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Thermodynamics is taught first for the dubious reason that it is older than statistical me-xv

chanics.

Guiding principles:

Problems are designed to enhance conceptual understanding

Advanced Graduate and graduate levels make no distinction.

Pedagogical Principles:

Start with classical statistical mechanics

Statistical mechanics is based on the definition of entropy by Boltzmann in 1877. This is

one of the key features of the book

Self-contained probability theory is given.

1

Feynman: If, in some cataclysm, all scientific knowledge were to be destroyed, and only

one sentence passed on to the next generation of creatures, what statement would contain

the most information in the fewest words? I believe it is the atomic hypothesis (or atomic

fact, or whatever you wish to call it) that all things are made of atoms—little particles that

move around in perpetual motion, attracting each other when they are a little distance apart,

but repelling upon being squeezed into one another. In that one sentence you will see an

enormous amount of information about the world, if just a little imagination and thinking

are applied.

Due to our lack of detailed knowledge of te microscopic state of an object, we need to4

use probability theory.

[C] Is this a logically valid statement?

The intention of this book is to present thermal physics as a consequence of the molecular5

nature of matter.

Part I Entropy

2. The classical ideal gas

The most important feature that is missing from a classical ideal gas is that it does not11

exhibit any phase transitions.

Distinguishability: To be specific, particles are distinguishable when the exchange of two12

particles results in a different microscopic state. In classical mechanics, this is equivalent
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to saying that every point in phase space represents a different microscopic state. Distin-

guishability does not necessarily mean that the particles have different properties; classically,

particles were always regarded as distinguishable because their trajectories could, at least in

a thought experiment, be followed and the identity of individual particles determined.

S = kB log W , where W is Wahrscheinlichkeit. This should not be confused with the phase13

volume.

[C] Road Map for Part I is given on p15. Even the flow chart is given.

3. Discrete Probability theory

What is probability? Frequentist definition contradicts the finiteness of our life; Bayes res-16

cues this: Bayesian define probability as a description of a person’s knowledge of the outcome

of a trial, based on whatever evidence is at that person’s disposal.

Bayesian probability is accepted by most statisticians. However, it is in disrepute among

some physicists because they regard it as subjective, in the sense that it describes what an

individual knows, rather than being absolute truth. However, none of us has access to ab-

solute truth, and Bayesian statistics provides an appropriate way to describe what we learn

from experiments.

[C] Observability must be guaranteed. The above argument is too crude.

Joint probability introduced18

Random numbers21

Log sum derivation of Stirling.29

Gosper’s approximation31

N ! ∼ e−NNN
√

(2N + 1/3)π) (0.0.1)

Wolfram math site cites this.1 Stirring’s approximation is one of the most accurate approx-

imation in physics.

4. The classical ideal gas: configuration entropy

Stotal(E, V, N) = Sp(E, N) + Sq(V, N).40

Partition into two parts V = VA + VB. Spatial even distribution assumed, then41

P (NA, NB) =
N !

NA!NB!

(
VA

V

)NA
(

VB

V

)NB

. (0.0.2)

From this 〈NA〉 = NVA/V . The standard deviation is
√

NVAVB/V , thus the actual number43

is very close to the average.

Thermodynamic limit: asymptotically exact.44

Defining Ωq(N, V ) = V N/N !

log P (NA, NB) = log Qq(NA, VA) + log Qq(NB, VB)− log Qq(N, V ). (0.0.3)

1yielding
√

π/3 ∼ 1.02333 instead of 0 obtained with the conventional Stirling approximation for 0!.
Mortici, JMI 5 611 (2011) ON GOSPERS FORMULA FOR THE GAMMA FUNCTION
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It will be convenient to define

Sