscopic (thermodynamic) variable which completely
specifies macrostates.

We must compute 𝑤 as a function of the total energy 𝐸, which is given by

𝐸 = 𝑛𝜀. (13.3)

We may interpret this as the internal energy. We may consider 𝑤 as a function of
𝑛. A microstate of this system is specified by the locations to place 𝑛 vacancies.
Since all the lattice points can be distinguished, the number of placing 𝑛 vacancies
is obviously

𝑤(𝑛) =

(︂
𝑁

𝑛

)︂
. (13.4)

13.3 Approximate evaluation of log𝑁 ! (Stirling’s formula)
To compute the entropy with the aid of Boltzmann’s principle, we use Stirling’s
formula to evaluate log𝑁 ! asymptotically for large 𝑁 :

𝑁 ! ≈
(︂
𝑁

𝑒

)︂𝑁

, (13.5)

or
log𝑁 ! ≈ 𝑁 log𝑁 −𝑁, (13.6)

which may be understood as follows:

log𝑁 ! =
𝑁∑︁
𝑘=1

log 𝑘 ≃
∫︁ 𝑁

0

𝑑𝑥 log 𝑥 = (𝑥 log 𝑥− 𝑥)𝑁𝑥=0 = 𝑁 log𝑁 −𝑁. (13.7)

13.4 Entropy of Schottky defect system
Boltzmann’s principle with the use of 13.3 gives us

𝑆 = 𝑘𝐵 log𝑤 ≃ 𝑘𝐵[𝑁 log𝑁 − 𝑛 log 𝑛− (𝑁 − 𝑛) log(𝑁 − 𝑛)]. (13.8)

Incidentally, the following formula is useful (and easy to remember):

log

(︂
𝐴

𝐵

)︂
= −𝐴

[︂
𝐵

𝐴
log

𝐵

𝐴
+

(︂
1− 𝐵

𝐴

)︂
log

(︂
1− 𝐵

𝐴

)︂]︂
. (13.9)
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This gives

𝑆 = −𝑁𝑘𝐵
[︁ 𝑛
𝑁

log
𝑛

𝑁
+
(︁
1− 𝑛

𝑁

)︁
log
(︁
1− 𝑛

𝑁

)︁]︁
, (13.10)

which is the same as (13.8). Using the Gibbs relation, we get (notice that 𝑑𝐸 = 𝜀𝑑𝑛)

1

𝑇
=

𝜕𝑆

𝜕𝐸

⃒⃒⃒⃒
𝑉

=
1

𝜀

𝑑𝑆

𝑑𝑛
=
𝑘𝐵
𝜀

log
𝑁 − 𝑛
𝑛

. (13.11)

When you differentiate (13.10), the derivatives of the logarithmic terms cancel each
other, so essentially, you have only to differentiate the prefactors in front of the
logarithms. This is very easy, and you immediately get (13.11).

If the temperature is sufficiently low or 𝜀 is sufficiently large so that 𝜀/𝑘𝐵𝑇 ≫ 1,
the above formula reduces to

𝜀

𝑘𝐵𝑇
≃ log

𝑁

𝑛
, (13.12)

because 𝑁 ≫ 𝑛. Hence, under this low temperature condition, the internal energy
𝐸 reads

𝐸 = 𝜀𝑁𝑒−𝜀/𝑘𝐵𝑇 , (13.13)

which may be guessed from the Boltzmann factor.

13.5 Schottky type specific heat
The constant volume specific heat 𝐶𝑉 of the system can be obtained as

𝐶𝑉 =
𝑑𝐸

𝑑𝑇
= 𝑁𝑘𝐵

(︂
𝜀

𝑘𝐵𝑇

)︂2

𝑒−𝜀/𝑘𝐵𝑇 . (13.14)

Notice that 𝐶𝑉 has a peak at a certain temperature (Fig. 13.1). This type of specific
heat is called the Schottky type specific heat, which tells you the energy gap for an
elementary excitation in the system. What can you say from the dimensional ana-
lytical point of view about the same problem?

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

T

C

TP

Figure 13.1: The Schottky type specific heat, which has a peak indicating the energy gap of the
order 𝑘𝐵𝑇𝑃 = 𝜀/2.
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13.6 Thermostat
Isolated systems are not so easy to handle, compared with thermostatted systems.
We have introduced the Helmholtz free energy 𝐴 to study thermostatted systems.
We have learned that the information as to thermodynamic potentials can be com-
pletely obtained from 𝐴 (the equivalence of thermodynamic potentials thanks to the
Legendre transformation).

13.7 Relation between microcanonical partition function and 𝐴
We wish to make a translation rule for the Helmholtz free energy 𝐴 in terms of
microstates. Our starting point is thermodynamics, or the definition of 𝐴:

−𝐴 = max
𝑆

[𝑆𝑇 − 𝐸]. (13.15)

Notice that 𝑆 is a monotone increasing function of 𝐸, so we may rewrite this as

−𝐴 = max
𝐸>0

[𝑆𝑇 − 𝐸]. (13.16)

Here we have assume that there is a lower bound for the internal energy.
We must relate this to Boltzmann’s principle: 𝑆 = 𝑘𝐵 log𝑤(𝐸):

𝑒−𝛽𝐴 = max
𝐸

exp[𝑆/𝑘𝐵 − 𝛽𝐸] = max
𝐸

[︀
𝑤(𝐸)𝑒−𝛽𝐸

]︀
. (13.17)

13.8 Canonical partition function
Let us consider

𝑍(𝑇 ) =
∑︁
𝐸

𝑤(𝐸)𝑒−𝛽𝐸. (13.18)

Here the summation is over all the energy shells. If the system is thermodynamically
normal, exp[𝑆 − 𝛽𝐸] decays exponentially for sufficiently large 𝐸 as we see below.
Notice that

𝜕𝑆

𝜕𝐸

⃒⃒⃒⃒
𝑉

=
1

𝑇 (𝐸)
. (13.19)

As 𝐸 increases, 𝑇 (𝐸) increases indefinitely. Therefore at some large 𝐸, 𝑇 (𝐸) > 2𝑇
and for such 𝐸 𝐸 → 𝐸 +Δ𝐸 implies

𝑤(𝐸)𝑒−𝛽𝐸 → 𝑤(𝐸)𝑒−𝛽𝐸𝑒Δ𝐸(1/𝑘𝐵𝑇 (𝐸)−1/𝑘𝐵𝑇 ) = 𝑤(𝐸)𝑒−𝛽𝐸 × 𝑒−𝛽Δ𝐸/2. (13.20)
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Thus, the summand decays exponentially, so 𝑍 is well-defined.
As we see in ?? for sufficiently large systems

log𝑍 ∼ logmax
𝐸

[︀
𝑤(𝐸)𝑒−𝛽𝐸

]︀
= −𝛽𝐴. (13.21)

Thus, we have devised a statistical mechanically convenient way to compute the
Helmholtz free energy. The resutl

𝐴 = −𝑘𝐵𝑇 log𝑍 (13.22)

with 𝑍 defined as (13.18) is called the canonical formalism.

13.9 Canonical formalism; error estimate
Since 𝑍 is a convergent sum

𝑍(𝑇 ) =
∑︁

0<𝐸<𝑐𝐸eq

𝑤(𝐸)𝑒−𝛽𝐸 + small error (13.23)

must hold for some positive 𝑐, where 𝐸eq is the 𝐸 realizing max in (13.17). How large
𝑐 do we need for this to happen? The specific heat is bounded, so (13.20) suggests
that 𝑐 ≃ 2 should already be good enough. To be safe let us choose 𝑐 as some large
(but system-size-independent) number. Thus, we can write

𝑍(𝑇 ) =
∑︁

0<𝐸<𝑐𝐸eq

𝑤(𝐸)𝑒−𝛽𝐸 + small error. (13.24)

Here, the small error may be written, accroding to (13.20), as max
[︀
𝑤(𝐸)𝑒𝛽𝐸

]︀
times

some intensive number at the worst (largest). Therefore, we have the following trivial
bounds:

max
𝐸

𝑤(𝐸)𝑒−𝛽𝐸 ≤ 𝑍(𝑇 ) ≤
[︂
𝑐𝐸eq

Δ𝐸
+ 𝑐′

]︂
max
𝐸

𝑤(𝐸)𝑒−𝛽𝐸, (13.25)

where 𝑐′ is a system-size independent number. Notice that 𝐸eq = 𝑂[𝑁 ] (extensivity),
so

log
𝑐𝐸eq

Δ𝐸
= 𝑂[log𝑁 ] (13.26)

Thus for 𝑂[𝑁 ] quantities
−𝛽𝐴 = log𝑍(𝑇 ). (13.27)

As you have seen, we have ignored the error of order log𝑁/𝑁 , which is very small
for macroscopic systems.
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13.10 Standard (textbook) ‘derivation’ of canonical formalism
The logic conventioanlly used to study isothermal systems is a familiar one: we regard the
system as a small portion I of a big isolated system I+II, and assume that the system can
freely exchange heat with its surroundings II.

The total energy 𝐸0 of the compound system is given by

𝐸0 = 𝐸I + 𝐸II. (13.28)

The number of microstates for system I (resp., II) with energy 𝐸I (resp., 𝐸II) is denoted
by 𝑤I(𝐸I) (resp., 𝑤II(𝐸II)). Thermal contact is a very weak interaction, so the two systems
are statistically independent. Hence, the number of microstates for the compound system
with the energies 𝐸I in I and 𝐸II in II is given by

𝑤I(𝐸I)𝑤II(𝐸II). (13.29)

The total number 𝑤(𝐸0) of microstates for the compound system must be the sum of this
product over all the ways to partition energy between I and II. Therefore, we get

𝑤I+II(𝐸0) =
∑︁

0≤𝐸I≤𝐸0

𝑤I(𝐸I)𝑤II(𝐸0 − 𝐸I). (13.30)

The system II is huge compared with I. Expand the entropy as follows:

𝑆II(𝐸0 − ℰ) = 𝑆II(𝐸0)− ℰ
𝜕𝑆II
𝜕𝐸II

+
1

2
ℰ2
𝜕2𝑆II
𝜕𝐸2

II
+ · · · (13.31)

and denote the temperature of the heat bath (i.e., system II) by 𝑇 :

𝜕𝑆II
𝜕𝐸II

=
1

𝑇
. (13.32)

We wish to use this formula in equilibrium, so ℰ should be close to the internal energy of
system I. Therefore, due to the extensivity of internal energy this should be of order 𝑁I, the
total number of particles in system I. Therefore,

ℰ
𝜕𝑆II
𝜕𝐸II

= 𝑂[𝑁I]. (13.33)

The second derivative in (13.31) is proportional to 1/𝜕𝐸
𝜕𝑇 = 1/𝐶𝑉 II, where 𝐶𝑉 II is the specific

heat of II, which is 𝑂[𝑁II]:

ℰ2
𝜕2𝑆II
𝜕𝐸2

II
= − ℰ2

𝑇 2𝐶𝑉 II
=
𝑂[𝑁I]

2

𝑂[𝑁II]
= 𝑂[𝑁I]

𝑂[𝑁I]

𝑂[𝑁II]
≪ 𝑂[𝑁I]. (13.34)

Therefore, the ratio of the second term and the third term in (13.31) is of order 𝑁I/𝑁II,
which is negligibly small. Thus, (13.30) reads

𝑤I+II(𝐸0) ≃ 𝑒
𝑆II(𝐸0)/𝑘𝐵

∑︁
ℰ
𝑤I(ℰ)e

−𝛽ℰ , (13.35)

or
𝑤I+II(𝐸0)𝑒

−𝑆II(𝐸0)/𝑘𝐵 ≃
∑︁
ℰ
𝑤I(ℰ)e

−𝛽ℰ , (13.36)
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where a standard notation
𝛽 = 1/𝑘𝐵𝑇 (13.37)

is used.
With the aid of Boltzmann’s principle, we have, with 𝐸 being the equilibrium internal

energy of system I,
𝑘𝐵 log𝑤I+II(𝐸0) = 𝑆I(𝐸) + 𝑆II(𝐸0 − 𝐸), (13.38)

so (from now on let’s drop the suffix I to denote the system)

𝑘𝐵 log[𝑤I+II(𝐸0)𝑒
−𝑆II(𝐸0)/𝑘𝐵 ] = 𝑆(𝐸) + 𝑆II(𝐸0 − 𝐸)− 𝑆II(𝐸0) = 𝑆(𝐸)− 𝐸/𝑇 = −𝐴/𝑇.

(13.39)
That is, (28.27) reads (suffix I dropped from 𝑤I)

𝑒−𝛽𝐴 =
∑︁
ℰ
𝑤(ℰ)e−𝛽ℰ . (13.40)

13.11 Difficulty of ‘standard textbook approach’ 13.10
The conventional argument that is adopted by almost all the textbooks has two flaws.
(1) The resultant canonical formalism are not legitimately used to understand phase
transitions. The twice differentiability of 𝑆 as a function of 𝐸 is required to justify
the use of the Taylor expansion, but this excludes many phase transitions.
(2) The outer thermostat is used in order to save the description of the whole system
as an isolated mechanical system, but the larger is the system, the harder becomes
the pure mechanics.

Thus, I recommend the approach explained in 13.7-13.9. As you will see quite
parallel formalisms work for any ensembles we will encounter later. Besides, the
appraoch tells us how big the system should be for us to use statistical mechanics
freely.

M0re fundamentally, it is unscientific to base a theory on the metaphysics based
on mechanics (that Helmoholtz adopted at least when he was active in thermody-
namics).

13.12 Canonical formalism: summary
Thus, we have arrived at our desired formalism, the canonical formalism that gives
𝐴 directly: Let

𝑍 =
∑︁
ℰ

𝑤(ℰ)𝑒−𝛽ℰ . (13.41)

Then,
𝐴 = −𝑘𝐵𝑇 log𝑍. (13.42)

𝑍 is called the canonical partition function, and this method to compute the free
energy is called the canonical formalism.
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A more microscopic expression is possible:

𝑍 =
∑︁

all microstates

e−𝛽ℰ = Tr e−𝛽ℋ. (13.43)

Here, the sum over all the microstates is, in the quantum mechanical cases, the
summation over all the eigenvalues of the Hamiltonian, so quantum mechanically,
we may use the trace to compute the partition function. If we decompose the sum
as follows, we can easily understand this formula:∑︁

all microstates

=
∑︁
ℰ

∑︁
all microstates with energy ∼ℰ

, (13.44)

but ∑︁
all microstates with energy ∼ℰ

e−𝛽ℰ = 𝑤(ℰ)e−𝛽ℰ . (13.45)

13.13 Ensemble equivalence
We can compute 𝑆 directly from 𝑤(𝐸,𝑋) using Boltzmann’s principle (the micro-
canonical formalism). 𝐸 may be solved from this. Then, using thermodynamics
(Legendre transformation 11.12), we can compute 𝐴. On the other hand we can use
the canonical formalism to compute 𝐴 directly from 𝑍. Then, using thermodynamics
(Legendre transromation) we can compute 𝐸. The relative error is of order log𝑁/𝑁 .

Thus, rthe microcanonical and the canonical formalisms give consistent thermody-
namics if the system size is large enough. This i an example of a general proposition
called the ensemble equivalence

13.14 Principle of equal probability
The conventional more or less standard statistical mechanics assumes a principle
called the principle of equal probability: if we sample a microstate from 𝑤(𝐸,𝑋)
every microstate is equally probable. Why this principle may be used to under-
stand thermodynamic quantities is explained in Appendix 13A. If we accept this
principle, then in each 𝑤(𝐸,𝑋) the probability to sample any subset 𝑢 ∈ 𝑤(𝐸,𝑋)
is proportional to its phase volume (classically) or number of states in it (quantum-
mechanically). Thus, we can interpret that the probability for a microstate 𝛾 is

𝑃 (𝛾) =
1

𝑍
𝑒−𝛽𝐻(𝛾). (13.46)

This is called the canonical distribution.
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13.15 Warning about the canonical distribution
(13.46) may look as if it gives the probability for individual microstates. However,
for a macroscopic system there is no way to single out individual microstates, so
there is no direct way to verify (13.46) experimentally. Thus, the expression itself is
only formal and no physical meaning as it is. A thermodynamic justification of the
principle of equal probability (see Appendix 13A) corroborates this warning.

(13.46) is legitimate only when we compute expectation values of macro or meso-
scopic observables or probabiliities of macro or mesoscopic events.

13.16 The Gibbs-Helmholtz formula
Once the canonical partition function is known, the internal energy of the system
can be obtained easily:

𝐸 = ⟨ℰ⟩ =
∑︁
ℰ

𝑃 (ℰ)ℰ =
1

𝑍

∑︁
ℰ

ℰ𝑤I(ℰ)e−𝛽ℰ = −𝜕log𝑍(𝛽)
𝜕𝛽

, (13.47)

where 𝑍 (cf. (13.43)) is explicitly written as a function of 𝛽. (13.47) is a thermody-
namically well-known formula:

𝜕(𝐴/𝑇 )

𝜕(1/𝑇 )

⃒⃒⃒⃒
𝑉

= 𝐸, or
𝜕𝛽𝐴

𝜕𝛽

⃒⃒⃒⃒
𝑉

= 𝐸, (13.48)

the Gibbs-Helmholtz formula. Do not forget that this is a purely thermodynamic
relation.

13.17 Schottky defects revisited
Let’s revisit the Schottky defects. With 𝑤(𝑛) known (see (13.4)), it is easy to compute
𝑍:

𝑍 =
∑︁
𝑛

𝑤(𝑛)𝑒−𝛽𝑛𝜀 = (1 + 𝑒−𝛽𝜀)𝑁 , (13.49)

where we have used the binomial theorem:

(𝑥+ 𝑦)𝑁 =
𝑁∑︁

𝑛=0

(︂
𝑁

𝑛

)︂
𝑥𝑛𝑦𝑁−𝑛. (13.50)

If you are uncomfortable, review Appendix 2A after Lecture 2. Thus,

𝑁∑︁
𝑛=0

𝑤(𝑛)𝑒−𝛽𝑛𝜀 =
∑︁
𝑛

(︂
𝑁

𝑛

)︂(︀
𝑒−𝛽𝜀

)︀𝑛
1𝑁−𝑛 = (1 + 𝑒−𝛽𝜀)𝑁 . (13.51)
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However, you can probably write down the right-most formula directly: the canonical
partition function is a sum over all the possible microstates

𝑍 =
∑︁

𝜀(1)∈{0,𝜀},···,𝜀(𝑁)∈{0,𝜀}

𝑒−𝛽
∑︀𝑁

𝑖=1 𝜀(𝑖), (13.52)

where 𝜀(𝑖) is the energy of the 𝑖th lattice point (occupied 0 or empty 𝜀). Here, do
not forget that a ‘microstate’ is a microscopically described state of the whole macro
system; in our case (𝜀(1), 𝜀(2), · · · , 𝜀(𝑁)) is a microstate, where each 𝜀(𝑖) is 0 or 𝜀.
Do not confuse the microstate and the elementary states of individual microscopic
entities. Notice that all the combinations of the lattice states show up, so

𝑍 =

⎛⎝ ∑︁
𝜀(1)∈{0,𝜀}

𝑒−𝛽𝜀(1)

⎞⎠ · · ·
⎛⎝ ∑︁

𝜀(𝑁)∈{0,𝜀}

𝑒−𝛽𝜀(𝑁)

⎞⎠ = (1 + 𝑒−𝛽𝜀)𝑁 . (13.53)

Since this transformation is the key that makes the canonical formalism often
easier than the microcanonical formalism, a more detailed explanation is in the fol-
lowing small lettered portion.

Suppose there are 𝑁 lattice points. Each lattice point has several states 𝑎, 𝑏, 𝑐, · · · with the
corresponding ‘excitation energies’ 𝜀(𝑎), 𝜀(𝑏), etc. Since the total energy of the system, that is, the
energy of the microstate, reads

ℋ = 𝜀(𝑎1) + 𝜀(𝑎2) + · · ·+ 𝜀(𝑎𝑁 ), (13.54)

the canonical partition function is computed as

𝑍 =
∑︁

𝑎1,𝑎2,···,𝑎𝑁∈{𝑎,𝑏,𝑐,···}

𝑒−𝛽[𝜀(𝑎1)+𝜀(𝑎2)+···]. (13.55)

Here, the summation is over all the possible combinations of the states of individual particles.
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Figure 13.2: Illustration using a 5 lattice point toy model. Each column on the LHS corresponds
to the sum over all states at each lattice point (i.e., 𝑍1 in (13.57)). The RHS illustrates the partition
function 𝑍 of the system; 5-color-ball strings correspond to microstates. All the possible microstates
appear once and only once on the RHS.

Since all the combinations appear once and only once, we can rewrite this as (see Fig. 13.2)

𝑍 =

⎛⎝ ∑︁
𝑎1∈{𝑎,𝑏,𝑐,···}

𝑒−𝛽𝜀(𝑎1)

⎞⎠⎛⎝ ∑︁
𝑎2∈{𝑎,𝑏,𝑐,···}

𝑒−𝛽𝜀(𝑎2)

⎞⎠ · · ·
⎛⎝ ∑︁

𝑎𝑁∈{𝑎,𝑏,𝑐,···}

𝑒−𝛽𝜀(𝑎𝑁 )

⎞⎠ = 𝑍𝑁
1 , (13.56)
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where
𝑍1 =

∑︁
𝑎1∈{𝑎,𝑏,𝑐,···}

𝑒−𝛽𝜀(𝑎1) (13.57)

is the ‘canonical partition function’ of a single lattice point about its (internal) states. Notice that

you cannot usually do this for the microcanonical approach, because not all the microstates appear

in the computation of the microcanonical partition function 𝑤.

Thus, if ‘particles’ or ‘lattice points’ do not interact with each other, we can guess

∑︁
microstates

=

⎛⎝ ∑︁
one particle states

⎞⎠𝑁

(13.58)

From this the Helmholtz free energy of the lattice with Schottky defects immedi-
ately follows:

𝐴 = −𝑁𝑘𝐵𝑇 log(1 + 𝑒−𝛽𝜀). (13.59)

We can get entropy by differentiation:

𝑆 = −𝜕𝐴
𝜕𝑇

= 𝑁𝑘𝐵 log(1 + 𝑒−𝛽𝜀) +𝑁
𝜀

𝑇

𝑒−𝛽𝜀

(1 + e−𝛽𝜀)
. (13.60)

Various other partition functions will be introduced in these lectures. As you will
learn later, if you wish to study the thermodynamics of a system, any formalism will
be OK, as long as the system is large enough (roughly speaking, if log𝑁/𝑁 ≪ 1).
We have so far discussed the microcanonical and the canonical formalism. Let us
check that the canonical result for 𝑆 agrees with the microcanonical result for this
simple example. The microcanonical approach gives us

𝑆 = −𝑁𝑘𝐵
[︁ 𝑛
𝑁

log
𝑛

𝑁
+
(︁
1− 𝑛

𝑁

)︁
log
(︁
1− 𝑛

𝑁

)︁]︁
, (13.61)

and
𝑛

𝑁
=

1

1 + 𝑒𝛽𝜀
. (13.62)

Combining both, we get

𝑆 = −𝑁𝑘𝐵
[︂

1

1 + 𝑒𝛽𝜀
log

1

1 + 𝑒𝛽𝜀
+

𝑒𝛽𝜀

1 + 𝑒𝛽𝜀
log

𝑒𝛽𝜀

1 + 𝑒𝛽𝜀

]︂
. (13.63)

This indeed agrees with (13.60).

13.18 Another example: Dipoles on the honeycomb lattice with an easy
direction
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Consider a honeycomb lattice with 𝑁 lattice points. At each lattice point is a dipole
that can point in one of the three bond directions. If a dipole is along the easy
direction, its energy is zero. If it points in other directions, its energy is 𝜀 (> 0). We
assume dipoles do not interact.

easy direction

Figure 13.3: If a dipole is along the easy direction, it is energetically stabilized (by 𝜀).

The canonical ensemble approach is easy. Using the idea explained around (13.53),
we get

𝑍(𝑇 ) = (1 + 2𝑒−𝛽𝜀)𝑁 , (13.64)

because at each lattice point one direction is an easy direction, and the other two
have the energy penalty of 𝜀. The internal energy is

𝐸 = −𝜕log𝑍
𝜕𝛽

= 𝑁𝜀
2𝑒−𝛽𝜀

1 + 2𝑒−𝛽𝜀
. (13.65)

With the aid of the principle of equal probability, we can ask the probability for
a dipole to be in the leftward tilt:

𝑃 (left) =
𝑒−𝛽𝜀

1 + 2𝑒−𝛽𝜀
. (13.66)

The probability to point in the easy direction is

𝑃 (easy) =
1

1 + 2𝑒−𝛽𝜀
. (13.67)

⟨⟨Dipole example with the microcanonical formalism⟩⟩
It is rather stupid to study this system with the microcanonical approach, but let us check that we
can obtain the same result. Let 𝐴 be the state of dipole tilting to the left, 𝐵 to the right and 𝐶 in the
easy direction. Let 𝑛𝑋 (𝑋 = 𝐴,𝐵 or 𝐶) be the number of dipoles in state 𝑋. 𝑁 = 𝑛𝐴 + 𝑛𝐵 + 𝑛𝐶 .
The number of microstates with definite 𝑛𝐴 and 𝑛𝐵 (𝑛𝐶 is determined) is (cf. the multinomial
coefficients, see Appendix 2A)

𝑁 !

𝑛𝐴!𝑛𝐵 !𝑛𝐶 !
. (13.68)

To obtain the microstates with 𝐸 = 𝜀(𝑁 − 𝑛𝐶) = 𝜀(𝑛𝐴 + 𝑛𝐵), we must collect all possible 𝑛𝐴 and
𝑛𝐵 compatible with the energy condition:

𝑤(𝜀(𝑁 − 𝑛𝐶)) =
∑︁

𝑛𝐴+𝑛𝐵=𝑁−𝑛𝐶

𝑁 !

𝑛𝐴!𝑛𝐵 !𝑛𝐶 !
=

∑︁
𝑛𝐴+𝑛𝐵=𝑁−𝑛𝐶

𝑁 !

(𝑁 − 𝑛𝐶)!𝑛𝐶 !
(𝑁 − 𝑛𝐶)!
𝑛𝐴!𝑛𝐵 !

.

=

(︂
𝑁

𝑛𝐶

)︂𝑁−𝑛𝐶∑︁
𝑛𝐴=0

(𝑁 − 𝑛𝐶)!
𝑛𝐴!𝑛𝐵 !

=

(︂
𝑁

𝑛𝐶

)︂
2𝑁−𝑛𝐶 .
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You should have realized that this is easily obtained as follows. First we choose 𝑛𝐶 sites to place
easy-direction dipoles. There are

(︀
𝑁
𝑛𝐶

)︀
ways. Then, choose the remaining dipoles to tilt leftward or

rightward. There are 2𝑁−𝑛𝐶 ways. Hence, we obtain the above result.
Thus, the entropy is

𝑆 = 𝑘𝐵 log𝑤(𝜀(𝑁 − 𝑛𝐶)) = −𝑁𝑘𝐵
[︁𝑛𝐶
𝑁

log
𝑛𝐶
𝑁

+
(︁
1− 𝑛𝐶

𝑁

)︁
log
(︁
1− 𝑛𝐶

𝑁

)︁]︁
+ (𝑁 − 𝑛𝐶)𝑘𝐵 log 2.

(13.69)
With the aid of the Gibbs relation (notice that 𝑑𝐸 = −𝜀𝑑𝑛𝐶)

1

𝑇
=
𝜕𝑆

𝜕𝐸
= −1

𝜀

𝜕𝑆

𝜕𝑛𝐶
=
𝑘𝐵
𝜀

log
𝑛𝐶

𝑁 − 𝑛𝐶
+
𝑘𝐵
𝜀

log 2. (13.70)

That is,

𝑒−𝛽𝜀 =
𝑁 − 𝑛𝐶
2𝑛𝐶

(13.71)

From this we obtain

𝑛𝐶 =
𝑁

1 + 2𝑒−𝛽𝜀
. (13.72)

The internal energy is

𝐸 = 𝜀(𝑁 − 𝑛𝐶) = 𝑁𝜀
2𝑒−𝛽𝜀

1 + 2𝑒−𝛽𝜀
, (13.73)

which is identical to (13.65).
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Appendix 13A. How to derive the principle of equal
probability

You will see how important the law of large numbers is to establish statistical
mechanics.

We first summarize fundamental properties of thermodynamic equilibrium states.
We have already noted:
(O’) If the equilibrium system is partitioned into two (approximately equal261) parts
(by a plane), then

(i) each piece in isolation is in equilibrium, and
(ii) if these pieces are joined as before the partition, the joined result is in equili-

brium as a whole, and its state cannot be (thermodynamically) distinguished
from the state before the partition (Fig. 13.4).

We further know the fourth law or its direct consequence: Thermodynamic ob-
servables are obtainable from the partitioned system.

Single isolated 

macrosystem

Collection (ensemble)

of isolated macrosystems

=
∼

Figure 13.4: Thermodynamic quantities can be obtained from ‘pieces’ obtained by partitioning
of an equilibrium state.

Thus, we may conclude that thermodynamic equilibrium states are partitioning-
rejoining invariant.

Although usually not stated clearly, we know one more fact:
(Y) Invariance under thermal contact of equilibrium states: Any equilibrium state of
a thermally isolated system has a heat bath (individual heat bath) such that thermal
contact with it does not alter its thermodynamic state (Fig. 13.5).

Thermally isolated system Intrinsic heat bath

==

Thermodynamically 

the same state

Figure 13.5: There is a heat bath that does not destroy a given equilibrium system upon thermal
contact.

(O’) and (Y) imply that the following procedure keeps thermal equilibrium intact

261This requirement is only to avoid extreme cases in which one part contains not macroscopic
number of particles.
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(Fig. 13.6).

(i) Partition a thermally isolated equilibrium system into (macroscopic) pieces.
(ii) Attach each piece to its private individual heat bath for a while, and then again
thermally isolate it.
(iii) Re-join all the pieces as before to reconstruct the whole piece.

van Hove

partition
Contact with 

individual heat baths

rejoining

Figure 13.6: An equilibriums system may be replaced by statistically independent pieces to
obtain thermodynamic quantities.

The above procedure does not alter thermodynamic observables of the system.
Thus, a macroscopic system in thermal equilibrium may be replaced with a collection
of many statistically independent mechanical systems, if we are interested in thermo-
dynamic quantities. In other words, thermodynamics observables are such physical
quantities that are quite insensitive to subtle correlations (as quantum mechanics
implies) among portions of a system. Therefore, we may use a brutal procedure to
compute them.

How many such independent pieces can we find in an ordinary macroobject? 1
mm3 is big enough from the molecules’ point of view, so in a cube with 10 cm edge,
we can easily expect more than 106 macroscopic subsystems; we may safely use the
law of large numbers, so thermodynamic quantities obtained from the partitioned
system and the actual values are quite close.

You may even expect that to compute thermodynamic quantities, we may use the
principle of equal probability = all the microstates compatible with a given thermo-
dynamic state are equally probably sampled.

The logic to demonstrate this statement is as follows:
(i) The direct product model may be used as a micro-model of a thermodynamic
system.
(ii) Then, the asymptotic equipartition (see below) implies that the correct expecta-
tion values are obtained, even if we assume all the energy states are equally probably
distributed.
(iii) Thus, to obtain thermodynamics, we may assume that all the compatible mi-
crostates are equally probable. This is called the principle of equal probability tradi-
tionally assumed to obtain statistical mechanics.

290



The asymptotic equipartition is nothing but the law of large numbers.

1

𝑛
log𝑃 (𝑥1, · · · , 𝑥𝑛) =

1

𝑛

∑︁
𝑖

log𝑃 (𝑥𝑖) converges to −𝑠 (13.74)

in the large 𝑛 limit. Here 𝑠 is the entropy per piece. That is, the asymptotic
equipartition law:

𝑃 (𝑥1, · · · , 𝑥𝑛) = 𝑒−𝑛𝑠±𝑜[𝑛] (13.75)

holds independent of the actual microstate {𝑥1, · · · , 𝑥𝑛}.

291



Q13.1 [Noninteracting magnetic moments with easy directions]
There is a 2D square lattice with 𝑀 lattice points. On each lattice point is a mag-
netic moment that can point only in the lattice bond directions (4 directions as
illustrated), but the ±𝑦 directions are the easy directions: if the dipole is along the
𝑦-axis, it is stable, that is, the energy of the dipole along the 𝑥-axis is 𝜀 (> 0 more
energy) and that along the 𝑦-axis is zero. We do not pay attention to the kinetic
energy of the system. You may ignore the interactions among dipoles.

x

y

Figure 13.7: Each dipole can point only 4 direction along the lattice bonds.

(1) What is the canonical partition function of the system (the temperature is 𝑇 )?
(2) What is the average energy per dipole?
(3) Compute the entropy 𝑆(𝑇 ) per dipole. What is the difference 𝑆(∞)−𝑆(0)? How
many bits is this? Is this consistent with the intuitive interpretation of entropy per
molecule as the number of YES-NO questions?
(4) Compute the ‘microcanonical partition function’ 𝑤(𝑁𝜀) (0 ≤ 𝑁 ≤𝑀).
(5) Show that the entropy you computed from the microcanonical scheme (Boltz-
mann’s principle) and the result (3) agree. [Compute 𝑁/𝑀 as a function of 𝑇 (use
1/𝑇 = 𝜕𝑆/𝜕𝐸) and get rid of 𝑁/𝑀 from the formula to obtain the result of (3).]

Solution. (1) Needless to say, you can start from the very definition of the canonical
partition function, BUT notice that if you collect all the microstates (= microscopic
states = mechanically describable whole-system states), all the states of microscopic
entities (molecules, etc., in our case dipoles sitting on the lattice points) appear once
and only once (recall Fig. 13.2). Therefore, to construct the partition function for
the whole lattice, we study all the states of each microscopic entity to make their
individual canonical partition functions (in our case 1+1+𝑒−𝛽𝜀+𝑒−𝛽𝜀) and multiply
them over the whole lattice:

𝑍(𝑇 ) = (2 + 2𝑒−𝛽𝜀)𝑀 . (13.76)

(2) Using the Gibbs relation, we get

𝐸

𝑀
= − 1

𝑀

𝜕log𝑍

𝜕𝛽
=

𝜀𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀
. (13.77)

(3) Since 𝐴 = 𝐸 − 𝑇𝑆, 𝑆 = (𝐸 − 𝐴)/𝑇
𝑆

𝑀
= 𝑘𝐵 log(2 + 2𝑒−𝛽𝜀) +

𝜀

𝑇

𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀
. (13.78)
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𝑆(0) = 𝑘𝐵 log 2 (notice that for any 𝑛, 𝑥𝑛𝑒−𝑥 → 0 in the 𝑥→∞ limit) and 𝑆(∞) =
𝑘𝐵 log 4, so Δ𝑆 is just 1bit. At 𝑇 = 0 the dipoles are always along 𝑦 (2 directions),
but at 𝑇 = ∞ they can evenly assume 4 directions (i.e., along 𝑥 and 𝑦 directions).
Thus, if we ask one yes-no question (“Is it along 𝑦?”) we can reduce the uncertainty
in the equilibrium state at 𝑇 =∞ to that at 𝑇 = 0. In other words, to identify the
state of a dipole in the 𝑇 →∞ limit we need 2 bits (2 questions), because we must
find 1 particular state out of 4 possibilities. In the 𝑇 → 0 limit all the dipoles are
along the easy direction, so there are only 2 choices for each dipole. Therefore, we
need only one question to pinpoint the state of a dipole. Δ𝑆 just corresponds to the
difference in the numbers of questions we must ask.
(4) You can immediately obtain

𝑤(𝑁𝜀) =

(︂
𝑀

𝑁

)︂
2𝑀 , (13.79)

because 2 choices along 𝑥 and along 𝑦 can be selected without affecting the system
energy.

A more pedestrian way (which I do not recommend) is to introduce 𝑛1, 𝑛2, 𝑛3

and 𝑛4 pointing respectively +𝑥, −𝑥, +𝑦 and −𝑦. 𝑁 = 𝑛1 + 𝑛2 (𝑥-direction) and
𝑀 −𝑁 = 𝑛3 + 𝑛4 (𝑦-direction):

𝑤(𝑁𝜀) =
𝑁∑︁

𝑛1=0

𝑀−𝑁∑︁
𝑛3=0

𝑀 !

𝑛1!(𝑁 − 𝑛1)!𝑛3!(𝑀 −𝑁 − 𝑛3)!
, (13.80)

but an easy reorganization is: (i) choose 𝑁 parallel 𝑥 dipoles, and then (ii) count
the number of ways to point + and − directions:

𝑤(𝑁𝜀) =

(︂
𝑀

𝑁

)︂ 𝑁∑︁
𝑛1=0

𝑀−𝑁∑︁
𝑛3=0

(︂
𝑁

𝑛1

)︂(︂
𝑀 −𝑁
𝑛3

)︂
=

(︂
𝑀

𝑁

)︂
2𝑁2𝑀−𝑁 . (13.81)

This is just the answer above.
(5) Thanks to Boltzmann

𝑆

𝑀
= −𝑘𝐵

[︂
𝑁

𝑀
log

𝑁

𝑀
+

(︂
1− 𝑁

𝑀

)︂
log

(︂
1− 𝑁

𝑀

)︂]︂
+ 𝑘𝐵 log 2. (13.82)

I strongly urge you to learn the following by heart:

log

(︂
𝑀

𝑁

)︂
= −𝑀

[︂
𝑁

𝑀
log

𝑁

𝑀
+

(︂
1− 𝑁

𝑀

)︂
log

(︂
1− 𝑁

𝑀

)︂]︂
. (13.83)

Since
1

𝑇
=
𝑘𝐵
𝜀

𝜕𝑆

𝜕𝑁
= −𝑘𝐵

𝜀
log

𝑁

𝑀 −𝑁
, (13.84)
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we have

𝑁 =
𝑀

1 + 𝑒−𝛽𝜀
. (13.85)

Computing 𝑁/𝑀 and using it in the entropy formula above, we get

𝑆

𝑀
= −𝑘𝐵

[︂
𝑁

𝑀
log

1

1 + 𝑒−𝛽𝜀
+

(︂
1− 𝑁

𝑀

)︂
log

(︂
𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀

)︂]︂
= 𝑘𝐵

[︂
𝑁

𝑀
log(1 + 𝑒−𝛽𝜀) +

(︂
1− 𝑁

𝑀

)︂
log(1 + 𝑒−𝛽𝜀)

]︂
+ 𝑘𝐵 log 2− 𝑘𝐵

𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀
log
(︀
𝑒−𝛽𝜀

)︀
= 𝑘𝐵 log(2 + 2𝑒−𝛽𝜀) +

𝜀

𝑇

𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀
.

Q13.2 [Magnet under constant magentic field]
It is convenient to study a magnet under constant magnetic field 𝐵 rather than under
constant magnetization 𝑀 . Then, the thermodynamic independent variables should
be 𝑇,𝐵 rather than 𝐸,𝑀 . Therefore, we should use the ‘magnetic-counterpart’ of
the Gibbs free energy 𝐺̃ = 𝐴−𝐵𝑀 rather than the Helmholtz free energy 𝐴 itself.262

Notice that 𝑑𝐺̃ = −𝑆𝑑𝑇 −𝑀𝑑𝐵.
(1) Let 𝐻0 be the Hamiltonian (energy) of the magnetic system. Define an appro-
priate partition function 𝑄 that directly gives

𝐺̃ = −𝑘𝐵𝑇 log𝑄(𝑇,𝐵). (13.86)

You must define 𝑄 in terms of 𝑍(𝑇,𝑀). [Needless to say, Q12.2 is a hint, but be
careful about the sign.]
(2) Consider a collection of 𝑁 magnetic dipoles 𝜇𝑖 whose magnetization can be writ-
ten as 𝑀 =

∑︀
𝜇𝑖. The magnetic moments can point only up or down state (of

value ±𝜇) aligned to the magnetic field direction (say, along the 𝑧-axis; its poten-
tial energy is ∓𝐵𝜇). If we ignore the kinetic energy of the magnetic moments, the
system Hamiltonian of the noninteracting magnetic moments is just 0 (no energy
associated).263 Compute 𝑄 and obtain the magnetization as a function of 𝑇 and 𝐵.
(3) Show that 𝑀 obtained from the microcanonical approach agrees with the result
of (2).

Solution
(1)

−𝐺̃
𝑇

= −𝐴
𝑇
− 𝐵𝑀

𝑇
= 𝑘𝐵 log

∑︁
𝑀

𝑍(𝑇,𝑀)𝑒𝛽𝐵𝑀 (13.87)

262Recall 𝐺 = 𝐴 + 𝑃𝑉 . Compare 𝑑𝐸 = 𝑇𝑑𝑆 + 𝐵𝑑𝑀 and 𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 . YOU MUST
MEMORIZE THE BASIC GIBBS RELATION.

263−𝐵
∑︀
𝜇𝑖 is the potential energy stored in the relation between the system and the device

generating the magnetic field 𝐵 as we have already seen in Q8.2. Many books confuse this point,
so be careful.
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That is,
𝐺̃ = −𝑘𝐵𝑇 log𝑄 (13.88)

with
𝑄 =

∑︁
𝑀

𝑒−𝛽(𝐻0−𝐵𝑀). (13.89)

However, in our case the system energy is zero (𝐻0 = 0), so 𝑍(𝑇,𝑀) = 𝑤(0,𝑀)
or

𝑄 =
∑︁

𝑒𝛽𝐵𝑀 =
∑︁

𝜇𝑖∈{𝜇,−𝜇}

𝑒𝛽𝐵
∑︀

𝑖 𝜇𝑖 , (13.90)

where the summation is over all the microstates.
(2)

𝑄 =
∑︁
𝑀

𝑒𝛽𝐻𝑀 =

(︂
2 cosh

𝐵𝜇

𝑘𝐵𝑇

)︂𝑁

. (13.91)

Hence,

𝐺̃ = −𝑁𝑘𝐵𝑇 log

(︂
2 cosh

𝐵𝜇

𝑘𝐵𝑇

)︂
. (13.92)

From this

𝑀 = − 𝜕𝐺̃

𝜕𝐵

⃒⃒⃒⃒
⃒
𝑇

= 𝑁𝜇 tanh
𝐵𝜇

𝑘𝐵𝑇
. (13.93)

(3) The microcanonical partition function we need is 𝑤(0,𝑀). Let 𝑁+ be the number
of up-spins. Then,

𝑤 =

(︂
𝑁

𝑁+

)︂
, (13.94)

so

𝑆 = −𝑘𝐵𝑁
[︂
𝑁+

𝑁
log

𝑁+

𝑁
+

(︂
1− 𝑁+

𝑁

)︂
log

(︂
1− 𝑁+

𝑁

)︂]︂
. (13.95)

The number of down-spins is 𝑁 − 𝑁+, so 𝑀 = 𝜇(2𝑁+ − 𝑁). Therefore, 𝑁+ =
(𝑀 + 𝜇𝑁)/2𝜇. From 𝑑𝑆 = −(𝐵/𝑇 )𝑑𝑀 for our system (recall we cannot change
𝐸 ≡ 0),

𝐵

𝑇
= − 𝜕𝑆

𝜕𝑀

⃒⃒⃒⃒
𝐸

= − 1

2𝜇

𝜕𝑆

𝜕𝑁+

⃒⃒⃒⃒
𝐸

=
𝑘𝐵
2𝜇

log
𝑁+/𝑁

1− (𝑁+/𝑁)
, (13.96)

that is,

𝑁+ =
𝑒2𝛽𝜇𝐵

1 + 𝑒2𝛽𝜇𝐵
=

𝑁

1 + 𝑒−2𝛽𝜇𝐵
. (13.97)

From this, we get the same result:

𝑀 = 𝑁𝜇
1− 𝑒2𝛽𝜇𝐵

1 + 𝑒2𝛽𝜇𝐵
= 𝑁𝜇 tanh

𝜇𝐵

𝑘𝐵𝑇
. (13.98)

Which do you think is easier?
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14 Classical ideal gas and quantum-classical cor-

respondence

Summary
* All ensembles are equivalent. You can use any that you can compute most easily.
* We compute the classical ideal gas partition function. We must treat all gas
particles indistinguishable.
* The canonical partition function of a classical fluid system reads

𝑍 =
1

𝑁 !ℎ3𝑁

∫︁
𝑑Γ 𝑒−𝛽𝐻 .

* The classical-quantum partition function relation may be understood as the re-
quirement that the partition function must be dimensionless.
* Equipartition of energy and classical specific heat is studied with the aid of the
canonical formalism. Quantization turns out to be mandatory.

Key words
ensembles, ensemble equivalence, Gibbs paradox, indistinguishability, Frenkel defect,
equipartition of energy

What you should be able to do
* Get the canonical partition function of a classical gas with dimensional analysis.
* Be able to explain what the ensemble equivalence means, and the condition that
we can use any ensemble.
* Be able to use the equipartition formula to compute simple averages.
* Be able to explain why the specific heat of a diatomic gas is not as big as expected
classically.

14.1 Review: ensemble equivalence
We have learned two formalisms to do equilibrium statistical mechanics:

𝑆 = 𝑘𝐵 log𝑤(𝐸,𝑋) microcanonical formalism, (14.1)

𝐴 = −𝑘𝐵𝑇 log𝑍(𝑇,𝑋) canonical formalism. (14.2)

These formalisms are equivalent if log𝑁/𝑁 ≪ 1. The meaning of ‘equivalence’ is:
The free energy computed from 𝑆 according to (14.1) agrees with that computed
directly from statistical mechanics according to (14.2); The entropy computed from
𝐴 according to (14.2) agrees with 𝑆 directly computed statistical mechanically from
(14.1).
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Here, we discuss only the equivalence of the microcanonical and canonical ensem-
bles, but we will encounter many other ensembles and they are equivalent in the
sense that any of them can be used to obtain the full thermodynamic potential of
the system. In short, you may use any ‘ensemble.’ This is called the ensemble equiv-
alence. Here, ‘ensemble’ means the collection of microscopic states with a definite
summation rule (or probability assignment, if we use the principle of equal probabil-
ity).

14.2 Derivation of Maxwell’s distribution
The principle of equal probability implies that the probability for a particular parti-
cle, called 0 here, to have energy 𝜀 in a macrosystem is given by

𝑃 (𝜀) =
∑︁
𝛾∈Γ𝜀

1

𝑍
𝑒−𝛽𝐻(𝛾), (14.3)

where Γ𝜀 is the totality of microstates compatible with particle 0 to have energy
around 𝜀. The summation is an informal expression of summing or integration over
all the appropriate microstates.264

For an ideal gas, 𝐻(𝛾) consists of a sum of the form
∑︀

𝑖 𝜀𝑖, where 𝜀𝑖 is the energy
for 𝑖-th particle. The variables are statistically independent; this is the meaning of
the ideality. Therefore, obviously,

𝑃 (𝜀) ∝ 𝑒−𝛽𝜀. (14.4)

Thus, we recover Maxwell’s distribution function, because 𝜀 = 𝑚𝑣2/2:

𝑃 (𝑣) ∝ 𝑒−𝑚𝑣2/2𝑘𝐵𝑇 . (14.5)

14.3 Frenkel defect
Let us study an example: the Frenkel defects. As illustrated in Fig. 14.1 particles
leave their original lattice points and wander into non-lattice positions (interstitial
positions). There are 𝑁 lattice points and 𝑀 interstitial points. There are total
𝑁 particles and 𝑛 particles leave their lattice points and move into interstitial sites.
There is an energy cost of 𝜀 to leave a lattice point to move to an interstitial site.

264Clearly notice that we are not dealing with individual microstates of a macrosystem, because
Γ𝜀 contains macroscopically many microstates.
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Figure 14.1: Particles with darker color are interstitial particles (excited particles), which leave
vacancies (dotted circles).

The system energy is 𝐸 = 𝑛𝜀. Thus, (we write 𝑤(𝐸) as 𝑤(𝑛))

𝑤(𝑛) =

(︂
𝑁

𝑛

)︂(︂
𝑀

𝑛

)︂
, (14.6)

and the canonical partition function reads

𝑍(𝑇 ) =
𝑁∑︁

𝑛=0

𝑤(𝑛)𝑒−𝛽𝑛𝜀 =
𝑁∑︁

𝑛=0

(︂
𝑁

𝑛

)︂(︂
𝑀

𝑛

)︂
𝑒−𝛽𝑛𝜀. (14.7)

Unfortunately, this cannot be summed in a closed form. However, in this case, it is
very easy to prove the ensemble equivalence as follows.

14.4 Equivalence of microcanonical and canonical ensembles
In this lecture notes, the canonical ensemble was introduced with the logic expecting
the ensemble equivalence 13.8, but this concept is of superb importance for statistical
thermodynamics, let us repeat the error analysis.

Since all the summands are positive, the following inequalities are obvious:

max
𝑛

[︀
𝑤(𝑛)𝑒−𝛽𝑛𝜀

]︀
≤ 𝑍(𝑇 ) ≤ 𝑁 max

𝑛

[︀
𝑤(𝑛)𝑒−𝛽𝑛𝜀

]︀
. (14.8)

On the other hand, we have

max
𝑛

[︀
𝑤(𝑛)𝑒−𝛽𝑛𝜀

]︀
= exp

[︂
1

𝑘𝐵
max
𝐸

(𝑆 − 𝐸/𝑇 )
]︂
, (14.9)

but the ‘honest’ definition of the Helmholtz free energy is

−𝐴 = max
𝐸

[𝑇𝑆 − 𝐸]. (14.10)

Therefore, (14.8) reads

−𝐴/𝑘𝐵𝑇 ≤ log𝑍(𝑇 ) ≤ −𝐴/𝑘𝐵𝑇 + log𝑁. (14.11)
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𝐴 is an extensive quantity, so it is of order 𝑁 . Therefore, if you can ignore log𝑁/𝑁
as very small, −𝑘𝐵𝑇 log𝑍(𝑇 ) (the free energy directly obtained by the canonical
formalism of statistical mechanics) and the free energy obtained (using thermody-
namics, i.e., (14.10)) from entropy (which is computed statistical-mechanically with
the aid of the microcanonical approach) are indistinguishable.

14.5 Why the theroetical structure of statistical thermodynam is very
stable and reliable
Although our demonstration of the ensemble equivalence 14.4, in the present case
the equivalence of the canonical and microcanonical formalisms, relies on a particular
example, the logic we have employed is identical to the key logic to demonstrate the
ensemble equivalence generally and rigorously: 𝑍 is sandwiched between the maxi-
mum term in the sum and the maximum term × something proportional to 𝑁 .

You must clearly recognize that the estimations (bounds) required by the proof
above are very obvious (not at all delicate). That is why the results are general and
very stable.

Also you must clearly recognize that to compute 𝑍 is equivalent to estimating its
maximum summand.

14.6 Frenkel defect, microcanonical approach
Let us continue the Frenkel defect problem. Let us compute entropy using Boltz-
mann’s principle.

𝑆 = 𝑘𝐵 log

(︂
𝑁

𝑛

)︂(︂
𝑀

𝑛

)︂
. (14.12)

We use Stirling’s approximation, or

log

(︂
𝐴

𝐵

)︂
= −𝐴

[︂
𝐵

𝐴
log

𝐵

𝐴
+

(︂
1− 𝐵

𝐴

)︂
log

(︂
1− 𝐵

𝐴

)︂]︂
. (14.13)

We obtain

𝑆/𝑘𝐵 = −𝑁
[︁ 𝑛
𝑁

log
𝑛

𝑁
+
(︁
1− 𝑛

𝑁

)︁
log
(︁
1− 𝑛

𝑁

)︁]︁
−𝑀

[︁ 𝑛
𝑀

log
𝑛

𝑀
+
(︁
1− 𝑛

𝑀

)︁
log
(︁
1− 𝑛

𝑀

)︁]︁
.

(14.14)
We need temperature, so we use the Gibbs relation 𝑑𝑆 = (1/𝑇 )𝑑𝐸+(𝑃/𝑇 )𝑑𝑉 + · · ·:

1

𝑇
=

𝜕𝑆

𝜕𝐸

⃒⃒⃒⃒
𝑉

, (14.15)
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but 𝑑𝐸 = 𝜀𝑑𝑛,265 so

𝜀

𝑘𝐵𝑇
=

1

𝑘𝐵

𝑑𝑆

𝑑𝑛
= log

1− 𝑛
𝑁

𝑛
𝑁

+ log
1− 𝑛

𝑀
𝑛
𝑀

= log
(𝑁 − 𝑛)(𝑀 − 𝑛)

𝑛2
. (14.16)

Here, notice that when you differentiate log
(︀
𝑁
𝑛

)︀
wrt 𝑛, virtually you have only to

differentiate the factors outside log. Usually 𝑛 is small, so we obtain

𝑒−𝛽𝜀 =
𝑛2

𝑁𝑀
. (14.17)

From this we can write 𝑆 in terms of 𝑇 .

14.7 Classical ideal gas and de Broglie wavelength
The classical ideal gas is characterized by the total absence of quantum effect: here,
quantum effect means that the particles can delocalize. Consider a gas consisting
of 𝑁 identical noninteracting particles. To ignore all quantum effects, the average
de Broglie wave length of each particle must be much smaller than the average
interparticle distance. The de Broglie wave length 𝜆 may be estimated as

𝜆 ∼ ℎ/
√︀
𝑚𝑘𝐵𝑇 , (14.18)

where 𝑚 is the mass of the particle, and ℎ is Planck’s constant. This estimate is due
to 𝜆 = ℎ/𝑝 = ℎ/

√
2𝑚𝐾 and 𝐾 ∼ 𝑘𝐵𝑇 , where 𝑝 is the representative value of the

magnitude of the momentum of a particle, and 𝐾 is the representative value of the
one-particle kinetic energy. The mean particle distance is 3

√︀
𝑉/𝑁 , so the condition

we want is 3
√︀
𝑉/𝑁 ≫ 𝜆, or

𝑁

𝑉
≪
(︂
𝑚𝑘𝐵𝑇

ℎ2

)︂3/2

. (14.19)

When this inequality is satisfied, we say the gas is classical.266

Since there are no interactions among particles, each particle cannot sense the
density. Consequently, the internal energy of the system must be a function of 𝑇
only: 𝐸 = 𝐸(𝑇 ). This is a good characterization of ideal gases.

14.8 Single particle states
Let us first compute the number of microscopic states allowed to a single particle

265𝑆 is now a function of 𝐸, but we do not write it explicitly.
266Notice that the dynamics of internal degrees of freedom such as vibration and rotation need

not be classical as we will see in Section 23.
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(called one-particle states) in a box of volume 𝑉 . To this end we solve the Schrödinger
equation in a cube with edges of length 𝐿:

− ~2

2𝑚
Δ𝜓 = 𝐸𝜓; (14.20)

Δ is the Laplacian, and a homogeneous Dirichlet boundary condition 𝜓 = 0 at the
wall is imposed. As is well-known, the eigenfunctions are:

𝜓𝑘 ∝ sin 𝑘𝑥𝑥 sin 𝑘𝑦𝑦 sin 𝑘𝑧𝑧 (14.21)

with the following quantization condition due to the boundary condition:

𝑘 ≡ (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) =
𝜋

𝐿
(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) ≡

𝜋

𝐿
𝑛. (14.22)

Here, 𝑛𝑥, · · · are positive integers, 1, 2, · · ·. The eigenfunction 𝜓𝑘 belongs to the
eigenvalue (energy) ~2𝑘2/2𝑚.

The number of states with wave number vectors 𝑘 in the range 𝑘 to 𝑘 + 𝑑𝑘 is

#{𝑘 | 𝑘 < |𝑘| < 𝑘 + 𝑑𝑘} = #

{︂
𝑛

⃒⃒⃒⃒
𝐿

𝜋
𝑘 < |𝑛| < 𝐿

𝜋
(𝑘 + 𝑑𝑘)

}︂
=

(︂
1

8
4𝜋𝑛2𝑑𝑛 =

)︂
1

8

𝐿3

𝜋3
4𝜋𝑘2𝑑𝑘 =

1

2𝜋2
𝑉 𝑘2𝑑𝑘. (14.23)

The factor 1/8 is required because the relevant 𝑘 are only in the first octant (all the
components must be positive).

14.9 Classical ideal gas: single particle canonical partition function
Now we can compute the canonical partition function for a single particle using its
definition:

𝑍1 =
∑︁

𝑛𝑥>0,𝑛𝑦>0,𝑛𝑧>0

exp(−𝛽𝐸) (14.24)

=

∫︁
𝑘

#

{︂
𝑛

⃒⃒⃒⃒
𝐿

𝜋
𝑘 < |𝑛| < 𝐿

𝜋
(𝑘 + 𝑑𝑘)

}︂
exp(−𝛽𝑘2~2/2𝑚) (14.25)

≃ 1

8

𝑉

𝜋3

∫︁ ∞

0

4𝜋𝑘2𝑑𝑘 exp(−𝛽𝑘2~2/2𝑚). (14.26)

The integration is readily performed. (14.26) is

𝑍1(𝑉 ) = 𝑉
1

8𝜋3

∫︁ ∞

−∞
𝑑𝑘𝑥 𝑒

−𝑘2𝑥~2/2𝑚𝑘𝐵𝑇

∫︁ ∞

−∞
𝑑𝑘𝑦 𝑒

−𝑘2𝑦~2/2𝑚𝑘𝐵𝑇

∫︁ ∞

−∞
𝑑𝑘𝑧 𝑒

−𝑘2𝑧~2/2𝑚𝑘𝐵𝑇 ,

(14.27)
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and we know ∫︁ ∞

−∞
𝑑𝑥 𝑒−𝑎𝑥2

=

√︂
𝜋

𝑎
. (14.28)

Therefore,

𝑍1(𝑉 ) = 𝑉
1

8𝜋3

(︂
2𝜋𝑚𝑘𝐵𝑇

~2

)︂3/2

= 𝑉

(︂
1

4𝜋2

)︂3/2(︂
8𝜋3𝑚𝑘𝐵𝑇

ℎ2

)︂3/2

. (14.29)

That is,

𝑍1(𝑉 ) = 𝑉

(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂3/2

. (14.30)

The important point of this result is that 𝑍1 ∝ 𝑉 .

14.10 Classical ideal gas: Gibbs paradox
According to our preliminary discussion around (13.58) the partition function 𝑍 of
the whole ideal gas system consisting of 𝑁 identical particles should read

“𝑍 = 𝑍𝑁
1 ”. (14.31)

This implies
𝐴(𝑁, 𝑉 ) = −𝑁𝑘𝐵𝑇 log𝑍1(𝑉 ). (14.32)

Now, prepare two identical systems each of volume 𝑉 with 𝑁 particles. The free
energy of each system is given by 𝐴(𝑁, 𝑉 ). Next, combine these two systems to
make a single system. The resultant system has 2𝑁 particles and volume 2𝑉 , so its
free energy should be 𝐴(2𝑁, 2𝑉 ). The fourth law of thermodynamics 9.14 requires
that

𝐴(2𝑁, 2𝑉 ) = 2𝐴(𝑁, 𝑉 ). (14.33)

Unfortunately, as you can easily check, this is not satisfied by (14.32). 𝑍1 ∝ 𝑉 is
the key feature, so let us write 𝑍1 = 𝑐𝑉 with a positive constant 𝑐. Then, 𝑍 = (𝑐𝑉 )𝑁 ,
so indeed

log(𝑐2𝑉 )2𝑁 = 2 log(𝑐𝑉 )𝑁 + log 22𝑁 ̸= 2 log(𝑐𝑉 )𝑁 . (14.34)

Thus we must conclude (14.31) is wrong. This is the famous Gibbs paradox.

14.11 Correct canonical partition function
Since the fourth law is an empirical fact, we must correct (14.31) as

𝑍 = 𝑓(𝑁)𝑍𝑁
1 = 𝑓(𝑁)(𝑐𝑉 )𝑁 , (14.35)
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where 𝑓(𝑁) is as yet an unspecified function of 𝑁 . The fourth law demands (14.33):

log 𝑓(2𝑁) + 2𝑁 log(𝑐2𝑉 ) = 2 log 𝑓(𝑁) + 2𝑁 log(𝑐𝑉 ). (14.36)

That is,
log 𝑓(2𝑁) + 2𝑁 log 2 = 2 log 𝑓(𝑁) (14.37)

or
𝑓(𝑁)2 = 22𝑁𝑓(2𝑁) (more generally, 𝑓(𝑁)𝛼 = 𝛼𝛼𝑁𝑓(𝛼𝑁)). (14.38)

The general solution to this functional equation is (set 𝛼 = 1/𝑁 ; recall Stirling’s
formula (𝑁/𝑒)𝑁 ≈ 𝑁 !)

𝑓(𝑁) =

(︂
𝑓(1)

𝑁

)︂𝑁

∝ (𝑁 !)−1. (14.39)

Thus, thermodynamics forces us to write

𝑍 =
1

𝑁 !
𝑍𝑁

1 , (14.40)

where we have discarded the unimportant multiplicative factor.
Therefore, the canonical partition function for a classical ideal gas reads

𝑍𝑖𝑑𝑒𝑎𝑙 =
𝑉 𝑁

𝑁 !

(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂3𝑁/2

=

[︃
𝑉 𝑒

𝑁

(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂3/2
]︃𝑁

. (14.41)

14.12 Why does a gas require 1/𝑁 !, but does a lattice system not?
For a lattice system we considered in the preceding lecture, a spatial pattern consist-
ing of states at individual lattice points is identified as a microstate (see Fig. 14.2 (1)
and (2)). In this case, the particles sitting at the lattice points are identical chemical
species (atom or molecule) and we never pay any attention to the arrangement of
particles on the lattice. If these particles are marbles, then their arrangements on
the lattice can distinguish microstates, but since we do not do that, we have already
assumed that all the particles are (combinatorially) indistinguishable.

Even for a gas system a microstate corresponds to a pattern of particle posi-
tions and momentum vectors (see Fig. 14.2 (3) or (4)), since as we will learn later,
quantum-mechanically identical particles are indistinguishable combinatorially in
contrast to marbles. However, if you use classical mechanics to describe a gas we
must name particles to describe them separately. Consequently, the identical pat-
terns with differently named particles look as if they are distinct microstates. In Fig.
14.2 (5) and (6) are with an identical pattern (3) so they must represent an identical
microstate, but due to different namings they are handled as distinct microstates. If
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Figure 14.2: Left: A lattice system we studied in the preceding lecture; Right: a particle
system. For the lattice system, a microstate is identified with a pattern on the whole lattice that
is an arrangement of states at all lattice points. Thus, (1) and (2) are distinct microstates since
they have distinct spatial patterns. Notice that the particles sitting at lattice points are already
indistinguishable. The situation does not vary very much for gasses. A pattern consisting of
positions and momentum vectors of the particles corresponds to a single microstate. Thus, (3)
and (4) are distinct microstates. Here, what particle is assigned to what position does not matter.
In contrast to the lattice system, however, when the partition function is written down, particles
have definite names as a, · · ·, i and are distinguishable. Consequently, a certain single microstate
of 𝑁 (= 9 in the figure) particles are distinguished into 𝑁 ! apparently distinct microstates due
only to the naming of the particles. For example, due to distinct names of the particle variables
required in the classical description, the microstate (3) may be written as (5), (6) or other 𝑁 !
distinct configurations.

there are 𝑁 gas particles, the number of microstates are multiplied with 𝑁 ! due to
namings of particles, so to correct this overcounting 1/𝑁 ! must be multiplied.

14.13 Classical canonical partition function of particle system
Let’s recap. If we ‘honestly count’ the number of quantum states to obtain the
microcanonical partition function (i.e., 𝑤(𝐸,𝑋)), we see (→(14.30))

𝑍1 =
1

ℎ3

∫︁
𝑑𝑟

∫︁
𝑝 𝑒−𝑝2/2𝑚𝑘𝐵𝑇 . (14.42)

Therefore, the canonical partition function in terms of the phase integral reads

𝑍 =
1

ℎ3𝑁𝑁 !

∫︁
𝑑Γ𝑒−𝛽

∑︀
𝑖 𝑝

2
𝑖 /2𝑚, (14.43)

where 𝑑Γ = 𝑑𝑞1𝑑𝑞2 · · · 𝑑𝑞𝑁𝑑𝑝1𝑑𝑝2 · · · 𝑑𝑝𝑁 is the phase volume element.
The prefactors in front of the phase integral are determined while considering a
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particular system (the classical ideal gas), so you may think they are rather ad hoc.
However, the factor 1/𝑁 ! comes from the indistinguishability of the particles, so as
long as particles are distinguished in the description of the system, this should not
be peculiar to ideal gases. How about ℎ3𝑁?
𝑍 appears in log, so it must be dimensionless (if not, the free energy shifts ac-

cording to the choice of units, for example). Therefore, in front of the integral whose
dimension is (action)3𝑁 ([𝑝𝑞] = 𝑀(𝐿/𝑇 )𝐿 = 𝑀(𝐿/𝑇 )2 × 𝑇 267), we must have a
factor killing this dimension. The most fundamental quantity in physics that has
the dimension of action is ℎ. Since we do not expect that the factor is idiosyncratic
to the ideal gas, it is natural to expect 1/ℎ3𝑁 to appear. Therefore, we define the
canonical partition function in terms of the phase integral as follows:

𝑍 =
1

ℎ3𝑁𝑁 !

∫︁
𝑑Γ e−𝛽ℋ. (14.44)

This relation can be rigorously demonstrated by semi-classical analysis.

14.14 Dimensional analysis of ideal gases
We did a lot of calculation to get 𝑍1 quantum mechanically. However, dimensional
analysis almost gives you the same result, or, actually, since we may ignore any
constant factor, we get the correct result by dimensional analysis alone.

Our starting point is 𝑍1 ∝ 𝑉 . This is very natural. To make a dimensionless
quantity, we need another quantity with the dimension of volume, or rather, if we can
find a quantity with the dimension of length, we can use it to make 𝑍 dimensionless.
What length scales do we have in this problem? The system size (the box size 𝐿)
is certainly relevant, but we have already used it 𝑉 = 𝐿3. There is one more length
scale, which we have already discussed: the de Broglie wave length 𝜆 ∼

√︀
𝑚𝑘𝐵𝑇/ℎ2.

Therefore,

𝑍1 ∝ 𝑉/𝜆3 = 𝑉

(︂
𝑚𝑘𝐵𝑇

ℎ2

)︂3/2

. (14.45)

Compare this with (14.30). Needless to say, 1/ℎ3 appears naturally.

14.15 Generalization of equipartition of kinetic energy
We already know the equipartition of kinetic energy for an ideal gas with the aid of
the kinetic theory of gases, e.g., ⟨

1

2
𝑚𝑣2𝑥

⟩
=

1

2
𝑘𝐵𝑇. (14.46)

267Action is energy times time. Recall ℎ𝜈 is energy.
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Let us demonstrate, with the aid of the canonical formalism, a general theorem that
implies the above formula and that is applicable to any classical systems.

Let 𝑥𝑖 and 𝑥𝑗 be two components of canonical coordinates (say, the 𝑥-component
of the spatial coordinate of particle 1 and 𝑧-component of the momentum of particle
2). Then, for classical systems we have⟨

𝑥𝑖
𝜕𝐻

𝜕𝑥𝑗

⟩
= 𝑘𝐵𝑇𝛿𝑖𝑗, (14.47)

where the average is over the canonical distribution. Indeed,⟨
𝑥𝑖
𝜕𝐻

𝜕𝑥𝑗

⟩
=

1

𝑍

∫︁
𝑑Γ𝑥𝑖

[︂
−𝑘𝐵𝑇

𝜕

𝜕𝑥𝑗
𝑒−𝛽𝐻

]︂
, (14.48)

= − 1

𝑍
𝑘𝐵𝑇𝑥𝑖𝑒

−𝛽𝐻

⃒⃒⃒⃒
|𝑥|→∞

+
1

𝑍
𝑘𝐵𝑇

∫︁
𝑑Γ

𝜕𝑥𝑖
𝜕𝑥𝑗

𝑒−𝛽𝐻 . (14.49)

Here, the first term due to an integration by parts must vanish, so 𝐻 must increase
sufficiently fast in the large variable limit. For example, if a system is spatially con-
fined (by a potential well), certainly this is true for the spatial coordinates.

14.16 Equipartition of kinetic energy again
From (14.47) we obtain the law of equipartition of energy for classical kinetic energy
such as (no summation convention implied)⟨

𝑝2𝑖
2𝑚

⟩
=

1

2
𝑘𝐵𝑇, (14.50)

or ⟨
𝐿2
𝑖

2𝐼𝑖

⟩
=

1

2
𝑘𝐵𝑇, (14.51)

where 𝑚 is the mass, 𝐼𝑖 is the 𝑖-th principal moment of inertia (𝑖-th eigenvalue of
the inertial moment tensor) and 𝐿𝑖 is the corresponding component of the angular
momentum.

If the spatial position of a particle is governed by a harmonic potential with a
spring constant 𝑘 (i.e., the harmonic potential energy 𝑈 = 𝑘𝑥2/2), we obtain, with
the same logic, ⟨

𝑘𝑥2

2

⟩
=

1

2
𝑘𝐵𝑇. (14.52)
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14.17 Application to homogeneous energy functions
Suppose the spatial position of a particle is governed by an anharmonic potential
𝑈 = 𝑘𝑥4, where 𝑘 is a positive constant, then we can compute the equilibrium
average of this potential energy as⟨

𝑥
𝜕𝑈

𝜕𝑥

⟩
= 4⟨𝑈⟩ = 𝑘𝐵𝑇. (14.53)

Since the classical kinetic energy 𝑘 is quadratic in (angular) momenta,268∑︁
𝑖

𝑝𝑖
𝜕𝐾

𝜕𝑝𝑖
= 2𝐾. (14.54)

Thus, if there are 𝑁 particles, then there are 3𝑁 variables, so

⟨𝐾⟩ = 3𝑁

2
𝑘𝐵𝑇. (14.55)

If a system is described as coupled harmonic oscillators, then the potential energy 𝑈
is a quadratic function of the position (displacement) coordinates. Therefore, quite
analogously the average total potential energy is

⟨𝑈⟩ = 𝑛𝑣

2
𝑘𝐵𝑇, (14.56)

if there are 𝑛𝑣 modes.

14.18 Specific heat of gases, computed classically
A direct application of the equipartition of energy is the high temperature (constant
volume) specific heat per particle of a multiatomic molecular ideal gas. Let us assume
that each molecule contains 𝑀 atoms. The Hamiltonian of each molecule can be
written as

𝐻 = 𝐾𝐶𝑀 +𝐾𝑟𝑜𝑡 +𝐾𝑣𝑖𝑏 + 𝑈𝑣𝑖𝑏, (14.57)

where𝐾𝑋 is the kinetic energy associated with the motion 𝑋: CM denotes the center
of mass translational motion; rot implies rotational motion around its center of mass;
vib means the vibrational motion. 𝑈𝑣𝑖𝑏 is the potential energy for the vibrational

268If 𝐾 =
∑︀

𝑖,𝑗 𝐴𝑖𝑗𝑝𝑖𝑝𝑗 , where 𝐴𝑖𝑗 is a constant, then

∑︁
𝑘

𝑝𝑘
𝜕

𝜕𝑝𝑘
𝐾 =

∑︁
𝑘

𝑝𝑘
∑︁
𝑖,𝑗

𝐴𝑖𝑗(𝛿𝑖𝑘𝑝𝑗 + 𝑝𝑖𝛿𝑘𝑗) =
∑︁
𝑘

𝑝𝑘

⎛⎝∑︁
𝑗

𝐴𝑘𝑗𝑝𝑗 +
∑︁
𝑖

𝐴𝑖𝑘𝑝𝑖

⎞⎠ = 2𝐾.

This is an example of Euler’s theorem about homogeneous functions.

307



motion. We may assume that the molecular internal vibrations are harmonic, so
all these terms are quadratic terms. Therefore, the internal energy can be obtained
only by counting the number of degrees of freedom. Notice that the total number of
(angular) momenta is always 3𝑀 for a 𝑀 -atomic molecule, so, obviously

⟨𝐾𝐶𝑀 +𝐾𝑟𝑜𝑡 +𝐾𝑣𝑖𝑏⟩ =
3

2
𝑀𝑘𝐵𝑇. (14.58)

Thus, we have only to count the number of vibrational modes.
For a not-linear molecule there are 3 translational degrees, and 3 rotational de-

grees, so there are 3𝑀 − 6 harmonic modes. Thus, ⟨𝑈𝑣𝑖𝑏⟩ = (3𝑀 − 6)𝑘𝐵𝑇/2. That
is, the internal energy is 𝐸 = (3𝑀 − 3)𝑘𝐵𝑇 per molecule, so 𝐶𝑉 = (3𝑀 − 3)𝑅 per
mole, where 𝑅 is the gas constant.

For a molecule whose shape is linear there are 3 translational degrees, and 2 ro-
tational degrees, so there are 3𝑀 − 5 harmonic modes.269 Thus, ⟨𝑈𝑣𝑖𝑏⟩ = (3𝑀 −
5)𝑘𝐵𝑇/2. That is, 𝐸 = (3𝑀 − 5/2)𝑘𝐵𝑇 per molecule, so 𝐶𝑉 = (3𝑀 − 5/2)𝑅 per
mole.

It is a well-known fact that these specific heat values grossly overestimate the
actual specific heats of molecular gases and were regarded as a paradox before the
advent of quantum mechanics.

For a diatomic gas 𝑀 = 2, so 𝐶𝑉 = (7/2)𝑅 according to our formula just derived,
but actually around the room temperature it is usually (5/2)𝑅. That is, it is less
by 𝑅. This is because the vibrational mode is frozen and its contribution to kinetic
and potential energies 𝑅/2 + 𝑅/2 does not show up. To excite vibration the heat
bath must pay a big sum of energy (= vibrational energy quantum) at once to the
molecule, so if its temperature is low, the heat bath cannot afford it. In classical
mechanics the environment is allowed to pay the big sum by ‘monthly installment,’
so vibration could be excited, but in the real quantized world, this is impossible.
Thus, the specific heat becomes small.

269When a molecule is straight, the reader must be able to explain into what modes the rotational
degree is converted, comparing, e.g., water and carbon dioxide.

308



Q14.1 [Cyclohexane ring packering]
There is a 1 mole of ideal gas consisting of molecules with one internal degree of free-
dom.270 The internal motion of an individual molecule is described by the following
Hamiltonian

𝐻𝑖𝑛𝑡 =
1

2
𝜇𝑝2 +

1

4
𝛼𝑞4, (14.59)

where 𝜇 and 𝛼 are positive constants, and 𝑝 and 𝑞 are canonical coordinates describing
the internal motion. The total Hamiltonian of the whole gas must be the sum of
the Hamiltonian governing the center of mass translational motions of individual
molecules and the Hamiltonians describing their internal motions (i.e., (14.59) for
each molecule).
(1) Let 𝑧𝑖 be

𝑧𝑖 =
1

ℎ

∫︁
𝑑𝑝

∫︁
𝑑𝑞 𝑒−𝛽𝐻𝑖𝑛𝑡 . (14.60)

Write down (you can copy anything usable from the lecture notes) the canonical
partition function 𝑍 for this ideal gas utilizing 𝑧𝑖. Let us assume the temperature of
the gas to be 𝑇 , its volume 𝑉 and the mass of each particle 𝑚.
(2) What is the constant volume specific heat of this system? [Hint: try to calculate
the average of the total Hamiltonian to obtain the internal energy 𝐸.]
(3) Although it is possible to analytically evaluate (14.60), since we take the loga-
rithm of 𝑧𝑖, we have only to obtain the exponent 𝜃 in 𝑧𝑖 ∝ 𝑇 𝜃. Get 𝜃 dimensional
analytically, and confirm that your result agrees with (or is consistent with) (2).
[Hint. Find the dimension of 𝛽𝜇, etc.]
(4) What is the constant pressure specific heat 𝐶𝑃 of the system?
(5) Classically 𝐶𝑉 does not depend on 𝛼, but quantum mechanically it is not the
case. Suppose the temperature goes very close to 𝑇 = 0 (or 𝛼 becomes extremely
large), what do you expect to happen to 𝐶𝑉 ?

Soln.
(1) 𝑍 = 𝑍𝑖𝑑𝑒𝑎𝑙𝑧

𝑁
𝑗 . That is,

𝑍 =
1

𝑁 !

(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂3𝑁/2

𝑧𝑁𝑗 .

(2) The contribution of the translational motion is 3𝑅𝑇/2. The contribution of 𝑝 is
just another kinetic energy , so 𝑅𝑇/2. The contribution of 𝑞 can be obtained with
the aid of the equipartition of energy:⟨

𝛼𝑞
𝜕𝐻

𝜕𝑞

⟩
= ⟨𝛼𝑞4⟩ = 𝑘𝐵𝑇,

so 𝑅𝑇/4 is its contribution. Combining all of them, we get

⟨𝐻⟩ = 3

2
𝑅𝑇 +

1

2
𝑅𝑇 +

1

4
𝑅𝑇 =

9

4
𝑅𝑇.

270The shallow potential may be an approximaodel of ring packering of cyclohexanes.
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Hence, 𝐶𝑉 = 9𝑅/4.
(3) The integral wrt 𝑝 has the dimension of 𝑝, and must be a function of 𝛽𝜇. [𝛽𝜇𝑝2] =
1, so [𝑝] = [𝛽𝜇]−1/2. Analogously, [𝑞] = [𝛽𝛼]−1/4. Therefore,

[ℎ𝑧𝑖] = [𝛽𝜇]−1/2[𝛽𝛼]−1/4, ⇒ 𝑧𝑖 ∝ 𝑇 3/4.

Therefore, 3𝑅/4 is the contribution of the internal degree of freedom. Consistent.
(4) Use Mayer’s relation. 𝐶𝑃 = 𝐶𝑉 +𝑅 = 13𝑅/4.
(5) The internal motion is a kind of oscillation, and obviously there is a finite energy
gap. Therefore, at lower temperatures, energy quantization makes excitation harder.
Eventually, 𝐶𝑉 goes to the value without the contribution of the internal degree of
freedom. That is, 3𝑅/2.
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15 Information and entropy

Summary
* The Gibbs-Shannon formula for entropy/information is explained.
* Entropy quantifies how much amount of knowledge (information, measured in
terms of the number of Yes-No questions) you need to specify an individual elemen-
tary event (= microstate) of a system.

Key words
(Gibbs-)Shannon formula, information, bit, surprisal

What you should be able to do
* Explain why the Shannon formula is plausible (perhaps in terms of surprisal).
* For simple examples, you should be able to estimate entropy change in terms of
information (or by the number of needed extra questions).

15.1 Gibbs-Shannon formula of entropy
Using the canonical formalism, let us compute entropy explicitly:

𝑇𝑆 = 𝐸 − 𝐴 (15.1)

= 𝑘𝐵𝑇 log𝑍 − 𝑘𝐵𝑇 𝑇𝑟
𝑒−𝛽𝐻

𝑍
log 𝑒−𝛽𝐻 (15.2)

= −𝑘𝐵𝑇 𝑇𝑟
𝑒−𝛽𝐻

𝑍
log

𝑒−𝛽𝐻

𝑍
. (15.3)

That is,
𝑆 = −𝑘𝐵𝑇𝑟 𝜌 log 𝜌, (15.4)

where 𝜌 = 𝑒−𝛽𝐻/𝑍 is the canonical density operator, or, similarly, classically

𝑆 = −𝑘𝐵
∫︁
𝑑Γ 𝑝 log 𝑝, (15.5)

where 𝑝 is the canonical distribution function. This is the formula first given by
Gibbs in his famous book on the foundation of statistical mechanics.

The same formula was proposed by Shannon to quantify information, so (15.5) is
often called Shannon’s formula. It is a convenient occasion to see why such a formula
is a good measure of information. Shannon did not ask what information was, but
tried to quantify it.271

271⟨⟨Textbook of information theory⟩⟩ The best textbook of information theory (in English)
is T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991).

311



15.2 How to quantify information: equal probability case
Let 𝜂(𝑚) be the ‘information’ per letter we can send with a message (letter sequence)
that is composed of 𝑚 distinct symbols. Here, the word ‘information’ should be
understood intuitively. Let us assume that all the symbols are used evenly. Then,
𝜂(𝑚) must be an increasing function of𝑚; if you are allowed to use only two symbols,
we can send, per letter, the information telling whether {1, 2, 3} or {4, 5, 6} as to the
outcome of a single casting of a dice, but if you can use three, then more detailed
information: {1, 2}, {3, 4} or {5, 6} may be sent per single letter.

Now, let us use simultaneously the second set of symbols consisting of 𝑛 symbols.
We could make compound symbols by juxtaposing them as 𝑎𝑏 (just as in many
Chinese characters). The information carried by each compound symbol should be
𝜂(𝑚𝑛), because there are 𝑚𝑛 symbols. We could send the same message by sending
all the left half symbols first and then the right half symbols later. The amount of
information sent by these methods must be equal, so we must conclude that272

𝜂(𝑚𝑛) = 𝜂(𝑚) + 𝜂(𝑛). (15.6)

Since 𝜂 is an increasing function, we conclude

𝜂(𝑛) = 𝑐 log 𝑛, (15.7)

where 𝑐 > 0 is a constant. Its choice is equivalent to the choice of unit of information
per letter and corresponds to the choice of the base of the logarithm in the formula.

If 𝑐 = 1, we measure information in nat; if we choose 𝑐 = 1/ log 2 (i.e., 𝜂(𝑛) =
log2 𝑛), in bit. 1 bit is an amount of information one can obtain from an answer to
a single yes-no question.

15.3 How to quantify information: general case
We have so far assumed that all the symbols are used evenly, but such uniformity
is not usual. What is the most sensible generalization of (15.7)? We can write
𝜂(𝑛) = − log2(1/𝑛) bits; 1/𝑛 is the probability for a particular symbol. − log2(1/𝑛)
may be interpreted as the expectation value of − log2(probability of a symbol). This
suggests that for the case with not-equal-probability occurrence of 𝑛 symbols with
probabilities {𝑝1, · · · , 𝑝𝑛}, the expectation value of the information carried by the

272We must send a message explaining how to combine the transferred symbols as a part of the
message, but the length of the needed message is finite and independent of the length of the actual
message we wish to send, so in the long message limit we may ignore this overhead.
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𝑖-th symbol should be defined as − log2 𝑝𝑖 bits. Then, the average information in bits
carried by a single symbol should be defined by

𝐻({𝑝𝑖}) = −
𝑛∑︁

𝑖=1

𝑝𝑖 log2 𝑝𝑖. (15.8)

This is called the Shannon information formula.273 When Shannon arrived at (15.8),
he asked von Neumann what it should be called. It is told that von Neumann sug-
gested the name ‘entropy,’ adding that it was a good name because no one understood
it.

15.4 Average surprisal
The quantity − log2 𝑝𝑖 that appears in the above is sometimes called the surprisal
of symbol 𝑖, because it measures how much we are surprised by encountering this
symbol (smaller 𝑝 should give more surprise). It may be easier to use the axioms for
surprisal to understand the Shannon formula (15.8). The ‘extent of surprise’ 𝑓(𝑝)
we get, spotting a symbol that occurs with probability 𝑝 or knowing that an event
actually happens whose expected probability is 𝑝, should be
(1) A monotone decreasing function of 𝑝 (smaller 𝑝 should give us bigger surprise).
(2) Nonnegative.
(3) Additive: 𝑓(𝑝𝑞) = 𝑓(𝑝) + 𝑓(𝑞).274

Therefore, 𝑓(𝑝) = −𝑐 log 𝑝 (𝑐 > 0) is the only choice. The additivity should be nat-
ural, if we consider our surprise when something rare occurs successively.

15.5 Entropy vs Information
Now, we have learned two pieces as to the relation between entropy and information:
(i) Δ𝑆 due to a process in a macrosystem is related to (when Δ𝑆 > 0) the number
of extra YES-NO questions we need to determine the microstate of the macrosystem
as accurately as before the process. For an ideal gas all the molecules are indepen-
dent, so we must determine all the states of particles individually.275 Therefore, we
must multiply the number of particles to get the number of questions to pinpoint a
particular microstate of the gas.
(ii) The Gibbs-Shannon formula: the expression of entropy of a system and the ex-
pression of the information carried by a collection of letters are identical.

Combining these two, we may conclude that entropy is the amount of knowl-
edge/information required to pinpoint the (micro)state (= elementary event) of a

273for an uncorrelated (or Bernoulli) information source. About Shannon himself, see S. W.
Golomb et al., “Claude Elwood Shannon (1916-2002),” Notices AMS 49, 8 (2002).

274We could invoke the Weber-Fechner law.
275Let us not consider the indistinguishability here, for simplicity.
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system. If the volume of an ideal gas is doubled, then Δ𝑆 = 𝑅 log 2 per mole.
Suppose we can know the state of each molecule (within a specified error) before
doubling the volume. After doubling, if we know whether each molecule is in the left
or in the right half (i.e., a 1 bit/molecule information), then we can know the state
of each molecule even after the volume doubling (within the same specified error).
The extra knowledge per molecule required is one bit. This must correspond to the
entropy increase just mentioned. Therefore, 𝑅 log 2 of entropy should be identical to
the 𝑁𝐴 bits of information: 𝑅 log 2 = 𝑁𝐴 bits. This was already alluded in Lecture
10.

15.6 Order-disorder and information
Let us look at particle configurations (maybe spin configurations) on a lattice in Fig.
15.1.

ordered disordered

Figure 15.1: Left: ordered; Right: a representative of a collection of disordered microstates with
𝑁 (= 9) microscopic entities.

If a microstate is ordered (Fig. 15.1 Left), since in this idealized example, there is
only two microstates, to pinpoint a microstate, we need one question: Are all parti-
cles green? How about the disordered state on the Right? In this case a macrostate
corresponds to many distinct microstates. To single-out any particular microstate,
we need 𝑁 YES-NO questions. That is, we need 𝑁 (= 9 in this example) bits of
information to describe it.276

As discussed 𝑆 may be understood as the required (expectation) amount of in-
formation we need to pinpoint any microstate in the macrostate. Therefore, we can
interpret 𝑆 as the measure of disorder of the macrostate seen microscopically.

15.7 ‘Thermodynamic unit’ of information
In chemical physics entropy is often measured in eu (entropy unit = cal/mol·K). It
may be useful to remember that 1 eu = 0.726... bits/molecule. Some people say that

276Even if the pattern is disordred, if a macrostate corresponds to one of the disordered configura-
tions such as the one in the figure, then there is one YES-NO question to determine its microstate:
Is the configuration such as: the first red, the second green, the third green, etc.? You may well
say that no one can conceive such a question. You are very likely to be correct, but our question is
whether there is such a question or not; notice that if you did not know the state is ordered, you
could not make a single question even in the Left case of Fig. 15.1.

However, your objection highlights the distinction between the disordered states and the disor-
dered systems (such as glasses).
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the unit of entropy (e.g., J/K) and unit of information (bit) are disparate. This is
simply because they do not think things microscopically. If one wishes to tell each
molecule to turn ‘to the right’, the number of required messages is comparable to the
number of molecules, so it is huge, but for each molecule it is about a few bits. For
example, the entropy change due to a reaction involving small molecules is usually
the order of a few eu. This is a reasonable value.

15.8 How to quantify the amount of knowledge (gained)
How much information do we need to know the outcome of a fair dice? We guess it is
log2 6 bits. This is the entropy of a state of a dice. Suppose you are told that the face
value is larger than or equal to 3. How much information does this statement carry?
Information is something that can reduce our extent of ignorance. After hearing this
message, we know 4 faces are still possible, so we need 2 more YN questions to re-
move uncertainty completely (i.e., to get a particular elementary event). Therefore,
log2 6− log2 4 = log2(3/2) > 0 must be the information carried by the message.

Example [Information carried by messages]
(1) Suppose a positive integer is given. It must begin with one of 1, 2, · · ·, and 9. If
all the non-zero digits are likely to appear evenly, what is the information carried by
the message that the first digit was actually 6?

Since all 9 non-zero digits are likely to appear, the initial uncertainty (entropy) is
log2 9 = 3.17 bits. No uncertainty remains after receiving the message (i.e., entropy
is zero), so the message must have provided the information of 3.17 bits. This is
exactly the surprisal of ‘6’ itself.
(2) In reality, it is known that the first digit does not distribute evenly. Approxi-
mately the probability that digit 𝐷 appears as the first digit is 𝑃𝐷 = log10(1+1/𝐷).
What is the information carried by this empirical law?

After knowing the law, the remaining uncertainty (entropy) is −
∑︀

𝐷 𝑃𝐷 log𝑃𝐷 =
2.88 bits. Therefore 3.17− 2.88 = 0.29 bits is the information provided by this em-
pirical law.
(3) Now, after knowing the empirical law what is the information carried by the
message that the first digit was actually 6?

With this information no uncertainty remains, so 2.88 bits must be the answer.

15.9 Statistical mechanics from information theory?
Maximizing Shannon’s entropy is to find the least biased distribution, so we may
expect that the resultant distribution is the most probable distribution. We should
be able to obtain the ‘true distribution’ 𝑝 by maximizing the Gibbs-Shannon formula
under the condition that we know the expectation value of energy (internal energy).
This is equivalent to maximizing the following variational functional with Lagrange’s
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multipliers 𝛽 and 𝜆 (the latter for the normalization condition):

−𝑘𝐵
∫︁
𝑝 log 𝑝 𝑑Γ− 𝛽

∫︁
𝑝𝐻𝑑Γ− 𝜆

∫︁
𝑝 𝑑Γ. (15.9)

This indeed gives
𝑝 ∝ 𝑒−𝛽𝐻 . (15.10)

The Shannon formula is derived logically from almost inescapable requirements
about ‘knowing something.’ Therefore, the above line of argument seems to indi-
cate that the principle of statistical mechanics can be derived directly from this
fundamental conceptual basis. Thus, some brave people concluded that this was the
true basis of statistical mechanics; forget about mechanics.277 This is the so-called
information-theoretical derivation of statistical mechanics.

15.10 Don’t be fooled by Jaynes
Don’t be fooled by such a logic. Even if we admit that the result that maximizes the
information entropy is the maximally likely result from our point of view, why does
Nature have to accept it as the most ‘natural’ outcome? There is a logical gap here.
The most natural argument to fill this gap is that we (or our brains) have evolved
(or have been selected) to feel that the most natural things in the actual world
are the most probable. In short, our brains have evolved in the world following
the principle of equal probability. That is, the logic of information maximization is
circular; implicitly, the principle of equal probability is incorporated.

Furthermore, if we look at (15.5), we should realize that something is wrong. 𝑝
there is not probability but probability density, so it is not invariant under coordinate
transformation. The description, for example, in the Cartesian coordinates and that
in the equivalent polar coordinates should not give different entropies. Therefore,
log 𝑝 must be log(𝑝/𝑞) for some density distribution 𝑞. That is, if entropy is free from
the choice of the coordinate system to describe distribution functions, the ‘true’ Gibbs
entropy formula must read as278

𝑆 = −𝑘𝐵
∫︁
𝑑Γ 𝑝 log

𝑝

𝑞
. (15.11)

We cannot do anything without fixing 𝑞. To determine it, we need a certain statis-
tical principle.279

277The originator seems to be E. T. Jaynes, “Information theory and statistical mechanics,” Phys.
Rev. 106, 620-630 (1959).

278This is the (negative) Kullback-Leibler entropy, whose natural implication is supplied by large
deviation theory.

279It cannot be overemphasized that even for discrete states the use of information tacitly pre-
supposes the principle of equal probability. Think of surprisal, for example. Why is it simply a
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15.11 What is 1/2 question?
You might wonder what 0.5 yes-no questions imply. How can we ask such a question?
Suppose there are 1 red ball and 999 white balls. How many questions do you need
to determine the colors of all the balls? The total entropy is in this case 11.4 bits.
That is, you need 0.01 Yes-No questions to determine the color of a single ball. Let
us assume that initially you only know that there are red and white balls only. First,
we divide the balls into two 500 ball sets and ask if one set you choose is with all
the same color or not. If the answer is yes, this single bit question determines the
color of 500 balls at once. Thus, it should not be so difficult to understand what a
fraction of a question means.

15.12 Summary of information vs entropy
We may safely conclude that the amount of (the average) information required to
pinpoint an elementary event in the sample set Ω is proportional to

𝜂 = −
∑︁
𝜔∈Ω

𝑝(𝜔) log 𝑝(𝜔). (15.12)

If you use log2 (i.e., (1/ log 2) log), this is the information in bits (# of average YES-
NO questions you must ask). If you use 𝑘𝐵 log, you measure information in energy
unit (per molecule). The entropy 𝑆 in bits is, according to Boltzmann’s principle,
given by log2𝑤(𝐸,𝑋). This is the number of yes-no questions you must ask to single
out a microstate that is consistent with the macrostate (𝐸,𝑋). Increasing entropy
(Δ𝑆 > 0) implies that to pinpoint a microstate you must ask extra questions corre-
sponding to Δ𝑆; you need Δ𝑆 extra information. This implies that the randomness
of the system has increased.

Information, addendum

15.13 Mixing entropy and information
We know if we mix 1 mole each of two chemically distinct ideal gas in the same state (𝑃 and
𝑇 ), the mixing entropy per particle is 1 bit or 1𝑘𝐵 log 2 = 9.57× 10−24 J/(K·molecule). This
is intuitively understandable, because you ask one question to clarify the situation.

If you mix 1 mole each of three chemically distinct ideal gas in the same state, the mixing
entropy per molecule should be 𝑘𝐵 log 3 J/(K·molecule) so it should be

𝑘𝐵 log 3

𝑘𝐵 log 2
= log2 3 = 1.58 bits. (15.13)

function of the probability without depending on any other contexts? It is because the world is
uniform. However, this uniformity is not a consequence of any logic, but an empirical fact; we feel
it natural thanks to phylogenetic learning.
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15.14 Mixing entropy, the most general case
Let us have 𝑛 chemically distinct ideal gases in the same 𝑇𝑃 state. The total number of
particles is 𝑁 and the total volumes is 𝑉 . Thus, 𝑃𝑉 = 𝑁𝑘𝐵𝑇 . The number of particles of
chemical species 𝑖 is 𝑁𝑖 = 𝑁𝑝𝑖. Here, 𝑝𝑖 ∈ [0, 1] and

∑︀
𝑖 𝑝𝑖 = 1. Initially all the chemicals

are separate. Let us mix them by removing the separations (see Fig.15.2).

.....

.....

Figure 15.2: General case of mixing process

The mixing entropy must be

Δ𝑆 = 𝑘𝐵
∑︁
𝑖

𝑁𝑖 log
𝑉

𝑉𝑖
= 𝑁𝑘𝐵

∑︁
𝑖

𝑝𝑖 log
1

𝑝𝑖
. (15.14)

Thus, mixing entropy per particle is

Δ𝑆/𝑁 = −𝑘𝐵
∑︁

𝑝𝑖 log 𝑝𝑖 (15.15)

or in bits
Δ𝑆/𝑁 = −

∑︁
𝑝𝑖 log2 𝑝𝑖. (15.16)

Therefore, this must be the information we need to guess the ‘color’ of the particle, when
your probability of hitting color 𝑖 is 𝑝𝑖.

15.15 Gibbs paradox and mixing entropy
An astute reader should have realized that the Gibbs paradox 14.10 is due to the wrong
entropy calculation: if two gases are not identical, the discrepancy 2𝑁 log 2 is exactly the
mixing entropy contribution. There should not be any mixing entropy for identical gases,
but the ‘classical calculation without the 1/𝑁 ! factor concludes there is. This is the core of
the Gibbs paradox.

15.16 Maxwell’s demon
Suppose in the separating wall in Fig. 15.3 is a small gate with a gate keeper. The system is
thermally insulated and initially the gas inside is at 𝑇 . The gate keeper watches the left-hand
side and if the incoming particle has kinetic energy larger than 3𝑘𝐵𝑇 , the keeper allow the
particle to go to the right-hand side.

The keeper then allows any particle coming from the right-hand side go to the other side.
Then, we expect the RHS would be warmer than the LHS. Thus, Clausius’ principle is vio-
lated. We could run an engine between the RHS and LHS. If this could be realized in reality,
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Figure 15.3: Demon selecting kinetic energy

probably biological systems should have exploited the mechanism to win the evolution game.
Why is this mechanism not possible? Notice that (at least ideally) ‘thinking’ or compu-

tation can be done without any dissipation. We can select fast particles with the aid of a
potential barrier; the demon has only to observe whether the particle come from the RHS or
not. Such observations can be realized without dissipation (ideally).

Obtaining this 1 bit information (that is, writing it into its ‘brain’), the demon controls
the gate.

15.17 Szilard engine
Szilard proposed the engine illustrated as follows (Fig. 15.4)

A B DC

Figure 15.4: Szilard’s engine

We can illustrate its process in more detail as follows (Fig. 15.5).

A

B DC

B

?

1 bit

Figure 15.5: How Szilard’s engine works

Using the 1 bit information obtained from the observation at the B stage, the direction to
move the piston is chosen. In a certain sense, this information is used to ‘cool’ the system.

The head of the demon mst be finite, so its memory capacity cannot be infinite. There-
fore, for this engine to work forever, the memory stored in the head of the demon must be
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erased. Thus, 1 bit is lost by erasure. This erasure is costly, paying back totally the gain
through observation. Thus, the engine actually does not work.

15.18 Is information engine totally useless?
Thus, we have learned that even if we take information into account, the engine efficiency
cannot be improved beyond the Carnot limit. Then, use of information totally useless?

You could use a temporary memory to store used information and can temporarily in-
crease the efficiency of information. Then, later, if you need not have high efficiency, you
could erase the memory. In the long run there is no gain, but perhaps you could outrun your
predator.
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Q15.1[Boiling of acetic acid]
The boiling temperature of acetic acid under 1 atm is 391 K, and the evaporation
heat (= latent heat of evaporation) is about 23.7 kJ/mol.
(1) What is the entropy increase due to evaporation?
(2) Roughly, how many yes-no questions do you have to ask to specify the (single)
molecular state in the gas phase as accurately as in the liquid phase?
(3) The evaporation entropy of ethanol is about 110 J/K·mol. You should have re-
alized a big difference between this value and the value you obtained in (1). This is
said to be due to dimerization: acetic acid gas (around the boiling point) consists of
dimers (CH3COOH)2 (due to strong hydrogen bonding, but ethanol does not make
dimers in the gas phase).280 Is the entropy difference roughly consistent with this
explanation (or not)? Give your opinion with your supporting argument.

Solution.
(1) The entropy change due to evaporation is Δ𝑆 = 23700/391 = 60.1 J/K·mol.
(2) This corresponds to 60.6 ×0.17 = 10.3 bits/molecule. That is, we need about 10
Yes-No questions to determine the state of each molecule as precisely as we can do
so in the liquid phase. The volume of the gas (under the condition we are interested
in) is about 200 times as large as that of the liquid. This explains about 7 to 8 bits.
Not very bad.
(3) Ethanol evaporation corresponds to almost 19 bits/molecule increase of entropy,
so we may say that the number of questions required for ethanol is almost doubled.
If we assume that roughly two molecules behave together, then the knowledge about
one molecule tells us about one more molecule, so this is reasonable.

280Precisely speaking, there are also tetramers, and the average acetic acid molecules in a single
gas particle seems about 105/60 ≃ 1.75.
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Discussion 8

We will discuss generalized cannonical formalisms and information.

D8.1 [Pressure ensemble]
Starting from the microcanonical approach, we go to the canonical formalism that
allows exchange of energy between the system and the environment (thermostat).
Compare the following formulas:

𝑆 = 𝑘𝐵 log𝑊 (𝐸, 𝑉 ), (15.17)

−𝐴
𝑇

= max
𝐸

[︂
𝑆 − 𝐸

𝑇

]︂
= 𝑘𝐵 log𝑍(𝑇, 𝑉 ). (15.18)

The first equality in (21.5) is due to the standard Legendre transformation applied
to 𝐸: −𝐴 = max𝑆[𝑆𝑇 − 𝐸] = max𝐸[𝑆𝑇 − 𝐸] (𝑇 is a constant).281 Boltzmann’s
principle (15.17) means that the first equality (which is a thermodynamic relation)
in (21.5) is equivalent to(recall 1/𝑘𝐵𝑇 = 𝛽)

𝑒−𝛽𝐴 = max
𝐸

𝑒𝑆/𝑘𝐵−𝛽𝐸 = max
𝐸

[︀
𝑊 (𝐸, 𝑉 )𝑒−𝐸/𝑘𝐵𝑇

]︀
. (15.21)

The key to the ‘general’ ensemble method is the ‘max-sum’ correspondence:282

max
𝐸

[︀
𝑊 (𝐸, 𝑉 )𝑒−𝐸/𝑘𝐵𝑇

]︀
=
∑︁
𝐸

𝑊 (𝐸, 𝑉 )𝑒−𝐸/𝑘𝐵𝑇 = 𝑍(𝑇, 𝑉 ) (15.22)

with a relative error of order log𝑁/𝑁 .283

281If you wish to use the Legendre transformation applied to entropy (or −𝑆, which is convex),
we first look at the Gibbs relation

𝑑(−𝑆) =
(︂
− 1

𝑇

)︂
𝑑𝐸 +

(︂
−𝑃
𝑇

)︂
𝑑𝑉. (15.19)

so a Legendre transformation applied to the convex function −𝑆 can be written as

max
𝐸

[︂(︂
− 1

𝑇

)︂
𝑑𝐸 − (−𝑆)

]︂
= max

𝐸
[𝑆 − 𝐸/𝑇 ] = −𝐴/𝑇, (15.20)

which is (21.5).
282The 𝐸 integral may be understood as summation over energy shells.
283As you see, for statistical mechanics 𝑆, −𝐴/𝑇 , etc. (the so-called Massieu functions), are much

more natural than the energies (thermodynamic potentials). Also look at the Gibbs relations to
see what really the independent variables are for statistical mechanics:

𝑑

(︂
𝑆 − 𝐸

𝑇

)︂
= −𝑑𝐴

𝑇
= −𝐸𝑑 1

𝑇
+
𝑃

𝑇
𝑑𝑉 + · · · . (15.23)

Note that this immediately gives us the Gibbs-Helmholtz formula.
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(1) Let us consider an ideal gas under constant temperature and pressure. What
is the most convenient thermodynamic potential?
(2) Write down the partition function 𝑌 that directly gives the thermodynamic po-
tential in (1) as −𝑘𝐵𝑇 log 𝑌 .
(3) Compute 𝑌 for a monatomic ideal gas. You may use its canonical partition
function

𝑍(𝑇, 𝑉 ) =
1

𝑁 !

(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂3𝑁/2

𝑉 𝑁 . (15.24)

(4) Recover the ideal gas law.

Solution
(1) We know the answer is 𝐺 = 𝐸 − 𝑆𝑇 + 𝑃𝑉 , the Gibbs free energy. If you wish
to retrace all the argument to derive the ‘generalized’ canonical formalism for the
present case, read the following.

To maintain the temperature and pressure of the system, heat and volume work
should be freely exchanged with its environment. Therefore, we pay attention to the
energy change

Δ𝐸 −Δ𝑄+Δ(𝑃𝑉 ) = Δ𝐸 − 𝑇Δ𝑆 +Δ(𝑃𝑉 ) = Δ𝐺, (15.25)

where 𝐺 is the Gibbs free energy as we already know. The Legendre transformation
we use is

−𝐺 = max
𝑆,𝑉

[𝑆𝑇 + (−𝑃 )𝑉 − 𝐸] (15.26)

or

−𝐺
𝑇

= max
𝑆,𝑉

[︂
𝑆 − 𝑃

𝑇
𝑉 − 𝐸

𝑇

]︂
. (15.27)

This is directly related to the Legendre transformation of entropy (recall that −𝑆 is
convex; see Footnote 1):

−𝐺
𝑇

= max
𝐸,𝑉

[︂
−𝑃
𝑇
𝑉 − 𝐸

𝑇
− (−𝑆)

]︂
, (15.28)

because, for each 𝑉 , 𝑆 and 𝐸 are one-to-one correspondent.

(2) Therefore, we obtain

𝑒−𝛽𝐺 = max
𝐸,𝑉

𝑒𝑆/𝑘𝐵−𝛽(𝐸+𝑃𝑉 ). (15.29)

Using Boltzmann’s principle, we get

𝑒−𝛽𝐺 = max
𝐸,𝑉

[︀
𝑊 (𝐸, 𝑉 )𝑒−𝛽(𝐸+𝑃𝑉 )

]︀
, (15.30)
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where 𝑊 (𝐸, 𝑉 ) is the total ‘number’ of microstates compatible with the thermody-
namic state (𝐸, 𝑉 ); 𝑊 is often called the microcanonical partition function. We can
also write the above formula as

𝑒−𝛽𝐺 = max
𝑉

[︀
𝑍(𝑇, 𝑉 )𝑒−𝛽𝑃𝑉

]︀
, (15.31)

because (15.26) implies −𝐺 = max𝑉 [(−𝑃 )𝑉 +max𝑆[𝑆𝑇−𝐸]] = max𝑉 [(−𝑃 )𝑉 −𝐴]284
and because we know

𝑒−𝛽𝐴 = max
𝐸

[︀
𝑊 (𝐸, 𝑉 )𝑒−𝛽𝐸

]︀
= 𝑍(𝑇, 𝑉 ). (15.32)

Needless to say, we always ignore the relative errors of 𝑂[log𝑁/𝑁 ], which is very
small already for 𝑁 ∼ 1000.

(15.31) implies (‘max-sum’ correspondence, although the sum here is written as
an integral)

𝑒−𝛽𝐺 =

∫︁
𝑑𝑉 𝑍(𝑇, 𝑉,𝑋)𝑒−𝛽𝑃𝑉 = 𝑌 (𝑇, 𝑃 ), (15.33)

or you may use, shortcutting the intermediate ‘max-sum’ correspondence,

𝑒−𝛽𝐺 = 𝑒−𝛽(𝐴+𝑃𝑉 ) ⇒ 𝑒−𝛽𝐺 =
∑︁
𝑉

𝑍(𝑇, 𝑉 )𝑒−𝛽𝑃𝑉 = 𝑌 (𝑇, 𝑃 ) (15.34)

to memorize the practical rule.

(3) The canonical partition function is given as

𝑍(𝑇, 𝑉 ) =
1

𝑁 !

[︃(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂3/2
]︃𝑁

𝑉 𝑁 , (15.35)

so we need the following integral:∫︁
𝑑𝑉

1

𝑁 !
𝑉 𝑁𝑒−𝛽𝑃𝑉 =

1

𝑁 !(𝛽𝑃 )𝑁+1

∫︁
𝑑𝑥 𝑥𝑁𝑒−𝑥 =

1

𝑁 !(𝛽𝑃 )𝑁+1
Γ(𝑁 + 1) =

(︂
𝑘𝐵𝑇

𝑃

)︂𝑁

.

(15.36)
Therefore, (I ignore the difference between 𝑁 and 𝑁 + 1)

𝑌 (𝑇, 𝑃 ) =

[︃(︂
2𝜋𝑚

ℎ2

)︂3/2
(𝑘𝐵𝑇 )

5/2

𝑃

]︃𝑁
. (15.37)

(4) Thus,
𝐺 = −𝑘𝐵𝑇 log 𝑌 = 𝑁𝑘𝐵𝑇 log𝑃 + · · · , (15.38)

284Notice that 𝐴 is a convex function of 𝑉 , because 𝐸 is. 𝐴 is a concave function of 𝑇 . Thus, 𝐴
is a rather complicated multivariate function.
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We know 𝑑𝐺 = 𝑉 𝑑𝑃 − 𝑆𝑑𝑇 + · · ·, so

𝑉 =
𝜕𝐺

𝜕𝑃

⃒⃒⃒⃒
𝑇

=
𝑁𝑘𝐵𝑇

𝑃
. (15.39)

Incidentally, the relation between 𝑌 and 𝑍 is, as seen from (15.31),

𝑃𝑉 = 𝑘𝐵𝑇 log
𝑍(𝑇, 𝑉 )

𝑌 (𝑇, 𝑃 )
= 𝑘𝐵𝑇 log

𝑉 𝑁/𝑁 !

(𝑘𝐵𝑇/𝑃 )𝑁
= 𝑁𝑘𝐵𝑇 log

𝑃𝑉 𝑒

𝑁𝑘𝐵𝑇
. (15.40)

Here we have used 𝑁 ! ≃ (𝑁/𝑒)𝑁 . This implies that 𝑥 = 𝑃𝑉/𝑁𝑘𝐵𝑇 satisfies

𝑥 = 1 + log 𝑥. (15.41)

𝑥 = 1 is the unique real solution (as you can easily see graphically).

D8.2 [Elementary problem about spin system]
“Due to the ligand field the degeneracy of the 𝑑-orbitals of the chromium ion Cr3+ is lifted, and
the spin Hamiltonian has the following form

𝐻 = 𝐷(𝑆2
𝑧 − 𝑆(𝑆 + 1)/2), (15.42)

where 𝐷 > 0 is a constant with 𝑆 = 3/2 (the cation is in the term 4F3/2).”

This is the way a spin state question is asked, e.g., in a Qual (the problem is an
actual qual problem). However, to answer the statistical-mechanical questions, you
need not understand the quantum mechanical setup, but you have only to under-
stand the following facts about the system:
Each ion has states with energies 𝜀 = 3𝐷/8 and 𝜀 = −13𝐷/8 and both are doubly
degenerate (that is, there are two states each with either of 𝜀).

(0) Why can you apply statistical mechanics to this ‘single’ ion?
(1) Compute the occupation probability of each state at temperature 𝑇 (you may
use the standard notation 𝛽 = 1/𝑘𝐵𝑇 ).
(2) Calculate the entropy.
(3) At high temperatures approximately the specific heat of the system is approxi-
mately 𝐶 = 𝑘𝐵(𝑇0/𝑇 )

2 with 𝑇0 = 0.18 K. Determine 𝐷/𝑘𝐵 in K.

Solution
(0) Statistical mechanics can compute the probability of a set of microstates
(i) that may be specified by a small number of conditions, and
(ii) that contains 𝒩 microstates such that log𝒩 is extensive (𝑂[𝑁 ], where 𝑁 is the
total number of particles).

In particular, if all the 𝑁 microscopic variables are statistically independent as in
the systems consisting of non-interacting particles, although a single particle state
itself is not macroscopic, a set of microstates in which the particle assumes a par-
ticular single particle state obviously satisfies (i) and (ii). The outcome looks as if
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we can apply statistical mechanics directly to a single molecular state: Let ℎ𝑖 be
the single particle Hamiltonian of the 𝑖th particle and the specified single particle be
𝑖 = 0. Then, the (canonical) probability for a set of microstates in which ℎ0 = 𝜀 is
given by

𝑃 (ℎ0 = 𝜀) =
1

𝑍

∑︁
{ℎ𝑖}𝑖 ̸=0, ℎ0=𝜀

𝑒−𝛽
∑︀

𝑖 ℎ𝑖 ∝ 𝑒−𝛽𝜀. (15.43)

(1) There are 4 states, but there are only two energy levels with 𝜀 = 3𝐷/8 and
−13𝐷/8. Therefore, a one-particle (or single-spin) state with 𝜀 = 3𝐷/8 is with

𝑝 =
𝑒−3𝛽𝐷/8

2(𝑒−3𝛽𝐷/8 + 𝑒13𝛽𝐷/8)
=

1

2(1 + 𝑒2𝛽𝐷)
. (15.44)

Do not forget the 1/2 factor. The one-particle state with 𝜀 = −13𝐷/8 is with

𝑝′ =
𝑒13𝛽𝐷/8

2(𝑒−3𝛽𝐷/8 + 𝑒13𝛽𝐷/8)
=

𝑒2𝛽𝐷

2(1 + 𝑒2𝛽𝐷)
. (15.45)

(2) The easiest method is to use the Shannon formula:285

𝑆 = −2𝑘𝐵
[︂

1

2(1 + 𝑥)
log

1

2(1 + 𝑥)
+

𝑥

2(1 + 𝑥)
log

𝑥

2(1 + 𝑥)

]︂
= 𝑘𝐵

{︂
log[2(1 + 𝑥)]− 𝑥

1 + 𝑥
log 𝑥

}︂
,

(15.46)
where 𝑥 = 𝑒2𝛽𝐷.

(3) Setting 𝑥 as above, we have

𝐶 = 𝑇
𝑑𝑆

𝑑𝑇
= −(2𝐷𝛽) 𝑑𝑆

𝑑2𝐷𝛽
= −2𝐷𝛽 𝑑𝑥

𝑑2𝐷𝛽

𝑑𝑆

𝑑𝑥
= −2𝐷𝛽𝑥𝑑𝑆

𝑑𝑥
= 𝑘𝐵(2𝐷𝛽)

2 𝑥

(1 + 𝑥)2
.

(15.47)
That is, for large 𝑇 (small 𝛽), 𝑥 ≃ 1, so

𝐶 = 𝑘𝐵(𝐷/𝑘𝐵)
2/𝑇 2. (15.48)

Therefore, 𝐷/𝑘𝐵 = 𝑇0 or 𝐷/𝑘𝐵 is 0.18 K.

D8.3 [Collection of permanent dipoles]
Let us consider a collection of non-interacting electric dipoles {𝑝𝑖} sitting on the
lattice points {𝑖} as illustrated in Fig. 15.6. We ignore its rotational kinetic energy,
so the system Hamiltonian (the total intrinsic energy) is 0.

285There are several ways to compute entropy. If you know probability explicitly, the Shannon
formula may be useful. In this case, you must not forget that the sum is over the elementary events.
The microcanonical way is probably the least useful in practice. When you compute 𝑆 from the
canonical ensemble, use 𝑆 = (𝐸 − 𝐴)/𝑇 with 𝐸 being calculated by the Gibbs-Helmholtz relation
[𝜕(𝐴/𝑇 )/𝜕(1/𝑇 )]𝑉 = −𝜕 log𝑍/𝜕𝛽 = 𝐸. Do NOT, in practice, use 𝑆 = −(𝜕𝐴/𝜕𝑇 )𝑉 directly.
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Figure 15.6: Dipole moments sitting on a lattice (the dipoles are actually three-dimensional)

A permanent electric dipole 𝑝 has a potential energy 𝑢 = −𝑝 ·𝐸, if an external
electric field 𝐸 is imposed. Thus, the total potential energy of the system in the
electric field reads

𝑈 = −𝐸 · 𝑃 , (15.49)

where 𝑃 is the electric polarization defined as

𝑃 =
∑︁
𝑖

𝑝𝑖. (15.50)

We wish to obtain 𝑃 (≃ its expectation value thanks to the LLN) as a function of
𝑇 and 𝐸.

(0) The ‘standard’ statistical mechanical textbooks proceed as follows. The system
Hamiltonian is

‘𝐻’ = −𝐸 · 𝑃 . (15.51)

Therefore, the internal energy is its (e.g., canonical) average:

𝐸 = ⟨‘𝐻’⟩. (15.52)

The (canonical) partition function is thus given by

‘𝑍’ =

[︂∫︁
𝑑3𝑝 𝑒𝛽𝐸·𝑝

]︂𝑁
. (15.53)

From this, we obtain the (Helmholtz) free energy 𝐴 as usual: ‘𝐴’ = −𝑘𝐵𝑇 log ‘𝑍’,
whose Gibbs relation is understood to be

𝑑‘𝐴’ = −𝑆𝑑𝑇 − 𝑃 · 𝑑𝐸. (15.54)

What is wrong (at least awkward) with the above logic?286

To answer this question correctly, let us proceed according to the correct statistical

286However, most textbooks avoid explicit embarrassment by not mentioning the names of the free
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thermodynamics.
(1) What is the thermodynamic coordinates for the system?
(2) What is its internal energy?
(3) What is the definition of the microcanonical ensemble for the system?
(4) Fixing 𝑃 is inconvenient. Also we do not wish to put the system in an adiabatic
condition, so we wish to keep the system temperature constant (isothermal). Then,
for our system what is the convenient thermodynamic potential Φ? Also write down
the Gibbs relation for Φ.
(5) What sort of statistical ensemble you should employ to obtain Φ directly? That
is, what is the corresponding partition function 𝑍?287

(6) Compute Φ = −𝑘𝐵𝑇 log𝑍.
(7) Compute 𝑃 as a function of 𝐸 and 𝑇 .

Solution
(0) The key physics observations are:
(i) The internal energy is the energy stored in the system itself,
(ii) The potential energy like 𝑈 in this problem (or −𝐵 ·𝑀 for magnetic systems)
is not stored solely in the system itself, but it is stored in the ‘relationship’ between
the system and the external field or the device making the external field (just as
the volume energy 𝑃𝑉 ; it is there only because something (external to the system)
maintains 𝑃 ).

Thus, ‘𝐻’ is not the system Hamiltonian.288 In this case the system Hamiltonian is
zero, since we ignore the kinetic energy and since the dipoles are not interacting with
each other. Therefore, inevitably 𝐸 = 0; since ‘𝐻’ is not the system Hamiltonian,
‘𝐸’ cannot be the system internal energy (but is one of the generalized Enthalpies
as we will see later).

This misidentification of energy (or the system Hamiltonian) totally screws up the
statistical thermodynamic description of the system. Needless to say ‘𝑍’ is not the
usual canonical partition function, since ‘𝐻’ is not the system Hamiltonian. If you
can declare ‘𝐴’ to be the system Helmholtz free energy 𝐴 = 𝐸−𝑇𝑆, then the Gibbs
relation

𝑑‘𝐴’ = 𝑇𝑑𝑆 +𝐸 · 𝑑𝑃 (15.55)

must hold, but in ‘𝐴’ 𝑃 does not appear anywhere (it was averaged or summed
away when you compute ‘𝑍’). Therefore, in the standard books they ‘declare’ that

energy explicitly and not writing the Gibbs relations explicitly; basically evading thermodynamics.
Garrod, Wolfe, Reichl, Greiner et al., Le Bellac et al., etc., follow this line (probably without never
thinking). Therefore, in practice, you should look at the definition of the ‘Hamiltonian’ and the
partition functions, and then determine which Gibbs relation you should use when you read usual
books or attend usual courses. Perhaps, to be successful as scientists these days, don’t be too
serious.

287Recall the ‘max-sum’ correspondence.
288You could say it is the Hamiltonian of the system and a part of the electric field modified by

the presence of the dipoles.
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this ‘Helmholtz free energy’ obeys (15.54) to ‘correct’ wrong identifications of quan-
tities.289

(1) Generally, it is the (internal) energy 𝐸 and 𝑃 (recall that they must be en-
ergy and work coordinates that are extensive). In the present case 𝐸 = 0 because
the system Hamiltonian is zero. Thus, actually, there is only one coordinate 𝑃 be-
cause of the artificial simplification of the problem that has no interactions among
different lattice sites.

(2) This is already answered. 𝐸 = 0, invariant. Thus, the Gibbs relation is actu-
ally

0 = 𝑇𝑑𝑆 +𝐸 · 𝑑𝑃 , (15.56)

but you may identify this with 𝑑𝐸 as usual (while noting that it is always 0).

(3) Since the thermodynamic coordinates are 𝐸 (= 0) and 𝑃 , the microcanonical
ensemble consists of microstates with a fixed 𝑃 .290 Accordingly, the microcanonical
partition function 𝑊 (𝐸,𝑃 ) (actually, 𝑊 (0,𝑃 )) is the total number of microstates
with 𝑃 (with a leeway).

(4) Since we do not wish to fix 𝑃 , we must allow its change. If there is an external
electric field 𝐸, we must allow the system (+ the field) to change its interaction
energy freely. Also we wish to allow the system to exchange heat freely with its
environment. Thus, instead of the total energy 𝐸 + 𝑈 (though not of the system),
we should study Φ = (𝐸 − 𝑄) + 𝑈 (actually a Legendre transform of 𝐸 as we see
in (5)), where 𝑈 = −𝐸 · 𝑃 , the total potential energy. The Gibbs relation for Φ
reads

𝑑Φ = 𝑑(𝐴−𝐸 · 𝑃 ) = −𝑆𝑑𝑇 − 𝑃 · 𝑑𝐸, (15.57)

where 𝐴 is not the fake Helmholtz free energy (= ‘𝐴’) but the true Helmholtz free
energy of the system.

(5) The Legendre transformation used in (4) is actually

−Φ = max
𝑃

[𝐸 · 𝑃 + 𝑆𝑇 − 𝐸] (15.58)

energetically, or (recall 𝑑(−𝑆) = (−1/𝑇 )𝑑𝐸 + (𝐸/𝑇 ) · 𝑑𝑃 and −𝑆 is convex).

−Φ

𝑇
= max

𝑃

[︂
𝐸

𝑇
· 𝑃 − 𝐸

𝑇
− (−𝑆)

]︂
. (15.59)

However, since 𝐸 = 0 definitely in our system, you may drop it from the above
formulas.

289A professor told me that good students should know the difference. Yes, but I believe it is
better to point out the conceptual mistake in the usual books and to correct it.

290More precisely, we must allow some macroscopic leeway such that 𝑃 is in a (macroscopically)
small volume element of 𝑃 .
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From either of the above relations we can write

−𝛽Φ = max
𝑃

[︂
𝑆

𝑘𝐵
+ 𝛽𝐸 · 𝑃

]︂
. (15.60)

or
𝑒−𝛽Φ = max

𝑃
𝑊 (0,𝑃 )𝑒𝛽𝐸·𝑃 . (15.61)

Thus, with the relative error of 𝑂[log𝑁/𝑁 ], we can use the ‘max-sum’ correspon-
dence:

𝑒−𝛽Φ =
∑︁
𝑃

𝑊 (0,𝑃 )𝑒𝛽𝐸·𝑃 ≡ 𝑍(𝑇,𝐸). (15.62)

Since 𝐸 does not change, you might wonder how we can introduce 𝑇 into the de-
scription. Although we have 𝛽, it appears only in combination with 𝐸 (and as Φ/𝑇 ).
Thus, the entropic form of the Gibbs relation 𝑑𝑆 = −(𝐸/𝑇 ) · 𝑑𝑃 that cannot define
𝑇 alone causes no difficulty. Even though we write 𝑍(𝑇,𝐸), it is actually a function
of 𝐸/𝑇 .

(6) Since the summation or the integration over 𝑃 may be decomposed into the sums
or integrals for individual molecular dipoles, we can write

𝑍 =

⎡⎣∑︁
𝑝1

𝑒𝛽𝐸·𝑝1

⎤⎦𝑁

. (15.63)

Here, the first dipole is used as the representative.
Thus, we have only to compute291

𝑧(𝐸) =

∫︁
𝑑𝑒 𝑒𝛽𝑝𝑒·𝐸 =

∫︁
𝑑𝑒 𝑒𝛽𝑝𝐸 cos 𝜃, (15.64)

where 𝑒 is the directional unit vector of the dipole moment with respect to the electric
field direction (𝑝 = 𝑝𝑒 with 𝑝 = |𝑝|), 𝐸 = |𝐸|, and the angle between 𝐸 and 𝑝 (or
𝑒) is 𝜃.

The integration is on the unit sphere and we can compute the ‘single-body’ or
‘single-site’ canonical partition function as

𝑧(𝐸) = 2𝜋

∫︁ 𝜋

0

𝑑𝜃 sin 𝜃 𝑒𝛽𝑝𝐸 cos 𝜃 = 2𝜋

∫︁ 1

−1

𝑑𝑥 𝑒𝛽𝑝𝐸𝑥 =
4𝜋

𝛽𝑝𝐸
sinh 𝛽𝑝𝐸. (15.65)

Therefore, we have arrived at

Φ = −𝑁𝑘𝐵𝑇 log

(︂
4𝜋

𝛽𝑝𝐸
sinh 𝛽𝑝𝐸

)︂
. (15.66)

291The summation is actually over the directions of the dipole, so the following integral is over
the directions, but you need not worry about this and may integrate over 𝑝; |𝑝| is constant, so the
resultant Φ is shifted only by a constant.
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(7) The Gibbs relation 𝑑Φ = −𝑆𝑑𝑇 − 𝑃 · 𝑑𝐸 (see (4)) tells us

𝑃 = − 𝜕Φ

𝜕𝐸

⃒⃒⃒⃒
𝑇

. (15.67)

From the structure of 𝑧 we can immediately see

⟨𝑝⟩ = 𝑘𝐵𝑇
𝜕

𝜕𝐸
log 𝑧(𝐸) = 𝑝

𝜕

𝜕𝛽𝑝𝐸
log

(︂
sinh 𝛽𝑝𝐸

𝛽𝑝𝐸

)︂
= 𝑝𝐿(𝛽𝑝𝐸)

𝜕𝐸

𝜕𝐸
, (15.68)

where 𝐿(𝑥) is the Langevin function

𝐿(𝑥) =
𝑑

𝑑𝑥
(log sinh𝑥− log 𝑥) = coth 𝑥− 1

𝑥
. (15.69)

The last derivative with respect to 𝐸 (that is a kind of gradient) may be most easily
computed from the differentiation of 𝐸2 = 𝐸 ·𝐸 :

𝐸𝑑𝐸 = 𝐸 · 𝑑𝐸. (15.70)

From this we get (or see (22.70))

𝜕𝐸

𝜕𝐸
=

𝐸

𝐸
. (15.71)

Thus,

𝑃 = 𝑁⟨𝑝⟩ = 𝑝𝑁𝐿(𝛽𝑝𝐸)
𝐸

𝐸
. (15.72)

If you wish to do all the calculation componentwisely, we can proceed as fol-
lows.

𝑃𝑖 =
𝜕Φ

𝜕𝐸𝑖

⃒⃒⃒⃒
𝑇

= 𝑁𝑘𝐵𝑇
𝜕

𝜕𝐸𝑖

log
sinh 𝛽𝑝𝐸

𝛽𝑝𝐸
= 𝑝𝑁

𝜕

𝜕𝛽𝑝𝐸𝑖

log
sinh 𝛽𝑝𝐸

𝛽𝑝𝐸

(15.73)

= 𝑝𝑁𝐿(𝛽𝑝𝐸)
𝜕𝐸

𝜕𝐸𝑖

= 𝑝𝑁𝐿(𝛽𝑝𝐸)
𝐸𝑖

𝐸
. (15.74)

This is just (15.72). Here, we used

𝜕𝐸

𝜕𝐸𝑖

=
𝜕|𝐸|
𝜕𝐸𝑖

=
𝜕
√︀∑︀

𝑖𝐸
2
𝑖

𝜕𝐸𝑖

=
2𝐸𝑖

2
√︀∑︀

𝑖𝐸
2
𝑖

=
𝐸𝑖

|𝐸|
. (15.75)

D8.4. [Information rudiments]
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Suppose there are two fair dice. We assume that one dice is red and the other is green
(that is, distinguishable). Let us record the numbers that are up in the red-green
order as (𝑚,𝑛) (𝑚,𝑛 ∈ {1, 2, · · · , 6}).
(1) To know a particular pair of numbers (𝑎, 𝑏) unambiguously what amount of in-
formation (in bits) do you need?
(*) Actually, how many ‘yes-no’ questions do you need to pinpoint the outcome?
(2) You are told that the sum 𝑎+ 𝑏 is not less than 5. What is the amount of infor-
mation you gain from this message?
(3) Next, you are told, one of the dice shows the face less than 3. What is the amount
of information you gain? (You know the info obtained from (2) already.)
(4) Now, you are told that actually, the one of the dice in (3) is the red one. What
is the amount of information of this message?
(5) Finally, you are told that face pair is actually (2, 5). What is the amount of
information in this final statement?

As you guess, in whatever order the information is given, the total information
you gain does not depend on the actual ‘path,’ because the extent of your ignorance
is a ‘state function.’

Solution.
(1) There are 36 distinguishable states and they are all equally probable. Therefore,
the total uncertainty is log2 36 = 5.17 bits, or the surprisal you have, when you are
told, say, (1, 1) actually happens, is 5.17 bits. That is, you need 5.17 bits of informa-
tion to pinpoint a particular elementary event. (*) Let us devise the ‘cleverest’ way

to ask the needed questions:
(i) Divide the 36 cases into two even set of cases 18 + 18 and ask which contains the
outcome. 1 bit question.
(ii) Divide the right 18 cases into two even set of cases 9 + 9 and ask which contains
the outcome. 1 bit question.
(iii) Divide 9 into 4+4+1, and ask which ‘4’ contains the outcome. 1 bit question.

(iiia) If the answer is ‘neither of them,’ we know the answer, but with probability
1/9.

(iiib) If the answer is one of ‘4’ (with probability 8/9), we must continue to ask
(iv) two questions further to pinpoint the pair in ‘4’. 2 bit questions.

Thus the expected number of the ‘questions’ is

1

9
× 3 +

8

9
× 5 =

43

9
< 5.17. (15.76)

How come? Since the total information we need must be ‘path-independent,’ some
question(s) must not be a genuine 1 bit question.

Indeed, we exploited the discreteness of the problem and ‘cheated’ by devising
questions that are not really the 1 bit yes-no question. The question asked at 4+4+1
juncture is not an honest 1 bit question. Actually, if you wish to be as ‘fairly’ as
possible, 36 → 18 + 18→ 4 + 5→ (2, 2) or (2, 3) · · · certainly requires more than 5
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questions on the average.
In this case ‘18→ 6+ 6+ 6 and 6→ 2+ 2+ 2’ is the cleverest and you need only

4 questions. In this case, the three choice question gives you log2 3 = 1.58 bits, so
the total information you get is 1+ 1.585 + 1.585 +1 = 5.17 bits.

Real life lessons are that you should try to maximize the information you can get
from a single yes-no question (make cases as even as possible) and that (in real life)
an answer to a single ‘yes-no’ question could give you more than 1 bit.

(2) There is no simpler way than to list actually all the elementary states. The
following 6 states: (1,1), (1,2), (1,3), (2,1), (2,2), (3, 1) are excluded. Remaining
are 30 states, all equally probable, so log2 30 = 4.91 bits is the uncertainty. That is,
5.17− 4.91 = 0.26 bits is the amount of information in the message.

(3) Red = 1: Green = 4, 5 or 6
Red = 2: Green = 3, 4, 5 or 6.
Therefore, there are 7× 2 = 14 states remaining. This uncertainty is log2 14 = 3.81.
We had 4.91 bits of uncertainty, so this message must have conveyed 1.1 bits.
(4) Obviously, 1 bit.

(5) There is no uncertainty remaining, so 2.81 bits (this is, needless to say, the sur-
prisal of an event of probability 1/7).

D8.5 [Information rudiments 2]
Suppose a student D cheats in a yes-no quiz by copying the answer of an all A stu-
dent A who is correct with probability 92%. Assuming that the success rate of D is
65%, what is the information gain of D on the average by copying the solutions of
student A’s?

Solution.
The key point is the relation between ‘information’ and entropy’. The entropy of
a state is the required information to describe the state unambiguously. Thus, de-
creasing entropy (importing ‘negentropy’ ) is adding information.

The entropy (in the Shannon sense) of student A’s answer (or his brain state)
is

ℎ = −(0.92 log2 0.92 + 0.08 log2 0.08) = 0.402 bits. (15.77)

This means the amount of information 1− ℎ = 0.6 bits is needed further for student
A to be perfect.

On the other the entropy of student D’s answer is

ℎ′ = −(0.65 log2 0.65 + 0.35 log2 0.35) = 0.934 bits. (15.78)

We need almost 1 bit (close to the entropy of randomness) of o=information to de-
scribe the mess of D’s brain.
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Thus, his brain state is ‘improved’ (i.e., its entropy becomes closer to zero) through
cheating by 0.934− 0.402 = 0.532 bits.
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Exercise 8

E8.1 [Constant magnetic field ensemble]
“There is a lattice containing 𝑁 lattice sites on which non-interacting spins of 𝑆 = 1 (in the term
3𝑃 ) sit. The spin Hamiltonian at each site reads

𝐻 = 𝐷𝑆2
𝑧 . (15.79)

The system is imposed a magnetic field 𝐵 in the 𝑧-direction and the magnetic moment of of the

system is 𝜇𝑆𝑧. Compute the magnetization of the system as a function of 𝐵 and 𝑇 .”

This is the way a question in Qual goes, but what this tells you is that the problem
is just as:
At each site is an entity292 that can take 𝑠 = 0 or ±1, whose energy is given by

ℎ = 𝐷𝑠2. (15.80)

The potential energy of the entity in a magnetic field 𝐵 (actually, the 𝑧-component
of 𝐵) is given by 𝑈 = −𝜇𝑠𝐵. Compute 𝑀 = 𝜇𝑁⟨𝑠⟩ as a function of 𝑇 and 𝐵.
(1) What is the thermodynamic coordinates of this “magnetic” system?
(2) We wish to describe the system under constant 𝐵 and 𝑇 instead of constant 𝑀
and 𝐸. What is the most convenient thermodynamic potential Ψ?
(3) Find the most convenient partition function 𝑍 such that Ψ = −𝑘𝐵𝑇 log𝑍.
(4) Compute Ψ.
(5) Write down its Gibbs relation for Ψ. What is

𝜕Ψ/𝑇

𝜕1/𝑇

⃒⃒⃒⃒
𝐵

? (15.81)

(6) Compute the magnetization 𝑀 as a function of the magnetic field and tempera-
ture.
(7) Can you compute the internal energy of the system?

Solution.
(1) 𝐸 and 𝑀 are the respectable thermodynamic coordinates. In this case, the in-
ternal energy is not zero nor constant, even if there is no external field.

(2) We must pay attention to the (system + a part of environment) energy 𝐸−𝐵𝑀
and allow free exchange of heat, so we consider the thermodynamic potential defined
as Ψ = 𝐸 − 𝐵𝑀 − 𝑄 = 𝐴 − 𝐵𝑀 , where 𝐴 is the (true, not ‘fake’) Helmholtz free
energy. That is, the proper Legendre transformation relevant to the current situation
is

−Ψ = max
𝑆,𝑀

[𝑆𝑇 +𝐵𝑀 − 𝐸] (15.82)

292actually the 𝑧-component of a spin.
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energetically or293 (since 𝐸 is monotonic in 𝑆 for each 𝑀)

−Ψ

𝑇
= max

𝐸,𝑀

[︂
𝑆 +

(︂
𝐵

𝑇

)︂
𝑀 − 𝐸

]︂
. (15.84)

Therefore,

𝑒−𝛽Ψ = max
𝐸,𝑀

𝑒𝑆/𝑘𝐵−𝛽𝐸+𝛽𝐵𝑀 = max
𝐸,𝑀

[︀
𝑊 (𝐸,𝑀)𝑒−𝛽𝐸+𝛽𝑀𝐵

]︀
. (15.85)

(3) Now, we can appeal to the general ‘max-sum’ correspondence, ignoring the rela-
tive errors of 𝑂[log𝑁/𝑁 ]:

𝑒−𝛽Ψ =
∑︁
𝐸,𝑀

𝑊 (𝐸,𝑀)𝑒−𝛽𝐸+𝛽𝑀𝐵. (15.86)

Therefore, the most convenient partition function is

𝑍(𝑇,𝐵) =
∑︁
𝐸,𝑀

𝑊 (𝐸,𝑀)𝑒−𝛽𝐸+𝛽𝑀𝐵 =
∑︁

𝑠𝑖∈{0,±1} for all sites

𝑒−𝛽𝐸+𝛽𝑀𝐵. (15.87)

Up to this point, everything is explained from scratch; in your report, you can
simply write down the needed formulas (by guessing).

(4) We may separate the sum into the sums on each lattice sites, so

𝑍(𝑇,𝐵) =

⎡⎣ ∑︁
𝑠∈{0,±1}

𝑒−𝛽𝐷𝑠2+𝛽𝜇𝑠𝐵

⎤⎦𝑁

. (15.88)

That is,
𝑍(𝑇,𝐵) = (1 + 𝑒−𝛽𝐷+𝛽𝜇𝐵 + 𝑒−𝛽𝐷−𝛽𝜇𝐵)𝑁 . (15.89)

Therefore,
Ψ = −𝑁𝑘𝐵𝑇 log(1 + 𝑒−𝛽𝐷+𝛽𝜇𝐵 + 𝑒−𝛽𝐷−𝛽𝜇𝐵). (15.90)

(5) The Gibbs relation is (recall (15.82))

𝑑Ψ = −𝑆𝑑𝑇 −𝑀𝑑𝐵. (15.91)

Therefore,
𝜕Ψ/𝑇

𝜕1/𝑇

⃒⃒⃒⃒
𝐵

= Ψ− 𝑇 𝜕Ψ

𝜕𝑇

⃒⃒⃒⃒
𝐵

= Ψ+ 𝑆𝑇 = 𝐸 −𝐵𝑀. (15.92)

293Or, entropically, Legendre transformation of −𝑆 directly gives

−Ψ

𝑇
= max

𝐸,𝑀

[︂
𝐵

𝑇
𝑀 +

(︂
− 1

𝑇

)︂
𝐸 − (−𝑆)

]︂
. (15.83)
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This is a sort of enthalpy (cf. 𝐻 = 𝐸 − (−𝑃 )𝑉 ). It is not the internal energy; if
you misidentify Ψ with the Helmholtz free energy, then you might think the quantity
obtained in (15.92) is the internal energy, but, as you see, it is obviously different;
(𝜕(𝐸 −𝐵𝑀)/𝜕𝑀)𝑆 is not 𝐵!

If you use the Gibbs relation for −Ψ/𝑇 :

𝑑

(︂
−Ψ

𝑇

)︂
= −𝐸𝑑 1

𝑇
+𝑀𝑑

𝐵

𝑇
, (15.93)

you might compute (15.81) as the internal energy. This is a bit ‘delicate,’ because,
fixing 𝐵/𝑇 in (15.93) gives

𝜕Ψ/𝑇

𝜕1/𝑇

⃒⃒⃒⃒
𝐵/𝑇

= 𝐸. (15.94)

Since we must fix 𝐵, we cannot use (15.93) immediately; first we rewrite it as

𝑑

(︂
−Ψ

𝑇

)︂
= −𝐸𝑑 1

𝑇
+𝑀𝐵𝑑

1

𝑇
+
𝑀

𝑇
𝑑𝐵. (15.95)

Then, we obtain (15.92).
Therefore,

𝐸 −𝐵 ·𝑀 = 𝑁
(𝐷 − 𝜇𝐵)𝑒−𝛽𝐷+𝛽𝜇𝐵 + (𝐷 + 𝜇𝐵)𝑒−𝛽𝐷−𝛽𝜇𝐵

1 + 𝑒−𝛽𝐷+𝛽𝜇𝐵 + 𝑒−𝛽𝐷−𝛽𝜇𝐵
. (15.96)

(6) From (15.91) we get

𝑀 = − 𝜕Ψ

𝜕𝐵

⃒⃒⃒⃒
𝑇

, (15.97)

or from (15.93) we get

𝑀 = − 𝜕Ψ/𝑇

𝜕𝐵/𝑇

⃒⃒⃒⃒
𝑇

= − 𝜕Ψ

𝜕𝐵

⃒⃒⃒⃒
𝑇

=
𝜕log𝑍

𝜕𝛽𝐵

⃒⃒⃒⃒
⃒
𝛽

= 𝑁𝜇
𝑒−𝛽𝐷+𝛽𝜇𝐵 − 𝑒−𝛽𝐷−𝛽𝜇𝐵

1 + 𝑒−𝛽𝐷+𝛽𝜇𝐵 + 𝑒−𝛽𝐷−𝛽𝜇𝐵
. (15.98)

(7) Now, we know 𝐸 −𝐵𝑀 and 𝐵𝑀 , we can obtain the internal energy

𝐸 = 𝑁𝐷
𝑒−𝛽𝐷+𝛽𝜇𝐵 + 𝑒−𝛽𝐷−𝛽𝜇𝐵

1 + 𝑒−𝛽𝐷+𝛽𝜇𝐵 + 𝑒−𝛽𝐷−𝛽𝜇𝐵
. (15.99)

E8.2 [Information rudiments]
There are red and green tetrahedral fair dice. Thus, the outcome one simultaneous
slowing gives (𝑚,𝑛), (𝑚,𝑛 ∈ {1, 2, 3, 4}). (1) Initially you do not know anything
about the outcome. How many bits do you need to pinpoint the outcome? What is
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the ‘entropy’ ℎ of your brain state?
(2) Can you devise a scheme to pinpoint the outcome on the average less than 4
‘yes-no’ questions?
(3) You get a message that the sum 𝑛 +𝑚 > 4. After knowing this, what is your
brain ‘entropy’? What is the information you have obtained from the message?
(4) Then, you are told that the red gives larger face value than the green. After
knowing this, what is your brain ‘entropy’? What is the information you have ob-
tained from the message?
(5) Now you are told the outcome: (4,3). What is the information you get from this
final message?

Solution.
(1) There are 16 cases all expected to occur evenly. You need log2 16 = 4 bits of
information to pinpoint the outcome. Your knowledge level is perfect if you know 6
bits, your ignorance level is 4 bits. That is your brain ‘entropy’ is 4 bits.

(2) I believe less than 3 questions is possible, because log3 16 = 2.5.

(3) 𝑚 + 𝑛 > 4 means that we must exclude (1,1), (1,2), (2,1), (1,3), (3,1), (2,2).
Thus, there are 10 states remaining. You still need log2 10 = 3.32 bits of information
to pinpoint the outcome. Thus, your ignorance level is 3.32 bits. That is your brain
‘entropy’ is 3.32 bits. This is improved from 4 bits by 4 − 3.32 = 0.68 bits. This
must be the amount of information in the message.

(4) You are told that the ‘red value’ is actually larger than the ‘green value.’ There-
fore, the possible outcomes are (3,2), (4,1), (4,2), or (4,3), 4 states. Thus, your brain
entropy is now 2 bits. Thus, you obtained 3.32− 2 = 1.32 bits. This is the amount
of information in the message.
(5) Obviously, 2 bits.
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16 Specific heat of solid

Summary
* Quantization forbids incremental increase of energy, so quantization generally re-
duces specific heat.
* If you take into account the proper dispersion relation of a crystal, quantized har-
monic oscillators can explain solid specific heat.

Key words
quantum harmonic oscillator, Debye model, 𝑇 3-law, equipartition of energy

What you should be able to do
* Explain why quantization usually reduces specific heats.
* Be able to compute the canonical partition function of the quantized harmonic
oscillator.

16.1 Review: never think physics does not demand memorizing
Let’s collect the formulas you must remember (their names are not mentioned), no
definitions of symbols are provided, but a pretty standard convention (adopted in
these lectures) is followed. You must be able to explain what they are and how to
use them:

Δ𝐸 = 𝑄+𝑊, (16.1)

𝑑𝑆 ≥ 1

𝑇𝑒
𝑑′𝑄. (16.2)

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 +𝐵 · 𝑑𝑀 + · · · . (16.3)

𝐴 = 𝐸 − 𝑇𝑆, 𝐺 = 𝐴+ 𝑃𝑉, 𝐻 = 𝐸 + 𝑃𝑉. (16.4)

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉 𝑑𝑃 + 𝜇𝑑𝑁 +𝐵 · 𝑑𝑀 + · · · . (16.5)

𝑑𝐴 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 +𝐵 · 𝑑𝑀 + · · · . (16.6)

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉 𝑑𝑃 + 𝜇𝑑𝑁 +𝐵 · 𝑑𝑀 + · · · . (16.7)

Δ𝐴 ≤ 𝑊. (16.8)

𝑆 = 𝑘𝐵 log𝑤(𝐸,𝑋). (16.9)

𝐴 = −𝑘𝐵𝑇 log𝑍(𝑇,𝑋). (16.10)
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𝑍 =
∑︁
𝐸

𝑤(𝐸,𝑋)𝑒−𝛽𝐸 = 𝑇𝑟 𝑒−𝛽𝐻 =
1

ℎ3𝑁𝑁 !

∫︁
𝑑Γ 𝑒−𝛽𝐻 . (16.11)

𝑆 = −𝑘𝐵
∫︁
𝑑Γ 𝑝 log 𝑝, 𝐻(𝑝) = −

∑︁
𝑖

𝑝𝑖 log 𝑝𝑖. (16.12)

16.2 Ideal gas with internal degrees of freedom
If an ideal gas particle has internal degrees of freedom, the Hamiltonian of the gas
consists of two parts:

𝐻 = 𝐻0 +𝐻𝑖, (16.13)

where 𝐻0 is the Hamiltonian of the translational motion

𝐻0 =
𝑁∑︁
𝑖=1

1

2𝑚
𝑝2
𝑖 , (16.14)

and 𝐻𝑖 is the Hamiltonian governing the internal degrees of freedom, which is a sum
of Hamiltonians ℎ𝑖 governing individual molecular internal motions:

𝐻𝑖 =
𝑁∑︁
𝑖=1

ℎ𝑖. (16.15)

The translational degrees and internal degrees of freedom are not interacting, so they
are completely independent (mechanically and statistically). Hence, the canonical
partition function reads

𝑍 = 𝑍𝑖𝑑𝑒𝑎𝑙𝑍𝑖, (16.16)

where 𝑍𝑖𝑑𝑒𝑎𝑙 is the partition function for a monatomic ideal gas we computed before,
and 𝑍𝑖 is the “internal” partition function

𝑍𝑖 = 𝑧𝑁 , (16.17)

with
𝑧 =

∑︁
𝑒−𝛽ℎ. (16.18)

Here, the suffix to denote a particular molecule has been dropped, since all the in-
ternal partition functions are identical for identical molecules.

16.3 Collection of harmonic oscillators: classical approach
An important internal motion of gas molecules is vibration. Let us consider a di-
atomic molecule whose vibrational degree of freedom may be described as a 1D
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harmonic oscillator of (effective mass) 𝑚 and angular frequency 𝜔:

ℎ =
1

2𝑚
(𝑝2 +𝑚2𝜔2𝑞2). (16.19)

Although we already know that this oscillator should not be treated classically, let
us study it classically to know how bad the result is:

𝑧 =
1

ℎ

∫︁
𝑑𝑝𝑑𝑞 𝑒−𝛽(𝑝2+𝑚2𝜔2𝑞2)/2𝑚 =

1

ℎ

(︂
2𝜋𝑚

𝛽

2𝜋

𝑚𝜔2𝛽

)︂1/2

=
𝑘𝐵𝑇

~𝜔
. (16.20)

Therefore,

𝑍𝑖 =

(︂
𝑘𝐵𝑇

~𝜔

)︂𝑁

= (𝛽~𝜔)−𝑁 . (16.21)

At this juncture, we must realize that the partition function 𝑍𝑖 is also the canonical
partition function of a collection of 1D oscillators sitting individually at lattice points.

The internal energy of a collection of 𝑁 1D oscillators is

𝐸 = 𝑁
𝜕

𝜕𝛽
log(𝛽~𝜔) = 𝑁/𝛽 = 𝑁𝑘𝐵𝑇. (16.22)

16.4 Entropy of classical harmonic oscillator
Using 𝐸, we immediately get

𝑆 = (𝐸 − 𝐴)/𝑇 = 𝑁𝑘𝐵 +𝑁𝑘𝐵 log(𝑘𝐵𝑇/~𝜔) = 𝑁𝑘𝐵 log 𝑇 + const. (16.23)

The result implies that in the 𝑇 → 0 limit 𝑆 → −∞. Therefore, to describe a har-
monic oscillator at 𝑇 knowing only the state information at much lower temperature
𝑇0 a large amount of additional information ∼ log(𝑇/𝑇0) is required, especially if
𝑇0 is close to zero. This must violate a certain fundamental principle: the finiteness
principle that a finite object with finite energy should require only a finite amount
of information for its complete description (if totally isolated).294

This is a good occasion to discuss another principle of thermodynamics: the third
law.

294⟨⟨Consequence of the finiteness principle⟩⟩ If we combine Boltzmann’s principle and this
finiteness principle, then Boltzmann’s principle must not be applicable to an extremely small phase
volumes. That is there must be ‘information quantum’ that has the dimension of (action)3𝑁 . Thus,
notice that the existence of a fundamental quantity with the dimension of action (something like
ℎ) is required by the finiteness principle and thermodynamics.
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16.5 The third law of thermodynamics
Nernst empirically found that all the entropy changes asymptotically vanish in the
𝑇 → 0 limit. In particular, all the derivatives of entropy 𝑆 vanish as 𝑇 → 0 (Nernst’s
law). All the specific heat vanishes as 𝑇 → 0. Nernst concluded that entropy be-
comes constant (independent of any thermodynamic variables) in the 𝑇 → 0 limit.
Later, Planck chose this constant to be zero (the concept of absolute entropy).

We adopt the following as the third law of thermodynamics:

Reversible change of entropy Δ𝑆 vanishes in the 𝑇 → 0 limit.

This implies that to describe the state of a macroscopic system at 𝑇 = 0, required
information is subextensive, or the number of YES-NO questions needed to know
the macrostate is zero per particle.

The entropy we computed classically above must be wrong.

16.6 3D crystal; classical treatment
Consider a crystal made of 𝑁 atoms, having 3𝑁 mechanical degrees of freedom.
Small displacements of atoms around their mechanical equilibrium positions should
be a kind of harmonic oscillation. Thus, we may regard the crystal as a set of 3𝑁
independent harmonic oscillators (modes) of various frequencies (due to coupling
among atoms). The canonical partition function of the total system is the product
of the canonical partition function for each harmonic mode.

Treating the system completely classically and using the definition of the classical
partition function (16.20), the partition function reads

𝑍 =
3𝑁∏︁
𝑖=1

𝑘𝐵𝑇

~𝜔𝑖

. (16.24)

The contribution of these oscillators to the internal energy is readily obtained from
the equipartition of energy 14.16 as

𝐸 = 3𝑁𝑘𝐵𝑇. (16.25)

If the volume is kept constant, the frequencies are also kept constant. Therefore, the
constant volume specific heat 𝐶𝑉 is given by

𝐶𝑉 = 3𝑁𝑘𝐵. (16.26)

This is called Dulong-Petit’s law, which is independent of temperature, a contradic-
tion to the third law of thermodynamics: 𝐶𝑉 → 0 in the 𝑇 → 0 limit.

Its entropy is just as (16.23)

𝑆 = 3𝑁𝑘𝐵 log 𝑇 + const. (16.27)

342



Thus, entropy goes to −∞ as 𝑇 → 0. This of course contradicts the third law.

16.7 Necessity of quantization
We must guess that 𝐶𝑉 ↘ 0 should be a quantum effect. Quantization of energy
implies that you cannot pay the energy cost ‘in installments.’ Since 𝑇 indicates
your energy payment capability, if 𝑇 is smaller, then quantized systems are generally
harder to excite. Recall Schottky type specific heat 13.5: it goes to zero in the
𝑇 → 0 limit because of the energy gap: to excite the system, you must pay this
amount at one time.295

16.8 1D quantum oscillator
Consider a collection of 3𝑁 1-dimensional harmonic oscillators which are not inter-
acting with each other at all.

Let us first examine a single oscillator of frequency 𝜈 (angular frequency 𝜔 = 2𝜋𝜈).
Elementary quantum mechanics tells us that the energy of the system is quantized
as

𝜀 =

(︂
1

2
+ 𝑛

)︂
~𝜔, 𝑛 = 0, 1, 2, · · · . (16.28)

Each eigenstate is nondegenerate. Thus, if we specify the quantum number 𝑛, the
microscopic state of a single oscillator is completely specified. The canonical partition
function for a single oscillator reads

𝑧 =
∞∑︁
𝑛=0

exp

[︂
−𝛽
(︂
1

2
+ 𝑛

)︂
~𝜔
]︂
. (16.29)

Using (1− 𝑥)−1 = 1 + 𝑥+ 𝑥2 + 𝑥3 + · · · (|𝑥| < 1), we get

𝑧 = e−𝛽~𝜔/2(1− e−𝛽~𝜔)−1 =

(︂
2 sinh

𝛽~𝜔
2

)︂−1

. (16.30)

16.9 Einstein model of crystal
If we may understand a 3D crystal as a collection of identical 3𝑁 independent 1D
oscillators, the canonical partition function for the system should be

𝑍 = 𝑧3𝑁 . (16.31)

295At higher temperatures, the specific heat again goes to zero in this case, because there is
nothing remaining to be excited; even if you are rich, now you have nothing to buy.

343



From (16.31) we obtain

𝐴(𝑁) = 3𝑁𝑘𝐵𝑇 log

(︂
2 sinh

𝛽~𝜔
2

)︂
, (16.32)

and296*

𝐸 =
3

2
𝑁~𝜔 coth

(︂
𝛽~𝜔
2

)︂
= 3𝑁

(︂
1

2
~𝜔 +

~𝜔
e𝛽~𝜔 − 1

)︂
. (16.33)

Hence, the specific heat is

𝐶𝑉 = 3𝑁𝑘𝐵

(︂
~𝜔
𝑘𝐵𝑇

)︂2
e𝛽~𝜔

(e𝛽~𝜔 − 1)2
. (16.34)

At sufficiently high temperatures (~𝜔/𝑘𝐵𝑇 ≪ 1) quantum effects should not be
important. As expected we recover the classical result (16.26):

𝐶𝑉 → 3𝑁𝑘𝐵. (16.35)

For sufficiently low temperatures (~𝜔/𝑘𝐵𝑇 ≫ 1) (16.34) reduces to

𝐶𝑉 ≃ 3𝑁𝑘𝐵

(︂
~𝜔
𝑘𝐵𝑇

)︂2

e−𝛽~𝜔. (16.36)

Thus, 𝐶𝑉 vanishes at 𝑇 = 0, and the third law behavior is exhibited, but notice that
this is a Schottky type specific heat 13.5 due to the energy gap of size ~𝜔.

16.10 Real 3D crystal: Debye model
𝐶𝑉 just obtained goes to zero exponentially fast at variance with the empirical law:

𝐶𝑉 ∼ 𝑇 3. (16.37)

As we know from the Schottky type specific heat 13.5 it is the rule that whenever
there is a finite energy gap 𝜀 between the ground and the first excited states, the spe-
cific heat behaves like exp(−𝛽𝜀) at low temperatures. The empirical result (16.37)
implies that there is no finite energy gap in real crystals.

In a real crystal there is a distribution in vibrational frequencies (= dispersion)
as can be seen from Fig. 16.1.

296*

coth
𝑥

2
=
𝑒𝑥/2 + 𝑒−𝑥/2

𝑒𝑥/2 − 𝑒−𝑥/2
=
𝑒𝑥/2 − 𝑒−𝑥/2 + 2𝑒−𝑥/2

𝑒𝑥/2 − 𝑒−𝑥/2
= 1 +

2

𝑒𝑥 − 1
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L

Figure 16.1: Above: The lowest frequency mode; Below: The highest frequency mode (for a 1D
lattice of length 𝐿).

Not all the vibrations contribute significantly to the low temperature heat capac-
ity of solids. Elastic vibrations in a crystal can be classified into two branches, optical
and acoustic (Fig. 16.2). Only the acoustic modes are relevant. We must study the
number of acoustic modes with a given angular frequency about 𝜔.

ω

k

optical branch

acoustic branch

optical mode

acoustic mode

unit cell

Figure 16.2: The optical modes do not displace the crystal unit cells, but the acoustic modes
(here a transversal mode is depicted) displace unit cells. Thus, we have only to count the number of
unit cells to count the number of degrees of freedom relevant to the low temperature heat capacity
(i.e., the total number of the acoustic modes).
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16.11 How to count the number of modes
As can be seen from Fig. 16.1 in a 1D direction the possible wavelengths are 𝜆 =
2𝐿, 2𝐿/2, · · · , 2𝐿/𝑁 or in wave numbers 𝑘 = 𝜋/𝐿, 2𝜋/𝐿, · · · , 𝑁𝜋/𝐿. We have already
seen such a sequence before: the de Broglie wave length of a free particle confined
in a box which we used to study the classical ideal gas 14.8. This implies we can
compute the number of modes in the volume 𝑉 just as the number of eigenvalues as
follows (we will encounter this approach repeatedly later, so you need not understand
it now). Let the number of modes with angular frequency between 𝜔 and 𝜔+ 𝑑𝜔 be
𝒟(𝜔). Then, we have ∫︁ 𝜔

0

𝒟(𝜔)𝑑𝜔 =
1

ℎ3

∫︁
𝑑𝑟

∫︁
|𝑝|≤𝑝(𝜔)

𝑑𝑝, (16.38)

where 𝑝(𝜔) = ~𝑘 = ~𝜔/𝑐 (dispersion relation), and 𝑐 is the sound speed. Therefore,
the number of modes between 𝜔 and 𝜔 + 𝑑𝜔 is

𝒟(𝜔) = 𝑉

ℎ3
4𝜋𝑝(𝜔)2

𝑑𝑝(𝜔)

𝑑𝜔
= 4𝜋𝑉

~3

ℎ3𝑐3
𝜔2 =

1

2𝜋2
𝑉
𝜔2

𝑐3
. (16.39)

In reality, there are one longitudinal and two transversal modes for each 𝜔, so the
actual number is this times 3.

In contrast to the classical gas case there are two important differences. 𝒟(𝜔) ∝ 𝜔2

holds only for low frequency modes where the material may be regarded as an elastic
continuum body. Furthermore, the wavelength cannot be indefinitely small as seen
from Fig. 16.1. Debye introduced the following approximation:

𝒟(𝜔) = 𝐴𝜔2Θ(𝜔𝐷 − 𝜔), (16.40)

where 𝜔𝐷 is the Debye cutoff frequency (which is a materials ‘constant’ in good
approximation) and 𝐴 is fixed to have the total number of modes (= the total
number of lattice cells 𝑁 × 3) correctly∫︁ 𝜔𝐷

0

𝒟(𝜔)𝑑𝜔 = 3𝑁. (16.41)

Therefore, 𝐴 = 9𝑁/𝜔3
𝐷.

16.12 Debye model specific heat
Since we know the energy of the mode with 𝜔 (16.33), the total energy (the internal
energy due to lattice vibration) is

𝐸 =

∫︁
𝑑𝜔𝒟(𝜔)

(︂
1

2
~𝜔 +

~𝜔
e𝛽~𝜔 − 1

)︂
, (16.42)
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and from (16.34)

𝐶𝑉 = 𝑘𝐵

∫︁
𝑑𝜔𝒟(𝜔)

(︂
~𝜔
𝑘𝐵𝑇

)︂2
e𝛽~𝜔

(e𝛽~𝜔 − 1)2
. (16.43)

Although the integration range has an upper bound 𝜔𝐷, when the temperature is
small, replacing this with ∞ does not change the integral appreciably. Therefore,
𝐶𝑉 behaves just as 𝑇 3 in the low temperature limit; the dimension of the integral is
[𝜔]3, and we know [~𝜔/𝑘𝐵𝑇 ] = 1, so we may conclude [𝜔]3 ∝ 𝑇 3 simply with the aid
of dimensional analysis (or power counting).
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17 How to manipulate partial derivatives

Summary
* Understand thermodynamics and microscopic picture of the thermal properties of
a rubber band.
* Review partial derivatives.
* The Jacobian technique may be fully utilized if you remember three elementary
rules/formulas:

𝜕(𝑋, 𝑌 )

𝜕(𝐴,𝐵)
= −𝜕(𝑋, 𝑌 )

𝜕(𝐵,𝐴)
=
𝜕(𝑌,𝑋)

𝜕(𝐵,𝐴)
= −𝜕(𝑌,𝑋)

𝜕(𝐴,𝐵)
,

𝜕(𝑋, 𝑌 )

𝜕(𝑍,𝑊 )
=
𝜕(𝑋, 𝑌 )

𝜕(𝐴,𝐵)

𝜕(𝐴,𝐵)

𝜕(𝑍,𝑊 )
,

and Maxwell’s relation for conjugate pairs (𝑋, 𝑥) and (𝑌, 𝑦):

𝜕(𝑋, 𝑥)

𝜕(𝑦, 𝑌 )
= 1.

Key words
entropic elasticity, Maxwell’s relation, adiabatic cooling, adiabatic demagnetization.

What you should be able to do
* Practice the Jacobian technique.
* Intuitively explain rubber elasticity; be able to get various signs of partial deriva-
tives, and to explain them intuitively.
* Explain adiabatic demagnetization.

17.1 Rubber band experiments
Let us perform a small experiment of quasistatic adiabatic processes using a rubber
band. Prepare a thick rubber band (that is used to bundle, e.g., asparagus). Use
your lip as a temperature sensor. Initially, putting the rubber band to your lip, you
sense the room temperature (cool). Now, you hold the both ends of a small portion
of the band with your hands and stretch it tightly and quickly (Fig. 17.1).

Then, feel the temperature of the stretched portion with your lip. It must be warm.
You have just demonstrated

𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

> 0, (17.1)
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rapid change

stretch locally 

strongly
Figure 17.1: Holding the ×’s with your hands firmly, stretch a rubber band locally rapidly and
strongly to realize (almost) adiabatic and quasistatic processes.

where 𝐿 is the length of the stretched portion of the rubber band. The Gibbs relation
for a rubber band reads

𝑑𝐸 = 𝑇𝑑𝑆 + 𝐹𝑑𝐿, (17.2)

where 𝐹 is the force (the component of the force parallel to the stretching direction
of the force) stretching the band. Since the process is adiabatic and quasistatic, 𝑆 is
constant. Even if you rapidly pull the band, the maximum stretching rate you can
realize is very small from the molecular point of view, so the process is (almost) qua-
sistatic. Since the heat conduction is not a very rapid process, during quick stretch
the system is virtually thermally isolated (= adiabatic). Thus, 𝑆 is virtually constant.

17.2 Polymer chain is just as kids playing hand in hand
To begin with, let us try to understand ‘microscopically’ what we have observed
macroscopically. A rubber band is made of a bunch of polymer chains. Take a single
chain that is wiggling due to thermal motion (Fig. 17.2a).

a

b 

Figure 17.2: a: A schematic picture of a single polymer chain. Each arrow is called a monomer.
b: Polymer-kid analogy. The temperature represents how vigorously kids are moving around. This
also includes ‘vibration’ of individual bodies. The figure is after N. Saito, Polymer Physics (Shokabo,
1967) (The original picture was due to T. Sakai’s lecture according to Saito). The entropy of a
chain is monotonically related to the width of the range kids can play around easily, which becomes
smaller if the distance between the flags is increased.

Stretching the chain corresponds to increasing the space between the flags of Fig.
17.2b in the playing kid analogy. If the chain does not break, the spatial room
for moving is decreased, but since the kids must keep their entropy, the restricted
dancing motion must find substitute degrees of freedom: shaking bodies (i.e., room
in the momentum subspace). That is, the temperature of the system should go up.
This suggests that if the chain is stretched under constant 𝑇 , entropy should go
down:

𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝑇

< 0. (17.3)
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Can you conclude this from what you observed (17.1)? Yes, you can, but you
must know how to manipulate partial derivatives efficiently (see toward the end of
this section).

17.3 Freely jointed polymer chain
Before explaining useful thermodynamic techniques, let us try to understand the
polymer chain system statistical-mechanically. For simplicity, let us consider a poly-
mer chain along the 𝑥-axis (Fig. 17.3).

O
x

L
Figure 17.3: It is expanded in the vertical direction to avoid cluttering. Monomers can take the
+ or − direction. The right and left direction monomer numbers 𝑁± (𝑁+ +𝑁− = 𝑁) can be used
to compute the number of conformations.

We assume that the chain is free-jointed, that is, there is no energy cost to change
its conformation at all (just as an ideal gas can change its configuration without
any energy cost). The Hamiltonian of this free-jointed polymer consists of the chain
kinetic energy 𝐾 only, which is, in any case, independent of the conformation of the
chain. The Gibbs relation is

𝑑𝐸 = 𝑇𝑑𝑆 + 𝐹𝑑𝐿, (17.4)

where, as above, 𝐿 is the length (i.e., the end-to-end distance) of the chain, and 𝐹
is the stretching force. Do not forget that 𝐸 depends only on 𝑇 , since it is (just the
averaged) 𝐾.297

We can easily compute the entropy of the ideal rubber band using Boltzmann’s
principle. Following the figure caption of Fig. 17.3, let us introduce 𝑁± so that
𝑁+ +𝑁− = 𝑁 , and 𝑁+ −𝑁− = 𝑋 ≡ 𝐿/ℓ. We have

𝑁± =
1

2
(𝑁 ±𝑋). (17.5)

Therefore, (recognize that this is exactly the same problem as the Schottky defect

297Since 𝐸 does not depend on 𝐿, you might wonder where the work we do is stored when we
stretch the rubber. Since 𝐸 does not depend on 𝐿, it is surely stored not in the chain conformations,
but is stored as the kinetic energy (so the temperature goes up). The situation is exactly the same
as the ideal gas. In this case, the volume work done to the system is stored as its kinetic energy,
since 𝐸 does not depend on 𝑉 .

350



problem 13.2 as to obtaining the entropy)

𝑤(𝑋) =

(︂
𝑁

𝑁+

)︂
. (17.6)

From this, immediately we obtain (see 13.3)

𝑆 = −𝑁𝑘𝐵
[︂
𝑁+

𝑁
log

𝑁+

𝑁
+
𝑁−

𝑁
log

𝑁−

𝑁

]︂
. (17.7)

or

𝑆 = −𝑁𝑘𝐵
[︂
𝑁 +𝑋

2𝑁
log

𝑁 +𝑋

2𝑁
+
𝑁 −𝑋
2𝑁

log
𝑁 −𝑋
2𝑁

]︂
. (17.8)

With the aid of the Gibbs relation, we obtain (note that ℓ𝑋 = 𝐿)

𝐹 = −𝑇
ℓ

𝜕𝑆

𝜕𝑋

⃒⃒⃒⃒
=
𝑘𝐵𝑇

2ℓ
log

𝑁 +𝑋

𝑁 −𝑋
. (17.9)

This implies
𝐿 = 𝑁ℓ tanh(𝛽ℓ𝐹 ). (17.10)

Since tanh𝑥 ≃ 𝑥 for small 𝑥, this implies a Hookean spring

𝐹 = (𝑘𝐵𝑇/𝑁ℓ
2)𝐿. (17.11)

That is, 𝑘𝐵𝑇/⟨𝑅2⟩ is the spring constant, where ⟨𝑅2⟩ = 𝑁ℓ2 is the mean square
end-to-end distance of a polymer chain.

17.4 Ideal rubber band
Can we explain what we have experienced at the beginning of this section using this
entropy? Never. (17.8) implies that if 𝐿 is fixed, then 𝑆 is fixed. This is physically
obvious, because the set of allowed conformations is completely determined by 𝐿. It
is clear that we need thermal motion. Then, the entropy should read

𝑆 = 𝑁𝑘𝐵

[︂
𝑁 +𝑋

2𝑁
log

𝑁 +𝑋

2𝑁
+
𝑁 −𝑋
2𝑁

log
𝑁 −𝑋
2𝑁

]︂
+ 𝑆𝑒(𝐸), (17.12)

where 𝑆𝑒 is the entropy dependent only on the internal energy 𝐸 which is solely due
to thermal motion.298 This implies that the temperature-internal energy relation is
independent of 𝐿 (just as the internal energy of the ideal gas is independent of 𝑉 ).
Such a rubber is called an ideal rubber.

298Recall that the ideal gas entropy 10.16 has this form.
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We can make a more detailed model of a rubber band to compute more realistic
entropy, but without such microscopic details thermodynamics can tell you many
qualitative features. To this end, we must be able to manipulate thermodynamic
quantities and derivatives more efficiently. Let us begin with a review of partial
differentiation.

17.5 Partial derivative review
Let us write down the definition of partial derivatives. Consider a two-variable
function 𝑓 = 𝑓(𝑥, 𝑦). Then, partial derivatives are defined as

𝜕𝑓

𝜕𝑥
≡ 𝑓𝑥(𝑥, 𝑦) = lim

𝛿𝑥→0

𝑓(𝑥+ 𝛿𝑥, 𝑦)− 𝑓(𝑥, 𝑦)
𝛿𝑥

, (17.13)

𝜕𝑓

𝜕𝑦
≡ 𝑓𝑦(𝑥, 𝑦) = lim

𝛿𝑦→0

𝑓(𝑥, 𝑦 + 𝛿𝑦)− 𝑓(𝑥, 𝑦)
𝛿𝑦

. (17.14)

Partial differentiation is extremely tricky in general. For example, even if 𝜕𝑓/𝜕𝑥
and 𝜕𝑓/𝜕𝑦 exist at a point, 𝑓 can be discontinuous at the same point. 𝐸 is once
continuously differentiable with respect to 𝑆 and work coordinates, so we need a
stronger concept of differentiability in the many-variable case.

17.6 Derivative of multivariate function
Let 𝑓 be a function of several variables 𝑥 = (𝑥1, · · · , 𝑥𝑛). We could understand 𝑓
as a function of the vector 𝑥. We wish to study its ‘linear response’ to the change
𝑥→ 𝑥+ 𝛿𝑥:

𝛿𝑓(𝑥) = 𝑓(𝑥+ 𝛿𝑥)− 𝑓(𝑥) = 𝐷𝑓(𝑥)𝑑𝑥+ 𝑜[𝛿𝑥], (17.15)

where 𝑜 denotes higher order terms that vanish faster than ‖𝛿𝑥‖, when the limit
𝛿𝑥→ 0 is taken. Here, 𝐷𝑓 is a linear operator299 that can be written as

𝐷𝑓(𝑥)𝑑𝑥 =
∑︁
𝑖

𝜕𝑓

𝜕𝑥𝑖
𝑑𝑥𝑖. (17.16)

If such a linear map 𝐷𝑓 is well-defined, we say that 𝑓 is (totally) differentiable (or
strongly differentiable). If there are only two variables, we may write

𝐷𝑓(𝑥, 𝑦)(𝑑𝑥, 𝑑𝑦) =
𝜕𝑓

𝜕𝑥
𝑑𝑥+

𝜕𝑓

𝜕𝑦
𝑑𝑦. (17.17)

299[This is a repetition for convenience.] 𝐿 is a linear operator acting on a function set ℱ , if it is
a map from ℱ to some other vector space such that

𝐿(𝛼𝑓 + 𝛽𝑔) = 𝛼𝐿𝑓 + 𝛽𝐿𝑔,

where 𝑓, 𝑔 ∈ ℱ and 𝛼, 𝛽 are numbers.
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17.7 Maxwell’s relations
Let us closely look at 𝑓(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) − 𝑓(𝑥, 𝑦). There are two ways to go from
(𝑥, 𝑦) to (𝑥+ 𝛿𝑥, 𝑦 + 𝛿𝑦), 𝛿𝑥 first or 𝛿𝑦 first:

𝑓(𝑥+ 𝛿𝑥, 𝑦 + 𝛿𝑦)− 𝑓(𝑥, 𝑦) = 𝑓(𝑥+ 𝛿𝑥, 𝑦 + 𝛿𝑦)− 𝑓(𝑥+ 𝛿𝑥, 𝑦) + 𝑓(𝑥+ 𝛿𝑥, 𝑦)− 𝑓(𝑥, 𝑦)
= 𝑓𝑦(𝑥+ 𝛿𝑥, 𝑦)𝛿𝑦 + 𝑓𝑥(𝑥, 𝑦)𝛿𝑥, (17.18)

𝑓(𝑥+ 𝛿𝑥, 𝑦 + 𝛿𝑦)− 𝑓(𝑥, 𝑦) = 𝑓(𝑥+ 𝛿𝑥, 𝑦 + 𝛿𝑦)− 𝑓(𝑥, 𝑦 + 𝛿𝑦) + 𝑓(𝑥, 𝑦 + 𝛿𝑦)− 𝑓(𝑥, 𝑦)
= 𝑓𝑥(𝑥, 𝑦 + 𝛿𝑦)𝛿𝑥+ 𝑓𝑦(𝑥, 𝑦)𝛿𝑦. (17.19)

The difference between these two formulas is

[𝑓𝑦(𝑥+ 𝛿𝑥, 𝑦)− 𝑓𝑦(𝑥, 𝑦)]𝛿𝑦− [𝑓𝑥(𝑥, 𝑦+ 𝛿𝑦)− 𝑓𝑥(𝑥, 𝑦)]𝛿𝑥 = [𝑓𝑥𝑦(𝑥, 𝑦)− 𝑓𝑦𝑥(𝑥, 𝑦)]𝛿𝑥𝛿𝑦.
(17.20)

This must vanish if the surface defined by 𝑓 is at least twice differentiable.300 That
is,

𝑓𝑥𝑦 = 𝑓𝑦𝑥. (17.21)

For example, for a rubber band 𝑑𝐸 = 𝑇𝑑𝑆 + 𝐹𝑑𝐿, so

𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

=
𝜕𝐹

𝜕𝑆

⃒⃒⃒⃒
𝐿

. (17.22)

Such relations are called Maxwell’s relations in thermodynamics.

17.8 Jacobian technique: preamble
To manipulate many partial derivatives, it is very convenient to use the so-called
Jacobian technique. This technique may not even be taught in graduate courses,
but it is easy to memorize, and easy to use. It can greatly reduce the insight and
skill required in thermodynamics, especially with the Jacobian version of Maxwell’s
relation (17.39).301

17.9 Jacobian and its basic properties
The Jacobian for two functions 𝑋 and 𝑌 of two independent variables 𝑥, 𝑦 is defined

300We must say something more careful mathematically, but let us be contented with this for
now.

301Mathematically rigorously speaking, some people would claim that there can be many danger-
ous things, but in thermodynamics, the manipulation is perfectly mechanical (formal), so virtually
there is no danger of making any logical errors.
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by the following determinant:

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
≡

⃒⃒⃒⃒
⃒⃒ 𝜕𝑋

𝜕𝑥

⃒⃒
𝑦

𝜕𝑋
𝜕𝑦

⃒⃒⃒
𝑥

𝜕𝑌
𝜕𝑥

⃒⃒
𝑦

𝜕𝑌
𝜕𝑦

⃒⃒⃒
𝑥

⃒⃒⃒⃒
⃒⃒ = 𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦

𝜕𝑌

𝜕𝑦

⃒⃒⃒⃒
𝑥

− 𝜕𝑌

𝜕𝑥

⃒⃒⃒⃒
𝑦

𝜕𝑋

𝜕𝑦

⃒⃒⃒⃒
𝑥

. (17.23)

In particular, we observe
𝜕(𝑋, 𝑦)

𝜕(𝑥, 𝑦)
=
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦

, (17.24)

which is the key observation of this technique. Obviously,302

𝜕(𝑋, 𝑌 )

𝜕(𝑋, 𝑌 )
= 1. (17.25)

There are only two or three formulas you should learn by heart (they are very easy
to memorize). One is straightforwardly obtained from the definition of determinants:
exchanging rows or columns switches the sign:

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
= −𝜕(𝑋, 𝑌 )

𝜕(𝑦, 𝑥)
=
𝜕(𝑌,𝑋)

𝜕(𝑦, 𝑥)
= −𝜕(𝑌,𝑋)

𝜕(𝑥, 𝑦)
. (17.26)

Also notice that for a constant 𝑐

𝜕(𝑐𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
= 𝑐

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
. (17.27)

17.10 Chain rule in terms of Jacobians
If we assume that 𝑋 and 𝑌 are functions of 𝑎 and 𝑏, and that 𝑎 and 𝑏 are, in turn,
functions of 𝑥 and 𝑦, we have the following multiplicative relation:

𝜕(𝑋, 𝑌 )

𝜕(𝑎, 𝑏)

𝜕(𝑎, 𝑏)

𝜕(𝑥, 𝑦)
=
𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
. (17.28)

This is a disguised chain rule:

𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦

=
𝜕𝑋

𝜕𝑎

⃒⃒⃒⃒
𝑏

𝜕𝑎

𝜕𝑥

⃒⃒⃒⃒
𝑦

+
𝜕𝑋

𝜕𝑏

⃒⃒⃒⃒
𝑎

𝜕𝑏

𝜕𝑥

⃒⃒⃒⃒
𝑦

, (17.29)

etc. Confirm (17.28) by yourself (use 𝑑𝑒𝑡(𝐴𝐵) = (𝑑𝑒𝑡𝐴)(𝑑𝑒𝑡𝐵); See D9.1).

The technical significance of (17.28) must be obvious; calculus becomes algebra!

302In this case, we regard 𝑋 and 𝑌 are independent variables. In the Jacobian expression, all the
letters appearing upstairs are regarded dependent variables of the variables itemized downstairs.
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You may think 𝜕(𝐴,𝐵) just as an ordinary number: formally we can do as follows.303

First split the ‘fraction’ and then throw in the identical factors you wish to introduce:

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
=
𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
=
𝜕(𝑋, 𝑌 )

𝜕(𝐴,𝐵)

𝜕(𝐴,𝐵)

𝜕(𝑥, 𝑦)
. (17.30)

From (17.28) we get at once

𝜕(𝑋, 𝑌 )

𝜕(𝐴,𝐵)
= 1

⧸︂
𝜕(𝐴,𝐵)

𝜕(𝑋, 𝑌 )
. (17.31)

In particular, we have304

𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑌

= 1

⧸︂
𝜕𝑥

𝜕𝑋

⃒⃒⃒⃒
𝑌

. (17.32)

17.11 Some illustrations of Jacobian technique
Using these relations, we can easily demonstrate

𝜕𝑋

𝜕𝑦

⃒⃒⃒⃒
𝑥

= − 𝜕𝑥

𝜕𝑦

⃒⃒⃒⃒
𝑋

⧸︃
𝜕𝑥

𝜕𝑋

⃒⃒⃒⃒
𝑦

(17.33)

as follows:

𝜕(𝑋, 𝑥)

𝜕(𝑦, 𝑥)

(17.28)
=

𝜕(𝑋, 𝑥)

𝜕(𝑦,𝑋)

𝜕(𝑦,𝑋)

𝜕(𝑦, 𝑥)

(17.26)
= −𝜕(𝑥,𝑋)

𝜕(𝑦,𝑋)

𝜕(𝑋, 𝑦)

𝜕(𝑥, 𝑦)
. (17.34)

Then, use (17.31). A concrete example of this formula is

𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

= − 𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

⧸︂
𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

, (17.35)

which relates thermal expansivity and isothermal compressibility.

For a rubber band

𝜕𝐿

𝜕𝑆

⃒⃒⃒⃒
𝐹

=
𝜕(𝐿, 𝐹 )

𝜕(𝑆, 𝐹 )
=
𝜕(𝐿, 𝐹 )

𝜕(𝑇, 𝐹 )

𝜕(𝑇, 𝐹 )

𝜕(𝑆, 𝐹 )
=
𝜕𝐿

𝜕𝑇

⃒⃒⃒⃒
𝐹

𝜕𝑇

𝜕𝑆

⃒⃒⃒⃒
𝐹

, (17.36)

which reads
𝜕𝐿

𝜕𝑆

⃒⃒⃒⃒
𝐹

=
𝜕𝐿

𝜕𝑇

⃒⃒⃒⃒
𝐹

⧸︂
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐹

= 𝑇
𝜕𝐿

𝜕𝑇

⃒⃒⃒⃒
𝐹

⧸︂
𝐶𝐹 . (17.37)

Here, 𝐶𝐹 is the heat capacity under constant force. It is explained in 17.12.

303In pragmatic thermodynamics, you can be maximally formal and seldom make any mistake.
304Mathematically properly speaking, on the LHS we regard 𝑋 and 𝑌 as functions of 𝑥 and 𝑦,

and 𝑌 = 𝑌 (𝑥, 𝑦) is fixed. In contrast, on the RHS 𝑥 and 𝑦 are understood as a function of 𝑋 and
𝑌 , and 𝑌 is being kept constant. Thus, the derived relation is rather nontrivial, although formally
obvious.
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17.12 Specific heat and entropy
The relation between heat and entropy (Clausius’ equality) tells us 𝑑′𝑄 = 𝑇𝑑𝑆, so if
we differentiate this with respect to 𝑇 under constant 𝐹 , it must be the heat capacity
under constant 𝐹 . Generally speaking, the heat capacity under constant 𝑋 (which
can be extensive or intensive) always have the following expression:

𝐶𝑋 = 𝑇
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑋

. (17.38)

We will learn the consequence of the stability of the equilibrium states in Section
18: the stability of the equilibrium state implies 𝐶𝑋 ≥ 0 (usually strictly positive).
Imagine the contrary. If you inject heat into a system, its temperature goes down, so
it sucks more heat from the surrounding world, and further reduces its temperature.
That is, such a system becomes a bottomless heat sink.

17.13 (Unified) Maxwell’s relation
All the Maxwell’s relations can be unified in the following form

𝜕(𝑋, 𝑥)

𝜕(𝑌, 𝑦)
= −1, (17.39)

where (𝑥,𝑋) and (𝑦, 𝑌 ) are conjugate pairs. This is the third equality you should
memorize. When you use this, do not forget that (−𝑃, 𝑉 ) (not (𝑃, 𝑉 )) is the conju-
gate pair.

Let us demonstrate this. From · · ·+ 𝑥𝑑𝑋 + 𝑦𝑑𝑌 + · · · Maxwell’s relation reads

𝜕𝑥

𝜕𝑌

⃒⃒⃒⃒
𝑋

=
𝜕𝑦

𝜕𝑋

⃒⃒⃒⃒
𝑌

. (17.40)

That is,
𝜕(𝑥,𝑋)

𝜕(𝑌,𝑋)
=

𝜕(𝑦, 𝑌 )

𝜕(𝑋, 𝑌 )
. (17.41)

This implies (mere 𝑎/𝑏 = 𝑐/𝑑⇒ 𝑎/𝑐 = 𝑏/𝑑 !)

𝜕(𝑥,𝑋)

𝜕(𝑦, 𝑌 )
=
𝜕(𝑌,𝑋)

𝜕(𝑋, 𝑌 )
= −1. (17.42)
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Perhaps, the following may be better:305

𝜕(𝑋, 𝑥)

𝜕(𝑦, 𝑌 )
= 1. (17.43)

For example, (17.22) can be obtained as follows:

𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

=
𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝑆)
=
𝜕(𝐿, 𝐹 )

𝜕(𝐿, 𝑆)

𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝐹 )
=
𝜕𝐹

𝜕𝑆

⃒⃒⃒⃒
𝐿

. (17.44)

17.14 Rubber band thermodynamics
Equipped with the machinery, let us study the rubber band in more detail. The
rubber band is elastic because of the thermal motion of the polymer chains. That is,
resistance to reducing entropy is the cause of elastic bouncing. Thus, such elasticity
is called the entropic elasticity.306 An important feature is that the elastic force
increases with 𝑇 under constant length (which is easily understood from the kid
picture Fig. 17.2):

𝜕𝐹

𝜕𝑇

⃒⃒⃒⃒
𝐿

> 0. (17.45)

Is this related to what we have observed (17.1)? Yes. Follow the following logic (as
a practice):

0 <
𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

=
𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝑆)
=
𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝐹 )

𝜕(𝐿, 𝐹 )

𝜕(𝐿, 𝑆)
=
𝜕(𝐿, 𝐹 )

𝜕(𝐿, 𝑆)
(17.46)

=
𝜕(𝐿, 𝐹 )

𝜕(𝑇, 𝐿)

𝜕(𝑇, 𝐿)

𝜕(𝐿, 𝑆)
=
𝜕(𝐹,𝐿)

𝜕(𝑇, 𝐿)

⧸︂
𝜕(𝑆, 𝐿)

𝜕(𝑇, 𝐿)
=
𝜕𝐹

𝜕𝑇

⃒⃒⃒⃒
𝐿

𝑇

𝐶𝐿

. (17.47)

Or

0 <
𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

=
𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝑆)
=
𝜕(𝑇, 𝑆)

𝜕(𝑇, 𝐿)

𝜕(𝑇, 𝐿)

𝜕(𝐿, 𝑆)
= −𝜕(𝑇, 𝑆)

𝜕(𝑇, 𝐿)

𝑇

𝐶𝐿

(17.48)

= −𝜕(𝐹,𝐿)
𝜕(𝑇, 𝐿)

𝜕(𝑇, 𝑆)

𝜕(𝐹,𝐿)

𝑇

𝐶𝐿

=
𝜕𝐹

𝜕𝑇

⃒⃒⃒⃒
𝐿

𝑇

𝐶𝐿

. (17.49)

305If you know the theory of differential forms, this must be trivial: since 𝑑2𝐸 = 𝑑(· · · + 𝑥𝑑𝑋 +
𝑦𝑑𝑌 +· · ·) = 0, if you change only𝑋 and 𝑌 , 𝑑𝑥∧𝑑𝑋 = −𝑑𝑦∧𝑑𝑌 . The ratio of the infinitesimal areas
on both sides is the Jacobian. Thus, the relation is simply a conequence of thermodynamic quantities
being state variables (not due to the conservation law as erroneously claimed in a published awkward
demonstration in Am. J. Phys.).

306In contrast, the usual elasticity is called energetic elasticity, which is caused by opposing
increase of energy.
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That is, you do not need any foresight.
From our microscopic imagination visualized in Fig. 17.2, we guessed

𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝑇

< 0. (17.50)

Let us derive this from (17.1).

𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝑇

=
𝜕(𝑆, 𝑇 )

𝜕(𝐿, 𝑇 )
=
𝜕(𝑆, 𝑇 )

𝜕(𝐿, 𝑆)

𝜕(𝐿, 𝑆)

𝜕(𝐿, 𝑇 )
= − 𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

𝐶𝐿

𝑇
< 0. (17.51)

17.15 Adiabatic cooling with rubber band
If a tightly stretched rubber band is suddenly relaxed (= adiabatically relaxed) after
equilibrating with the room temperature, what do you observe? You can feelwith
your lip that the band becomes very cool.

This is not surprising, because

𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

> 0; (17.52)

Now, 𝐿 is reduced under constant 𝑆, so must decrease 𝑇 . This is the principle of
adiabatic cooling (see Fig. 17.4).
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Figure 17.4: Initially, the system is at 𝑇1. Isothermally, 𝐿 is increased as 𝐿1 → 𝐿2. This decreases
entropy. Now, 𝐿 is returned to the original smaller value adiabatically and reversibly. The entropy
is maintained, and the temperature decreases (adiabatic cooling) to 𝑇2. The dotted path is the
one you experienced by initial rapid stretching of a rubber band. Instead, you could isothermally
stretch the band and then relax adiabatically (along the full line with an arrowhead).

17.16 Cooling via adiabatic demagnetization
Unfortunately, we cannot use a rubber band to cool a system to a very low tem-
perature, since it becomes brittle (chain motion freezes out easily and equilibration
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becomes difficult). In actual low temperature experiments, a collection of almost
non-interacting magnetic dipoles (i.e., a paramagnetic material) is used. The system
is closely related to polymer chains as illustrated in Fig. 17.5.

a b

Figure 17.5: a of Fig. 17.2 corresponds to b a paramagnet, a collection of only weakly interacting
magnetic dipoles.

The Gibbs relation of the magnetic system is

𝑑𝐸 = 𝑇𝑑𝑆 +𝐵𝑑𝑀, (17.53)

where 𝐵 is the magnetic field, and 𝑀 the magnetization. The correspondences
𝐵 ↔ 𝐹 and 𝑀 ↔ 𝐿 are almost perfect: 𝑀 is the sum of small dipole vectors, and
𝐿 is also the sum of (the projected components) of ‘steps’ (monomer orientation
vectors). Thus, we expect

𝜕𝑇

𝜕𝑀

⃒⃒⃒⃒
𝑆

> 0 (17.54)

and adiabatic cooling can be realized; first apply a strong magnetic field and align
all the dipoles. We can do this slowly and isothermally. Then, turn off the magnetic
field to make 𝑀 → 0 (demagnetization) adfiabatically. Simply replacing 𝐿 with 𝑀
in Fig. 17.4, we can understand this adiabatic demagnetization strategy to cool a
system.

17.17 Ideal magnetic system
We can imagine a collection of noninteracting magnetic dipoles (called spins) taking
only up or down (or 𝑠 = ±1) values.307 The total magnetization of the system reads

𝑀 = 𝜇

𝑁∑︁
𝑖=1

𝑠𝑖, (17.55)

where 𝜇 is the ratio of the magnetic moment and the spin (the gyromagnetic ratio).
It is a good exercise to compute 𝑆 as a function of 𝑀 , but, as you can guess easily,

𝑀 = 𝜇𝑁 tanh 𝛽𝜇𝐵, (17.56)

where𝐵 is the magnetic field. The relation between𝑀 and𝐵 for small𝐵 corresponds
to Hooke’s law (17.11):

𝑀 = (𝑁𝜇2/𝑘𝐵𝑇 )𝐵, (17.57)

307If magnetic atoms are dilute in an insulating solid, they do not interact with each other.
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which is called Curie’s law: the magnetic susceptibility 𝜒 = 𝑁𝜇2/𝑘𝐵𝑇 .
Just as in the freely-jointed polymer model we discussed (without the 𝑆𝑒 term),

there is no kinetic energy of spins (or of the entities carrying spins), so the entropy
of this model is constant under constant 𝑀 . Thus, just as in the ideal rubber
model, without the term similar to 𝑆𝑒 the model cannot explain the use of adiabatic
demagnetization to cool other systems as a refrigerating mechanism.

However, if we are interested in the spins themselves, then their coupling to other
degrees of freedom (the so-called spin-lattice coupling) should not be large. Under
this condition, the system can be described by the present model, so under the
adiabatic demagnetization condition 𝑀 is constant, because 𝑆 is constant. Thus,
since (17.57) or (17.56) implies 𝐵/𝑇 is constant, reducing 𝐵 implies decreasing 𝑇 .308

If we use the magnet as a coolant to cool other systems, we are interested in

𝜕𝑇

𝜕𝐵

⃒⃒⃒⃒
𝑆

=
𝜕(𝑇, 𝑆)

𝜕(𝐵, 𝑆)
=

𝜕(𝑇, 𝑆)

𝜕(𝐵,𝑀)

𝜕(𝐵,𝑀)

𝜕(𝐵, 𝑆)
= −𝜕(𝐵,𝑀)

𝜕(𝐵, 𝑆)
(17.58)

= −𝜕(𝐵, 𝑇 )
𝜕(𝐵, 𝑆)

𝜕(𝐵,𝑀)

𝜕(𝐵, 𝑇 )
= − 𝑇

𝐶𝐵

𝜕𝑀

𝜕𝑇

⃒⃒⃒⃒
𝐵

. (17.59)

Therefore, if Curie’s law of the form 𝑀 = 𝑎(𝐵/𝑇 ) holds, then

𝛿𝑇 =
𝑎𝐵

𝐶𝐵𝑇
𝛿𝐵 (17.60)

gives the cooling rate.

308For a rubber band, reducing 𝐹 while keeping 𝐿 constant in order to change 𝑇 is experimentally
unthinkable.
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Q17.1[Basic problems]
(1) 𝐹 = 𝑥 sin 𝑦, and 𝑦 = 𝑥+ 𝑧. Express

𝜕𝐹

𝜕𝑥

⃒⃒⃒⃒
𝑦

and
𝜕𝐹

𝜕𝑥

⃒⃒⃒⃒
𝑧

(17.61)

in terms of 𝑥 and 𝑦. [sin 𝑦; sin 𝑦 + 𝑥 cos 𝑦]
(2) For a gas 𝑃𝑉 and 𝐸 are functions of 𝑇 only. Show that actually 𝑃𝑉/𝑇 is a
constant. [Compute (𝜕𝐸/𝜕𝑉 )𝑇 = 𝑇 (𝜕𝑆/𝜕𝑉 )𝑇 − 𝑃 = 𝑇 (𝜕𝑃/𝜕𝑇 )𝑉 − 𝑃 = 0.]
(3) For a general gas, find the temperature change 𝑑𝑇 due to adiabatic free expansion
𝑉 → 𝑉 + 𝑑𝑉 . [Compute (𝜕𝑇/𝜕𝑉 )𝐸. (𝜕𝑇/𝜕𝑉 )𝐸 = [𝑃 − 𝑇 (𝜕𝑃/𝜕𝑇 )𝑉 ]/𝐶𝑉 ]
(4) If 𝑀 is a function of 𝐵/𝑇 , 𝐸 is a function of 𝑇 only. [Show (𝜕𝐸/𝜕𝐵)𝑇 = 0 using
(𝜕𝐵/𝜕𝑇 )𝑀 = 𝐵/𝑇 ; quite parallel to (2).]
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18 Stability, fluctuation, and response

Summary
* We can derive the universal stability (and evolution) criterion 𝛿2𝑆 < 0 (> 0) that
is independent of the environmental constraints (say, isothermal, constant volume or
not, etc.)
* 𝜕(𝑋, 𝑌 )/𝜕(𝑥, 𝑦) > 0.
* In equilibrium changes occur in the direction to discourage further changes (to
avoid run-away processes) (Le Chatelier-Braun principle). Our world is generally
stable!
* A generalized Gibbs free energy: 𝐺̃(𝑇, 𝑥) = −𝑘𝐵𝑇 log

∑︀
𝑒−𝛽(𝐻−𝑥𝑋̂).

* Susceptibilities are directly related to the second moments of fluctuations (fluctuation-
response relation).

Key words
universal stability criterion, universal evolution criterion, positive definite quadratic
form, Le Chatelier principle, Le Chatelier-Braun principle, generalized Gibbs free
energy, generalized canonical partition function, fluctuation-response relation

What you should be able to do
* Be able to derive the universal stability criterion.
* To mention some of the crucial conclusions due to the stability criterion (say,
𝐶𝑋 > 0, 𝐶𝑥 > 𝐶𝑋 , etc.).
* Be able to build a convenient partition function to obtain a convenient thermody-
namic potential directly.
* Be able to recognize important conclusions we can obtain from the fluctuation-
response relation.
* Be able to explain why fluctuation studies are important.

18.1 Stability question and need for stability criteria
What is the sign of

𝜕𝑆

𝜕𝐹

⃒⃒⃒⃒
𝐿

(18.1)

for a rubber band? Intuition tells us that it must be positive (To increase 𝐹 while
keeping 𝐿, we must invigorate the motion of chains, so we must raise the temperature,
resulting in the increase of entropy). Let us check this, starting with our empirical
result

𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

> 0. (18.2)
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What you should do first is to rewrite the partial derivative in terms of Jacobians:

𝜕𝑆

𝜕𝐹

⃒⃒⃒⃒
𝐿

=
𝜕(𝑆, 𝐿)

𝜕(𝐹,𝐿)
. (18.3)

(18.2) is
𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

=
𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝑆)
, (18.4)

so we should keep (𝐿, 𝑆), which appears in both the formulas above, and insert
(𝑇, 𝑆):

𝜕𝑆

𝜕𝐹

⃒⃒⃒⃒
𝐿

=
𝜕(𝑆, 𝐿)

𝜕(𝐹,𝐿)
=
𝜕(𝑆, 𝐿)

𝜕(𝑇, 𝑆)

𝜕(𝑇, 𝑆)

𝜕(𝐹,𝐿)
= −𝜕(𝑆, 𝐿)

𝜕(𝑇, 𝑆)
=
𝜕(𝐿, 𝑆)

𝜕(𝑇, 𝑆)
> 0. (18.5)

We have used a Maxwell’s relation: 𝜕(𝑇, 𝑆)/𝜕(𝐹,𝐿) = −1.
One more for a gas: How about the sign of

𝜕𝑆

𝜕𝑃

⃒⃒⃒⃒
𝑉

? (18.6)

To increase 𝑃 under constant 𝑉 , (usually) we have to raise the temperature, resulting
in the increase of entropy, so the sign must be positive. The cleverest approach may
be

𝜕𝑆

𝜕𝑃

⃒⃒⃒⃒
𝑉

=
𝜕(𝑆, 𝑉 )

𝜕(𝑃, 𝑉 )
=

𝜕(𝑆, 𝑉 )

𝜕(𝑇,−𝑃 )
𝜕(𝑇,−𝑃 )
𝜕(𝑃, 𝑉 )

=
𝜕(𝑆, 𝑉 )

𝜕(𝑇,−𝑃 )

⧸︂
𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

. (18.7)

Therefore, (18.6) and (𝜕𝑉/𝜕𝑇 )𝑃 have the same sign, but to understand this statement
we need the following inequality resulting from the system stability:

𝜕(𝑆, 𝑉 )

𝜕(𝑇,−𝑃 )
> 0. (18.8)

For a gas (𝜕𝑉/𝜕𝑇 )𝑃 > 0 without doubt, but this sign is not due to some reason
of principle nature (in contradistinction to the inequality (18.8)). For liquid water
below 4∘C under the atmospheric pressure, this derivative is indeed negative.

18.2 Two kinds of inequalities, sacred and not
As we will see in this section we encounter two different types of inequalities in ther-
modynamics; one class is due to some reason of thermodynamic principle, and the
other is only due to materialistic accident. Generally speaking, what is not forbidden
by thermodynamics does happen in our world.

According to our ordinary experiences (and also due to the microscopic picture
of materials) (𝜕𝑉/𝜕𝑇 )𝑃 > 0 looks quite natural, but thermodynamics does not say
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anything about this sign. That is, even if it is negative, thermodynamics would not
complain, and indeed what is not forbidden by thermodynamics does happen in this
case.

18.3 Universal stability criteria
Clausius told us that if a spontaneous change occurs in an isolated system,

Δ𝑆 ≥ 0. (18.9)

We use the standard trick to study a non-isolated system S as a small part of a huge
isolated system (Fig. 18.1) whose intensive variables are kept constant, but their con-
jugate extensive variables may be exchanged freely between S and its surrounding
reservoir.

T

P

x

e

e

e

S

Figure 18.1: S is a part of a huge isolated system whose intensive parameters 𝑇𝑒, 𝑃𝑒, 𝑥𝑒, etc.,
are kept constant. This is virtually possible because the whole system is huge. Their conjugate
extensive quantities 𝑆 (or heat), 𝑉 , 𝑋, etc., can be freely exchanged between the system S and the
rest.

If something spontaneous can happen, the total entropy must increase. In the
system something irreversible might have happened, so we cannot compute Δ𝑆 di-
rectly with the aid of imported quantities Δ𝐸,Δ𝑉 , etc. However, for the reservoir,
since we assume it is always in equilibrium, we can write its entropy change as

Δ𝑆𝑟𝑒𝑠 = −
1

𝑇𝑒
Δ𝐸 − 𝑃𝑒

𝑇𝑒
Δ𝑉 +

𝑥𝑒
𝑇𝑒

Δ𝑋. (18.10)

Here, Δ𝐸, etc., are the quantities seen from the system S (‘+ signs’ for importing
to S), so −Δ𝐸, −Δ𝑉 , etc., are the imported quantities to the reservoir. That is
why the signs in (18.10) are different from the usual Gibbs relation. Thus, the total
entropy change is Δ𝑆 + Δ𝑆𝑟𝑒𝑠, and the Clausius’ inequality for the isolated system
reads

Δ𝑆 − 1

𝑇𝑒
Δ𝐸 − 𝑃𝑒

𝑇𝑒
Δ𝑉 +

𝑥𝑒
𝑇𝑒

Δ𝑋 +
𝜇𝑒

𝑇𝑒
Δ𝑁 ≥ 0. (18.11)

Here, although we have not yet discussed the change of number 𝑁 of particles and its
conjugate variable 𝜇 (chemical potential), since it is formally quite similar to other
terms, for the later convenience, the last term is added, which will be discussed in
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Section 20.
If the equilibrium state is stable, then

Δ𝑆 − 1

𝑇𝑒
Δ𝐸 − 𝑃𝑒

𝑇𝑒
Δ𝑉 +

𝑥𝑒
𝑇𝑒

Δ𝑋 +
𝜇𝑒

𝑇𝑒
Δ𝑁 < 0. (18.12)

Now, let us look at Δ𝑆 more closely. If the changes are very small, we can
Taylor-expand Δ𝑆 into a power series of 𝛿𝐸 = Δ𝐸, 𝛿𝑉 = Δ𝑉 , etc. (here Δ for the
independent variables is replaced by 𝛿 to make it clear that all changes are small).
We can separate the entropy change into the first order small quantity 𝛿𝑆, the second
order small quantity 𝛿2𝑆, etc., as

Δ𝑆 = 𝛿𝑆 + 𝛿2𝑆 + · · · . (18.13)

The first order term reads

𝛿𝑆 =
1

𝑇𝑒
𝛿𝐸 +

𝑃𝑒

𝑇𝑒
𝛿𝑉 − 𝑥𝑒

𝑇𝑒
𝛿𝑋 − 𝜇𝑒

𝑇𝑒
𝛿𝑁, (18.14)

because the derivatives are computed around the equilibrium state. Combining this
expression, (18.12) and (18.13), we conclude that the stability condition of the equi-
librium state is

𝛿2𝑆 < 0 (18.15)

irrespective of the constraints imposed on the system S (that is, independent of
whether some extensive quantities are allowed to be exchanged or not). Thus, this
is the universal stability condition for the equilibrium state.

Notice that (18.15) was concluded for isolated systems before as the max entropy
principle, but here it is about the general non-isolated system, so this does not imply
max entropy; irrespective of 𝑆 being max or not, 𝛿2𝑆 < 0 is the stability condition.

18.4 Universal stability criterion in terms of internal energy
(18.12) may be rearranged as

Δ𝐸 > 𝑇𝑒Δ𝑆 − 𝑃𝑒Δ𝑉 + 𝑥𝑒Δ𝑋 + 𝜇𝑒Δ𝑁. (18.16)

Now, restricting the variations to small ones, we can Taylor-expand Δ𝐸 just as we
did for Δ𝑆. You should immediately realize that a very similar logic as above can
give us another, but equivalent universal stability criterion

𝛿2𝐸 > 0. (18.17)
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18.5 Le Chatelier’s principle
Let us study the consequences of the stability criterion (18.17): a general expression
is ∑︁

𝑖,𝑗

𝜕2𝐸

𝜕𝑋𝑖𝜕𝑋𝑗

𝛿𝑋𝑖𝛿𝑋𝑗 > 0. (18.18)

This is a positive definite quadratic form, and we can express it as

(𝛿𝑆, 𝛿𝑉, 𝛿𝑁)

⎛⎜⎝
𝜕𝑇
𝜕𝑆

⃒⃒
𝑉,𝑁

𝜕𝑇
𝜕𝑉

⃒⃒
𝑆,𝑁

𝜕𝑇
𝜕𝑁

⃒⃒
𝑆,𝑉

− 𝜕𝑃
𝜕𝑆

⃒⃒
𝑉,𝑁

− 𝜕𝑃
𝜕𝑉

⃒⃒
𝑆,𝑁

− 𝜕𝑃
𝜕𝑁

⃒⃒
𝑆,𝑉

𝜕𝜇
𝜕𝑆

⃒⃒
𝑉,𝑁

𝜕𝜇
𝜕𝑉

⃒⃒
𝑆,𝑁

𝜕𝜇
𝜕𝑁

⃒⃒
𝑆,𝑉

⎞⎟⎠
⎛⎝ 𝛿𝑆

𝛿𝑉
𝛿𝑁

⎞⎠ > 0. (18.19)

Let us assume 𝑁 is constant for simplicity. The sign of (18.19) must always be
positive irrespective of the choice of 𝛿𝑆 and 𝛿𝑉 (unless both are zero). Therefore,
all the diagonal terms must be positive:

0 <
𝜕𝑇

𝜕𝑆

⃒⃒⃒⃒
𝑉

=
𝑇

𝐶𝑉

, (18.20)

and in terms of the adiabatic compressibility 𝜅𝑆 = −(𝜕𝑉/𝜕𝑃 )𝑆/𝑉

0 < − 𝜕𝑃

𝜕𝑉

⃒⃒⃒⃒
𝑆

=
1

𝑉 𝜅𝑆
. (18.21)

You must be able to imagine what happens if these signs are flipped.
The diagonal inequalities are called Le Chatelier’s principle.309 We can verbally

state the consequence as follows:

In equilibrium changes occur in the direction to discourage further changes (to
avoid run-away processes).

For example, if Δ𝑆 is injected (e.g., heat is injected) into the system, its tem-
perature goes up, which usually discourages further injection of heat. In the case of
compressibility, decrease of the volume of the system increases the pressure, resisting
further squishing. Thus, no runaway phenomenon is realized in the world we live in.

18.6 Le Chatelier-Braun’s principle
Which is larger, the susceptibility under constant extensive quantity and that under
constant intensive quantity? An example is: which is larger 𝐶𝑃 or 𝐶𝑉 ? A general

309Henry Louis Le Chatelier (1850-1936): Compt. rend., 99, 786 (1884).
[1884 Boltzmann derived the Stefan-Boltzmann law; Poynting vector was introduced; Friedrich
Nietzsche: Also sprach Zarathustra (publication concluded); Georges-Pierre Seurat, Bathers at
Asniéres; Mahler Symphony No. 1 D major (Bernstein, VPO); Brahms Symphony No 4 (Haitink,
European CO); John Singer Sargent,Portrait of Madame X].
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answer is called the Le Chatelier-Braun’s principle. Since 𝑑𝑋 = 𝜕𝑋
𝜕𝑥

⃒⃒
𝑦
𝑑𝑥+ 𝜕𝑋

𝜕𝑦

⃒⃒⃒
𝑥
𝑑𝑦+

· · ·
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑌

=
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦

+
𝜕𝑋

𝜕𝑦

⃒⃒⃒⃒
𝑥

𝜕𝑦

𝜕𝑥

⃒⃒⃒⃒
𝑌

(18.22)

=
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦

+
𝜕𝑋

𝜕𝑦

⃒⃒⃒⃒
𝑥

𝜕(𝑦, 𝑌 )

𝜕(𝑥, 𝑌 )
(18.23)

=
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦

+
𝜕𝑋

𝜕𝑦

⃒⃒⃒⃒
𝑥

𝜕(𝑦, 𝑌 )

𝜕(𝑋, 𝑥)

𝜕(𝑋, 𝑥)

𝜕(𝑦, 𝑥)

𝜕(𝑦, 𝑥)

𝜕(𝑥, 𝑌 )
(18.24)

=
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦

− 𝜕𝑋

𝜕𝑦

⃒⃒⃒⃒2
𝑥

𝜕𝑦

𝜕𝑌

⃒⃒⃒⃒
𝑥

. (18.25)

Here, a Maxwell’s relation has been used. This implies that

𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦

>
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑌

. (18.26)

Therefore, the indirect change in extensive quantities (of 𝑌 in the above formula)
occurs in the direction to reduce the effect of the perturbation (Le Chatelier-Braun’s
principle).310 As already noted, a typical example is 𝐶𝑃 ≥ 𝐶𝑉 : larger specific heat
implies that it is harder to warm up, that is, the system becomes harder to heat up
if the volume change (i.e., the indirect change) is allowed.

18.7 2× 2 stability criterion
A necessary and sufficient condition for (18.19) is the positivity of all the principal
minors311 of the matrix in (18.19). Therefore, in particular,

𝜕(𝑇,−𝑃 )
𝜕(𝑆, 𝑉 )

> 0. (18.27)

Generally,
𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
> 0, (18.28)

310Karl Ferdinand Braun (1850-1918): Z. physik. Chen., 1, 269 (1887), Ann. Physik, 33, 337
(1888) [the inventor of the cathode-ray tube, the discoverer of principle of semiconductor diode,
shared the Nobel prize with Marconi for wireless technology]. The history of this principle can be
found in J. de Heer, “The principle of le Chatelier and Braun,” J. Chem. Educ., 34, 375 (1957).
The form stated here is due to Ehrenfest.
[1888: Clausius died; van Gogh cuts off his left ear, The Night Cafe; Paul Gauguin Vision After
the Sermon; Tchaikovsky, 5th Symphony; Mahler No 2 Resurrection (Jansons, Concertgebouw).]

311You sample the same row and column numbers (say, 1, 3, 7 and 8th columns and 1, 3, 7 and
8th rows from the original matrix and make a determinant det(𝑎𝑖𝑗), where 𝑖, 𝑗 ∈ {1, 3, 7, 8}). Such
determinants are called principal minors.
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where (𝑥,𝑋) and (𝑦, 𝑌 ) are conjugate pairs. This is perhaps the last formula you
should remember when you use the Jacobian technique.

18.8 Importance of fluctuations
We already know that the mesoscopic world is dominated by fluctuations, which
allow us to have a glimpse of the atomic world underlying the world we experience
daily. We also know that the equilibrium state of a macroscopic systems is always
tested by fluctuations; 𝛿 in the stability criterion is actually spontaneously realized
by thermal fluctuations.

Thus, there is no doubt about the importance of fluctuations qualitatively. How
about quantitatively? We will see that the system response to perturbation is quan-
titatively related to fluctuations.

18.9 Fluctuation-response relation: Generalized Gibbs free energy
Take a finite (classical) system and observe a work coordinate 𝑋 there. We assume
that the system is maintained at temperature 𝑇 . Let us look at the response of 𝑋
to the modification of its conjugate variable 𝑥 (with respect to energy). We wish to
study the susceptibility

𝜒 =
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑇,···

. (18.29)

Here, · · · depends on the system we study. Since we wish to use 𝑇, 𝑥, · · · as indepen-
dent variables, we wish to have a system that can freely exchange their conjugate
extensive quantities with its environment. Then, it is convenient to use the thermo-
dynamic potential 𝐺̃ defined by the following Legendre transformation:

𝐸 → 𝐺̃ = 𝐸 − 𝑇𝑆 − 𝑥𝑋 = 𝐴− 𝑥𝑋. (18.30)

𝐺̃ is a generalized Gibbs free energy. Why is this convenient? Recall the original
Gibbs free energy 𝐺 = 𝐴 + 𝑃𝑉 (do not forget that the conjugate variable of 𝑉 is
−𝑃 ), for which 𝑇 and 𝑃 are independent variables, and we have 𝑑𝐺 = −𝑆𝑑𝑇 +𝑉 𝑑𝑃 .

If we wish to use statistical mechanics, entropy is more fundamental and conve-
nient, so we need the corresponding Legendre transformation for entropy:

𝑆 → −𝐺̃/𝑇 = 𝑆 − 𝐸/𝑇 + 𝑥𝑋/𝑇 = −𝐴/𝑇 + 𝑥𝑋/𝑇. (18.31)

18.10 Generalized canonical ensemble
How can we directly compute 𝐺̃ statistical mechanically?

368



Compare the following relations:

𝑆/𝑘𝐵 = log𝑤(𝐸,𝑋) ↔ 𝑤(𝐸,𝑋) (18.32)

𝑆/𝑘𝐵−𝐸/𝑘𝐵𝑇 = − 𝐴

𝑘𝐵𝑇
= log𝑍(𝑇,𝑋) ↔ 𝑍(𝑇,𝑋) =

∑︁
𝐸

𝑤(𝐸,𝑋)𝑒−𝐸/𝑘𝐵𝑇 .

(18.33)

You must have already guessed:

1

𝑘𝐵
(𝑆−𝐸/𝑇+𝑥𝑋/𝑇 ) = − 𝐺̃

𝑘𝐵𝑇
= log𝑍(𝑇, 𝑥)↔ 𝑍(𝑇, 𝑥) =

∑︁
𝐸

𝑤(𝐸,𝑋)𝑒(−𝐸+𝑥𝑋)/𝑘𝐵𝑇 .

(18.34)
Notice that

𝑍(𝑇, 𝑥) =
∑︁
𝑋

𝑍(𝑇,𝑋)𝑒𝑥𝑋/𝑘𝐵𝑇 =
∑︁

𝑒−𝛽(𝐻−𝑥𝑋), (18.35)

and
𝐺̃(𝑇, 𝑥) = −𝑘𝐵𝑇 log𝑍(𝑇, 𝑥). (18.36)

𝑍 is called a generalized canonical partition function. These relations just look like
the ones we are very familiar with.

18.11 Fluctuation-response relation
The susceptibility 𝜒 = (𝜕𝑋/𝜕𝑥)𝑇,𝑉 of the response 𝑋 to the change of 𝑥 reads

𝜒 = 𝛽
𝜕2 log𝑍

𝜕(𝛽𝑥)2
. (18.37)

Let us compute this with the aid of the expression of the generalized canonical
partition function. First, we obtain

𝑋 =
𝜕log𝑍

𝜕𝛽𝑥
=

1

𝑍

∑︁
𝑋̂𝑒−𝛽𝐻+𝛽𝑥𝑋̂ . (18.38)

Let’s differentiate this once more:

𝜒 = 𝛽
𝜕𝑋

𝜕𝛽𝑥
= − 1

𝑍2

(︁∑︁
𝑋̂𝑒−𝛽𝐻+𝛽𝑥𝑋̂

)︁2
+

1

𝑍

∑︁
𝑋̂2𝑒−𝛽𝐻+𝛽𝑥𝑋̂ . (18.39)

That is,

= 𝛽
(︁
⟨𝑋̂2⟩ − ⟨𝑋̂⟩2

)︁
= 𝛽⟨𝛿𝑋̂2⟩ ≥ 0, (18.40)

where 𝛿𝑋̂ = 𝑋̂ − ⟨𝑋̂⟩.

𝜒

(︂
= 𝛽

𝜕𝑋

𝜕𝛽𝑥

)︂
= 𝛽⟨𝛿𝑋̂2⟩ (18.41)

is called the fluctuation-response relation.
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18.12 Fluctuation-response relation, many variable case
If have many variables. what can we have? Probably, you guessed the following
form:

𝜒𝑖𝑗

(︂
= 𝛽

𝜕𝑋𝑖

𝜕𝛽𝑥𝑗

)︂
= 𝛽⟨𝛿𝑋̂𝑖𝛿𝑋̂𝑗⟩. (18.42)

This is correct.

18.13 Three key outcomes of fluctuation-response relation
We can make three important observations from the fluctuation-response relation
(18.41):
(i) The ‘ease’ of response results from ‘large’ fluctuations. Notice that 𝜒 describes
the response to an external perturbation, but the variance of 𝑋̂ is due to spontaneous
thermal fluctuations. Gentle nudging of the system (reversible change) must respect
the spontaneity of the system.
(ii) Since 𝑋 is extensive and 𝑥 is intensive, 𝜒 must be extensive (proportional to the
number of particles there, 𝑁). Therefore, 𝛿𝑋 = 𝑂[

√
𝑁 ].312

(iii) 𝜒 cannot be negative. This is the manifestation of the stability of the equilib-
rium state as we have already discussed.

18.14 Importance of fluctuation
Thus, we have realized that studying fluctuation is quite important; it could be a
non-invasive method to study the system response. The study of fluctuation is a
mesoscopic scale study of the system, so it is the study of large deviation. Thus, if
we know the large deviation function 𝐼, we are done. Einstein gave 𝐼 for equilibrium
fluctuations. This we will discuss in the next lecture.

312away from critical points. There, 𝜒 can diverge, so nothing can be said from this argument.
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Q18.1 [Signs of derivatives].
(1) What is the sign of

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑃

(18.43)

for liquid water below 4 ∘C (under the atmospheric pressure). You may use the
empirical fact (𝜕𝑉/𝜕𝑇 )𝑃 < 0.
(2) Using the experimental result you confirmed for a rubber band (i.e., (𝜕𝑇/𝜕𝐿)𝑆 >
0), find the sign of

𝜕𝐿

𝜕𝑆

⃒⃒⃒⃒
𝐹

. (18.44)

Then, give an intuitive explanation of your result. You may use the fact (𝜕𝑋/𝜕𝑥)𝑌 >
0 for any conjugate pair (𝑥,𝑋) and for any variable 𝑌 (need not be extensive).
(3) There is an elastic body for which (𝜕𝑆/𝜕𝐿)𝑇 > 0. Find the sign of

𝜕𝐿

𝜕𝑇

⃒⃒⃒⃒
𝐹

, (18.45)

where 𝐹 is the tensile force, and 𝐿 is the length. You may use the fact (𝜕𝑋/𝜕𝑥)𝑌 > 0
for any conjugate pair (𝑥,𝑋) and for any variable 𝑌 (need not be extensive, even
though it is in the upper case.).

Solution.
I strongly recommend you to use the Jacobian technique, since you do not need any
insight. The following (1) explains step by step how this technique works.
(1) First, write the partial derivative in terms of a Jacobian and then split the
denominator and the numerator:

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑃

=
𝜕(𝑆, 𝑃 )

𝜕(𝑉, 𝑃 )
=
𝜕(𝑆, 𝑃 )

−−−
−−−
𝜕(𝑉, 𝑃 )

. (18.46)

Now, you must look at what is given or what you wish: it is (𝜕𝑉/𝜕𝑇 )𝑃 < 0:

𝜕(𝑉, 𝑃 )

𝜕(𝑇, 𝑃 )
= 1

⧸︂
𝜕(𝑇, 𝑃 )

𝜕(𝑉, 𝑃 )
. (18.47)

Since (18.46) already contains (𝑉, 𝑃 ), we should introduce (𝑇, 𝑃 ):

𝜕(𝑆, 𝑃 )

−−−
−−−
𝜕(𝑉, 𝑃 )

=
𝜕(𝑆, 𝑃 )

𝜕(𝑇, 𝑃 )

𝜕(𝑇, 𝑃 )

𝜕(𝑉, 𝑃 )
=
𝐶𝑃

𝑇

⧸︂
𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

< 0, (18.48)

since the specific heat is positive, or the diagonal terms of the Hessian of 𝐸 is positive.
(2)

𝜕𝐿

𝜕𝑆

⃒⃒⃒⃒
𝐹

=
𝜕(𝐿, 𝐹 )

𝜕(𝑆, 𝐹 )
=
𝜕(𝐿, 𝐹 )

𝜕(𝑇, 𝑆)

𝜕(𝑇, 𝑆)

𝜕(𝑆, 𝐹 )
(18.49)

=
𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝑆)

𝜕(𝐿, 𝑆)

𝜕(𝑆, 𝐹 )
= − 𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

𝜕𝐿

𝜕𝐹

⃒⃒⃒⃒
𝑆

< 0. (18.50)
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Here, a Maxwell’s relation
𝜕(𝐿, 𝐹 )

𝜕(𝑇, 𝑆)
= 1 (18.51)

has been used.
(3)

𝜕𝐿

𝜕𝑇

⃒⃒⃒⃒
𝐹

=
𝜕(𝐿, 𝐹 )

𝜕(𝑇, 𝐹 )
=
𝜕(𝐿, 𝐹 )

𝜕(𝑇, 𝑆)

𝜕(𝑇, 𝑆)

𝜕(𝑇, 𝐹 )
=
𝜕(𝑇, 𝑆)

𝜕(𝑇, 𝐹 )
(18.52)

=
𝜕(𝑇, 𝑆)

𝜕(𝑇, 𝐿)

𝜕(𝑇, 𝐿)

𝜕(𝑇, 𝐹 )
> 0. (18.53)

Q18.2 [Le Chatelier-Braun ezmaples].
(1) Consider a rubber band whose Gibbs relation is 𝑑𝐸 = 𝑇𝑑𝑆 + 𝐹𝑑𝐿 (as usual).
Which is larger, the constant length specific heat 𝐶𝐿 or the constant force specific
heat 𝐶𝐹 ? You may be able to guess this, but I ask you to prove this using the
stability criterion.
(2) For a fluid which is larger, the isothermal compressibility 𝜅𝑇 or the adiabatic
compressibility 𝜅𝑆? You may be able to guess this, but I ask you to prove this using
the stability criterion.

Solution.
(1) Le Chatelier-Braun tells 𝐶𝐿 ≤ 𝐶𝐹 . Let us demonstrate this, using

𝑑𝑆 =
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐹

𝑑𝑇 +
𝜕𝑆

𝜕𝐹

⃒⃒⃒⃒
𝑇

𝑑𝐹. (18.54)

This implies (we wish to have the red factor squared)

𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐿

=
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐹

+
𝜕𝑆

𝜕𝐹

⃒⃒⃒⃒
𝑇

𝜕𝐹

𝜕𝑇

⃒⃒⃒⃒
𝐿

(18.55)

=
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐹

+
𝜕𝑆

𝜕𝐹

⃒⃒⃒⃒
𝑇

𝜕(𝐹,𝐿)

𝜕(𝑇, 𝐿)
(18.56)

=
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐹

+
𝜕𝑆

𝜕𝐹

⃒⃒⃒⃒
𝑇

𝜕(𝐹,𝐿)

𝜕(𝑆, 𝑇 )

𝜕(𝑆, 𝑇 )

𝜕(𝐹, 𝑇 )

𝜕(𝐹, 𝑇 )

𝜕(𝑇, 𝐿)
(18.57)

=
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐹

+
𝜕𝑆

𝜕𝐹

⃒⃒⃒⃒2
𝑇

𝜕(𝐹, 𝑇 )

𝜕(𝑇, 𝐿)
, (18.58)

where we used a Maxwell’s relation

𝜕(𝐹,𝐿)

𝜕(𝑆, 𝑇 )
= 1. (18.59)
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Now,
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐿

=
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐹

− 𝜕𝑆

𝜕𝐹

⃒⃒⃒⃒2
𝑇

𝜕𝐹

𝜕𝐿

⃒⃒⃒⃒
𝑇

. (18.60)

Thanks to the stability the second term is negative, so

𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐿

≤ 𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐹

. (18.61)

Therefore,
𝐶𝐿 ≤ 𝐶𝐹 . (18.62)

You must think whether this is natural or not. Take a polymer chain or a rubber
band. Under constant length, increasing the temperature increases the force, which
opposes chain conformational entropy increase. In contrast, under constant force,
more conformational varieties are available than the former case, so more heat is
needed to increase the system temperature. Thus, 𝐶𝐿 should be smaller than 𝐶𝐹 . A
parallel argument should be possible for systems with energetic elasticity. Try.

Let us follow the above strategy to show 𝐶𝑉 ≤ 𝐶𝑃 for practice sake.

𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑉

=
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑃

+
𝜕𝑆

𝜕𝑃

⃒⃒⃒⃒
𝑇

𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

(18.63)

=
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑃

+
𝜕𝑆

𝜕𝑃

⃒⃒⃒⃒
𝑇

𝜕(𝑃, 𝑉 )

𝜕(𝑇, 𝑉 )
(18.64)

=
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑃

+
𝜕𝑆

𝜕𝑃

⃒⃒⃒⃒
𝑇

𝜕(𝑃, 𝑉 )

𝜕(𝑆, 𝑇 )

𝜕(𝑆, 𝑇 )

𝜕(𝑃, 𝑇 )

𝜕(𝑃, 𝑇 )

𝜕(𝑇, 𝑉 )
(18.65)

=
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑃

− 𝜕𝑆

𝜕𝑃

⃒⃒⃒⃒2
𝑇

𝜕(𝑃, 𝑇 )

𝜕(𝑇, 𝑉 )
(18.66)

=
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑃

+
𝜕𝑆

𝜕𝑃

⃒⃒⃒⃒2
𝑇

𝜕𝑃

𝜕𝑉

⃒⃒⃒⃒
𝑇

, (18.67)

where we used a Maxwell’s relation (note −𝑃 is the conjugate of 𝑉 )

𝜕(𝑃, 𝑉 )

𝜕(𝑆, 𝑇 )
= −1. (18.68)

Thus,
𝐶𝑉 ≤ 𝐶𝑃 , (18.69)

because 𝜕𝑃/𝜕𝑉 < 0.
(2) Let us start with

𝑑𝑉 =
𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

𝑑𝑃 +
𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

𝑑𝑇, (18.70)
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Thus,

𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑆

=
𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

+
𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

𝜕𝑇

𝜕𝑃

⃒⃒⃒⃒
𝑆

(18.71)

=
𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

+
𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

𝜕(𝑇, 𝑆)

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑃 )

𝜕(𝑇, 𝑃 )

𝜕(𝑇, 𝑃 )

𝜕(𝑃, 𝑆)
(18.72)

=
𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

− 𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒2
𝑃

𝜕(𝑇, 𝑃 )

𝜕(𝑃, 𝑆)
, (18.73)

where a Maxwell relation
𝜕(𝑇, 𝑆)

𝜕(𝑉, 𝑃 )
= −1 (18.74)

is used.
𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑆

=
𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

+
𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒2
𝑃

𝜕𝑇

𝜕𝑆

⃒⃒⃒⃒
𝑃

. (18.75)

Hence,
𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑆

≥ 𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

. (18.76)

Notice these derivatives are negative, and compressibilities are defined with negative
signs, so

𝜅𝑆 ≤ 𝜅𝑇 . (18.77)

Is this natural? We know that under adiabatic conditions if we compress an ideal
gas 𝑃𝑉 𝛾 = constant (𝛾 > 1) or 𝑉 ∝ 1/𝑃 1/𝛾. Under isothermal conditions 𝑃𝑉 is
constant, or 𝑉 ∝ 1/𝑃 . Therefore, 𝑉 is smaller under isothermal compression. That
is, it is easier to squish under const 𝑇 than const 𝑆. More intuitively, adiabatic com-
pression usually increases the gas temperature, so isothermal compression should be
easier.

Q18.3 [Fluctuation of internal energy]
We wish to study the fluctuation of the total energy 𝐸 of a closed system (a system
without any material exchange) under constant volume 𝑉 and temperature 𝑇 (i.e.,
thermostatted). To what heat capacity of the system (say, under constant pressure
or constant volume) does ⟨𝛿𝐸2⟩ directly related? Notice that microscopically 𝐸 is
just the system Hamiltonian ℋ, so we are interested in ⟨ℋ2⟩ − ⟨ℋ⟩2. The most
straightforward way to answer this question is to compute this variance.

Solution.
𝑍 =

∑︀
𝑒−𝛽ℋ, so

⟨ℋ⟩ = 𝜕log𝑍

𝜕(−𝛽)

⃒⃒⃒⃒
𝑉

=
1

𝑍

∑︁
ℋ𝑒−𝛽ℋ.
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Therefore,

𝜕⟨ℋ⟩
𝜕(−𝛽)

⃒⃒⃒⃒
𝑉

= − 1

𝑍2
(
∑︁
ℋ𝑒−𝛽ℋ)2 +

1

𝑍

∑︁
ℋ2𝑒−𝛽ℋ = ⟨ℋ2⟩ − ⟨ℋ⟩2.

We know
𝜕⟨ℋ⟩
𝜕(−𝛽)

⃒⃒⃒⃒
𝑉

= 𝑘𝐵𝑇
2 𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑉

= 𝑘𝐵𝑇
2𝐶𝑉 .
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19 Thermodynamic approach to fluctuations

Summary
* Einstein gave a universal probability distribution for mesoscopic scale fluctuations
around equilibrium states.
* Thermodynamic stability and equilibrium work needed to create fluctuations are
closely related to this universal distribution.

Key words
fluctuation-response relation, large deviation rate function, fundamental formula for
thermodynamic fluctuations (Einstein’s theory), multivariate Gaussian distribution

What you should be able to do
* Explain why Einstein’s theory is always correct.
* Computation of second moments of fluctuations, or how to use Einstein’s theory
* How to use multivariate Gaussian distribution; you must be able to compute its
normalization constant.

19.1 Mesoscopic fluctuations: introduction to Einstein’s theory
The story up to this point is about a whole finite system. You may regard it as a
mesoscopic subsystem of a larger system that is of our daily scale. If this is what we
want, however, there is a reason that we may avoid the detailed statistical-mechanical
setup just we have discussed. Recall the universal stability criterion for an equilib-
rium state 𝛿2𝑆 < 0 18.3. This is independent of the environmental constraints, and
it is a condition preventing fluctuations from going wild. Then, there should be a
theory that can determine the distribution of fluctuations almost independent of the
environmental constraints imposed on the system. As we will see soon, Einstein just
constructed such a theoretical framework.

19.2 Large deviation and mesoscopic fluctuation
The study of fluctuation is a mesoscopic scale study of the system, so it is the study

of large deviation. Since we study a small volume 𝑉 in the system, the following
type of large deviation must be natural:

𝑃

(︂
1

𝑉
𝑋(𝑉 ) ∼ 𝑦

)︂
≈ 𝑒−𝑉 𝐼(𝑦), (19.1)
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where 𝐼 is the large deviation function (or rate function).313 If we know 𝐼, basically
we know everything we wish to know about fluctuations.

In practice, even if we say the volume we observe is tiny, since we are macroscopic
organisms, the volume is sufficiently large from the microscopic point of view. There-
fore, fluctuations should not be very large, and we have only to consider the second
moments to quantify fluctuations. That is, we need the quadratic approximation to
𝐼, which was provided by Einstein.

19.3 Einstein’s fundamental formula for small fluctuations
Einstein in 1910314 studied the deviation of thermodynamic observables in a small
domain of a system from their equilibrium values in order to understand critical
fluctuations, which we will discuss towards the end of this course.315

To obtain the probability of fluctuations, he inverted the Boltzmann principle as

𝑤({𝑋}) = 𝑒𝑆({𝑋})/𝑘𝐵 , (19.2)

where {𝑋} collectively denotes extensive variables. Then, he postulated that the
statistical weight for the value of 𝑋 deviated from its equilibrium value may also
be obtained by (19.2). Since we know the statistical weights, we can compute the
probability of observing {𝑋} as

𝑃 ({𝑋}) = 𝑤({𝑋})∑︀
{𝑋}𝑤({𝑋})

. (19.3)

The denominator may be replaced with the largest term in the summands (recall
14.4), so we may rewrite the formula as

𝑃 ({𝑋}) ≃ 𝑤({𝑋})
𝑤({𝑋𝑒𝑞})

= 𝑒[𝑆({𝑋})−𝑆({𝑋𝑒𝑞})]/𝑘𝐵 = 𝑒−|Δ𝑆|/𝑘𝐵 , (19.4)

where ≃ implies the equality up to a certain unimportant numerical coefficient, and
{𝑋𝑒𝑞} is the value of {𝑋} that gives the largest 𝑤 (maximizes the entropy), that is,

313If 𝑋 is extensive, 𝑋(𝑉 ) is the total amount in 𝑉 (i.e., 𝑋(𝑉 )/𝑉 is its density). If 𝑋 is intensive,
then 𝑋(𝑉 )/𝑉 should be interpreted as the average value in the volume 𝑉 .

314[1910: Russel and Whitehead started to publish Principia Mathematica (∼1913); Stravinsky,
Firebird premiered; Rilke, Die Aufzeichnungen des Malte Laurids Brigg; the Mexican revolution
began, Tolstoy, Cannizzaro, Nightingale died.]

315A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeitsgemischen in der Nahe des
kritischen Zustandes,” Ann. Phys., 33, 1275-1298 (1910). [Theory of critical opalescence of homo-
geneous fluid mixture near the critical state]. J. D. Jackson, Classical Electrodynamics, 2nd Edition
(Wiley, 1975) Sect. 9.7 is a good summary of related topics.
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the equilibrium value. Δ𝑆 = 𝑆({𝑋})− 𝑆({𝑋𝑒𝑞}) is written as −|Δ𝑆| to emphasize
the sign of Δ𝑆 (i.e., negative). To the second order this reads

𝑃 ({𝛿𝑋}) ∝ 𝑒−|𝛿2𝑆|/𝑘𝐵 . (19.5)

Einstein proposed this as the fundamental formula for small fluctuations in a small
portion of any equilibrium system

The above derivation of (19.5) assumed that a mesoscopic portion of the system
is isolated. However, as noted before, the second order deviation of any thermody-
namic potential around its equilibrium point is given by −𝑇𝛿2𝑆, so (19.5) is valid
under any condition; Einstein is always correct.316

19.4 Practical form of fluctuation probability
To study the fluctuation we need the second order variation 𝛿2𝑆 of the system entropy.
This can be computed from the Gibbs relation (here 𝛿 means the so-called ‘virtual
variation,’ but notice that such variations are actually spontaneously realized by
thermal fluctuations)

𝛿𝑆 =
1

𝑇
(𝛿𝐸 + 𝑃𝛿𝑉 − 𝜇𝛿𝑁 − 𝑥𝛿𝑋) (19.6)

as follows (this is the second order term of the Taylor expansion, so do not forget

316If you do not trust Einstein, use the ‘generalized canonical partition function’ (appropriate for
the constraints imposed on the small portion) as

𝑍(𝑋) = 𝑒𝑆/𝑘𝐵−𝑥𝑋/𝑘𝐵𝑇 ,

and compute the probability for the fluctuation 𝛿𝑋: 𝑃 (𝛿𝑋). You get the identical conclusion.
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the overall factor 1/2):317

𝛿2𝑆 =
1

2

[︂
𝛿

(︂
1

𝑇

)︂
(𝛿𝐸 + 𝑃𝛿𝑉 − 𝜇𝛿𝑁 − 𝑥𝛿𝑋) +

1

𝑇
(𝛿𝑃𝛿𝑉 − 𝛿𝜇𝛿𝑁 − 𝛿𝑥𝛿𝑋)

]︂
,

(19.7)

= − 𝛿𝑇

2𝑇 2
𝑇𝛿𝑆 +

1

2𝑇
(𝛿𝑃𝛿𝑉 − 𝛿𝜇𝛿𝑁 − 𝛿𝑥𝛿𝑋). (19.8)

Thus, we have arrived at the following useful expression worth remembering (actually,
almost nothing to remember anew; cf. −𝛿𝐸 = −𝑇𝛿𝑆 + 𝑃𝛿𝑉 − 𝜇𝛿𝑁 − 𝑥𝛿𝑋):318

𝛿2𝑆 =
−𝛿𝑇𝛿𝑆 + 𝛿𝑃𝛿𝑉 − 𝛿𝜇𝛿𝑁 − 𝛿𝑥𝛿𝑋

2𝑇
. (19.9)

Don’t forget 2 downstairs.
Consequently, the probability density of fluctuation can have the following form,

which is the starting point of practical calculation of fluctuations (second moments):

𝑃 (fluctuation) ∝ exp

{︂
− 1

2𝑘𝐵𝑇
(𝛿𝑇𝛿𝑆 − 𝛿𝑃𝛿𝑉 + 𝛿𝜇𝛿𝑁 + 𝛿𝑥𝛿𝑋)

}︂
. (19.10)

19.5 Fluctuation and reversible work needed to create it
A similar calculation gives

𝛿2𝐸 =
1

2
(𝛿𝑇𝛿𝑆 − 𝛿𝑃𝛿𝑉 + 𝛿𝜇𝛿𝑁 + 𝛿𝑥𝛿𝑋). (19.11)

317If the reader has some trouble in understanding (19.8), look at a simple example: 𝑓 = 𝑓(𝑥, 𝑦),
where 𝑥 and 𝑦 are regarded as independent variables. If we can write

𝛿𝑓 = 𝑋𝛿𝑥+ 𝑌 𝛿𝑦,

then

𝛿𝑋 =
𝜕𝑋

𝜕𝑥
𝛿𝑥+

𝜕𝑋

𝜕𝑦
𝛿𝑦, 𝛿𝑌 =

𝜕𝑌

𝜕𝑥
𝛿𝑥+

𝜕𝑌

𝜕𝑦
𝛿𝑦.

Therefore, the second order Taylor expansion term reads

𝛿2𝑓 =
1

2

(︂
𝜕𝑋

𝜕𝑥
𝛿𝑥2 +

𝜕𝑋

𝜕𝑦
𝛿𝑦𝛿𝑥+

𝜕𝑌

𝜕𝑥
𝛿𝑥𝛿𝑦 +

𝜕𝑌

𝜕𝑦
𝛿𝑦2
)︂

=
1

2
(𝛿𝑋𝛿𝑥+ 𝛿𝑌 𝛿𝑦).

In short, the second variations of independent variables are zero (i.e., 𝛿2𝑥 = 𝛿2𝑦 = 0, everybody
must know this):

𝛿[𝑋𝛿𝑥+ 𝑌 𝛿𝑦] = 𝛿𝑋𝛿𝑥+𝑋𝛿2𝑥+ 𝛿𝑌 𝛿𝑦 + 𝑌 𝛿2𝑦 = 𝛿𝑋𝛿𝑥+ 𝛿𝑌 𝛿𝑦.
We used this relation.

318As has already been stated when we discussed the general stability criterion, 𝛿𝑆 need not be
zero. The derivation of this formula by Einstein was indeed a feat.
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fluctuation in this locality is studied

Figure 19.1: The formula (19.10) applies to a small portion of a big system. For example, you can
spectroscopically measure the temperature fluctuation in a small volume with appropriate probe
molecules. If the observation volume is fixed, obviously we cannot choose 𝑉 as an independent
variable, but virtually any independent variables may be chosen to study fluctuations in the small
portion of a macroscopic system.

𝛿2𝐸 can be understood as the (free) energy we must supply as the reversible work,
if we wish to create the fluctuation. Therefore, we may rewrite (19.10) as

𝑃 (fluctuation) ∝ 𝑒−𝛽𝑊𝑓 , (19.12)

where 𝑊𝑓 is the reversible work required to create the fluctuation. This is a practi-
cally very useful formula.

19.6 How to use the practical formula
To use the practical formula (19.10) we must choose the independent variables.

What variables should we choose as independent variables to compute the second
variation? Suppose we study a system that requires 𝑛 thermodynamic coordinates
(i.e., its thermodynamic space is 𝑛-dimensional). Such a system requires 𝑛 conjugate
pairs (𝑆, 𝑇 ), (𝑉,−𝑃 ), (𝑥𝑖, 𝑋𝑖), etc. Choosing a statistical ensembles corresponds to
choosing one variable from each pair. We know, however, any ensemble may be used
to study the second moments of thermodynamic fluctuations. Thus, we may choose
𝑛 independent variables arbitrarily selecting one (i.e., 𝑋 or 𝑥) from each conjugate
pair {𝑥,𝑋}. Any choice will do, but sometimes a clever choice may (drastically)
simplify the calculation.

After choosing the independent variables, the formula in the round parentheses
of (19.10) becomes a quadratic form in independent variations (of our choice, say,
{𝛿𝑇, 𝛿𝑉, 𝛿𝑥}).

For an example, let us calculate the temperature fluctuation. We must first choose
independent variables (variations). 𝛿𝑇 must be a convenient choice. We need one
more independent variable (if 𝑛 = 2).

Let us choose 𝛿𝑉 as the other variation. We could choose 𝛿𝑃 , but we wish to
exploit the following general fact:

⟨𝛿𝑋𝑖𝛿𝑥𝑗⟩ = 𝑘𝐵𝑇𝛿𝑖𝑗, (19.13)

where 𝑋𝑖 is an extensive variable, and 𝑥𝑗 an intensive variable; we understand that
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(𝑋𝑖, 𝑥𝑖) is a conjugate pair.319*

Thus, for 𝛿𝑇 𝛿𝑉 is a convenient partner:

1

𝑘𝐵
𝛿2𝑆 = − 1

2𝑘𝐵𝑇
𝛿𝑆𝛿𝑇+· · · = − 1

2𝑘𝐵𝑇

𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑉

𝛿𝑇 2+· · · = − 𝐶𝑉

2𝑘𝐵𝑇 2
𝛿𝑇 2+· · · . (19.15)

Therefore, we can easily conclude

⟨𝛿𝑇 2⟩ = 𝑘𝐵𝑇
2/𝐶𝑉 . (19.16)

This is the fluctuation of the average temperature in a small volume whose constant
volume heat capacity is 𝐶𝑉 . If the observation volume is reduced, then 𝐶𝑉 is reduced
as well (recall that 𝐶𝑉 is an extensive quantity), so the fluctuation increases. Very
natural.

One more example: the pressure fluctuation. We should choose 𝑃 and 𝑆 as
independent variables, since we know ⟨𝛿𝑃𝛿𝑆⟩ = 0:

1

2𝑘𝐵𝑇
𝛿𝑃𝛿𝑉 =

1

2𝑘𝐵𝑇

𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑆

𝛿𝑃 2 + · · · = − 𝑉

2𝑘𝐵𝑇
𝜅𝑆𝛿𝑃

2 + · · · , (19.17)

where 𝜅𝑆 is the adiabatic compressibility

𝜅𝑆 = − 1

𝑉

𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑆

. (19.18)

Therefore,320

⟨𝛿𝑃 2⟩ = 𝑘𝐵𝑇/𝑉 𝜅𝑆. (19.19)

Such small tricks to save our energy are useful, but as is clear, generally speaking,
we must know how to handle multivariate Gaussian distribution.

19.7 Multivariate Gaussian distribution
A multivariate distribution is called the Gaussian distribution, if any marginal dis-
tribution is Gaussian. Or more practically, we could say that if the negative log of

319* This can be demonstrated with the aid of the fluctuation-response relation (18.42). Let us
choose first 𝑋1, · · · , 𝑋𝑛 as our independent variables. Using the chain rule, we obtain

⟨𝛿𝑋𝑖𝛿𝑥𝑗⟩ =

⟨
𝛿𝑋𝑖

∑︁
𝑘

𝜕𝑥𝑗
𝜕𝑋𝑘

𝛿𝑋𝑘

⟩
= 𝑘𝐵𝑇

∑︁
𝑘

𝜕𝑥𝑗
𝜕𝑋𝑘

𝜕𝑋𝑘

𝜕𝑥𝑖
= 𝑘𝐵𝑇

𝜕𝑥𝑗
𝜕𝑥𝑖

= 𝑘𝐵𝑇𝛿𝑖𝑗 . (19.14)

In the above calculation, in the last partial derivative, independent variables are switched to
𝑥1, · · · , 𝑥𝑛.

320 The fluctuations of the quantities that may be interpreted as the expectation values of
microscopic-mechanically expressible quantities (e.g., internal energy, volume, pressure) tend to
zero in the 𝑇 → 0 limit as we see here. However, the fluctuations of entropy and the quantities
obtained by differentiating it do not satisfy the above property.
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the density distribution function is a positive definite quadratic form (apart from a
constant term due to normalization) of the deviations from the expectation values,
the distribution is Gaussian:

𝑓(𝑥) =
1√︀

𝑑𝑒𝑡(2𝜋𝑉 )
exp

(︂
−1

2
(𝑥−𝑚)𝑇𝑉 −1(𝑥−𝑚)

)︂
, (19.20)

where ⟨𝑥⟩ = 𝑚, the mean, and 𝑉 is the covariance matrix defined as (do not forget
that our vectors are column vectors)

𝑉 = ⟨(𝑥−𝑚)(𝑥−𝑚)𝑇 ⟩. (19.21)

The reader must not have any difficulty in demonstrating that (19.20) is correctly
normalized. [Hint: choose eigendirections of 𝑉 as the orthogonal coordinates.]

In particular, for the two variable case:

𝑓(𝑥, 𝑦) ∝ exp

{︂
−1

2

(︀
𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2

)︀}︂
, (19.22)

then

𝑉 = Λ−1 =

(︂
𝑎 𝑏
𝑏 𝑐

)︂−1

=
1

𝑑𝑒𝑡Λ

(︂
𝑐 −𝑏
−𝑏 𝑎

)︂
. (19.23)

That is,
⟨𝑥2⟩ = 𝑐/𝑑𝑒𝑡Λ, ⟨𝑥𝑦⟩ = −𝑏/𝑑𝑒𝑡Λ, ⟨𝑦2⟩ = 𝑎/𝑑𝑒𝑡Λ. (19.24)
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Q19.1 [Fluctuation and nonlinear spring]
There is a deformable macromolecule (due to conformational changes) whose end-
to-end distance is 𝐿. The ambient temperature is 𝑇 = 300 K.
(1) If the amplitude of the deformation is small, the system may be understood as
a harmonic spring. What is the effective spring constant 𝑘 of this macromolecule,
when the length variance is known to be ⟨𝛿𝐿2⟩? [Hint: 𝑘 is the inverse susceptibility
of 𝐿 against 𝐹 under constant temperature.]
(2) Suppose the needed force 𝐹 to maintain the end-to-end length to be 𝐿 is

𝐹 = 𝑘(𝐿− 𝐿0) +
1

3
𝛼(𝐿− 𝐿0)

3, (19.25)

where 𝐿0 and 𝛼 are positive constants. What is the fluctuation of 𝐿 around 𝐿 = 𝐿1?
Notice that in this way without measuring 𝐹 you could reconstruct the 𝐹 -𝐿 relation.

Soln.
(1) A fluctuation-response relation applied to our case around 𝐹 = 0 is

𝑘𝐵𝑇
𝜕𝐿

𝜕𝐹

⃒⃒⃒⃒
𝑇

= ⟨𝛿𝐿2⟩. (19.26)

Therefore,
𝑘𝐵𝑇

𝑘
= ⟨𝛿𝐿2⟩. (19.27)

You must have seen something like this for a polymer chain.
By the way, we discussed that the susceptibility or (𝜕𝑋/𝜕𝑥) is extensive. In our

example, 𝐿 is extensive, so 1/𝑘 must be extensive. It means that if the length of the
spring is doubled, its Hooke’s constant is halved, as we know well.

(2) Using the fluctuation-response relation, we have when 𝐿 = 𝐿1 (by applying an
appropriate force)

⟨𝛿𝐿2⟩ = 𝑘𝐵𝑇
𝜕𝐿

𝜕𝐹

⃒⃒⃒⃒
𝑇

=
𝑘𝐵𝑇

𝑘 + 𝛼(𝐿1 − 𝐿0)2
. (19.28)

Notice that ⟨𝛿𝐿2⟩ here and that in (1) are different quantities, because the states
around which we observe fluctuations are distinct. In (1) it is the unstretched state,
but here, it is somehow stretched and its mean length is 𝐿1. It is much easier to
measure the position than the force, so experimentally, the derivative of 𝐹 wrt 𝐿 may
be obtained by measuring only the positions under unspecified appropriate forces.

Q19.2 [Easy questions about fluctuations]
(1) Consider a small portion of a big system in equilibrium. Let us assume that
the small portion contains a constant number of particles. Find the fluctuation of
entropy ⟨𝛿𝑆2⟩ in terms of an appropriate heat capacity of the small portion.
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(2) Take a (constant volume) small portion of a solution of some substance in a
solvent. Let 𝑐 be the concentration of the solute. Show that ⟨𝛿𝑐 𝛿𝑇 ⟩ = 0, that is,
concentration fluctuation and temperature fluctuation are uncorrelated in equilib-
rium.

Soln
(1) We use (needless to say, we use Einstein’s thermodynamic fluctuation theory)

− 1

2𝑘𝐵𝑇
𝛿𝑇𝛿𝑆 + · · · .

Choose 𝑆 and 𝑃 as independent variables.321 Then we can rewrite this as

− 1

2𝑘𝐵𝑇

𝜕𝑇

𝜕𝑆

⃒⃒⃒⃒
𝑃

𝛿𝑆2 + · · · = − 1

2𝑘𝐵𝐶𝑃

𝛿𝑆2 + · · · .

Therefore, ⟨𝛿𝑆2⟩ = 𝑘𝐵𝐶𝑃 , where 𝐶𝑃 is the constant pressure specific heat of the
small portion.
(2) This is obvious from ⟨𝛿𝑁𝛿𝑇 ⟩ = 0.

321You need not, but since ⟨𝛿𝑆𝛿𝑃 ⟩ = 0, computation is (drastically) simplified.

384



Discussion 9

We will discuss Jacobian technique, thermodynamic stability and fluctuations

D9.1 [Use of Jacobian].
In thermodynamics, we often need a partial derivative of a state function 𝐴 by
another state function 𝐵, while keeping the third state function 𝐶:

𝜕𝐴

𝜕𝐵

⃒⃒⃒⃒
𝐶

. (19.29)

For example, for a fluid with the Gibbs relation 𝑑𝐸 = 𝑇𝑑𝑆 −𝑃𝑑𝑉 , we may consider
the following question:

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑃

> 0 or < 0 ? (19.30)

That is, does the entropy of a fluid increase or decrease, when the volume is increased
under constant pressure (i.e., isobarically)? Its sign may not immediately be clear.

To this end we should be able to handle such partial derivatives freely. The only
systematic way that allows us to do so with ease is the Jacobian technique explained
in Section 17.

The key ingredients are:
𝜕𝐴

𝜕𝐵

⃒⃒⃒⃒
𝐶

=
𝜕(𝐴,𝐶)

𝜕(𝐵,𝐶)
(19.31)

and that the factors 𝜕(𝑋, 𝑌 ) may be treated as an algebraic object:

𝜕(𝑋, 𝑌 )

𝜕(𝐴,𝐵)

𝜕(𝐴,𝐵)

𝜕(𝑥, 𝑦)
=
𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
. (19.32)

This is only a disguised usual chain rule for two variable functions.

Let us demonstrate this relation.

(1) Confirm (︃
𝜕𝑋
𝜕𝑥

⃒⃒
𝑦

𝜕𝑌
𝜕𝑥

⃒⃒
𝑦

)︃
=

(︂
𝜕𝑋
𝜕𝐴

⃒⃒
𝐵

𝜕𝑋
𝜕𝐵

⃒⃒
𝐴

𝜕𝑌
𝜕𝐴

⃒⃒
𝐵

𝜕𝑌
𝜕𝐵

⃒⃒
𝐴

)︂(︃ 𝜕𝐴
𝜕𝑥

⃒⃒
𝑦

𝜕𝐵
𝜕𝑥

⃒⃒
𝑦

)︃
. (19.33)

(2) We can write analogous formulas for derivatives with respect to 𝑦 (keeping 𝑥).
Combining both, check the following formula:⎛⎝ 𝜕𝑋

𝜕𝑥

⃒⃒
𝑦

𝜕𝑋
𝜕𝑦

⃒⃒⃒
𝑥

𝜕𝑌
𝜕𝑥

⃒⃒
𝑦

𝜕𝑌
𝜕𝑦

⃒⃒⃒
𝑥

⎞⎠ =

(︂
𝜕𝑋
𝜕𝐴

⃒⃒
𝐵

𝜕𝑋
𝜕𝐵

⃒⃒
𝐴

𝜕𝑌
𝜕𝐴

⃒⃒
𝐵

𝜕𝑌
𝜕𝐵

⃒⃒
𝐴

)︂⎛⎝ 𝜕𝐴
𝜕𝑥

⃒⃒
𝑦

𝜕𝐴
𝜕𝑦

⃒⃒⃒
𝑥

𝜕𝐵
𝜕𝑥

⃒⃒
𝑦

𝜕𝐵
𝜕𝑦

⃒⃒⃒
𝑥

⎞⎠ . (19.34)

385



(3) Conclude your demonstration of (19.32), using the definition of the Jacobian.

Solution.
(1) We know, thanks to the chain rule,

𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦

=
𝜕𝑋

𝜕𝐴

⃒⃒⃒⃒
𝐵

𝜕𝐴

𝜕𝑥

⃒⃒⃒⃒
𝑦

+
𝜕𝑋

𝜕𝐵

⃒⃒⃒⃒
𝐴

𝜕𝐵

𝜕𝑥

⃒⃒⃒⃒
𝑦

, (19.35)

𝜕𝑌

𝜕𝑥

⃒⃒⃒⃒
𝑦

=
𝜕𝑌

𝜕𝐴

⃒⃒⃒⃒
𝐵

𝜕𝐴

𝜕𝑥

⃒⃒⃒⃒
𝑦

+
𝜕𝑌

𝜕𝐵

⃒⃒⃒⃒
𝐴

𝜕𝐵

𝜕𝑥

⃒⃒⃒⃒
𝑦

. (19.36)

Rewriting these using the vector notation, we get (19.33).

(2) We have used the 𝑦-derivative counterpart of the above chain rules:

𝜕𝑋

𝜕𝑦

⃒⃒⃒⃒
𝑥

=
𝜕𝑋

𝜕𝐴

⃒⃒⃒⃒
𝐵

𝜕𝐴

𝜕𝑦

⃒⃒⃒⃒
𝑥

+
𝜕𝑋

𝜕𝐵

⃒⃒⃒⃒
𝐴

𝜕𝐵

𝜕𝑦

⃒⃒⃒⃒
𝑥

, (19.37)

𝜕𝑌

𝜕𝑦

⃒⃒⃒⃒
𝑥

=
𝜕𝑌

𝜕𝐴

⃒⃒⃒⃒
𝐵

𝜕𝐴

𝜕𝑦

⃒⃒⃒⃒
𝑥

+
𝜕𝑌

𝜕𝐵

⃒⃒⃒⃒
𝐴

𝜕𝐵

𝜕𝑦

⃒⃒⃒⃒
𝑥

.

Checking (19.34) is very easy.

(3) Note that the Jacobian is the determinant of the matrices we see above (recall
det𝐴 = det𝐴𝑇 ):

𝜕(𝑋, 𝑌 )

𝜕(𝐴,𝐵)
= det

(︂
𝜕𝑋
𝜕𝐴

⃒⃒
𝐵

𝜕𝑌
𝜕𝐴

⃒⃒
𝐵

𝜕𝑋
𝜕𝐵

⃒⃒
𝐴

𝜕𝑌
𝜕𝐵

⃒⃒
𝐴

)︂
= det

(︂
𝜕𝑋
𝜕𝐴

⃒⃒
𝐵

𝜕𝑋
𝜕𝐵

⃒⃒
𝐴

𝜕𝑌
𝜕𝐴

⃒⃒
𝐵

𝜕𝑌
𝜕𝐵

⃒⃒
𝐴
.

)︂
. (19.38)

We can finish the demonstration with the aid of det(𝐴𝐵) = det(𝐴) det(𝐵) for square
matrices 𝐴 and 𝐵.

The Jacobian technique becomes really powerful with the following observation:
All the Maxwell’s relations can be unified as

𝜕𝑋, 𝑥)

𝜕(𝑦, 𝑌 )
= 1, (19.39)

where (𝑋, 𝑥) and (𝑌, 𝑦) are extensive-intensive conjugate pairs (with respect to 𝐸).
(𝑆, 𝑇 ), (𝑉,−𝑃 ), (𝑀,𝐵), etc., are the examples, because 𝑑𝐸 = 𝑇𝑑𝑆−𝑃𝑑𝑉 +𝐵𝑑𝑀 +
· · ·. This can be used as (consider a rubber band; (𝑆, 𝑇 ) and (𝐿, 𝐹 ) are conjugate
pairs)

𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝑇

=
𝜕(𝑆, 𝑇 )

𝜕(𝐿, 𝑇 )
=
𝜕(𝑆, 𝑇 )

𝜕(𝐹,𝐿)

𝜕(𝐹,𝐿)

𝜕(𝐿, 𝑇 )
=
𝜕(𝐹,𝐿)

𝜕(𝐿, 𝑇 )
= −𝜕(𝐹,𝐿)

𝜕(𝑇, 𝐿)
= − 𝜕𝐹

𝜕𝑇

⃒⃒⃒⃒
𝐿

. (19.40)

Explain intuitively why this relation is plausible for a rubber band.

(4) What do you say about the sign of (19.30)?
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Remember that in thermodynamics there are two kinds of inequality, sacred (ther-
modynamic) and fetish (materials-specific):

All the sacred inequalities come from the stability inequalities (which is due to the
second law): all the principal minors of the second derivative matrix (the Hessian
matrix) of 𝐸 with respect to 𝑆 and the work coordinates are positive. In particu-
lar,

𝜕𝑥

𝜕𝑋

⃒⃒⃒⃒
𝑌,···

= 1

⧸︃
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑌,···

> 0, (19.41)

where upper case letters denote extensive variables, and (𝑋, 𝑥) is a conjugate pair.

Solution.
Without any thinking, first you should use a Jacobian:

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑃

=
𝜕(𝑆, 𝑃 )

𝜕(𝑉, 𝑃 )
. (19.42)

We wish to related this to something whose sign we know definitely (i.e., sacred). In
this case, 𝐶𝑃 is a natural choice:

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑃

=
𝜕(𝑆, 𝑃 )

𝜕(𝑇, 𝑃 )

𝜕(𝑇, 𝑃 )

𝜕(𝑉, 𝑃 )
=
𝐶𝑃

𝑇

⧸︂
𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

. (19.43)

𝐶𝑃 > 0 is sacred. However, even for a fluid we know the sign of (𝜕𝑉/𝜕𝑇 )𝑃 can
change. Thus, there is no sacred inequality for it. (19.43) tells us that the signs of
the partial derivatives in it must be the same; this relation is sacred.

(5)* How about
𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

? (19.44)

Explain your conclusion as ‘microscopically as possible’ (perhaps in terms of infor-
mation you need).

Solution.
Always rewrite the partial derivative in terms of a Jacobian:

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
𝜕(𝑆, 𝑇 )

𝜕(𝑉, 𝑇 )
. (19.45)

I have no idea, so let us try Maxwell (recall (𝑉,−𝑃 ) is a conjugate pair):

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
𝜕(𝑆, 𝑇 )

𝜕(𝑉, 𝑇 )
=
𝜕(𝑆, 𝑇 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )
=
𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )
=
𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

. (19.46)

This we can understand, but we can further modify this as

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

=
𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )
=
𝜕(𝑇, 𝑃 )

𝜕(𝑉, 𝑇 )

𝜕(𝑉, 𝑃 )

𝜕(𝑇, 𝑃 )
= − 𝜕𝑃

𝜕𝑉

⃒⃒⃒⃒
𝑇

𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

. (19.47)
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The sign of the first derivative is sacred. It is negative. Therefore, the sign of (19.44)
is the same as the sign of the thermal ‘expansion’ coefficient. It could be negative;
not sacred.

In the case of cold water, our result tells us that compression increases entropy!
To make the ordered hydrogen bonding network possible in ice, we need more space
than in the liquid phase (you know the density of ice is less than the water around
0∘C). Squishing breaks hydrogen bond networks, increasing the structural entropy.

(6) Find the following derivative
𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝐸

(19.48)

for a fluid (the Gibbs relation 𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 ) in terms of 𝑇 , 𝑃 , 𝐶𝑉 , 𝛽 and 𝛼,
where

𝐶𝑉 = 𝑇
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑉

, 𝛽 = − 1

𝑉

𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

, 𝛼 =
1

𝑉

𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

. (19.49)

Confirm that the result indeed vanishes for an ideal gas.

Solution.
There may be a cleverer method, but here I choose the least insightful approach:

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝐸

=
𝜕(𝑇,𝐸)

𝜕(𝑉,𝐸)
=
𝜕(𝑉, 𝑆)

𝜕(𝑉,𝐸)

𝜕(𝑇,𝐸)

𝜕(𝑉, 𝑆)
=
𝜕(𝑇,𝐸)

𝜕(𝑉, 𝑆)

⧸︂
𝜕(𝑉,𝐸)

𝜕(𝑉, 𝑆)
(19.50)

=
𝜕(𝑇,𝐸)

𝜕(𝑉, 𝑆)

⧸︂
𝜕𝐸

𝜕𝑆

⃒⃒⃒⃒
𝑉

=
1

𝑇

𝜕(𝑇,𝐸)

𝜕(𝑉, 𝑆)
(19.51)

=
1

𝑇

𝜕(𝑉, 𝑇 )

𝜕(𝑉, 𝑆)

𝜕(𝑇,𝐸)

𝜕(𝑉, 𝑇 )
= − 1

𝐶𝑉

𝜕(𝐸, 𝑇 )

𝜕(𝑉, 𝑇 )
= − 1

𝐶𝑉

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

, (19.52)

which may be obtained more cleverly with the aid of 𝐶𝑉 = (𝜕𝐸/𝜕𝑇 )𝑉 as

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝐸

=
𝜕(𝑇,𝐸)

𝜕(𝑉,𝐸)
=
𝜕(𝑉, 𝑇 )

𝜕(𝑉,𝐸)

𝜕(𝑇,𝐸)

𝜕(𝑉, 𝑇 )
= − 1

𝐶𝑉

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

(19.53)

= − 1

𝐶𝑉

[︂
𝑇
𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

− 𝑃
]︂
= − 1

𝐶𝑉

[︂
𝑇
𝜕(𝑆, 𝑇 )

𝜕(𝑉, 𝑇 )
− 𝑃

]︂
(19.54)

=
1

𝐶𝑉

[︂
𝑃 − 𝑇 𝜕(𝑆, 𝑇 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )

]︂
=

1

𝐶𝑉

[︂
𝑃 − 𝑇 𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )

]︂
(19.55)

=
1

𝐶𝑉

[︂
𝑃 − 𝑇 𝜕(𝑉, 𝑃 )

𝜕(𝑃, 𝑇 )

𝜕(𝑃, 𝑇 )

𝜕(𝑉, 𝑇 )

]︂
=

1

𝐶𝑉

(𝑃 − 𝑇𝛼/𝛽). (19.56)

You could directly cook 𝜕(𝑇,𝐸)/𝜕(𝑉, 𝑆), explicitly calculating the determinant.
If you understand the above derivation without difficulty, you are thermodynam-

ically in good shape.
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For an ideal gas

𝛼/𝛽 =
𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )
=
𝑃

𝑇
, (19.57)

so the derivative vanishes as we know well.

D9.2 [Fluctuation review]
We have learned two important theories (or theoretical results) as to fluctuations, the
fluctuation-response relation and (Einstein’s) thermodynamic theory of fluctuation.
Practically, almost no interesting quantities may be computed purely theoretically.
Therefore, experimentally accessible windows provided by fluctuations are of great
importance.
(1) Using Einstein’s theory, compute the fluctuation ⟨𝛿𝑋2⟩ for a general extensive
quantity 𝑋 for a small portion in a given system. Assume that the Gibbs rela-
tion for the system is 𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝑥𝑑𝑋. You can use the susceptibility
𝜒𝑇,𝑃 = (𝜕𝑋/𝜕𝑥)𝑇,𝑃 . Confirm the agreement of the Einstein theory result with the
corresponding formula obtainable by the fluctuation-response relation. That is, using
the thermodynamic fluctuation theory, derive

⟨𝛿𝑋2⟩ = 𝑘𝐵𝑇
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑇,𝑃

. (19.58)

In choosing basic fluctuation variables pay attention to the general result

⟨𝛿𝑋𝑖𝛿𝑥𝑗⟩ = 𝑘𝐵𝑇𝛿𝑖𝑗. (19.59)

Solution.
The fundamental equation for the probability of fluctuation is

𝑃 ∝ exp

{︂
− 1

2𝑘𝐵𝑇
[𝛿𝑆𝛿𝑇 − 𝛿𝑃𝛿𝑉 + 𝛿𝑥𝛿𝑋]

}︂
. (19.60)

Choosing 𝛿𝑋 as one of the basic fluctuation variables is the least perverse approach.
The remaining two may be chosen freely from individual conjugate pairs, {𝑉,−𝑃}
and {𝑆, 𝑇}, but (19.59) strongly advises us to choose 𝛿𝑃 and 𝛿𝑇 .322 Then, the cross
correlations (i.e., covariances) vanish, so we have only to study

1

2𝑘𝐵𝑇
[𝛿𝑆𝛿𝑇 − 𝛿𝑃𝛿𝑉 + 𝛿𝑥𝛿𝑋] =

1

2𝑘𝐵𝑇

𝜕𝑥

𝜕𝑋

⃒⃒⃒⃒
𝑇,𝑃

𝛿𝑋2 + · · · , (19.61)

322However, to get the correct answer, any choice is OK. HOWEVER, you can save time (a lot
in this case) by avoiding extensive variables 𝛿𝑆 and 𝛿𝑉 . Using these variables can be a very good
exercise for your thermodynamic muscle.

389



where the unwritten terms do not contain 𝛿𝑋. That is, the (density) distribution
function is the following Gaussian:

∝ exp

[︃
− 1

2𝑘𝐵𝑇

𝜕𝑥

𝜕𝑋

⃒⃒⃒⃒
𝑇,𝑃

𝛿𝑋2 + · · ·

]︃
. (19.62)

Therefore,

⟨𝛿𝑋2⟩ = 𝑘𝐵𝑇

⧸︃
𝜕𝑥

𝜕𝑋

⃒⃒⃒⃒
𝑇,𝑃

= 𝑘𝐵𝑇
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑇,𝑃

= 𝑘𝐵𝑇𝜒𝑇,𝑃 > 0. (19.63)

This is indeed the result of the fluctuation-response relation. The positivity of the
susceptibility is a thermodynamically sacred inequality. The positivity of ⟨𝛿𝑋2⟩ is
far more fundamental than physics.

(2) Consider a system whose Gibbs relation is given by, for simplicity, 𝑑𝐸 = 𝑇𝑑𝑆 +
𝑥𝑑𝑋. Let us demonstrate (an example of) Le Chatelier-Braun’s principle,

𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑇

≥ 𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑆

, (19.64)

using Einstein’s thermodynamic fluctuation theory. As usual, 𝑋 is extensive and 𝑥
its intensive partner: 𝑋 and 𝑥 make a conjugate pair.
(i) Find ⟨𝛿𝑥2⟩ and ⟨𝛿𝑋2⟩; the second one has been (virtually) computed in (1).
[Mimic the calculations of ⟨𝛿𝑇 2⟩ or ⟨𝛿𝑆2⟩.]
(ii) Demonstrate the inequality ⟨𝛿𝑥𝛿𝑋⟩2 ≤ ⟨𝛿𝑥2⟩⟨𝛿𝑋2⟩ (Cauchy’s inequality). [Hint:
consider ⟨(𝑡𝛿𝑥+ 𝛿𝑋)2⟩ ≥ 0 for any 𝑡.]
(iii) Show that Cauchy’s inequality implies (a) Le Chatelier-Braun’s principle (19.64).
Do not forget (19.59).

Solution.
(i) The fundamental equation we need is the same as above:

𝑃 ∝ exp

{︂
− 1

2𝑘𝐵𝑇
[𝛿𝑆𝛿𝑇 + 𝛿𝑥𝛿𝑋]

}︂
. (19.65)

Therefore, choosing 𝛿𝑥 and 𝛿𝑆 as independent variables, we have only to study

1

2𝑘𝐵𝑇
[𝛿𝑆𝛿𝑇 + 𝛿𝑥𝛿𝑋] =

1

2𝑘𝐵𝑇

𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑆

𝛿𝑥2 + · · · . (19.66)

That is ,

⟨𝛿𝑥2⟩ = 𝑘𝐵𝑇

⧸︂
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑆

. (19.67)
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We know (see (19.63))

⟨𝛿𝑋2⟩ = 𝑘𝐵𝑇
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑇

. (19.68)

(ii) Consider ⟨(𝑡𝛿𝑥+ 𝛿𝑋)2⟩ as a quadratic form for 𝑡. Since this is positive definite,
its discriminant must be negative. That is,

⟨𝛿𝑥2⟩𝑡2 + 2⟨𝛿𝑥𝛿𝑋⟩𝑡+ ⟨𝛿𝑋2⟩ ≥ 0 (19.69)

implies its discriminant must be negative:

⟨𝛿𝑥𝛿𝑋⟩2 − ⟨𝛿𝑥2⟩⟨𝛿𝑋2⟩ ≤ 0. (19.70)

(iii) Using the results in (i), we can convert Cauchy’s inequality into

(𝑘𝐵𝑇 )
2 ≤ 𝑘𝐵𝑇

𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑇

𝑘𝐵𝑇

⧸︂
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑆

. (19.71)

That is (notice that the derivatives are positive),

𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑆

≤ 𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑇

. (19.72)

D9.3 [Stretching a chain] (this is ∼a past qual question323)
A one-dimensional chain consists of 𝑁 ≫ 1 monomers (Fig. 19.2). Each monomer
can assume two states (without degeneracy) A and B; in A its length is 𝑎, and in B
its length is 2𝑎, where 𝑎 is a positive constant. To change the shape of a monomer
from A to B you need energy 𝜀 (> 0). We ignore the contribution of kinetic energy.

A B

Figure 19.2: Polymer model with monomer conformational changes

(1) When the total length of the chain is 𝐿, find the entropy 𝑆 microcanonically.
Use 𝑀 ≡ 𝐿/𝑎 to compute the number of microstates.

Solution.
Let ℓ𝑖 be the length of the 𝑖-th monomer: ℓ𝑖 = 𝑎 or 2𝑎. 𝐿 =

∑︀
ℓ𝑖 = 𝑀𝑎. Let

the number of B state monomers be 𝑁𝐵. Then, since 𝐿 = 𝑎(𝑁 − 𝑁𝐵) + 2𝑎𝑁𝐵 =
𝑎(𝑁 +𝑁𝐵),

𝑀 = 𝑁 +𝑁𝐵. (19.73)

323However, sophisticated thermodynamic questions are unlikely to be asked, because our faculty
is materials oriented.
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Therefore, the number of microstates compatible with the length 𝐿 = 𝑎𝑀 macrostate
is

𝑊 (𝑀) =

(︂
𝑁

𝑀 −𝑁

)︂
(19.74)

for 𝑁 ≤𝑀 ≤ 2𝑁 . For other𝑀 the system is not defined. Therefore, we immediately
obtain

𝑆 = −𝑁𝑘𝐵
[︂
𝑀 −𝑁
𝑁

log
𝑀 −𝑁
𝑁

+
2𝑁 −𝑀

𝑁
log

2𝑁 −𝑀
𝑁

]︂
. (19.75)

Notice that the total energy is 𝐸 = 𝜀𝑁𝐵 = (𝑀 − 𝑁)𝜀. Therefore, constant 𝐸
and constant 𝐿 are identical constraints, so the system has only one thermodynamic
coordinate; you can choose 𝐿 or 𝐸 (𝑑𝐸 = (𝜀/𝑎)𝑑𝐿).

(2) What is the required (stretching) force 𝐹 (cf. for a rubber band, it is the force
that resists stretching, if 𝐹 > 0) to maintain its length at 𝐿 at temperature 𝑇?
Solution.
The Gibbs relation is

𝑑𝐸 = (𝜀/𝑎)𝑑𝐿 = 𝑇𝑑𝑆 + 𝐹𝑑𝐿. (19.76)

Here 𝐹 is a tensile force. Therefore,

𝐹 = 𝜀/𝑎− 𝑇 𝑑𝑆
𝑑𝐿

. (19.77)

Note that 𝑆 is only dependent on 𝐿 = 𝑎𝑀 . Thus,

𝐹 = 𝜀/𝑎− 𝑘𝐵𝑇

𝑎
log

2𝑁 −𝑀
𝑀 −𝑁

(19.78)

or

𝑎𝐹 = 𝜀− 𝑘𝐵𝑇 log
2𝑁 −𝑀
𝑀 −𝑁

. (19.79)

The formula implies that if the monomers are almost all in state A (i.e., 𝑀 ∼ 𝑁),
𝐹 ≪ 0. That is, the system pushes out with a tremendous force. If all in B (i.e.,
𝑀 ∼ 2𝑁), then again a tremendous force is needed, but this time a stretching force
(𝐹 ≫ 0).

(3) What happens to the change of the chain temperature, if it is reversibly and
adiabatically stretched? [You must think whether this is a meaningful question or
not for the model.]

Solution.

The question asks the following derivative, which we experimentally studied with a
rubber band:

𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

=
𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝑆)
=
𝜕(𝑇, 𝐿)

𝜕(𝐿, 𝑆)

𝜕(𝑇, 𝑆)

𝜕(𝑇, 𝐿)
. (19.80)
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However, in contrast to the real rubber band, for our present model (or the ideal
rubber band without thermal motion) 𝑆 and 𝐸 are functions of 𝐿 only. Therefore,
the above derivative is meaningless: you cannot change 𝐿 while fixing 𝑆. Thus, “no
experiment can be done to study it, so it is meaningless in physics” may be the only
reasonable answer.

However, in the real chain (even the ideal chain) case 𝑆 = 𝑆(𝐿,𝐸) with 𝐸 and 𝐿
being independent variables, we can change 𝐸 independently with 𝑆, and the specific
heat under constant length 𝐶𝐿 (this asks how 𝑆 changes under constant 𝐿; this is
meaningless in our over-idealized model) is meaningful and we would get something
like

𝜕𝑇

𝜕𝐿

⃒⃒⃒⃒
𝑆

=
𝑇

𝐶𝐿

𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝑇

=
(𝑎𝐹 − 𝜀)𝑇

𝐶𝐿

. (19.81)

(4) Study the same system using the canonical formalism. Then, confirm that the
entropy above (19.75) and that obtained from the free energy indeed agree.

Solution.
The system energy is 𝜀𝑁𝐵 = 𝜀(𝑀−𝑁), so the canonical partition function reads

𝑍(𝑇 ) =
2𝑁∑︁

𝑀=𝑁

𝑊 (𝑀)𝑒−𝛽𝜀(𝑀−𝑁) =
2𝑁∑︁

𝑀=𝑁

(︂
𝑁

𝑀 −𝑁

)︂
𝑒−𝛽𝜀(𝑀−𝑁). (19.82)

If we introduce 𝑋 =𝑀 −𝑁 ,

𝑍(𝑇 ) =
𝑁∑︁

𝑋=0

(︂
𝑁

𝑋

)︂
𝑒−𝛽𝜀𝑋 = (1 + 𝑒−𝛽𝜀)𝑁 . (19.83)

The internal energy is obtained as (notice that there is only one variable, because 𝐸
and 𝐿 are connected tightly)

𝐸 = −𝑑log𝑍
𝑑𝛽

= 𝑁
𝜀

1 + 𝑒𝛽𝜀
. (19.84)

so
𝑆𝑇 = 𝐸 − 𝐴 = 𝑁

𝜀

1 + 𝑒𝛽𝜀
+𝑁𝑘𝐵𝑇 log(1 + 𝑒−𝛽𝜀). (19.85)

This is the entropy obtained by the canonical ensemble approach.
(19.84) implies

𝑀 −𝑁
𝑁

=
𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀
,
2𝑁 −𝑀

𝑁
=

1

1 + 𝑒−𝛽𝜀
. (19.86)

Thus, (19.75), the microcanonical result, reads

𝑆 = −𝑁𝑘𝐵
[︂

𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀
log

𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀
+

1

1 + 𝑒−𝛽𝜀
log

1

1 + 𝑒−𝛽𝜀

]︂
(19.87)

= 𝑁𝑘𝐵 log(1 + 𝑒−𝛽𝜀)−𝑁𝑘𝐵
𝑒−𝛽𝜀

1 + 𝑒−𝛽𝜀
log 𝑒−𝛽𝜀, (19.88)
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which agrees with (19.85).

(5) Study the same system using the constant 𝑇 -𝐹 ensemble, noting that under
an external force 𝐹 the system has a potential energy −𝐹𝐿. Then, confirm that 𝐹
obtained by this scheme and (19.78) agree.
Solution.
The thermodynamic potential we use is now Φ = 𝐸−𝑆𝑇−𝐹𝐿 and the Gibbs relation
is

𝑑Φ = 𝑑(𝐸 − 𝐿𝐹 − 𝑇𝑆) = −𝑆𝑑𝑇 − 𝐿𝑑𝐹. (19.89)

Needless to say, 𝐸 is just 𝜀(𝑀 − 𝑁), so it is NOT an independent quantity; as
you see from (19.78) 𝐹 is just a function of 𝐸 (and vice versa). This means 𝛽Φ
is actually a function of 𝛽𝐹 alone.324 The convenient partition function 𝑌 reads
(𝑋 =𝑀 −𝑁)

𝑌 =
2𝑁∑︁

𝑀=𝑁

𝑊 (𝑀)𝑒−𝛽𝜀(𝑀−𝑁)+𝛽𝑎𝑀𝐹 =
𝑁∑︁

𝑋=0

(︂
𝑁

𝑋

)︂
𝑒−𝛽(𝜀−𝑎𝐹 )𝑋+𝛽𝑎𝑁𝐹 (19.90)

= 𝑒𝛽𝑎𝐹𝑁(1 + 𝑒−𝛽(𝜀−𝑎𝐹 ))𝑁 . (19.91)

Thus,
Φ = −𝑘𝐵𝑇 log 𝑌 = −𝑎𝐹𝑁 −𝑁𝑘𝐵𝑇 log(1 + 𝑒−𝛽(𝜀−𝑎𝐹 )). (19.92)

From this we get the chain length 𝐿 as

𝐿 = − 𝜕Φ

𝜕𝐹

⃒⃒⃒⃒
𝑇

= 𝑎𝑁 + 𝑎𝑁
𝑒−𝛽(𝜀−𝑎𝐹 )

1 + 𝑒−𝛽(𝜀−𝑎𝐹 )
. (19.93)

or

𝑀 = 𝑁 +𝑁
𝑒−𝛽(𝜀−𝑎𝐹 )

1 + 𝑒−𝛽(𝜀−𝑎𝐹 )
. (19.94)

Therefore,

𝑀/𝑁 = 1 +
𝑥

1 + 𝑥
⇒ 𝑥 ≡ 𝑒−𝛽(𝜀−𝑎𝐹 ) =

𝑀 −𝑁
2𝑁 −𝑀

, (19.95)

or

𝛽(𝜀− 𝑎𝐹 ) = log
2𝑁 −𝑀
𝑀 −𝑁

. (19.96)

This is just (19.78):

𝐹 = 𝜀/𝑎− 𝑘𝐵𝑇

𝑎
log

2𝑁 −𝑀
𝑀 −𝑁

(19.97)

obtained microcanonically.

324Dimensional analysis also tells us so.
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Exercise 9

E9.1 [Basic use of Jacobian technique].
Consider an elastic rod of length 𝐿. Its Gibbs relation reads

𝑑𝐸 = 𝑇𝑑𝑆 + 𝐹𝑑𝐿, (19.98)

where 𝐹 is the (tensile) force.325 There are two kinds of elasticity, entropic and
energetic, according to the sign of (𝜕𝑆/𝜕𝐿)𝑇 ; entropic (resp. energetic) if negative
(resp. positive).

What can you say about the signs of the following partial derivatives for these
different elasticities? If you can find the answer(s) in the lecture notes, you can quote
it. If obvious, say so with a brief reason. [You’d better try ‘intuitive’ explanations
of the results you would obtain.]
(1)

𝜕𝐹

𝜕𝐿

⃒⃒⃒⃒
𝑆

. (19.99)

(2)
𝜕𝐿

𝜕𝑇

⃒⃒⃒⃒
𝑆

. (19.100)

(3)
𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝐹

. (19.101)

(4) Under stretching condition 𝐹 > 0,

𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝐸

. (19.102)

Solution.
The thermodynamic stability criterion 𝛿2𝐸 > 0 implies the positive definiteness of
the Hessian of 𝐸 with respect to extensive variables, so

𝜕𝑥

𝜕𝑋

⃒⃒⃒⃒
𝑌

> 0 (19.103)

and
𝜕(𝑥, 𝑦)

𝜕(𝑋, 𝑌 )
> 0 (19.104)

follow.

(1) This is a diagonal term, so it must be positive due to the stability of the equilib-
rium state. No demonstration is needed.

(2) We know its reciprocal, so it is positive for the entropic case, and opposite for

325Thermodynamics of elastic bodies is not this simple, but let us study the bare-bone version.
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the energetic case. Or we can honestly proceed as:

𝜕𝐿

𝜕𝑇

⃒⃒⃒⃒
𝑆

=
𝜕(𝐿, 𝑆)

𝜕(𝐿, 𝑇 )

𝜕(𝐿, 𝑇 )

𝜕(𝑇, 𝑆)
= −𝐶𝐿

𝑇

𝜕(𝐿, 𝑇 )

𝜕(𝑆, 𝑇 )
= − 𝐶𝐿

𝑇

⧸︂
𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝑇

. (19.105)

For example, for a polymer chain if you wish to keep 𝑆 while raising 𝑇 , you must
suppress the wiggling by increasing 𝐹 , so 𝐿must increase. For a metal rod if you wish
to keep 𝑆 while raising 𝑇 , you must suppress the structural disorder by decreasing
the interatomic distances, so 𝐿 should decrease.

(3)

𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝐹

=
𝜕(𝑆, 𝐹 )

𝜕(𝐿, 𝐹 )
=
𝜕(𝑆, 𝐹 )

𝜕(𝑇, 𝑆)

𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝐹 )
=
𝜕(𝑆, 𝐹 )

𝜕(𝑇, 𝑆)

=
𝜕(𝑆, 𝐹 )

𝜕(𝑇, 𝐿)

𝜕(𝑇, 𝐿)

𝜕(𝑇, 𝑆)
=
𝜕(𝑆, 𝐹 )

𝜕(𝑇, 𝐿)

⧸︂
𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝑇

.

The Jacobian in this formula is positive as you can show it explicitly:

𝜕(𝑆, 𝐹 )

𝜕(𝑇, 𝐿)
=
𝜕(𝑆, 𝐹 )

𝜕(𝑆, 𝐿)

𝜕(𝑆, 𝐿)

𝜕(𝑇, 𝐿)
> 0, (19.106)

since both factors are diagonal elements.
For the entropic (resp., energetic) case it is negative (resp., positive). For a poly-

mer chain, to increase 𝐿 under constant 𝐹 , you must calm down the ‘kids’ (cool the
chain), so 𝑆 decreases. For a metal rod, to increase 𝐿 under constant 𝐹 , you must
increase the directional disorder of the interatomic forces, so 𝑆 increases.

(4) From 𝑑𝐸 = 𝑇𝑑𝑆 + 𝐹𝑑𝐿 = 0 obviously

𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝐸

= −𝐹
𝑇
< 0. (19.107)

Or you can do as follows as well:

𝜕𝑆

𝜕𝐿

⃒⃒⃒⃒
𝐸

=
𝜕(𝑆,𝐸)

𝜕(𝐿,𝐸)
=
𝜕(𝑆,𝐸)

𝜕(𝐿, 𝑆)

𝜕(𝐿, 𝑆)

𝜕(𝐿,𝐸)
= − 𝜕𝐸

𝜕𝐿

⃒⃒⃒⃒
𝑆

⧸︂
𝜕𝐸

𝜕𝑆

⃒⃒⃒⃒
𝐿

= −𝐹
𝑇
. (19.108)

E9.2 [Fluctuation of enthalpy]
Calculate the fluctuation of enthalpy ⟨𝛿𝐻2⟩. Notice that 𝛿𝐻 = 𝑇𝛿𝑆 + 𝑉 𝛿𝑃 .

Solution.

⟨𝛿𝐻2⟩ = 𝑇 2⟨𝛿𝑆2⟩+ 𝑉 2⟨𝛿𝑃 2⟩, (19.109)
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because 𝛿𝑆 and 𝛿𝑃 are statistically independent. Following Einstein, we know the
density distribution function of fluctuations:

∝ exp[𝛿2𝑆/𝑘𝐵] = exp

{︂
− 1

2𝑘𝐵𝑇
[𝛿𝑆𝛿𝑇 − 𝛿𝑃𝛿𝑉 ]

}︂
. (19.110)

We choose 𝛿𝑆 and 𝛿𝑃 as basic fluctuations:

− 1

2𝑘𝐵𝑇
[𝛿𝑆𝛿𝑇 − 𝛿𝑃𝛿𝑉 ] = − 1

2𝑘𝐵𝑇

[︂
𝜕𝑇

𝜕𝑆

⃒⃒⃒⃒
𝑃

(𝛿𝑆)2 − 𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑆

(𝛿𝑃 )2 + · · ·
]︂
, (19.111)

where the remaining terms are irrelevant. Therefore, the Gaussianness of the distri-
bution tells us

⟨𝛿𝑆2⟩ = 𝑘𝐵𝑇
𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑃

= 𝑘𝐵𝐶𝑃 , (19.112)

⟨𝛿𝑃 2⟩ = −𝑘𝐵𝑇
⧸︂
𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑆

= 𝑘𝐵𝑇/𝑉 𝛽𝑆, (19.113)

where 𝛽𝑆 is the adiabatic compressibility. Therefore,

⟨𝛿𝐻2⟩ = 𝑘𝐵𝑇 (𝑇𝐶𝑃 + 𝑉/𝛽𝑆). (19.114)

E9.3. [Independent spin system in magnetic field]
A graduate textbook326 discusses the entropy and temperature relation for a non-
interacting spins (just the model we discussed in Section 17) as follows; Under mag-
netic field 𝐵, the system entropy reads

𝑆(𝐸,𝐵) = −𝑁𝑘𝐵
[︂
𝑁 + 𝐸/𝜇𝐵

2𝑁
log

𝑁 + 𝐸/𝜇𝐵

2𝑁
+
𝑁 − 𝐸/𝜇𝐵

2𝑁
log

𝑁 − 𝐸/𝜇𝐵
2𝑁

]︂
,

(19.115)
where the author identifies 𝐸 = −𝑀𝐵.

The author says “let us introduce a result from thermodynamics” and writes a
nonsense

𝜕𝑆

𝜕𝐸

⃒⃒⃒⃒
𝑀,𝑁

=
1

𝑇
. (19.116)

(1) Correct the errors.
(2) After correction, obtain the 𝐵-𝐻̃ relation. Here, 𝐻̃ = 𝐸 −𝑀𝐵 = −𝑀𝐵, where
𝐸 is the true internal energy of the system (distinct from the fake internal energy 𝐸
in the quoted book).327

326Reichl’s A modern course of statistical physics pp12-13
327𝐻̃ corresponds to the enthalpy for a fluid system.
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(3) Show that adiabatic reducing of the external magnetic field cools the spins.

Solution.
(1) Since 𝐸 (whatever it is) is fixed (because 𝑀 is fixed), this derivative is meaning-
less.

As you know the internal energy of the system is zero, and the ‘generalized en-
thalpy’ 𝐻̃ = 𝐸−𝑀𝐵 = −𝑀𝐵, so, if you wish to use something like internal energy,
(19.115) should read

𝑆(𝐻̃, 𝐵) = −𝑁𝑘𝐵

[︃
𝑁 + 𝐻̃/𝜇𝐵

2𝑁
log

𝑁 + 𝐻̃/𝜇𝐵

2𝑁
+
𝑁 − 𝐻̃/𝜇𝐵

2𝑁
log

𝑁 − 𝐻̃/𝜇𝐵
2𝑁

]︃
,

(19.117)
The Gibbs relation is 𝑑𝐻̃ = 𝑇𝑑𝑆 −𝑀𝑑𝐵, so a meaningful counterpart of (19.116)
reads

𝜕𝑆

𝜕𝐻̃

⃒⃒⃒⃒
𝐵,𝑁

=
1

𝑇
. (19.118)

In the quoted book 𝑑𝐸 = 𝑇𝑑𝑆 + 𝐵𝑑𝑀 is used to get (19.116), but an external
magnetic field is applied, so the proper thermodynamic potential is 𝐻̃.

(2) Explicitly computing (19.118), we obtain (you have only to differentiate the
factors outside log)

1

𝑇
= − 𝑘𝐵

2𝜇𝐵

[︃
log

𝑁 + 𝐻̃/𝜇𝐵

2𝑁
− log

𝑁 − 𝐻̃/𝜇𝐵
2𝑁

]︃
=

𝑘𝐵
2𝜇𝐵

log
𝑁 − 𝐻̃/𝜇𝐵
𝑁 + 𝐻̃/𝜇𝐵

. (19.119)

That is, (𝑥 ≡ 𝐻̃/𝜇𝑁𝐵)

(1 + 𝑥)𝑒2𝛽𝜇𝐵 = (1− 𝑥) ⇒ 𝑥 =
1− 𝑒2𝛽𝜇𝐵

1 + 𝑒2𝛽𝜇𝐵
= − tanh(𝛽𝜇𝐵), (19.120)

or
𝐻̃ = −𝜇𝑁𝐵 tanh(𝛽𝜇𝐵) = −𝑀𝐵. (19.121)

(3) Adiabaticity means 𝑆 constant, so 𝐻̃/𝜇𝐵 (actually −𝑀/𝜇) must be constant as
well. Therefore, (19.121) means tanh(𝜇𝐵/𝑘𝐵𝑇 ) is constant. If you reduce 𝐵, then 𝑇
must decrease. However, note that𝑀 does not change, so it is not ‘demagnetization.’
This argument may be used to explain the cooling of the spin system itself, BUT if
you wish to use a spin system as a coolant, you need real demagnetization (See at
the end of 17.17).
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20 Chemical potential

Summary
* To discuss open systems we must extend the first law of thermodynamics by in-
cluding the mass action 𝑑𝑍 ′ =

∑︀
𝜇𝑑𝑁 .

* When exchange of a chemical is allowed between various parts of the system, the
equilibrium condition is the identity of its chemical potentials among the parts.
* The chemical potential generally has the form 𝜇 = 𝜇⊖ + 𝑘𝐵𝑇 log 𝑎, where activity
𝑎 is related to the concentration of the chemical.
* Algebraic expression of chemical reactions gives the reaction equilibrium condition∑︀
𝜈𝜇 = 0, which leads to the concept of equilibrium constant.

Key words
mass action, chemical potential, Gibbs-Duhem relation, phase equilibrium, Clapeyron-
Clausius equation, osmotic pressure, van’t Hoff’s law, Raoult’s law, colligative prop-
erties, chemical reaction, signed stoichiometric coefficients, law of mass action, equi-
librium constant, van’t Hoff’s equation

What you should be able to do
* Be able to explain what the chemical potential is, and understand various equilib-
rium conditions in terms of chemical potentials.
* Be able to understand the shifting direction of the reaction when 𝑇 or 𝑃 is altered.

20.1 Open systems
So far we have discussed isolated systems, thermally isolated systems, and systems
whose work coordinates are buffered (e.g., thermostatted systems). These closed
systems are not allowed to exchange substances between the systems themselves and
their surrounding world.

Now, we will discuss open systems for which exchange of their component chemi-
cals between themselves and their environments is allowed. We must extend the first
law in the following form

Δ𝐸 = 𝑄+𝑊 + 𝑍, (20.1)

where 𝑍 is called the mass action, which describes the energetic contribution of ma-
terials exchange.

20.2 Mass action and chemical potential
To begin with, for simplicity, we assume only one chemical may be exchanged. We
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need one variable 𝑁 to specify its amount in the system (in moles or in numbers328).
We prepare a semipermeable rigid membrane that allows the passage of this chemical.
Setting up a device as illustrated in Fig. 20.1 and injecting this chemical (only) into
the system (or sucking up from the system), we can measure the necessary work
(necessary mass action) 𝑑′𝑍 to inject 𝑑𝑁 molecules into the system. This is written
as

𝑑′𝑍 = 𝜇𝑑𝑁. (20.2)

semipermeable 

membrane

system

Figure 20.1: How to measure a chemical potential; however, this is only a very schematic figure.
Since ordinary work coordinates and entropy must be kept constant, it is practically almost impos-
sible to use this approach. Practically, we use (20.14) under 𝑇 , 𝑃 (and other intensive conjugate
variables to work coordinates) constant.

Here, it is explicitly noted that 𝑍 is not a state function, and 𝜇 is called the chemical
potential of this chemical.

If we have more than one chemicals whose amounts we can change indepen-
dently,329 we can appropriately generalize the above setup and write

𝑑′𝑍 =
∑︁
𝑖

𝜇𝑖𝑑𝑁𝑖, (20.3)

where 𝑁𝑖 denotes the amount of the 𝑖th chemical and 𝜇𝑖 the corresponding chemical
potential.

Intuitively, the chemical potential of a chemical of a system is the measure of the
system’s capability to export the chemical.

328But in these lecture notes, 𝑁 always implies the number of particles, and we will not use moles
unless clearly stated. Thermodynamics only handles the situation that the atomic nature of the
material is not discernible, but here we adopt an eclectic attitude.

329What is independently changed and what not may not be a simple question, but usually,
common-sense tells us the right answer. For example, if you want to inject water into the system,
inevitably, you inject OH−, H3O

+, etc. as well, but they are ‘slaved’ to the total amount of water
when 𝑇 and 𝑃 are fixed (chemical equilibrium). Therefore, we may conclude that only 1 component
matters, and this answer is in agreement with our common sense conclusion.
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20.3 Gibbs relation
Including the mass action, the full form of the Gibbs relation reads (cf 9.27)

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 + 𝑥𝑑𝑋 + · · · . (20.4)

or

𝑑𝑆 =
1

𝑇
𝑑𝐸 +

𝑃

𝑇
𝑑𝑉 − 𝜇

𝑇
𝑑𝑁 − 𝑥

𝑇
𝑑𝑋 + · · · . (20.5)

Needless to say, if you have several independently modifiable chemicals, we must
replace 𝜇𝑑𝑁 with a sum over these chemicals

∑︀
𝑖 𝜇𝑖𝑑𝑁𝑖. Be careful about the signs.

Other thermodynamic potentials read

𝑑𝐴 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 + 𝑥𝑑𝑋 + · · · , (20.6)

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉 𝑑𝑃 + 𝜇𝑑𝑁 + 𝑥𝑑𝑋 + · · · . (20.7)

20.4 Gibbs-Duhem relation
If the system size is increased by a fraction 𝛿𝜆 by joining a small fraction of the

+

1 δλ 1 + δλ

Figure 20.2: A fraction 𝛿𝜆 of the original system is added. Then, the increase of the extensive
quantity 𝑋 is 𝛿𝑋 = 𝑋𝛿𝜆 (i.e., 𝑋 → 𝑋 +𝑋𝛿𝜆).

identical system in the identical equilibrium state (Fig. 20.2), all the extensive quan-
tities are multiplied by 1 + 𝛿𝜆. However, all the conjugate intensive quantities are
intact. Therefore, (20.4) applied to this situation reads

𝛿𝐸 = 𝐸𝛿𝜆 = (𝑇𝑆 − 𝑃𝑉 + 𝜇𝑁 + 𝑥𝑋 + · · ·)𝛿𝜆, (20.8)

or
𝐸 = 𝑇𝑆 − 𝑃𝑉 + 𝜇𝑁 + 𝑥𝑋 + · · · . (20.9)

This implies

𝑑𝐸 = (𝑇𝑑𝑆−𝑃𝑑𝑉 +𝜇𝑑𝑁 +𝑥𝑑𝑋+ · · ·)+(𝑆𝑑𝑇 −𝑉 𝑑𝑃 +𝑁𝑑𝜇+𝑋𝑑𝑥+ · · ·), (20.10)

but (20.4) is true, so we must conclude that

𝑆𝑑𝑇 − 𝑉 𝑑𝑃 +𝑁𝑑𝜇+𝑋𝑑𝑥+ · · · = 0. (20.11)
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This relation is called the Gibbs-Duhem relation. This tells us how the chemical
potential changes as a function of 𝑇 , 𝑃 , etc., if there is only one chemical species:

𝑑𝜇 = − 𝑆
𝑁
𝑑𝑇 +

𝑉

𝑁
𝑑𝑃 − 𝑋

𝑁
𝑑𝑥+ · · · . (20.12)

20.5 Gibbs free energy in terms of chemical potentials
If we combine (20.9) with the definition of the Gibbs free energy, we obtain

𝐺 = 𝜇𝑁 + 𝑥𝑋 + · · · . (20.13)

Usually, there are many chemicals and no other work coordinates than 𝑉 , so this
becomes

𝐺 =
∑︁
𝑖

𝜇𝑖𝑁𝑖. (20.14)

If there is only one chemical, notice that the Gibbs relation (20.7) is just (20.12).

(20.13) can be more directly obtained by the same approach as is used to derive (20.9). We
know

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉 𝑑𝑃 + 𝜇𝑑𝑁 + 𝑥𝑑𝑋. (20.15)

By the grafting process in Fig. 20.2, 𝐺→ 𝐺+𝐺𝛿𝜆, since 𝐺 is extensive, but since 𝑇 and 𝑃
are intact (intensive!). Therefore, (20.15) reads

𝐺𝛿𝜆 = 𝜇𝑁𝛿𝜆+ 𝑥𝑋𝛿𝜆, (20.16)

which is just (20.13).

20.6 Equilibrium condition with chemical exchange
Suppose two systems I and II are joined to exchange heat, volume and chemicals while
the whole system is in isolation (or thermally isolated and no work nor mass action is
provided from outside). Then, the equilibrium condition must be the maximization
of the total entropy. Let 𝑆𝑋 be the entropy of system X. Then, 𝑆 = 𝑆I + 𝑆II. If we
assume thermal and pressure equilibration have already been attained, the remaining
equilibrium condition is

𝛿𝑆 =
∑︁
𝑖

(︁𝜇𝑖I

𝑇
𝛿𝑁𝑖I +

𝜇𝑖II

𝑇
𝛿𝑁𝑖II

)︁
= 0. (20.17)

Assuming that there is no chemical reaction changing 𝑁𝑖’s, we must conclude 𝛿𝑁𝑖I+
𝛿𝑁𝑖II = 0. Therefore, the equilibrium condition is

𝜇𝑖I = 𝜇𝑖II (20.18)
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for each 𝑖 that can be exchanged between the two subsystems.

20.7 Phase equilibria
We will discuss phase transitions330 in detail toward the end of these lecture notes,
but let us discuss some elementary and important aspects of phase co-existence
associated with first order phase transitions (= discontinuous phase transitions).331

If two phases coexist (just as ice floating on liquid water), we may regard different
phases as different compartments I and II in contact with each other through the
interphase (phase boundary). Let us study the condition for the equilibrium of these
two phases (phase equilibrium of these two phases) of a pure substance under constant
𝑇 and 𝑃 . The equilibrium condition is the minimum of the Gibbs free energy of the
whole system. Since there is only one chemical component,

0 = 𝛿𝐺 = 𝜇I𝛿𝑁I + 𝜇II𝛿𝑁II, (20.19)

Therefore, if the system is materially closed, 𝛿𝑁 = 𝛿𝑁I + 𝛿𝑁II = 0, so we must
conclude

𝜇I = 𝜇II. (20.20)

This is the phase equilibrium condition, which may be rewritten as

Δ𝜇 = 0, (20.21)

where Δ implies the change due to phase transition.

20.8 Clapeyron-Clausius equation
It is often interesting to know what happens, e.g., to the boiling point if the pressure is
reduced (cf. vacuum distillation). To this end we must understand how the chemical
potential changes. By the same logic used to derive the Gibbs-Duhem relation, we
arrive at

𝑑𝜇 = 𝑣𝑑𝑃 − 𝑠𝑑𝑇, (20.22)

where 𝑣 = 𝑉/𝑁 and 𝑠 = 𝑆/𝑁 . These densities depend on the phases, but 𝑇 and 𝑃
are common to the coexisting phases, so (20.21) reads

Δ𝑣 𝑑𝑃 = Δ𝑠 𝑑𝑇, (20.23)

330What is the phase transition? We will discuss the topic in depth later. Here, you have only to
consider familiar examples such as melting of ice or boiling of water.

331There are two major classes of phase transitions, continuous and discontinuous. In the former,
there is no jump in any extensive quantities across the transition, but something strange can happen
(say, their derivatives = susceptibilities diverge). In contrast, for discontinuous phase transitions
at least one extensive quantity changes discontinuously at the phase transition point. For example,
when ice melts, the density changes.
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where 𝑑𝑇 and 𝑑𝑃 are changes along the phase coexistence line (the arrow in Fig.
20.3), and Δ𝑣 = 𝑣I − 𝑣II and Δ𝑠 = 𝑠I − 𝑠II.

T

P

dT

dP

I

II
phase coexiste

nce

curve

Figure 20.3: What happens to the phase coexistence temperature if the phase coexistence
pressure is changed by 𝑑𝑃? Here, the red curve describes the phase transition line between phase
I and phase II.

(20.23) implies
𝑑𝑃

𝑑𝑇

⃒⃒⃒⃒
coexist

=
Δ𝑠

Δ𝑣
=
𝑠I − 𝑠II
𝑣I − 𝑣II

, (20.24)

which is called the Clapeyron-Clausius equation. Here, you may also interpret 𝑣 as
the molar volume (volume/one mole) and 𝑠 as the molar entropy. Since the entropy
change Δ𝑠 is related to the latent heat Δℎ = ℎI−ℎII as Δ𝑠 = Δℎ/𝑇 with the phase
transition temperature 𝑇 , we can also write

𝑑𝑃

𝑑𝑇

⃒⃒⃒⃒
𝑐𝑜𝑒𝑥𝑖𝑠𝑡

=
Δℎ

𝑇Δ𝑣
. (20.25)

20.9 Chemical potential of ideal gas: thermodynamics
Thus, we have learned that chemical potentials are fundamentally important. What
can thermodynamics say about the chemical potential? From (20.22), if the temper-
ature is fixed

𝑑𝜇 =
𝑉

𝑁
𝑑𝑃. (20.26)

Therefore, if we know the equation of state, we can say something about the chemical
potential. For example, for an ideal gas we have

𝑑𝜇 =
𝑘𝐵𝑇

𝑃
𝑑𝑃. (20.27)

That is,
𝜇(𝑇, 𝑃 ) = 𝜇(𝑇, 𝑃⊖) + 𝑘𝐵𝑇 log(𝑃/𝑃⊖). (20.28)
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Here ⊖ denotes some standard state. In practice, we often write

𝜇(𝑇, 𝑃 ) = 𝜇⊖(𝑇 ) + 𝑘𝐵𝑇 log𝑃, (20.29)

where 𝜇⊖(𝑇 ) is called the standard chemical potential.

20.10 Chemical potential of ideal gas: statistical mechanics
Let us compute the chemical potential of the ideal gas statistical mechanically. We
have computed the Helmholtz free energy, so we may obtain

𝜇 =
𝜕𝐴

𝜕𝑁

⃒⃒⃒⃒
𝑇,𝑉

. (20.30)

We know

𝑍 =
1

𝑁 !

[︃(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂3/2

𝑉

]︃𝑁
=

1

𝑁 !

[︃√
2𝜋

𝜆𝑇
𝐿

]︃3𝑁
=

[︂
𝑒𝑛𝑄𝑉

𝑁

]︂𝑁
, (20.31)

where we have used Stirling’s formula and 𝑛𝑄 = (
√
2𝜋/𝜆𝑇 )

3 with 𝜆𝑇 = (ℎ2/𝑚𝑘𝐵𝑇 )
1/2,

the thermal de Broglie wavelength.

We obtain
𝐴 = 𝑁𝑘𝐵𝑇 log(𝑁/𝑉 𝑛𝑄)−𝑁𝑘𝐵𝑇, (20.32)

so

𝜇 = 𝑘𝐵𝑇 log
𝑁

𝑉 𝑛𝑄

= 𝑘𝐵𝑇 log
𝑛

𝑛𝑄

= 𝑘𝐵𝑇 log
𝑃

𝑘𝐵𝑇𝑛𝑄

, (20.33)

where 𝑛 is the number density. This indeed has the form (20.29).

20.11 Chemical potentials of components of ideal gas mixture
The chemical potential of the 𝑖th component of the ideal gas mixture can be obtained
with the aid of Dalton’s law of partial pressures:

𝜇𝑖(𝑇, 𝑃 ) = 𝜇⊖
𝑖 (𝑇 ) +𝑅𝑇 log𝑃𝑖, (20.34)

where 𝑃𝑖 is the partial pressure of the 𝑖th gas.

20.12 Chemical potential of ideal solutions
Let us model the solvent/solution as a lattice model: each lattice point of the system
is occupied either by a solvent molecule or by a solute molecule (Fig. 20.4).
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Figure 20.4: Lattice solution: 𝑁 solvent molecules (yellow) and 𝑛 solute molecules (blue).

We ignore the interactions among molecules (other than the volume exclusion due
to occupying the lattice points); we call such a solution an ideal solution. 𝑁 solvent
molecules are mixed with 𝑛 solute molecules to make a solution containing an 𝑥 =
𝑛/(𝑁 + 𝑛) mole fraction of solute. Let us discuss a dilute solution 0 < 𝑥≪ 1.

Let the chemical potential of a pure solvent be 𝜇0(𝑇, 𝑃 ) and that of a pure solute
𝜇𝑠(𝑇, 𝑃 ). Then, the initial Gibbs free energy (before mixing) is 𝐺 = 𝑁𝜇0 + 𝑛𝜇𝑠.
After mixing, the Gibbs free energy of the total system will change:

Δ𝐺 = Δ𝐸 + 𝑃Δ𝑉 − 𝑇Δ𝑆, (20.35)

but if we assume that the solution is ideal, its volume and energy do not depend
on the concentration of the solute, so we may assume Δ𝐸 and Δ𝑉 are both zero.
Therefore,

Δ𝐺 = −𝑇Δ𝑆. (20.36)

That is, 𝐺 changes only due to the mixing entropy.
We model the solution as a lattice gas mixture as illustrated above, so we have

Δ𝑆 = 𝑘𝐵 log

(︂
𝑁 + 𝑛

𝑛

)︂
= −𝑁𝑘𝐵 log(1− 𝑥)− 𝑛𝑘𝐵 log 𝑥 (20.37)

immediately from Boltzmann’s formula. Therefore, the Gibbs free energy after mix-
ing is,

𝐺 = 𝑁𝜇0 + 𝑛𝜇𝑠 +𝑁𝑘𝐵𝑇 log(1− 𝑥) + 𝑛𝑘𝐵𝑇 log 𝑥. (20.38)

Although we can immediately read off the chemical potentials after mixing, we
honestly differentiate 𝐺 to get the chemical potentials:

𝜇solv =
𝜕𝐺

𝜕𝑁

⃒⃒⃒⃒
𝑇,𝑃

= 𝜇0 + 𝑘𝐵𝑇 log(1− 𝑥). (20.39)

Analogously, we have
𝜇solute = 𝜇𝑠 + 𝑘𝐵𝑇 log 𝑥. (20.40)
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20.13 Raoult’s law
In the above we interpreted the two components as a solvent and a solute, but

we could interpret the mixture as the mixed liquid consisting of two liquids I and II.
After mixing, how can we confirm that the chemical potentials of the components
can be written as

𝜇I = 𝜇I0 + 𝑘𝐵𝑇 log 𝑥I, (20.41)

𝜇II = 𝜇II0 + 𝑘𝐵𝑇 log 𝑥II, (20.42)

where 𝑥I (𝑥II) is the mole fraction of component I (II), the temperature is 𝑇 , and the
chemical potential of pure substances (at the pressure we are working) are denoted
with suffix 0?

We have only to study the partial pressure of the corresponding gas components
in the vapor in equilibrium with the mixed liquid. We assume that the vapors are
ideal gases and their chemical potentials have the forms of (20.29) or (20.34). Let us
write the chemical potentials of individual pure gases at 𝑇 and under the atmospheric
pressure as 𝜇⊖

I𝐺, 𝜇
⊖
II𝐺. If we write the vapor pressure of pure liquids as 𝑃I0, 𝑃II0 (in

atm), we have332

𝜇I0 = 𝜇⊖
I𝐺 + 𝑘𝐵𝑇 log𝑃I0, (20.43)

𝜇II0 = 𝜇⊖
II𝐺 + 𝑘𝐵𝑇 log𝑃II0. (20.44)

If the partial pressures in the vapor are 𝑃I and 𝑃II, then their chemical potentials
read 𝜇I𝐺 and 𝜇II𝐺

𝜇I𝐺 = 𝜇⊖
I𝐺 + 𝑘𝐵𝑇 log𝑃I, (20.45)

𝜇II𝐺 = 𝜇⊖
II𝐺 + 𝑘𝐵𝑇 log𝑃II. (20.46)

The coexistence condition of the gas mixture and the liquid mixture is 𝜇I = 𝜇I𝐺
and 𝜇II = 𝜇II𝐺, so we have

𝜇⊖
I𝐺 + 𝑘𝐵𝑇 log𝑃I0 + 𝑘𝐵𝑇 log 𝑥I = 𝜇⊖

I𝐺 + 𝑘𝐵𝑇 log𝑃I, (20.47)

𝜇⊖
II𝐺 + 𝑘𝐵𝑇 log𝑃II0 + 𝑘𝐵𝑇 log 𝑥II = 𝜇⊖

II𝐺 + 𝑘𝐵𝑇 log𝑃II. (20.48)

Consequently, we have arrived at Raoult’s law:

𝑃I = 𝑥I𝑃I0, 𝑃II = 𝑥II𝑃II0. (20.49)

That is, the partial vapor pressure of a component is identical to its pure vapor
pressure × its mole fraction in the solution.333

332Here, pressures measured in a particular unit (in atm) appears as it is in the logarithm, so you
must respect the unit when you use the formulas.

333François-Marie Raoult (1830-1901). He also pointed out the melting point depression for the
first time (1878). This was a key to demonstrating that electrolytes indeed dissociate.
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If we combine this and Dalton’s law of partial pressure, we may conclude that the
amount of a gas dissolved in a solvent is proportional to the gas pressure (Henry’s
law).334

20.14 Osmotic pressure
The osmotic pressure 𝜋 is the required ‘extra’ pressure to prevent flowing in of solvent
molecules through the semipermeable membrane that blocks solute molecules (see
Fig. 20.5). That is, the pressure of the solution side must be increased as 𝑃 → 𝑃 +𝜋.
This result is, as we have already seen, an important ingredient of Einstein’s theory
of the Brownian motion335 7.10.

pure 

solvent solution

π
semipermeable 

membrane

Figure 20.5: The horizontal arrow indicates the tendency of solvent molecules to invade.

Since both sides of the membrane must have the same chemical potentials for the
solvent molecules, because they can go through the membrane (see (20.39)):

𝜇solv(𝑃 + 𝜋, 𝑇 ) = 𝜇0(𝑃 + 𝜋, 𝑇 ) + 𝑘𝐵𝑇 log(1− 𝑥) = 𝜇0(𝑃, 𝑇 ), (20.50)

so
−𝜇0(𝑃 + 𝜋, 𝑇 ) + 𝜇0(𝑃, 𝑇 ) = 𝑘𝐵𝑇 log(1− 𝑥) ≃ −𝑘𝐵𝑇𝑥. (20.51)

As we have already seen in the above 𝑑𝜇 = (𝑉/𝑁)𝑑𝑃 under constant temperature,
so the above equation reads (Taylor expansion!)

−(𝑉/𝑁)𝜋 = −𝑘𝐵𝑇 (𝑛/𝑁) ⇒ 𝜋𝑉 = 𝑛𝑘𝐵𝑇. (20.52)

334William Henry (1774-1836). The law was published in 1803. [1803: William Symington demon-
strates his Charlotte Dundas, the ”first practical steamboat”, in Scotland; Beethoven: Symphony
No. 3 “Eroica” (Thielemann, VPO)]

335There we wished to know the force acting on the solute molecules (suspended particles). We
can relate the osmotic pressure and this force as follows.

Suppose the pressure is in balance when a mere piston is placed between the solution and the
pure solvent. Now, we replace the piston with a rigid membrane that blocks only solute molecules.
This means the force (pressure) due to the solute particles is sustained by the membrane. Thus,
the pressure contributed by the solvent to the outside of the solution is reduced by this pressure
which is equal to 𝜋, allowing the solvent molecules to flow in from the pure solvent side. That is,
the force corresponding to 𝜋 is acting on the solute molecules.
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This is called van’t Hoff’s law, which Einstein used in his Brownian motion theory
(actually, he derived this equation by himself).

20.15 Colligative properties
A very similar question is the melting-point depression or the boiling point elevation
due to solute (see Discussion 10).

Raoult’s law, van’t Hoff’s law, Henry’s law, boiling-point elevation, melting-point
depression, etc. are all independent of the chemical nature of the solute and are due
to the log(1−𝑥) or log 𝑥 term in the chemical potential (i.e., only due to the particle
number ratio), so we may understand them in a unified fashion. Therefore, these
phenomena are traditionally said to exhibit the colligative336 properties.

20.16 Chemical reactions
Here, an elementary exposition of equilibrium chemical reactions is given. Without
(irreversible) chemical reactions no atomism was possible. Furthermore, the idea of
detailed balance originated from chemical reactions. Also to understand chemical
reactions is becoming increasingly important even for physicists because we living
organisms are chemical machines.

Since the general formulas may be cumbersome, in this lecture, we use the follow-
ing reaction to illustrate the general formulas:

N2 + 3H2 ↔ 2NH3. (20.53)

This formula implies that one molecule (or one mole of nitrogen reacts with 3
molecules (or 3 moles) of hydrogen to produce two molecules (or 2 moles) of ammo-
nia. This does not mean that four molecules react at once; it is a summary of an
appropriate set of elementary reactions.337

The left hand side of (20.53) is called the original system (or reactant system)
and the right hand side the product system. The coefficients 2, 3 and (not explicitly
written) 1 (for nitrogen) are called stoichiometric coefficients.

If we use the sign convention that the stoichiometric coefficients for the product
system are all positive, and those for the original system all negative, we may write
the reaction in an algebraic form

− N2 − 3H2 + 2NH3 = 0. (20.54)

336ligated together
337As the actual elementary reactions in the gas phase, such a reaction as (20.53) is very unusual,

because elementary reactions are unimolecular decay or binary collision type reactions.
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Thus, generally any reaction may be written as∑︁
𝜈𝑖𝐶𝑖 = 0, (20.55)

where 𝜈𝑖 are signed stoichiometric coefficients for chemical 𝐶𝑖; 𝜈𝑖 > 0 (resp., 𝜈𝑖 < 0)
implies 𝑖 is a product (resp., a reactant).

20.17 Activity of chemical
For a gas mixture with the partial pressure 𝑃𝑖 of chemical 𝑖, we may write its chemical
potential per mole338 as

𝜇𝑖 = 𝜇⊖
𝑖 +𝑅𝑇 log𝑃𝑖. (20.56)

Here, 𝜇⊖
𝑖 is the chemical potential for, e.g., 𝑃𝑖 = 1 (in, say, MPa, atm, etc.339). In

solutions the chemical potential of a solute 𝑖 in a solution is written as

𝜇𝑖 = 𝜇⊖
𝑖 (𝑇, 𝑃 ) +𝑅𝑇 log 𝑎𝑖, (20.57)

where 𝑎𝑖 is called the activity of chemical 𝑖, which is close to the mole fraction 𝑥𝑖
when the solution is dilute.

20.18 Equilibrium condition for reactions: the law of mass action
The equilibrium condition for the reaction (20.55) reads

0 =
∑︁
𝑖

𝜈𝑖𝜇𝑖 =
∑︁
𝑖

𝜈𝑖
[︀
𝜇⊖
𝑖 (𝑇, 𝑃 ) +𝑅𝑇 log 𝑎𝑖

]︀
. (20.58)

Or, (assuming the constant 𝑇𝑃 condition)

−Δ𝐺⊖ ≡ −
∑︁
𝑖

𝜈𝑖𝜇
⊖
𝑖 (𝑇, 𝑃 ) = 𝑅𝑇 log

(︃∏︁
𝑖

𝑎𝜈𝑖𝑖

)︃
. (20.59)

The left hand side does not depend on the chemical composition of the system, so
we introduce the chemical equilibrium constant 𝐾(𝑇, 𝑃 ) according to

𝐾(𝑇, 𝑃 ) = 𝑒−Δ𝐺⊖/𝑅𝑇 =
· · · 𝑎𝜈𝑝𝑝 · · ·
· · · 𝑎−𝜈𝑟

𝑟 · · ·
, (20.60)

338Up to this point we studied everything per molecule, so 𝑘𝐵 appeared in the expression of
chemical potentials, but in the chemical reaction part of this lecture, the chemical potentials per
mole will be used, so 𝑘𝐵 is everywhere replaced with 𝑅.

339Since a dimensional quantity appears in the logarithm, when you use such formulas, you must
stick to the unit being used.
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where the numerator have all the products, and the denominator all the reactants.
(20.60) is called the law of mass action. Note that all the exponents in the above
formula are positive. Large 𝐾 implies that the reaction favors the product system
in equilibrium (the reaction shifts to the right). The equilibrium constant for the
reaction (20.53) is given by

𝐾(𝑇, 𝑃 ) =
[NH3]

2

[N2][H2]3
. (20.61)

Here, [𝑋] generally describes the partial pressure (fugacity) of chemical 𝑋 in the gas
phase reaction or the molarity or mole fraction (or activity) in the solution.

In principle, the chemical equilibrium constant may be statistical-mechanically
computed. However, except for ideal gasses, it is prohibitively hard to compute the
needed chemical potentials, so, for almost all interesting examples of chemical reac-
tions, theoretical calculations are useless.

20.19 Shift of chemical equilibrium
If we differentiate the equilibrium constant with respect to 𝑇 , we can obtain the heat
of reaction, that is, Δ𝐻 (enthalpy change) due to reaction. The Gibbs-Helmholtz
relation 13.16 (or its analog for the Gibbs free energy) tells us

𝜕log𝐾

𝜕𝑇

⃒⃒⃒⃒
𝑃

=
Δ𝐻⊖

𝑅𝑇 2
, (20.62)

where Δ𝐻⊖ is the enthalpy change for the ‘standard state.’ This is called van’t
Hoff’s equation. Similarly,

𝜕log𝐾

𝜕𝑃

⃒⃒⃒⃒
𝑇

= −Δ𝑉 ⊖

𝑅𝑇
, (20.63)

where Δ𝑉 ⊖ is the volume change due to reaction for the ‘standard state’. In reac-
tions the change Δ always implies (product system) − (original system).

(20.62) tells us that if the reaction is exothermic (exoergic, i.e., Δ𝐻⊖ < 0), then
increasing the temperature shifts the reaction to reduce the heat generation (i.e.,
𝐾 decreases and the reaction tends to shift back from the product system to the
original reactant system). This is an example of Le Chatelier’s principle (Lecture
17) asserting that “the response to a perturbation is in the direction to reduce its
effect.” (20.63) is also its example. Needless to say, these are manifestations of the
stability of our world.
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Q20.1 [Gibbs relation for densities]
Show that the Gibbs relation for densities (extensive quantities per volume): 𝑒 =
𝐸/𝑉 (internal energy density), 𝑠 = 𝑆/𝑉 (entropy density), 𝑛 = 𝑁/𝑉 (number
density), 𝑥 = 𝑋/𝑉 , etc. reads

𝑑𝑒 = 𝑇𝑑𝑠+ 𝜇𝑑𝑛+ 𝑥𝑑𝑥. (20.64)

Solution.

From (20.9), we get
𝑒 = 𝑇𝑠− 𝑃 + 𝜇𝑛+ 𝑥𝑥. (20.65)

On the hand, dividing the Gibbs-Duhem relation (20.11) with 𝑉 , we get

𝑠𝑑𝑇 − 𝑑𝑃 + 𝑛𝑑𝜇+ 𝑥𝑑𝑥 = 0 (20.66)

Therefore, differentiating (20.65) and using (20.66), we get

𝑑𝑒 = 𝑇𝑑𝑠+ 𝜇𝑑𝑛+ 𝑥𝑑𝑥. (20.67)

How about the Gibbs relation per unit mass or per mole?

Q20.2 [Impurity effect]
Let us continue the lattice gas example to understand the effect of impurities on the
phase transition temperatures.

Figure 20.6: Lattice gas model we already discussed.

We know the chemical potential of the solvent molecules (majority) reads

𝜇𝐿 = 𝜇⊖
𝐿 + 𝑘𝐵𝑇 log(1− 𝑥). (20.68)

Here, 𝑥 is the mole fraction of the solute molecules (blue particles in Fig. 20.6) the
solution. 𝜇⊖

𝐿 is the chemical potential of the pure solvent liquid. Let us write the
chemical potential of the pure solid phase of the solvent as 𝜇⊖

𝑆 .
(1) If we cool the solution, a solid phase of the solvent molecules emerges. When
solidification occurs, impurity molecules (i.e., solute molecules) are largely excluded
from the emerging solid. Let us idealize (not a bad approximation) the solid phase
to be pure. Let 𝑇𝑚 be the melting point of the pure substance. This implies

𝜇⊖
𝐿(𝑇𝑚, 𝑃 ) = 𝜇⊖

𝑆 (𝑇𝑚, 𝑃 ). (20.69)
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What is the equilibrium coexistence temperature of the pure solid and the solution
with a mole fraction 𝑥 of impurity molecules? You have only to compute the melting
temperature shift Δ𝑇 to order 𝑥. Assume that the latent heat of melting is 𝐿 (per
molecule).
(2) We may assume that the vapor of the solvent at 𝑇 may be approximated as an
ideal gas. At 𝑇 its pressure is 𝑃 . Now, we add the solute molecules as impurity to this
solvent. You may assume that the solute molecules cannot escape the liquid phase,
so the vapor phase still consists of pure solvent molecules. What is the pressure
change Δ𝑃 due to the addition of the mole fraction 𝑥 of the impurity molecules?
(3) You must have obtained Δ𝑃/𝑃 = −𝑥 from (2), assuming the gas volume is much
larger than the liquid volume so the latter may be ignored. |Δ𝑃 | is 2850 Pa, when
23.3 g of a substance is solved in 100 g of water at 100 ∘C. What is the molecular
weight of this substance?

Solution.
(1) Let us assume that at temperature 𝑇𝑚+Δ𝑇 the equilibrium between the solvent
crystal and the solution holds:

𝜇⊖
𝑆 (𝑇𝑚 +Δ𝑇, 𝑃 ) = 𝜇⊖

𝐿(𝑇𝑚 +Δ𝑇, 𝑃 ) + 𝑘𝐵(𝑇𝑚 = Δ𝑇 ) log(1− 𝑥). (20.70)

That is, to order 𝑥, we may Taylor-expand the above condition as

𝜕[𝜇⊖
𝑆 (𝑇𝑚, 𝑃 )− 𝜇

⊖
𝐿(𝑇𝑚, 𝑃 )]

𝜕𝑇𝑚
Δ𝑇 = −𝑘𝐵𝑇𝑚𝑥 (20.71)

Denoting extensive quantities per molecule with lower case letters corresponding to
the standard notation, Gibbs’ relation gives 𝑑𝜇 = −𝑠𝑑𝑇+𝑣𝑑𝑃 , so the above equation
reads (the ‘pure sign’ ⊖ is omitted)

[𝑠𝐿(𝑇𝑚, 𝑃 )− 𝑠𝑆(𝑇𝑚, 𝑃 )]Δ𝑇 = −𝑘𝐵𝑇𝑚𝑥 (20.72)

From the latent heat 𝐿

𝑠𝐿(𝑇𝑚, 𝑃 )− 𝑠𝑆(𝑇𝑚, 𝑃 ) = 𝐿/𝑇𝑚 (20.73)

Thus, we have reached

Δ𝑇 = −𝑘𝐵𝑇
2
𝑚

𝐿
𝑥 < 0 (20.74)

That is, the melting point is lowered by the amount proportional to the impurity
concentration. This is called the melting-point depression.
(2) Let us denote the ideal gas chemical potential as 𝜇𝐺(𝑇, 𝑃 ). From the general
form, we may write

𝜇𝐺(𝑇, 𝑃 ) = 𝜇⊖
𝐺(𝑇 ) + 𝑘𝐵𝑇 log𝑃. (20.75)

Therefore, the equilibrium between the pure solvent and its vapor requires at pressure
𝑃

𝜇⊖
𝐿(𝑇, 𝑃 ) = 𝜇⊖

𝐺(𝑇 ) + 𝑘𝐵𝑇 log𝑃, (20.76)
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and the equilibrium between the solution and its vapor requires at pressure 𝑃 +
Δ𝑃

𝜇⊖
𝐿(𝑇, 𝑃 +Δ𝑃 ) + 𝑘𝐵𝑇 log(1− 𝑥) = 𝜇⊖

𝐺(𝑇 ) + 𝑘𝐵𝑇 log(𝑃 +Δ𝑃 ). (20.77)

Subtracting (20.76) from (20.77), we obtain

𝜇⊖
𝐿(𝑇, 𝑃 +Δ𝑃 )− 𝜇⊖

𝐿(𝑇, 𝑃 ) + 𝑘𝐵𝑇 log(1− 𝑥) = 𝑘𝐵𝑇 log(1 + Δ𝑃/𝑃 ). (20.78)

Taylor-expanding this to order 𝑥, we get

𝜕𝜇𝐿

𝜕𝑃

⃒⃒⃒⃒
𝑇

Δ𝑃 − 𝑘𝐵𝑇𝑥 =
𝑘𝐵𝑇

𝑃
Δ𝑃. (20.79)

The partial derivative here gives the volume (per molecule) of the solvent liquid,
which may be neglected relative to the gas volume 𝑘𝐵𝑇/𝑃 . After this approximation
we get the famous equation

Δ𝑃 = −𝑥𝑃. (20.80)

(3) Let 𝑀 be the molecular weight of the solute. Then, since the ambient pressure
is 1 atm (as seen from the boiling point of the water)

𝑥 =
23.3/𝑀

100/18 + 23.3/𝑀
=
|Δ𝑃 |
𝑃

(20.81)

or
23.3

𝑀
=

(100/18)|Δ𝑃 |/𝑃
1− |Δ𝑃 |/𝑃

≃ 100

18

|Δ𝑃 |
𝑃

=
100

18

2850

1.013× 105
. (20.82)

Hence, 𝑀 ≃ 149.

Q20.3 [Chemical equilibria]
Let us consider the reaction to synthesize ammonia:

N2 + 3H2 −→ 2NH3. (20.83)

Its equilibrium constant may be written in terms of partial pressures as

𝐾 =
𝑃 2
NH3

𝑃N2
𝑃 3
H2

= 1.5× 10−5, (20.84)

if the (partial) pressures are in atm (at 500 ∘C).
(1) If you wish to synthesize ammonia, is it more or less advantageous to increase the
total pressure of the reaction vessel? You must justify your answer (perhaps quoting
the relevant equation(s)).
(2) Suppose the atomic ratio of 𝑁 and 𝐻 is 1:3 (i.e., the stoichiometric ratio). If 90%
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of reactants are converted into ammonia in equilibrium, what is the total pressure 𝑃
of the mixture? You may treat the gases as ideal gases.
Solution.
(1) This is le Chatelier. Since the volume decreases if the reaction proceeds, increas-
ing pressure should shift the reaction to the ammonia side. Or more precisely, we
use

𝜕log𝐾

𝜕𝑃

⃒⃒⃒⃒
𝑇

= −Δ𝑉

𝑅𝑇
, (20.85)

where Δ𝑉 is the volume change due to the reaction. In this case it is negative, so
increasing 𝑃 increases 𝐾, that is, the reaction shifts two the right.
(2) We need the final mole fractions of the chemicals. If 100𝑥% of N2 has been
converted into ammonia and there was 1 mole of nitrogen gas, the total number of
molecules in moles is

1− 𝑥+ 3(1− 𝑥) + 2𝑥 = 4− 2𝑥. (20.86)

Therefore, the partial pressures after equilibration read

𝑃N2
= 𝑃

1− 𝑥
4− 2𝑥

, 𝑃 3
H2

= 𝑃
3− 3𝑥

4− 2𝑥
, 𝑃 2

NH3
= 𝑃

2𝑥

4− 2𝑥
. (20.87)

Hence,

𝐾 =
[2𝑥/(4− 2𝑥)]2

𝑃 2[(1− 𝑥)/(4− 2𝑥)][(3− 3𝑥)/(4− 2𝑥)]3
=

16𝑥2(2− 𝑥)2

27𝑃 2(1− 𝑥)4
(20.88)

For 𝑥 = 0.9
𝑃 2 = 5808/𝐾 = 3.87× 108, (20.89)

𝑃 = 1.97× 104 atm.
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21 Grand canonical ensemble and ideal quantum

systems

Summary
* Grand canonical partition function/ensemble is introduced.
* Noninteracting quantum systems are discussed with the aid of grand partition
function.
* Pressures of fermions and bosons are compared.
* 𝑃𝑉 = 2𝐸/3 for ‘any’ ideal gas.

Key words
grand canonical partition function, grand canonical ensemble, fermion, boson, Bose-
Einstein distribution, Fermi-Dirac distribution

What you should be able to do
* Be able to explain why 𝑃𝑉 is directly obtained from the grand canonical partition
function.
* Intuitively understand low temperature noninteracting fermion and boson systems.
* In particular, compare the pressures of boson and fermion systems intuitively.
* Be able to derive the one particle density of states 𝐷𝑡(𝜀). Note 𝐷𝑡 ∝

√
𝜀.

21.1 Grand canonical ensemble/partition function: motivation
We now introduce another ensemble. We know microcanonical, canonical, and gen-
eralized canonical ensembles (e.g., pressure ensembles). The fourth law 9.5 tells
us

𝐴 = 𝐸 − 𝑇𝑆 = −𝑃𝑉 + 𝜇𝑁. (21.1)

Can you directly derive this, following the logic used in Lecture 20 to demonstrate
the Gibbs-Duhem relation (i.e., mimic the fine letters in 20.5)? Therefore, (21.1)
implies

𝑃𝑉 = −𝐴+ 𝜇𝑁 = 𝑆𝑇 − 𝐸 + 𝜇𝑁, (21.2)

That is,
𝑃𝑉

𝑇
= 𝑆 − 𝐸

𝑇
+
𝜇

𝑇
𝑁. (21.3)

This is a Legendre transformation of entropy, so there must be an ensemble that
directly gives 𝑃𝑉/𝑇 or 𝑃𝑉/𝑘𝐵𝑇 .

Compare the following formulas:

𝑆 = 𝑘𝐵 log𝑤(𝐸, 𝑉,𝑋), (21.4)
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−𝐴
𝑇

= 𝑆 − 𝐸

𝑇
= 𝑘𝐵 log𝑍(𝑇, 𝑉,𝑋). (21.5)

We know with the aid of Boltzmann’s principle

𝑍(𝑇, 𝑉,𝑋) =

∫︁
𝑑𝐸 𝑤(𝐸, 𝑉,𝑋)𝑒−𝐸/𝑘𝐵𝑇 =

∫︁
𝑑𝐸 𝑒[𝑆(𝐸)−𝐸/𝑇 ]/𝑘𝐵 . (21.6)

Thus, we can easily mimic this to get

𝑃𝑉

𝑇
= 𝑆 − 𝐸 − 𝜇𝑁

𝑇
= 𝑘𝐵 log Ξ(𝑇, 𝑉, 𝜇) (21.7)

with

Ξ(𝑇, 𝑉, 𝜇) =

∫︁
𝑑𝐸
∑︁
𝑁

𝑤(𝐸, 𝑉,𝑁)𝑒−(𝐸−𝜇𝑁)/𝑘𝐵𝑇 =
∞∑︁

𝑁=0

𝑍(𝑇, 𝑉,𝑁)𝑒𝛽𝜇𝑁 . (21.8)

Ξ is called the grand (canonical) partition function, which describes the system ther-
mostatted and chemostatted with a reservoir at temperature 𝑇 and chemical poten-
tial 𝜇. Recall that 𝜇 is the needed work to push one molecule into the system, so
by adjusting 𝜇 you can regulate the average number of particles in the system. If a
system is macroscopic, the fluctuation of the total number of particles is irrelevant,
so you may use 𝜇 to control 𝑁 .

21.2 Grand canonical ensemble/partition function: summary
Let us summarize:

𝑃𝑉

𝑇
= −𝐴

𝑇
+
𝜇𝑁

𝑇
= 𝑘𝐵 log Ξ(𝑇, 𝑉, 𝜇) (21.9)

with

Ξ(𝑇, 𝑉, 𝜇) =
∞∑︁

𝑁=0

𝑍(𝑇, 𝑉,𝑁)𝑒𝛽𝜇𝑁 =
∑︁

microstates

𝑒𝛽(𝐻−𝜇𝑁), (21.10)

where the summation over ‘microstates’ means all the possible microstates allowed
to the system irrespective of the total number of particles in the system.

The ensemble equivalence holds here as well: If 𝑁 ≫ log𝑁 , then you can use any
ensemble you wish. For example, if you have about a few thousand particles confined
in a trap, you may use the grand canonical formalism above to describe the system.

The Gibbs relation reads

𝑑

(︂
𝑃𝑉

𝑇

)︂
= −𝐸𝑑 1

𝑇
+
𝑃

𝑇
𝑑𝑉 +𝑁𝑑

𝜇

𝑇
. (21.11)

This has a (statistical-mechanically) more convenient form:

𝑑 log Ξ = −𝐸𝑑𝛽 + 𝛽𝑃𝑑𝑉 +𝑁𝑑(𝛽𝜇). (21.12)
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21.3 Example: adsorption
Let us solve an example problem (which is made deliberately slightly complicated)
to become familiar with the use of chemical potentials and the grand canonical
formalism. Suppose there is a gas mixture consisting of two distinct molecular species
𝐴 and 𝐵. The mixture is an ideal gas and the partial pressure of 𝑋 is 𝑃𝑋 (𝑋 = 𝐴
or 𝐵). The gas is in equilibrium with an adsorbing metal surface on which there are
𝑁 adsorption sites. Molecule 𝑋 adsorbed at a site is with energy 𝜀𝑋 (which is often
negative) relative to the one in the gas phase, where 𝑋 = 𝐴 or 𝐵. Each surface
site can accommodate at most one 𝐴 molecule, and at most two 𝐵 molecules. One
adsorbed 𝐴 atom has 2 different (internal) states (with the same energy), and one
adsorbed 𝐵 molecule has 1 state, but if two 𝐵 molecules are adsorbed to the same
site, then they can together have 5 states with the same energy (the caption of Fig.
21.1 summarizes the system). We wish to know the surface concentration of the
atoms when the surface is in equilibrium with the gas mixture. You may assume
the gas phase is huge, so you need not worry about its composition change due to
adsorption. That is, the gas phase is a chemical reservoir.

Figure 21.1: Adsorption of gas particles on a metal surface: 𝐴: green (2 internal states when
adsorbed), 𝐵: red (if singly adsorbed, with single internal state; if doubly adsorbed, with 5 internal
states).

We wish to know the average number of 𝐴 and 𝐵 atoms on the metal surface.
Since we do not know how many particles are on the surface, it must be convenient

to use the grand canonical ensemble. Assuming the chemical potentials of 𝐴 and 𝐵
as 𝜇𝐴 and 𝜇𝐵, respectively, write down the partition function of the metal surface:

Ξ =
[︀
1 + 2𝑒−𝛽(𝜀𝐴−𝜇𝐴) + 𝑒−𝛽(𝜀𝐵−𝜇𝐵) + 5𝑒−2𝛽(𝜀𝐵−𝜇𝐵)

]︀𝑁
. (21.13)

The needed chemical potentials can be computed with the aid of the ideal gas sta-
tistical mechanics as we did in the preceding lecture. We have done that calculation,
so let us copy the needed results:

𝜇𝐴 = 𝑘𝐵𝑇 log(𝛽𝑃𝐴/𝑛𝑄𝐴), 𝜇𝐵 = 𝑘𝐵𝑇 log(𝛽𝑃𝐵/𝑛𝑄𝐵). (21.14)
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Here, 𝑛𝑄𝑋 is the ‘quantum density’ depending on 𝑇 and the mass (see above (20.32)),
and 𝑃𝑄𝑋 = 𝑛𝑄𝑋𝑘𝐵𝑇 may be called the ‘quantum pressure.’ We know (we ignore the
volume (or the area) change)

𝑑 log Ξ = −𝐸𝑑𝛽 +𝑁𝐴𝑑(𝛽𝜇𝐴) +𝑁𝐵𝑑(𝛽𝜇𝐵), (21.15)

so we obtain

𝑁𝐴 = 𝑁
2𝑒−𝛽(𝜀𝐴−𝜇𝐴)

1 + 2𝑒−𝛽(𝜀𝐴−𝜇𝐴) + 𝑒−𝛽(𝜀𝐵−𝜇𝐵) + 5𝑒−2𝛽(𝜀𝐵−𝜇𝐵)
(21.16)

and

𝑁𝐵 = 𝑁
𝑒−𝛽(𝜀𝐵−𝜇𝐵) + 10𝑒−2𝛽(𝜀𝐵−𝜇𝐵)

1 + 2𝑒−𝛽(𝜀𝐴−𝜇𝐴) + 𝑒−𝛽(𝜀𝐵−𝜇𝐵) + 5𝑒−2𝛽(𝜀𝐵−𝜇𝐵)
. (21.17)

21.4 Microstates for non-interacting indistinguishable particle systems
Let us consider a system consisting of non-interacting particles. Suppose the states
of a single particle are numbered as 𝑖 = 1, 2, · · ·. If we assume that all the particles
are indistinguishable, then to specify a microstate of a system consisting of such
particles, we have only to count the number 𝑛𝑖 of particles in the 𝑖-th one particle
state (𝑛𝑖 is also called the occupation number of the 𝑖th one particle state; do NOT
confuse the microstates of the whole system and the one particle states). Or, we
have only to make a table of the occupation numbers {𝑛1, 𝑛2, · · ·}; we may identify
this table and the microstate.

To study the thermodynamics of such a system, we should use the grand canonical
ensemble, because we have not specified the total number of particles.

21.5 Grand partition function of indistinguishable particle system
Let 𝜀𝑖 be the energy of the 𝑖-th one particle state. The total energy ℰ and the total
number of particles 𝑁 of the microstate {𝑛1, 𝑛2, · · ·} can be written as

ℰ =
∑︁
𝑖=1

𝜀𝑖𝑛𝑖, (21.18)

and
𝑁 =

∑︁
𝑖=1

𝑛𝑖. (21.19)

Then, the grand canonical partition function must be

Ξ(𝛽, 𝜇) =
∑︁

𝑛1,𝑛2,···

e−𝛽ℰ+𝛽𝜇𝑁 . (21.20)
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Using the microscopic descriptions of ℰ and𝑁 ((21.18) and (21.19)), we can rearrange
the summation as

Ξ =
∏︁
𝑖

Ξ𝑖, (21.21)

where
Ξ𝑖 ≡

∑︁
𝑛𝑖

exp[−𝛽(𝜀𝑖 − 𝜇)𝑛𝑖]. (21.22)

This quantity may be called the grand canonical partition function for the 𝑖th one
particle state.

21.6 Bosons and fermions
In the world it seems that there are only two kinds of particles:

bosons: there is no upper bound for the occupation number of a single one-particle
state;

fermions: the occupation number of a single one-particle state can be at most 1
(the Pauli exclusion principle).

This is an empirical fact. Electrons, protons, 3He, etc., are fermions. Mesons,
4He, 𝐷, etc., are bosons.

There is the so-called spin-statistics relation that the particles with half odd inte-
ger spins are fermions, and those with integer spins are bosons. The rule applies also
to compound particles such as hydrogen atoms. Thus, H and T are bosons, but their
nuclei are fermions. D and 3He are fermions. 4He is a boson, and so is its nucleus.

For a neutral system consisting of + and − charged particles (e.g., the usual
electron-nucleus system) it is proved that at least + or − species must be all fermions
for the system to be stable. Here, ‘stable’ means that there is a positive number 𝐵
such that the system energy 𝐸 satisfies 𝐸 > −𝑁𝐵, where 𝑁 is the number of par-
ticles in the system. That is, for the world to be stable, we desperately need fermions.

21.7 Ideal boson systems
For bosons, any number of particles can occupy the same one particle state, so the
occupation number of a particular one particle state can be any of 0, 1, 2, · · ·.
Therefore,

Ξ𝑖 =
∞∑︁
𝑛=0

e−𝛽(𝜀𝑖−𝜇)𝑛 =
(︀
1− e−𝛽(𝜀𝑖−𝜇)

)︀−1
. (21.23)

The mean occupation number of the 𝑖-th state is given by

⟨𝑛𝑖⟩ =
∞∑︁
𝑛=0

𝑛𝑖e
−𝛽(𝜀𝑖−𝜇)𝑛/Ξ𝑖, (21.24)
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so we conclude

⟨𝑛𝑖⟩ =
𝜕log Ξ𝑖

𝜕𝛽𝜇

⃒⃒⃒⃒
𝛽

= 𝑘𝐵𝑇
𝜕log Ξ𝑖

𝜕𝜇

⃒⃒⃒⃒
𝑇

=
1

e𝛽(𝜀𝑖−𝜇) − 1
. (21.25)

This distribution is called the Bose-Einstein distribution.
If the (one-particle) ground-state energy is zero, then the ground state occupancy

is

⟨𝑛ground⟩ =
1

𝑒−𝛽𝜇 − 1
, (21.26)

but this should not be negative, so 𝜇 ≤ 0. That is, notice that the chemical po-
tential must be smaller than the (one-particle) ground state energy to maintain the
positivity of the average occupation number.

21.8 Ideal fermion systems
For fermions, at most one particle can occupy the same one particle state, the occu-
pation number of a particular one particle state is 0 or 1. Therefore,

Ξ𝑖 =
1∑︁

𝑛=0

e−𝛽(𝜀𝑖−𝜇)𝑛 = 1 + e−𝛽(𝜀𝑖−𝜇). (21.27)

The mean occupation number of the 𝑖-th state is given by

⟨𝑛𝑖⟩ =
1∑︁

𝑛=0

𝑛𝑖e
−𝛽(𝜀𝑖−𝜇)𝑛/Ξ𝑖, (21.28)

so we conclude

⟨𝑛𝑖⟩ =
𝜕log Ξ𝑖

𝜕𝛽𝜇

⃒⃒⃒⃒
𝛽

= 𝑘𝐵𝑇
𝜕log Ξ𝑖

𝜕𝜇

⃒⃒⃒⃒
𝑇

=
1

e𝛽(𝜀𝑖−𝜇) + 1
. (21.29)

This distribution is called the Fermi-Dirac distribution.
Notice that usually the ground state energy is chosen as the origin of energy, so

⟨𝑛ground⟩ =
1

𝑒−𝛽𝜇 + 1
. (21.30)

It is important to recognize the qualitative features of this Fermi-Dirac distribution
function (see Fig. 21.2). The distribution has a cliff of width of order 𝑘𝐵𝑇 . In the
𝑇 → 0 limit, it has a vertical cliff at 𝜀 = 𝜇, which is called the Fermi level.340 Notice
that 𝜇 > 0 is required, if the temperature is low enough.

340Do not forget that 𝜇 for a fixed 𝑁 is temperature dependent. The energy of the highest
occupied state at 𝑇 = 0 is called the Fermi energy.
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Figure 21.2: The cliff has a width of order 𝑘𝐵𝑇 . 𝜇 is called the Fermi level. The symmetry
noted in the figure is the so-called particle-hole symmetry

21.9 Classical limit
The distribution functions of the occupation numbers are quite different from the
classical distribution function obtained by Maxwell and Boltzmann. The difference
should be due to the quantum interference among particles (or particle wave func-
tions) when the number density is not low. Therefore, in order to obtain the classical
limit, we must take the occupation number 0 limit to avoid quantum interference
among particles. The chemical potential 𝜇 is a measure of the “strength” of the
chemostat to push particles into the system. Thus, we must make the chemical po-
tential extremely small: 𝜇↘ −∞.

In this limit both Bose-Einstein (21.26) and Fermi-Dirac distributions (21.30)
reduce to the Maxwell-Boltzmann distribution as expected:

⟨𝑛𝑖⟩ → 𝒩 e−𝛽𝜀𝑖 , (21.31)

where 𝒩 = 𝑒𝛽𝜇 is the normalization constant determined by the total number of
particles in the system.

Notice that 𝜇 → −∞ is far away from the situations where quantum effects are
important; 𝜇 ≃ 0 for bosons and 𝜇 > 0 for fermions.

21.10 Intuitive pictures
Before going to the equations of state, let us try to build our intuition. Suppose
there are only three one-particle states with energies 0, 𝜀 and 3𝜀, and there are three
particles. Make a table of all the microstates of the three-particle system for bosons
and for fermions.

Fermions first:
microstate 0 𝜀 3𝜀 total energy
1 1 1 1 4𝜀
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Figure 21.3: identical particles in three one particle states; fermion (leftmost) and boson cases.

Bosons:
microstate 0 𝜀 3𝜀 total energy
1 3 0 0 0
2 2 1 0 𝜀
3 2 0 1 3𝜀
4 1 2 0 2𝜀
5 1 1 1 4𝜀
6 1 0 2 6𝜀
7 0 3 0 3𝜀
8 0 2 1 5𝜀
9 0 1 2 7𝜀
10 0 0 3 9𝜀

Suppose there are 100 identical spinless341 bosons or fermions whose 𝑠-th one-
particle state has an energy 𝜀𝑠 = 𝑠𝜀 (𝑠 ∈ 𝑁 ). These particles do not interact. For
the boson case, at 𝑇 = 0 all the particles are in the lowest energy one-particle state
(see Fig. 21.4). For fermions, all the low-lying one particle states are completely
filled up to some energy level that corresponds to 𝜇. Notice that the ground state
energy of the fermion and boson systems are quite different.

The low-lying excited microstates are also in Fig. 21.4 (right). For the boson case
all the particles have equal chance to be excited, but in the case of fermions, only
the particles near the Fermi level can be excited (and excited particles leave holes).
This should tell you something about the specific heat of these systems (later).

21.11 Pressure of ideal systems
The distinction between fermions and bosons show up clearly in pressure:

𝑃𝑉

𝑘𝐵𝑇
= log Ξ = ∓

∑︁
𝑖

log
(︀
1∓ 𝑒−𝛽(𝜀𝑖−𝜇)

)︀
. (21.32)

If 𝑇, 𝑉, 𝜇 are the same, then the pressure of the system consisting of the particles
with the same single-particle energy states (i.e., the the same density of states)
shows the following ordering (BE = Bose-Einstein, MB = Maxwell-Boltzmann, FD

341‘Spinless’ implies that these particles do not have any internal degrees of freedom.
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Figure 21.4: Ground states and low-lying excited levels for fermions (left in each panel) and
bosons (right). Do not confuse one particle states and microstates. Here, the lowest energy (ground
state) microstate is described on the left, and one example of low-energy excited microstate is
illustrated on the right.

= Fermi-Dirac):
𝑃𝐵𝐸 > 𝑃𝑀𝐵 > 𝑃𝐹𝐷. (21.33)

To see 𝑃𝐵𝐸 > 𝑃𝐹𝐷 we use (21.32). Let 𝑥 = 𝑒−𝛽(𝜀𝑖−𝜇) and we compare − log(1−𝑥)
and log(1 + 𝑥) (see Fig. 21.5). This figure must be enough. This is also easily seen
from 1/(1− 𝑥) = 1 + 𝑥+ 𝑥2 + · · · > 1 + 𝑥 for 𝑥 ∈ (0, 1).

-log(1
-x)

log(1
+x)

x

�4 �2 2 4

�4

�2

2

4

1 2 3 4
O

1

2

3

4

−1−2−3−4

−1

−2

−3

−4

Figure 21.5: log(1 + 𝑥) is always below 𝑥. Now, − log(1 − 𝑥) is obtained from log(1 + 𝑥) by
making mirror images 𝑥→ −𝑥 and then 𝑦 → −𝑦. Obviously, 𝑥 < − log(1− 𝑥).

21.12 Pressure under constant 𝑁 (the usual case)
In contrast, if 𝑇, 𝑉,𝑁 are the same (the usually more interesting case than the above
case), then (usually 𝑃𝐹𝐷 ≫ 𝑃𝑀𝐵)

𝑃𝐹𝐷 > 𝑃𝑀𝐵 > 𝑃𝐵𝐸. (21.34)

To show this requires some trick, so a formal demonstration is below with fine letters,
but intuitively this can be understood by the extent of effective particle-particle
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attraction as is illustrated in Fig. 21.6. The figure not only suggests the pressures,
but also suggests the extent of particle density fluctuations. The particle density
fluctuations in a boson system are larger than those in a fermion system.

BE

FD

MB

2/3

2/4=1/2

0

Figure 21.6: Two-particle two box illustration of statistics. The fractions in the right denote
the relative weights of the states for which effective attraction can be seen. (BE = Bose-Einstein,
MB = Maxwell-Boltzmann, FD = Fermi-Dirac)

As seen from the ‘effective attraction weights’ in the above figure, the fermion system
exhibits the largest pressure; fermions avoid each other (Pauli’s exclusion principle),
so they hit the wall more often

(21.34) may be demonstrated as follows: Classically, 𝑃𝑉 = 𝑁𝑘𝐵𝑇 , so we wish to demonstrate
(𝑁 and ⟨𝑁⟩ need not be distinguished, since we consider macrosystems)

log Ξ𝐹𝐷 > ⟨𝑁⟩ > log Ξ𝐵𝐸 . (21.35)

Let us see the first inequality:342 Writing 𝑥𝑗 = 𝑒−𝛽(𝜀𝑗−𝜇), we have

log Ξ𝐹𝐷 − ⟨𝑁⟩ =
∑︁
𝑗

[︂
log(1 + 𝑥𝑗)−

𝑥𝑗
1 + 𝑥𝑗

]︂
. (21.36)

We are done, because for 𝑥 > 0343

log(1 + 𝑥)− 𝑥

1 + 𝑥
> 0. (21.37)

Similarly, we can prove the second inequality in (21.35).

21.13 Universal 𝑃 -𝐸 relation: introduction
Let 𝐷(𝜀)𝑑𝜀 denote the number of single particle states whose energy is between 𝜀
and 𝜀 + 𝑑𝜀. 𝐷(𝜀) is called the one-particle state density (or density of states of the
one-particle system). If we know this, the pressure (21.32) can be rewritten as

𝑃𝑉 = ∓𝑘𝐵𝑇
∫︁
𝑑𝜀𝐷(𝜀) log

(︀
1∓ 𝑒−𝛽(𝜀−𝜇)

)︀
. (21.38)

342The reader might wonder why we cannot use Ξ𝑀𝐵 to demonstrate the formula; the reason
is that 𝜇 in this grand partition function and that in Ξ𝐹𝐷 or Ξ𝐵𝐸 are distinct. Remember that
we keep 𝑁 ; inevitably 𝜇 depends on statistics, so we cannot easily compare the Boltzmann factor
𝑒𝛽(𝜀−𝜇) in each term.

343Consider the derivatives.
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In the present case 𝐷(𝜀) is the density of states for a particle confined in a 3D box of
volume 𝑉 , which we will denote by 𝐷𝑡(𝜀), where the suffix 𝑡 implies the translational
degrees of freedom.

We know for a classical ideal gas

𝑃𝑉 =
2

3
𝐸, (21.39)

where 𝐸 is the internal energy. ‘Miraculously,’ this is true for non-interacting
fermions and bosons (and their mixtures as well). The formulas for 𝑃𝑉 and 𝐸
are quite different from the classical case. Here,

𝐸 =

∫︁
𝑑𝜀𝐷𝑡(𝜀)𝜀⟨𝑛(𝜀)⟩ =

∫︁
𝑑𝜀𝐷𝑡(𝜀)

𝜀

𝑒𝛽(𝜀−𝜇) ∓ 1
. (21.40)

21.14 Density of one-particle states
To demonstrate this, we need 𝐷𝑡(𝜀). First, a quick way is explained to derive the
formula appropriate for a statistical mechanics course. We count the number of
microscopic states for a single particle up to some energy 𝜀. To do this we use the
classical-quantum mechanics correspondence: the number of quantum states in the
phase volume element 𝑑𝑝𝑑𝑞 is given by 𝑑𝑝𝑑𝑞/ℎ3. Then, the total number of quantum
states for a single particle whose energy is less than or equal to 𝜀 must be give by

1

ℎ3

∫︁
𝑞∈𝑉

𝑑𝑞

∫︁
|𝑝|<

√
2𝑚𝜀

𝑑𝑝 =

∫︁ 𝜀

0

𝑑𝜀𝐷𝑡(𝜀), (21.41)

that is, ∫︁ 𝜀

0

𝑑𝜀𝐷𝑡(𝜀) =
4𝜋

ℎ3
𝑉

∫︁ √
2𝑚𝜀

0

𝑝2𝑑𝑝. (21.42)

Differentiating this with 𝜀, we get

𝐷𝑡(𝜀) =
4𝜋

ℎ3
𝑉

√
2𝑚

2
√
𝜀
(
√
2𝑚𝜀)2 = 2𝜋𝑉

(︂
2𝑚

ℎ2

)︂3/2

𝜀1/2. (21.43)

You can easily extend this approach to higher or lower dimensional spaces, and to
the cases with other 𝑝-𝜀 relations (dispersion relations). 𝐷𝑡(𝜀) ∝ 𝜀1/2 is important
(worth memorizing) for the case with 𝜀 ∝ 𝑝2 in 3-space.

That is, 𝐷𝑡(𝜀) = 𝛾𝑉 𝜀1/2, where 𝛾 = 2𝜋(2𝑚/ℎ2)3/2 is a constant. This can be
obtained by a dimensional analytical idea as well. 𝐷𝑡(𝜀)ℎ

3𝑑𝜀 must have the dimen-
sion of the phase volume whose dimension is 𝐿3 times [momentum]3, so 𝐷𝑡(𝜀)ℎ

3 ∝
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𝑉
√
𝜀
3
/𝜀 = 𝑉 𝜀1/2.

Note the following relation that can easily be seen from
∫︀
𝜀1/2𝑑𝜀 = (2/3)𝜀3/2 =

(2𝜀/3)𝜀1/2 ∫︁ 𝜀

0

𝑑𝜀𝐷𝑡(𝜀) =
2

3
𝜀𝐷𝑡(𝜀). (21.44)

21.15 Universal 𝑃 -𝐸 relation: demonstration
Let us return to our problem. The pressure can be rewritten as (the fundamental
theorem of calculus)

𝑃𝑉 = ∓𝑘𝐵𝑇
∫︁
𝑑𝜀

[︂∫︁ 𝜀

0

𝑑𝜀′𝐷𝑡(𝜀
′)

]︂′
log
(︀
1∓ 𝑒−𝛽(𝜀−𝜇)

)︀
. (21.45)

Performing an integration by parts, we get

𝑃𝑉 = ∓𝑘𝐵𝑇
[︂∫︁ 𝜀

0

𝑑𝜀′𝐷𝑡(𝜀
′) log

(︀
1∓ 𝑒−𝛽(𝜀−𝜇)

)︀]︂∞
0

±𝑘𝐵𝑇
∫︁
𝑑𝜀

[︂∫︁ 𝜀

0

𝑑𝜀′𝐷𝑡(𝜀
′)

]︂
𝑑

𝑑𝜀
log
(︀
1∓ 𝑒−𝛽(𝜀−𝜇)

)︀
.

(21.46)
The first term vanishes (you must check this344*), so ((21.44) will be used)

𝑃𝑉 = ±𝑘𝐵𝑇
∫︁
𝑑𝜀

[︂∫︁ 𝜀

0

𝑑𝜀′𝐷𝑡(𝜀
′)

]︂
𝑑

𝑑𝜀
log
(︀
1∓ 𝑒−𝛽(𝜀−𝜇)

)︀
(21.47)

= ±2

3
𝑘𝐵𝑇

∫︁
𝑑𝜀 𝜀𝐷𝑡(𝜀)

𝑑

𝑑𝜀
log
(︀
1∓ 𝑒−𝛽(𝜀−𝜇)

)︀
(21.48)

= ±2

3
𝑘𝐵𝑇

∫︁
𝑑𝜀 𝜀𝐷𝑡(𝜀)

±𝛽𝑒−𝛽(𝜀−𝜇)

1−∓𝑒−𝛽(𝜀−𝜇)
(21.49)

=
2

3

∫︁
𝑑𝜀𝐷𝑡(𝜀)

𝜀

𝑒𝛽(𝜀−𝜇) ∓ 1
=

2

3
𝐸. (21.50)

Now, a bomb making question. There is an isolated metal container of volume
𝑉 and energy 𝐸 with 𝑁 fermions whose chemical potential is 𝜇 = 10 eV. These
fermions are adiabatically converted into bosons. Can we use this mechanism to
make a bomb? Notice that since 𝐸 and 𝑉 are unchanged, the pressure does not
change. [Hint: You must know 1 eV is roughly equivalent to 105 K.]

344* 𝜀→ 0 for the boson case is only slightly tricky, but 𝜀1/2 log 𝜀→ 0 saves the day.
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Q21.1 [Langmuir isotherm]
In a big box is an ideal gas A whose mass is 𝑚 per molecule. Inside the box is a
surface with 𝑁 absorption sites that can accommodate at most one A molecules per
site. When one A is absorbed, its energy is −𝜀 (𝜀 > 0, i.e., 𝜀 lower than the free
state) and has 𝑧 internal states with the same energy.

When the pressure of the box is 𝑃 , and the temperature is 𝑇 , what is the fraction 𝜃
of the surface occupied by A? Or, more concretely, find the factor 𝑋 in the following
formula

𝜃 =
𝑃

𝑃 + 𝑃𝑄/𝑋
, (21.51)

where 𝑃𝑄 = 𝑛𝑄𝑘𝐵𝑇 with 𝑛𝑄 = (2𝜋𝑚𝑘𝐵𝑇/ℎ
2)3/2. The formula (21.51) is called the

Langmuir isotherm.

Solution.
(1) We regard the gas phase as a chemical reservoir, whose chemical potential 𝜇 may
be calculated (or found in the lecture notes) later. Under this chemical potential the
grand canonical partition function of the absorbing surface can be written as

Ξ =
𝑁∏︁
𝑖=1

Ξ𝑖, (21.52)

where Ξ𝑖 is the ‘grand canonical partition function for the 𝑖th absorption center.’ We
may write

Ξ𝑖 = 1 + 𝑧𝑒−𝛽(−𝜀−𝜇) = 1 + 𝑧𝑒𝛽(𝜀+𝜇). (21.53)

The expectation value of the total number𝑀 of the absorbed A molecules is 𝑁 times
expected number of A at a single absorption center:

𝑀 =
𝜕log Ξ

𝜕𝛽𝜇
= 𝑁

𝑧𝑒𝛽(𝜀+𝜇)

1 + 𝑧𝑒𝛽(𝜀+𝜇)
. (21.54)

Now, let us obtain (or copy) 𝜇:

𝜇 = 𝑘𝐵𝑇 log
𝑃

𝑘𝐵𝑇𝑛𝑄

, (21.55)

or

𝑒𝛽𝜇 =
𝑃

𝑘𝐵𝑇𝑛𝑄

≡ 𝑃

𝑃𝑄

, (21.56)

where 𝑛𝑄 = (2𝜋𝑚𝑘𝐵𝑇/ℎ
2)3/2. Therefore, 𝜃 =𝑀/𝑁 reads

𝜃 =
𝑧𝛼(𝑃/𝑃𝑄)

1 + 𝑧𝛼(𝑃/𝑃𝑄)
=

𝑃

𝑃 + 𝑃𝑄/𝑧𝛼
, (21.57)

where 𝛼 = 𝑒𝛽𝜀. That is,
𝑋 = 𝑧𝑒𝛽𝜀. (21.58)
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Q21.2 [Bosons and fermions: rudiments]
There is a system in which each particle can assume only three states with energies 0,
𝜀 and 𝜀 (𝜀 > 0, i.e., excited states are degenerate). There are two identical particles
without spin.
(1F) When the particles are fermions, write down the canonical partition function (I
recommend you to make a table of all the microstates).
(2F) Find the probability of finding 𝑁 (= 0, 1, 2) particles in the ground state.
(3F) Compute the average occupation number 𝑁0 of the ground state. Are the limits
𝑇 →∞ and 𝑇 → 0 reasonable?
(1-3B) Repeat the same problems assuming that the particles are bosons.
(4) In the high temperature limit what is the most important observation?

Solution.
Here ‘degenerate’ means that the energies happen to be identical but the states are
clearly distinguishable like the three 2𝑝 orbits in the hydrogen atom.
(1F) To compute the canonical partition function, you must itemize all the mi-
crostates.

microstate 0 𝜀 𝜀 total energy
1 1 1 0 𝜀
2 1 0 1 𝜀
3 0 1 1 2𝜀

Hence,
𝑍 = 2𝑒−𝛽𝜀 + 𝑒−2𝛽𝜀.

(2F) Let us write the desired probabilities as 𝑃 (𝑁).

𝑃 (1) =
2𝑒−𝛽𝜀

2𝑒−𝛽𝜀 + 𝑒−2𝛽𝜀
=

2

2 + 𝑒−𝛽𝜀
, 𝑃 (0) =

𝑒−2𝛽𝜀

2𝑒−𝛽𝜀 + 𝑒−2𝛽𝜀
=

1

𝑒𝛽𝜀 + 2
, 𝑃 (2) = 0.

(3F)

⟨𝑁0⟩ = 𝑃 (1) =
2

2 + 𝑒−𝛽𝜀

𝑇 →∞: 𝑁0 = 2/3 (yes, all the states are equally probable).
𝑇 → 0: 𝑁0 = 1 (yes, the lowest level must surely be occupied).
(1B) To compute the canonical partition function, you must itemize all the mi-
crostates.

microstate 0 𝜀 𝜀 total energy
1 1 1 0 𝜀
2 1 0 1 𝜀
3 0 1 1 2𝜀
4 2 0 0 0
5 0 2 0 2𝜀
6 0 0 2 2𝜀
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Hence,
𝑍 = 1 + 2𝑒−𝛽𝜀 + 3𝑒−2𝛽𝜀.

(2B)
𝑃 (1) = (2/𝑍)𝑒−𝛽𝜀, 𝑃 (0) = (3/𝑍)𝑒−2𝛽𝜀, 𝑃 (2) = 1/𝑍.

(3B)

𝑁0 =
2 + 2𝑒−𝛽𝜀

1 + 2𝑒−𝛽𝜀 + 3𝑒−2𝛽𝜀
.

𝑇 → ∞: 𝑁0 = 2/3 (yes, all the states are equally probable, and must be the same
as the fermion case).
𝑇 → 0: 𝑁0 = 2 (yes, all the particles must be there).
(4) Both agree as noted above.

Q21.3 [Bose gas pressure]
If we compare the pressure 𝑃𝐵𝐸 of an ideal boson gas and that 𝑃𝑀𝐵 of an ideal
classical gas under the same 𝑉 , 𝑇 and 𝑁 , 𝑃𝑀𝐵 > 𝑃𝐵𝐸. Mimicking the Fermi-Dirac
case (i.e., 𝑃𝐹𝐷 > 𝑃𝑀𝐵) explained in the lecture notes, demonstrate this inequality.

Solution.
𝛽𝑃𝑀𝐵𝑉 = 𝑁 , so we wish to compare 𝛽𝑃𝐵𝐸𝑉 and 𝑁 (since 𝜇’s are not the same for
the two cases, we cannot immediately comparer the pressure formulas).

𝛽𝑃𝐵𝐸𝑉 = −
∑︁
𝑖

log(1− 𝑒−𝛽(𝜀𝑖−𝜇)), (21.59)

and

𝑁 =
∑︁
𝑖

1

𝑒𝛽(𝜀𝑖−𝜇) − 1
=
∑︁
𝑖

𝑒−𝛽(𝜀𝑖−𝜇)

1− 𝑒−𝛽(𝜀𝑖−𝜇)
. (21.60)

Here, you must use consistently the formula for bosons.
Let us compare the corresponding summand terms in 𝑃 and 𝑁 , writing 𝑥 =

𝑒−𝛽(𝜀𝑖−𝜇). Let
𝑓(𝑥) =

𝑥

1− 𝑥
+ log(1− 𝑥). (21.61)

𝑓(0) = 0.

𝑓 ′(𝑥) =
1

1− 𝑥
+

𝑥

(1− 𝑥)2
− 1

1− 𝑥
=

𝑥

(1− 𝑥)2
, (21.62)

which is positive for 𝑥 > 0. Therefore, 𝑓(𝑥) > 0, if 𝑥 > 0. QED.

Q21.4 [Boson-fermion mixed gas]. There is a mixture of 𝑁/3 non-interacting
fermions and 2𝑁/3 non-interacting bosons in a container of volume 𝑉 . The total
internal energy is 𝐸. What is the total pressure 𝑃 of the mixture? [Hint: Dalton’s
law of partial pressures applies. You must clearly state your logic to support your
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answer.]

Solution.
Let 𝑃𝐹 and 𝑃𝐵 be the respective partial pressures, and 𝐸𝐹 and 𝐸𝐵 internal energies
of the respective components. Then,

𝑃𝐹𝑉 =
2

3
𝐸𝐹 , 𝑃𝐵𝑉 =

2

3
𝐸𝐵,

so

(𝑃𝐹 + 𝑃𝐵)𝑉 =
2

3
(𝐸𝐹 + 𝐸𝐵) ⇒ 𝑃𝑉 =

2

3
𝐸,

which is due to additivity of internal energy and the law of partial pressures. Hence,
𝑃 = 2𝐸/3𝑉 .
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Discussion 10

We will discuss chemical potential and grand canonical approach

D10.1 [Chemical potential of ideal gas]
Consider a fluid whose Gibbs relation is 𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 so the Gibbs free
energy 𝐺 = 𝐸−𝑇𝑆+𝑃𝑉 reads 𝐺 = 𝜇𝑁 . Thus, you should be able to get 𝜇 directly
with the aid of the so-called pressure ensemble, the ensemble with 𝑇 -𝑃 constant.
You may have been fed up with this ensemble, but obtain 𝜇, using the partition
function 𝑌 and 𝑁𝜇 = −𝑘𝐵𝑇 log 𝑌 . The answer must be the same as the result given
in (20.33).

Solution.
Actually, this problem was almost done in 1(3) of Discussion 8. We know the canon-
ical partition function:

𝑍(𝑇, 𝑉 ) =
1

𝑁 !

[︃(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂3/2
]︃𝑁

𝑉 𝑁 , (21.63)

so we get

𝑌 (𝑇, 𝑃 ) =

[︃(︂
2𝜋𝑚

ℎ2

)︂3/2
(𝑘𝐵𝑇 )

5/2

𝑃

]︃𝑁
. (21.64)

Therefore,

𝑁𝜇 = −𝑘𝐵𝑇 log 𝑌 = 𝑁𝑘𝐵𝑇 log
𝑃/𝑘𝐵𝑇

(2𝜋𝑚𝑘𝐵𝑇/ℎ2)3/2
, (21.65)

or
𝜇 = 𝑘𝐵𝑇 log

𝑛

𝑛𝑄

, (21.66)

where 𝑛 is the number density and

𝑛𝑄 = (
√
2𝜋/𝜆𝑇 )

3 (21.67)

with the thermal de Broglie wavelength 𝜆𝑇 = ℎ/
√
𝑚𝑘𝐵𝑇 . This is just (20.33).
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D10.2 [Colligative properties review]
The properties of dilute mixtures with or without phase transitions may be un-
derstood in terms of the chemical potentials based on the ideal gas law and mixing
entropy. In short, information-theoretically calculated entropy can explain the core
physics of the so-called colligative properties (Raoult, van’t Hoff (or osmotic pres-
sure), Henry’s law, transition temperature shifts, etc.). Thus, the basic form of the
chemical potential in the gas phase is

𝜇(𝑇, 𝑃 ) = 𝜇⊖(𝑇 ) + 𝑘𝐵𝑇 log𝑃, (21.68)

where 𝑃 may be the partial pressure in a mixture. In the liquid phase

𝜇(𝑇, 𝑥) = 𝜇⊖(𝑇 ) + 𝑘𝐵𝑇 log 𝑥, (21.69)

where 𝑥 is the mole fraction. Both 𝑃 and 𝑥 in ideal systems are related to the prob-
ability (or the relative probability) to find the relevant particle.

An important feature of (21.69) is that 𝜇 can be indefinitely small (↘ −∞)
if 𝑥 ↘ 0. Thus, if a reaction can produce a molecule that does not exist in the
system, extremely large drop of Δ𝐺 may be realized by the reaction.
(0)* What is the implication of this observation?
(i) In the hydrolysis of ATP: ATP −→ADP + Pi, inorganic phosphate ion Pi is
produced. If the concentration of Pi is very low, then this reaction can drive difficult
reactions irreversibly. For example, if a codon correctly matches with the anticodon
this reaction occurs and the correct translation of the codon to the corresponding
amino acid is secured. Explain.
(ii) [As discussed in the lecture] We could produce indefinitely large mechanical
work from this type of reaction. This is a correct thermodynamic conclusion, but
still sounds too good. This highlights a major distinction among thermal, chemical,
and electromechanical energies. Explain.

Traditionally, the chemical physics properties studied within these ‘information
theoretical chemical potential’ are called colligative properties. Representative prob-
lems we can at least approximately answer within this framework look as:

(1) If 2 g of a non-volatile extract from pitch is dissolved in 100 g of benzene, the
vapor pressure of benzene at 300 K is reduced to 99.1 mmHg from 100 mmHg. What
is the average molecular weight of this extract?

(2) How many weight % of methanol is required to prevent water from freezing at
260 K?

(3) 1.23 g of a kind of globular protein is in 100 cm3 aqueous solution. The osmotic
pressure of this solution is 7.43 cm of water column. What is the molecular weight
of this protein?
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The colligative properties may be treated in a unified fashion as follows:
I and II denote two distinct but coexisting phases/systems. For a chemical that may
go between I and II freely the equilibrium condition is

𝜇0
I(𝑇

′
I, 𝑃

′
I) = 𝜇0

II(𝑇
′
II, 𝑃

′
II) + 𝑘𝐵𝑇

′
II log 𝑦. (21.70)

Here, superfix 0 means the pure state and 𝑦 denotes the mole fraction in II of the
chemical being exchanged. We assume without ‘impurity’ (minority)

𝜇0
I(𝑇I, 𝑃I) = 𝜇0

II(𝑇II, 𝑃II). (21.71)

Combining these two, we obtain

𝜇0
I(𝑇

′
I, 𝑃

′
I)− 𝜇

0
I(𝑇I, 𝑃I) = 𝜇0

II(𝑇
′
II, 𝑃

′
II)− 𝜇

0
II(𝑇II, 𝑃II) + 𝑘𝐵𝑇

′
II log 𝑦. (21.72)

The rest is to adapt this to various situations.

Vapor pressure change
These are about the pressure of the vapor (gas phase) coexisting with mixture liquid.
Thus, I = G, II = L, 𝑇 = 𝑇 ′ is everywhere the same, so let us drop it from 𝜇s. Using
(21.68) for the gas phase, we see

𝑘𝐵𝑇 log𝑃 ′
G/𝑃G = 𝑘𝐵𝑇 log 𝑦 (21.73)

or 𝑃 ′
G = 𝑦𝑃G.

345 This may be understood as:
Raoult’s law: the partial pressure 𝑃 ′

G of one component in a liquid mixture is
given by its mole fraction 𝑦 times the vapor pressure 𝑃G of the component
when it is pure, or

Henry’s law: the amount 𝑦 of a gas component resolved in the liquid phase is
proportional to the partial pressure of the component in the gas phase.

Osmotic pressure (van’t Hoff’s law)
I is the pure liquid, and II the mixture under 𝑃 ′

II = 𝑃+𝜋 (slightly pressurized). There
is no temperature change (let us drop 𝑇 = 𝑇 ′). Without impurity 𝑃I = 𝑃II = 𝑃 .
Let 𝑦 = 1 − 𝑥, where 𝑥 is the mole fraction of the impurity in II. Thus, (21.72)
reads

𝜇0(𝑃 ) = 𝜇0(𝑃 + 𝜋) + 𝑘𝐵𝑇 log(1− 𝑥), (21.74)

where 𝜇0 is the pure liquid chemical potential.
We know generally (you must be able to derive this from the Gibbs relation),

𝑑𝜇 = 𝑣𝑑𝑃 − 𝑠𝑑𝑇, (21.75)

345Here, we use the fact that the liquid phase volume change due to the pressure change is
negligible.
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where 𝑣 is the molar volume/molecule (for a pure liquid 𝑣 = 𝑉/𝑁) and 𝑠 the molar
entropy per molecule.346 Therefore, we get

𝜋 = 𝑛𝑘𝐵𝑇, (21.77)

where 𝑛 = 𝑥𝑁𝐴/𝑉 (the number density).347

You could change the temperatures of I and II (instead of 𝑃 ). What will you have
to do to stop the movement of the solvent from I to II (which should be at higher
temperature, I or II)?

Phase transition point shift
Impurities in the liquid phase are often excluded from the coexisting gas or solid
phase. In such cases, II = L and I may be G or S phase. Under constant pressure,
we are interested in the shift in the coexistence temperature. Combining (21.72) and
(21.75) with 𝑦 = 1 − 𝑥, 𝑇I = 𝑇II = 𝑇 (the pure substance phase transition point)
and 𝑇 ′

I = 𝑇 ′
II = 𝑇 +Δ𝑇 (the phase transition point of the mixture), we get (to order

𝑥)
−𝑠IΔ𝑇 = −𝑠IIΔ𝑇 − 𝑘𝐵𝑇𝑥 (21.78)

Melting-point depression: I = S, II = L. Then, 𝑠II − 𝑠I = 𝐿/𝑁𝐴𝑇 , where 𝐿 is
the melting heat (enthalpy change due to the phase transition per mole).
Therefore,

Δ𝑇 = − 𝑘𝐵𝑇
2

𝐿/𝑁𝐴

𝑥, which is < 0. (21.79)

Boiling-point elevation: I = G, II = L. Then, 𝑠I − 𝑠II = 𝐿/𝑁𝐴𝑇 , where 𝐿 is
the evaporation heat (enthalpy change due to the phase transition per mole).
Therefore,

Δ𝑇 =
𝑘𝐵𝑇

2

𝐿/𝑁𝐴

𝑥, which is > 0. (21.80)

Now, let us answer the above-mentioned representative questions.

(1) If 2 g of a non-volatile extract from pitch is dissolved in 100 g of benzene (C6H6),
the vapor pressure of benzene at 300 K is reduced to 99.1 mmHg from 100 mmHg.
What is the average molecular weight of this extract?

(2) How many weight % of methanol (CH3OH) is required to prevent water from
freezing at 260 K? The melting heat of ice is 334 J/g, and that of methanol is 99

346Here, chemical potentials are per molecule. That is why 𝑘𝐵 appears. Chemical potentials per
mole reads

𝜇(𝑇, 𝑥) = 𝜇⊖(𝑇 ) +𝑅𝑇 log 𝑥. (21.76)

347This same equation reads 𝜋𝑉 = 𝑐𝑅𝑇 where 𝑐 is the molarity with appropriate choice of the
units.
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J/g.

(3) 1.23 g of a kind of globular protein is in 100 cm3 solution. The osmotic pressure
of this solution is 7.43 cm of water column at 25 ∘C. What is the molecular weight
of this protein?

(1) is the Raoult question. (2) is the melting point depression. (3) is a van’t Hoff
question.

Solution.
(1) The molecular weight of benzene is 78. If the average molecular weight of the
extract is 𝑀 , the impurity mole fraction 𝑥 is

𝑥 =
2/𝑀

2/𝑀 + 100/78
=

156

156 + 100𝑀
(21.81)

This means

𝑀 =
156(1− 𝑥)

100𝑥
. (21.82)

We may use Raoult’s law:
100(1− 𝑥) = 99.1. (21.83)

Therefore

𝑥 =
100− 99.1

100
= 0.009. (21.84)

Thus

𝑀 =
156(1− .009)

0.9
= 171.8. (21.85)

(2) We wish to shift the freezing point of the mixture by −Δ𝑇 = 13 K. (21.79)
implies

𝑥 =
𝐿Δ𝑇

𝑅𝑇 2
, (21.86)

where 𝐿 = 334 J/g = 6012 J/mole, and 𝑇 = 273 K. Therefore,

𝑥 =
6012× 13

8.314× 2732
=

78256

619634
= 0.126. (21.87)

This means that the methanol-water mole ratio is 0.126/(1− 0.126) = 0.144. There-
fore, the weight ratio 𝑊𝑚/𝑊𝑤 = 0.144 × 32/18 = 0.256. Thus, the weight % is
𝑊𝑚/(𝑊𝑚 +𝑊𝑤) = 0.256/1.256 = 20 %.

(3) 𝜋 is 7.43 cm Water column = 7.43 × 10−2 × 9.8 × 103 = 7.28 × 102 Pa (here
103 is the density of water in kg/m3). (21.77) implies the amount 𝑛 of the protein
in moles in volume 100 cm3 is given by

𝑛 = 𝜋𝑉/𝑅𝑇 =
728× 100× 10−6

8.314× 298
= 0.294× 10−4. (21.88)
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That is, 1.23 g corresponds to this amount in moles, so the molecular weight is
4.14× 104.

D10.3 [More practical melting point depression problems]
(1) The melting point of water should be depressed by the absorbed air. What do
you think is its order, 0.1 K, 0.01 K or 0.001 K? At 273 K under 1 atm, the solubility
of nitrogen in water is 23.5 ml/l, and that of oxygen is 48.9 ml/l.
Solution.
The melting point depression is given by (21.79); in our context, 𝑇 = 273 K, 𝐿 = 6012
J/mole as calculated already, so

|Δ𝑇 | = 8.314× 2732

6012
𝑥 = 103𝑥, (21.89)

where 𝑥 is the mole fraction. Accurate calculation needs the law of partial pressure
as well as Henry’s law, but we see that N2 and O2 contribute about the same, so we
may estimate

𝑥 =
30× 10−3/22.4

1000/18
=

1.3× 10−3

55
. (21.90)

Thus, it is of the order of 0.001 K.

(2) If 𝑚 g of a substance is dissolved in 100 g of benzene, its melting point is
decreased by 1.7 K. If the same amount is dissolved in water the melting point of
water is decreased by 1.2 K. The melting heat of benzene is 127 J/g. Its melting
point is 5.5 ∘C. How do you explain these two facts consistently?

Solution.
For benzene

|Δ𝑇 | = 8.314× 278.52

127× 78
𝑥 = 65.1𝑥, (21.91)

Therefore, in benzene, 𝑥 = 0.0265 = 𝑦/(100/78 + 𝑦) or 𝑦 = (0.0265× 100/78)/(1−
0.0265) = 0.0349.

For water, we know (21.89), so 𝑥 = 0.01165 = 𝑦/(100/18 + 𝑦) or 𝑦 = (0.01165 ×
100/18)/(1− 0.01165) = 0.0655.

The most natural interpretation is that this substance dissociates into two pieces
in water, but not so in a not so polar solvent.

D10.4 [Miscible vs immiscible]348

There are two liquids A and B whose vapor pressures are given as 𝑃 0
A(𝑇 ) and 𝑃

0
B(𝑇 ),

respectively. Assume that these chemicals do not react each other, and in the gas

348Already discussed in a lecture.
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phase they make an ideal gas mixture.
(1) Suppose that these liquids mix well and make an ideal mixture. Then, Raoult’s
law holds. If the mole fraction of A in the liquid phase is 𝑥, what is the vapor pres-
sure of this mixture at temperature 𝑇?
(2) Suppose that these liquids does not mix at all. Still you can put them in a single
vessel and heat. What is the vapor pressure of this mixture at temperature 𝑇?
(3) What can you say about the boiling points of case (1) and case (2)? The boiling
points are 𝑇A and 𝑇B, respectively, for these pure liquids.

Solution.
(1) According to Raoult’s law,

𝑃mix(𝑇 ) = 𝑥𝑃 0
A(𝑇 ) + (1− 𝑥)𝑃 0

B(𝑇 ). (21.92)

(2) Both liquids contribute 𝑃 0
A(𝑇 ) and 𝑃

0
B(𝑇 ) independently, so

𝑃nonmix(𝑇 ) = 𝑃 0
A(𝑇 ) + 𝑃 0

B(𝑇 ). (21.93)

(3) Notice that

min
[︀
𝑃 0
A(𝑇 ), 𝑃

0
B(𝑇 )

]︀
≤ 𝑃mix(𝑇 ) ≤ max

[︀
𝑃 0
A(𝑇 ), 𝑃

0
B(𝑇 )

]︀
≤ 𝑃nonmix(𝑇 ). (21.94)

Boiling occurs when the total vapor pressure of the system reaches a given pressure
(say, 1 atm). Therefore,

max(𝑇A, 𝑇B) ≥ 𝑇mix(𝑇 ) ≥ min(𝑇A, 𝑇B) ≥ 𝑇nonmix. (21.95)

Therefore, if these liquids mix well, its boiling point is between 𝑇𝐴 and 𝑇𝐵, but if
they do not, the boiling point of the ‘juxtaposed liquids’ is less than any of 𝑇𝐴 or
𝑇𝐵.

D10.5 [Simple adsorption problem].
Consider a two dimensional lattice with 𝑁 sites, each of which can adsorb at most
one particle of chemical A. The energy of the adsorbing site is reduced by 𝜀 (> 0)
when a particle is adsorbed (or you can say an adsorbed chemical A particle has its
energy reduced by 𝜀 relative to its non-adsorbed states).
(1) At temperature 𝑇 , 𝑛 particles are adsorbed on the lattice. Using the canonical
formalism, find the chemical potential 𝜇 of the adsorbed particles in terms of the
covering fraction 𝜃 of the lattice by the adsorbed particles. Notice that if 𝑛 is fixed,
𝐸 is fixed, so canonical and microcanonical ensemble approaches are virtually the
same. You can (but need not) follow the following steps:
(i) Compute the canonical partition function 𝑍(𝑛), and then calculate the Helmholtz
free energy 𝐴(𝑛) of the lattice with 𝑛 particles on it (thus, the total 𝐸 = −𝑛𝜀).
(ii) Then, utilizing the Gibbs relation, compute the chemical potential (per particle)
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𝜇.
(2) Write down the grand canonical partition function for this lattice system, assum-
ing that the particle chemical potential is (general) 𝜇. Then, compute the adsorbed
number 𝑛 of particles, and confirm the consistency of your answer and that for (1).
(3) The 2D lattice system is immersed in a big tank of a solution of chemical A in an
inert solvent. The chemical potential of the solute (particles of chemical A) is given
by

𝜇𝐴 = 𝜇⊖
𝐴(𝑇 ) + 𝑘𝐵𝑇 log 𝑥, (21.96)

where 𝑥 is the mole fraction of chemical A in the solution. Find the equilibrium
fraction 𝜃 of the lattice points covered by the particles.
(4) What happens to this coverage, if you raise the temperature? You may assume
that 𝜀 is sufficiently large (i.e., adsorption is energetically favorable). Can you com-
ment on the relation between your observation and Le Chatelier’s principle? (Or
better, guess the result first and then confirm your guess.) Assume that resolving
chemical A into the solvent is energetically neutral, so 𝜇⊖

𝐴 is 𝑇 independent.

Solution.
(1) The canonical partition function reads (for 𝐸 = −𝑛𝜀)

𝑍(𝑛) =

(︂
𝑁

𝑛

)︂
𝑒𝑛𝛽𝜀, (21.97)

because we do not know where these 𝑛 particles are adsorbed. The Helmholtz free
energy reads

𝐴(𝑛) = −𝑘𝐵𝑇 log

(︂
𝑁

𝑛

)︂
− 𝑛𝜀 = 𝑁𝑘𝐵𝑇

[︁ 𝑛
𝑁

log
𝑛

𝑁
+
(︁
1− 𝑛

𝑁

)︁
log
(︁
1− 𝑛

𝑁

)︁]︁
− 𝑛𝜀.

(21.98)
Since 𝑑𝐴 = −𝑆𝑑𝑇 + 𝜇𝑑𝑛+ · · ·,

𝜇 =
𝜕𝐴

𝜕𝑛

⃒⃒⃒⃒
𝑇

= −𝜀+ 𝑘𝐵𝑇 log
𝑛

𝑁 − 𝑛
= −𝜀+ 𝑘𝐵𝑇 log

𝜃

1− 𝜃
, (21.99)

where the covering fraction 𝜃 is used.

(2)

Ξ =
𝑁∑︁

𝑛=0

(︂
𝑁

𝑛

)︂
𝑒𝑛𝛽(𝜀+𝜇) =

(︀
1 + 𝑒𝛽(𝜀+𝜇)

)︀𝑁
. (21.100)

Of course, we can write this down immediately, because each lattice point has two
states with the number of particles 0 and 1 (and energy 0 and −𝜀, respectively).
Therefore, recalling

𝑑

(︂
𝑃𝑉

𝑘𝐵𝑇

)︂
= 𝑑 log Ξ = −𝐸𝑑𝛽 + 𝛽𝑃𝑑𝑉 +𝑁𝑑(𝛽𝜇), (21.101)
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we have (𝑁 in the above formula is the generic notation for the number of particles
in the system, which is 𝑛 in the present case)

𝑛 =
𝜕log Ξ

𝜕𝛽𝜇
= 𝑁

𝑒𝛽(𝜀+𝜇)

1 + 𝑒𝛽(𝜀+𝜇)
. (21.102)

That is,

𝜃 =
𝑒𝛽(𝜀+𝜇)

1 + 𝑒𝛽(𝜀+𝜇)
. (21.103)

From this we get

𝑒𝛽(𝜀+𝜇) =
𝜃

1− 𝜃
, (21.104)

which agrees with the above result.

(3) The solute chemical potential in the solution and that of adsorbed particles
(21.99) must be identical in equilibrium:

𝜇⊖
𝐴 + 𝑘𝐵𝑇 log 𝑥 = −𝜀+ 𝑘𝐵𝑇 log

𝜃

1− 𝜃
. (21.105)

We can solve 𝜃 from this, BUT the following formula must be obtained almost
immediately

𝜃 =
𝑥𝑒𝛽(𝜀+𝜇⊖

𝐴)

1 + 𝑥𝑒𝛽(𝜀+𝜇⊖
𝐴)
, (21.106)

because replacing 𝜇 in the formula for 𝜃 above (21.103) with 𝜇⊖
𝐴 + 𝑘𝐵𝑇 log 𝑥 must be

the answer.
The result is reasonable: if 𝑥 is increased, the coverage should increase; if 𝜀 is

increased, then the adsorbed particles become more stable, so the coverage again
increases.

(4) The adsorbing process of the particle is an exoergic process, because 𝜀 is released
upon adsorption. Therefore, Le Chatelier tells us that 𝜃 must be a decreasing function
of 𝑇 . Let us confirm this. 𝜃/(1− 𝜃) is an increasing function of 𝜃, and

𝑥𝑒𝛽(𝜀+𝜇⊖) = 𝜃/(1− 𝜃). (21.107)

Therefore, increasing 𝑇 reduces 𝛽, which reduces 𝜃/(1 − 𝜃). Hence, 𝜃 decreases as
expected.

D10.6 [Small system in terms of grand-canonical formalism].
There are 100 identical spinless bosons whose 𝑛-th one-particle state has an energy
𝜀𝑛 = 𝑛𝜀 (𝑛 ∈ 𝑁 ; 𝑛 = 0 is the one-particle ground state). These particles do not
interact. When the system is in equilibrium with the particle reservoir (chemostat)
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of temperature 𝑇 and chemical potential 𝜇, on the average 99 particles occupy the
one-particle ground state (𝑛 = 0), and one particle occupies the one-particle first
excited state (𝑛 = 1). The other one-particle states are negligibly occupied.
(1) Find the chemical potential 𝜇 in terms of 𝜀 (or compute 𝜇/𝜀).
(2) Is the second excited state occupied only negligibly? Compute ⟨𝑛2⟩. ⟨𝑛2⟩/⟨𝑛1⟩ is
not terribly small, so you might think that the problem is not self-consistent. Give
your comment on this observation.

Solution.
(1) Since

⟨𝑛0⟩ =
1

𝑒−𝛽𝜇 − 1
= 99, (21.108)

⟨𝑛1⟩ =
1

𝑒𝛽(𝜀−𝜇) − 1
= 1, (21.109)

we have

−𝛽𝜇 = log(100/99) = 0.010050335, (21.110)

𝛽(𝜀− 𝜇) = log 2 = 0.693147. (21.111)

Hence, 𝛽 = 0.683097/𝜀 and 𝜇 = −0.010050335/(0.683097/𝜀) = −0.0147𝜀. Clearly
recognize that 𝜇 is negative (does not exceed the ground state energy)!
(2) 𝛽(2𝜀 − 𝜇) = 2𝛽(𝜀 − 𝜇) − (−𝛽𝜇) = 2 × 0.693147 − 0.010050335 = 1.37624, so
⟨𝑛2⟩ = 0.338. Actually, ⟨𝑁⟩ is about 0.5 articles more than 100. This is inevitable
because log 100/100 = 0.05, so a few % error is actually expected. We must admit
that for an 𝑁 = 100 closed system, to use the open-system formalism is not terribly
accurate.

D10.7 [Near ground microstates].
In a system one particle state has energies 0, 𝜀, 2𝜀, · · · (equally spaced and not de-
generate as illustrated in Fig 20.4 in the Lecture Notes), where 𝜀 = 0.01 eV.349

(1) There are 1000 particles in the system. What is the energy of the lowest energy
microstate (= ground microstate, i.e., the ground state of the whole system) from
the origin of the one particle state energy for (1F) fermions and for (1B) bosons?
(Ignore the internal states of the particles.)
(2) Itemize all the excited microstates (of the whole system, needless to say) whose
excitation energies are less than or equal to 3𝜀 (from the ground microstate) for
fermions (2F) and for bosons (2B).
(3) The above system with 1000 fermions is initially at 𝑇 = 0. Suppose all the
fermions are converted into bosons adiabatically (that is, with 𝐸 being kept con-
stant). Is the temperature of the resultant boson system in equilibrium higher than

3491 eV corresponds to 12,000 K.
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5,000 K?

(4) [Can you make a fermion bomb?]350 There is a fermion gas at room temperature
with the Fermi energy 10 eV. The gas is in an adiabatic container. The fermions
are actually metastable, and are converted into stable bosons without any energy
input. The reader may assume the particles do not interact. If the transformation
from fermions to bosons is carried out adiabatically, so that the particles experience
no sudden forces, can the resulting bose gas explode the container?

Solution.
(1F) 0, 𝜀, · · · up to 999𝜀 one particle states are singly occupied, so the total energy
must be (1 + 2 + · · ·+ 999)𝜀 = 999× 1000/2)𝜀 = 499, 500𝜀.
(1B) Obviously 0.
(2F) Let us make a microstate table. In this case let us make an occupation table.
The double horizontal line is the Fermi energy at 𝑇 = 0. See Fig. 20.4.

1P level
1003𝜀 × × × × × × ×
1002𝜀 × × × × # × ×
1001𝜀 × × # × × # ×
1000𝜀 # # × # × × ×
999𝜀 × # × # × # #
998𝜀 # × # # # × #
997𝜀 # # # × # # #
996𝜀 # # # # # # #
Δ𝐸 𝜀 2𝜀 2𝜀 3𝜀 3𝜀 3𝜀 0

No holes below 997𝜀.

(2B) Let us make a microstate table:
total energy 𝜀 2𝜀 3𝜀

𝜀 1 0 0
2𝜀 2 0 0

0 1 0
3𝜀 3 0 0

1 1 0
0 0 1

All other particles are in the one particle ground state.

(3) Good physicists’ answer: as you can see from Fig. 21.4 in the lecture notes, if
fermions are converted to bosons, then the ‘tower’ of fermions at 𝑇 = 0 crumbles
down to a ‘dust cloud’ with the particle energy about 5 eV. Since this is about 60
kK, obviously, the resultant boson system is extremely hot ≫ 5000 K.

We can confirm this as follows. We use that the resultant classical system is less

350the core part of UIUC Qual Spring 2002; notice the year.
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hot than the boson system (bosons ‘attract each other’ (see Fig. 21.6 in the lecture
notes), so they tend to be ‘attracted’ toward more populated one particle states than
less. Therefore, we need a higher temperature to have the same average energy as
the classical case.

Now, let us solve the classical case.

𝑍𝑁 =
∑︁

∑︀
𝑘 𝑛𝑘=𝑁

𝑁 !

𝑛0!𝑛1!𝑛2! · · ·𝑛𝑘! · · ·
𝑒−𝛽

∑︀
𝑘 𝑘𝜀𝑛𝑘 =

(︃∑︁
𝑘

𝑒−𝑘𝛽𝜀

)︃𝑁

= (1− 𝑒−𝛽𝜀)−𝑁 ,

(21.112)
where 𝑛𝑘 is the number of particles occupying the one particle ground state with
energy 𝑘𝜀. The summation over 𝑘 is from 0 to ∞. Therefore, with the aid of the
Gibbs-Helmholtz formula, we get

𝐸 = −𝜕log𝑍𝑁

𝜕𝛽
=

𝑁𝜀

𝑒𝛽𝜀 − 1
. (21.113)

𝐸 = 4995 eV, so
𝑒𝛽𝜀 − 1 = 𝑁𝜀/𝐸 = 10/4995 ≃ 0.002 (21.114)

or 𝛽𝜀 = log 1.002 ∼ 0.002. That is, 1/𝛽 = 𝜀/0.002 = 5 eV (as you can immediately
see 1/𝛽 ≃ 𝐸/𝑁 , the average energy as we have already guessed). Thus, 𝑇 ∼ 60, 000
K. The temperature of the bose system cannot be lower than this, so surely 𝑇 > 5000
K. [The resultant temperature is so high that you might wish to do relativistic cal-
culation....]
(4) As you see this is very closely related to (3). Notice that the pressure does
not change, because the internal energy does not change, so explosion due to the
change of pressure is impossible. However, the temperature increases a lot, because
the Fermi energy is 10 eV (corresponding to 120 kK) and most containers would
evaporate. Notice that this is a 3D system, so higher energy levels are more degen-
erate, so the ‘tower’ looks like a cone standing on its apex, so much worse than (3).
Since the content is already under high pressure before the conversion, explosion is
inevitable.
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Exercise 10

E10.1. [Easy colligative property questions]
(1) 12.3 g of an unknown substance (with negligible vapor pressure) is dissolved in
100 g of water. Its vapor pressure is 743 mmHg at 100 ∘C. What is its molecular
weight 𝑀?

(2) A 1 l solution containing 25 g of a substance at 0∘C exhibits the osmotic pressure
2.34 atm. What is the osmotic pressure of the solution containing 31 g/l of the same
substance (with the same solvent) at 30∘C?

Solution.
(1) This is a Raoult’s law problem. The mole fraction 𝑦 of water is

𝑦 =
100/18

100/18 + 12.3/𝑀
=

5.56

5.56 + 12.3/𝑀
= 743/760 = 0.9776. (21.115)

Therefore,

5.56 = 0.9776(5.56 + 12.3/𝑀) ⇒ 0.1245 = 12.3/𝑀 ⇒ 𝑀 = 98.8. (21.116)

(2) van’t Hoff’s law tells us that
𝜋 = 𝑐𝑅𝑇, (21.117)

where 𝑐 is the molarity. Thus, 𝜋 ∝ 𝑚𝑇 , where 𝑚 is the mass of the solute.

𝜋

2.34
=

31× 303

25× 273
⇒ 𝜋 = 1.3762× 2.34 = 3.22 atm. (21.118)

E10.2. [Steam distillation]351

According to the Clapeyron-Clausius equation, the vapor pressure of a liquid obeys

𝑑𝑃

𝑑𝑇
=

Δ𝐻

𝑇Δ𝑉
, (21.119)

where Δ𝐻 denotes the evaporation heat, and Δ𝑉 is the volume increase by evap-
oration. Usually, the vapor is approximated as an ideal gas and the liquid volume
is ignored, so Δ𝑉 = 𝑉vapor = 𝑅𝑇/𝑃 is used. Therefore, the original Clapeyron-
Clausius equation may be written as

𝑑𝑃

𝑑𝑇
=
𝑃Δ𝐻

𝑅𝑇 2
. (21.120)

(1) Show that this implies 𝑃 = 𝑐𝑒−Δ𝐻/𝑅𝑇 , where 𝑐 is a positive constant, if we may
assume Δ𝐻 is constant.

351‘DIY steam distillation of mint oil from mint herb’ is described step by step here [in Japanese].
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(2) There are two immiscible liquids A and B with the vapor pressure (in atm) (𝑇
in K)

𝑃A(𝑇 ) = 942293𝑒−5135/𝑇 , 𝑃B(𝑇 ) = 605380𝑒−5364/𝑇 . (21.121)

What is the boiling point of the A, B mixture? [You can use graphic method to
solve this. For example, you can use http://dlippman.imathas.com/graphcalc/

graphcalc.html]
(3) What is the mole fraction of B in the vapor phase? [In this example, A is actually
water.]

Solution.
(1) We have only to integrate the Clapeyron-Clausius equation (21.120):

𝑑log𝑃

𝑑𝑇
=

Δ𝐻

𝑅𝑇 2
⇒ log

𝑃

𝑃0

=
Δ𝐻

𝑅

(︂
1

𝑇0
− 1

𝑇

)︂
. (21.122)

Thus,
𝑃 = 𝑃0𝑒

(Δ𝐻/𝑅𝑇 0−Δ𝐻/𝑅𝑇 ) = 𝑐𝑒−Δ𝐻/𝑅𝑇 . (21.123)

(2) Since A and B do not mix, the vapor phase pressure is just the sum of their vapor
pressures as discussed in Disc.4 or in a lecture,

𝑃 (𝑇 ) = 𝑃A(𝑇 ) + 𝑃B(𝑇 ) = 942293𝑒−5135/𝑇 + 605380𝑒−5364/𝑇 . (21.124)

The graphs we need are seen in Fig. 21.7:

350 400 K

1

0

2 atm

360.5 373

P

A

B

P

P0.5

Figure 21.7: 𝑃A(𝑇 ), 𝑃B(𝑇 ) and 𝑃 (𝑇 )

Therefore, 𝑃 = 1 is realized at 𝑇 = 360.5 K.

(3) From the graph the partial pressures in the vapor can be read off as 𝑃A = 0.75,
and 𝑃B = 0.25. Thus 0.25 is the answer.
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E10.3 [Adsorption question]
Consider a surface with 𝑁 adsorption centers, each of which can accommodate at
most one particle. The energy of the adsorbing site is reduced by 𝜀 (> 0, that is
the one particle energy is −𝜀) when a particle is adsorbed. On the surface there is
a conversion reaction between A and B, which is Δ (> 0) more stable than A. B
cannot detach from the surface. The surface is placed in a large tank filled with gas
of A with chemical potential 𝜇.
(1) Write down the grand canonical partition function for the adsorbing surface.
(2) Find the total coverage fraction 𝜃 (i.e., the number of sites occupied by A or B
divided by 𝑁).
(3) What do you expect to happen to the chemical potential of A, if you change Δ
while fixing the total coverage 𝜃?

Solution.
(1) At each adsorption center, there are 3 states: empty, A or B. Therefore, the
‘grand canonical partition function for a site’ reads

1 + 𝑒𝛽(𝜀+𝜇) + 𝑒𝛽(𝜀+Δ), (21.125)

so the grand canonical partition function for the surface reads

Ξ =
(︀
1 + 𝑒𝛽(𝜀+𝜇) + 𝑒𝛽(𝜀+Δ)

)︀𝑁
. (21.126)

(2) The number of 𝐴 is

𝜕log Ξ

𝜕𝛽𝜇
= 𝑁

𝑒𝛽(𝜀+𝜇)

1 + 𝑒𝛽(𝜀+𝜇) + 𝑒𝛽(𝜀+Δ)
. (21.127)

The number of 𝐵 is analogously obtained as

𝜕log Ξ

𝜕𝛽𝜇
= 𝑁

𝑒𝛽(𝜀+Δ)

1 + 𝑒𝛽(𝜀+𝜇) + 𝑒𝛽(𝜀+Δ)
. (21.128)

Therefore,

𝜃 =
𝑒𝛽(𝜀+𝜇) + 𝑒𝛽(𝜀+Δ)

1 + 𝑒𝛽(𝜀+𝜇) + 𝑒𝛽(𝜀+Δ)
. (21.129)

(3) If 𝜃 is constant, then
𝑒𝛽(𝜀+𝜇) + 𝑒𝛽(𝜀+Δ) (21.130)

must be constant. Therefore, increasing Δ must be compensated by reducing 𝜇.
That is, we must reduce the tendency of A to be adsorbed on the surface, because
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adsorbed A implies more B.

E10.4. [Elementary ideal quantum particles]
The one particle state energies are equally spaced (with spacing 𝜀) for a particle.

(1) There are 𝑁 = 1232 identical fermions in the system and its ground state has
energy 𝐸0 = 2311 eV (relative to the one-particle ground state).
(i) What is the spacing 𝜀 and the Fermi level 𝜇𝐹 of the system?
(ii) What is the specific heat of the system at very low temperatures? You may
assume 𝛽𝜀≫ 1.
(2) Now, let us assume these particles are identical bosons and 𝜀 is the same.
(i) What is the the specific heat of the system at very low temperatures?
(ii) The system is expanded and 𝜀 becomes smaller. What do you expect to happen
to the specific heat of the system?

Solution.
See D10.7.
(1)
(i) The many-body ground state is realized by filling all the one-particle states from
the one-particle ground state 0 to 1231th level. Therefore, the total energy must
be

0 + 𝜀+ 2𝜀+ · · ·+ 1231𝜀 =
1231× 1232

2
𝜀 = 758296𝜀 = 2311. (21.131)

Therefore, 𝜀 = 3.048× 10−3 eV.
(ii) At very low temperatures the canonical partition function reads (here, the energy
origin is chosen to be the many-body ground state energy 𝐸0)

𝑍 = 1 + 𝑒−𝛽𝜀 + 2𝑒−2𝛽𝜀 + · · · . (21.132)

Actually, we may ignore the second term and beyond. Therefore, the internal energy
relative to the many-body ground state energy is

𝐸 − 𝐸0 = −
𝜕log𝑍

𝜕𝛽
=

𝜀(𝑒−𝛽𝜀 + · · ·)
1 + 𝑒−𝛽𝜀 + · · ·

. (21.133)

The specific heat is

𝐶(𝑇 ) =
𝑑𝐸

𝑑𝑇
=

𝑑

𝑑𝑇

𝜀

𝑒𝛽𝜀 + 1
=

𝜀2𝑇−2𝑒𝛽𝜀

(𝑒𝛽𝜀 + 1)2
≃ 𝜀2

𝑇 2
𝑒−𝛽𝜀. (21.134)

Notice that this is, as expected, the Schottky type specific heat due to the energy
gap just above the (many-body) ground state.
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(2)
(i) At very low temperatures the canonical partition function reads

𝑍 = 1 + 𝑒−𝛽𝜀 + 2𝑒−2𝛽𝜀 + · · · (21.135)

Therefore, the answer is just the same as (1)(ii).
(ii)

𝑑𝐶

𝑑𝜀
=

1

𝑇 2
(2𝜀− 𝛽𝜀2)𝑒−𝛽𝜀, (21.136)

so if 𝑘𝐵𝑇 < 𝜀/2 (See Fig. 13.1 in the lecture notes; the peak is 𝑇𝑃 = 𝜀/2𝑘𝐵 as noted
there), 𝐶 decreases as a function of 𝜀 for fixed 𝑇 . Therefore, if 𝜀 is decreased, for 𝑇 <
𝑇𝑃 𝐶(𝑇 ) increases. If 𝜀 is decreased, then the peak 𝑇𝑃 shifts to the lower temperature
(and the peak becomes steeper), so for 𝑇 < 𝑇𝑃 𝐶(𝑇 ) for fixed 𝑇 increases, but on
the other side 𝐶(𝑇 ) decreases.
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22 Ideal quantum gases at very low temperatures

Summary
* Elementary low temperature behaviors of non-interacting particle systems are dis-
cussed.
* We will guess low temperature behaviors of 𝐸, 𝑆, 𝜇 for free fermions.

Key words
Fermi energy, Bose-Einstein condensation, condensate

What you should be able to do
* You should be able to calculate various quantities for 𝑇 = 0 fermion.
* For 𝐸, 𝜇 𝑇 ̸= 0 corrections start with the terms of order 𝑇 2. You must be able to
explain why.
* Understand why 𝐶𝑉 ∝ 𝑇 for fermions close to 𝑇 = 0.
* Remember the shape and rough scales of the derivative of the Fermi-Dirac distri-
bution.
* Understand why Bose-Einstein condensation occurs.

22.1 Noninteracting fermion at 𝑇 = 0
The equation of state reads 𝑃𝑉 = 2𝐸/3, so let us compute the internal energy at
𝑇 = 0. The one particle states are completely filled up to the chemical potential
𝜇(0) at 𝑇 = 0, which is determined by

𝑁 =

∫︁ 𝜇(0)

0

𝑑𝜀𝐷𝑡(𝜀) = 𝛾0𝑉

∫︁ 𝜇(0)

0

𝜀1/2𝑑𝜀 =
2

3
𝛾𝑉 𝜇(0)3/2. (22.1)

Here, 𝐷𝑡(𝜀) = 𝛾0𝑉 𝜀
1/2 with 𝛾0 = 2𝜋(2𝑚/ℎ2)3/2 (recall 21.14). We do not need

details, but
𝜇(0) ∝ 𝑛2/3 (22.2)

is worth remembering, where 𝑛 is the number density.
The internal energy at 𝑇 = 0 is given by

𝐸(0) =

∫︁ 𝜇(0)

0

𝑑𝜀𝐷𝑡(𝜀)𝜀 = 𝛾0𝑉

∫︁ 𝜇(0)

0

𝜀3/2𝑑𝜀 =
2

5
𝛾0𝑉 𝜇(0)

5/2 =
3

5
𝑁𝜇(0). (22.3)

The last formula should be obtainable by dimensional analysis except for the numer-
ical factor. This implies

𝑃𝑉 =
2

5
𝑁𝜇(0). (22.4)
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Notice that this is usually very large. You might have realized that at 𝑇 = 0,
𝐸 = −𝑃𝑉 + 𝜇(0)𝑁 , so our familiar 𝐸 = 2𝑃𝑉/3 gives us everything we wish.

22.2 Fermi energy and fermion pressure
𝜇(0) = 𝜀𝐹 is called the Fermi energy, and it is a materials constant. For ordinary
metals, it is a few eV ≈ 5 × 104 K. If 𝑉 is 10−3 m3 for 1 mole of electrons, then
𝑃 ≈ (6× 1023)(5× 104 × 1.62× 10−19)/10−3 ≈ 5× 1011 Pa.

22.3 Low temperature specific heat of electrons (fermions)
Let us intuitively discuss the electronic heat capacity of metals at low temperatures.
We may assume that the Fermi-Dirac distribution is (almost) a step function. We
can infer from the width of the ‘avalanche region’ of the cliff of the Fermi-Dirac
distribution that the number of excitable electrons is ∼ 𝑁𝑘𝐵𝑇 at the temperature
around 𝑇 . We know generally that the specific heat is proportional to the number
of the excitable degrees of freedom, so 𝐶𝑉 ∝ 𝑇 at lower temperatures. Thus, at
sufficiently low temperatures this dominates the heat capacity of metals (where 𝑇 3

coming from the lattice vibration 16.12 is much less than 𝑇 ).
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Figure 22.1: 𝐶𝑉 is proportional to the number of degrees of freedom that may be excited at
temperature 𝑇 . For photons and phonons all the particles occupying the one particle states up to
the energy ∼ 𝑘𝐵𝑇 can be excited, so in 3-space the specific heat is proportional to 𝑇 3 (this is also
true for superrelativistic bosons). For fermion systems, among the occupied one particle states,
only the particles within the width ∼ 𝑘𝐵𝑇 near the top of the occupied states can be excited, so
𝐶𝑉 ∝ 𝑇 . These ideas may be used in any dimensional space.
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22.4 Low temperature approximation for fermions
To get this result more quantitatively, we need a way to estimate the contribution
of the cliff width. Let us look at the formula for 𝑁 :

𝑁 =

∫︁ ∞

0

𝐷(𝜀)
1

𝑒𝛽(𝜀−𝜇) + 1
. (22.5)
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Figure 22.2: The derivative of the Fermi distribution. Its width is about 5𝑘𝐵𝑇 and the height
is 𝛽/4.

Let 𝑓(𝜀) = 1/(𝑒𝛽(𝜀−𝜇) + 1). Since we know −𝑓 ′(𝜀) is concentrated sharply around
𝜀 = 𝜇 (Fig. 22.2), we wish to exploit this fact:∫︁ ∞

0

[︂∫︁ 𝜀

0

𝐷(𝜀′)𝑑𝜀′
]︂′
𝑓(𝜀)𝑑𝜀 =

∫︁ 𝜀

0

𝐷(𝜀′)𝑑𝜀′𝑓(𝜀)

⃒⃒⃒⃒∞
𝜀=0

−
∫︁ ∞

0

𝑑𝜀

[︂∫︁ 𝜀

0

𝐷(𝜀′)𝑑𝜀′
]︂
𝑓 ′(𝜀)

= −
∫︁ ∞

0

𝑑𝜀

[︂∫︁ 𝜀

0

𝐷(𝜀′)𝑑𝜀′
]︂
𝑓 ′(𝜀). (22.6)

Now, 𝑓 ′ is localized around 𝜇, so we need the quantity in [ ] only near 𝜀 = 𝜇.
Therefore, let us Taylor-expand it as follows:

−
∫︁ ∞

0

[︂∫︁ 𝜇

0

𝐷(𝜀′)𝑑𝜀′ +𝐷(𝜇)(𝜀− 𝜇) + 1

2
𝐷′(𝜇)(𝜀− 𝜇)2 + · · ·

]︂
𝑓 ′(𝜀)𝑑𝜀

=

∫︁ 𝜇

0

𝐷(𝜀′)𝑑𝜀′ − 1

2
𝐷′(𝜇)

∫︁ ∞

0

(𝜀− 𝜇)2𝑓 ′(𝜀)𝑑𝜀+ · · · . (22.7)

Detailed calculation is not given here, but it is clear that the correction is of order
𝑇 2; the integral in the second term has the dimension of energy squared, so it must
be proportional to (𝑘𝐵𝑇 )

2. If we wish to compute 𝐸 in the above calculation, 𝐷
is replaced by 𝜀𝐷, but the expansion method is exactly the same, so the correction
term is proportional to 𝑇 2. That is, although we do not go through any detailed
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calculation, we can conclude with a certain positive number 𝛼 (because 𝐸 must
increase with 𝑇 ) that

𝐸(𝑇 ) = 𝐸(0) +
1

2
𝛼𝑇 2 + · · · . (22.8)

Therefore, as we have expected above, 𝐶𝑉 = 𝛼𝑇 for sufficiently small 𝑇 .

22.5 Low temperature entropy of fermion systems
We know

𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑉

=
𝐶𝑉

𝑇
= 𝛼. (22.9)

This implies that under 𝑉,𝑁 constant condition 𝑆(𝑇 ) = 𝑆(0) + 𝛼𝑇 , but 𝑆(0) = 0 is
assumed usually, so we conclude that for sufficiently small 𝑇

𝑆(𝑇 ) = 𝐶𝑉 . (22.10)

22.6 Low temperature behavior of chemical potential
Now, let us study the 𝑇 dependence of 𝜇. You may probably guess that 𝜇(𝑇 ) =
𝜇(0)−𝑂[𝑇 2] from the above calculation. We know 𝜇 = 𝐺/𝑁 = (𝐸−𝑆𝑇 +𝑃𝑉 )/𝑁 =
(5𝐸/3− 𝑆𝑇 )/𝑁 for noninteracting systems. Therefore, we confirm our guess:

𝑁𝜇 =
5

3

(︂
𝐸(0) +

1

2
𝛼𝑇 2

)︂
− 𝛼𝑇 2 =

5

3
𝐸(0)− 1

6
𝛼𝑇 2. (22.11)

What happens if the spatial dimension is 1? It is an increasing function of 𝑇 for
sufficiently low 𝑇 .

22.7 Difficulty of continuum approximation at low temperatures for bosons
Next, let us study the free boson system. Let us take the ground state energy of the
system to be the origin of energy. Then, the chemical potential cannot be positive.
The total number of particles in the system of free bosons is given by

𝑁 =
∑︁
𝑖

1

𝑒𝛽(𝜀𝑖−𝜇) − 1
. (22.12)

If 𝑇 is sufficiently small, the first term corresponding to the single-particle ground
state can become very large (see Fig. 22.3), so in general it is dangerous to approxi-
mate (22.12) by integral with the aid of a smooth density of state as in the fermion
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case (in case of fermions, each term cannot be larger than 1, so there is no problem
at all in this approximation).

Let us look at the difficulty in approximating (22.12) by an integration in 3-space.
In this case the density of states has the form 𝐷𝑡(𝜀) = 𝛾𝑉 𝜀1/2 with some positive
constant 𝛾 (see 21.14). Let us write the continuous approximation to (22.12) as 𝑁1:

𝑁1(𝑇, 𝜇) ≡ 𝛾𝑉

∫︁ ∞

0

𝑑𝜀
𝜀1/2

𝑒𝛽(𝜀−𝜇) − 1
. (22.13)

𝑁1 is a function of 𝑇 and 𝜇. It is an increasing function of 𝑇 , and also an increasing
function of 𝜇. For a given 𝑇 , if we can choose 𝜇 (which must be negative) satisfying
𝑁 = 𝑁1, then we can describe the system with a continuous approximation of the
grand canonical ensemble with this 𝜇.

Now, let us decrease the temperature. Then, 𝑁1 decreases, so to keep 𝑁1 = 𝑁
we must increase 𝜇. However, we cannot indefinitely increase 𝜇; 𝜇 = 0 is the upper
limit. Is there any guarantee that before reaching this limit, 𝑁 = 𝑁1(𝑇, 𝜇) may
always be satisfied?

Since 𝑁1(𝑇, 𝜇) ≤ 𝑁1(𝑇, 0),

𝛾𝑉

∫︁ ∞

0

𝑑𝜀
𝜀1/2

𝑒𝛽(𝜀−𝜇) − 1
≤ 𝛾𝑉 (𝑘𝐵𝑇 )

3/2

∫︁ ∞

0

𝑑𝑧
𝑧1/2

𝑒𝑧 − 1
. (22.14)

The integral on the right-hand side is finite. That is, with a positive constant 𝐴 we
may write

𝑁1(𝑇, 𝜇) ≤ 𝐴𝑉 𝑇 3/2. (22.15)

The equality holds when 𝜇 = 0. 𝑁1 can be made indefinitely close to 0 by reducing
𝑇 . However, the system should have 𝑁 bosons independent of 𝑇 , so there must be
a temperature 𝑇𝑐 at which

𝑁 = 𝑁1(𝑇𝑐, 0) (22.16)

and for 𝑇 < 𝑇𝑐
𝑁 > 𝑁1(𝑇, 0). (22.17)

This is the difficulty of continuum approximation for low temperature bosons in 3-
space.

22.8 (Bose-)Einstein condensation
The temperature 𝑇𝑐 is called the (Bose-)Einstein condensation temperature; below
this the continuous approximation breaks down. Notice that 𝑇𝑐 is determined by
(22.16) and

𝑇𝑐 ∝ 𝑛2/3. (22.18)

Since the system must have 𝑁 particles, the remaining 𝑁0 = 𝑁−𝑁1 must occupy
some one particle state. The only possibility is the ground state which is not properly
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taken into account by the continuous approximation.
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Figure 22.3: If 𝑇 < 𝑇𝑐, where 𝑇𝑐 is the Bose-Einstein condensation temperature, then the ground
state is occupied by 𝑁0 = 𝑂[𝑁 ] particles, so the approximation of (22.12) by an integral becomes
grossly incorrect.

A macroscopic number 𝑁0 (= 𝑁 − 𝑁1) of particles fall into the lowest energy one
particle state (see Fig. 22.3). This phenomenon is called a (Bose-)Einstein con-
densation. Notice that except for the ground state no other one particle states are
occupied by macroscopic numbers of particles under any condition. Only the one-
particle ground state can be occupied by a macroscopic number of particles below
𝑇𝑐. Here, ‘macroscopic’ implies that 𝑁0/𝑁 is a positive number in the large system
size limit (𝑁 →∞ limit, the thermodynamic limit).

22.9 Non-condensate population
From (22.14), we know that 𝑁1 is an increasing function of 𝜇, but we cannot increase
𝜇 indefinitely; 𝜇 must be non-positive. Hence, at or below a certain particular
temperature 𝑇𝑐 𝜇 vanishes. That is, at 𝑇 = 𝑇𝑐 the equality must hold in (22.14), so
𝑇𝑐 is fixed by the condition (22.16), that is,

𝑁 = 𝐶(𝑘𝐵𝑇𝑐)
3/2

∫︁ ∞

0

𝑑𝑧
𝑧1/2

𝑒𝑧 − 1
. (22.19)

Below 𝑇𝑐 we have

𝑁1 = 𝐶(𝑘𝐵𝑇 )
3/2

∫︁ ∞

0

𝑑𝑧
𝑧1/2

𝑒𝑧 − 1
. (22.20)

Therefore, we get for 𝑇 ≤ 𝑇𝑐 (Fig. 22.4)

𝑁1 = 𝑁

(︂
𝑇

𝑇𝑐

)︂3/2

. (22.21)

Thus the condensate population reads for 𝑇 ≤ 𝑇𝑐.

𝑁0 = 𝑁

[︃
1−

(︂
𝑇

𝑇𝑐

)︂3/2
]︃
. (22.22)
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Figure 22.4: The ratio 𝑁1/𝑁 of non-condensate atoms has a singularity at the Bose-Einstein
condensation point 𝑇𝑐. The lower panel describes the chemical potential.

22.10 Bose-Einstein condensation does not occur in 2- and 1-spaces
No Bose-Einstein condensation occurs in one and two dimensional free spaces, be-
cause 𝑁1 is not bounded from above. For example, in 2-space

𝑁1 =

∫︁ ∞

0

𝐷2(𝜀)
1

𝑒𝛽(𝜀−𝜇) − 1
𝑑𝜀, (22.23)

where 𝐷2(𝜀) is the density of states of a single particle in 2-space. Let us repeat our
quick derivation: ∫︁ 𝜀

0

𝑑𝜀𝐷2(𝜀) =
𝑉

ℎ2

∫︁
𝑝2/2𝑚≤𝜀

𝑑𝑝 =
2𝜋𝑉

ℎ2

∫︁ √
2𝑚𝜀

0

𝑝𝑑𝑝, (22.24)

so

𝐷2(𝜀) =
2𝜋𝑉

ℎ2

√
2𝑚𝜀

𝑑
√
2𝑚𝜀

𝑑𝜀
= 𝑐𝑉, (22.25)

where 𝑐 is a constant. Therefore,

𝑁1 ∝ 𝑉

∫︁ ∞

0

1

𝑒𝛽(𝜀−𝜇) − 1
𝑑𝜀. (22.26)

We know 𝑁1 must be an increasing function of 𝜇 and the largest possible 𝜇 is zero
for bosons, so ∫︁ ∞

0

1

𝑒𝛽(𝜀−𝜇) − 1
𝑑𝜀 ≤

∫︁ ∞

0

1

𝑒𝛽𝜀 − 1
𝑑𝜀. (22.27)

The integral on the right-hand side blows up from the contribution close to 𝜀 = 0;
there 1/(𝑒𝛽𝜀− 1) ≃ 1/𝛽𝜀, so the integral diverges logarithmically. Therefore, for any
𝑁 and 𝑇 , we can find 𝜇 < 0 such that 𝑁 = 𝑁1. Thus, there is no Bose-Einstein
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condensation.
Why don’t you check the 1D case?

22.11 Continuum approximation is always valid for 𝐸 and 𝑃
Notice that the integral expression for 𝐸 or 𝑃𝑉 is still all right, because for these
quantities the ground state does not contribute at all.352

22.12 Low temperature heat capacity of bose systems
The Bose-Einstein condensate (i.e., 𝑁0) does not contribute to internal energy, so we
may use the continuum approximation to compute the internal energy. Below 𝑇𝑐 we
may set 𝜇 = 0, so

𝐸 =

∫︁ ∞

0

𝑑𝜀𝐷(𝜀)
𝜀

e𝛽𝜀 − 1
. (22.28)

In 3-space, we know 𝐷(𝜀) = 𝛾𝑉 𝜀1/2 with 𝛾 being a positive constant. Therefore, for
𝑇 < 𝑇𝑐

𝐸 = 𝛾𝑉

∫︁ ∞

0

𝑑𝜀 𝜀1/2
𝜀

e𝛽𝜀 − 1
= 𝛾𝑉 𝛽−5/2

∫︁ ∞

0

𝑑(𝛽𝜀)
(𝛽𝜀)3/2

e𝛽𝜀 − 1
∝ 𝑉 𝑇 5/2. (22.29)

(More easily, we can simply count the power of 𝜀. Here, we have 𝑑𝜀, 𝜀1/2 and 𝜀, so
𝜀5/2 is the ‘dimension of the integral.’ The only relevant quantity with the dimension
of energy is 𝑘𝐵𝑇 , so this integral must be proportional to 𝑇 5/2.) From this the low
temperature heat capacity is

𝐶𝑉 ∝
(︂
𝑇

𝑇𝑐

)︂3/2

. (22.30)

This goes to zero with 𝑇 as required by the third law 16.5.
Notice that 𝐶𝑉 is proportional to the number of degrees of freedom excitable at

around 𝑇 (recall Fig. 22.1).

352Accurately speaking, a careful calculation shows that the ground-state contributions to 𝐸 and
𝑃 are of order log𝑁 , which we may ignore. If not, the grand canonical formalism cannot be applied
in any case.
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Q22.1 [Density of state]
Find the density of states 𝐷(𝜀) (for the translational degrees of freedom) of a single
particle in the volume 𝑉 in 2-space with the super-relativistic dispersion relation
𝜀 = 𝑐|𝑝|.

Solution.
Here, I give the most general solution with (fairly detailed) explanation: in 𝑑-space
with the dispersion relation 𝜀 = 𝛼|𝑝|𝛾, where 𝛼 is a positive constant. Our strategy
is always the same. If we can study the classical phase volume, dividing it with ℎ𝑑 in
𝑑-space, we can obtain the number of states for a single particle. The single-particle
states with energy not exceeding 𝜀 corresponds to those with the momenta satisfying
|𝑝| ≤ (𝜀/𝛼)1/𝛾 Therefore, the number of the single-particle states with energy less
than 𝜀 may be written in two ways:∫︁ 𝜀

0

𝑑𝜀𝐷(𝜀) =
1

ℎ𝑑

∫︁
𝑞∈𝑉

𝑑𝑑𝑞

∫︁
|𝑝|≤(𝜀/𝛼)1/𝛾

𝑑𝑑𝑝.

The right-hand side may be rewritten by computing the position-coordinate integral
(that gives 𝑉 ) and by introducing the polar coordinate system∫︁ 𝜀

0

𝑑𝜀𝐷(𝜀) =
1

ℎ𝑑
𝑉

∫︁ (𝜀/𝛼)1/𝛾

0

𝑆𝑑−1𝑝
𝑑−1𝑑𝑝,

where 𝑆𝑑−1 is the volume of 𝑑 − 1-unit sphere, whose general form may be found
in my graduate course notes. To obtain 𝐷(𝜀), we simply differentiate the above
identity:353

𝐷(𝜀) =
𝑉

ℎ𝑑
𝑆𝑑−1(𝜀/𝛼)

(𝑑−1)/𝛾 𝑑(𝜀/𝛼)
1/𝛾

𝑑𝜀
=
𝑉

ℎ𝑑
𝑆𝑑−1

𝜀(𝑑−1)/𝛾

𝛼𝑑/𝛾

𝑑𝜀1/𝛾

𝑑𝜀
=
𝑆𝑑−1𝑉

𝛾ℎ𝑑
𝜀𝑑/𝛾−1

𝛼𝑑/𝛾
.

For 𝑑 = 3 and 𝛾 = 2 (the usual particle in 3-space), 𝑆2 = 4𝜋, 𝛼 = 1/2𝑚 and we
recover the formula we know well

𝐷(𝜀) = 2𝜋
𝑉

ℎ3
(2𝑚)3/2𝜀1/2.

For the problem case 𝑑 = 2, 𝛾 = 1, 𝑆1 = 2𝜋, and 𝛼 = 𝑐, so

𝐷(𝜀) = 2𝜋
𝑉

ℎ2
𝜀

𝑐2
.

Of course, this has ‘almost’ been given when we studied Planck’s formula.

Q22.2 [Ideal bosons in 2-harmonic trap]

353𝑓(𝑥) = 𝑔(𝑥) means 𝑓 ′(𝑥) = 𝑔′(𝑥) if the first equality is an identity (and differentiable) in 𝑥.
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There is a 2-harmonic trap 𝑈 = (1/2)𝛼𝑥2,354 where 𝑥 is the distance from the origin,
and 𝛼 is a positive constant. We know the single particle energy levels in this trap
are denoted as

𝜀 = ~𝜔(1 + 𝑛1 + 𝑛2), (22.31)

where 𝑛1, 𝑛2 ∈𝑁 = {0, 1, 2. · · ·}, and 𝜔 is a positive constant.
(1) The density of states 𝐷(𝜀) is the number of states with energy between 𝜀 and
𝜀+ 𝑑𝜀. Here, however, to make the one particle ground state to be with zero energy,
let us subtract the zero-point energy in the following. Therefore, we know∫︁ 𝜀

0

𝑑𝜀′𝐷(𝜀′) =
∑︁

𝑛1+𝑛2∈[0,𝜀/~𝜔]

1. (22.32)

Noting that the sum on the right-hand side is essentially the area of the shaded
triangle in the following figure, obtain 𝐷(𝜀).

n

1

2

n

n
2

1
n

ε
ωh
/

=

+

Figure 22.5: The relation between 𝑛1, 𝑛2 and 𝜀/~𝜔. Here, the zero-point energy (~𝜔) has been
subtracted from 𝜀.

(2) Is there a Bose-Einstein condensation in this 2D trap? [Hint. Compute 𝑁1 and
study whether it is finite or not for 𝜇 = 0. Mimic our argument in 3D free space.]

Solution.
(1) As explained, the right-hand side must be the area of the triangle, so∫︁ 𝜀

0

𝑑𝜀′𝐷(𝜀′) =
1

2

(︁ 𝜀

~𝜔

)︁2
.

Differentiating this with 𝜀, we obtain

𝐷(𝜀) =
𝜀

(~𝜔)2
∝ 𝜀.

(2) Warning: 𝜇 = 0 below 𝑇𝑐 is when we choose the ground state energy to be zero.
We have already removed the zero-point energy, so we can consider 𝜇 = 0.

354This can be realized on graphene.
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Let us compute (the expectation value of) the total number 𝑁1 of particles in the
excited states for 𝜇 = 0:

𝑁1 =

∫︁ ∞

0

𝑑𝜀𝐷(𝜀)
1

𝑒𝛽𝜀 − 1
∝
∫︁ ∞

0

𝑑𝜀
𝜀

𝑒𝛽𝜀 − 1
= 𝑘𝐵𝑇

∫︁ ∞

0

𝑑𝑧
𝑧

𝑒𝑧 − 1
.

This integral is finite: the dangerous contribution comes from small 𝑧, because for
large 𝑧 the integrand is exponentially small. For small 𝑧 the integrand tends to a
constant, so the integral is finite, and 𝑁1 can be indefinitely small for sufficiently
small 𝑇 . Therefore, 𝑁0 = 𝑁 −𝑁1, the condensate population, must be macroscopic.
That is, we can expect a Bose-Einstein condensation.

Q22.3 [Isoenergetic compression]
There are 2𝑁 non-interacting fermions in a container of volume 𝑉 . While the volume
is isoenergetically halved (that is 𝑉 → 𝑉/2 while 𝐸 is kept constant), two fermions
react to make a single boson. After the reaction completed, all the fermions are
converted into non-interacting bosons (i.e., 𝑁 bosons in volume 𝑉/2 with internal
energy 𝐸). Assume that the chemical potential of the initial fermion system is 0.7
eV and its temperature is 𝑇 = 0. Is the final temperature higher than 5 × 103 K?
You MUST justify your answer, since guessing the answer may not be very hard.
[Hint: the ‘bomb question.’]

Solution.
The total energy of the original system would be estimated from the 𝑇 = 0 formula
as 𝐸 = (3/5)2𝑁𝜇(0). After the reaction we have 𝑁 bosons. We know for given 𝑇 ,
𝑁 and 𝑉 , 𝑃𝑀𝐵 > 𝑃𝐵𝐸, but if 𝐸, 𝑁 and 𝑉 are the same 𝑃𝑀𝐵 = 𝑃𝐵𝐸 = (2/3)𝐸/𝑉 .
From 𝑃𝑀𝐵(𝑉/2) = 𝑁𝑘𝐵𝑇𝑀𝐵 = (2/3)𝐸, we have

𝑇𝑀𝐵 =
2𝐸

3𝑁𝑘𝐵
=

2

3

6𝑁𝜇

5𝑁𝑘𝐵
=

4𝜇

5𝑘𝐵
.

This is equal to 0.56 eV/𝑘𝐵 ≃ 6000 K > 5× 103 K. That is, classical gas would have
about this temperature.

To estimate the boson system temperature is actually rather delicate, but the fol-
lowing argument tells us that the final temperature is definitely higher than 5× 103

K. The pressure of any gas is an increasing function of 𝑇 . If the temperature is the
same, that is, if 𝑇 , 𝑁 , and 𝑉 are the same, 𝑃𝑀𝐵 > 𝑃𝐵𝐸, but in our case they are iden-
tical, so the actual temperature of the final bosonic system must be higher than 𝑇𝑀𝐵.

Q22.4 [Ideal quantum system volume change] Watch out for trivial questions
Assume that the particles do not interact, and answer the following questions for
both ideal bosons and ideal fermions (both without any internal degree of freedom).

(1) The volume 𝑉 is increased under constant internal energy. Does the tempera-
ture decrease? Assume that the initial temperature is sufficiently low (below 𝑇𝑐 for
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bosons).
(2) The volume 𝑉 is increased under constant entropy. Does the temperature de-
crease?
(3) The volume 𝑉 is increased under constant temperature. Does the pressure de-
crease?

Solution.
(1) If the volume is increased, the level spacings decrease.
(F) For fermions, if this happens at a very low temperature, then particles must be
excited to go beyond the Fermi energy. Thus, 𝑇 increases. More quantitatively, let
us ‘head-on’ consider

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝐸

=
𝜕(𝑇,𝐸)

𝜕(𝑉,𝐸)
=
𝜕(𝑇,𝐸)

𝜕(𝑉, 𝑇 )

𝜕(𝑉, 𝑇 )

𝜕(𝑉,𝐸)
= − 1

𝐶𝑉

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

. (22.33)

Using the Gibbs relation, we get

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

= 𝑇
𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

− 𝑃, (22.34)

but
𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
𝜕(𝑆, 𝑇 )

𝜕(𝑉, 𝑇 )
=
𝜕(𝑆, 𝑇 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )
=
𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

(22.35)

with the aid of a Maxwell’s relation. Using 𝑃 = 2𝐸/3𝑉 ,

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
2𝐶𝑉

3𝑉
. (22.36)

Thus,
𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
2

3𝑉
(𝑇𝐶𝑉 − 𝐸). (22.37)

For free fermions, we know 𝐸 at low temperatures has a big 𝑇 -independent chunk
𝐸0, so for sufficiently low temperatures, this derivative must be negative. Hence,
(22.33) must be positive.
(B) We know classically 𝑇 is constant, so we could guess that for bosons 𝑇 must
decrease. Since the level spacings shrink generally, the gap between the ground state
and the first excited state also shrinks. This destabilizes the condensate (makes them
easier to ‘evaporate’ into non-condensate state). Thus, the total energy increases.
Therefore, you must cool the system to keep 𝐸. That is, 𝑇 goes down as expected.
Needless to say, under this condition the contribution from the non-condensate is
opposite, but its low-lying energy states are much less populated than the ground
state below 𝑇𝑐, so you must cool the system. More quantitatively, the boson case is
easy: Since we may assume 𝜇 = 0, we know

𝐸 = 𝑇𝑆 − 𝑃𝑉 = 𝑇𝑆 − 2

3
𝐸 ⇒ 𝐸 =

3

5
𝑇𝑆. (22.38)
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Expanding 𝑉 reduces the condensate, so 𝑆 increases. Hence, 𝑇 must be decreased
under constant 𝐸. In this case we can do better: we can explicitly obtain 𝐸 from
integration

𝐸 =

∫︁
𝑑𝜀𝐷𝑡(𝜀)

𝜀

𝑒𝛽𝜀 − 1
∝ 𝑉 𝑇 5/2, (22.39)

so 𝑇 must be decreased as 𝑉 −5/2. We could use (22.37) which is also correct for free
bosons as well. We know 𝐶𝑉 ∝ 𝑇 𝜃 for some 𝜃 > 0 (of course, we know 𝜃 = 3/2, but
we do not need the exact value), so

𝑇𝐶𝑉 − 𝐸 =
𝜃

1 + 𝜃
𝑇𝐶𝑉 > 0, (22.40)

which is the opposite of fermions.
(2) Since the entropy is constant, we may imagine a situation in which the particles
move with the energy levels. However, the level spacings decrease, so excitation
would be easier with the initial temperature. To keep 𝑆 we must maintain the shape
of the occupation number distribution. In particular, the condensate population in
case of (B) and the cliff shape in case of (F) must be maintained. Hence, 𝑇 must be
decreased. To be quantitative, we need

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝑆

=
𝜕(𝑇, 𝑆)

𝜕(𝑉, 𝑆)
=
𝜕(𝑇, 𝑆)

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑆)
= −𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑆)
(22.41)

= −𝜕(𝑉, 𝑇 )
𝜕(𝑉, 𝑆)

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )
= − 𝑇

𝐶𝑉

𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

= −2𝑇

3𝑉
< 0. (22.42)

Here. our favorite 𝑃 = 2𝐸/3𝑉 has been used.
(3) (𝜕𝑃/𝜕𝑉 )𝑇 < 0 thermodynamically!.

Q22.5 [1D Fermion system]
Consider a 1D ideal fermion system.
(1) Find the density of one particle states, assuming that the volume (length) is 𝑉 .
(2) Obtain 𝑃𝑉/𝐸.
(3) Assuming that 𝐸 = 𝐸0+𝛼𝑇

2/2 for sufficiently small 𝑇 , compute the entropy for
sufficiently small 𝑇 .
(4) Find the chemical potential 𝜇 to order 𝑇 2 using 𝛼.

Solution.
(1) Let us use our usual short cut:∫︁ 𝜀

0

𝑑𝜀𝐷𝑡(𝜀) =
𝑉

ℎ

∫︁ √
2𝑚𝜀

−
√
2𝑚𝜀

𝑑𝑝 =
𝑉

ℎ
2
√
2𝑚𝜀 =

2
√
2𝑚𝑉

ℎ
𝜀1/2. (22.43)

Therefore,

𝐷𝑡(𝜀) =

√
2𝑚𝑉

ℎ
𝜀−1/2. (22.44)
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(2) This implies (or comparing (22.43) and (22.44))∫︁ 𝜀

0

𝑑𝜀𝐷𝑡(𝜀) = 2𝜀𝐷𝑡(𝜀), (22.45)

so

𝑃𝑉 = ∓𝑘𝐵𝑇
∫︁ 𝜀

0

𝑑𝜀(2𝜀𝐷𝑡(𝜀))
′ log(1∓ 𝑒−𝛽(𝜀−𝜇)) = 2

∫︁ 𝜀

0

𝑑𝜀𝐷𝑡(𝜀)
𝜀

𝑒𝛽(𝜀−𝜇) ∓ 1
= 2𝐸.

(22.46)
(3) From the formula for 𝐸, we get 𝐶𝑉 = 𝛼𝑇 . We know

𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑉

=
𝐶𝑉

𝑇
= 𝛼, (22.47)

so 𝑆 = 𝐶𝑉 = 𝛼𝑇 , since 𝑆(0) = 0 (the third law; this is just the same as in 3-space).
(4) We know

𝑁𝜇 = 𝐸 − 𝑇𝑆 + 𝑃𝑉 = 3𝐸 − 𝛼𝑇 2 = 3𝐸0 +
1

2
𝛼𝑇 2 = 𝑁𝜇0 +

1

2
𝛼𝑇 2. (22.48)

Notice that 𝜇 increases with 𝑇 . This is the opposite of the case in 3-space.
If you repeat the above calculation in 2-space, you will realize that to order 𝑇 2,

the chemical potential is independent of 𝑇 .

Warning: In the above we used a fundamental thermodynamic relation 𝐸 = 𝑇𝑆 −
𝑃𝑉 + 𝜇𝑁 . You might think that since we discuss systems with constant 𝑁 , hon-
estly speaking we are using the canonical ensemble, so the basic Gibbs relation is
𝑑𝐸 = 𝑇𝑑𝑆 −𝑃𝑑𝑉 , so 𝐸 = 𝑇𝑆 −𝑃𝑉 must be correct. Since 𝑃𝑉 = 2𝐸/3, you might
write 𝐸 = 2𝑇𝑆/5. The RHS vanishes in the 𝑇 → 0 limit. However, for the fermion
system, we say 𝐸 = 𝐸0 +𝑂[𝑇 2], and 𝐸0 is huge, usually. How come?

If you use the grand canonical ensemble, you must stick to it to be consistent. The
energy zero is the zero of one particle state in this formalism (not the ground state
energy of the whole system). This causes the discrepancy 𝐸0, which is the ground
state energy of the whole system relative to the ground state energy of a single par-
ticle (for the boson case, there is no discrepancy). That is, with 𝐸 = 𝐸0 + 𝑂[𝑇 2]
you must use 𝐸 = 𝑇𝑆 −𝑃𝑉 + 𝜇𝑁 . 𝑃𝑉 = 2𝐸/3 is derived with the aid of the grand
canonical formalism, so this 𝐸 contains 𝐸0. The discrepancy occurs only when we
discuss the fermion system.

An obvious lesson is that whenever you use 𝐸 instead of 𝛿𝐸, you must stick to
your initial choice of the energy origin.

Q22.6 [Bosons below 𝑇𝑐]
Consider a non-interacting boson system below 𝑇𝑐 in 3-space. Its internal energy 𝐸
is proportional to 𝑇 5/2.
(1) Show this with the aid of statistical mechanics.
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(2) Show this using thermodynamics, knowing that 𝑃𝑉 = 2𝐸/3.
[Hint. Simply mimic what we did for the Stefan-Boltzmann law. You need not red-
erive the formulas derived in the lectures.]

Solution.
(1)

𝐸 =

∫︁ ∞

0

𝑑𝜀𝐷(𝜀)
𝜀

𝑒𝛽𝜀 − 1
∝
∫︁ ∞

0

𝑑𝜀 𝜀1/2
𝜀

𝑒𝛽𝜀 − 1
= 𝛽−5/2

∫︁ ∞

0

𝑑(𝛽𝜀) (𝛽𝜀)1/2
𝛽𝜀

𝑒𝛽𝜀 − 1
,

so indeed 𝐸 ∝ 𝑇 5/2.
(2) We use 𝐸 = 𝑇𝑆 − 𝑃𝑉 , because 𝜇 = 0. Therefore, we have

𝑆 =
5𝐸

3𝑇
.

Differentiating this wrt 𝐸 under constant 𝑉 , we get

− 2

3𝑇
= − 5

3𝑇 2

𝜕𝑇

𝜕𝐸

⃒⃒⃒⃒
𝑉

𝐸.

or
𝑑𝐸

𝐸
=

5

2

𝑑𝑇

𝑇
.

That is, 𝐸 ∝ 𝑇 5/2.

Q22.7 [Superrelativistic condensation?]
Consider bosons whose dispersion relation is ultrarelativistic, i.e., 𝜀 = 𝑐|𝑝| (as pho-
tons).
(1) In 3-space, this system exhibits a Bose-Einstein condensation. What is the num-
ber density 𝑛 dependence of the critical temperature 𝑇𝑐? (Find 𝜃 in 𝑇𝑐 ∝ 𝑛𝜃.)
(2) Is there any Bose-Einstein condensation in 2-space for these bosons? [Needless
to say, you must justify your opinion.]

Solution.
(1) Let us compute the noncondensate population 𝑁1 in 3D:

𝑁1 =

∫︁
𝑑𝜀𝐷𝑡(𝜀)

1

𝑒𝛽𝜀 − 1
. (22.49)

We need the density of (one particle states) 𝐷𝑡. Let us use a shortcut (or you can
copy the needed result from somewhere in the lecture notes):∫︁ 𝜀

0

𝐷𝑡(𝜀)𝑑𝜀 =
𝑉

ℎ3

∫︁
|𝑝|<𝜀/𝑐

𝑑3𝑝 =
𝑉

ℎ3
4𝜋

3

𝜀3

𝑐3
. (22.50)

That is,

𝐷𝑡(𝜀) =
4𝜋𝑉

ℎ3𝑐3
𝜀2. (22.51)
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Therefore,

𝑁1 =

∫︁
𝑑𝜀𝐷𝑡(𝜀)

1

𝑒𝛽𝜀 − 1
∝ 𝑉 𝑇 3 (22.52)

Therefore, at the critical temperature 𝑛 ∝ 𝑇 3
𝑐 , or 𝜃 = 1/3.

(2) Let us compute the noncondensate population 𝑁1 in 2D. We need the density of
state in 2D: ∫︁ 𝜀

0

𝐷𝑡(𝜀)𝑑𝜀 =
𝑉

ℎ2

∫︁
|𝑝|<𝜀/𝑐

𝑑2𝑝 =
𝑉

ℎ2
𝜋
𝜀2

𝑐2
. (22.53)

That is,

𝐷𝑡(𝜀) =
2𝜋𝑉

ℎ2𝑐2
𝜀. (22.54)

Now the continuous expression of the number of particles is

𝑁1 =

∫︁
𝑑𝜀𝐷𝑡(𝜀)

1

𝑒𝛽(𝜀−𝜇) − 1
≤
∫︁
𝑑𝜀𝐷𝑡(𝜀)

1

𝑒𝛽𝜀 − 1
. (22.55)

The question is whether this is finite or not. Since 𝐷𝑡 ∝ 𝜀, and for small 𝜀,

1

𝑒𝛽𝜀 − 1
∼ 𝑘𝐵𝑇

𝜀
. (22.56)

Therefore, there is no divergence of the integral due the small portion of 𝜀. The
integrand is exponentially small for large 𝜀, 𝑁1 is bounded from above by a constant
proportional to 𝑉 𝑇 2. Therefore, there must be a Bose-Einstein condensation at
sufficiently low temperatures.
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Discussion 11

We will mainly discuss low temperature ideal quantum systems. The explanations of
the problems may be read independently (so the same comments and formulas are
often repeated).

D11.1 [Zeeman splitting]355

An electron in the outer shell of an ion has magnetic moment of one Bohr magneton
𝜇𝐵. In a magnetic field 𝐵,356 this outer shell state splits into two energy levels with
𝐸 = 𝐸0± 𝜇𝐵𝐵 (down or up states; the up state is more stable, because it is parallel
to 𝐵). The magnetization 𝑀 = 𝜇𝐵(𝑛𝑢 − 𝑛𝑑), where 𝑛𝑢 (resp., 𝑛𝑑) is the occupation
number of the up (resp., down) state. You can assume that electrons do not interact
with each other.
(1) Find ⟨𝑀⟩ and ⟨𝑁⟩ with a grand canonical ensemble,357 assuming that there are
𝑁 ions.
(2) Give the average magnetization when the outer shell contains exactly one electron,
and compare it with the result for 𝜇 = 𝐸0 in (1).
Solution
(1) Notice that even if we prepare one chemostat for electrons, there are different
interpretations of GCS.
(i) For each ion there are two states. You could imagine these two states could
be ‘connected to the chemostat’ separately. Then, the grand-canonical partition
function is (that is, each level may be occupied by at most one electron)

Ξ =
(︀
1 + 𝑒−𝛽(𝐸0−𝜇𝐵𝐵−𝜇)

)︀𝑁 (︀
1 + 𝑒−𝛽(𝐸0+𝜇𝐵𝐵−𝜇)

)︀𝑁
. (22.57)

(ii) If each ion is occupied by at most one electron, the GCE reads

Ξ =
(︀
1 + 𝑒−𝛽(𝐸0−𝜇𝐵𝐵−𝜇) + 𝑒−𝛽(𝐸0+𝜇𝐵𝐵−𝜇)

)︀𝑁
. (22.58)

From these
𝛽𝑃𝑉 = log Ξ. (22.59)

355UIUC Qual Fall 95
356Actually the field is in the 𝑧-direction, and 𝐵 is its 𝑧-component.
357[This is a comment for those who are extremely careful about logic.] What is written here is the

way the usual books ask the question, but, strictly speaking, it is not the usual GCE explained in
the books (and in my lecture notes), because 𝐵 is also fixed (𝑀 is not fixed), so 𝐸−𝑆𝑇 −𝜇𝑁−𝑀𝐵
is the Legendre transformation, instead of the usual 𝐸 − 𝑆𝑇 − 𝜇𝑁 . It is, HOWEVER, still 𝑃𝑉 =
𝑆𝑇 + 𝜇𝑁 +𝐵𝑀 − 𝐸 is the corresponding thermodynamic potential.

What is the conclusion of this precise argument? You must be careful when you use the Gibbs
relation. If 𝐵 is fixed instead of 𝑀 −𝑑(𝑃𝑉 ) = −𝑆𝑑𝑇 −𝑃𝑑𝑉 −𝑁𝑑𝜇−𝑀𝑑𝐵 rather than −𝑑(𝑃𝑉 ) =
−𝑆𝑑𝑇 − 𝑃𝑑𝑉 −𝑁𝑑𝜇+𝐵𝑑𝑀 .

In practice, you may regard the GCE as the ensemble for which all the extensive quantities but
𝑉 are allowed to change by fixing their corresponding conjugate intensive variables.
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The corresponding Gibbs relation reads

𝑑(𝛽𝑃𝑉 ) = −𝐸𝑑𝛽 + 𝛽𝑃𝑑𝑉 +𝑁𝑑(𝛽𝜇) +𝑀𝑑(𝛽𝐵). (22.60)

Therefore:
For (i)

⟨𝑁⟩/𝑁 =
𝜕log Ξ

𝜕𝛽𝜇
=

1

𝑒𝛽(𝐸0−𝜇𝐵𝐵−𝜇) + 1
+

1

𝑒𝛽(𝐸0+𝜇𝐵𝐵−𝜇) + 1
, (22.61)

⟨𝑀⟩/𝑁 =
𝜕log Ξ

𝜕𝛽𝐵
=

𝜇𝐵

𝑒𝛽(𝐸0−𝜇𝐵𝐵−𝜇) + 1
− 𝜇𝐵

𝑒𝛽(𝐸0+𝜇𝐵𝐵−𝜇) + 1
. (22.62)

For (ii)

⟨𝑁⟩/𝑁 =
𝜕log Ξ

𝜕𝛽𝜇
=

𝑒−𝛽(𝐸0−𝜇𝐵𝐵−𝜇) + 𝑒−𝛽(𝐸0+𝜇𝐵𝐵−𝜇)

1 + 𝑒−𝛽(𝐸0−𝜇𝐵𝐵−𝜇) + 𝑒−𝛽(𝐸0+𝜇𝐵𝐵−𝜇)
, (22.63)

⟨𝑀⟩/𝑁 =
𝜕log Ξ

𝜕𝛽𝐵
=

𝑒−𝛽(𝐸0−𝜇𝐵𝐵−𝜇) − 𝑒−𝛽(𝐸0+𝜇𝐵𝐵−𝜇)

1 + 𝑒−𝛽(𝐸0−𝜇𝐵𝐵−𝜇) + 𝑒−𝛽(𝐸0+𝜇𝐵𝐵−𝜇)
, (22.64)

(2)
Interpretation (i): For ⟨𝑁⟩/𝑁 = 1 we must solve 𝑥 = 𝑒𝛽(𝐸0−𝜇) from

1 =
1

1 + 𝑥/𝑦
+

1

1 + 𝑥𝑦
=

2 + 𝑥(𝑦 + 1/𝑦)

1 + 𝑥(𝑦 + 1/𝑦) + 𝑥2
, (22.65)

where 𝑦 = 𝑒𝛽𝜇𝐵𝐵. Therefore, for any 𝑦 𝑥 = 1 is the solution. That is, 𝐸0 = 𝜇 is the
condition. Under this condition,

⟨𝑀⟩ = 𝜇𝐵

(︂
1

1 + 1/𝑦
− 1

1 + 𝑦

)︂
= 𝜇𝐵

𝑦 − 1

𝑦 + 1
= 𝜇𝐵

𝑒𝛽𝜇𝐵𝐵 − 1

𝑒𝛽𝜇𝐵𝐵 + 1
= 𝜇𝐵 tanh

𝛽𝜇𝐵𝐵

2
.

(22.66)
Interpretation (ii): For ⟨𝑁⟩/𝑁 = 1 we must solve 𝑥 = 𝑒𝛽(𝐸0−𝜇) from

1 =
𝑦 + 1/𝑦

𝑥+ 𝑦 + 1/𝑦
, (22.67)

so again 𝑥 = 0 or 𝐸0 = 𝜇 is the condition. Therefore,

⟨𝑀⟩ = 𝜇𝐵
𝑦 − 1/𝑦

𝑦 + 1/𝑦
= 𝜇𝐵

𝑒𝛽𝜇𝐵𝐵 − 𝑒−𝛽𝜇𝐵𝐵

𝑒𝛽𝜇𝐵𝐵 + 𝑒−𝛽𝜇𝐵𝐵
= 𝜇𝐵 tanh 𝛽𝜇𝐵𝐵. (22.68)

Thus, this agrees with the (micro)canonical case we have already encountered in the
notes.

What is the lesson? If many ions are embedded in a medium that may allow the
exchange of electrons (and electron-electron interaction on the same ion negligible)
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(i) may well be realistic. However, if ions are isolated (ii) is realistic (as we have
confirmed).

Semi-quantitative questions

The following problems are semi-quantitative questions about low temperature ideal
systems.

In answering this type of questions recall some obvious facts:
(i) How the (one-particle) energy levels of a single particle confined in a box changes,
if its volume is changed: If squished, the level spacings widen, and if expanded, they
shrink (Fig. 22.6).

Figure 22.6: If the system is compressed, the spacings between energy levels widen; if expanded,
they shrink.

(ii) If particles’ energies shift with the energy levels (as if the particles just perch on
the shifting energy levels), then the system changes adiabatically and reversibly; the
system entropy stays constant.358

(iii) Try to use thermodynamics as much as possible. Recall 𝐸 = 𝑇𝑆 − 𝑃𝑉 + 𝜇𝑁359

20.4.
(iv) 𝑃𝑉 = 2𝐸/3 is universal360 21.15.
(v) Recall how to ‘guess’ one-particle state density: 𝐷𝑡 21.14; often dimensional
analysis works.
(vi) Very low temperature features of average occupation numbers: fermions are with
sharp cliffs (of width ∼ 𝑘𝐵𝑇 ; recall Figs. 21.2 and 22.2); bosons below 𝑇𝑐 are with
𝜇 = 0 (cf. Fig. 22.4).

D11.3 [Pressure changes under various conditions]
Assume that the particles do not interact, and answer the following questions for
both ideal bosons and ideal fermions (both without any internal degree of freedom).
You may assume that the initial temperature is sufficiently low (e.g., well below 𝑇𝑐 for
bosons). If your argument is sufficiently convincing in terms of elementary physics,

358This is the so-called quantum adiabatic change. Quantum adiabatic change is an example
of thermodynamic adiabatic changes. However, it is an extremely special (unrealizably special, I
should say) case. Such a process certainly preserves entropy, but it is far from necessary.

359As long as we keep the energy origin to be the one-particle ground state. Read, however, an
important warning in 7.

360As long as the system is 3-dimensional and the kinetic energy is given by 𝑚𝑣2/2.
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you need not demonstrate your answers with the aid of formulas, but I strongly rec-
ommend you to check your intuitive answer using thermodynamics and/or statistical
mechanics.

(1) The pressure 𝑃 is increased under constant internal energy. Does the temper-
ature of the gas increase? Assume that the initial temperature is sufficiently low
(below 𝑇𝑐 for bosons).
(2) The pressure 𝑃 is increased under constant entropy. Does the temperature of
the gas increase?
(3) The pressure 𝑃 is increased under constant volume. Does the temperature of the
gas increase?

Solution.
(1) Since 𝐸 is constant, 𝑃𝑉 must be constant, so 𝑉 must decrease. Decreasing 𝑉
implies increase of the one particle level spacings.
(1F) For fermions, if 𝑇 is low, to prevent 𝐸 from increasing, you must cool the system
further.

If you wish to proceed with minimum intuition, do the following.361

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝐸

=
𝜕(𝑇,𝐸)

𝜕(𝑉,𝐸)
=
𝜕(𝑇,𝐸)

𝜕(𝑉, 𝑇 )

𝜕(𝑉, 𝑇 )

𝜕(𝑉,𝐸)
= − 1

𝐶𝑉

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

. (22.69)

Although it is possible to calculate the partial derivative for an arbitrary 𝑇 ,362 at 𝑇 =
0 we can estimate it (as done in the lecture) easily from the 𝐸(0)-𝜇(0) relation:

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

= −2

3

𝐸

𝑉
< 0. (22.70)

Therefore, at 𝑇 = 0
𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝐸

=
2

3𝐶𝑉

𝐸

𝑉
> 0. (22.71)

This is continuous, so for sufficiently low 𝑇 this must also be true. Therefore, decreas-
ing 𝑉 under constant 𝐸 requires decrease of 𝑇 . Notice that (22.70) is for fermions,
so the inequality is not sacred.

For a classical ideal gas 𝐸 constant means 𝑇 constant. That is, (𝜕𝑇/𝜕𝑉 )𝐸 = 0.

361If you wish to be more direct, start with

𝜕𝑇

𝜕𝑃

⃒⃒⃒⃒
𝐸

=
𝜕𝑇

𝜕(2𝐸/3𝑉 )

⃒⃒⃒⃒
𝐸

=
3

2𝐸

𝜕𝑇

𝜕(1/𝑉 )

⃒⃒⃒⃒
𝐸

= −3𝑉 2

2𝐸

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝐸

.

362As we will see in (22.99):
𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
2

3𝑉
(𝑇𝐶𝑉 − 𝐸).

Since 𝐸 = 𝐸(0) + 𝑂[𝑇 2] with a huge 𝐸(0) for fermions, this is negative for lower temperatures.
Thus, (𝜕𝑇/𝜕𝑉 )𝐸 > 0.
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This ‘strongly’ suggests that for bosons (𝜕𝑇/𝜕𝑉 )𝐸 < 0, so for bosons we expect that
𝑇 increases.
(1B) If you decrease 𝑉 , then the amount of condensate increases (recall (i): conden-
sate is less easy to evaporate), but this means the decrease of 𝐸, so you must raise
the temperature to keep 𝐸.

How can you proceed less ‘intuitively’? The most direct way is to use 𝐸, since
𝑇 < 𝑇𝑐: 𝐸 ∝ 𝑉 𝑇 5/2 ∝ (𝐸/𝑃 )𝑇 5/2. Therefore, 𝑃 ∝ 𝑇 5/2. Thus, 𝑇 increases. Another
way is to evaluate (22.69) or (𝜕𝑇/𝜕𝑉 )𝐸. We know 𝐶𝑉 ∝ 𝑇𝛼 (actually 𝛼 = 3/2 as
you can easily guess from counting the number of excitable degrees of freedom; recall
Fig. 22.1 in the notes). 𝐶𝑉 = 𝐴𝑇𝛼 with a positive constant 𝐴. Therefore. (I am
cheating here to use footnote 8)

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

∝ 𝑇𝐶𝑉 − 𝐸 ∝ 𝐴

(︂
𝑇 1+𝛼 − 1

1 + 𝛼
𝑇 1+𝛼

)︂
= 𝐴

(︂
𝛼

1 + 𝛼
𝑇 1+𝛼

)︂
> 0. (22.72)

Thus, the sign for bosons is opposite to that for fermions.

(2) If we increase 𝑉 , the level spacings shrink. Under constant 𝑆 (adiabatic), you
may imagine that particles shift with the levels. This is possible only if you lower 𝑇 .
That is, for ideal quantum systems

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝑆

< 0. (22.73)

That is, (𝜕𝑇/𝜕𝑃 )𝑆 > 0, because363

𝜕𝑇

𝜕𝑃

⃒⃒⃒⃒
𝑆

=
𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝑆

𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑆

, (22.74)

but the second partial derivative is negative (sacred) due to the convexity of 𝐸
(𝜕2𝐸/𝜕𝑉 2)𝑆 > 0).

If you do not believe the logic leading to (22.73), calculate it:

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝑆

=
𝜕(𝑉, 𝑇 )

𝜕(𝑉, 𝑆)

𝜕(𝑇, 𝑆)

𝜕(𝑉, 𝑇 )
=

𝑇

𝐶𝑉

𝜕(𝑇, 𝑆)

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )
(22.75)

= − 𝑇

𝐶𝑉

𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

. (22.76)

Now, we use 𝐸 = 3𝑃𝑉/2:

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝑆

= − 2𝑇

3𝑉 𝐶𝑉

𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑉

= −2𝑇

3𝑉
< 0. (22.77)

363Improved by Jahan.
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Here, the signs are statistics-independent, BUT not sacred, because we have used
the equation of state.

We could directly compute what we want (our strategy is to get rid of 𝑆 as much
as possible):

𝜕𝑇

𝜕𝑃

⃒⃒⃒⃒
𝑆

=
𝜕(𝑇, 𝑆)

𝜕(𝑃, 𝑇 )

𝜕(𝑃, 𝑇 )

𝜕(𝑃, 𝑆)
=

𝑇

𝐶𝑃

𝜕(𝑇, 𝑆)

𝜕(𝑃, 𝑉 )

𝜕(𝑃, 𝑉 )

𝜕(𝑃, 𝑇 )
=

𝑇

𝐶𝑃

𝜕(𝑃, 𝑉 )

𝜕(𝑇, 𝑉 )

𝜕(𝑇, 𝑉 )

𝜕(𝑃, 𝑇 )
(22.78)

= − 𝑇

𝐶𝑃

𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

= − 𝑇

𝐶𝑃

𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

2

3𝑉

𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑉

= −2𝑇𝐶𝑉

3𝑉 𝐶𝑃

𝜕𝑉

𝜕𝑃

⃒⃒⃒⃒
𝑇

> 0.

(22.79)

(3) Let us compute (actually we just did this above)

𝜕𝑇

𝜕𝑃

⃒⃒⃒⃒
𝑉

=
𝜕𝑇

𝜕(2𝐸/3𝑉 )

⃒⃒⃒⃒
𝑉

=
3𝑉

2

𝜕𝑇

𝜕𝐸

⃒⃒⃒⃒
𝑉

=
3𝑉

2𝐶𝑉

> 0. (22.80)

Thus, for any ideal gas this is positive, so 𝑇 must increase.

D11.4 [Quasistatic adiabatic expansion]364

There is an ideal gas in a box with a piston. The whole system is thermally isolated.
We double the volume in a quasiequilibrium fashion. Let the initial pressure be 𝑃𝑖

and the initial temperature 𝑇𝑖.
Suppose the ideal gas consists of noninteracting fermions without any internal

excitations.
(1F) Obtain the final pressure 𝑃𝑓 in terms of the initial pressure 𝑃𝑖.
(2F) If 𝑇𝑖 = 0, what is the final temperature 𝑇𝑓?
(3F) Suppose 𝑇𝑖 > 0. What can you say about 𝑇𝑓?

Next, let us assume the ideal gas is a non-interacting bose gas.
(1B) Obtain the final pressure 𝑃𝑓 in terms of the initial pressure 𝑃𝑖.
(2B) If 𝑇𝑖 = 0, what is the final temperature 𝑇𝑓?
(3B) Find 𝑇𝑓 in terms of 𝑇𝑖.
(4B) Let 𝑁0𝑖 be the number of particles in the condensate initially. Is 𝑁0𝑓 , the final
number of particles in the condensate, larger or smaller than 𝑁0𝑖 or unchanged?

Solution.
(1F) Use thermodynamics as much as you can. This problem is adiabatic and
quasiequilibrium, so 𝑆 does not change. Therefore,

𝑑𝐸 = −𝑃𝑑𝑉. (22.81)

With the aid of 𝑃𝑉 = (2/3)𝐸 or 𝑃 = 2𝐸/3𝑉

𝑑𝐸 = −2

3

𝐸

𝑉
𝑑𝑉. (22.82)

364Discussed in a lecture, but let us record it here with more details.
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This implies 𝐸𝑉 2/3 = constant. That is, 𝑃𝑉 5/3 is constant.

𝑃𝑓 (2𝑉 )5/3 = 𝑃𝑖𝑉
5/3, (22.83)

or

𝑃𝑓 =
1

25/3
𝑃𝑖. (22.84)

This is statistics-independent.

(2F) 𝑇𝑓 = 0 is expected. Indeed, as we know at 𝑇 = 0,

𝐸 =

∫︁ 𝜇(0)

0

𝑑𝜀𝐷𝑡(𝜀)𝜀 =
3

4
𝜇(0)𝑁 ∝ 𝑁5/3𝑉 −2/3. (22.85)

but we already know that 𝐸𝑉 2/3 is constant. Thus, the 𝑇 = 0 relation is maintained.
The isothermal and adiabatic processes can coincide only at 𝑇 = 0. In our case

the system is adiabatic, so if 𝑇 > 0, then the temperature must change, but the
system is loosing energy by doing work, so 𝑇 cannot increase. Thus, 𝑇 cannot help
staying at 𝑇 = 0. This argument, which is indifferent to statistics, also answers (3F),
but we can do it more mechanically as follows.

(3F) We study (𝜕𝑇/𝜕𝐸)𝑆 or more directly (𝜕𝑇/𝜕𝑉 )𝑆. Since 𝑑𝐸 = −𝑃𝑑𝑉 under
constant 𝑆,

𝜕𝑇

𝜕𝐸

⃒⃒⃒⃒
𝑆

= − 1

𝑃

𝜕(𝑇, 𝑆)

𝜕(𝑉, 𝑆)
= − 1

𝑃

𝜕(𝑇, 𝑆)

𝜕(𝑃, 𝑉 )

𝜕(𝑃, 𝑉 )

𝜕(𝑉, 𝑆)
=

1

𝑃

𝜕𝑃

𝜕𝑆

⃒⃒⃒⃒
𝑉

. (22.86)

𝜕𝑃

𝜕𝑆

⃒⃒⃒⃒
𝑉

=
𝜕(𝑇, 𝑉 )

𝜕(𝑆, 𝑉 )

𝜕(𝑃, 𝑉 )

𝜕(𝑇, 𝑉 )
=

𝑇

𝐶𝑉

𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

. (22.87)

For a gas (noninteracting system) the rightmost derivative is positive (due to me-
chanics; recall D Bernoulli or see the computations we already did in 4). Therefore,
(𝜕𝑇/𝜕𝐸)𝑆 > 0 or (𝜕𝑇/𝜕𝑉 )𝑆 < 0. Since our system loses 𝐸 (increases 𝑉 ), 𝑇 must
decrease as we argued at the end of (2F).

(1B) We already know the answer does not depend on statistics.

(2B) The argument in (3F) is purely thermodynamic, so 𝑇𝑓 = 0 as well.

(3B) We know the system cools. In this case we can be quantitative. Since BCE
occurs, 𝜇 = 0, so

𝐸 =

∫︁ ∞

0

𝑑𝜀𝐷𝑡(𝜀)
𝜀

𝑒𝛽𝜀 − 1
∝ 𝑉 𝑇 5/2. (22.88)

We already know 𝐸𝑉 2/3 is constant independent of statistics (from the equation
of state and thermodynamics; statistics-independent). Therefore, 𝑉 5/3𝑇 5/2 is con-
served. That is, 𝑉 2/3𝑇 is constant. Therefore, 𝑇𝑓 = 2−2/3𝑇𝑖.

(4B) We can expect that there should not be any change, because it is an adiabatic
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quasistatic process, so on the average the occupation number of the particles in the
ground state should not change. If you realize this, no calculation is needed.

If you wish to check the conclusion with a concrete calculation, let us start with
𝑁0𝑖 = 𝑁 −𝑁1𝑖, where 𝑁1𝑖 = 𝑐𝑉 𝑇

3/2
𝑖 , but we already know 𝑉 2/3𝑇 is constant. There-

fore, 𝑁0 cannot change.

As you have seen, this problems is statistics indifferent, but you can exploit the
indifference only if you use the universal equation of state and thermodynamics.

D11.5 [Isothermal compression]
There is a cylinder with a piston. It contains 𝑁 identical particles and is maintained
at a constant temperature 𝑇 .
Fermion case
(F1) Suppose the system is maintained at 𝑇 = 0. The volume is halved reversibly.
The initial energy per particle is 𝑒𝑖. What is the final energy per particle 𝑒𝑓 in terms
of 𝑒𝑖?

(F2) What is the final and initial pressure ratio 𝑃𝑓/𝑃𝑖 at 𝑇 = 0?

Boson case
(B1) Suppose the condensate density is positive under the initial temperature. Is the
condensate density positive even after reversible isothermal compression 𝑉 → 𝑉/2?
(B2) What is the final and initial pressure ratio 𝑃𝑓/𝑃𝑖?

Solution.
(F1) We know (writing 𝑔𝐷𝑡(𝜀) = 𝛾𝑉 𝜀1/2, here 𝑔 is the degeneracy of the translational
kinetic energy level; for electrons 𝑔 = 2 due to the spin, but in this problem, you
may totally ignore it)

𝑁 =
2

3
𝑔𝐷𝑡(𝜇(0))𝜇(0) =

2

3
𝛾𝑉 𝜇(0)3/2, (22.89)

𝐸 =
2

5
𝑔𝐷𝑡(𝜇(0))𝜇(0)

2 =
2

5
𝛾𝑉 𝜇(0)5/2. (22.90)

Here, 𝛾 is a positive constant. Therefore, as we already know,

𝐸/𝑁 =
3

5
𝜇(0). (22.91)

Notice that 𝜇(0) ∝ 𝑉 −2/3 because 𝑁 is constant, so

𝑒𝑓
𝑒𝑖

=
𝜇𝑓 (0)

𝜇𝑖(0)
=

(𝑉/2)−2/3

𝑉 −2/3
= 22/3. (22.92)

(F2) We use the universal law 𝑃 ∝ 𝐸/𝑉 :

𝑃𝑓/𝑃𝑖 = 2(𝑒𝑓/𝑒𝑖) = 25/3, (22.93)
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where the prefactor 2 is the reciprocal of 𝑉𝑓/𝑉𝑖.

(B1) If the volume is decreased, then the energy gaps widen, so more particles should
fall into the ground state, or evaporation of the condensate becomes harder. That
is, 𝑁0 should increase.

To be more quantitative is also almost trivial, because 𝑁1 = 𝐴𝑉 𝑇 3/2 as already
know and 𝑇 is maintained, so 𝑁1 is halved.

(B2) Since 𝐸 ∝ 𝑉 𝑇 5/2,365 𝑃 = (2/3)(𝐸/𝑉 ) does not depend on the volume. That
is, there is no pressure change. The ratio is 1. You may think that the condensate
becomes a pressure buffer.

D11.6 [Constant energetic compression]
A box of volume 𝑉 with a piston is filled with 𝑁 indistinguishable ideal gas atoms at
temperature 𝑇𝑖. The final equilibrium state is obtained by halving the volume and
removing the heat to maintain the total energy constant. That is, the final state is
volume 𝑉/2 and internal energy 𝐸. Let 𝑇𝑓 be the final temperature.

Suppose 𝑁 particles are identical spinless bosons. Assume that the initial tem-
perature is sufficiently low so there is a Bose-Einstein condensate.
(B1) Obtain (or write down/copy) the equation to find the number 𝑁0 of atoms in
the condensate.
(B2) Is 𝑇𝑓 < 𝑇𝑖, 𝑇𝑓 = 𝑇𝑖 or 𝑇𝑓 > 𝑇𝑖?
(B3) Does the number of particles in the condensate increase or decrease?

Suppose 𝑁 particles are identical spin 1/2 fermions.
(F1) Find the final pressure 𝑃𝑓 .
(F2) Is there any positive lower bound for the initial temperature for this process to
be feasible?
(F3) Is 𝑇𝑓 < 𝑇𝑖, 𝑇𝑓 = 𝑇𝑖 or 𝑇𝑓 > 𝑇𝑖?

Solution.
(B1)

𝑁0 = 𝑁(1− (𝑇/𝑇𝑐)
3/2), (22.94)

where 𝑇𝑐 ∝ 𝑛2/3.
(B2) An intuitive guess may be: since the energy level spacings widen, if we keep
𝑇 , too many particles tumble down to be absorbed by the condensate. So you must
warm up the system to keep the total energy.

We know below 𝑇𝑐 𝐸 ∝ 𝑉 𝑇 5/2. Therefore,

𝑉 𝑇
5/2
𝑖 = (𝑉/2)𝑇

5/2
𝑓 . (22.95)

365Repeated comment: 5/2 comes from the total 𝜀 power in the formula for 𝐸: 𝑑𝜀× 𝜀1/2 × 𝜀.
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That is, 𝑇𝑓 = 22/5𝑇𝑖 or 𝑇𝑓 > 𝑇𝑖.
(B3) As discussed in (B2) the system must be warmed up to maintain 𝐸. However,
since the excited levels are pushed up by volume shrinking, if they have the same
number of particles, 𝐸 should go up. Therefore, the number of particles in the
condensate should increase.

We know 𝑇𝑐 ∝ 𝑛2/3, so 𝑇𝑐𝑓 = 𝑇𝑐𝑖2
2/3 and 𝑇𝑓 = 22/5𝑇𝑖, so

𝑇𝑓/𝑇𝑐𝑓 = 22/5−2/3𝑇𝑖/𝑇𝑐𝑖 = 2−4/15𝑇𝑖/𝑇𝑐𝑖 < 𝑇𝑖/𝑇𝑐𝑖. (22.96)

Therefore, the ratio in (22.94) decreases, so 𝑁0 increases.

(F1)
𝑃𝑖𝑉 = 2𝐸/3 = 𝑃𝑓 (𝑉/2), (22.97)

so 𝑃𝑓 = 2𝑃𝑖 = 4𝐸/3𝑉 .
(F2) At 𝑇 = 0 𝐸 ∝ 𝑛2/3, so 𝐸𝑓 increases with compression. There is no way to cool
the system, so isoenergetic compression is impossible at 𝑇 = 0 (This should be obvi-
ous from the spread of the energy level spacings by compression.) Thus, sufficiently
high temperature is needed.
(F3) We can derive from the Gibbs relation and a Maxwell’s relation 𝜕(𝑆, 𝑇 )/𝜕(𝑉, 𝑃 ) =
1

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

= 𝑇
𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

− 𝑃 = 𝑇
𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

− 𝑃. (22.98)

Introducing the equation of state into this, we have

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
2

3𝑉

[︂
𝑇
𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑉

− 𝐸
]︂
=

2

3𝑉
[𝑇𝐶𝑉 − 𝐸] . (22.99)

For an ideal Fermi gas for low temperatures 𝑇𝐶𝑉 ≪ 𝐸, so this is negative as already
discussed in footnote 8. Therefore, if 𝑇 is constant, and if 𝑉 is reduced, then 𝐸
increases. To maintain 𝐸 we must export heat. That is, the final temperature must
be cooler. 𝑇𝑖 > 𝑇𝑓 .

Important Warning: I emphasized the use of thermodynamics, and illustrated
how to use 𝐸 = 𝑇𝑆 − 𝑃𝑉 + 𝜇𝑁 in the notes. However, I never used this equation
when I change 𝑉 . If you do so the ground state energy changes! Therefore, you must
not use this equation. If you ignore this warning, what happens? The following
small lettered calculation is nonsense.

[NONSENSE CALCULATION] Since 𝐸 = 𝑆𝑇 − 𝑃𝑉 and 𝐸 = (3/2)𝑃𝑉 , we have 𝑆𝑇 =
(5/3)𝐸. Therefore,

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝐸

= − 1

𝐶𝑉

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

= − 3𝑇

5𝐶𝑉

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

= − 3𝑇

5𝐶𝑉

(𝑆, 𝑇 )

(𝑉, 𝑇 )
(22.100)

= − 3𝑇

5𝐶𝑉

(𝑆, 𝑇 )

(𝑉, 𝑃 )

(𝑉, 𝑃 )

(𝑉, 𝑇 )
= − 3𝑇

5𝐶𝑉

𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

(22.101)
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Now, we use 𝑃 = 2𝐸/3𝑉 :

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝐸

= − 2𝑇

5𝑉 𝐶𝑉

𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑉

= − 2𝑇

5𝑉
< 0. (22.102)

Thus, the result is opposite to the correct one.

D11.7 [Adiabatic sudden expansion]
There is an ideal gas in a thermally isolated box with a piston. We double the volume
suddenly by pulling the piston out very rapidly. Let the initial pressure be 𝑃𝑖 and
the initial temperature be 𝑇𝑖.

Suppose the ideal gas consists of noninteracting fermions without any internal
excitations.
(F1) Obtain the final pressure 𝑃𝑓 in terms of the initial pressure 𝑃𝑖.
(F2) 𝑇𝑖 < 𝑇𝑓 , 𝑇𝑖 = 𝑇𝑓 or 𝑇𝑖 > 𝑇𝑓?

Next, let us assume the ideal gas is a non-interacting bose gas.
(B1) Obtain the final pressure 𝑃𝑓 in terms of the initial pressure 𝑃𝑖.
(B2) Let us assume that the system is below the BEC temperature even after ex-
pansion. What is the final temperature 𝑇𝑓?
(B3) The initial temperature 𝑇𝑖 is below 𝑇𝑐. After expansion, the temperature 𝑇𝑓
was exactly at the critical temperature (after expansion 𝑇𝑐𝑓 ). What is the initial
temperature 𝑇𝑖 in terms of the 𝑇𝑐 (before expansion 𝑇𝑐𝑖).

Solution.
(F1) There is no exchange of heat nor work, so 𝐸 is constant. An important relation
we use is

𝑃𝑉 =
2

3
𝐸. (22.103)

Therefore, 𝑃𝑉 is constant:
𝑃𝑖𝑉 = 𝑃𝑓 (2𝑉 ). (22.104)

That is, 𝑃𝑓 = 𝑃𝑖/2. Notice that this is statistics-indifferent.
(F2) Expansion makes the energy levels denser than the initial case. Therefore, below
a given energy more particles can be accommodated after expansion. Therefore,
temperature increases: 𝑇𝑖 < 𝑇𝑓 . This is especially easy to see if 𝑇𝑖 = 0; you can
immediately say 𝑇𝑓 = 0 is impossible.

The conclusion cannot be obtained purely thermodynamically. Let us study

𝜕𝑇

𝜕𝑉

⃒⃒⃒⃒
𝐸

=
𝜕(𝑇,𝐸)

𝜕(𝑉, 𝑇 )

𝜕(𝑉, 𝑇 )

𝜕(𝑉,𝐸)
= − 1

𝐶𝑉

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

. (22.105)

We have, using 𝐸 = 3𝑃𝑉/2,

𝜕𝐸

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
3

2

[︂
𝜕𝑃

𝜕𝑉

⃒⃒⃒⃒
𝑇

𝑉 + 𝑃

]︂
. (22.106)
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We saw this many times now. Here let us proceed in a slightly different fashion. For
the classical ideal gas, as we know well, this is zero:

𝑉
𝜕𝑃

𝜕𝑉

⃒⃒⃒⃒
𝑇

= −𝑁𝑘𝐵𝑇
𝑉

= −𝑃. (22.107)

Compared with the classical gas, Fermi gas must be harder to compress. That is,
the derivative must be more negative. That is, (𝜕𝐸/𝜕𝑉 )𝑇 < 0, so (𝜕𝑇/𝜕𝑉 )𝐸 > 0.
Therefore if we expand the fermi gas under constant energy, the temperature must
increase.

(B1) This is the same as the Fermion case.

(B2) Below 𝑇𝑐, since 𝜇 = 0, we can compute 𝐸 as (recall that 𝐷𝑡(𝜀) ∝ 𝑉 𝜀1/2;
power counting suffices)

𝐸 =

∫︁ ∞

0

𝑑𝜀𝐷𝑡(𝜀)
𝜀

𝑒𝛽𝜀 − 1
∝ 𝑉 𝛽−1/2−2 ∝ 𝑉 𝑇 5/2. (22.108)

Therefore, conservation of 𝐸 means

𝑉 𝑇
5/2
𝑖 = (2𝑉 )𝑇

5/2
𝑓 (22.109)

or 𝑇𝑓 = 2−0.4𝑇𝑖 ≃ 0.758𝑇𝑖. That is, in the Boson case, the temperature decreases.
This could be guessed, since for classical ideal gases the temperature does not

change, fermions and bosons should be opposite.
(B3) (22.18) tells us that 𝑇𝑐 before expansion is

𝑇𝑐 = 𝐶𝑛2/3. (22.110)

Following (22.109) 2(𝑇𝑐𝑓 )
5/2 = 𝑇

5/2
𝑖 , where 𝑇𝑐𝑓 is the critical temperature after ex-

pansion. Therefore, if 𝑛 is the initial density

2−2/5𝑇𝑖 = 𝑇𝑐𝑓 = 𝐶(𝑛/2)2/3 = 𝑇𝑐𝑖2
−2/3. (22.111)

Therefore,
2−2/5+2/3𝑇𝑖 = 𝑇𝑐𝑖 ⇒ 𝑇𝑖 = 2−4/15𝑇𝑐𝑖. (22.112)
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Exercise11

E11.1 [Finite 𝑇 correction for fermion chemical potential in 𝐷-space].
(1) Assuming that the dispersion relation (the momentum-energy relation) is 𝜀 =
|𝑝|2/2𝑚, find the relation among 𝐸, 𝑃 and 𝑉 in 𝐷-dimensional space of an ideal gas
system. [Mimic the derivation of 𝑃𝑉 = (2/3)𝐸.]
(2) What is the ratio 𝐸/𝜇(0)𝑁 at 𝑇 = 0, if all the particles are identical fermions?
(3) For fermions we can conclude (under constant 𝑉 and 𝑁) that

𝐸 = 𝐸0 +
1

2
𝛼𝐷𝑁𝑇

2 + 𝑜[𝑇 2], (22.113)

where 𝛼𝐷 > 0 is a (𝐷-dependent) constant. Using this fact, compute the correction
to the Fermi energy 𝜇(𝑇 ) to oder 𝑇 2. [Fully use thermodynamics.]
(4) For bosons below 𝑇𝑐 (𝐷 ≥ 3), find the temperature dependence of the non-
condensate 𝑁1.

Solution.
(1) We need the one-particle state density 𝒟:∫︁ 𝜀

0

𝑑𝜀𝒟(𝜀) = 𝑉

ℎ𝐷

∫︁
|𝑝|≤

√
2𝑚𝜀

𝑑𝐷𝑝 ∝ 𝑉 𝜀𝐷/2 (22.114)

Therefore, we have 𝒟(𝜀) ∝ 𝑉 𝜀𝐷/2−1. From this, we see (I may write a full detail in
the final version) ∫︁ 𝜀

0

𝑑𝜀𝒟(𝜀) = 2

𝐷
𝜀𝒟(𝜀). (22.115)

Therefore, the same logic as in 3D gives

𝑃𝑉 =
2

𝐷
𝐸. (22.116)

(2) We know at 𝑇 = 0

𝐸 = −𝑃𝑉 + 𝜇(0)𝑁 ⇒ 𝐷 + 2

𝐷
𝐸 = 𝜇(0)𝑁. (22.117)

Thus, the ratio is 𝐷/(𝐷 + 2).
If you do not like thermodynamics, you can proceed as follows: since 𝒟(𝜀) =

𝐴𝜀𝐷/2−1 for some positive constant 𝐴,

𝑁 =

∫︁ 𝜇(0)

0

𝑑𝜀𝒟(𝜀) = 2

𝐷
𝐴𝜇(0)𝐷/2, (22.118)

and

𝐸 =

∫︁ 𝜇(0)

0

𝑑𝜀 𝜀𝒟(𝜀) = 2

𝐷 + 2
𝐴𝜇(0)𝐷/2+1. (22.119)
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Taking the ratio, we get the desired result.

(3) We get 𝐶𝑉 = 𝛼𝑁𝑇 from 𝐸. On the other hand, under constant 𝑉 and 𝑁

𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝑉,𝑁

=
𝐶𝑉

𝑇
= 𝛼𝑁, (22.120)

so the temperature dependence of 𝑆 under constant 𝑉 and 𝑁 is given by 𝑆 = 𝛼𝑁𝑇
(𝑆(0) = 0, following Planck). Therefore, a thermodynamic relation

𝐸 = 𝑇𝑆 − 𝑃𝑉 + 𝜇𝑁 ⇒ 𝐸 + 𝑃𝑉 =
𝐷 + 2

𝐷
𝐸 = 𝑇𝑆 + 𝜇(𝑇 )𝑁 (22.121)

tells us

𝐸(𝑇 ) = 𝐸(0) +
1

2
𝛼𝑁𝑇 2 + 𝑜[𝑇 2] =

𝐷

𝐷 + 2
𝑁𝜇(0) +

1

2
𝛼𝑁𝑇 2 + 𝑜[𝑇 2] (22.122)

and

𝐸(𝑇 ) =
𝐷

𝐷 + 2
(𝛼𝑁𝑇 2 + 𝑜[𝑇 2] + 𝜇(𝑇 )𝑁), (22.123)

or

𝜇(𝑇 ) = 𝜇(0) +
𝐷 + 2

2𝐷
𝛼𝑇 2 − 𝛼𝑇 2 + 𝑜[𝑇 2] = 𝜇(0) +

2−𝐷
2𝐷

𝛼𝑇 2 + 𝑜[𝑇 2]. (22.124)

Notice that the sign of the prefactor switches at 𝐷 = 2.

(4) 𝑁1 is determined by

𝑁1 =

∫︁ ∞

0

𝑑𝜀𝒟(𝜀) 1

𝑒𝛽𝜀 − 1
= 𝐴𝑉 𝑇𝐷/2, (22.125)

where 𝐴 is a positive constant (that depends on 𝐷). We also know

𝑁 =

∫︁ ∞

0

𝑑𝜀𝒟(𝜀) 1

𝑒𝛽𝜀 − 1
= 𝐴𝑉 𝑇𝐷/2

𝑐 . (22.126)

Therefore,

𝑁1 = 𝑁

(︂
𝑇

𝑇𝑐

)︂𝐷/2

. (22.127)

E11.2 [Adiabatic free expansion]
There is a cylinder with a piston. It contains 𝑁 identical particles and is thermally
isolated. The volume of the cylinder is suddenly expanded (by pulling the piston out
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a bit) by 10%.
We wish to know what happens after the system equilibrates. Let 𝑃𝑖 (𝑃𝑓 ) be the

initial (final) pressure and 𝑇𝑖 (𝑇𝑓 ) be the initial (final) temperature.
Fermion case
(F1) Find 𝑃𝑓/𝑃𝑖.
(F2) Which is larger, 𝑇𝑖 or 𝑇𝑓? Explain your answer qualitatively in plain terms.
Boson case
(B1) Find 𝑃𝑓/𝑃𝑖.
(B2) What happens, qualitatively, to the BEC (= Bose-Einstein condensation) tem-
perature 𝑇𝑐? Explain your answer in plain terms intuitively.
(B3) Suppose 𝑇𝑖 = 𝑇𝑐 for the initial system. Does the system maintain BEC after
expansion?

Solution.
(F1) We know 𝑃𝑉 ∝ 𝐸 and 𝐸 is maintained (no work done by the system), so
𝑃𝑓/𝑃𝑖 = 𝑉𝑖/𝑉𝑓 = 1/1.1 = 0.91.
(F2) Since the volume expands, the level spacings generally diminish, so the Fermi
level decreases. Therefore, more excited states must be occupied to maintain the
energy. Therefore, 𝑇𝑓 > 𝑇𝑖.
(B1) No change from the fermion case.
(B2) Again, the level spacings diminish, so it is easier for the condensate to evapo-
rate. Therefore, 𝑇𝑐 should go down.
(B3) Let us assume that BEC is maintained. Then, 𝑇𝑐 ∝ 𝑉 −2/3 and 𝑇𝑓 ∝ 𝑉 −2/5

since 𝐸 ∝ 𝑉 𝑇 5/2, so 𝑇𝑐 decreases more than 𝑇𝑓 , a contradiction. Therefore, BEC
disappears.

Intuitively, expansion means the decrease of level spacings. This means that the
condensate is easier to evaporate, so you need a lower temperature to maintain the
condensate. This is also clear from (22.126).

E11.3 [Thermodynamic questions for ideal quantum gases]
Consider a quantum ideal gas (fermion and boson cases separately, if different). No
hand-waving argument will be accepted. [Hint: Use 𝑃𝑉 = 2𝐸/3 in this problem.]
(1) The volume is increased under constant temperature. Does the entropy increase?
You must demonstrate your result without any hand-waving argument. Notice that
thermodynamics alone cannot answer this question.
(2) You wish to decrease the temperature while keeping the pressure. How do you
have to change the system volume?

Solution.
(1)

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝑇

=
𝜕(𝑆, 𝑇 )

𝜕(𝑉, 𝑇 )
=
𝜕(𝑆, 𝑇 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )
=
𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

=
2

3𝑉

𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑉

> 0. (22.128)
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In this case there is no difference due to statistics.
(2)

𝜕𝑉

𝜕𝑇

⃒⃒⃒⃒
𝑃

=
𝜕(𝑉, 𝑃 )

𝜕(𝑇, 𝑃 )
=
𝜕(𝑉, 𝑆)

𝜕(𝑇, 𝑃 )

𝜕(𝑉, 𝑇 )

𝜕(𝑉, 𝑆)

𝜕(𝑉, 𝑃 )

𝜕(𝑉, 𝑇 )
=

𝜕(𝑉, 𝑆)

𝜕(−𝑃, 𝑇 )
𝑇

𝐶𝑉

𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

(22.129)

The first Jacobian is positive definite due to stability. Since 𝑃 = 2𝐸/3𝑉 ,

𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
𝑉

=
2

3𝑉

𝜕𝐸

𝜕𝑇

⃒⃒⃒⃒
𝑉

=
2𝐶𝑉

3𝑉
> 0. (22.130)

Therefore, 𝑉 must be reduced. Again, there is no difference due to statistics.
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23 Photons, Phonons and Internal Motions

Summary
* The photon gas statistical thermodynamics is explained.
* We will guess low temperature behaviors of 𝐸, 𝑆, 𝜇 for free fermions.
* Analogy to 𝜇 = 0 grand canonical ensemble may be useful, but do no read it too
literally.

Key words
photon gas, Planck’s radiation formula, ultraviolet catastrophe, Stefan-Boltzmann
law, internal degrees of freedom, vibrational and rotational partition functions

What you should be able to do
* You must be able to derive Planck’s formula.
* You must clearly recognize the main features of Planck’s formula.
* You must be able to itemize internal degrees of freedom of a molecule and tell their
energy scales (in K).

23.1 Quantization of harmonic degrees of freedom
Photons and phonons are obtained through quantization of the systems that can be
described as a collection of harmonic oscillators.366 Possible energy levels for the 𝑖-th
mode whose angular frequency is 𝜔𝑖

367 are (𝑛+ 1/2)~𝜔𝑖, where 𝑛 = 0, 1, 2, · · ·. The
canonical partition function of a system with modes {𝜔𝑖} is given by

𝑍(𝛽) =
∏︁
𝑖

(︃
∞∑︁

𝑛𝑖=0

𝑒−𝛽(𝑛𝑖+1/2)~𝜔𝑖

)︃
, (23.1)

since no modes interact with each other. Here, the product is over all the modes. The
sum in the parentheses gives the canonical partition function for a single harmonic
oscillator, which we have already computed. The canonical partition function may

366That is, the system whose Hamiltonian is quadratic in canonical coordinates (quantum me-
chanically in the corresponding operators).

367A system with a quadratic Hamiltonian may be described in terms of canonical coordinates
(or corresponding operators) that makes the Hamiltonian diagonal. In other words, the system
may be described as a collection of independent harmonic oscillators. The motion corresponding
to each such harmonic oscillator is called a mode. If more than one modes have identical angular
frequencies, modes cannot be uniquely chosen, but this does not cause any problem to us because
partition functions need the system energies and their degeneracies only.
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be rewritten as:

𝑍(𝛽) =

[︃∏︁
𝑖

(︀
𝑒−𝛽~𝜔𝑖/2

)︀]︃∏︁
𝑖

(︃
∞∑︁

𝑛𝑖=0

𝑒−𝛽𝑛𝑖~𝜔𝑖

)︃
=

[︃∏︁
𝑖

(︀
𝑒−𝛽~𝜔𝑖/2

)︀]︃
Ξ(𝛽, 0). (23.2)

Here, we have used the formula

Ξ(𝛽, 0) =
∏︁
𝑖

(︃
∞∑︁
𝑛=0

𝑒−𝛽𝑛~𝜔𝑖

)︃
, (23.3)

which may be obtained from the definition of the grand partition function by setting
𝜀𝑖 = ~𝜔𝑖, and 𝜇 = 0. As long as we consider a single system, the total zero-point
energy of the system

∑︀
𝑖 ~𝜔𝑖/2 is constant and may be ignored by shifting the energy

origin.368

Therefore, the canonical partition function of the system consisting of harmonic
modes (or equivalently, consisting of photons or phonons) may be written as Ξ𝐵𝐸(𝛽, 0),
regarding each mode ~𝜔𝑖 as a single particle state energy. That is, it is written as the
bosonic grand partition function with a zero chemical potential. From this observa-
tion, you should immediately recognize that 𝑇 dependence of various thermodynamic
quantities can be computed easily (or dimensional analytic approaches allow us to
guess many 𝑇 -dependent behaviors).

23.2 Warning: grand partition function with 𝜇 = 0 is only a gimmick
See Important Remark in D12.6.

The thermodynamic potential for the system consisting of photons or phonons is
the Helmholtz free energy 𝐴 whose independent variables are 𝑇 and 𝑉 , because the
expected number ⟨𝑛𝑖⟩ of phonons (photons) of mode 𝑖 is determined, if the tempera-
ture 𝑇 and the volume 𝑉 are given. Notice that we do not have any more ‘handle’ like
𝜇 to modify the expectation value. Since 𝑑𝐴 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 , we have 𝐴 = −𝑃𝑉 .
That is, our observation log𝑍(𝛽) = log Ξ(𝛽, 0) holds as a thermodynamic relation
for a system that can be described by a collection of harmonic oscillators (as long
as we ignore the zero-point energy). Thus, we may conclude that systems consisting
of phonons or photons can be described consistently by the grand partition function
with a zero chemical potential. For example, the pressure of the photon or phonon
system can be computed immediately as we see below.

However, do not understand this relation to indicate that the chemical potentials

368Warning: However, if the system is deformed or chemical reactions occur, the system zero-
point energy can change, so we must go back to the original formula with the total zero-point energy
and take into account its contribution. For electromagnetic field, the change of the total zero-point
energy may be observed as force. This is the Casimir effect.
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of photons and phonons are indeed zero; actually they cannot be defined. The rela-
tion is only a mathematical formal relation that can be sometimes useful.369

23.3 Expectation number of photons
The 𝜇 = 0 boson analogy tells us that the average number of phonons of a harmonic
mode is given by

⟨𝑛⟩ = 1

e+𝛽~𝜔 − 1
. (23.4)

23.4 Internal energy of photon systems
The phonon contribution to the internal energy of a system may be computed just
as we did for the Debye model. We need the density of states (i.e, phonon spectrum,
i.e., the distribution of the frequencies of the modes) 𝐷ph(𝜔). The internal energy
of all the phonons is given by

𝐸 =
∑︁

modes

⟨𝑛(𝜔)⟩~𝜔 =

∫︁
𝑑𝜔𝐷ph(𝜔)

~𝜔
e+𝛽~𝜔 − 1

. (23.5)

This is the internal energy without the contribution of zero-point energy.
A standard way to obtain the density of states 𝐷ph(𝜔) is to study the wave

equation governing the electromagnetic waves, but here we use our usual shortcut.
The dispersion relation for photons is 𝜀 = 𝑐|𝑝| = ~𝜔, so∫︁ 𝜔

0

𝐷ph(𝜔
′)𝑑𝜔′ =

𝑉

ℎ3

∫︁
|𝑝|≤~𝜔/𝑐

𝑑3𝑝. (23.6)

Here, we do not include the factor 2 due to polarization states. Differentiating the
above equality, we obtain

𝐷ph(𝜔) =
4𝜋𝑉

ℎ3

(︂
~𝜔
𝑐

)︂2 ~
𝑐
=

𝑉 𝜔2

2𝜋2𝑐3
. (23.7)

Photons have two polarization directions,370 so the actual density of the modes is
this formula × 2.

369Intuitively speaking, chemical potential may be defined only for particles you can ‘pick up.’
More precisely speaking, if no (conserved) charge of some kind (say, electric charge, baryon number)
is associated with the particle, its chemical potential is a dubious concept.

370Photons are spin =1 particles, but are running always at a speed of light, so only the transversal
spin components can change. Thus, the number of the spin degrees of freedom is 2 instead of 3.
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23.5 Planck’s distribution, or radiation formula
The internal energy 𝑑𝐸𝜔 and the number 𝑑𝑁𝜔 of photons in [𝜔, 𝜔 + 𝑑𝜔) in a box of
volume 𝑉 are given by

𝑑𝐸𝜔 = 2𝐷ph(𝜔)
~𝜔

e+𝛽~𝜔 − 1
𝑑𝜔, (23.8)

𝑑𝑁𝜔 = 2𝐷ph(𝜔)
1

e𝛽~𝜔 − 1
𝑑𝜔. (23.9)

The factor 2 comes from the polarization states (i.e., 𝐷ph here is given by (23.7)).
Therefore, the energy density 𝑢(𝑇, 𝜔) at temperature 𝑇 due to the photons with

the angular frequencies around 𝜔 reads

𝑢(𝑇, 𝜔) =
𝜔2

𝜋2𝑐3
~𝜔

𝑒𝛽~𝜔 − 1
. (23.10)

This is Planck’s radiation formula.

Figure 23.1: Classical electrodynamics gives the Rayleigh-Jeans formula (23.12) (green); this
is the result of equipartition of energy and due to many UV modes, the density is not integrable
(the total energy diverges). Wien reached (23.13) empirically (red). Planck arrived at his formula
(black) originally by interpolation of these two results. Notice that the peak position is proportional
to the temperature.

It is important to know some qualitative features of this law (Fig. 23.1):
(i) Planck’s law can explain why the spectrum blue-shifts as temperature increases;
this was not possible within the classical theory.
(ii) The total energy density 𝑢(𝑇 ) = 𝐸/𝑉 of a radiation field at temperature 𝑇 is
finite. 𝑢(𝑇 ) is obtained by integration:

𝑢(𝑇 ) =

∫︁ ∞

0

𝑑𝜔 𝑢(𝑇, 𝜔). (23.11)

With Planck’s law (23.10) this is always finite (we will study this later).
(iii) In the classical limit ~→ 0, we get

𝑢(𝑇, 𝜔) =
𝑘𝐵𝑇𝜔

2

𝜋2𝑐3
(︀
= 2𝐷ph(𝜔)𝑘𝐵𝑇

)︀
, (23.12)
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which is the formula obtained by classical physics (i.e., the equipartition of energy).
Upon integration, the classical limit gives an infinite 𝑢(𝑇 ). This divergence is obvi-
ously due to the contribution from the high frequency modes. Thus this difficulty is
called the ultraviolet catastrophe, which destroyed classical physics.
(iv) In the high frequency limit ~𝜔 ≫ 𝑘𝐵𝑇 Planck’s law (23.10) goes to

𝑢(𝑇, 𝜔) ≃ 𝑘𝐵𝑇

𝜋2𝑐3
𝜔2e−𝛽~𝜔, (23.13)

which was empirically proposed by Wien.

23.6 Statistical thermodynamics of black-body radiation
Let us finish the statistical mechanics of back-body radiation.

𝑢(𝑇 ) =

∫︁ ∞

0

𝜔2

𝜋2𝑐3
~𝜔

𝑒𝛽~𝜔 − 1
𝑑𝜔 = 𝛽−4

∫︁ ∞

0

(𝛽𝜔)2

𝜋2𝑐3
~𝛽𝜔

𝑒𝛽~𝜔 − 1
𝑑(𝛽𝜔). (23.14)

This immediately implies (as seen above)

𝑢(𝑇 ) ∝ 𝑇 4. (23.15)

which is called the Stefan-Boltzmann law.371

Since we know the 𝑇 3-law of the phonon low temperature specific heat (the Debye
theory), this should be expected. This is understandable by counting the number
of degrees of freedom (Fig. 22.1) explained before. Although we did not calculate
the proportionality constant, if you follow the above calculation you can get it. This
proportionality was obtained purely thermodynamically by Boltzmann before the
advent of quantum mechanics. The proportionality constant contains ~, so it was
impossible to theoretically obtain the proportionality constant before Planck (Stefan
experimentally obtained it).

23.7 Black-body equation of state
Photons may be treated as ideal bosons with 𝜇 = 0,372 so the equation of state is
immediately obtained as

𝑃𝑉

𝑘𝐵𝑇
= log Ξ = −

∫︁
𝑑𝜀𝐷(𝜀) log(1− e−𝛽𝜀). (23.16)

For 3D superrelativistic particles, 𝐷(𝜀) ∝ 𝜀2, so∫︁ 𝜀

0

𝑑𝜀𝐷(𝜀) =
1

3
𝜀𝐷(𝜀). (23.17)

371The proportionality constant can be computed as 𝑘4𝐵𝜋
2/15~3𝑐3.

372If 𝜇 = 0, then 𝐴 = −𝑃𝑉 = −𝑘𝐵𝑇 log𝑍.
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This gives us (review what we did to derive 𝑃𝑉 = 2𝐸/3 for ordinary particles in
21.15)

𝑃𝑉 =
1

3
𝐸. (23.18)

23.8 Thermodynamic derivation of black-body equation of state
Just as 𝑃𝑉 = 2𝐸/3 is a result of pure mechanics, (23.18) is a result of pure electro-
dynamics, so this was known before quantum mechanics. Boltzmann started with
(23.18) to obtain the Stefan-Boltzmann law as follows.

Since we know generally

𝐸 = 𝑇𝑆 − 𝑃𝑉 = 𝑇𝑆 − 1

3
𝐸, (23.19)

𝑆𝑇 =
4

3
𝐸 or 𝑆 =

4

3

𝐸

𝑇
. (23.20)

Differentiating 𝑆 wrt 𝐸 under constant 𝑉 , noting (𝜕𝑆/𝜕𝐸)𝑉 = 1/𝑇 , we obtain

1

𝑇
= − 4

3𝑇 2

𝜕𝑇

𝜕𝐸

⃒⃒⃒⃒
𝑉

𝐸 +
4

3𝑇
(23.21)

or
1

3𝑇
=

4

3𝑇 2

𝜕𝑇

𝜕𝐸

⃒⃒⃒⃒
𝑉

𝐸, (23.22)

that is, under constant 𝑉
𝑑𝐸

𝐸
= 4

𝑑𝑇

𝑇
. (23.23)

This implies the Stefan-Boltzmann law 𝐸 ∝ 𝑇 4. The proportionality coefficient con-
tains ~, so Boltzmann could not get it; Stefan experimentally determined the value.

23.9 Blackbody - low temperature phonon system analogy
For a phonon system of a lattice 16.10, we have a high-frequency cutoff in the energy
spectrum, but its effect is almost negligible in the low temperature limit. Except for
the number of modes, you must clearly recognize a direct relation between the pho-
tons in the vacuum and phonons in the crystal. Debye’s 𝑇 3 law 16.12 is ‘almost the
same’ as the Stefan-Boltzmann law.

23.10 Internal degrees of freedom of classical ideal gas
If noninteracting particles are sufficiently dilute (𝜇≪ 0), we know classical ideal gas
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approximation is OK. However, the internal degrees of freedom may not be handled
classically, because energy gaps may be huge. We have already glimpsed this when
we discussed the gas specific heat.

Let us itemize internal degrees of freedom of a molecule:
i) Each atom has a nucleus, and its ground state could have nonzero nuclear spin.
This interacts with electronic angular momentum to produce the ultrafine structure.
The splitting due to this effect is very small, so for the temperature range relevant to
the gas phase we may assume all the levels are energetically equal. Thus, (usually)
we can simply assume that the partition function is multiplied by a constant 𝑔 =
degeneracy of the nuclear ground state.373

ii) Electronic degrees of freedom has a large excitation energy (of order of ionization
potential ∼a few eV, so unless the ground state of the orbital electrons is degener-
ate), we may ignore it.374

iii) If a molecule contains more than one atom, it can exhibit rotational motion. The
quantum of rotational energy (Θ𝑅 below) is usually of order 10 K.375

iv) Also such a molecule can vibrate. The vibrational quantum (Θ𝑉 below) is of
order 1000 K.376

23.11 Rotation and vibration
Notice that there is a wide temperature range, including the room temperature,
where we can ignore vibrational excitations and can treat rotation classically (Fig.
23.2). Thus, equipartition of energy applied to translational and rotational degrees
of freedom can explain the specific heat of many gases.

The Hamiltonian for the internal degrees of freedom for a diatomic molecule reads

𝐻 =
1

2𝐼
𝐽2 + ~𝜔

(︂
𝑛̂+

1

2

)︂
, (23.24)

where 𝐼 is the moment of inertia, 𝐽 the total angular momentum and 𝑛̂ is the
phonon number operator. Therefore, the partition function for the internal degrees

373In the case of homonuclear diatomic molecules, nuclear spins could interfere with rotational
degrees of freedom through quantum statistics, but otherwise we can simply assume as is stated in
the text.

374If the ground state is degenerate, then it could have a fine structure with an energy splitting
of order a few hundred K. For ground state oxygen (3𝑃2) the splitting energy is about 200 K, so
we cannot simply assume that all the states are equally probable nor that only the ground slate is
relevant.

375However, for H2 it is 85.4 K. For other molecules, the rotational quantum is rather small: N2:
2.9 K; HCl: 15.1 K.

376N2 3340 K; O2: 2260 K; H2: 6100 K.
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Figure 23.2: The constant volume specific heat.

of freedom reads 𝑧𝑖 = 𝑧𝑟𝑧𝑣:

𝑧𝑟 =
∞∑︁
𝐽=0

(2𝐽 + 1)𝑒−(Θ𝑅/𝑇 )𝐽(𝐽+1), (23.25)

with Θ𝑅 = ~2/2𝑘𝐵𝐼 and

𝑧𝑣 =
∞∑︁
𝑛=0

𝑒−(Θ𝑉 /𝑇 )(𝑛+1/2). (23.26)

with Θ𝑉 = ~𝜔/𝑘𝐵.

23.12 Low and hight temperature limit of rotational contribution
If the temperature is sufficiently low, then

𝑧𝑟 ≃ 1 + 3𝑒−2Θ𝑅/𝑇 . (23.27)

The contribution of rotation to specific heat is

𝐶rot ≃ 3𝑁𝑘𝐵

(︂
Θ𝑅

𝑇

)︂2

𝑒−2Θ𝑅/𝑇 . (23.28)

For 𝑇 ≫ Θ𝑅, we may approximate the summation by integration (Large 𝐽s con-
tribute, so we may approximate 𝐽 ≃ 𝐽 + 1):

𝑧𝑟 ≃ 2

∫︁ ∞

0

𝑑𝐽𝐽𝑒−𝐽2(Θ𝑅/𝑇 ) =
𝑇

Θ𝑅

. (23.29)

This gives the rotational specific heat, but it is more easily obtained by the equipar-
tition of energy, because the rotational energy is with a quadratic form. Thus,
𝐶𝑟𝑜𝑡 = 𝑘𝐵 in the high temperature limit.
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23.13 Low and high temperature limit of vibrational contribution
The vibrational partition function can be summed as

𝑧𝑣 = 1/2 sinh(𝛽~𝜔/2). (23.30)

For small 𝑇
𝑧𝑣 ≃ (1 + 𝑒−𝛽~𝜔)𝑒𝛽~𝜔/2 (23.31)

is enough. Consequently,

𝐶vib ∼ 𝑘𝐵𝑁

(︂
Θ𝑉

𝑇

)︂2

𝑒−Θ𝑅/𝑇 . (23.32)

Since Θ𝑅 ≪ Θ𝑉 , as already noted, there is a wide range of temperature where only
rotation contributes to the specific heat.
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Discussion 12

Various quantum effect will be discussed, but mainly about internal degrees of free-
dom.

D12.1 [Internal degrees of freedom of heavy hydrogen]
The potential energy function describing the chemical bond in a heavy hydrogen D2

may be approximately described by

𝜑(𝑟) = 𝜀
[︀
𝑒−2(𝑟−𝑑)/𝑎 − 2𝑒−(𝑟−𝑑)/𝑎

]︀
, (23.33)

where 𝜀 = 7× 10−19 J, 𝑑 = 8× 10−11 m and 𝑎 = 5× 10−11 m. Deuterium mass 𝑀 is
1.66× 10−27 kg.
(1) Evaluate the smallest energy required to excite the rotational motion, and esti-
mate the temperature 𝑇𝑟 for which the rotation contribution becomes significant.
(2) Evaluate the smallest energy required to excite the vibrational motion, and esti-
mate the temperature 𝑇𝑣 for which the vibration contribution becomes significant.

Solution.
(1) The moment of inertia is

𝐼 =
1

2
𝑀𝑑2 = (1/2)× (1.66× 10−27)× (8× 10−11)2 = 5.31× 10−48 kg·m2, (23.34)

so the rotational energy levels are given by

𝜀𝐽 =
~2

2𝐼
𝐽(𝐽 + 1). (23.35)

Thus, the representative temperature for rotational excitation is

Θ𝑟 =
~2

2𝑘𝐵𝐼
=

(1.055× 10−34)2

2× (1.38× 10−23)× (5.31× 10−48)
(23.36)

=
1.113× 10−68

1.466× 10−70
≃ 76 K. (23.37)

(2) The minimum point of the potential 𝜑(𝑟) is 𝑟 = 𝑑 with 𝜑(𝑑) = −𝜀. Since

𝑒−2𝑥 − 2𝑒−𝑥 = 1− 2𝑥+ 2𝑥2 + · · · − 2(1− 𝑥+ 𝑥2/2 + · · ·) = −1 + 𝑥2 + · · · , (23.38)

𝜑(𝑟) = −𝜀+ 𝜀

𝑎2
(𝑟 − 𝑑)2 + · · · . (23.39)

The vibrational equation of motion is (here 𝑀/2 is the reduced mass)

𝑀

2
𝑥̈ = −2 𝜀

𝑎2
𝑥+ · · · . (23.40)
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Therefore,

𝜔 =

√︂
4𝜀

𝑀𝑎2
=

2

𝑎

√︂
𝜀

𝑀
=

2

5× 10−11

√︂
7× 10−19

1.66× 10−27
= 8.21× 1014 rad/s. (23.41)

The vibrational quantum is

Θ𝑣 =
~𝜔
𝑘𝐵

=
1.055× 10−34 × 8.21× 1014

1.38× 10−23
= 6276 K. (23.42)

Therefore, around 6000 K the vibration becomes significant.

D12.2 [Specific heat of various hydrogen gases]
Consider a 1 mole of ideal gas at 10 K consisting of pure HD, pure HT or pure DT (H:
hydrogen, D: deuterium, T: tritium; you should know their masses). Whose specific
heat 𝐶𝑉 is the largest? Give your answer without detailed computation. You may
assume that the length of the chemical bonds are all the same. You may take the
fact into account that the rotational contribution reaches its peak beyond 40 K.

Solution.
We may totally ignore the contribution of oscillations. There is no difference in the
contribution of translational motions. These are all heteronuclear molecules, so we
need not worry about spin-rotation coupling.377 Therefore, we have only to pay at-
tention to the rotational contributions. The molecules with the largest moment of
inertia is the easiest to excite, so their rotational specific heat is the largest (notice
that the 10K is still away from the peak of the rotational specific heat). Therefore,
around 10 K the specific heat of DT must be the largest among the three. This is
indeed the case.

D12.3 [Black body box expansion]
A cavity of volume 𝑉 is filled with electromagnetic wave in equilibrium with tem-
perature 𝑇𝑖 initially. If the volume is doubled adiabatically and quasistatically, what
is the final temperature 𝑇𝑓?

Solution.
(1) Since 𝑆 is constant and since 𝑃𝑉 = 𝐸/3, we get

𝑑𝐸 = −𝑃𝑑𝑉 = − 𝐸

3𝑉
𝑑𝑉. (23.43)

Therefore, 𝐸𝑉 1/3 is constant, or 𝑃𝑉 4/3 is constant.
On the other hand, Planck’s law tells us 𝐸 ∝ 𝑉 𝑇 4; if you wish to proceed from

377which we do not discuss in this course.
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scratch, we get the one particle density 𝐷 ∝ 𝑉 𝑝2𝑑𝑝/𝑑𝜔 ∝ 𝑝2 ∝ 𝜔2 (cf. 𝑝 = ~𝜔/𝑐), so
‘power counting’ is enough to conclude

𝐸 =

∫︁
𝑑𝜔𝐷(𝑤)

𝜔

𝑒𝛽~𝜔 − 1
∝ 𝑉 𝑇 4. (23.44)

Thus, 𝑃 ∝ 𝑇 4. This with 𝑃𝑉 4/3 implies that 𝑇 4𝑉 4/3 or 𝑉 𝑇 3 is constant. Therefore,
𝑇𝑓 = 𝑇𝑖/2

1/3.

D12.4 [Quantum gas with internal degrees of freedom]
Let us consider a quantum gas consisting of 𝑁 particles. Individual particles have
internal states consisting of two levels: the ground state and the non-degenerate ex-
cited state with energy 𝜀 (> 0).
(1) Suppose the particles are fermions. How does the Fermi energy 𝜇𝐹 (i.e., the
chemical potential at 𝑇 = 0) change as 𝜀 is increased?
(2) Suppose the particles are bosons. How does the Bose-Einstein critical tempera-
ture 𝑇𝑐 depends on 𝜀 qualitatively?

For both cases, you must state your supporting logic clearly.

Solution.
(1) The Fermi energy 𝜇𝐹 is determined by

𝑁 =

∫︁ 𝜇𝐹

0

𝑑𝐸𝒟(𝐸). (23.45)

Here, 𝐷 is the one-particle energy level density including the internal energy. If 𝜀 is
increased, then the total occupation number of the one-particle states with internal
excitation decreases. The ‘spilt particles’ from the states with the internal excitation
must be accommodate by the states without internal excitations. Therefore, 𝜇𝐹 is
an increasing function of 𝜀.

(2) Consider the total number of the particles in the non-condensate (note that
𝜇 = 0):

𝑁1 =

∫︁ ∞

0

𝑑𝐸𝒟(𝐸) 1

𝑒𝛽𝐸 − 1
. (23.46)

If 𝜀 is increased, 𝑁1 decreases, so this favors the formation of condensate. That is,
𝑇𝑐 increases with 𝜀. Or, you can say that increasing 𝜀 makes particles to evaporate
from the condensate into internally excited non-condensate becomes harder, so 𝑇𝑐
goes up.

D12.5 [The classical-quantum specific heat difference of insulating solid]
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Let 𝐶𝑉 (𝑇 ) be the true quantum-mechanical specific heat of a non-conducting solid
that obeys asymptotically the 𝑇 3-law at low temperatures. We know 𝐶𝑉 (∞) is ob-
tained by the equipartition of energy for harmonic oscillators (i.e., the Dulong-Petit
law).

Let Δ𝐶𝑉 = 𝐶𝑉 (∞)− 𝐶𝑉 (𝑇 ). Then, we happen to obtain∫︁ ∞

0

𝑑𝑇 Δ𝐶𝑉 (𝑇 ) = the zero-point energy of the solid. (23.47)

This is just the area of A in Fig. 23.3.

copper data

A

Figure 23.3: The area of the pale red region A agrees with the total zero-point energy of
copper. [Figure from Kubo’s workbook; however, the demonstration in the book is physically and
mathematically wrong.]

Let us demonstrate this result.
Let 𝐷(𝜔) be the true (not the Debye approximate version) mode density (i.e., the

actual single phonon energy level density or the phonon spectrum).
(1) Find the total phonon (i.e., oscillation) internal energy of the solid 𝐸(𝑇 ) in terms
of 𝐷(𝜔).
(2) Find its classical approximation 𝐸𝐶(𝑇 ).
(3) By differentiating 𝐸𝐶(𝑇 ) − 𝐸(𝑇 ) with respect to 𝑇 , we can get Δ𝐶. Then
calculate the integral in (23.47) to demonstrate the desired equality.

Solution.
(1) This is just we did for the Debye model (but without his approximation):

𝐸(𝑇 ) =

∫︁
𝑑𝜔𝐷(𝜔)

[︂
~𝜔
2

+
~𝜔

𝑒𝛽~𝜔 − 1

]︂
. (23.48)

(2) This is the classical limit: for sufficiently large 𝑇

𝐸𝐶(𝑇 ) =

∫︁
𝑑𝜔𝐷(𝜔)𝑘𝐵𝑇. (23.49)
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(3)

Δ𝐶 =
𝑑

𝑑𝑇

∫︁
𝑑𝜔𝐷(𝜔)

[︂
𝑘𝐵𝑇 −

~𝜔
2
− ~𝜔
𝑒𝛽~𝜔 − 1

]︂
(23.50)

=

∫︁
𝑑𝜔𝐷(𝜔)

𝑑

𝑑𝑇

[︂
𝑘𝐵𝑇 −

~𝜔
2
− ~𝜔
𝑒𝛽~𝜔 − 1

]︂
(23.51)

=

∫︁
𝑑𝜔𝐷(𝜔)

𝑑

𝑑𝑇

[︂
𝑘𝐵𝑇 −

~𝜔
𝑒𝛽~𝜔 − 1

]︂
. (23.52)

The exchange of differentiation and integration is legitimate.378 Now,∫︁ ∞

0

𝑑𝑇 Δ𝐶(𝑇 ) =

∫︁
𝑑𝜔𝐷(𝜔)

∫︁ ∞

0

𝑑𝑇
𝑑

𝑑𝑇

[︂
𝑘𝐵𝑇 −

~𝜔
𝑒𝛽~𝜔 − 1

]︂
(23.53)

=

∫︁
𝑑𝜔𝐷(𝜔)

[︂
𝑘𝐵𝑇 −

~𝜔
𝑒𝛽~𝜔 − 1

]︂∞
𝑇=0

. (23.54)

There is no contribution from the 𝑇 = 0 end. Setting 𝑥 = ~𝜔/𝑘𝐵𝑇 , we have

lim
𝑇→∞

[︂
𝑘𝐵𝑇 −

~𝜔
𝑒𝛽~𝜔 − 1

]︂
= ~𝜔 lim

𝑥→0

[︂
1

𝑥
− 1

𝑒𝑥 − 1

]︂
= ~𝜔 lim

𝑥→0

𝑒𝑥 − 1− 𝑥
𝑥(𝑒𝑥 − 1)

(23.55)

= ~𝜔 lim
𝑥→0

𝑥2/2 + 𝑥3/6 + · · ·
𝑥2 + 𝑥3/2 + · · ·

=
~𝜔
2
, (23.56)

which happens to be the zero-point energy of the mode with 𝜔. Thus, we have
arrived at the desired result:∫︁ ∞

0

𝑑𝑇 [𝐶classical − 𝐶(𝑇 )] =
∫︁
𝑑𝜔𝐷(𝜔)

~𝜔
2
. (23.57)

Does this have a deep meaning? I am very sceptical.

D12.6 [Electron-positron-photon equilibrium]
Assume the whole system is charge neutral. Electrons ‘𝑒’ and positrons ‘𝑝’ are
in equilibrium with the photon field (electromagnetic field) through the pair cre-
ation/annihilation:

𝑒+ 𝑝↔ 𝛾. (23.58)

Let us assume the temperature 𝑇 is much higher than the rest mass of the electron
(i.e., 𝑘𝐵𝑇 ≫ 𝑚𝑐2), so there is an equilibrium between the electromagnetic field (i.e.,

378The exchange of integrals in the following line is also legitimate. Every physicist must learn
Lebesgue integration theory to be reasonable.
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black-body radiation) and the positron/electron plasma.
(1) Show that the chemical potential 𝜇𝑒 of electrons and that 𝜇𝑝 of positrons are
identical and zero 𝜇𝑒 = 𝜇𝑝 = 0. Do not forget that the chemical potential of photons
is not definable. You may ignore the interactions among particles except for pair
creation/annihilation.
(2) Let us consider a finite domain of volume 𝑉 in the system filled with the high
temperature radiation field. Assuming particles are super relativistic, find the num-
bers of electrons (𝑁𝑒) and positrons (𝑁𝑝) [You need not perform the integrals, but
pay attention to the degeneracy due to spins].

Solution.
(1) Let us minimize the Helmholtz free energy of the whole system under the con-
dition that 𝑁𝑒 = 𝑁𝑝, since 𝑇 is uniform.379 We use the Helmholtz free energy for
photons 𝐴ℎ𝜈 , that for electrons 𝐴𝑒 and that for positrons 𝐴𝑝:

𝐴 = 𝐴ℎ𝜈(𝑇 ) + 𝐴𝑒(𝑇,𝑁𝑒) + 𝐴𝑝(𝑇,𝑁𝑝). (23.59)

Let us minimize 𝐴 + 𝜆(𝑁𝑒 − 𝑁𝑝), where 𝜆 is Lagrange’s multiplier to impose the
charge neutrality. We get

𝜕𝐴𝑒

𝜕𝑁𝑒

⃒⃒⃒⃒
𝑇

+ 𝜆 = 𝜇𝑒 + 𝜆 = 0, (23.60)

𝜕𝐴𝑝

𝜕𝑁𝑝

⃒⃒⃒⃒
𝑇

− 𝜆 = 𝜇𝑝 − 𝜆 = 0. (23.61)

Therefore, we have
𝜇𝑒 + 𝜇𝑝 = 0. (23.62)

This is due to the electrical charge conservation.
Since 𝑁𝑒 = 𝑁𝑝, 𝜇𝑒 = 𝜇𝑝. Therefore, 𝜇𝑒 = 𝜇𝑝 = 0.

Important Remark.
The ‘standard’ textbooks including Landau-Lifshitz claim that photons indeed have
zero chemical potential, because the number 𝑁 of phonons is determined when 𝑇 is
fixed by an equilibrium condition:

𝜕𝐴

𝜕𝑁

⃒⃒⃒⃒
𝑇

= 0. (23.63)

Therefore, the chemical equilibrium means 𝜇𝑒+𝜇𝑝 = 0, because the sum of chemical
potentials of the reactants and products are identical. As you see below this argument
is totally wrong.

379Following Akira Shimizu (U Tokyo), who emphasizes (as quoted in the lecture notes and in
my lectures) that chemical potential is coupled (basically) to conserved quantities.
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You might think the situation is just like the following logic introducing 𝑇 to a
microcanonical calculation:

𝜕𝑆

𝜕𝐸

⃒⃒⃒⃒
𝑉

=
1

𝑇
. (23.64)

(23.63) just looks like this argument to introduce a new thermodynamic variable 𝜇.
However, there is a fundamental difference: 𝐸 in (23.64) is one of the thermodynamic
coordinates, and you can change it independently with 𝑉 .

In contrast, for photons 𝐸 and 𝑁 are not independent variables, so the following
derivative is meaningless:

𝜕𝑆

𝜕𝑁

⃒⃒⃒⃒
𝐸

= −𝜇
𝑇
. (23.65)

Just as illegitimate as this, in (23.63), you cannot change 𝑁 while keeping 𝑇 , since
they are not independent variables.

Therefore, 𝜇 is not defined for photons in the ‘standard way’ (under true equilib-
rium conditions). 2

(2) Since the particles are superrelativistic, the dispersion relation is 𝜀 = 𝑐|𝑝|. There-
fore, the density 𝐷 of one-particle (translational) states may be obtained as∫︁ 𝜀

0

𝑑𝜀𝐷(𝜀) =
4𝜋𝑉

ℎ3

∫︁ 𝜀/𝑐

0

𝑝2𝑑𝑝 =
4𝜋𝑉

3ℎ3𝑐3
𝜀3, (23.66)

or

𝐷(𝜀) =
4𝜋𝑉

ℎ3𝑐3
𝜀2. (23.67)

Therefore, taking the spin degrees of freedom into account by multiplying the degen-
eracy factor 2, we get

𝑁𝑒 = 2× 4𝜋𝑉

ℎ3𝑐3

∫︁ ∞

0

𝑑𝜀
𝜀2

𝑒𝛽𝜀 + 1
= 𝑁𝑝. (23.68)

Its temperature dependence is ∝ 𝑇 3 (use power counting).

D12.7 [Effective interaction due to statistics]380

Fig. 21.6 illustrates how we can intuitively understand the effective interactions be-
tween particles: compared with classical particles, between bosons there is an effec-
tive attraction, and between fermions there is an effective repulsion. Let us make this
understanding slightly quantitative. Here, we proceed step by small step, reviewing
elementary quantum mechanics.

380Without elementary QM, this may be a bit too hard to understand, but the result Fig. 23.4 is
intuitively appealing.
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We wish to consider a two-particle system in terms of canonical ensemble theory.
The system Hamiltonian reads

𝐻 =
𝑝2
1

2𝑚
+

𝑝2
2

2𝑚
, (23.69)

and the canonical partition function is

𝑍 = Tr 𝑒−𝛽𝐻 , (23.70)

where the trace is with respect to the microstates specified by two momenta |𝑝,𝑝′⟩.
To compute this trace semi-classically, we introduce a single-particle momentum
state |𝑝⟩.
(1) Express |𝑝,𝑝′⟩ both for the boson and fermion cases in terms of single particle
kets |𝑝⟩. You may regard two momenta are distinct, but the obtained states must be
properly normalized. Recall that boson wave functions are totally symmetric with
respect to the permutation of particle numberings; fermion wave functions are totally
antisymmetric
(2) Assuming that the space is unbounded (for simplicity), find the position repre-
sentation ⟨𝑟|𝑝⟩ (i.e., the wave function) of the momentum ket |𝑝⟩ (use the 𝛿-function
normalization).
(3) Let 𝑟𝑖 be the position vector of the 𝑖-th particle. Find the position representation
of |𝑝,𝑝′⟩. [This is of course virtually the same question as (1).]

For an 𝑁 -particle system in the semi-classical limit, the calculation of trace in 𝑍
may be performed as follows:

Tr → 1

𝑁 !

∫︁
R3𝑁

𝑑{𝑟𝑘}
𝑁∏︁
𝑘=1

⟨𝑟𝑘| · · ·
𝑁∏︁
𝑘=1

|𝑟𝑘⟩ (23.71)

=
1

𝑁 !

∫︁
R3𝑁

𝑑{𝑟𝑘}
𝑁∏︁
𝑘=1

⟨𝑟𝑘|
[︂(︂∫︁

R3𝑁

𝑑{𝑝𝑘}|{𝑝𝑖}⟩⟨{𝑝𝑖}|
)︂
· · ·
(︂∫︁

R3𝑁

𝑑{𝑝𝑘}|{𝑝𝑖}⟩⟨{𝑝𝑖}|
)︂]︂ 𝑁∏︁

𝑘=1

|𝑟𝑘⟩.

(23.72)

(4) Write 𝑍 down using ℎ−3/2𝑒𝑖𝑟·𝑝/~ = ⟨𝑟𝑖|𝑝⟩.
(5) The outcome of (4) must have the following form:

1

2ℎ6

∫︁
𝑑𝑟1𝑑𝑟2𝑑𝑝𝑑𝑝

′𝑒−𝛽(𝑝2+𝑝′2)/2𝑚[· · ·]. (23.73)

Perform the integrations with respect to 𝑝 and 𝑝′ in this expression and find 𝐹 (𝑟1, 𝑟2)
in the following formula:

𝑍 =
1

2ℎ6

∫︁
𝑑𝑟1𝑑𝑟2𝑑𝑝𝑑𝑝

′ 𝑒−𝛽(𝑝2+𝑝′2)/2𝑚𝐹 (𝑟1, 𝑟2). (23.74)
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(6) 𝐹 may be interpreted as the Boltzmann factor coming from the effective inter-
action originating from particle statistics. Sketch the potential (×𝛽) of this effective
interaction for bosons and fermions.

Solution
(1) The ket |𝑝⟩|𝑝′⟩ must be correctly symmetrized; + is for bosons and − for
fermions:

|𝑝,𝑝′⟩ = 1√
2
(|𝑝⟩|𝑝′⟩ ± |𝑝′⟩|𝑝⟩). (23.75)

(2) |𝑝⟩ describes a plane wave of wave vector 𝑘 = 𝑝/~:

⟨𝑟|𝑝⟩ ∝ 𝑒𝑖𝑝·𝑟/~. (23.76)

The normalization condition is

𝛿(𝑝− 𝑝′) =
1

ℎ3

∫︁
R3

𝑑3𝑟 ⟨𝑝′|𝑟⟩⟨𝑟|𝑝⟩. (23.77)

Therefore,

⟨𝑟|𝑝⟩ = 1

ℎ3/2
𝑒𝑖𝑝·𝑟/~. (23.78)

(3)

(⟨𝑟1|⟨𝑟2|)|𝑝,𝑝′⟩ = 1√
2
(⟨𝑟1|𝑝⟩⟨𝑟2|𝑝′⟩ ± ⟨𝑟1|𝑝′⟩⟨𝑟2|𝑝⟩). (23.79)

(4) Using the results of (2) and (3), we get (the overall factor 1/2 comes from 1/𝑁 !
in the definition of trace (23.71))

𝑍 = 𝑇𝑟 𝑒−𝛽𝐻 =
1

2

∫︁
𝑑𝑟1𝑑𝑟2⟨𝑟1|⟨𝑟2|𝑒−𝛽𝐻 |𝑟1⟩|𝑟2⟩ (23.80)

=
1

2

∫︁
𝑑𝑟1𝑑𝑟2

∫︁
𝑑𝑝𝑑𝑝′ 𝑒−𝛽(𝑝2+𝑝′2)/2𝑚|(⟨𝑟1|⟨𝑟2|)|𝑝,𝑝′⟩|2 (23.81)

=
1

2

∫︁
𝑑𝑟1𝑑𝑟2

∫︁
𝑑𝑝𝑑𝑝′ 𝑒−𝛽(𝑝2+𝑝′2)/2𝑚1

2
|⟨𝑟1|𝑝⟩⟨𝑟2|𝑝′⟩ ± ⟨𝑟1|𝑝′⟩⟨𝑟2|𝑝⟩|2.

(23.82)

If we write the matrix elements explicitly,

𝑍 =
1

2ℎ6

∫︁
𝑑𝑟1𝑑𝑟2

∫︁
𝑑𝑝𝑑𝑝′𝑒−𝛽(𝑝2+𝑝′2)/2𝑚[1±𝑅𝑒 exp(𝑖(𝑝−𝑝′)·(𝑟1−𝑟2)/~)]. (23.83)

(5) To obtain 𝐹 we compute∫︀
𝑑𝑝 𝑒−𝛽(𝑝2/2𝑚)+𝑖𝑝·𝑟/~∫︀

𝑑𝑝 𝑒−𝛽(𝑝2/2𝑚)
= 𝑒−𝑚𝑘𝐵𝑇𝑟2/2~2 . (23.84)
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Hence,
𝐹 = 1± 𝑒−𝑚𝑘𝐵𝑇 (𝑟1−𝑟2)2/~2 . (23.85)

(6) If we introduce the effective potential 𝜑 by 𝐹 = 𝑒−𝛽𝜑, we get

𝛽𝜑(𝑟) = − log[1± 𝑒−𝑚𝑘𝐵𝑇 (𝑟1−𝑟2)2/~2 ]. (23.86)

The sketches of the potential are given in Fig. 23.4.

fermions

bosons

-log 2

Figure 23.4: Effective potential for bosons and fermions

As expected, the effective interaction is attractive for bosons, and repulsive for
fermions.
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Exercise 12

E12.1 [Cosmic background temperature]
At present, the cosmic background radiation is at 3 K. Suppose the universe expands
adiabatically (but not necessarily quasistatically). What can you say about the tem-
perature of the cosmic background radiation when the total volume of the universe
was one half of the present volume?

Solution.
If you can assume that the process is quasistatic, this is just Discussion 11.3, but
compression to halve the volume. Therefore, the temperature in the past is estimated
to be 3× 21/3 = 3.8 K. If the expansion is not quasistatic, then what could happen?
This means ‘heat’ is generated. Thus, the temperature in the past should be lower
than the quasistatic case. That is, 3.8 K is the upper bound.

E12.2 [Electron-positron-photon equilibrium]
In D12.6 we discussed the electrons ‘𝑒’ and the positrons ‘𝑝’ in equilibrium with
the photon field (electromagnetic field) and determined their chemical potentials:
𝜇𝑒 = 𝜇𝑝 = 0.
(1) Calculate the total energy 𝐸𝑒 of electrons [You need not perform the integrals.].
(2) Find their 𝑇 dependence.
(3) Let 𝐸ℎ𝜈 be the total electromagnetic wave in this same volume. Which is larger,
𝐸𝑒 or 𝐸ℎ𝜈?

Solution.
(1) The total energy of electrons is given by

𝐸𝑒 = 2× 4𝜋𝑉

ℎ3𝑐3

∫︁ ∞

0

𝑑𝜀
𝜀3

𝑒𝛽𝜀 + 1
= 𝐸𝑝. (23.87)

(2) 𝑇 -dependence can be read off by power counting as [𝐸𝑝] = [𝜀]4 or 𝐸𝑝 ∝ 𝑇 4.
(3) The total energy of photons is, by taking the polarizations into account,

𝐸ℎ𝜈 =
8𝜋𝑉

ℎ3𝑐3

∫︁ ∞

0

𝑑𝜀
𝜀3

𝑒𝛽𝜀 − 1
. (23.88)

Comparing the integrands, we see 𝐸ℎ𝜈 > 𝐸𝑒 = 𝐸𝑝.
381

E12.3 [Molecular vibration]
The vibrational spectrum of I2 is at (reciprocal wavelength) 213 cm−1.
(1) What is the occupation number ratio of the ground and the first excited states
at room temperature 300 K?

381Exact evaluations are possible and the ratio is 8/7.
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(2) What is the contribution in % of vibration to the total 𝐶𝑉 ?

Solution.
(1) This is just the Boltzmann factor question. Let 𝜆 be the wavelength. Then,
𝜈 = 𝑐/𝜆, so (notice that 1/213 cm = 1/(213× 100) m , so the reciprocal wavelength
is 21300 m−1)

𝜈 = 3× 108 × 213× 100 = 6.30× 1012 Hz. (23.89)

Thus,

Θ𝑣 = ℎ𝜈/𝑘𝐵 = (6.62× 10−34)× (6.30× 1012)/1.38× 10−23 = 302 K. (23.90)

Therefore, for 𝑇 = 300 K
𝑒−302/300 = 0.365. (23.91)

(2) Since

𝐶𝑣 = 𝑅(𝛽ℎ𝜈)2
𝑒𝛽ℎ𝜈

(𝑒𝛽ℎ𝜈 − 1)2
(23.92)

with 𝛽ℎ𝜈 ≃ 1, we have

𝐶𝑣 = 𝑅
𝑒

(𝑒− 1)2
= 0.92𝑅. (23.93)

This is 92% of the full contribution of the vibrational degree of freedom (i.e., the
classical contribution). If we ignore the contribution of vibration, the total constant
volume specific heat is 5𝑅/2. Therefor 0.92/(0.92 + 2.5) = 0.269. That is about
27%.
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24 Phases and phase transitions

Summary
* Statistical thermodynamics is briefly reviewed with illustrations relevant to the
phase transition.
* Qualitative change of phases is the phase transition, which corresponds to some
mathematical singularities of thermodynamic potentials.
* Phase coexistence conditions (under given 𝑇 and 𝑃 ) are a set of equalities among
chemical potentials. Gibbs’ phase rule follows from the condition.
* Thermodynamic limit is absolutely needed to rationalize phase transitions statistical-
mechanically.

Key words
phase, phase transition, phase diagram, coexistence curve, triple point, kelvin scale,
Gibbs’ phase rule, first order phase transition, second order phase transition, Ising
model, thermodynamic limit.

What you should be able to do
* Draw the phase diagram of a ordinary one-component fluid on the PT plane.
* Sketch 𝐺(𝑇, 𝑃 ) for an ordinary fluid.
* Understand why thermodynamic limit is required.

So far we have not discussed systems with interactions. If there are interactions,
there are various phases as is exemplified by ice, liquid and vapor of water. First,
let us discuss how to describe thermodynamically what we experience. Then, let us
discuss whether statistical mechanics can discuss phase transitions.

24.1 What is a phase?
Intuitively, under different conditions (say, at various (𝑇, 𝑃 )) a system can exhibit
qualitatively different properties. When this happens, we say the system (or the
material) is in different phases.382 To understand a substance is to understand its
various phases and their characteristic features. Therefore, we wish to map out
what happens at various points in the thermodynamic space or at least in terms of
thermodynamic parameters (e.g., 𝑇 , 𝑃 , etc.), i.e., we wish to construct the phase
diagram (see, e.g., Fig. 24.1). To understand the world we must understand where
the state boundaries are and what the features of the territories are. To understand

382We may say an equilibrium state is in a single phase, if it is macroscopically homogeneous.
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the boundaries corresponds to the understanding of phase transitions, and to under-
stand the features of the territories corresponds to characterizing individual phases.

In the above, ‘qualitative differences’ do not imply quantitative difference such as
soft-hard, hot-cold, hue changes, etc., but existence-non existence of some properties
such as symmetry, long-range correlation, etc. For example, solid, liquid, and gas
phases may be characterized by the following table:

long-range order coherence
solid Y Y
liquid N Y
gas N N

Here, ‘long-range’ correlation implies that if you know a position of a particle, you
can tell the position of another particle far away from the first one. Crystalline spa-
tial regularity implies long-range spatial ordering of the particles. For fluid phases
we cannot have this property. This property can either exist or not exist. This is
the qualitative difference between solid and fluid phases. To distinguish fluid phases
is not easy. One possibility is stated in the above table. We know gases can be com-
pressed easily but liquids cannot; they are as incompressible as solids. This must be
due to the interactions (‘touching’) among molecular hard cores. ‘coherence’ implies
that each particle has at least four repulsive interactions with its surrounding parti-
cles simultaneously.383

Since some qualitative properties appear or disappear upon crossing a phase
boundary, something ‘singular’ can happen thermodynamically (e.g., loss of differen-
tiability or continuity of some thermodynamic quantities), and this change is called
a phase transition.

T

P

LS

Gt

cp

Figure 24.1: A representative phase diagram of an ordinary fluid. S: solid; L: liquid; G: gas; t:
triple point; cp: critical point. The curves denote the phase boundaries where phase transitions
occur.

383But the characterizations mentioned here is rather microscopic. Try thermodynamic charac-
terizations; I think it is not so easy.
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24.2 Phase may not sometimes be well-defined globally
However, a precise definition of ‘phase’ is actually rather difficult. Near the phase
boundaries we may clearly distinguish the phases, but the ‘territory where a phase
occupies’ may not be well-defined as in the case of gases and liquids. Therefore, here,
the concept of ‘phase’ is used ‘locally’ when precise statements are needed. We say
the states (near the phase transition point) that cannot be changed into each other
without a phase transition (= thermodynamic singularity) are distinct phases (near
the phase transition).

Since we have come a long way from Maxwell, Clausius, Boltzmann and other found-
ing fathers of our subject, let us review salient points of statistical thermodynamics
that we need to understand phase transitions with relevant illustrations.

24.3 Phase diagram in thermodynamic space
For a given system its any equilibrium state is described (uniquely) as a point in
its thermodynamic space spanned by its thermodynamic coordinates (= its internal
energy 𝐸 and work coordinates 𝑋, say, 𝑉 ) 9.6 and 9.7. Thermodynamic coordinates
are crucial when we build thermodynamics, since they do not require thermodynam-
ics to describe (purely mechanical description is possible). The unique relation of a
point in the thermodynamic space to an equilibrium state of the system allows us to
describe phase coexistence unambiguously.

To illustrate this point look at the ordinary solid-liquid-gas phase diagram (Fig.
24.2).
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T

1/P

E

V

S

L G

S + G

S + L

L + G

S + L

S + G

Figure 24.2: The phase diagram superposed on the thermodynamics space. The open circle
indicates the critical point, and the black disk and triangle denote the triple point. The gray
potions are two-phase coexisting states. The diagram may not be very accurate, but its aim is
to exhibit that the transition lines and the triple point in the ordinary phase diagram (inset) are
resolved and that you can even tell the relative amount of coexisting phases at a given point in the
thermodynamic space.

24.4 Thermodynamic potentials and partition functions
You must be able to write the Gibbs relation 20.3

𝑑𝑆 =
1

𝑇
𝑑𝐸 +

𝑃

𝑇
𝑑𝑉 − 𝐵

𝑇
𝑑𝑀 − 𝜇

𝑇
𝑑𝑁 + · · · , (24.1)

and the corresponding Gibbs-Duhem relation 20.4

𝐸𝑑
1

𝑇
+ 𝑉 𝑑

𝑃

𝑇
−𝑀𝑑

𝐵

𝑇
−𝑁𝑑𝜇

𝑇
+ · · · = 0. (24.2)

The fundamental principle of statistical thermodynamics is the following trans-
lation of entropy into phase volume compatible with a point in the thermodynamic
space by Boltzmann 12.4, 12.11:

𝑆 = 𝑘𝐵 log𝑤(𝐸,𝑋). (24.3)

However, we often wish to describe the phase transition under constant 𝑇 , 𝑃 , etc.,
so we must Legendre transform 𝑆 to a generalized Gibbs free energy 𝐺̃.384

𝑆 → 𝑆 − 1

𝑇
𝐸 − 𝑃

𝑇
𝑉 +

𝐵

𝑇
𝑀 = −𝐺̃

𝑇
(24.4)

The generalized canonical formalism reads (cf. 13.7, 18.10)

𝐺̃ = −𝑘𝐵𝑇 log𝑍 with 𝑍 =
∑︁

𝐸,𝑉,𝑀

𝑤(𝐸, 𝑉,𝑀)𝑒−𝛽(𝐸+𝑃𝑉−𝐵𝑀). (24.5)

384Generally, the Legendre transformation of entropy is called Massieu functions. −𝐺̃/𝑇 is a
typical example.
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24.5 Stability, fluctuation and response
The equilibrium condition under 𝑇, 𝑃, · · · constant is the minimization of 𝐺̃ 11.5,
11.7. However, the equilibrium stability condition can always be written as 𝛿2𝐸 ≥ 0
18.4 (or 𝛿2𝑆 ≤ 0 18.3) . The positivity of the diagonal terms of this Hessian is le
Chatelier’s principle 18.5

𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦

> 0, (24.6)

where 𝑦 denotes other intensive quantities.
Here, we have assumed that 𝐸 is twice differentiable, but this does not always hold.

For example, if a phase transition occurs, this is highly questionable. Recall that
the really important point is that 𝐸 is a convex function 10.5. It is also guaranteed
that 𝐸 is continuously once differentiable (i.e., a 𝐶1 function),385 but the second
derivatives may not exist. The true implication of (24.6) is that if 𝑥 increases, then
so does 𝑋.

Suppose a phase transition between phase I and II occurs. If the transition to II
occurs from I by increasing temperature (i.e., II is a higher temperature phase than
I), then 𝑆I < 𝑆II, because increasing 𝑇 implies increasing its conjugate variable:
entropy. Or, if II is a higher pressure phase than I, then −𝑉II > −𝑉I, i.e., 𝑉I > 𝑉II
(the conjugate variable of 𝑃 is not 𝑉 but −𝑉 ).

We discussed the fluctuation-response relation 18.11

𝜒 =
𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦

= 𝛽⟨𝛿𝑋2⟩. (24.7)

If the ordered phase is stable, to destroy its order very large fluctuation is needed.
This actually happens near the critical point, and for example magnetic susceptibil-
ity or compressibility diverges (see around 26.5).

24.6 Can phases coexist?
If there is a phase transition from one phase to another, there may or may not be a
coexistence of these phases.386 Thus, ‘condition’ in the following means, at best, a
necessary condition.

385This is due to the relation between the work coordinates and the work (in 9.20) and the
definition of entropy 9.25.

386It is impossible to know whether the given two phases coexist or not purely thermodynamically,
although, usually, we may say the phases satisfying the thermodynamic coexistence conditions do
coexist.
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24.7 Coexistence condition for two phases
Suppose a system is described by its thermodynamic coordinates (𝐸,𝑋) and two
phases I and II coexist in equilibrium when 𝐸 and 𝑋 exchange is allowed between
the phases (in an isolated box). When two phases coexist, the substance may be
exchanged freely across the phase boundary between the two phases. Therefore, we
must also take the exchange of the material into account. We know 𝑆 = 𝑆I + 𝑆II
must be maximized, so the equilibrium condition is the identity of 𝑇 , 𝑥/𝑇 and 𝜇/𝑇
as we discussed long ago (10.8, 10.9, 20.6). Let us review it.

The Gibbs relation implies

𝛿𝑆 =
1

𝑇
𝛿𝐸 − 𝑥

𝑇
𝛿𝑋 − 𝜇

𝑇
𝛿𝑁. (24.8)

Here, 𝛿 implies variation or virtual change, BUT in reality fluctuations actually
realize these needed changes spontaneously. 𝛿𝐸I + 𝛿𝐸II = 0, 𝛿𝑋I + 𝛿𝑋II = 0 and
𝛿𝑁I + 𝛿𝑁II = 0 imply the following equilibrium condition:

𝛿𝑆 =
1

𝑇I
𝛿𝐸I −

𝑥I
𝑇I
𝛿𝑋I −

𝜇I
𝑇I
𝛿𝑁I +

1

𝑇II
𝛿𝐸II −

𝑥II
𝑇II

𝛿𝑋II −
𝜇II
𝑇II

𝛿𝑁II (24.9)

=

(︂
1

𝑇I
− 1

𝑇II

)︂
𝛿𝐸I −

(︂
𝑥I
𝑇I
− 𝑥II
𝑇II

)︂
𝛿𝑋I −

(︂
𝜇I
𝑇I
− 𝜇II
𝑇II

)︂
𝛿𝑁I = 0. (24.10)

Therefore, 𝑇I = 𝑇II and 𝑥I = 𝑥II are required in general. Usually, 𝑋 = 𝑉 and 𝑁 , so
𝑇, 𝑃 and 𝜇 must be identical between two phases:

𝑇I = 𝑇II, 𝑃I = 𝑃II, 𝜇I = 𝜇II. (24.11)

The last equality in (24.11) is

𝜇I(𝑇, 𝑃 ) = 𝜇II(𝑇, 𝑃 ). (24.12)

This functional relation determines a curve called the coexistence curve in the 𝑇 -𝑃
diagram (see Fig. 24.1).387

Along this line the Gibbs free energy 𝐺 of the whole system may be written as

𝐺 = 𝑁I𝜇I +𝑁II𝜇II. (24.13)

Thus, without changing the value of 𝐺, any mass ratio of the two phases is admissi-
ble, if they can coexist. This implies that in the phase diagram in the thermodynamic
space the phase coexistence relation is described as a boundary ‘mine field’ (see Fig.
24.2 Right) instead of a line.

387(24.12) may be obtained by minimizing the Gibbs free energy under the constant 𝑇 and 𝑃 ,
because in the thermodynamic limit (i.e., if the system is large enough) what we can obtain from
an isolated system and the same system under 𝑇, 𝑃 constant condition with the consistent 𝑇 and
𝑃 are indistinguishable (statistical-mechanically, it is the ensemble equivalence).
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24.8 Phase coexistence condition: pure substance case
How many phases can coexist at a given 𝑇 and 𝑃? Suppose we have X coexisting
phases. The following conditions must be satisfied:

𝜇I(𝑇, 𝑃 ) = 𝜇II(𝑇, 𝑃 ) = · · · = 𝜇X(𝑇, 𝑃 ). (24.14)

We believe that for the generic case, 𝜇’s are sufficiently functionally independent. To
be able to solve for 𝑇 and 𝑃 , we can allow at most two independent relations. That
is, at most three phases can coexist at a given 𝑇 and 𝑃 for a pure substance.

24.9 Triple point
For a pure substance, if three phases coexist, 𝑇 and 𝑃 are uniquely fixed. This point
on the 𝑇 -𝑃 diagram is called the triple point. The kelvin scale of temperature is
defined so that triple point of water is at 𝑇 = 273.16K (since 1954). 𝑡 = 𝑇 − 273.15
is the temperature in Celsius. Again, this is the definition of ∘C.

24.10 Clapeyron-Clausius relation revisited
For a pure substance, as we have seen, the chemical potentials of coexisting phases
must be identical. Before and after the phase transition from phase I to II or vice
versa, there is no change of the Gibbs free energy

Δ𝐺CC = 0, (24.15)

where CC means “along the coexistence curve” and Δ implies the difference across
the coexistence curve (say, phase I − phase II). From (24.15) we already obtained
the Clapeyron-Clausius relation:

𝜕𝑃

𝜕𝑇

⃒⃒⃒⃒
CC

=
ΔI→II𝐻

𝑇ΔI→II𝑉
, (24.16)

where ΔI→II𝑋 denotes 𝑋II −𝑋I.

24.11 Gibbs’ phase rule
Consider a more general case of a system consisting of 𝑐 chemically independent
components (i.e., the number of components we can change independently). For
example, H3O

+ in pure water should not be counted, if we count H2O among the
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independent chemical components.
Suppose there are 𝜑 coexisting phases. The equilibrium conditions are:

(1) 𝑇 and 𝑃 must be common to all the phases,
(2) The chemical potentials of the 𝑐 chemical species must be common to all the
phases.

To specify the composition of a phase we need 𝑐 − 1 variables, because we need
only the concentration ratios. Thus, the chemical potential for a chemical species
depends on 𝑇 , 𝑃 and 𝑐−1 mole fractions (𝑥1, 𝑥2, · · · , 𝑥𝑐−1), which are not necessarily
common to all the phases (we must add a suffix to denote the phases). That is, 𝜇’s
are 𝑐 + 1 variable functions, and we have 2 + 𝜑(𝑐− 1) unknown variables. We have
𝜑− 1 equalities among the chemical potentials in different phases for each chemical
species, so the number of equalities we have is (𝜑 − 1) × 𝑐. Look at the following
simultaneous equations:

𝜇1
I(𝑇, 𝑃, 𝑥

1
I , 𝑥

2
I , · · ·𝑥

𝑐−1
I ) = 𝜇1

II(𝑇, 𝑃, 𝑥
1
II, 𝑥

2
II, · · ·𝑥

𝑐−1
II ) = · · · = 𝜇1

𝜑(𝑇, 𝑃, 𝑥
1
𝜑, 𝑥

2
𝜑, · · ·𝑥𝑐−1

𝜑 ),

· · ·
𝜇𝑗

I(𝑇, 𝑃, 𝑥
1
I , 𝑥

2
I , · · ·𝑥

𝑐−1
I ) = 𝜇𝑗

II(𝑇, 𝑃, 𝑥
1
II, 𝑥

2
II, · · ·𝑥

𝑐−1
II ) = · · · = 𝜇𝑗

𝜑(𝑇, 𝑃, 𝑥
1
𝜑, 𝑥

2
𝜑, · · ·𝑥𝑐−1

𝜑 ),

· · ·
𝜇𝑐
I(𝑇, 𝑃, 𝑥

1
I , 𝑥

2
I , · · ·𝑥

𝑐−1
I ) = 𝜇𝑐

II(𝑇, 𝑃, 𝑥
1
II, 𝑥

2
II, · · ·𝑥

𝑐−1
II ) = · · · = 𝜇𝑐

𝜑(𝑇, 𝑃, 𝑥
1
𝜑, 𝑥

2
𝜑, · · ·𝑥𝑐−1

𝜑 ),

(24.17)

Consequently, for the generic case we can choose 𝑓 = 2+𝜑(𝑐−1)−𝑐(𝜑−1) = 𝑐+2−𝜑
variables freely. This number 𝑓 is called the number of thermodynamic degrees of
freedom. We have arrived at the Gibbs phase rule:388

𝑓 = 𝑐+ 2− 𝜑. (24.18)

24.12 How 𝐺 behaves at the phase boundaries
What happens to the Gibbs free energy at the phase transition point under constant
𝑇 and 𝑃 ? You must be able to sketch it in the ordinary fluid case. Note the usual
Gibbs relation:

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉 𝑑𝑃. (24.19)

Under constant 𝑃 , 𝐺 may be sketched as follows:

388As astute readers have probably sensed already, the derivation is not water tight. We have
assumed that there is no special functional relations among chemical potentials. Rigorously speak-
ing, we cannot guarantee this and so we cannot derive the phase rule from the fundamental laws of
thermodynamics (nor equilibrium statistical mechanics, either). Indeed, for example, by carefully
preparing special mixtures the ‘four corner’ can be created on the 𝑃𝑇 -diagram.
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Figure 24.3: Typical behavior of Gibbs free energy for a pure substance. The free energy loses
differentiability at first order phase transition points.

When 𝑃 is the critical pressure, then the liquid-gas transition ‘break’ disappears:
𝐺 becomes differentiable. However, the specific heat has a singular behavior at the
critical temperature. That is, the LG transition becomes second order. We will dis-
cuss this later in more detail.

Try to sketch 𝐺 under constant 𝑇 as a function of 𝑃 .

24.13 Classification of phase transitions
Usually, phase transitions are classified into first order phase transitions and the rest
called continuous phase transitions or second-order phase transitions. In the first
order phase transition at least one thermodynamic density (= extensive quantity per
volume) changes discontinuously, but in the second order phase transitions there is
no discontinuity in thermodynamic densities. The liquid-gas transition at the critical
pressure is a second-order phase transition as noted just above.

Phase transitions in many interesting cases occur between more ordered and less
ordered phases; it is between the low entropy state and the high energy (enthalpy)
state. For example melting is the transition from low entropy solid to high energy
liquid. Protein folding is the transition from higher energy random coil state to low
entropy folded state.389

A first order phase transition occurs if the ordered phase loses its stability ‘catas-
trophically.’ In other words, the first order phase transition occurs when a slight loss
of order favors further loss of order. Thus, there is no equilibrium state with reduced
stability. In contrast, in the case of second order phase transitions reduction of or-
der does not appreciably destabilize the order further. Thus, a phase with reduced
stability of order can exist as an equilibrium state. You can intuitively understand a
stable phase with reduced stability as an oscillator with a very weak spring. Fluctua-
tion becomes very large near the second order phase transition; despite large thermal
fluctuations the phase persists. The ordered phase persists until fluctuation becomes
indefinitely large. Since the ordering of some sort is always the reason for phase

389However, do not have a prejudice that natural states of proteins are equilibrium states. Many
large proteins are likely to be in metastable states when they function biologically normally. Think
how you can prove experimentally that a particular protein is in equilibrium.
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transitions, the second order phase transition is theoretically the most interesting.
Therefore, we discuss the second order phase transition first.

24.14 Typical example of second order phase transition
A typical second order phase transition is the one from the paramagnetic to the
ferromagnetic phase we can observe in magnets.

A magnet can be understood as a lattice of spins interacting with each other
locally in space. The interaction between two spins has a tendency to align them
parallelly. At higher temperatures, due to vigorous thermal motions, this interaction
cannot quite make order among spins, but at lower temperatures the entropic effect
becomes less significant, so spins order globally. There is a special temperature 𝑇𝑐
below which this ordering occurs. We say an order-disorder transition occurs at this
temperature.

The Ising model is the simplest model of this transition.390 At each lattice point
is a (classical) spin 𝜎 which takes only +1 (up) or −1 (down). A nearest neighbor
spin pair has the following interaction energy:

−𝐽𝜎𝑖𝜎𝑗, (24.20)

where 𝐽 is called the coupling constant, which is positive in our example (ferromag-
netic case; if spins are parallel, interaction energy is lowered). We assume all the
spin-spin interaction energies are superposable, so the total energy of the system for
a lattice is given by

ℋ = −
∑︁
⟨𝑖,𝑗⟩

𝐽𝜎𝑖𝜎𝑗 −
∑︁
𝑖

ℎ𝜎𝑖, (24.21)

where ⟨ ⟩ implies the nearest neighbor pairs, and ℎ is the external magnetic field.
The (generalized canonical) partition function for this system reads

𝑍 =
∑︁

{𝜎𝑖=±1}

e−𝛽ℋ. (24.22)

390The Ising model was introduced by W. Lenz (1888-1957; different from the Lenz of Lenz’s
law). He was an important figure in the early development of quantum mechanics, known for the
Lenz vector (Laplace-Runge-Lenz vector relevant to the 𝑂4 symmetry of the Kepler problem). He
was a student of and, later, a long-time assistant to Sommerfeld. Pauli, Jordan and others were
his assistants. He was an important figure in the development of theoretical physics in Germany.

Lenz gave the model as a model of phase transition (although not restricted to the nearest neigh-
bor interactions) to his PhD student, Ising, E 1900-1998. See https://web.archive.org/web/

20160301212619/http://www.bradley.edu/academic/departments/physics/why/ising.dot

Ising lived in Peoria (it is the town after next of the town where University of Illinois is) until mid
90s. He solved the 1D nearest neighbor version to show there is no phase transition and concluded
that 3D was the same.
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Here, the sum is over all spin configurations.391

24.15 Fundamental questions about phase transitions
So far phenomenologically, we accepted the existence of phase transitions, and dis-
cussed how to describe/handle them. From the statistical mechanics point of view,
the most important question is why such qualitative changes can occur at all. Actu-
ally, a more fundamental question is: can statistical mechanics ever describe phase
transitions? Up to early 1930s such doubts existed. Now, in the 21st century,
we are sure that statistical mechanics correctly describes various phase transitions.
HOWEVER, do not forget that we cannot yet explain statistical mechanically why
ordinary molecules can make crystals below some finite temperature. Does the par-
tition function contain a crystal? We believe so, but no one has demonstrated this.

24.16 Necessity of thermodynamic limit
If the system size is finite, the sum in (24.22) is a finite sum of positive terms. Each
term in this sum is analytic392 in 𝑇 and ℎ, so the sum itself becomes analytic in 𝑇
and ℎ (i.e., very smooth). Furthermore, 𝑍 cannot be zero, because each term in the
sum is strictly positive. Therefore, its logarithm is real analytic in 𝑇 and ℎ; the free
energy of the finite lattice system cannot exhibit any singularity. That is, there is no
thermodynamic singularity, and consequently, there is no phase transition for this
system.393

Even in the actual system we study experimentally, there are only a finite number
of atoms, but this number is huge. Thus, the question of phase transitions from the
statistical mechanics point of view is: is there any singularity in 𝐴 = −𝑘𝐵𝑇 log𝑍 in
the large system limit? The large system limit, with proper caution not to increase
its surface area more than the order of 𝑉 2/3, where 𝑉 is the system volume, is called
the thermodynamic limit. Strictly speaking, phase transitions can occur only in this

391Warning. What is 𝐹 = −𝑘𝐵𝑇 log𝑍 in this case? It is NOT the Helmholtz free energy in
the original sense. That is why 𝑍 is (precisely speaking) called the generalized canonical partition
function. Notice that 𝑑𝐹 is NOT given by 𝑑𝐹 = −𝑆𝑑𝑇 + ℎ𝑑𝑀 (assuming the volume to be
constant), but by 𝑑𝐹 = −𝑆𝑑𝑇 −𝑀𝑑ℎ.

Why does this happen? This is due to the term −
∑︀

𝑖 ℎ𝜎𝑖 in the Hamiltonian (24.21). This is
not a part of the proper energy of the system, but the potential energy of the spins stored between
the magnet and the device creating the magnetic field.

392A more accurate mathematical term is ‘holomorphic.’
393Strictly speaking, there is no phase transition for any finite system, unless each spin has

infinitely many states.
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limit.394

You may not wish to go into mathematics, but at least clearly recognize that
qualitative changes require loss of analyticity.

394Does such a limit exist? This is also a fundamental question never considered till 1950s. This
is a far easier question than the existence/non-existence question of phase transitions.
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Q24.1 [Phase diagram of Ising magnet in thermodynamic space]
Consider an Ising magnetic system in 3-space. There is a second order order-disorder
phase transition at 𝑇 = 𝑇𝑐, if the magnetic field ℎ = 0 (i.e., ℎ𝑐 = 0).
(1) What is the thermodynamic space for this system (or what are the thermody-
namic coordinates for the system)?
(2) Sketch the phase diagram of this magnet in its thermodynamic space.

Solution.
(1) 𝐸 and 𝑀 must be the thermodynamic coordinates. ℎ is intensive, and corre-
sponds to 𝑃 in fluids.
(2) We must draw a phase diagram on (𝐸,𝑀). The usual diagram is on (ℎ, 𝑇 ).

M

E

T

h

+

−

critical 

poiint

coexsiting phase 

or

impossible

Figure 24.4: Below 𝑇𝑐 𝑀 ̸= 0 is possible with ℎ = 0. If you apply nonzero ℎ, one of the up or
down phases remain as an equilibrium state. Thus, the ‘lined’ region is with ℎ = 0; it is realizable
if 𝑑 > 2, but not in 𝑑 = 2 (i.e., no actual equilibrium system can be in this region). Outside of this
‘coexistence’ region, for higher 𝑇 of the temperature axis, magnetic field must be applied. Needless
to say too large |𝑀 | is not realizable, so the thermodynamic space is bounded vertically.

The rough sketch is shown here. However, accurate sketch is very hard.

Q24.2 [Latent heat of tetrachlorocarbon]
The melting temperature of tetrachlorocarbon (CCl4) depends on the pressure as
follows:

𝑇𝑚 = 250.56 + 4.005× 10−2𝑃 − 2.15× 10−6𝑃 2, (24.23)

where 𝑇 is measured in K and 𝑃 in atm. At 𝑃 = 1000 atm, the melting causes the
volume increase of Δ𝑉 = 3.06 mℓ per mole. Find the latent heat of melting per mole
of tetrachlorocarbon at 1000 atm. Notice that 1 atm = 101,325 P.

Solution.
We use the Clapeyron-Clausius relation

𝜕𝑇𝑚
𝜕𝑃

⃒⃒⃒⃒
CC

=
𝑇𝑚Δ𝑉

Δ𝐻

or

Δ𝐻 = 𝑇𝑚Δ𝑉

(︂
𝜕𝑇𝑚
𝜕𝑃

⃒⃒⃒⃒
CC

)︂−1
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𝜕𝑇𝑚
𝜕𝑃

⃒⃒⃒⃒
CC

= 4.005× 10−2 − 4.30× 10−6𝑃 = 0.0358

in K/atm. Therefore, (𝑇𝑚 = 288.5 K)

Δ𝐻 = 288.5× (3.06× 10−6/0.0358) m3 · atm = 0.02466 m3 · atm = 2498 J,

or 597 cal/mol.
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25 Spatial dimensionality and interaction range

are crucial

Summary
* Statistical mechanics seems to be able to explain various phases and phase transi-
tions rationally in the thermodynamic limit.
* Spatial dimensionality is crucial to the phase ordering and existence of the order-
disorder phase transition. Peierls’ argument tells us the importance of spatial di-
mensionality.
* If the interaction is long-ranged, phase transitions can happen even in 1-space.
(Augmented) van der Waals gas in 1D is a typical example.
* The second order phase transition for magnets, fluids and binary fluid mixtures
may be understood in a unified fashion.

Key words
Peierls’ argument, Kac potential, van der Waals gas, Maxwell’s rule, Tonks’ gas

What you should be able to do
* Intuitively understand why spatial dimensionality matters.
* You must be able to explain Peierls’ argument.
* Derivation of Tonk’s equation of state should be a good exercise.

Whether statistical mechanics can understand phase transitions or not in the
thermodynamic limit is a fundamental question. Peierls definitely settled the issue
by demonstrating that the 2D Ising model has an ordered phase. His demonstration
makes it clear that spatial dimensionality is crucial.

25.1 Magnet-lattice gas correspondence
The Ising model due to Lenz was introduced in the preceding lecture, whose Hamil-
tonian reads

𝐻 = −𝐽
∑︁
⟨𝑖,𝑗⟩

𝜎𝑖𝜎𝑗 − ℎ
∑︁
𝑖

𝜎𝑖. (25.1)

We can interpret this as a lattice model of a gas (lattice gas) with the following
correspondence ‘up’ (resp., ‘down’) → lattice point ‘occupied’ (resp., ‘empty’). ℎ
may be interpreted as the chemical potential (large positive ℎ implies more up spins
= more particles).
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25.2 Order parameter
To characterize the order in the system we define an order parameter which is nonzero
only in the ordered phase: magnetization per particle𝑚 = ⟨𝜎⟩ =𝑀/𝑁 = (1/𝑁)

∑︀
𝜎𝑖

is a good example. Thus, the fundamental question about the Ising model is whether
𝑀/𝑁 converges to zero or not in the thermodynamic limit.395

You can watch 2-Ising model here:
http://physics.weber.edu/schroeder/software/demos/IsingModel.html

25.3 Spatial dimensionality is crucial
For the existence of a phase transition, not only the system size but also the spatial-
dimensionality of the system is crucial.

Let us consider a one-dimensional Ising model (Ising chain), whose total energy
reads

𝐻 = −𝐽
∑︁

−∞<𝑖<+∞

𝜎𝑖𝜎𝑖+1. (25.2)

We have ignored the external magnetic field for simplicity. Compare the energies
of the following two spin configurations (+ denotes the up spins and − down spins)
(Fig. 25.1):

+ + + + + + + + + + + + + + + + + + + + + + 

+ + + + − − − − − − − − − + + + + + + + + +

L

Figure 25.1: Top: completely ordered state of 1-Ising model (+ implies up spins and − down
spins); Bottom: Ising chain with a spin-flipped island of size 𝐿.

The bottom one has a larger energy than the top by 2𝐽 × 2 due to the existence of
the two mismatching edges. However, this energy difference is independent of the
size 𝐿 of the island. Therefore, as long as 𝑇 > 0 there is a finite chance of making
big (= macroscopic) down spin islands amidst the ocean of up spins. If a down spin
island becomes large, there is a finite probability for a large lake of up spins on it.
This implies that no ordering is possible for 𝑇 > 0.

As you can easily guess there is no ordered phase in any one dimensional lattice
system with local interactions for 𝑇 > 0.

25.4 There is an ordered phase in 2D: intuitive Peierls’ argument
Consider the two-dimensional Ising model with ℎ = 0. Imagine there is an ocean of
up spins (Fig. 25.2). To make a circular down-spin island of radius 𝐿, we need 4𝜋𝐽𝐿

395This argument requires, honestly speaking, details about convergence of the distribution, etc.
See the graduate course notes.
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more energy than the completely ordered phase.

L

up

spins

down

spins

Figure 25.2: Peierls’ argument illustrated.

This energy depends on 𝐿, making the formation of a larger island harder. That is,
to destroy a global order we need a macroscopic amount of energy, so for sufficiently
low temperatures, the ordered phase cannot be destroyed spontaneously. Of course,
small local islands could form, but they never become very large. Hence, we may
conclude that an ordered phase could exists at sufficiently low temperatures. Con-
sequently, there must be a phase transition for a two-dimensional system with local
short-range interactions. The above argument is known as Peierls’ argument and
can be made rigorous.396

25.5 Peierls’ argument
What Peierls actually proved is the following. Prepare a 𝐿 × 𝐿 square lattice, and
fix all the edge spins upward (Fig. 25.3). If 𝐿 becomes large and if 𝑇 is not low,
eventually the probability 𝑃 (𝜎0 = +1) of the center spin to be up converges to 1/2.
If this is always true for any 𝑇 , it implies no spin ordering occurs. Peierls demon-
strated that 𝑃 (𝜎0 = +1) > 1/2 at sufficiently low temperatures. An important idea
used in the proof is basically the above intuitive argument.

Generally speaking, spatial dimensionality is crucial for the existence of phase
transitions for the system with short-range interactions.397

25.6 Interaction ‘range’ is also crucial
What happens if the range of interactions is not finite and the intensity of interac-

396There is at least one more crucial factor governing the existence of phase transition. It is the
spin dimension: the degree of freedom of each spin. Ising spins cannot point different directions,
only up or down (their spin-dimension is 1). However, the true atomic magnets can orient in any
direction (their spin dimension is 3). This freedom makes ordering harder. Actually, in 2D space
ferromagnetic ordering at 𝑇 > 0 by spins with a spin dimension larger than 1 is impossible.

397Here, ‘short range’ implies the interaction vanishes beyond some finite range, or the strength
of the interaction decays sufficiently quickly (say, faster than 1/𝑟𝑑+1.
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L

Figure 25.3: All the boundary spins are fixed to be up. What happens to the central spin in the
circle in the 𝐿→∞ limit?

tion decays sufficiently slowly? Peierls’ argument is still applicable. Obviously, if
each spin can interact with all the spins in the system uniformly, an ordered phase
is possible even in 1-space. If the coupling constant 𝐽 decays slower than 1/𝑟2, then
an order-disorder phase transition is still possible at a finite temperature in one di-
mensional space.
Exercise. Intuitively explain the last statement. ⊓⊔

If the interaction is long-ranged, then the system may not behave thermody-
namically normally (the fourth law may be violated). However, if interaction is
infinitesimal, then thermodynamics may be saved even if the interaction does not
decay spatially. As you see below such a system is essentially the system described
by the van der Waals equation of state.

25.7 Van der Waals model: key ideas
Van der Waals proposed the following equation of state (van der Walls equation of
state:

𝑃 =
𝑁𝑘𝐵𝑇

𝑉 −𝑁𝑏
− 𝑎𝑁2

𝑉 2
, (25.3)

where 𝑎 and 𝑏 are positive materials constants. Here, 𝑃,𝑁, 𝑇, 𝑉 have the usual
meaning in the equation of state of gases. His key ideas are:
(1) The existence of the real excluded volume due to the molecular core should re-
duce the actual volume in which molecules can roam from 𝑉 to 𝑉 −𝑁𝑏; this would
modify the ideal gas law to 𝑃𝐻𝐶(𝑉 − 𝑁𝑏) = 𝑁𝑘𝐵𝑇 . Here, subscript 𝐻𝐶 implies
‘hard core.’
(2) The attractive binary interaction reduces the actual pressure from 𝑃𝐻𝐶 to 𝑃 =
𝑃𝐻𝐶 − 𝑎/(𝑉/𝑁)2, because the wall-colliding particles are actually pulled back by
their fellow particles in the bulk.

25.8 Van der Waals model: ‘derivation’
Let us ‘derive’ his equation of state from its entropy. We know that the entropy of
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a classical ideal monatomic gas 10.16 reads

𝑆 = 𝑆0 +𝑁𝑘𝐵 log
𝑉

𝑁
+

3𝑁

2
𝑘𝐵 log

𝐸

𝑁
. (25.4)

Notice that 𝐸 in this formula is just the kinetic energy 𝐾. For the van der Waals
model,
(1) implies 𝑉 → 𝑉 −𝑁𝑏,
(2) implies 𝐾 = 𝐸 + 𝑁𝑎𝑛, where 𝑛 = 𝑁/𝑉 is the number density, because each
particle receives stabilizing interaction from the surrounding ‘mass’ that must be
proportional to 𝑛, so the real kinetic energy must be the actual 𝐸 minus −𝑁𝑎𝑛.

Therefore, the entropy of the van der Waals gas should read

𝑆 = 𝑆0 +𝑁𝑘𝐵 log
(𝑉 −𝑁𝑏)

𝑁
+

3𝑁

2
𝑘𝐵 log

(𝐸 + 𝑎𝑁2/𝑉 )

𝑁
. (25.5)

This gives
1

𝑇
=

𝜕𝑆

𝜕𝐸

⃒⃒⃒⃒
𝑉

=
3

2

𝑁𝑘𝐵
𝐸 + 𝑎𝑁2/𝑉

, (25.6)

and
𝑃

𝑇
=

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝐸

=
𝑁𝑘𝐵

𝑉 −𝑁𝑏
+

3

2

𝑁𝑘𝐵
𝐸 + 𝑎𝑁2/𝑉

(︂
−𝑎𝑁

2

𝑉 2

)︂
. (25.7)

Combining these two, we obtain the van der Waals equation of state:

𝑃

𝑇
=

𝜕𝑆

𝜕𝑉

⃒⃒⃒⃒
𝐸

=
𝑁𝑘𝐵

𝑉 −𝑁𝑏
− 𝑎𝑁2

𝑇𝑉 2
. (25.8)

25.9 Liquid-gas phase transition described by the van der Waals model
The most noteworthy feature of the equation is that liquid and gas phases are de-
scribed by a single equation.

Let us study the general behavior of (25.8). The first term is ∝ 1/(𝑉 − 𝑁𝑏), so
it blows up at 𝑉 = 𝑁𝑏. It is basically the ideal gas equation translated by 𝑁𝑏 along
the 𝑉 -axis. The second term becomes very important if 𝑇 is small and is ∝ 1/𝑉 2.
Since 1/𝑉 2 becomes larger more quickly than 1/(𝑉 −𝑁𝑏) if 𝑉 is not too close to 𝑁𝑏,
(25.8) becomes non-monotonic as a function of 𝑉 for sufficiently low 𝑇 . That is, as in
Fig. 25.4, the 𝑃𝑉 -curve wiggles. We know, however, thermodynamically, (𝜕𝑃/𝜕𝑉 )𝑇
cannot be positive (it is a Le Chatelier’s principle!). This ‘wrong behavior’ must be
due to the attractive interactions. Van der Waals guessed that there is a gas-liquid
phase transition. Thus, he proposed some ad hoc equilibrium condition to connect
the gas and liquid branches of his equation.
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25.10 Maxwell’s rule
Maxwell was fascinated by the equation because of its possibility to describe the
liquid and the gas phases in a unified fashion, and gave the liquid-gas coexistence
condition (Maxwell’s rule, see Fig. 25.4). As will be discussed below, this equation of
state reinforced by Maxwell’s rule can be obtained from statistical mechanics. Thus,
the van der Waals model is an exact example exhibiting a phase transition.
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Gas
Liquid

V

P

Figure 25.4: The thick curve is the coexistence curve below which no single phase can stably
exist, and the dotted curve is the spinodal curve bounding the thermodynamically unstable states;
the region between the spinodal and coexistence curves is the metastable region. When a high
temperature state is quenched into the unstable region, it immediately decomposes into liquid and
gas phases. If a high temperature state is quenched into the metastable region, after nucleation (of
bubbles or droplets), phase separation occurs (see Lecture 28). The liquid-gas coexistence pressure
for a given temperature is determined by Maxwell’s rule: the two shaded regions have the same
area.

Maxwell’s rule is motivated by the calculation of the Gibbs free energy 𝐺: 𝑑𝐺 =
𝑉 𝑑𝑃 (under constant 𝑇 )398 (see Fig. 25.5).

25.11 Kac potential and van der Waals equation of state
The van der Waals equation of state is heuristically derived, but what is really the
microscopic model that gives it, if any? A proper understanding of van der Waals’s
idea is

𝑃 = 𝑃𝐻𝐶 −
1

2
𝜀𝑛2, (25.9)

where 𝑃𝐻𝐶 is the hard core fluid pressure,399 and the subtraction term is the average

398Since we cannot use thermodynamics where the system is unstable, the demo here (the original)
is not a very respectable one. However, the obtained rule can even be thermodynamically justifiable
(as explained in the graduate notes).

399For a collection of hard cores there is no gas-liquid transition at any temperature.
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P

V V V

P P

Figure 25.5: Maxwell’s rule is derived from the equality of the Gibbs free energy along the
coexisting line (the horizontal line in Fig. 25.4). The figure depicts the needed integral (signed
area)

∫︀
𝑉 𝑑𝑃 along the curve. If the green area and the red area become identical, the vertical thick

dotted line denotes the coexistence condition.

effect of attractive forces. As it is, this equation exhibits the non-monotonic (i.e.,
not thermodynamically realizable) 𝑃𝑉 curve just as the van der Waals equation of
state, so there cannot be any microscopic model for (25.9).400 However, this equation
augmented with Maxwell’s rule is thermodynamically legitimate, and indeed it is the
equation of state of the gas interacting with the Kac potential:

𝜑(𝑟) = 𝜑𝐻𝐶(𝑟/𝜎) + 𝛾3𝜑0(𝛾𝑟/𝜎), (25.10)

where 𝜑𝐻𝐶(𝑥) is the hard core potential: 0 beyond 𝑥 = 1 and ∞ for 𝑥 ≤ 1, 𝜎 is
the hard core diameter, and 𝜑0 is an attractive tail.401 The parameter 𝛾 is a scaling
factor; we consider the 𝛾 → 0 limit (long range but infinitesimal interaction).

25.12 1D Kac potential system may be computed exactly
𝑃𝐻𝐶 is not exactly obtainable if the spatial dimension is 2, 3, · · ·, but in 1-space,
we can obtain it exactly. Therefore, the 1D Kac model (augmented van der Waals
model) is exactly solvable, and exhibits a phase transition.

First, let us use the fact that the ideal gas law can be obtained purely mechanically
as Bernoulli demonstrated long long ago. Look at the trajectories of the particles
(diameter or length 𝜎) (Fig. 25.6). Collisions are just exchange of velocities (the
momentum conservation). Therefore, if we trace the trajectories of the centers of
mass of the particles disregarding the particle sizes, then the trajectories behave just

400Roughly speaking, if the interaction potential is not too long-ranged, if it does not allow
pushing infinitely many particles into a finite volume, and if the total interaction energy is bounded
from below, then the normal thermodynamics is guaranteed.

401Notice that the second term of (25.10) is chosen so that

4𝜋

∫︁ ∞

0

𝛾3𝜑0(𝛾𝑟/𝜎)𝑟
2𝑑𝑟

converges in the 𝛾 → 0 limit, a wide but shallow potential.
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as shown in the right of Fig.25.6 (look at colored line examples in Fig. 25.6): point
masses going through each other ballistically (ideal gas!). Therefore, the equation
of state of the hard ‘rods’ must be identical to the ideal gas law in the space not
covered by the particles, that is 𝐿−𝑁𝜎 or, writing 𝐿 as 𝑉 the volume,

𝑃 (𝑉 −𝑁𝜎) = 𝑁𝑘𝐵𝑇. (25.11)

space

ti
m
e

L L Nσ−
space

Figure 25.6: Trajectories of hard balls in 1D (Left) is just the trajectories of noninteracting
point masses (Right).

So we have shown that statistical mechanics can describe phase transitions. Now,
let us survey how to study the phase diagram for a given substance.

25.13 What are the key points to study the phases?
We wish to map out the equilibrium states in the space spanned by, say, 𝑇 , 𝑃 and
other intensive parameters (usually) as we have seen in Fig. 24.1. To study an or-
dinary geographical map usually we pay attention to the territorial boundaries first.
This means we must understand phase transitions. As we will learn near the phase
transitions (esp., second order phase transitions) fluctuations become so big that any
theory ignoring them does not make sense. However, far away from phase transition
points, we may often ignore (at least qualitatively) fluctuations and simple theoreti-
cal methods often work.

Thus, the study of the phase diagram consists of two pillars: renormalization-
group theory that can handle violent fluctuations and mean-field theory that is con-
venient if we may ignore fluctuations. We will discuss the mean field theory fairly
in detail in this course. The basic idea of renormalization group theory and why it
is important will be discussed in this course, but we will not have enough time to
discuss its technical aspects.
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25.14 Magnets, liquids and binary mixtures share some common features
The correspondence between the Ising model and the lattice gas model suggests that
there are common features in the phase diagrams of a magnet and of a fluid system.
Furthermore, we may interpret the Ising model as a lattice fluid mixture of ‘up’
molecules and ‘down’ molecules (or the fluid as a mixture of molecules and vacan-
cies), so the phase diagram of a binary mixture must share some features with that
of magnets (Fig. 25.7).
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Figure 25.7: The correspondence of the phase diagrams among the magnet, the fluid, and
the binary liquid mixture systems. 𝑇 : temperature, 𝑇𝑐: the critical temperature, ℎ: magnetic
field, 𝑃 : pressure, 𝜇: chemical potential of one component, 𝑚: magnetization per spin, 𝜌: the
number density, 𝑐: the concentration of a particular component. For the magnetic system, the spins
are assumed to be the Ising spins (only two directions are allowed, up or down), and ‘up’ (resp.,
‘down’) in the figure means majority of the spins point upward (resp., downward) (ferromagnetically
ordered). L implies the liquid phase and G the gas phase. I and II denote different mixture phases.
The following correspondences are natural: for the fields ℎ ↔ 𝑃 ↔ 𝜇; for the order parameters
𝑚↔ (𝜌𝐿 − 𝜌𝐺)↔ (𝑐𝐼 − 𝑐𝐼𝐼).

Thus, we can discuss the magnetic system as a representative example.

25.15 Ising model in 𝑑-space: a brief review
We already know spatial dimensionality is crucial for the existence/non-existence of
phase ordering and consequently phase transitions. Phase ordering is possible be-
cause the order can resist thermal fluctuation. To this end microscopic entities must
stand ‘arm in arm.’ The number of entities with which each entity directly interacts
(cooperates) crucially depends on the spatial dimensionality. This is the intuitive
reason why spatial dimensionality matters.

In short, the effect of fluctuations becomes severe and nontrivial, if the spatial
dimensionality is not high.
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Let us look at the effect of spatial dimensionality on the Ising model.

1-Ising model:
We can obtain the free energy (with magnetic field) exactly as we will see in Lecture
25 by, e.g., the transfer matrix method; the phase transition does not occur for 𝑇 > 0
as we have intuitively seen above (Peierls’ argument).402

2-Ising model:
(1) The Onsager solution gives the free energy without magnetic field.403 There is a
phase transition at 𝑇𝑐 > 0 as we already know.
(2) Below the phase transition temperature 𝑇𝑐 there are only two phases correspond-
ing to the up spin phase and the down spin phase, and there is no phase coexis-
tence.404 That is, up and down phases cannot coexist (see Fig. 25.8).
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Figure 25.8: Even the half up and half down fixed boundary spin configuration cannot stabilize
the interface location between up and down phases for 2D Ising model below 𝑇𝑐. The interface
may be understood as a trajectory of a Brownian particle connecting the two phase boundary
points at the boundary (Brownian bridge). If the system size is 𝐿, then its amplitude is

√
𝐿. In

the thermodynamic limit almost surely the observer at a fixed point (say, at the center) who can
observe only a finite volume can observe only one of the phases, and can never see the spin flip in
her lifetime.

(3) Near 𝑇𝑐 there are various nontrivial critical divergences.405

3-Ising model:
(1) No exact evaluation of the free energy is known, but it is easy to demonstrate
that 𝑇𝑐 > 0 (see Peierls’ argument).
(2) It is known that at sufficiently low temperatures there are phase coexistence.406

(3) The critical divergences are non-trivial just as in 2-space.

Beyond 3-space:
Although no exact free energy is known, the existence of positive 𝑇𝑐 is easy to demon-
strate, and the critical divergences around this point are believed to be the same for

402It is not hard to show that 𝑇 = 0 is a phase transition point for this model.
403due to L. Onsager.
404Independently due to M. Aizenman and Y. Higuchi.
405Here, ‘non-trivial’ means that the fluctuation is so large that we cannot use mean-field theory

to study the divergent behavior correctly.
406due to R. L. Dobrushin
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all 𝑑 ≥ 4. This has been established for the dimension strictly greater than 4.407

25.16 Fluctuation can be crucial in 𝑑 < 4
As you have seen above, near the critical point, or the point where ‘strong order’
disappears at last, fluctuation is quite important if the spatial dimensionality is less
than 4. Beyond 4D, however, the effect of fluctuations may not be so pathological,
and perhaps we may largely ignore fluctuation effects. This observation is relevant
to the study of phase transitions as we will see soon.

407due to M. Aizenman. 4-Ising model still defies mathematical studies.
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Q25.1 [Elementary questions]
Are the following statements correct or incorrect? If incorrect, you must explain
why or give a counterexample for the statement. If correct, you must provide a brief
supporting argument. However, if you can quote or point out the relevant statements
in the lecture notes, you need not state your own. [Hint: all the answers are written
somewhere in the lecture notes.]
(1) One of the thermodynamic densities must exhibit discontinuity for a phase tran-
sition to occur.
(2) When a solid phase melts to a liquid phase, the entropy always increases.
(3) No 1D system can exhibit phase transition if the interaction range is finite.
(4) When a first order phase transition occurs between phase I and II, these two
phases can coexist.

Solution.
(1) No. This is required only for first order phase transitions.
(2) No. There is a counterexample. For 3He, crystallization localizes atoms, so the
spin-spin coupling due to exchange of particles is reduced, and the spin order that
exists in liquid is lost.
(3) Yes. This is according to Peierls’ argument or from the PF theorem.
(4) No. A counterexample is the 2-Ising model.

Q25.2 [Stability consequence]
When the temperature is raised under constant pressure, phase I changes into phase
II through a first order phase transition. Show that the transition from I to II re-
quires absorption of heat (latent heat).

Solution.
This is basically answerable with the aid of le Chatelier’s principle, BUT, 𝑆 is NOT
differentiable at the phase transition point. However, the basis of the stability argu-
ment from which le Chatelier’s principle is derived is the convexity of 𝐸 as a function
of 𝑆, and other extensive quantities. This means when Δ𝑆Δ𝑇 > 0, so Δ𝑆 > 0. The
latent heat is this times the transition temperature, so it must be positive (absorbs
heat).

Q25.3 [Reduce equation of state]
The van der Waals equation of state reads

𝑃 =
𝑁𝑘𝐵𝑇

𝑉 −𝑁𝑏
− 𝑎𝑁

2

𝑉 2
. (25.12)

(1) Find the critical temperature 𝑇𝑐, volume 𝑉𝑐 and pressure 𝑃𝑐 in terms of 𝑎, 𝑏 and
𝑘𝐵. [𝑇𝑐 is the temperature, where the 𝑃𝑉 -curve has an inflection point.]
(2) Van der Waals introduced the concept of reduced pressure 𝑝 = 𝑃/𝑃𝑐, reduced
temperature 𝑡 = 𝑇/𝑇𝑐, and reduced volume 𝑣 = 𝑉/𝑉𝑐, and showed that 𝑝 is a
universal function of 𝑡 and 𝑣 (called the reduced equation of state). Find this relation.
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Figure 25.9: The slope is 𝑇 . The straight portion of 𝐸 is the coexisting phase of 1 and 2.
Since 𝐸 must be convex, the slope does not decrease. Therefore, the low temperature phase must
correspond to the smaller-entropy phase.

Solution.
(1)

𝜕𝑃

𝜕𝑉

⃒⃒⃒⃒
𝑇

= − 𝑁𝑘𝐵𝑇𝑐
(𝑉𝑐 −𝑁𝑏)2

+ 2𝑎
𝑁2

𝑉 3
𝑐

= 0, (25.13)

𝜕2𝑃

𝜕𝑉 2

⃒⃒⃒⃒
𝑇

= 2
𝑁𝑘𝐵𝑇𝑐

(𝑉𝑐 −𝑁𝑏)3
− 6𝑎

𝑁2

𝑉 4
𝑐

= 0, (25.14)

From this we get

𝑘𝐵𝑇𝑐
(𝑉𝑐 −𝑁𝑏)2

= 2𝑎
𝑁

𝑉 3
𝑐

,
𝑘𝐵𝑇𝑐

(𝑉𝑐 −𝑁𝑏)3
= 3𝑎

𝑁

𝑉 4
𝑐

. (25.15)

Therefore (taking the ratio of the above equalities), we get

𝑉𝑐 −𝑁𝑏 = 2𝑉𝑐/3 ⇒ 𝑉𝑐 = 3𝑁𝑏. (25.16)

Therefore,

𝑘𝐵𝑇𝑐 =
2𝑎𝑁(2𝑁𝑏)2

(3𝑁𝑏)3
=

8𝑎

27𝑏
. (25.17)

Thus,

𝑃𝑐 =
𝑁

(3𝑁𝑏−𝑁𝑏)
8𝑎

27𝑏
− 𝑎

9𝑏2
=

𝑎

27𝑏2
. (25.18)

(2) We have only to rewrite the van der Waals equation in terms of 𝑝, 𝑡, and 𝑣.

𝑝
𝑎

27𝑏2
=

𝑁8𝑎𝑡/27𝑏

3𝑣𝑁𝑏−𝑁𝑏
− 𝑎 𝑁2

(3𝑁𝑏𝑣)2
. (25.19)

That is,

𝑝 =
27𝑏2

𝑎

𝑁8𝑎𝑡/27𝑏

3𝑣𝑁𝑏−𝑁𝑏
− 27𝑏2

(3𝑏𝑣)2
=

8𝑡

3𝑣 − 1
− 3

𝑣2
. (25.20)
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26 Why critical phenomena are difficult; mean-

field theory

Summary
* How order is lost upon changing 𝑇 is discussed.
* It is explained why the second order phase transition is difficult to study.
* To understand the phase diagram we need renormalization group and mean-field
theory.
* Why large fluctuations near the critical point imply universality is intuitively ex-
plained.
* Rushbrooke’s inequality is demonstrated (as a review of thermodynamics).
* The mean field theory is formulated with the aid of conditional expectations.

Key words
correlation length, central limit theorem, renormalization group, (genuine and triv-
ial) universality, mean-field theory, bifurcation.

What you should be able to do
* You must be able to illustrate what happens if you approach a second order phase
transition by changing 𝑇 .
* You must be able to set up the mean-field equation. There are many ways, but the
formulation in terms of the conditional probability is the most elegant, so memorize
the approach.
* How to solve (or qualitatively understand) mean-field equation graphically.
* You should clearly recognize the limitations of the mean field approach.
* You should be able to explain why critical fluctuations help universality.

26.1 Summary up to this point
What is the phase transition? If a thermodynamic variable is varied and if a math-
ematical singularity (loss of continuity, loss of differentiability, etc.; loss of analyt-
icity408 in short) in a thermodynamic potential is observed, we say there is a phase
transition. That is, a phase transition is characterized by a mathematical singularity
of a thermodynamic potential.

The existence of a singularity requires a very large system (strictly speaking, an
infinitely large system). Thus, to formulate phase transitions mathematically, we
need the thermodynamic limit. In the thermodynamic limit extensive quantities are

408holomorphy, precisely
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all infinite, so we define thermodynamic densities (extensive quantities per particle).
A phase transition may also be characterized by a mathematical singularity in a
thermodynamic density. We have actually seen that statistical mechanics can de-
scribe phase transitions (2-Ising model, D Kac-model, although rather peculiar, the
Bose-Einstein condensation).

Phase transitions are often studied by changing intensive parameters (e.g., tem-
perature and pressure). When two phases coexist, they share the same intensive
parameters (called fields). Therefore, a convenient thermodynamic potential is the
generalized Gibbs free energy for a given amount of the material (𝑁), that is, the
(generalized) Gibbs free energy obtained by Legendre transformation of internal en-
ergy with respect to entropy, volume, magnetization, etc., except for the number
of particles 𝑁 . The Gibbs free energy may lose differentiability with respect to its
natural independent variables (intensive parameters = fields).409 If the differentia-
bility is lost, we say a first order phase transition occurs. If the singularity in Gibbs
free energy is less drastic, generally we say there is a second order phase transition.410

26.2 How is order lost in first order phase transition?
Let us consider how an order is lost upon changing temperature.411 In the case of
the first order phase transition, as briefly discussed in the preceding Lecture, de-
crease in order weakens cooperative interactions, accelerating further decrease of
order.412 For example, in the case of a liquid crystal in which slender molecules align
in the (nematic) liquid crystal phase, increase of temperature randomizes the molec-
ular alignment and make molecular packing harder, causing increase of the volume.
Needless to say, this drastically helps randomization of molecular directions, and the
liquid crystal-isotropic liquid phase transition is first order.

26.3 Typical second order phase transition
As a typical second order phase transition, let us consider the Ising model. Let us

409𝐺 must be continuous. Why?
410There is an infinite order phase transition, where 𝐺 maintains to be 𝐶∞ (infinite-times differ-

entiable) but loses analyticity, that is, formal Taylor expansion ceases to converge. This actually
happens in 2D XY model. Also such a singularity occurs between the stable and metastable
branches of the free energy.

411Warning: This is NOT really a thermodynamic or equilibrium statistical-mechanical expla-
nation.

412If a slight local loss of order could induce something like a domino effect of loss of global order,
it is likely a first order phase transition. The Lindemann criterion illustrates this point; although
the phase transition is determined by the equilibrium condition of the chemical potentials in the
ordered and the disordered phases, instability in the ordered phase seems to occur sufficiently close
to the equilibrium order-disorder phase transition point in the solid-liquid phase transition case.
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approach the phase transition from the high temperature side. Up and down spin
islands grow as 𝑇 is reduced (see Fig. 26.1; the figure is constructed using
http://www.pha.jhu.edu/~javalab/ising/ising.html (no more available?); the
following site is also useful: http://physics.weber.edu/schroeder/software/

demos/IsingModel.html).

increasing ξ

Tc

Figure 26.1: Temperature dependence of spin fluctuations. The right-most figure corresponds to
the critical point. The upper half is the disordered high temperature phase, and the lower half is
the ordered phase. The correlation length increases from left to right.

26.4 Correlation length
The typical size 𝜉 of the islands is called the correlation length.413 We see 𝜉 grows and
actually it diverges at 𝑇𝑐 as 𝜉 ∼ |𝑇 − 𝑇𝑐|−𝜈 , where 𝜈 is a positive universal constant
(one of critical indices). From the low temperature side, in the almost completely or-
dered phase appear the opposite spins like blinking stars. They become spin-flipped
islands, growing bigger and bigger as 𝑇 increases (i.e., 𝜉 grows). Eventually, these
islands coalesce to make a supercontinent.

26.5 Critical fluctuations and slowing down
The patches (islands) of size ∼ 𝜉 appear and disappear, so big fluctuations occur

413⟨𝑠(𝑟)𝑠(0)⟩ ∼ 𝑒−|𝑟|/𝜉 defines 𝜉.
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near the critical point. This is the critical fluctuation. Since large scale change can-
not be completed very quickly, we see increasing space-time scale fluctuations when
𝑇 approaches 𝑇𝑐 from its either side. That is, the dynamics becomes sluggish near
the critical point (called critical slowing down). These fluctuations are not only big
but also statistically highly correlated: the spins within 𝜉 behave similarly, so as
we approach 𝑇𝑐 spin fluctuations become increasingly statistically correlated. Thus,
even on the scale we can observe optically the system is not simply governed by the
law of large numbers.

If such critical fluctuations occur in fluid, we see critical opalescence, which Ein-
stein wished to understand (and created the thermodynamic fluctuation theory we
have already learned in Section 19, esp., 19.4):

http://www.youtube.com/watch?v=cSliO89x7UU

26.6 Scaling invariance of critical fluctuation
Critical fluctuations have a very special property of scaling invariance: from however
large distance you observe the critical fluctuations, they look the same as you observe
them from, say, 1m away. This is exhibited by the following two You Tube movies
due to D. Ashton, excellent and wonderful:

http://www.youtube.com/watch?v=lQxD1PinDbs

http://www.youtube.com/watch?v=MxRddFrEnPc.
We will come back to the second movie soon.

26.7 Divergence of susceptibilities
We know the fluctuation-response relation 18.11: generally,

𝜕𝑋

𝜕𝑥

⃒⃒⃒⃒
𝑦,···

= 𝛽⟨𝛿𝑋2⟩. (26.1)

For example, the (isothermal) magnetic susceptibility 𝜒 is directly related to the
variance of magnetization:

𝜒𝑇 = 𝛽⟨𝛿𝑀2⟩. (26.2)

We just learned the big critical fluctuation, so we can expect that the susceptibilities
become very large near the critical point.

26.8 Critical indices
Empirically the susceptibility diverges as (for ℎ = 0, without magnetic field) (see
Fig. 26.2)

𝜒 ∼ |𝑇 − 𝑇𝑐|−𝛾 = |𝜏 |−𝛾 (ℎ = 0), (26.3)
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Figure 26.2: Schematic illustrations of singular behaviors near the critical point.

where 𝜏 = (𝑇 − 𝑇𝑐)/𝑇𝑐.
We cannot expect smooth increase of the magnetization 𝑚 from zero below 𝑇𝑐:

414

𝑚 ∼ (−𝜏)𝛽 (ℎ = 0, 𝜏 < 0). (26.4)

The divergence of energy (or entropy) fluctuation causes the divergence of specific
heat as

𝐶𝐵 ∼ |𝜏 |−𝛼 (ℎ = 0). (26.5)

𝛼, 𝛽, 𝛾, are positive numbers and are called critical indices. Representative val-
ues can be found in the table below. They are universal numbers. For example,
for any fluid or binary mixture, or magnets (with an easy axis = Ising magnets)
these numbers are common. They are determined by the nature of our world, not
material-scientific trivial or fetish facts.

Ising critical exponents.
Exponents 2-space 3-space 𝑑(≥ 4)-space

𝛼 0 (log) 0.11 0 (jump)
𝛽 1/8 0.325 1/2
𝛾 1.75 1.24 1
𝛿 15 4.8 3
𝜈 1 0.63 1/2

26.9 Critical index (in)equalities
It was empirically noted that several relations hold among these indices such as

𝛼 + 2𝛽 + 𝛾 = 2. (26.6)

Thermodynamically, we can prove
𝛼 + 2𝛽 + 𝛾 ≥ 2. (26.7)

414Notice that there is no logical relation between the divergence of the susceptibility and the
emergence of non-zero magnetization. For Ising models it is proved that these two occur simulta-
neously. The discrepancy seems to be possible only when long-range order is impossible.
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Demonstration of this inequality gives us an excellent opportunity to review elemen-
tary thermodynamics.

26.10 Proof of index inequality (Rushbrooke inequality)
Even around the critical point the system does not become thermodynamically un-
stable. Therefore, inequalities required by the thermodynamic stability conditions
remain valid. For example,415 thermodynamic stability of a magnet implies (the
Gibbs relation in this case is 𝑑𝐸 = 𝑇𝑑𝑆 +𝐵𝑑𝑀 ; 18.7)

𝜕(𝑆,𝑀)

𝜕(𝑇,𝐵)
≥ 0. (26.8)

This inequality can be written explicitly, by expanding the determinant defining the
Jacobian, as

𝜕𝑆

𝜕𝑇

⃒⃒⃒⃒
𝐵

𝜕𝑀

𝜕𝐵

⃒⃒⃒⃒
𝑇

≥ 𝜕𝑆

𝜕𝐵

⃒⃒⃒⃒
𝑇

𝜕𝑀

𝜕𝑇

⃒⃒⃒⃒
𝐵

=
𝜕𝑀

𝜕𝑇

⃒⃒⃒⃒2
𝐵

, (26.9)

where a Maxwell’s relation
𝜕(𝑆, 𝑇 )

𝜕(𝐵,𝑀)
= 1 (26.10)

has been used to obtain the second equality. This implies

1

𝑇
𝐶𝐵𝜒 ≥

𝜕𝑀

𝜕𝑇

⃒⃒⃒⃒2
𝐵

. (26.11)

Introducing the definitions of the critical exponents given above, we obtain

|𝜏 |−𝛼|𝜏 |−𝛾 ≥ |𝜏 |2(𝛽−1). (26.12)

Here, we have ignored all the finite coefficients near the critical point (such as 𝑇−1).416

(26.12) implies that
|𝜏 |−(𝛼+2𝛽+𝛾−2) ≥ 1 (26.13)

is required for 𝜏 → 0. Therefore, the quantity in the parentheses must be nonnega-
tive:

𝛼 + 2𝛽 + 𝛾 ≥ 2. (26.14)

This is called Rushbrooke’s inequality.

415This requires twice differentiability of the potential, so it does not hold exactly at the critical
point, but we may use it in its any neighborhood.

416We have assumed that the critical point is not zero; The 1-Ising model has 𝑇𝑐 = 0, but this is
a pathological example.
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26.11 Fluctuation and universality
Watch Dr Ashton’s movie again. Large scale fluctuations seems to dominate the
scene, and the phenomenon looks the same from however far away you observe it.
Thus, we could guess that microscopic details should not be very important. That
is, we expect the universality: microscopic details do not matter for salient features
of the phenomena (in this case critical phenomena). Indeed, the critical indices for
fluids, binary mixtures, and 3D Ising magnets are identical (cf. Fig. 25.7). The point
is impressively illustrated by Dr Ashton.

26.12 Universality, nontrivial and trivial
A typical and good example of universality is the osmotic pressure of polymer so-
lutions. Irrespective of the polymers and solvents, as long as the polymers are long
enough, and the solvent dissolves polymers well, Fig. 26.3 is quantitative:
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Figure 26.3: The osmotic compressibility 𝜕𝜋/𝜕𝑐 as a function of 𝑋 ∝ the polymer concentration
𝑐. In this case the proportionality constant 𝑋/𝑐 is the only adjustable parameter representing the
specificity of a particular polymer-solvent pair. The curve is the renormalization group result. All
the data for any polymer solution must be on the curve. [based on T. Ohta and A. Nakanishi,
J. Phys. A 16, 4155 (1983); T. Ohta and Y. Oono, Phys. Lett. 89A, 460 (1982). The points are
experiments due to I. Noda, N. Kato, T. Kitano and M. Nagasawa, Macromolecules 14, 668 (1981).].

Here is one parameter we cannot theoretically compute, i.e., the proportionality con-
stant between 𝑋 and 𝑐. However, notice that except for this one parameter, there
is no freedom left: even if you change, solvents, polymers, or temperature, Fig. 26.3
is quantitatively correct. That is, an (uncountably) infinite dimensional space of
polymer solutions is subsumed to a 1-dimensional (one-parameter) world.

You might say we already know examples of universality. For example, we know
(21.13)

𝑃𝑉 =
2

3
𝐸 (26.15)

for any ideal gas irrespective of statistics: if the spatial dimensionality is 3, and the
dispersion relation is 𝜀 ∝ 𝑝2, this is true. Or we know 𝑃𝑉 = 𝐸/3 for phonons and
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photons in 3-space. This is quite universal. However, it is due to the universal-
ity (common quantitative feature) of the elementary entities (without interaction!)
making up the system. In this sense, universality is unsurprising, and trivial. Fur-
thermore, if you modify a system a bit with interactions, the 𝑃𝑉 relation changes
sensitively. That is, infinite ways of changing the system result in infinitely different
modifications of the resulting equation of state.

In contradistinction, the universality discussed in the preceding paragraph is ob-
viously not due to some common quantitative features at the microscopic level. Of
course, the system must be a polymer system, but we use only two features: a poly-
mer is very long, and cannot cross itself; nothing quantitative is required. In this
case, there are infinitely many ways to modify polymer-solvent systems (by simply
changing polymers and solvents), but only one parameter is modified in consequence
(i.e., only 𝑋/𝑐 is modified) as emphasized above. That is, this universal feature is
quite stable against materialistic perturbations. Thus, the above mentioned univer-
sality is deserved to be called the genuine universality.

Elementary statistical mechanics is boring because it emphasizes trivial univer-
sality only.

26.13 Study of phase diagram
The purpose of statistical mechanics is to understand various macroscopic proper-
ties of a given equilibrium system. We know this is equivalent to mapping out its
thermodynamic space. Just as the ordinary maps we are interested in two things:
where the borders are and what each territory looks like. The former corresponds
to the study of phase transitions and the latter to characterized each phase. As we
have already seen in Fig. 24.2 the phase diagram on the thermodynamic space is
complete, but usually we are contented with the diagram on, say, the 𝑃𝑇 -space such
as Fig. 25.7. Let us look at it again:
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Figure 26.4: The shaded area is dominated by fluctuations; if you go away from it along the
arrows, the correlation length diminishes and mean field theory becomes respectable.

To understand boundaries (phase transitions) if you are close to the critical point
or the second order phase transition point, you must deal with fluctuations and
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high correlation (statistical dependence). There, many things would be universal as
we have seen briefly. If away from the critical point, the phase transitions become
first order. The phase transition locations are determined by the equality of the
chemical potentials of the phases between which the transition occurs. Thus, many
small details including small fluctuations that sensitively modify the chemical po-
tentials really matter. If you are away from the critical point (and phase transitions
in general) along the arrows in the figure, then the correlation length reduces and
fluctuation becomes less significant (i.e., microscopic entities are more statistically
independent).

At this juncture watch Ashton’s ‘zooming out’ movie again. Since there is no
qualitative difference along the arrows, to understand the general feature of various
phases, we can study the regions where the correlation length is small and fluc-
tuations are small (i.e., the zoomed-out states). Then, at least qualitatively what
happens at the first order phase transition can also be understood. For example, to
understand ice we could study sufficiently low temperature perfect crystal ice, and
to understand vapor, we can study very high temperature gas (almost an ideal gas).

Thus, the study of the phase diagram consists of two strategies: to roughly un-
derstand the nature of phases we may largely ignore fluctuations and to understand
phase boundaries we need a means to cope with fluctuations. The former is repre-
sented by the mean field theory we will discuss below and the latter by renormaliza-
tion group theory. We cannot go into the latter in this course, but in the following its
crucial mathematical core will be explained. Then, in Section 28 how to explain the
scaling index equality (26.6) using scaling invariance (Kadanoff construction) will be
outlined.

26.14 Central limit theorem
We have realized that near the second order phase transition/critical point, fluctuation be-
comes large, and also strongly correlated. How can we handle such a strongly correlated
fluctuating system? We wish to know the distribution of fluctuations on the mesoscopic
scale (because the correlation lengths are on the mesoscopic scale). If we understand the
mesoscopic fluctuation statistics, we should be able to compute macroscopic observables.
How can we study the mesoscopic fluctuation statistics? We encounter the third pillar of
probability theory: central limit theorem (CLT); recall that the law of large numbers and
large deviation theory are the two of the three pillars we have already utilized.

The law of large numbers may be understood as the statement that the density distri-
bution function of (1/𝑁)

∑︀𝑁
𝑖=1𝑋𝑖 is concentrated to a single point 𝑚 = ⟨𝑋1⟩, if 𝑋𝑖 are iid.

Here comes the other refinement of LLN: the central limit theorem. Instead of 𝑁 if we divide
the partial sum 𝑆𝑁 =

∑︀
𝑋𝑖 with a smaller quantity, say 𝑁3/4, which must be chosen just

right, the density distribution of 𝑆𝑁/𝑁
3/4 might converge to a nice function. In the case of

iid stochastic variables, we know the size of the fluctuation of 𝑆𝑁 is
√
𝑁 ,417 so perhaps

√
𝑁

is the right factor.
If 𝑋𝑖 are iid418 with the distribution not too broad, this guess is correct. We have the

417Recall 𝑆𝑁 = 𝑁⟨𝑋⟩+𝑂[
√
𝑁 ].

418The CLT in this form holds more generally even if 𝑋𝑖’s are not iid, but are correlated. If the
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central limit theorem:

Central Limit Theorem
If 𝑋𝑖 are assumed to be iid with a finite variance, the density distribution func-
tion of (𝑆𝑁 −𝑁𝑚)/

√
𝑁 converges to a Gaussian function 𝑁(0, 𝑉 ), where

𝑚 = ⟨𝑋1⟩ and 𝑉 = ⟨(𝑋1 −𝑚)2⟩.

This allows us to calculate expectation values of quantities dependent on fluctuations.419

26.15 We need much more general CLT to understand critical phenomena
Unfortunately, the system we are interested in are strongly interacting systems, so 𝑋𝑖 are
not at all statistically independent, but strongly correlated rather globally. Therefore, to
understand second-order phase transition, we need a vast generalization of the usual CLT to
the case with strong correlations. This extension is the renormalization group theory. Let
𝑋𝑖 be the 𝑖th spin. Then, 𝑀 =

∑︀
𝑋𝑖 is the magnetization. Let us consider this in the

paramagnetic phase (i.e., 𝑀 = 0 on the average). We are interested in its fluctuation. Due
to strong correlation, now we cannot choose 𝑦 = 1/2 in 𝑀/𝑁𝑦 to have a nice distribution
function in the thermodynamic limit; we must choose 𝑦 in a highly nontrivial fashion, which
is related to the critical indices.420

26.16 Misunderstanding of CLT
In elementary thermal physics courses, CLT is invoked to explain intuitively why the exis-
tence of many particles makes macroobservables almost deterministic. However, as clearly
noted in this course, the law of large numbers is the fundamental reason. If you know how to
prove CLT, you will agree that CLT is much more sophisticated and restricted. Usual use of
CLT to explain why statistics works is like showing continuity by showing differentiability.

This abuse of math is likely to be caused by misunderstanding of CLT. The main claim
of CLT is, after scaling, the nontrivial distribution emerges that is system-size (sample-size)
independent. This is renormalization group!

We need only LLN in elementary statistical mechanics. Every instructor should under-
stand this.

26.17 Mean field Idea
Sufficiently away from critical points/second order phase transition points, the equi-
librium average of a function of several spins 𝑓(𝑠0, 𝑠1, · · · , 𝑠𝑛) may be computed

correlation decays sufficiently quickly or if 𝑋𝑖 make a Markov process, the CLT with
√
𝑁 holds.

However, the variables we are interested in here behave much more strongly correlated, and the
factor

√
𝑁 is not appropriate.

419⟨⟨Central limit theorem vs. large deviation⟩⟩ The reader might claim that it has already
been used to understand fluctuations: isn’t the Gaussian nature of fluctuation the sign of central
limit theorem? This is only accidental for systems with finite variances. Fluctuation studies the
deviation of the average from the true average, when the system size is small. We ask how the
fluctuation of the mean disappears as the system size increases. In contrast, the central limit
theorem is concerned with small deviations from the mean that appropriately scales with the system
size. Fortunately (or unfortunately), for iid with finite variance they give the same conclusion about
fluctuations.

420Beyond this point, you can go to my graduate school lecture notes (Chapter 5) or “Infor-
mal Notes on Renormalization and Phase Transitions” (both downloadable). A more elementary
explanation may be found in The Nonlinear World (Springer 2012) (Chapter 3).
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through separately averaging all the spins. Furthermore, if we assume ⟨𝑠𝑘𝑖 ⟩ ∼ ⟨𝑠𝑘⟩𝑘
(i.e., if we assume that fluctuations are not large), we arrive at

⟨𝑓(𝑠0, 𝑠1, · · · , 𝑠𝑛)⟩ ≃ 𝑓(⟨𝑠0⟩, ⟨𝑠1⟩, · · · , ⟨𝑠𝑛⟩). (26.16)

This is the basic idea of the mean field approach. Here, let us proceed slightly more
systematically.

26.18 Quantitative formulation of mean field theory: fundamental equa-
tion
Let us look at an elementary identity of probability theory. If ∪𝑖𝐵𝑖 = Ω and
𝐵𝑖 ∩ 𝐵𝑗 = ∅ for 𝑖 ̸= 𝑗 (i.e., {𝐵𝑖} is a partition of the sample space Ω), then (Fig.
26.5)

𝐸 (𝐸(𝐴|𝐵𝑖)) =
∑︁
𝑖

𝑃 (𝐵𝑖)𝐸(𝐴 |𝐵𝑖) = 𝐸(𝐴). (26.17)

That is, the average of a conditional expectations over all the conditions is equal to
the unconditional average.
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Figure 26.5: (26.17) is illustrated. Suppose 𝐴 is something (shade in the figure) distributed
on the sample space Ω which is partitioned into 𝐵1, · · · , 𝐵5. In each partition we can define the
average on it 𝐸(𝐴 |𝐵𝑖). If the probability for event 𝐵𝑖 to happen is 𝑃 (𝐵𝑖), the average of 𝐴 over
Ω is given by (26.17).

Let us choose as 𝐵𝑖 a particular configuration ‘𝑖’ {𝑠1, · · · , 𝑠2𝑑} of all the spins
interacting with the ‘central spin’ 𝑠0 on a 𝑑-cubic lattice (Fig. 26.6). Notice that if
𝑠1, · · · , 𝑠2𝑑 are fixed, the central 𝑠0, which is interacting only with these neighboring
spins, is totally decoupled from the rest of the world.
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Figure 26.6: The central spin 𝑠0 and its nearest neighbor surrounding spins 𝑠1, · · · , 𝑠2𝑑. If
𝑠1, · · · , 𝑠2𝑑 are fixed, 𝑠0 is walled by them and is decoupled from the rest of the world.
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Therefore, to study the distribution of 𝑠0 = ±1, we have only to compute its energy
in the given environment and to make Boltzmann factors to average as follows:

𝐸(𝑠0|𝑠1, · · · , 𝑠2𝑑) =
∑︀

𝑠0
𝑠0𝑒

𝛽𝐽𝑠0(𝑠1+···+𝑠2𝑑)+𝛽ℎ𝑠0∑︀
𝑠0
𝑒𝛽𝐽𝑠0(𝑠1+···+𝑠2𝑑)+𝛽ℎ𝑠0

= tanh[𝛽ℎ+ 𝛽𝐽(𝑠1 + · · ·+ 𝑠2𝑑)].

(26.18)
Because 𝐸(𝑠0) = 𝐸 (𝐸(𝑠0|𝑠1, · · · 𝑠2𝑑)), we obtain

⟨𝑠0⟩ = ⟨tanh [𝛽ℎ+ 𝛽𝐽(𝑠1 + · · ·+ 𝑠2𝑑)]⟩. (26.19)

This is an exact relation into which we may introduce various approximations to
construct mean field approaches.

26.19 The crudest version of the mean-field theory
Now, to compute the RHS of (26.19), we must introduce some approximation. The
most popular (and simple-minded) version is (26.16) or more concretely for the
present example:

⟨tanh[𝛽ℎ+ 𝛽𝐽(𝑠1 + · · ·+ 𝑠2𝑑)]⟩ ≃ tanh[𝛽ℎ+ 𝛽𝐽⟨𝑠1 + · · ·+ 𝑠2𝑑⟩]. (26.20)

Therefore, for 𝑚 = ⟨𝑠0⟩, we obtain a closed equation (consistency equation)

𝑚 = tanh[𝛽(2𝑑𝐽𝑚+ ℎ)]. (26.21)

2𝑑𝐽𝑚 + ℎ may be understood as an effective magnetic field acting on 𝑠0, so this
is called the mean field (sometimes called the molecular field as well). This is the
etymology of the name of the approximation method being considered.

26.20 How to solve the consistency equation
Let 2𝑑𝛽𝐽𝑚 = 𝑥. (26.21) reads

𝑥 = 2𝑑𝛽𝐽 tanh(𝑥+ 𝛽ℎ). (26.22)

For simplicity, let us assume ℎ = 0. We have to solve

𝑥 = 2𝑑𝛽𝐽 tanh𝑥. (26.23)

This may be graphically solved (Fig. 26.7).

The bifurcation421 from the case with a single solution to that with 3 solutions

421⟨⟨Bifurcation⟩⟩ A phenomenon that the solution (or the solution set) changes its character is
called bifurcation. There are many types, and the one we encounter here is a pitchfork bifurcation;
if we know this, the exchange of the stability of the branches immediately tells us the stabilities of
the branches as illustrated in the text.
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Figure 26.7: The solution to (26.23) may be obtained graphically.

occurs at 2𝑑𝛽𝐽 = 1. That is, this gives the phase transition temperature 𝑇𝑐. 𝑚
increases as |𝑇 − 𝑇𝑐|1/2 (i.e., the critical exponent 𝛽 = 1/2).

To conclude that the bifurcation actually signifies the phase transition (within
the mean-field approximation), we must check that the nonzero solutions are the
equilibrium solutions. That is, we must demonstrate that the 𝑚 ̸= 0 solutions have
a lower free energy than the 𝑚 = 0 case. The best way may be to study the bifurca-
tion diagram and check the stability of the solution under small perturbations; if the
state is a stable equilibrium, small deviation from the state will decay. The stability
of 𝑚 ̸= 0 state is obvious.

x

Tc

T
stable

stable

stable

unstable

Figure 26.8: The stability of the solution to (26.23) may also be understood graphically.

26.21 How reliable is the mean field theory?
We have introduced the idea of mean field theory to study the system thermodynam-
ics sufficiently away from critical points. Therefore, the mean field theory cannot
generally assert anything about the phase transition. It cannot guarantee the exis-
tence of phase transition (esp., second order phase transition) even if it concludes
that there is one. Recall that even for 𝑑 = 1, the mean field theory (a simple version
we just discussed) asserts that there is a second order phase transition at some finite
𝑇 . We know this cannot be true. Even in the case where a phase transition occurs, it
cannot reliably predict whether the phase transition is continuous or not. However,
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if fluctuation effects are not serious, then the mean field results become qualitatively
reliable. Thus, it is believed that if 𝑑 ≥ 4 (especially 𝑑 > 4), for fluids and magnets,
the simplest mean field results are generally qualitatively correct.

However, if a mean field theory concludes that there is no ordering phase tran-
sition, this conclusion sounds very plausible. Since mean field theory ignores fluc-
tuations, it should overestimate the ordering tendency and if a mean field theory
still tells us that there is no ordering, this assertion is likely to be true. For the
ferromagnetic Ising model this expectation has been vindicated. The same idea tells
us that the mean field critical temperature should be the upper bound of the true
critical temperature: 𝑇𝑐 ≤ 𝑇𝑐, mean.

26.22 Use of mean-field approach: practical guide
Generally speaking, mean-field approaches may be relied upon, if the fluctuation
effect is not decisive:
(1) If the spatial dimensionality is sufficiently high, then ‘spins’ gang up against
thermal fluctuations;
(2) If the first order phase transition is with a big ‘jump,’ then fluctuations may not
easily be able to fill the gap that must be jumped.
Thus, these cases are (often) amenable to mean-field approaches (at least qualita-
tively).

Perhaps, practically, we may summarize the use of mean field method as follows:
we should not swallow the results of the method uncritically (especially as to the
phase transitions), but since the method is easy to use in many cases, it is worth
trying first.
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27 Improving mean field and transfer matrix

Summary
* Mean field theory can be somewhat improved, if the constraints imposed on the
spin variables are honestly taken into account.
* Transfer matrix technique is outlined.

Key words
mean-field theory, transfer matrix, Perron-Frobenius’ theorem, Perron-Frobenius
eigenvalue

What you should be able to do
* Remember that we should respect the algebraic structure inherent in the system.
* You must be able to set up the self-consistency equation for mean field approaches.
* You must practically be able to set up transfer matrices for 1D finite range models.
* Memorize the Perron-Frobenius theorem.

27.1 Naive mean field approach: a review
Let us review the simplest mean-field approach in detail: the 1D Ising chain whose
Hamiltonian is

𝐻 = −𝐽
∑︁
𝑖

𝑠𝑖𝑠𝑖+1 − ℎ
∑︁
𝑖

𝑠𝑖. (27.1)

We have derived the fundamental equality, which reads for the present case as

⟨𝑠0⟩ = ⟨tanh[𝛽𝐽(𝑠−1 + 𝑠1) + 𝛽ℎ]⟩. (27.2)

The naivest mean-field approach is to use the following type of approximation:
⟨𝑓(𝑥)⟩ ≃ 𝑓(⟨𝑥⟩). Since we may assume that the equilibrium single phase is transla-
tionally symmetric, ⟨𝑠0⟩ = ⟨𝑠±1⟩ = 𝑚. Then, with the above mentioned approxima-
tion (27.2) becomes

𝑚 = tanh[2𝛽𝐽𝑚+ 𝛽ℎ]. (27.3)

(27.3) reads
2𝛽𝐽𝑚+ 𝛽ℎ = 2𝛽𝐽 tanh[2𝛽𝐽𝑚+ 𝛽ℎ] + 𝛽ℎ (27.4)

or
𝑥 = 2𝛽𝐽 tanh𝑥+ 𝛽ℎ. (27.5)

Here, we will not discuss ℎ, so let us set ℎ = 0. Then,

𝑥 = 2𝛽𝐽 tanh𝑥. (27.6)
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Thus, 2𝛽𝐽 = 1 determines the critical point: 𝑇𝑐 = 2𝐽/𝑘𝐵.

Everyone knows this is wrong. Intuitively, ordering is hindered by fluctuations,
so, if you ignore the effect of fluctuations, then ordered phases tend to be stable
at higher temperatures. Therefore, the order-disorder transition point estimated by
a mean-field approach tends to be an overestimation at best; the predicted phase
transition may not even exist as in this case.

27.2 Improving mean field approach
There is, however, a room to improve the mean field theory. We know 𝑠2 = 1. Using
this, we can handle fluctuations in a better way. Let us expand (27.2). Notice that
tanh𝑥 can be expanded into an odd power series:

tanh𝑥 = 𝑥− 1

3
𝑥3 +

2

15
𝑥5 + · · · . (27.7)

In our case ℎ = 0, so we need odd powers of 𝑠−1 + 𝑠1. For example,

(𝑠−1+𝑠1)
3 = 𝑠3−1+3𝑠2−1𝑠1+3𝑠−1𝑠

2
1+𝑠

3
1 = 𝑠−1+3𝑠1+3𝑠−1+𝑠1 = 4(𝑠−1+𝑠1). (27.8)

Analogously, any odd power of 𝑠−1 + 𝑠1 is proportional to 𝑠−1 + 𝑠1. Therefore, we
must have the following identity if 𝑠𝑖 takes only ±1 with an appropriate constant 𝐴:

tanh[𝛽𝐽(𝑠−1 + 𝑠1)] = 𝐴(𝑠−1 + 𝑠1). (27.9)

𝐴 is determined by substituting ±1 to the spins:

tanh(2𝛽𝐽) = 2𝐴. (27.10)

Therefore, (27.2) reads (with ℎ = 0)

⟨𝑠0⟩ =
tanh 2𝛽𝐽

2
⟨𝑠−1 + 𝑠1⟩. (27.11)

That is, we have obtained an exact relation:

𝑚 = 𝑚 tanh(2𝛽𝐽). (27.12)

We know | tanh(2𝛽𝐽)| < 1, so unless 𝑇 = 0, 𝑚 = 0. Therefore, there is no phase
transition for 𝑇 > 0. Mean field theories may not be that bad!422

At this juncture, reread 26.22, especially, when mean-field approaches may be
OK.

422However, this seems to be a very lucky case; we have an exact formula! Generally speaking,
you must not trust mean field theoretical results too much as to the phase transitions.
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27.3 Transfer matrix method
To conclude the second-order phase transition, let us discuss one general method to
get the free energy exactly. Let us consider a 1D-Ising model with the Hamiltonian423

given by

𝐻 = −𝐽
𝑁−1∑︁
𝑖=1

𝑠𝑖𝑠𝑖+1 − ℎ
𝑁∑︁
𝑖=1

𝑠𝑖. (27.13)

Let us define the partition function 𝑍𝑁(+) for the length 𝑁 spin chain with the 𝑁th
spin up:

𝑍𝑁(+) =
∑︁

{𝑠𝑛}𝑁−1
𝑛=1

𝑒𝛽[𝐽(+1)𝑠𝑁−1+ℎ(+1)]𝑒𝛽[𝐽𝑠𝑁−1𝑠𝑁−2+ℎ𝑠𝑁−1] · · · 𝑒𝛽[𝐽𝑠2𝑠1+ℎ𝑠2]𝑒𝛽ℎ𝑠1 . (27.14)

We can analogously define the partition function 𝑍𝑁(−) for the length 𝑁 spin chain
with the 𝑁th spin down. In terms of these, we can make 𝑍𝑁+1(±) as

𝑍𝑁+1(±) =
∑︁
𝑠=±1

𝑒±𝛽[𝐽𝑠+ℎ]𝑍𝑁(𝑠). (27.15)

Therefore, if we introduce the vector

𝑍𝑁 =

(︂
𝑍𝑁(+)
𝑍𝑁(−)

)︂
, (27.16)

we can write
𝑍𝑁+1 = 𝑇𝑍𝑁 , (27.17)

where 𝑇 , called the transfer matrix,424 is defined as

𝑇 =𝑀𝑎𝑡𝑟(𝑒𝛽[𝐽𝑠𝑠
′+ℎ𝑠]) =

(︂
𝑒𝛽𝐽+𝛽ℎ 𝑒−𝛽𝐽+𝛽ℎ

𝑒−𝛽𝐽−𝛽ℎ 𝑒𝛽𝐽−𝛽ℎ

)︂
. (27.18)

Notice that
𝑍𝑁 = (1, 1)𝑍𝑁 . (27.19)

423Strictly speaking, the term proportional to 𝐽 is the Hamiltonian of the system itself, and
the term proportional to ℎ is the potential energy the system has between the system making the
magnetic field ℎ.

424⟨⟨The origin of the transfer matrix method⟩⟩ The method was devised by Kramers and
Wannier: Phys. Rev. 60, 252 (1941). For a continuum model, an integral equation approach can
be used and was devised by H. Takahashi almost simultaneously in 1942 (Proc. Phys-Math. Soc.
Japan 24, 60 (1942)). He showed that 1D short-range systems cannot have any phase transition
for 𝑇 > 0. [In 1941 Japan attacked Pearl Harbor; in 1942 Fermi and collaborators succeeded in
nuclear chain reaction.]
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Repeated use of the recursion (27.17) results in

𝑍𝑁 = 𝑇𝑁

(︂
𝑒𝛽ℎ

𝑒−𝛽ℎ

)︂
. (27.20)

In this case the first spin is free to point up or down. For a ring of𝑁 spins (𝑠1 = 𝑠𝑁+1),
as we see immediately, 𝑍𝑁 = 𝑇𝑟 𝑇𝑁 .

27.4 How to compute the product of matrices
The easiest method to compute (27.20) is to use an orthogonal transformation (or
more generally unitary transformation) to convert 𝑇 into a diagonal form:425

𝑇 = 𝑈−1

(︂
𝜆1 0
0 𝜆2

)︂
𝑈, (27.21)

where 𝜆1 and 𝜆2 are eigenvalues of 𝑇 , and 𝑈 is the orthogonal transformation needed
to diagonalize 𝑇 . Introducing (27.21) into (27.20), we obtain

𝑍𝑁 = 𝑈−1

(︂
𝜆𝑁1 0
0 𝜆𝑁2

)︂
𝑈

(︂
𝑒𝛽ℎ

𝑒−𝛽ℎ

)︂
. (27.22)

Therefore, we finally have the following structure:

𝑍𝑁 = 𝑎𝜆𝑁1 + 𝑏𝜆𝑁2 , (27.23)

where 𝑎 and 𝑏 are nonzero real numbers. If we assume 𝜆1 > |𝜆2|, 𝑎 is positive, and,
since 𝑁 ≫ 1, the first term dominates 𝑍𝑁 . Therefore, the free energy per spin is
given by

𝑓 = −𝑘𝐵𝑇 log 𝜆1. (27.24)

Depending on the boundary conditions, the exact formula for the partition function
changes, but the free energy per spin (this is the only quantity meaningful in the
thermodynamic limit 𝑁 →∞) depends only on the largest eigenvalue of the transfer
matrix that is not dependent on the boundary condition.

27.5 Why there is no phase transition in 1-space
Let us discuss why there is no phase transition for 𝑇 > 0 in 1D finite-range interac-
tion systems from the transfer matrix point of view. The free energy could exhibit
singularity if 𝑍 ≤ 0, but this does not happen, because 𝑍 is a sum of positive terms.

425if impossible, in a Jordan normal form. A necessary and sufficient condition for a matrix 𝑇 to
be diagonalizable is that it is normal: 𝑇 *𝑇 = 𝑇𝑇 *. If all the eigenvalues are distinct, the matrix
is normal. In the present case, the eigenvalues are distinct, so the matrix is diagonalizable.
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As long as 𝑇 > 0, 𝐾 is finite, so all the elements of the transfer matrix are without
any singularity as a function of 𝑇 426 (and ℎ), and eigenvalues are algebraic func-
tions427 of the entire functions of 𝑇 and ℎ. Therefore, as long as eigenvalues are
finite, their singularities are branch points.428 The branch points of the eigenvalues
occur when they change their multiplicities (digeneracies), so the multiplicity of the
largest eigenvalue is of vital importance. The key theorem we need is the following
famous and important theorem:

Theorem [Perron and Frobenius]429

Let 𝐴 be a square matrix whose elements are all non-negative, and there is a pos-
itive integer 𝑛 such that all the elements of 𝐴𝑛 are positive. Then, there is a non-
degenerate real positive eigenvalue 𝜆 such that
(i) |𝜆𝑖| < 𝜆, where 𝜆𝑖 are eigenvalues of 𝐴 other than 𝜆,430

(ii) the elements of the eigenvector belonging to 𝜆 may be chosen all positive. ⊓⊔
This special real eigenvalue giving the spectral radius is called the Perron-Frobenius
eigenvalue.

Since the transfer matrix is with positive elements, the logarithm of its Perron-
Frobenius eigenvalue gives the free energy per spin. If the number of states for each
1D element is finite and the interaction range is finite, then no phase transition oc-
curs for 𝑇 > 0, because the transfer matrix is finite dimensional.

27.6 Onsager obtained the exact free energy of 2-Ising model
Onsager used the transfer matrix method to evaluate the partition function of the
2-Ising model on the square lattice exactly.431,432 There are people who say that

426The elements of the transfer matrix are entire functions; a function that is holomorphic (= no
singularities) except at infinity is called an entire function.

427An algebraic function of {𝑥𝑖} is a function that can satisfy a polynomial whose coefficients are
polynomials of {𝑥𝑖}. An entire function is a function whose singularity is only at infinity.

428For example, consider
√
𝑧. This is real if 𝑧 > 0 and have two values, but for 𝑧 = 0 there is only

one value. In this case, 𝑧 = 0 is an example of the branch point. Take 𝑥2 − 2𝑧𝑥+ 1 = 0. The roots
are algebraic functions of 𝑧: 𝑥 = 𝑧±

√
𝑧2 − 1. Therefore, 𝑧 = 1 is a branch point for 𝑥. Notice that

𝑑𝑥/𝑑𝑧 = 1± 𝑧/
√
𝑧2 − 1, so at the branch point, the derivative ceases to exist (for this example).

429For a succinct proof, see the P504 course note.
430That is, 𝜆 gives the spectral radius of 𝐴.
431⟨⟨Onsager’s biography⟩⟩ See C. Longuet-Higgins and M. E. Fisher, “Lars Onsager: November

27, 1903-October 5, 1976,” J. Stat. Phys., 78, 605 (1995). This is an Onsager’s biography everyone
can enjoy. According to this, Onsager applied the transfer matrix method to the strip of width 2,
3 and 4 lattice points, and constructed a conjecture from these results, then confirmed it for the
width 5 strip and closed in on the general formula.

“His statistical mechanics were popularly known as ‘Advanced Norwegian I’ and ‘Advanced
Norwegian II’.” He was fired more than once for his poor teaching, and his Nobel-prize winning
dissertation intended for his PhD was rejected as insufficient from his alma mater.

432Onsager’s much greater contribution to statistical physics is his contribution to nonequilibrium
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Onsager’s result for the first time demonstrated that the equilibrium statistical me-
chanics framework could capture phase transition, but Peierls’ work was far before
the exact solution.

Exact solutions are very useful of course, but the reasons for the possibility of exact
solutions could be rather unimportant peculiarities from the physics point of view.
Therefore, it is not productive to rely on exact solutions to construct general theories.

theory, which we have glanced at already. This point seems often ignored as we read explicitly in S.
G. Brush, Statistical Physics and the Atomic Theory of Matter, from Boyle and Newton to Landau
and Onsager (Princeton UP, 1983).
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Q27.1 [Ising on diamond lattice]
Consider Ising spins on the diamond lattice (without an external magnetic field ℎ).
The interactions of the spins are restricted to the nearest neighbor pairs.
(1) Write down the fundamental equation for this system corresponding to

⟨𝑠0⟩ = ⟨tanh [𝛽𝐽(𝑠1 + · · ·+ 𝑠2𝑑)]⟩ (27.25)

on the 𝑑-cubic lattice.
(2) What is the critical point, if you use the simplest mean-field theory that uses the
approximation ⟨tan(· · ·)⟩ = tan(⟨· · ·⟩)?
(3) This is a three-dimensional system, so there is definitely a positive critical tem-
perature 𝑇𝑐. What can you say about this true 𝑇𝑐 from your result in (2)?

Solution.
(1) This is quite the same as is explained in the notes. On the diamond lattice one
spin has only 4 nbh spins, so

⟨𝑠0⟩ = ⟨tanh [𝛽𝐽(𝑠1 + · · ·+ 𝑠4)]⟩, (27.26)

where 𝑠1, · · · , 𝑠4 are the spins connected to 𝑠0 with the C-C bonds.
(2) The naivest approach gives

⟨𝑠0⟩ = tanh [𝛽𝐽⟨𝑠1 + · · ·+ 𝑠4⟩] . (27.27)

Expecting the translationally symmetric magnetization,

𝑚 = tanh 4𝛽𝐽𝑚 (27.28)

is the crudest mean-field equation. This means 𝑥 = 4𝛽𝐽 tanh𝑥, so 𝑇𝑐 = 4𝐽/𝑘𝐵.
(3) Thermal fluctuation tends to be against ordering, so theories ignoring fluctua-
tions overestimate the ordering effect, pushing the critical point up. Thus, we may
conclude that the critical temperature of the Ising model on a diamond lattice must
not be higher than 4𝐽/𝑘𝐵. Actually, we may guess the true 𝑇𝑐 is far less than this.
(𝑇𝑐 = 2.7𝐽/𝑘𝐵

433)

Q27.2 [Improving diamond lattice]
We have derived in Q26.1 the fundamental equation for the starting point of the
mean field approaches for the diamond lattice as

⟨𝑠0⟩ = ⟨tanh[𝛽𝐽(𝑠1 + · · ·+ 𝑠4)]⟩. (27.29)

Let us be better than Q27.1. We wish to exploit the fact that 𝑠2 = 1.
(1) Expanding tanh in a power series, show that

tanh[𝛽𝐽(𝑠1 + · · ·+ 𝑠𝑘)] = 𝐴(𝑠1 + 𝑠2 + 𝑠3 + 𝑠4) +𝐵(𝑠1𝑠2𝑠3 + 𝑠1𝑠3𝑠4 + 𝑠2𝑠3𝑠4 + 𝑠1𝑠2𝑠4).
(27.30)

433J W Essam and M F Sykes, Physica 29, 378 (1963).
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That is, any odd power of (𝑠1+ 𝑠2+ 𝑠3+ 𝑠4) is written as a sum of (𝑠1+ 𝑠2+ 𝑠3+ 𝑠4)
and (𝑠1𝑠2𝑠3 + 𝑠1𝑠3𝑠4 + 𝑠2𝑠3𝑠4 + 𝑠1𝑠2𝑠4).
(2) Determine 𝐴 and 𝐵 by setting 𝑠 = ±1 so that (28.46) holds, or show that

𝐴 =
1

8
(tanh 4𝛽𝐽 + 2 tanh 2𝛽𝐽). (27.31)

(3) Now, introducing (28.46) into (28.45), we get the following equation

⟨𝑠0⟩ = 𝐴⟨𝑠1 + 𝑠2 + 𝑠3 + 𝑠4⟩+𝐵⟨𝑠1𝑠2𝑠3 + 𝑠1𝑠3𝑠4 + 𝑠2𝑠3𝑠4 + 𝑠1𝑠2𝑠4⟩. (27.32)

⟨𝑠0⟩ = ⟨𝑠1⟩ = · · · = 𝑚 is the magnetization per spin, so (28.48) reads

𝑚 = 4𝐴𝑚+ 4𝐵⟨𝑠1𝑠2𝑠3⟩. (27.33)

Notice that up to this point there is NO APPROXIMATION, but, unfortunately, we
cannot solve (28.49). Now, let us introduce the approximation

⟨𝑠1𝑠2𝑠3⟩ = 𝑚3. (27.34)

Then, our ‘approximate’ mean field equation is

𝑚 = 4𝐴𝑚+ 4𝐵𝑚3. (27.35)

What is the condition that determines the phase transition? [Hint. At what value
of 𝐴 is there a bifurcation434?]

Solution.
(1) Checking first 2 or three terms in the expansion of tanh is practically all right.

However, if we wish to ‘prove’ (28.46), we can proceed as follows. Generally we
have an odd power (𝑠1 + 𝑠2 + 𝑠3 + 𝑠4)

𝑚, where 𝑚 is an odd positive integer. If we
expand this, (e.g., multinomial theorem) we obtain for 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑚 (𝑎, · · · , 𝑑
are nonnegative integers)

𝑠𝑎1𝑠
𝑏
2𝑠

𝑐
3𝑠

𝑑
4.

There is a perfect permutation symmetry among 𝑠1, · · · , 𝑠4, so we have only to con-
sider the types of terms as follows [Do not honestly expand tanh.]

𝑠𝑚1 = 𝑠1

𝑠𝑚−1
1 𝑠2 = 𝑠2,

𝑠𝑚−2
1 𝑠22 = 𝑠1,

𝑠𝑚−2
1 𝑠2𝑠3 = 𝑠1𝑠2𝑠3.

𝑠𝑚−3
1 𝑠32 = 𝑠2,

𝑠𝑚−3
1 𝑠22𝑠3 = 𝑠3

𝑠𝑚−3
1 𝑠2𝑠3𝑠4 = 𝑠2𝑠3𝑠4

434Recall ‘bifurcation’ implies the change of number of (real) roots.
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Therefore, summing all these terms, we must have (28.46).
(2) For all 𝑠 being +1 case:

tanh(4𝛽𝐽) = 4𝐴+ 4𝐵.

For one −1
tanh(2𝛽𝐽) = 2𝐴− 2𝐵.

Other possibilities do not give any new relation. From these, we get

𝐴 = (1/8)(tanh 4𝛽𝐽 + 2 tanh 2𝛽𝐽), 𝐵 = (1/8)(tanh 4𝛽𝐽 − 2 tanh 2𝛽𝐽).

(3) We must solve 𝑚 = 4𝐴𝑚+ 4𝐵𝑚3. One way is to follow the lecture notes, i.e., a
graphical method. This tells us that when the slope of 4𝐴𝑚+ 4𝐵𝑚3 at 𝑚 = 0 is 1,
bifurcation occurs. Hence, 4𝐴 = 1 or

tanh 4𝛽𝐽 + 2 tanh 2𝛽𝐽 = 2. (27.36)

You need not solve this, but notice that the 𝑇𝑐 obtained from this must be smaller
than that obtained from 4𝛽𝐽 = 1 (due to a better approximation).

Q27.3 [Interacting particles on lattice]
At each lattice site of 1D lattice is a particle which can take the ground state and
excited state. Only nearest neighbor excited state can interact and the excitation
energy required is 𝜀 (> 0). The Hamiltonian may be written as

ℋ = −𝐽
∑︁
𝑖

𝜎𝑖𝜎𝑖+1 + 𝜀
∑︁
𝑖

𝜎𝑖, (27.37)

where 𝜎𝑖 = 0 denotes the ground state, and 𝜎𝑖 = 1 the excited state. Find the free
energy per particle (i.e., write down the transfer matrix and compute its eigenvalues).

Solution.
The transfer matrix can be made as follows.

𝑇 =
0 1

0 1 1
1 𝑒−𝛽𝜀 𝑒𝛽𝐽−𝛽𝜀

Therefore, the characteristic equation reads

(1− 𝜆)(𝑒𝛽𝐽−𝛽𝜀 − 𝜆)− 𝑒−𝛽𝜀 = 𝜆2 − 𝜆(1 + 𝑒𝛽(𝐽−𝜀)) + 𝑒𝛽(𝐽−𝜀) − 𝑒−𝛽𝜀 = 0.

Hence,

𝜆 =
1

2

(︂
1 + 𝑒𝛽(𝐽−𝜀) ±

√︁
(1− 𝑒𝛽(𝐽−𝜀))2 + 4𝑒−𝛽𝜀

)︂
.
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+ gives the Perron-Frobenius eigenvalue, so we can read off the free energy.

Q27.4 [Adsorption with interactions]
There is a long 1D lattice of adsorption points. Each adsorption point can accom-
modate at most one gas particle. The state of the lattice may be described by
the adsorption pattern {𝜎𝑖}, where 𝜎𝑖 = 1 if the 𝑖th adsorption point is occupied,
and 𝜎𝑖 = 0, otherwise. The adsorbed particles interact with each other if they are
adjacent; the system energy ℋ may be described as

ℋ = −𝜀
∑︁
𝑖

𝜎𝑖𝜎𝑖+1. (27.38)

This adsorbing 1D lattice is put in a very large box containing a gas that may be
used as a chemostat for the adsorbing particles. The chemical potential of the gas
may be assumed to be 𝜇, a constant. We wish to determine the average coverage 𝜃
of the lattice by the gas particles.
(1) Write down the grand canonical partition function Ξ𝑀 for the 1D lattice system
of length 𝑀 (do not try to compute the sum). Notice that the total number of the
particles on the lattice may be written as 𝑁 =

∑︀
𝑖 𝜎𝑖. The temperature is maintained

at 𝑇 . You may use the standard abbreviations as 𝛽.
(2) The grand canonical partition function of the length 𝑀 1D lattice described
above may be written as

Ξ𝑀 = (1, 1)𝑇𝑀𝑎 (27.39)

with the aid of a transfer matrix 𝑇 , where 𝑎 is a certain 2 dimensional vector.
(3) Find the limit 𝑞

𝑞 = lim
𝑀→∞

1

𝑀
log Ξ𝑀 . (27.40)

(4) From 𝑞 obtain 𝜃.

Solution.
(1)

Ξ𝑀 =
∑︁

𝜎1,···,𝜎𝑀∈{0,1}

exp[𝛽𝜖(𝜎𝑀𝜎𝑀−1 + 𝜎𝑀−1𝜎𝑀−2 + · · ·+ 𝜎2𝜎1) + 𝛽𝜇𝑁 ]

(27.41)

=
∑︁

𝜎1,···,𝜎𝑀∈{0,1}

exp[𝛽𝜖𝜎𝑀𝜎𝑀−1 + 𝛽𝜇𝜎𝑀 + · · ·+ 𝛽𝜖𝜎2𝜎1 + 𝛽𝜇𝜎2 + 𝛽𝜇𝜎1].

(27.42)

(2) We rewrite (27.42) as

Ξ𝑀 =
∑︁

𝜎1,···,𝜎𝑀∈{0,1}

𝑒𝛽𝜖𝜎𝑀𝜎𝑀−1+𝛽𝜇𝜎𝑀 𝑒𝛽𝜖𝜎𝑀−1𝜎𝑀−2+𝛽𝜇𝜎𝑀−1 · · · 𝑒𝛽𝜖𝜎2𝜎1+𝛽𝜇𝜎2𝑒𝛽𝜇𝜎1 . (27.43)
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𝑒𝛽𝜖𝜎𝑀𝜎𝑀−1+𝛽𝜇𝜎𝑀 can take the following values:

1 0
1 𝑒𝛽𝜖+𝛽𝜇 𝑒𝛽𝜇

0 1 1
(27.44)

Therefore, (27.42) may be written as

Ξ𝑀 = (1, 1)𝑇𝑀−1

(︂
𝑒𝛽𝜇

1

)︂
(27.45)

with

𝑇 =

(︂
𝑒𝛽𝜖+𝛽𝜇 𝑒𝛽𝜇

1 1

)︂
(27.46)

Since 𝑀 ≫ 1, you need not distinguish 𝑀 and 𝑀 ± 1.
(3) The characteristic equation for 𝑇 is⃒⃒⃒⃒
𝑒𝛽𝜖+𝛽𝜇 − 𝜆 𝑒𝛽𝜇

1 1− 𝜆

⃒⃒⃒⃒
= (𝑒𝛽𝜖+𝛽𝜇−𝜆)(1−𝜆)−𝑒𝛽𝜇 = 𝜆2−(1+𝑒𝛽𝜖+𝛽𝜇)𝜆+4𝑒𝛽𝜖+𝛽𝜇−𝑒𝛽𝜇 = 0.

(27.47)
Therefore, the Perron-Frobenius eigenvalue is

𝜆 =
1 + 𝑒𝛽𝜖+𝛽𝜇 +

√︀
(1 + 𝑒𝛽𝜖+𝛽𝜇)2 − 4𝑒𝛽𝜖+𝛽𝜇 + 4𝑒𝛽𝜇

2

=
1 + 𝑒𝛽𝜖+𝛽𝜇 +

√︀
(1− 𝑒𝛽𝜖+𝛽𝜇)2 + 4𝑒𝛽𝜇

2
. (27.48)

If 𝜇→ −∞, then 𝜆 = 1 as expected.
(4) To obtain the coverage, we need the expected value of 𝑁 .

𝑁 =
𝜕

𝜕𝛽𝜇
log Ξ𝑀 (27.49)

𝜃 = lim
𝑀→∞

𝑁

𝑀
(27.50)

Therefore, we conclude435

𝜃 =
𝜕

𝜕𝛽𝜇
𝑞 =

𝜕

𝜕𝛽𝜇
log 𝜆 (27.51)

That is

𝜃 =
𝑒𝛽𝜖+𝛽𝜇 + (2𝑒𝛽𝜇 + 𝑒2𝛽(𝜖+𝜇) − 𝑒𝛽(𝜖+𝜇))/

√︀
(1− 𝑒𝛽𝜖+𝛽𝜇)2 + 4𝑒𝛽𝜇

1 + 𝑒𝛽𝜖+𝛽𝜇 +
√︀

(1− 𝑒𝛽𝜖+𝛽𝜇)2 + 4𝑒𝛽𝜇
. (27.52)

This indeed goes to 1 if 𝜇 or 𝜖 is large enough.

435You might worry about exchanging the limit and the differentiation, but since 𝛽𝜇 is usually
very negative, the convergence is swift, and the procedure is quite legitimate.
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28 Kadanoff’s explanation of scaling

Summary
* Near critical points all the length scales couple and thermal fluctuations build up
into large scale fluctuations.
* The large scale fluctuation is scale invariant and implies universality.
* Scaling + coarse-graining is the key ingredient of renormalization group approach.

Key words
scaling invariance, coarse-graining, renormalization, Kadanoff construction

What you should be able to do
* Intuitively understand Kadanoff construction.
* Explain why critical divergences (singularities) occur.
* To understand the scaling index equality.

28.1 Kadanoff construction
Without any simulation Kadanoff (1937-2015) completely understood the structure
exhibited in Ashton’s video and succeeded in elucidating the general features of crit-
ical phenomena with an ingenious intuitive picture Fig. 28.1.

copy

shrinkingξ ξ

ξ original minimum

discernible volume

minimum discernible

volume after shrinking

sh
ri

n
k
in

g

A B

Figure 28.1: A: The Kadanoff construction. ‘Shrinking’ corresponds to looking at the system
from distance with fixed eyesight, that is, scaling + coarse-graining. The outcome corresponds to
the system away from the critical point; the correlation length 𝜉 becomes smaller. B: If we step back
and the distance between us and the sample becomes ℓ times as large as the original distance (in
the figure ℓ = 2), the actual linear dimension of the minimum discernible volume becomes ℓ-times
as large as the original minimum discernible volume.

If the original system has a temperature 𝜏 = (𝑇 − 𝑇𝑐)/𝑇𝑐 and magnetic field ℎ, then
from our stepped-back point of view the system looks as if it has these parameters
scaled (increased; farther away from the critical point) to 𝜏ℓ𝑦1 and ℎℓ𝑦2 ; the expo-
nents 𝑦1 and 𝑦2 must be positive, where ℓ is the shrinking rate (> 1). This is a guess
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or hypothesis, but seems to explain everything neatly as we will see below.

28.2 Scaling law
Let us write 𝑚 = ℳ(𝜏, ℎ) (this is the equation of state for the magnetic system).
After one stepping-back, the volume of the region recognized as a unit cube to us
would be actually the cube with edge ℓ (see Fig 28.1 Right) before stepping back.

Let us put ′ to the quantities observed after stepping back. We look at the
magnetic energy stored in the minimum discernible block ℎ′𝑚′ (after shrinking). The
energy should be a much better additive quantity than the local magnetic moment
(since energy is additive even microscopically), so we expect

ℎ′𝑚′ = ℓ𝑑ℎ𝑚. (28.1)

Since ℎ′ = ℎℓ𝑦2 , we obtain436

𝑚 = ℓ−𝑑(ℎ′/ℎ)𝑚′ = ℓ𝑦2−𝑑ℳ(𝜏 ′, ℎ′) = ℓ𝑦2−𝑑ℳ(𝜏ℓ𝑦1 , ℎℓ𝑦2). (28.2)

This is the scaling relation for the equation of state. It should be clearly recognized
that this is an identity that holds for any positive number ℓ. Therefore, we may set
|𝜏 |ℓ𝑦1 = 1. Thus, we obtain from (28.2) (𝜏 < 0 to have non-zero magnetization)

𝑚(𝜏, 0) = |𝜏 |(𝑑−𝑦2)/𝑦1𝑚(−1, 0). (28.3)

That is,

𝛽 =
𝑑− 𝑦2
𝑦1

. (28.4)

We can also conclude from the derivative of (28.2) with respect to ℎ:

𝛾 =
2𝑦2 − 𝑑
𝑦1

. (28.5)

28.3 Critical exponent equality
To obtain 𝛼 we must compute the specific heat, which is available as the second
derivative of the free energy with respect to 𝑇 (recall 17.12). The (singular part of
the) free energy437 𝑓𝑠 = ℱ𝑠(𝜏, ℎ) per minimum discernible volume unit scales as

𝑓𝑠 = ℱ𝑠(𝜏, ℎ) = ℓ−𝑑ℱ𝑠(𝜏ℓ
𝑦1 , ℎℓ𝑦2). (28.6)

436B. Widom [(1965) Equation of State in the Neighborhood of the Critical Point, J. Chem. Phys.,
43, 3898] realized that if we assume this generalized homogeneous function form of the equation of
state, critical phenomena can be understood. The Kadanoff construction explains this [Kadanoff,
L. P. (1966). Scaling laws for Ising models near 𝑇𝑐, Physics 2, 263-272].

437The free energy itself has a large nonsingular part that does not contribute to the singular
behaviors near the critical point (D13.4).
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This comes from 𝑓 ′
𝑠 = ℓ𝑑𝑓𝑠 due to the extensivity of the free energy. If we differentiate

(28.6) with ℎ, we get (28.2). Differentiating (28.6) twice with respect to 𝜏 (that is,
𝑇 ), we obtain

𝐶(𝜏, ℎ) = ℓ2𝑦1−𝑑𝐶(𝜏ℓ𝑦1 , ℎℓ𝑦2). (28.7)

Therefore,

𝛼 =
2𝑦1 − 𝑑
𝑦1

. (28.8)

From (28.4), (28.5) and (28.8) we obtain Rushbrooke’s equality:

𝛼 + 2𝛽 + 𝛾 = 2. (28.9)

28.4 Renormalization group transformation
Kadanoff’s idea (Kadanoff construction) consists of two parts: coarse-graining and
scaling (shrinking). The crux of the idea is: if the system is at the critical point,
the configuration is invariant under coarse-graining 𝒦 with an appropriate scaling
𝒮. That is, if we define ℛ = 𝒦𝒮, then thermodynamic observables (densities and
fields) are invariant under the application of ℛ at 𝑇𝑐. To apply ℛ is to observe the
system from distance with a fixed eyesight. Fig. 28.2 Left illustrates how iterative
operations of ℛ drive the statistical configurations at various temperatures.

Operatingℛ is called a renormalization group transformation. We can understand
its iterative applications as multiplication of ℛ; doing nothing corresponds to the
unit element. Therefore, the totality of the renormalization group transformations is
informally called a renormalization group.438 According to Kadanoff’s original idea,
the image due to ℛ is the same system under a different condition (e.g., at a different
temperature), so we may understand that ℛ transforms a thermodynamic state into
another (of the same system); then, we may imagine that successive applications of
ℛ define a flow on the phase diagram of the same materials system under study.
This view is illustrated in Fig. 28.2 Right.439

438The inverse may not be defined, so it is usually a monoid. For the concept of ‘group’ see
Section 28

439As we will see soon, this flow does not generally flow on the phase diagram (of a given material).
In terms of Fig. 28.2 Left, the flow diagram exhibits what happens to the ‘actual’ configurations.
The renormalization flows move as 𝑛 = 1, 2, · · · to the left, starting from the ‘actual slice’; note,
however, the obtained configurations are generally not exactly realized by any state in the phase
diagram of the system under study. The flows in Fig. 28.2 Right are, intuitively, an approximate
projection of these RG flow lines onto the actual system.
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Figure 28.2: Left: The result of Kadanoff construction, or the real space renormalization group
transformation. For simplicity, ℎ = 0 (i.e., on the right phase diagrams we study the system only
along the curve BC in Upper Right). Here, 𝜏 = (𝑇−𝑇𝑐)/𝑇𝑐 and 𝑛 is the number of times we operate
the renormalization group transformation ℛ; we start from the actual configurations (𝑛 = 0) at
various temperatures. As ℛ is applied successively, the configurations are transformed as the arrows
indicate. The leftmost vertical line denotes the destination after many applications of ℛ. a, b, c
correspond to the trajectories a, b, c in Fig. 28.3. Only when the starting point is just right, the
system can stay at 𝜏 ∼ 0. The low temperature states are driven to one of the ordered phases at
𝑇 = 0; in the illustration it happens to be totally ‘down.’ If the starting point is 𝑇 > 𝑇𝑐, the state
is driven to 𝑇 = ∞ state. Right: RG flows ‘projected’ (see the text) on the phase diagram of
the (Ising) magnet. There are five ultimate destinations (high temperature limit, phase boundary,
critical point, all up and all down low temperature states).

28.5 Renormalization group fixed point
At the fixed point ℛ𝜉 = 𝜉 should hold for the correlation length 𝜉. Since 𝒮 definitely
shrinks the system, this condition is satisfied only if 𝜉 = 0 or 𝜉 = ∞. That is, the
phases without spatial correlation at all or critical points are the only possible fixed
points. Notice that if we understand these fixed points, we understand the general
structure of the phase diagram. The ordinary bulk phases from our macroscopic
point of view do not have any appreciable correlation distance, so they are close to
the 𝜉 = 0 fixed points. To understand their macroscopic properties we need not
worry (qualitatively) about spatial correlations of fluctuations (see footnote 9). This
is the reason why the so-called mean-field theory (see Section 26) is useful. Thus,
to understand the phase diagram, we use mean field theory to understand the bulk
phases not too close to the critical points,440 and use renormalization group theory

440This does not mean that we can use the original microscopic Hamiltonian when we utilize a
mean-field approach; we must use an appropriately renormalized Hamiltonian. Therefore, a precise
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to understand the features near the critical points.

28.6 Renormalization group flow (RG flow)
We may interpret the renormalization group transformation as a map from a (gen-
eralized) canonical distribution 𝜇 to another (generalized) canonical distribution
𝜇′ = ℛ𝜇. We can imagine effective Hamiltonians 𝐻 and 𝐻 ′ (it is customary that 𝛽
is absorbed in 𝐻’s) according to

𝜇 =
1

𝑍
𝑒−𝐻 , 𝜇′ =

1

𝑍 ′ 𝑒
−𝐻′

. (28.10)

We may write 𝐻 ′ = ℛ𝐻. Therefore, we can imagine that successive applications
of ℛ defines a flow (RG flow) in the space of Hamiltonians (or models or systems).
This idea is illustrated in Fig. 28.3 (Fig. 28.2 Left actually illustrates the pattern
changes along a, b or c in Fig. 28.3). In Fig. 28.3 𝐻* is a fixed point with an infinite
correlation length of the RG flow. Its stable manifold441 is called the critical surface.
The Hamiltonian of the actual material, say, magnet A, changes (do not forget that
𝛽 is included in the definition of the Hamiltonian in (28.10)) as the temperature
changes along the trajectory denoted by the curve with ‘magnet A.’ It crosses the

critical surface

T

c T

magnet A

for magnet A

c T
for magnet B

T

magnet B

where linearization is OK

H*

= stable mfd of 

unstable mfd of H*

H*

aa

b

c

b'

Figure 28.3: A global picture of renormalization group flow in the Hamiltonian space ℋ. The
explanation is in the text. ‘mfd’ = manifold. The thick curves emanating from 𝐻* denote the
direction that the Hamiltonians are driven away from the fixed point by renormalization. This
curve corresponds to the leftmost thick line in Fig. 28.2 Left.

statement is: there is a (model) Hamiltonian (with short-range interactions) that can be used to
describe the macroscopic features of a bulk phase with the aid of a mean-field approach.

441⟨⟨Stable manifold⟩⟩ For a fixed point 𝑥, the totality of points 𝑦 flowing into 𝑥 is called the
stable manifold of 𝑥.
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critical surface at its critical temperature. The renormalization transformation uses
the actual microscopic Hamiltonian of magnet A at various temperatures as its initial
conditions. Three representative RG flows for magnet A are depicted. ‘a’ is slightly
above the critical temperature, ‘b’ exactly at 𝑇𝑐 of magnet A (‘b′’ is the correspond-
ing RG trajectory for magnet B, a different material; both b and b′’ are on the
critical surface), ‘c’ slightly below the critical temperature (these a, b, c correspond
to those in Fig. 28.2 Left). Do not confuse the trajectory (black curve) of the actual
microscopic system as temperature changes and the trajectories (successive arrows;
RG flow) produced by the RG transformation.

If we understand 𝐻*, we understand all the universal features of the critical be-
haviors of all the magnets crossing its critical surface.
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Let us have a taste of quantitative realization of the renormalization idea.

28.7 Detailed illustration of real space renormalization group calcula-
tion442

Kadanoff’s idea, which may be summarized as follows, allows us to compute, e.g., crit-
ical exponents: Introduce some method 𝒦 to coarse-grain the system. This method
also dictates the spatial scale reduction rate ℓ. The coarse-graining method 𝒦 may
be understood as a map from a configuration 𝑆 (this may be a field or spin config-
uration {𝑠𝑖}) of the original system to a configuration of the reduced system. Fig.
28.4 illustrates two examples. The important point of 𝒦 is that it is a map: given
a configuration 𝑆, 𝒦(𝑆) is unique. However, it is not an injection (one-to-one map),
since it is a kind of coarse-graining.
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Figure 28.4: Left: Decimation of 1-Ising model, ℓ = 2 (see Q33.1); Right: Blocking of 3 spins
of the triangular lattice 2-Ising model. ℓ =

√
3. The value of the block spin is determined by the

majority rule: the block spin is up (down) if two or more spins being blocked are up (down).

Triangular lattice 2-Ising coarse-graining:
Let us study the triangular lattice Ising model. It is generally the case that coarse-
graining produces multi-spin interactions, even if the original model contains only
binary spin interactions as in the present example. However, we wish to be as
simple as possible, so we use a (crude but still interesting) approximation that under
𝒦 illustrated in Fig. 28.4 Right, the Hamiltonian preserves its shape (that is, we
assume that the RG flow does not leave the phase diagram of this particular system;
Recall Fig. 28.2):443

𝐻 =
∑︁

𝐾𝑠𝑖𝑠𝑗 + ℎ𝑠𝑖 → 𝐻 ′ =
∑︁

𝐾 ′𝑠′𝛼𝑠
′
𝛽 + ℎ′𝑠′𝛼, (28.11)

where 𝑠′𝛼, etc. denote the block spins defined by the majority rule: if two or more
spins are up (down) in the block, the block spin is up (down).

442To understand renormalization group approaches the best way is to follow a few examples
to nurture the reader’s intuition; Leo Kadanoff told the author that it was easy to invent an RG
if we knew the answer (= the system behavior). Chaikin, P. M. and Lubensky, T. C., (1995).
Principles of condensed matter physics, Cambridge, Cambridge University Press contains excellent
explanations and examples.

443More accurate handling of this problem can be seen in Niemeijer, Th. and van Leeuwen, J. M.
J. (1973). Wilson theory for spin systems on a triangular lattice, Phys. Rev. Lett., 31, 1411-1414.
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How to specify block spins:
Fig. 28.5 explains the block spins more explicitly. For simplicity, let us study the
small ℎ case; we ignore its effect on the coarse-grained coupling constant. Since we
are interested in the macroscopic global behavior of the mode, we need not worry
about the intrablock spin interactions.444 Therefore, the ‘block spin 𝛼’-‘block spin 𝛽’
interaction energy must be equal to the sum of the interaction energies among the
original spins belonging to different blocks. As can be seen from Fig. 28.5, we may

α

β
1

2 3

1
2 3

Figure 28.5: Triangular lattice and the block spins 𝛼 and 𝛽. 1, 2, 3 denote the original spins
(small black dots). The rounded triangles denote block spins, and small gray disks indicate the
positions of the block spins.

demand
𝐾 ′𝑠′𝛼𝑠

′
𝛽 = 𝐾(𝑠𝛼2𝑠𝛽1 + 𝑠𝛼3𝑠𝛽1) (28.12)

on the average (we cannot demand this exactly). That is, the block spin 𝛼-𝛽 inter-
action is supported by two ‘actual’ interactions: interactions between 𝛽1 spin and
𝛼2 and 𝛼3 spins.

Spin-block spin relation:
If we wish to relate 𝐾 and 𝐾 ′, we must relate 𝑠 and 𝑠′. The basic idea is that near
the critical point the correlation length 𝜉 is large, so

𝐾 ′𝑠′𝛼𝑠
′
𝛽 = 𝐾(⟨𝑠𝑎2⟩𝑠′𝛼⟨𝑠𝛽1⟩𝑠′𝛽 + ⟨𝑠𝑎3⟩𝑠′𝛼⟨𝑠𝛽1⟩𝑠′𝛽), (28.13)

where ⟨𝑠⟩𝑠′ is the average of the original spin 𝑠 in the block spin whose value is 𝑠′ (a
conditional average), and

𝑠′𝛼 = sgn(⟨𝑠𝛼1⟩𝑠′𝛼). (28.14)

The following table tells us the original spin configuration compatible with 𝑠′𝛼 = +1
(i.e., the majority up; 𝑠𝛼1 spin is circled). The last line in the table is the intra-block

+−++

+

+

+

+

+

+

−

−

αs 1 +1 −1+1+1

intra-block 
+K−3K +K +Kenergy

444They shift the origin of the free energy, but it has nothing to do with the correlation length, so
they correspond to the non-singular part of the free energy. Recall that we discussed the singular
part of the free energy; we are picking up the singular part only. See 28.3.
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energy of the block spin that determines how a particular internal configuration is
likely. Therefore, we obtain

⟨𝑠𝛼1⟩+ =
𝑒3𝐾 + 𝑒−𝐾 + 𝑒−𝐾 − 𝑒−𝐾

𝑒3𝐾 + 𝑒−𝐾 + 𝑒−𝐾 + 𝑒−𝐾
=

𝑒3𝐾 + 𝑒−𝐾

𝑒3𝐾 + 3𝑒−𝐾
≡ 𝜑(𝐾). (28.15)

By symmetry ⟨𝑠𝛼1⟩− = −⟨𝑠𝛼1⟩+, so we can write

⟨𝑠𝛼1⟩𝑠′𝛼 = 𝜑(𝐾)𝑠′𝛼. (28.16)

𝐾 → 𝐾′ relation:
(28.13) now reads

𝐾 ′𝑠′𝛼𝑠
′
𝛽 = 2𝐾𝜑(𝐾)2𝑠′𝑎𝑠

′
𝛽, (28.17)

or
𝐾 ′ = 2𝐾𝜑(𝐾)2. (28.18)

ℎ → ℎ′ relation:
Since we have assumed that ℎ is small, we may simply ignore its effect on 𝐾 ′, and
we require

ℎ′𝑠′𝛼 = ℎ(𝑠𝛼1 + 𝑠𝛼2 + 𝑠𝛼3), (28.19)

so we immediately obtain
ℎ′ = 3ℎ𝜑(𝐾). (28.20)

ℛ has been constructed:
This completes our construction of ℛ : (𝐾,ℎ) → (𝐾 ′, ℎ′) with ℓ =

√
3 (from the

geometry: Fig. 28.5).

Fixed points of ℛ:
Let us look for fixed points of ℛ, (𝐾𝐹 , ℎ𝐹 ), determined by

𝐾𝐹 = 2𝐾𝐹𝜑(𝐾𝐹 )
2, ℎ𝐹 = 3ℎ𝐹𝜑(𝐾𝐹 ). (28.21)

𝐾𝐹 = 0 is certainly a solution, but 𝜑 = 1/
√
2 gives 𝐾* = (1/4) log(1 + 2

√
2) ≃

0.3356 · · ·. For all 𝐾𝐹 ℎ𝐹 = 0 is a solution. There is no other finite solution.445*

That is, (𝐾,ℎ) = (0, 0) or (𝐾*, 0) is the fixed point.446 From the correspondence
explained in Fig. 28.6 the unstable fixed point (𝐾*, 0) in the (𝐾,ℎ)-plane corresponds
to the critical point seen from far away; The thick 𝐾 axis corresponds to the thick
curve through𝐻* in Fig. 28.3. Flow near the fixed point; linear approximation
to ℛ :
Although we studied both 𝜏 and ℎ, let us study ℎ = 0 as before and the flow along
the unstable manifold of 𝐻* (the thick curve in Fig. 28.3). As can be seen from

445*Don’t divide the equation with zero.
446𝐾𝐹 =∞ is a fixed point corresponding to the ordered phases or 𝑇 = 0.
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h

K

Figure 28.6: The RG flow for the triangular lattice Ising model in the (𝐾,ℎ)-plane. The black
dot denotes the location of the nontrivial fixed point (𝐾*, 0). The origin is also a fixed point. This
figure corresponds to Fig. 28.2 Right; larger 𝐾 corresponds to lower temperature. The black dot
corresponds to 𝐻* and the 𝐾 axis to the thick curve through 𝐻* in Fig. 28.3.

ℛ𝜏 = 𝜏ℓ𝑦1 and since 𝐾 −𝐾* is essentially 𝜏 , we must study the local behavior of ℛ
near the critical fixed point. Let 𝐾 = 𝐾*+ 𝛿𝐾 and 𝐾 ′ = 𝐾*+ 𝛿𝐾 ′. Then the linear
approximation of ℛ along the 𝐾 curve is

ℛ(𝐾* + 𝛿𝐾) = 𝐾* +

(︂
𝑑ℛ
𝑑𝐾

)︂
at 𝐾*

𝛿𝐾 = 𝐾* + 𝛿𝐾 ′. (28.22)

We may identify (𝐾 ′ is given by (28.18))

ℓ𝑦1 =
𝑑𝐾 ′

𝑑𝐾

⃒⃒⃒⃒
𝐾=𝐾*

= 1.634 · · · . (28.23)

Therefore, since ℓ =
√
3,

𝑦1 = log 1.634/ log
√
3 ≃ 0.8939 · · · . (28.24)

Its exact value is 1 (related to the critical exponent 𝛼).447 The reader may think the
result is not impressive (the mean field theory gives 2).

28.8 Universality, trivial and nontrivial
The reader might say we already know examples of universality. For example, we
know 𝑃𝑉 = 2𝐸/3 for any ideal gas irrespective of statistics, if the spatial dimension-
ality is 3, and the dispersion relation is 𝜀 ∝ 𝑝2 (Section 28). Or we know 𝑃𝑉 = 𝐸/3
for phonons and photons in 3-space. This is quite universal. However, it is due to
the universality (common quantitative feature) of the elementary entities making up
the systems. In this sense, universality is unsurprising, and trivial.

In contradistinction, the universality near the critical point is obviously not due to
some common quantitative features at the microscopic level. Of course, the system
must exhibit a critical phenomenon, but we use only three features: the interaction
is short-ranged, the order parameter is a scalar, and the system is 3D. Thus, the
reason for the universality is not in the common nature of the system constituents.

447Actually, 1/𝑦1 = 𝜈, the exponent for the correlation length.
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Furthermore, the response to system changes is quite different from the trivial case
above. If one adds certain interactions, the ‘trivial’ universality is lost in infinitely
different ways according to the infinitely different perturbations. In contrast, in the
case of the critical phenomena, if one turns on perturbations modifying interactions,
𝑇𝑐 changes sensitively and also the actual values of susceptibilities are altered, but
the main features (e.g., critical exponents) do not change. Thus, the universality of
the second-order phase transition deserves to be called the genuine universality.

28.9 What is statistical mechanics for?
The phase transition points (e.g., 𝑇𝑐) and the values of susceptibilities sensitively de-
pend on materialistic details as mentioned above. We also noted that there is no use
of theory to study chemical equilibrium constants in 20.18. Generally speaking, it is
impossible to calculate materials constants very accurately through implementing the
theoretical formalism of statistical thermodynamics. Then, what is statistical me-
chanics for? Statistical mechanics should try to understand (and compute) universal
features of many-body systems that are insensitive to quantitative details. Needless
to say, demonstrating the existence of some features (say, a phase transition) is an
important target of statistical mechanics. As we will see soon in the case of critical
phenomena there is a hope that statistical mechanics can obtain universal features
quantitatively. Actually, it is fair to say that the true role of statistical mechanics
was consciously recognized as the study of universality and not of fetish details (as
the actual value of 𝑇𝑐) through the study of critical phenomena.
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Discussion 13

D13.1 [Pomeranchuk effect]
The low temperature phase diagram of 3He is illustrated in Fig. 28.7.

T

P

gas

liquid

solid

Figure 28.7: A schematic phase diagram of 3He.

(1) Under constant pressure at low temperatures (below ∼ 0.3 K), heating (the red
arrow in Fig. 28.7) solidifies 3He liquid. Which entropy is larger, the solid phase or
the liquid phase? You must provide a supporting argument for your assertion.

(2) If solidification occurs by heating along the red arrow, does the density increase
or decrease? You must provide a supporting argument for your assertion.
(3) 3He atom is a spin 1/2 particle, so we must take the magnetic order into account.
The so-called spin exchange is the cause of spin spin coupling. In the usual magnet
this exchange is mediated by the electron exchange among atoms, but in 3He it is
mediated by the positional exchange of the atoms. In the solid phase atoms cannot
move easily so positional exchange does not occur. In contrast, in the liquid phase,
atoms exchange positions easily, so we must pay attention to the spin-spin coupling.
What do you guess is the reason for the ‘strange’ phase diagram?
(4) If you increase the pressure of 3He reversibly and adiabatically across the liquid-
sold phase transition line, what happens to the system temperature?

Solution.
(1) Since the phase diagram is on the 𝑃𝑇 -plane, the Gibbs free energy 𝐺 is the
thermodynamic potential governing this phase diagram. The Gibbs relation is

𝑑(−𝐺) = 𝑆𝑑𝑇 − 𝑉 𝑑𝑃. (28.25)

Therefore, where 𝐺 is differentiable (i.e., without any first-order phase transition),
we can identify the slopes. Since 𝐸 is convex and −𝐺 is obtained from 𝐸 by a
Legendre transformation:

−𝐺 = max
𝑆,𝑉

[𝑆𝑇 + (−𝑃 )𝑉 − 𝐸], (28.26)

−𝐺 is a convex function of 𝑇 and (−)𝑃 . −𝐺 is qualitatively illustrated as a function
of 𝑇 and 𝑃 in Fig. 28.8.
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T
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solid

liquid

PT mm

under constant pressure under constant temperature

Figure 28.8: −𝐺 is a convex function of 𝑇 (and 𝑃 ).

Thus, around the red point 𝑆(𝑇𝑚−0) < 𝑆(𝑇𝑚+0) (i.e., the slope increases, although
may not do so smoothly). Therefore, the solid state has larger entropy than the liq-
uid phase (the Pomeranchuk effect predicted by him).
(2) As you see from Fig. 28.8 at the red point volume jumps and the density in-
creases by solidification under constant 𝑇 . Notice that in each phase the density is
smooth.448 Therefore, the discrepancy in density persists even along the 𝑇 constant
line, if you cross the phase transition line. Thus, volume shrinks upon heating.
(3) We can expect that spin ordering (actually antiferromagnetism449) in liquid re-
duces the system entropy sufficiently to compensate the entropy increase due to the
particle position disorder.
(4) If you increase the pressure and cross the phase transition line from the liquid
to the solid phase isothermally, we know entropy increases (you can use a similar
argument as in (3)). However, the actual change in the problem is isentropic (𝑆
constant), so we must cool the system. Thus, adiabatic reversible compression can
cool the system.

D13.2 [Grand canonical approach to 1D van der Waals gas]
Let us study the 1D Kac model 25.11 with the aid of the grand canonical approach.
Here, to make the calculation easy, let us cheat a bit, replacing the interaction por-
tion as the limiting form −𝑎𝑛, where 𝑛 is the number density:450

(1) If there are 𝑁 particles in the container of volume 𝑉 , the canonical partition
function reads

𝑍𝑁(𝑉 ) =
1

ℎ𝑁

∫︁ 𝑉−𝜎

(𝑁−1)𝜎

𝑑𝑥𝑁 · · ·
∫︁ 𝑥3−𝜎

𝜎

𝑑𝑥2

∫︁ 𝑥2−𝜎

0

𝑑𝑥1

∫︁
𝑑𝑝1 · · · 𝑑𝑝𝑛𝑒−

∑︀𝑁
𝑖=1 𝑝

2
𝑖 /2𝑚𝑘𝐵𝑇+𝑎𝑁2/𝑘𝐵𝑇𝑉 .

(28.27)

448That is, 𝐶𝜔.
449These spins order into an antiferromagnetic state only at around 10−3 K.
450The honest approach must study the finite systems with the true Kac potential (25.10). After

computing the partition function, we take the thermodynamic limit and then take the Kac limit
𝛾 → 0.
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Here, 𝜎 is the particle hard core diameter. Check that, indeed, this is the right
canonical partition function (with the afore-mentioned cheating). Then, actually
compute the canonical partition function 𝑍𝑁(𝑉 ). [You virtually know the answer, if
you consult Fig. 25.6 in the notes.]
(2) Using the result of (1) write down the grand canonical partition function. Since
you cannot perform the summation over 𝑁 , you have only to write down the formula.
(3) The grand canonical partition function written down in (2) has the following
structure:

Ξ =
𝑀∑︁

𝑁=0

𝑒𝐹 (𝑁,𝑉 ), (28.28)

where 𝑀 is the maximum number of particles we can push into volume 𝑉 . Use
Λ = 1 + (1/2) log(2𝜋𝑚𝑘𝐵𝑇/ℎ

2) + 𝜇/𝑘𝐵𝑇 to simplify the result.
Show that if the temperature is sufficiently high, there is only one 𝑛 = 𝑁/𝑉 that

maximizes 𝐴(𝑛) = 𝐹 (𝑁, 𝑉 )/𝑉 .
Also demonstrate that if the temperature is sufficiently low, there can be three

extrema for 𝐴(𝑛).
(4) What does the grand partition function look like, if 𝑛 that maximizes 𝐴(𝑛) are
not unique?
(5) There is a text book451 which writes explicitly as follows:

Ξ = 𝑒𝛽𝑃𝑉 + 𝑒𝛽𝑃
′𝑉 . (28.29)

Here, we have assumed that 𝐴(𝑛) have two maxima, and the two terms correspond
respectively to the two maxima. Is this correct?

Solution.
(1) Let us start with the 𝑁 = 2 case:

𝑍2(𝑉 ) =
1

ℎ2

∫︁ 𝑉−𝜎

𝜎

𝑑𝑥2

∫︁ 𝑥2−𝜎

0

𝑑𝑥1

∫︁
𝑑𝑝1𝑑𝑝2𝑒

−
∑︀2

𝑖=1 𝑝
2
𝑖 /2𝑚𝑘𝐵𝑇+𝑎𝑁2/2𝑘𝐵𝑇𝑉

(28.30)

=

(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂2/2 ∫︁ 𝑉−2𝜎

0

𝑑𝑦2

∫︁ 𝑦2

0

𝑑𝑦1𝑒
2𝑎/𝑉 𝑘𝐵𝑇 (28.31)

=

(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂2/2
1

2
(𝑉 − 2𝜎)2𝑒2𝑎/𝑉 𝑘𝐵𝑇 . (28.32)

In the above calculation the interparticle distances 𝑦2 = 𝑥2−𝑥1 and 𝑦1 = 𝑥1−0 have
been introduced.

For 𝑁 = 3, introducing 𝑦3 = 𝑥3 − 𝑥2 as well we get

𝑍3(𝑉 ) =
1

ℎ3

∫︁ 𝑉−𝜎

2𝜎

𝑑𝑥3

∫︁ 𝑥3−𝜎

𝜎

𝑑𝑥2

∫︁ 𝑥2−𝜎

0

𝑑𝑥1

∫︁
𝑑𝑝1𝑑𝑝2𝑑𝑝3𝑒

−
∑︀3

𝑖=1 𝑝
2
𝑖 /2𝑚𝑘𝐵𝑇+𝑎𝑁2/𝑘𝐵𝑇𝑉

451by Kardar
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(28.33)

=

(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂3/2 ∫︁ 𝑉−3𝜎

0

𝑑𝑦3

∫︁ 𝑦3

0

𝑑𝑦2

∫︁ 𝑦2

0

𝑑𝑦1𝑒
9𝑎/2𝑉 𝑘𝐵𝑇 (28.34)

=

(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂3/2
1

3!
(𝑉 − 3𝜎)3𝑒9𝑎/2𝑉 𝑘𝐵𝑇 . (28.35)

Now, it is easy to guess the following general formula:

𝑍𝑁(𝑉 ) =
1

𝑁 !

(︂
2𝜋𝑚𝑘𝐵𝑇

ℎ2

)︂𝑁/2

(𝑉 −𝑁𝜎)𝑁𝑒𝑎𝑁2/2𝑉 𝑘𝐵𝑇 . (28.36)

This is the result you can read off from Fig. 25.6 in the notes.
(2)

Ξ =
𝑀∑︁

𝑁=0

1

𝑁 !
(𝑉 −𝑁𝜎)𝑁(2𝜋𝑚𝑘𝐵𝑇/ℎ2)𝑁/2𝑒𝑎𝑁

2/2𝑉 𝑘𝐵𝑇 𝑒𝜇𝑁/𝑘𝐵𝑇 . (28.37)

(3) From (28.37) we obtain

𝐹 (𝑁, 𝑉 ) = 𝑁 log(𝑉−𝑁𝜎)−𝑁 log𝑁+𝑁+
𝑁

2
log(2𝜋𝑚𝑘𝐵𝑇/ℎ

2)+𝑎𝑁2/2𝑉 𝑘𝐵𝑇+𝜇𝑁/𝑘𝐵𝑇

(28.38)
(actually, this is log𝑍𝑁(𝑉 ) + the chemical potential term), so

𝐴(𝑛) = 𝑛 log(1/𝑛− 𝜎) + 𝑛+
𝑛

2
log(2𝜋𝑚𝑘𝐵𝑇/ℎ

2) + 𝑎𝑛2/2𝑘𝐵𝑇 + 𝜇𝑛/𝑘𝐵𝑇

(28.39)

= 𝑛 log(1/𝑛− 𝜎) + 𝑛Λ + 𝑎𝑛2/2𝑘𝐵𝑇, (28.40)

where Λ = 1+ (1/2) log(2𝜋𝑚𝑘𝐵𝑇/ℎ
2)+𝜇/𝑘𝐵𝑇 . Differentiating this wrt to 𝑛, we get

the condition for a maximum:

𝜕𝐴(𝑛)

𝜕𝑛
= log

(︂
1

𝑛
− 𝜎

)︂
− 1

1− 𝑛𝜎
+ Λ+ 𝑎𝑛/𝑘𝐵𝑇 = 0. (28.41)

The first two terms are

log(1/𝑛) + log(1− 𝑛𝜎)− 1

1− 𝑛𝜎
. (28.42)

This is a monotone decreasing function of 𝑛 from +∞ (at 𝑛 = 0) to −∞ (at 𝑛 = 1/𝜎,
the maximum packing density). Therefore, if 𝑇 is sufficiently large, there is only one
solution to (28.41).

We see there could be three solutions for this equation, if 𝑇 is sufficiently small,
because 𝐴(𝑛) has the following form:

log(1/𝑛) + log(1− 𝑛𝜎)− 1

1− 𝑛𝜎
+

[︂
(𝑎+ 𝜇)𝑛

𝑘𝐵𝑇
+
𝑛

2
log 𝑇 + constant

]︂
. (28.43)
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For sufficiently small 𝑇 the term proportional to 1/𝑇 dominates in [ ], so the mono-
tonic decreasing nature of (28.42) is lost for intermediate values of 𝑛. Therefore,
there can be three extrema (with an appropriate chemical potential); two maxima
and one minimum. Recall that 𝐴(𝑛) is essentially negative free energy, so there are
two stable local minima for the free energy, if 𝑇 is sufficiently low.
(4) At high temperatures there is only one maximum for 𝐴(𝑛), so we may use the
maximum term to estimate (28.28). This is just as we have seen in the proof of
ensemble equivalence in the text:

Ξ = 𝑒𝑃𝑉/𝑘𝐵𝑇 ≃ 𝑒𝑉 𝐴(𝑛). (28.44)

If 𝑇 is sufficiently low (with an appropriate chemical potential), as noted in (3)
there are two maxima. If the heights of these maxima are different, then thanks to
the multiplicative 𝑉 in the exponent of (28.28) only one maximum can contribute.
Only when these two maxima have exactly the same heights can they both contribute
to the grand partition function, and this corresponds to the phase coexistence tem-
perature.
(5) As already explained in (4) this form holds only exactly at the phase transition
temperature. At other temperatures one term is overwhelmingly smaller than the
other, and around the taller maximum are numerous higher 𝐴(𝑛)’s than the sec-
ondary maximum, so literally, the equation is nonsensical; however, if you compute
the log of the right-hand side, the difference from log Ξ is likely to be 𝑂[log𝑁 ].

D13.3 [Square lattice Ising model: mean field approach].452

We have derived the fundamental equation (the consistency equation) for the starting
point of the mean field approaches:

⟨𝑠0⟩ = ⟨tanh[𝛽𝐽(𝑠1 + · · ·+ 𝑠𝑘)]⟩ (28.45)

for an Ising model on a lattice with 𝑘 nearest-neighbor spins around 𝑠0. Let us take
a lattice with 𝑘 = 4 (square lattice, for example).
(1) Let us use the naivest approach as (26.21). Obtain the critical point 𝑇𝑐 with this
crude approximation.

Then, using a more accurate mean field theory explained in 27.2, we wish to
exploit the fact that 𝑠2 = 1. First, we expand tanh in power series.
(2) Show that

tanh[𝛽𝐽(𝑠1 + · · ·+ 𝑠𝑘)] = 𝐴(𝑠1 + 𝑠2 + 𝑠3 + 𝑠4) +𝐵(𝑠1𝑠2𝑠3 + 𝑠1𝑠3𝑠4 + 𝑠2𝑠3𝑠4 + 𝑠1𝑠2𝑠4).
(28.46)

That is, any odd power of (𝑠1+ 𝑠2+ 𝑠3+ 𝑠4) is written as a sum of (𝑠1+ 𝑠2+ 𝑠3+ 𝑠4)
and (𝑠1𝑠2𝑠3 + 𝑠1𝑠3𝑠4 + 𝑠2𝑠3𝑠4 + 𝑠1𝑠2𝑠4).

452= Q27.2, because HW13 is related.
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(3) Determine 𝐴 and 𝐵 by setting 𝑠 = ±1 so that (28.46) holds, or show that

𝐴 =
1

8
(tanh 4𝛽𝐽 + 2 tanh 2𝛽𝐽). (28.47)

(4) Now, introducing (28.46) into (28.45), we get the following equation

⟨𝑠0⟩ = 𝐴⟨𝑠1 + 𝑠2 + 𝑠3 + 𝑠4⟩+𝐵⟨𝑠1𝑠2𝑠3 + 𝑠1𝑠3𝑠4 + 𝑠2𝑠3𝑠4 + 𝑠1𝑠2𝑠4⟩. (28.48)

⟨𝑠0⟩ = ⟨𝑠1⟩ = · · · = 𝑚 is the magnetization per spin, so (28.48) reads

𝑚 = 4𝐴𝑚+ 4𝐵⟨𝑠1𝑠2𝑠3⟩. (28.49)

Notice that up to this point there is NO APPROXIMATION, but, unfortunately, we
cannot solve (28.49). Now, let us introduce the approximation

⟨𝑠1𝑠2𝑠3⟩ = 𝑚3. (28.50)

Then, our ‘approximate’ mean field equation is

𝑚 = 4𝐴𝑚+ 4𝐵𝑚3. (28.51)

What is the condition that determines the phase transition? [Hint. At what value
of 𝐴 is there a bifurcation453?]

Solution.
(1) Exchanging tanh and averaging (and assuming spatial uniformity), we get

𝑚 = tanh(𝑘𝛽𝐽𝑚). (28.52)

or
𝑥 = 𝑘𝛽𝐽 tanh𝑥. (28.53)

If the tangent at 𝑥 = 0 of the right-hand side is larger than 1, there are three
solutions; below that there is one solution (see Fig. 26.7 in the notes). Thus, the
bifurcation point is 𝑘𝛽𝐽 = 1 or 𝑇𝑐 = 𝑘𝐽/𝑘𝐵.
(2) Checking first two or three terms in the expansion of tanh is practically enough.

However, if you wish to ‘prove’ (28.46), you can proceed as follows. Since the
convergence radius of the power series is infinite, we need not worry about the size
of the terms. Generally we have an odd power (𝑠1 + 𝑠2 + 𝑠3 + 𝑠4)

𝑚, where 𝑚 is an
odd positive integer.

If we expand this, (e.g., multinomial theorem tells us) we obtain the terms of the
following form:

𝑠𝑎1𝑠
𝑏
2𝑠

𝑐
3𝑠

𝑑
4 (28.54)

453Recall ‘bifurcation’ implies the change of the number of (real) roots.
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for 𝑎+ 𝑏+ 𝑐+ 𝑑 = 𝑚 (𝑎, · · · , 𝑑 are nonnegative integers).
There is a perfect permutation symmetry among 𝑠1, · · · , 𝑠4 and only one or three

of 𝑎, · · · , 𝑑 must be odd. The even powers of 𝑠𝑖 is one, and the odd powers 𝑠𝑖 itself,
so we have only two types of terms 𝑠1 or 𝑠1𝑠2𝑠3. Taking the perfect permutation
symmetry into account, we get (28.46).

If you wish to be a bit more pedestrian, look at

𝑠𝑚1 = 𝑠1, (28.55)

𝑠𝑚−1
1 𝑠2 = 𝑠2, (28.56)

𝑠𝑚−2
1 𝑠22 = 𝑠1, (28.57)

𝑠𝑚−2
1 𝑠2𝑠3 = 𝑠1𝑠2𝑠3, (28.58)

𝑠𝑚−3
1 𝑠32 = 𝑠2, (28.59)

𝑠𝑚−3
1 𝑠22𝑠3 = 𝑠3, (28.60)

𝑠𝑚−3
1 𝑠2𝑠3𝑠4 = 𝑠2𝑠3𝑠4. (28.61)

There is no other case (modulo permutation of the suffixes). [Do not honestly expand
tanh.] Therefore, summing all these terms,454 we must have (28.46).
(3) For all 𝑠 being +1:

tanh(4𝛽𝐽) = 4𝐴+ 4𝐵. (28.62)

For one −1:
tanh(2𝛽𝐽) = 2𝐴− 2𝐵. (28.63)

Other possibilities do not give any new relation. From these, we get

𝐴 = (1/8)(tanh 4𝛽𝐽 + 2 tanh 2𝛽𝐽), 𝐵 = (1/8)(tanh 4𝛽𝐽 − 2 tanh 2𝛽𝐽). (28.64)

(3) We must solve 𝑚 = 4𝐴𝑚+ 4𝐵𝑚3. When the slope of 4𝐴𝑚+ 4𝐵𝑚3 at 𝑚 = 0 is
1, bifurcation occurs. Hence, 4𝐴 = 1 or

tanh 4𝛽𝐽 + 2 tanh 2𝛽𝐽 = 2 (28.65)

is the equation for the critical point.
You need not solve this, but notice that the 𝑇𝑐 obtained from this must be smaller

(I got 𝛽𝐽 = 0.33) than that obtained from 𝛽𝐽 = 0.25 (due to a better approxima-
tion). The exact result (due to Onsager) is 𝛽𝐽 = [log(1 +

√
2)]/2 = 0.440.

D13.4. [Simple 1D renormalization (decimation)]
Let us study 1-Ising model with the aid of decimation illustrated in Fig. 28.9. This
procedure thins the spins through summing over a subset of spins, keeping the rest

454Since the original power series is absolutely convergent, we can do this.
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fixed.
The original canonical partition function reads (here, 𝐾 = 𝛽𝐽)

𝑍 =
∑︁
𝑠,𝜎

· · · 𝑒𝐾𝑠−1𝜎0+𝜎0𝑠1 · · · , (28.66)

where spins at the even lattice positions are written as 𝜎.
− − − − −+ + + + +− −

− − −+ +−

+ ++−−−

Figure 28.9: Decimation: we sum over the red spins.

(1) Summing over all 𝜎 states, the original 𝑍 now reads

𝑍 = 𝐶
∑︁
𝑠

· · · 𝑒𝐾′(𝑠−1𝑠1) · · · , (28.67)

where 𝐶 is a constant. This can be understood as (𝐶 times) the canonical partition
function of the chain consisting of the remaining odd lattice spins {𝑠𝑖}. Actually,
each term in the sum is a product of the factors (proportional to)∑︁

𝜎0=±1

𝑒𝐾(𝑠−1𝜎0+𝜎0𝑠1), (28.68)

so to compute 𝐾 ′ we should study∑︁
𝜎0=±1

𝑒𝐾(𝑠−1𝜎0+𝜎0𝑠1) = 𝑒𝐴+𝐾′𝑠−1𝑠1 , (28.69)

where 𝐴 is a constant (and 𝐶 is the product of 𝑒𝐴s). Find 𝐴 and 𝐾 ′.
(2) Since we do not care for 𝐶, the result of (1) may be understood as the trans-
formation of the system Hamiltonian from 𝐻 to 𝐻 ′ = 𝒟𝐻 (decimation transforma-
tion):

𝐻 =
∑︁
𝑖∈Z

𝐾𝑠𝑖𝑠𝑖+1 → 𝐻 ′ = 𝒟𝐻 =
∑︁
𝑖∈Z/2

𝐾 ′𝑠𝑖𝑠𝑖+2. (28.70)

The macroscopic observables of a very big system governed by 𝐻 should be under-
stood from the behavior of the system governed by 𝒟𝑛𝐻 for large 𝑛. Using this
observation, show that there is no finite temperature phase transition in 1-space.

Solution.
(1) Let us solve (28.69). If the spin sum is zero: 𝑠−1 + 𝑠1 = 0,

2 = 𝑒𝐴−𝐾′
; (28.71)
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otherwise,
2 cosh(2𝐾) = 𝑒𝐴+𝐾′

, (28.72)

so we obtain
𝑒2𝐾

′
= cosh(2𝐾), (28.73)

or

𝐾 ′ =
1

2
log cosh 2𝐾. (28.74)

Thus, we have constructed a map 𝒟 from the original Hamiltonian to the coarse-
grained Hamiltonian:

𝐻 =
∑︁
𝑖∈Z

𝐾𝑠𝑖𝑠𝑖+1 → 𝐻 ′ = 𝒟𝐻 =
∑︁
𝑖∈Z/2

𝐾 ′𝑠𝑖𝑠𝑖+2. (28.75)

(2) Starting from some positive 𝐾 and iterating (28.74), we see (e.g., graphically)
clearly that 𝐾 → 𝐾 ′ → · · · → 0 quickly (that is, the system is driven to the high-
temperature disordered fixed point), consistent with the fact that there is no phase
transition for 𝑇 > 0.
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E13.1 [Elementary questions]
(1) The density of a gas is usually less than the liquid of the same substance. Why?
(2) Does a triple point correspond to a single thermodynamic state?
(3) At the triple point (solid-gas-liquid coexistence; cf. Fig. 24.1 in the notes) of a
pure substance, three coexistence curves, the LG, GS and LS curves, meet at the
tricritical point on the 𝑃𝑇 -plane (𝑃 the vertical axis). Which curve is the steepest,
and which the least steep around the triple point? You must justify your answers.
(4) When a magnetic field is applied in the 𝑧-direction, a phase transition from phase
I to phase II occurs. What can you say about the change of the magnetization?

Solution.
(1) We can make a gas phase by reducing the pressure of the corresponding liquid,
usually, so the gas phase is a low pressure phase. The convexity of −𝐺 implies that
𝑉 (𝑃 − 0) > 𝑉 (𝑃 + 0), because −𝑉 is the conjugate variable of 𝑃 . Thus, the gas
phase has a larger volume (or a less density).
(2) No. In the thermodynamic space it occupies a triangular domain (or see Fig.
24.2 in the notes).
(3) We use the Clapeyron-Clausius equation:

𝑑𝑃

𝑑𝑇

⃒⃒⃒⃒
coex line

=
Δ𝑆

Δ𝑉
. (28.76)

Because of the general placement of these three phases on the 𝑃𝑇 diagram, obvi-
ously ⃒⃒⃒⃒

𝑑𝑃

𝑑𝑇

⃒⃒⃒⃒
𝑠→𝑙

≫ 𝑑𝑃

𝑑𝑇

⃒⃒⃒⃒
𝑠→𝑔

or
𝑑𝑃

𝑑𝑇

⃒⃒⃒⃒
𝑙→𝑔

. (28.77)

Notice that Δ𝑉 between the gas phase and the condensed phases are similar, but
Δ𝑆𝑠→𝑔 is larger than Δ𝑆𝑙→𝑔, so usually

𝑑𝑃

𝑑𝑇

⃒⃒⃒⃒
𝑠→𝑔

>
𝑑𝑃

𝑑𝑇

⃒⃒⃒⃒
𝑙→𝑔

. (28.78)

(4) This is a (generalized le Chatelier). Or the convexity of−𝐴, where 𝐴 = 𝐸−𝑀𝑧𝐵𝑧.
Thus, 𝑀𝑧 must be monotone increasing with respect to 𝐵𝑧. That is, II has a bigger
magnetic moment in the 𝑧-direction than I.

E13.2 [Phase coexistence]
There is a mixture of two chemicals A and B. This mixture can have 4 phases, solid
(𝑆), liquid I (𝐿), liquid II (𝐿′) and gas (𝐺) phases. In the gas phase A and B mix
freely, but the solid phase consists only of A (i.e., B cannot get into the solid phase).
Can you have a quadruple point (𝑇𝑄, 𝑃𝑄) where these 4 phases coexist? You may
assume any reasonable functional equation can be solved.

Solution.
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Let 𝑥𝜑 be the mole fraction of A in phase 𝜑 = 𝐿, 𝐿′ or 𝐺. The equilibrium condition
of 4 phase-coexistence reads

𝜇A𝑆 (𝑃, 𝑇 ) = 𝜇 A
𝐿 (𝑃, 𝑇, 𝑥𝐿) = 𝜇 A

𝐿′ (𝑃, 𝑇, 𝑥𝐿′) = 𝜇 A
𝐺 (𝑃, 𝑇, 𝑥𝐺), (28.79)

𝜇 B
𝐿 (𝑃, 𝑇, 𝑥𝐿) = 𝜇 B

𝐿′ (𝑃, 𝑇, 𝑥𝐿′) = 𝜇 B
𝐺 (𝑃, 𝑇, 𝑥𝐺). (28.80)

There are five (5) unknowns, 𝑃 , 𝑇 , 𝑥𝐿, 𝑥𝐿′ and 𝑥𝐺, and we have five (5) equations,
so, generically, there can be a four-phase coexisting point.

Notice that if 𝐵 can go into the solid phase, this is the standard case, and the
answer is yes, according to the Gibbs phase rule.

E13.3 [2-Ising model on the honeycomb lattice; mean-field approach]
Let us consider a 2-Ising model on the honeycomb lattice whose coupling constant
is 𝐽 . Assume there is no magnetic field.
(1) Find the equation corresponding to (26.19) [consistency equation] in the notes.
(2) Find 𝑇𝑐 with the aid of the approximation corresponding to (26.20) [the naivest
approximation] in the notes.
(3) Then, using a more accurate mean field theory explained in 27.2 of Discussion
13.3, compute 𝑇𝑐. Which 𝑇𝑐 obtained by (2) or by this question should be lower? Is
your result consistent with your expectation?

Solution
(1) The coordination number of the honeycomb lattice is 3, so

⟨𝑠0⟩ = ⟨tanh[𝛽𝐽(𝑠1 + 𝑠2 + 𝑠3)]⟩. (28.81)

(2) The approximation gives
𝑚 = tanh 3𝛽𝐽𝑚. (28.82)

That is,
𝑥 = 3𝛽𝐽 tanh𝑥. (28.83)

This gives 𝛽𝑐𝐽 = 1/3 or 𝑇𝑐 = 3𝐽/𝑘𝐵.
(3) The equation corresponding to (5.8.10) is

tanh 𝛽𝐽(𝑠1 + 𝑠2 + 𝑠3) = 𝑎(𝑠1 + 𝑠2 + 𝑠3) + 𝑏𝑠1𝑠2𝑠3, (28.84)

and the coefficients are determined by the following simultaneous equation

tanh 3𝛽𝐽 = 3𝑎+ 𝑏, (28.85)

tan 𝛽𝐽 = 𝑎− 𝑏. (28.86)

We get

𝑎 =
1

4
(tanh 𝛽𝐽 + tanh 3𝛽𝐽), 𝑏 =

1

4
(tanh 3𝛽𝐽 − 3 tanh 𝛽𝐽). (28.87)
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Thus, the mean-field equation reads

𝑚 = 3𝑎𝑚+ 𝑏𝑚3, (28.88)

The bifurcation point is given by the slope of the right-hand side at 𝑚 = 0 to be 1,
i.e., 3𝑎 = 1 or, more explicitly, solving the equation

𝑚 = ±
√︂

1− 3𝑎

𝑏
or 0, (28.89)

so 𝑇𝑐 is determined by 𝑎 = 1/3:

tanh 𝛽𝐽 + tanh 3𝛽𝐽 = 4/3. (28.90)

A more accurate calculation is expected to take the effect of fluctuations more ac-
curately into account. Fluctuations oppose ordering, so better approximation should
give lower 𝑇𝑐. That is, we can expect that the 𝑇𝑐 from the current approximation
method is lower than that obtained in (3), i.e., 𝑇𝑐 = 3𝐽/𝑘𝐵.

It is not hard to prove that the 𝑇𝑐 according to the ‘better’ approximation is
indeed lower than 3𝐽/𝑘𝐵, but here let us use a numerical result: 𝛽𝑐𝐽 = 0.48 or
𝑇𝑐 = 2.08𝐽/𝑘𝐵.

0 0.5
1

1.5

4/3

Figure 28.10: Solving (28.90) graphically.

The exact answer is known to be 𝛽𝐽 = 0.658 or 𝑇𝑐 = 1.52𝐽/𝑘𝐵; thus our improvement
is considerable.
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29 Symmetry breaking

Summary
* Spontaneous symmetry breaking and two important consequences are discussed.

Key words
(spontaneous) symmetry breaking, rigidity, Nambu-Goldstone boson

What you should be able to do
* Be able to explain intuitively why rigidity and NG bosons emerge upon sponta-
neous symmetry breaking.

29.1 Ordering means lowering the system symmetry
So far we discussed phase transitions. It is very often the transition between ordered
and not-so-ordered states. Ordering means the system has less symmetry: in a gas
phase molecules can sit anywhere, so the system has the full 3D translational and
rotational symmetry, but if a crystal is formed (ordered!), we know the molecules
cannot sit everywhere they wish; they must make a crystal lattice, so translational
and rotational symmetries are lost.

29.2 How to describe the symmetry
The symmetry of a system may be understood through symmetry operations (Fig.
29.1).

It is clear that more highly symmetric objects allow more symmetry operations
that keep the objects intact (invariant). The totality 𝐺 of the symmetry operations
that keep an object intact is called the symmetry group of the object.455

29.3 Spontaneous breaking of symmetry

455⟨⟨Group⟩⟩ If 𝑎, 𝑏 ∈ 𝐺, and if we write operating 𝑏 first and then 𝑎 next as the product 𝑎𝑏, then
𝑎𝑏 ∈ 𝐺, so we can have an algebraic structure on 𝐺 (as illustrated in
http://demonstrations.wolfram.com/C3vGroupOperations/. We know (i) the identity 𝑒 ∈ 𝐺 and
(ii) the inverse operation 𝑎−1 of any operation 𝑎 ∈ 𝐺 is again in 𝐺. Furthermore, (iii) (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐).
If 𝐺 satisfies these three conditions, 𝐺 is called a group. If a subset 𝐻 ⊂ 𝐺 is again a group, it
is called a subgroup of 𝐺. Lowering of the symmetry of a system corresponds to restricting the
original symmetry group to its genuine subgroup.
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rotation reflection

A

D

C

B

identity
symmetry 

operations

Figure 29.1: Symmetry illustrated. There are two kinds of rotational operations and three kinds
of reflection operations that keep A intact (symmetry group 𝐶3𝑣). With lowering the symmetry
allowed symmetry operations become restricted. For B only rotations are allowed (symmetry group
𝐶3), and for C only one reflection is allowed (𝐶𝜎). Without any symmetry (case D) only identity
𝐼 keeps the figure intact.

If an equilibrium state has a symmetry group which is a genuine subgroup of the
symmetry group of the system Hamiltonian, we say the symmetry is spontaneously
broken. Certainly, the symmetry is spontaneously broken below 𝑇𝑐 for 2-Ising model.
In this case the symmetry that is broken is described by a discrete group (up-down
symmetry).456

Crystallization mentioned above is another example. The Hamiltonian of the
system is something like

𝐻 =
∑︁
𝑖

𝑝2
𝑖

2𝑚
+
∑︁
𝑖<𝑗

𝜑(𝑟𝑖 − 𝑟𝑗), (29.1)

where 𝜑 is usually a binary interaction potential. Thus, the Hamiltonian has a full
translation symmetry: nothing happens even if translation 𝑟𝑖 → 𝑟𝑖 + 𝑎 is applied
to all the particles; 𝐻 is invariant.457 However, we believe this system crystallizes,
losing its translational symmetry, if the interaction potential is something like the
Lenard-Jones potential.458 Thus, crystallization is a typical spontaneous symmetry
breaking. In contrast to the 2-Ising model, the symmetry group in this case is contin-
uous. That is, any 𝑎 is allowed or any small angle rotation can keep the Hamiltonian
intact. Really interesting phenomena due to spontaneous symmetry breaking occur
if the broken symmetry is continuous.

456𝑍2 group.
457You might ask how the boundary of the system is taken care of. We take a huge system

(eventually the thermodynamic limit), or we may impose a periodic boundary condition.
458As already noted previously, we have not been able to prove this within statistical mechanics.
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29.4 Symmetry breaking in Heisenberg magnet
Consider a Heisenberg magnet as an example (cf. Fig. 29.2). In this case the system
Hamiltonian

𝐻 = −𝐽
∑︁
⟨𝑖,𝑗⟩

𝑠𝑖 · 𝑠𝑗 (29.2)

has a full 3D rotational symmetry of spins.459 The disordered phase (paramagnetic
phase) has no magnetization 𝑚 = 0, so indeed the system is fully rotationally sym-
metric. However, below 𝑇𝑐, when ferromagnetic order emerges, then 𝑚 is a definite
non-zero vector. Thus, the system symmetry is no more 3D rotational but only the
2D rotation around the axis parallel to 𝑚 (in the spin space). Thus, the symmetry
is lowered, a typical example of spontaneous symmetry breaking460 (Fig. 29.2).

symmetry breaking

transition

Figure 29.2: Symmetry breaking results in an ensemble of symmetry broken phases collectively
representing the whole symmetry of the system. (This illustration corresponds to a transition from
a paramagnetic phase to a ferromagnetic phase.)

29.5 Consequences of symmetry breaking: rigidity
Now, take a Heisenberg magnet below its 𝑇𝑐 with magnetization 𝑚 being in the +𝑧-
direction. Let us choose one spin in front of us and rotate it by 90∘ to point in the
+𝑥-direction, and hold it. What happens? The spins around the rotated spin do not
like this, because the interaction is energetically unfavorable. Thermal fluctuation
occasionally flip them and align them to the held spin. Needless to say, then, these
reoriented spins will have uncomfortable relations with further outside spins, BUT
this outside relation is ‘better’; the central spin never moves, so the discomfort is

459𝑂3-symmetry, needless to say, it is a continuous symmetry. The spins live on a lattice, so there
is no spatial rotational symmetry. Do not confuse the rotations in the spin space and in the actual
space.

460In this case, the macroscopic states with different 𝑚 are understood as distinct phases just as
gas and liquid phases in fluids. If 𝑚 changes to 𝑚′, this is a first order phase transition between
two distinct ordered phases.
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steady, but in the outer layers it is ameliorated by thermal fluctuations. Thus, the
flipped 𝑥-oriented domain gradually widens, and eventually the macroscopic magnet
changes its direction of magnetization. Since this state has the same energy as the
original state (𝐻, the system Hamiltonian, is symmetric!), the final state will last
forever, even if you stop holding the central spin. If we do not pay attention to what
was actually happening between the two equilibrium states, what happens is just
the rotation of the magnetization. This property— the whole system following the
modification of its part—is called (generalized) rigidity.461

The rigidity the most familiar to us is the rigidity of a solid. If we push one
end of a solid, the other end also moves accordingly. You cannot do this for fluids.
Only after translational symmetry is spontaneously broken can we have this ordinary
rigidity of solid. If one end is twisted, the other end follows as well. This is due to
the breaking of the rotational symmetry by crystallization.

Rigidity also occurs in 2D Ising model: if you flip the central spin and hold it,
eventually the magnetization would change its sign. Thus, whenever symmetry is
spontaneously broken, rigidity emerges. However, symmetry breaking of continuous
symmetries is much more dramatic, because any local small change (which is impos-
sible for discrete symmetry cases) propagates to the other end.

29.6 Nambu-Goldstone bosons: a consequence of breaking of continuous
symmetry
If the spontaneously broken symmetry is continuous, and if the system interactions
are short-ranged, we have another universal feature: the Nambu-Goldstone bosons
(NG bosons). The NG bosons refer to long wave length collective excitations in
the ordered phase (like acoustic phonons = sound waves in solids) whose excitation
energy tends to zero in the long-wavelength limit.

All possible symmetry broken phases (see Fig. 29.2) have the same energy, because
they can be transformed into each other with an element of the symmetry group of
the system Hamiltonian. Consider a 3D rectangular parallelepiped, and assume that
the phase changes continuously along its one axis (𝑥-axis) (Fig. 29.3)

Let us estimate the needed energy for such deformation of the magnetization per
cross section perpendicular to the 𝑥-axis. The spin interaction energy is given by
the scalar product of spins, so if the angle between the neighboring spins is a small
angle 𝜃, the energy increases by 1 − cos 𝜃 ∝ 𝜃2 relative to the perfect parallel case.
Suppose the spin-spin angle changes by 𝑑𝜃 if they are apart by 𝑑𝑥 along the 𝑥-axis.
The energy change per 𝑑𝑥 is proportional to 𝑑𝜃2, so the total energy change due to

461The change in a ‘small part’ is in this case kept by an external means (by us). Then, the change
eventually propagates to the whole system (i.e., any indefinitely large finite domain follows). Notice
that an equilibrium state is stable under any perturbation of any finite domain, if the perturbation
is left unconstrained. Do not mix up these different situations.
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x

Figure 29.3: The situation in which the spin directions (magnetizations) in the planes perpen-
dicular to an axis (𝑥-axis) change gradually

this twisting of spins from one end 0 to the other end 𝐿 is given by

(𝑑𝜃)2
𝐿

𝑑𝑥
≃
∫︁ 𝐿

0

𝑑𝜃2

𝑑𝑥
=

∫︁ 𝐿

0

(︂
𝑑𝜃

𝑑𝑥

)︂2

𝑑𝑥. (29.3)

Here, the 𝐿/𝑑𝑥 in the leftmost expression is the number of slices. The formula im-
plies that if the total twist angle is 𝜃, then the total energy cost for this deformation
is proportional to 𝜃2/𝐿. That is, if we can deform the system continuously, longer
wave deformation (fluctuation) requires less energy to realize. Thus, the Nambu-
Goldstone bosons become possible.

In the case of the Heisenberg ferromagnet, precession of spins can propagate as a
wave (spin waves) and its quantum is called magnons. In a crystal the vibration due
to the mutual displacement of lattice cells can propagate as a wave and its quantum
is our familiar (acoustic) phonons. They are the NG bosons due to crystallization.

29.7 NG bosons do not exist for long-range interaction systems
However, as can be guessed from the above explanation, if there is a long-range
interaction, then the energy required by a long-wavelength excitation may not van-
ish. This indeed happens in plasmas. Suppose we displace + charges relative to −
charges as in Fig. 29.4. The Coulomb interaction energy between the charge density
fluctuations does not decrease with distance (remember the parallel plate capacitor).
Therefore, the excitation energy has a lower cut off and the long-wave frequency does
not converge to zero.462

+ −

Figure 29.4: However far away the + and − charges are apart, in this case (recall a parallel
plate capacitor) the Coulomb interaction between the separated charges does not decay.

29.8 Summary of symmetry breaking
We can summarize representative examples. Although not discussed superfluidity of

462Plasma oscillation is these excitations.
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4He is also added.463

solid Heisenberg ferro superfluid
Broken Symmetry 3D translational rotational phase
Order 3D periodicity ferromagnetism superfluidity
NG boson acoustic phonons spin wave second sound
Rigidity rigidity ferromagnetism superfluidity

29.9 Symmetry breaking requires big systems
If the system is finite, there is no symmetry breaking.464 Fig. 29.2 implies the fol-
lowing difficulty: if we compute the partition function of a system as usual

𝑍 =
∑︁

𝑒−𝛽𝐻 , (29.4)

because the sum is over all the possible microscopic states, the resultant 𝑍 or the
free energy of the system is completely symmetric, that is, its symmetry group is
identical to that of the microscopic Hamiltonian. This statement is true if the system
is finite, because the sum is a finite sum. Thus, taking the thermodynamic limit is
absolutely needed to make a rational and simple framework to understand sponta-
neous symmetry breaking.

29.10 What actually selects a particular symmetry broken state?
When the intrinsic symmetry is broken, how is a particular phase selected in the
real world? This is selected by extremely small fortuitous external effects or even
without such effects by intrinsic thermal fluctuations. If there is a weak external field
(stray field), the system would react very sensitively to it. Therefore, if one wishes
to study a particular phase with the aid of statistical mechanics an appropriate weak
field conjugate to the order parameter is introduced to the system Hamiltonian to
select the phase. After computing its thermodynamic limit, the field is set to zero.
This limit must be performed after the thermodynamic limit; if performed before
the thermodynamic limit, the symmetry breaking field effect disappears. Symmetry
breaking means that the thermodynamic limit and the conjugate-field zero limit are
not commutative.

463About this section, a strongly recommended reference is: P. W. Anderson, Basic Notions of
Condensed Matter Physics (Westview Press 1984, 1997), Chapter 2.

464To state more practically, the state with a broken symmetry has a life time. For example, for
a very small crystal, thermal fluctuation could spontaneously rearrange the crystal axes. Needless
to say, if a crystal is not very small such fluctuations occur only very rarely. The agreement of its
behavior to the behavior in the thermodynamic limit is practically perfect, because the life-time
of a given orientation is very long. However, mathematically, or theoretically, it is still not a true
equilibrium state, so thermodynamic limit is taken.
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30 First order phase transition

Summary
* How the first order phase transition becomes possible is explained.
* Even if phase transition occurs, the ensemble equivalence of statistical mechanics
holds. That is, to study thermodynamics even with singularities, we can use any
convenient statistical ensemble we like.

Key words
metastable state, unstable state, nucleation, spinodal decomposition

What you should be able to do
* Get familiar with the use of bifurcation diagram to understand phase transitions
Clearly recognize that 𝐸 is once continuously differentiable with respect to 𝑆, 𝑉 and
other work coordinates.
* You must be able to illustrate why ensemble equivalence is all right.

30.1 First order phase transition example: nematic-isotropic liquid crys-
tal transition
As already discussed briefly, in the case of liquid crystals, the ordering and vol-
ume change are coupled, and isotropic liquid-nematic liquid phase transition is
(weakly) first order. As has already been mentioned, liquid crystal consists of slender
molecules, which orient in the random directions at higher temperatures but tend to
align at lower temperatures. This ordered phase is called the nematic liquid crys-
tal phase. If we increase its temperature, due to thermal expansion, the distance
between molecules increase slightly. This enhances disorganization of the molecular
orientation, weakening molecular interactions further. This in turn enhances volume
expansion and enhances disorder. In this way catastrophically order is lost, and a
first order phase transition — nematic-isotropic phase transition — happens.

In this case, if there were no volume change, then the order would last more stably
and the first order phase transition would be much closer to the second order phase
transition or would become a second order phase transition itself.

30.2 Caricature model of first order phase transition
The above observation suggests a caricature model of first order phase transition
within the mean field approximation. For a Ising magnet model, suppose that if the
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(magnitude of the) magnetization per spin 𝑚 (i.e., the order parameter) becomes
smaller, 𝐽 in (26.23) decreases as illustrated in Fig. 30.1.

J

m

Figure 30.1: Order-dependent coupling constant that induces a first order phase transition. If
the order parameter becomes small, the spin-spin interaction becomes weak. In such a model the
order would precipitously decrease.

Let us review the mean field approach for a square lattice. Our starting point is
the following equation

⟨𝑠0⟩ = ⟨tanh[𝛽𝐽(𝑠1 + 𝑠2 + 𝑠3 + 𝑠4)]⟩. (30.1)

The naivest mean-field approach is

𝑚 = tanh 4𝛽𝐽𝑚 (30.2)

or
4𝛽𝐽𝑚 = 4𝛽𝐽 tanh 4𝛽𝐽𝑚, (30.3)

that is, we must solve
𝑥 = 4𝛽𝐽 tanh𝑥. (30.4)

We replace 𝐽 with the 𝐽(𝑥) in Fig. 30.1:

𝑥 = 4𝛽𝐽(𝑥) tanh𝑥. (30.5)

This modification is illustrated in Fig. 30.2.

Figure 30.2: Introduction of the 𝑚-dependent coupling constant: Replacing 𝐽 with 𝐽(𝑥) illus-
trated in Fig. 30.1 corresponds to the modification from Left to Right.
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30.3 Bifurcations exhibited by the caricature model
Let us study what happens if we lower the temperature. As 𝛽 increases, the curve
in Fig. 30.2 becomes steeper and eventually crosses the diagonal line at three, and
then five places as shown in Fig. 30.3; At 𝑇𝑏 new non-zero fixed points appear.

h h h

T > T T = T T < Tb b b

Figure 30.3: A first order phase transition occurs slightly below 𝑇𝑏. To determine the exact
phase transition temperature, we need an analogue of Maxwell’s rule.

The stability of solutions may be read off from the bifurcation diagram Fig. 30.4.
Below 𝑇𝑏 there is a branch where 𝑚 is not zero. The possibility of hysteresis (e.g.,
supercooling) can also be found. An equilibrium phase transition (or the coexistence
of two phases) occurs somewhere the branches corresponding to the coexisting phases
are stable. To determine the exact phase transition point requires an analogue of
Maxwell’s rule, which would choose a transition point (the thick vertical line) some-
where between 𝑇𝑏 and 𝑇𝑋 in Fig. 30.4.

m      hor

Tb

T
stable

stable

stable

unstable

unstable TX

Figure 30.4: The bifurcation diagram for the model that allows a first order phase transition.
The vertical arrows denote the evolving direction of perturbation to the fixed point values of 𝑚
at various temperatures. We can at once see the stability of the fixed points from the exchange
of stability occurring at every bifurcation. To determine the exact phase transition temperature
(denoted by the thick vertical line in the figure; within the mean-field theory) we need a rule parallel
to Maxwell’s rule.
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30.4 Metastable and unstable states
In Fig. 30.4 the green curves denote stable solutions (roots) and red unstable solu-
tions (in the sense that small perturbations added to the solution grow). Above 𝑇𝑏
without any question 𝑚 = 0 disordered phase is the equilibrium phase, and below
𝑇𝑋 again without doubt the ordered (i.e., 𝑚 ̸= 0) phase is stable. Between 𝑇𝑏 and
𝑇𝑋 the situation looks complicated. Thermodynamically, we expect there must be
a phase transition from 𝑚 = 0 branch to 𝑚 ̸= 0 branch somewhere between these
two temperatures. The situation is analogous to the van der Waals gas; there should
be a counterpart of Maxwell’s rule that determines the equilibriums phase transition
point.465 Thus, if we come from the high temperature side slowly to 𝑇𝑋 a first order
phase transition occurs at the vertical thick line position in Fig. 30.4.

If we rapidly cool the system, it is possible that we can stay on the green line be-
low the phase transition point, which is the supercooled disordered phase, which is
metastable: it is stable against small perturbations but it is not really globally stable
(does not correspond to the global free energy minimum). If we heat the system in
an ordered phase (say, 𝑚 > 0 phase) gradually, at the phase transition point order
is lost and the 𝑚 = 0 phase appears. However, if we heat the system rapidly, we can
continue to stay on the green curve, which is the superheated ordered state, and is
metastable.

If we cool the disordered state really rapidly (temperature quench), then we could
move the state on the green line left to 𝑇𝑋 . This state is unstable, so it rapidly
organizes into an ordered phase.

30.5 Phase ordering kinetics: nucleation and spinodal decomposition
How phases changes into each other is an interesting question both pure and materi-
als scientifically, because we could make various textures by arresting the transition
process at an appropriate stage. When a metastable state orders, we expect seeds of
ordered phases appear in the ocean of disordered phase as nuclei. The formation of
nuclei is the rate-determining step. Once nuclei are formed, they grow rapidly and
the phase transition is completed.

If a disordered phase is quenched into its unstable state, then immediately or-
dered domains appear everywhere in the space. However, ordered phases are usually
not unique (in the figure we have ± phases), so initially fine mosaic state is formed.
Then, each domain of a particular ordered phase tries to increase its domain.466

30.6 First order phase transition due to external field change

465Honestly speaking, we must make a mean-field approximation of the free energy and find the
equilibrium condition.

466If the order parameter is conserved, it is called the spinodal decomposition.
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Phase transition can occur even if 𝑇 is constant due to changes of other variables
(say, 𝑃 in the case of fluid; look at the 𝑃𝑇 diagram). Again, this phase transition
can be understood intuitively with the aid of magnets.

Below 𝑇𝑐 2-Ising model is in the up phase or down phase. If a small magnetic
field is applied, then the direction of the spins of one phase is stabilized relative to
the other phase. This means one phase is no more a true equilibrium state but only
a metastable state. Let us discuss the phase transition induced by this change with
the aid of a mean field theory. Let us assume 𝐽 is constant, and we consider (26.22),
i.e.,

𝑚 = tanh(2𝑑𝛽𝐽𝑚+ 𝛽ℎ). (30.6)

Multiplying 2𝑑𝛽𝐽 and then adding 𝛽ℎ, we get

2𝑑𝛽𝐽𝑚+ 𝛽ℎ = 2𝑑𝛽𝐽 tanh(2𝑑𝛽𝐽𝑚+ 𝛽ℎ) + 𝛽ℎ (30.7)

or we have only to study
𝑥− 𝛽ℎ = 2𝑑𝛽𝐽 tanh𝑥 (30.8)

To solve this equation we again use a graphic method (Fig. 30.5, the corresponding
bifurcation diagram is in Fig. 30.6):

A

B

C

D

E

F

E
BD

CE

Figure 30.5: Reducing ℎ corresponds to A→ F. If the magnetic filed intensity is positively large
(A), the up phase is stable. Between A and B even if ℎ is reduced virtually nothing happens. If
ℎ is reduced further a metastable down spin state (white disk on the negative domain) becomes
possible. Also there is an unstable state (cross mark). If ℎ is reduced, then the metastable down
phase becomes stable, and the stable up phase becomes metastable. Look at the bifurcation diagram
in Fig. 30.6 Left.

In Fig. 30.5 A → E describes the effect of reducing magnetic field favoring the
up phase while keeping the temperature 𝑇 < 𝑇𝑐. The corresponding bifurcation dia-
gram (Left of Fig. 30.6) may be easier to understand. Below B once the down phase
domain is formed, it is metastable (i.e., if it is large enough, it lasts for a very long
time). The stability exchanges between the up and down phases at ℎ = 0 can be
understood intuitively. If ℎ is further reduced (i.e., becomes larger in the opposite
direction) at E the up phase becomes unstable. If there are remaining domains of
the up phase, they disappear quickly.

Suppose the system is initially in the down phase. If an upward magnetic field
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Figure 30.6: Bifurcation diagram for (30.8). Green curves denote locally stable solutions;
thermodynamically (i.e., globally) stable or metastable states. Red portion denotes locally unstable
solutions; thermodynamically unstable states.

(ℎ > 0) is applied, it becomes metastable, because the up phase is thermodynami-
cally more stable (its free energy is less than that of the down phase). However, until
B is realized, big enough down spin domains persist. If the magnetic field is suddenly
increased to A, the down phase becomes unstable and goes into the up phase locally
in avalanches.

The picture just explained applies to many first order phase transitions when the
intensive variable is changed that is conjugate to a density that jumps at the first
order phase transition. As can be guessed from the illustration in Fig. 25.7 for a
fluid system (or a binary mixture system), pressure (or chemical potential) may be
regarded as the intensive variable to induce first order phase transitions.

We know there is no phase transition above 𝑇𝑐 for fluids. This corresponds to the
bifurcation diagram on the right of Fig. 30.6. Smoothly, just as the up phase turns
into the down phase and vice versa, in the case of the fluid, very high density states
may be converted into very low density states through changing the pressure.

30.7 Phase transition and ensemble equivalence
To conclude this introductory course, let us review the meaning of ‘ensemble equiva-
lence’: you may use any convenient ensemble that can produce a certain thermody-
namic potential (generalized free energy) to compute any thermodynamic potential
(especially 𝐸 and 𝑆) you wish.

In these lectures it has been stressed that the most fundamental macroscopic de-
scription of a macrosystem in equilibrium is in terms of thermodynamic coordinates.
The entropy as a function of the thermodynamic coordinates gives the most complete
thermodynamic description of the system. In other words, if we know the internal
energy as a function of entropy and work coordinates as 𝐸 = 𝐸(𝑆, 𝑉, · · ·), we have a
complete thermodynamic description of the system. Therefore, it is natural to guess
that even if we compute the Helmholtz free energy 𝐴, we may not be able to obtain
𝑆 = 𝑆(𝐸,𝑋) in its generality. But, actually, it is not the case: from 𝐴 we can fully
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reproduce 𝐸. If 𝐴 is differentiable, of course we know the Gibbs-Helmholtz relation,
but no differentiation is needed.467

However, since the thermodynamic coordinates are privileged variables, we should
lose something. Indeed, we lose some detailed information. Let us see what we can
preserve and what we lose when we move from the thermodynamic coordinate sys-
tem (in terms of 𝐸 = 𝐸(𝑆, 𝑉, · · ·)) to something else (in the illustration below, to
𝐴 = 𝐴(𝑇, 𝑉, · · ·)).

30.8 𝐸 must always be continuously differentiable
In terms of internal energy, a phase transition occurs where the convex function
𝐸 = 𝐸(𝑆, 𝑉, · · ·) loses its smoothness. Here ‘smoothness’ implies the holomorphy as
a multivariable function. Since a convex function is continuous, 𝐸 cannot have any
jump. Furthermore, as we see from the Gibbs relation,

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝑥𝑑𝑋 + · · · , (30.9)

so its continuous differentiability must be satisfied in the region of thermodynamic
space meaningful to the system.468 Thus, internal energy must be a 𝐶1 (= continu-
ously differentiable) convex function of entropy and work coordinates. Consequently,
the worst singularity is the loss of twice differentiability. For example, the constant
volume specific heat can become not definable. We know at the critical point this
indeed happens.

30.9 What if 𝐸 is not twice differentiable?
If a 𝐶1 convex function loses twice differentiability, what can happen? Let us look at
one variable 𝑆 of 𝐸. Let us assume that work coordinates (such as the volume) are
kept constant. Here we pay attention to the case in which the singularity is isolated.
We will not discuss more general cases.

Fig. 30.7 illustrates 𝐸 as a function of 𝑆. The slope of this curve is tempera-
ture 𝑇 . Something happening to the second derivative implies that the temperature
derivative of 𝑆 (the constant volume specific heat) has a singularity.

In (A) phase I and phase II have the same extensive variable values (the values of
thermodynamic densities) at ‘a’, so these two phases do not coexist. In this case the
order parameter may change continuously. In contrast, in (B) phase I and phase II
coexist at ‘a’ temperature 𝑇 (= given by the slope of the straight portion between ‘a’
and ‘b’). These two phases are distinct and have different densities. As we already
know very well, if some density changes discontinuously at the phase transition, it

467It is solely due to the convexity of −𝐴 as we discussed briefly long ago.
468𝑃 and 𝑇 never jump when we change thermodynamic variables. Why? It is a deep question.
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Figure 30.7: When twice differentiability is lost: In (A) it is assumed that the second-order
differentiability has a problem at a single point a. In (B) this happens at two points a and b.

is called a first order phase transition. Otherwise, it is generally called a higher or-
der (usually second order) phase transition; if two phases can coexist, the transition
is first order. This happens for (B) (however, even if the transition is first order,
phases may not coexist; recall the 2D Ising model below 𝑇𝑐). In case (A) a crude
sketch of the energy function cannot tell whether the transition is first order or higher.

30.10 What do we lose by Legendre transformation?
To understand the coexistence of two phases under constant temperature discussed
above, it is convenient to use the thermodynamic potential one of whose independent
variables is temperature, that is, the Helmholtz free energy. It is obtained by the
Legendre transformation with respect to entropy. We have already seen a general
introduction to convex analysis. Here, let us see some detail when there is a phase
transition. We know 𝐴 = min𝑆[𝐸 − 𝑆𝑇 ]. If this is rewritten in the form standard to
convex analysis, it reads −𝐴 = max𝑆[𝑆𝑇 −𝐸] (i.e., 𝐸* = −𝐴). Thus, the free energy
is convex upward as a function of temperature (In Fig. 30.8 the convex function −𝐴
is illustrated).

Sa b

A

T

−

I

II

I

II

E

p

Tp

Figure 30.8: Legendre transformation 𝐸 to 𝐴 (or −𝐴).
Fig. 30.8 Left is just the same as Fig. 30.7 (B) and depicts 𝐸 as a continuously differentiable

function of 𝑆. 𝐸 is linear between a and b, and the slopes at a and at b agree with the slope of the

linear portion. Phase I occupies left of a, and phase II right of b, and the linear portion describes

the coexistence of these phases. The slope of the linear portion is the coexistence temperature 𝑇𝑝,

corresponding to the break point p of the free energy graph on the right. All the coexisting phases
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between a and b are mapped to a point p by the Legendre transformation.

If a first order phase transition happens and if two phases can coexist, there is
a ‘linear’ portion in the graph of internal energy. This is mapped to a single point
by the Legendre transformation (Fig. 30.8). As can be seen from this, when two
phases coexist, thermodynamic states that can be distinguished by thermodynamic
coordinates (intuitively, the states distinguishable by different ratios of two phases)
are identified and mapped to a single point by the Legendre transformation. We
lose the information about the relative amount of coexisting phases by the Legen-
dre transformation. However, it should be noted that from the right graph in Fig.
30.8, we can completely reconstruct internal energy as a function of thermodynamic
coordinates by the inverse Legendre transformation 𝐸 = max𝑇 [𝑆𝑇 − (−𝐴)] (i.e.,
𝐸** = 𝐸). This is the implication of the ensemble equivalence.
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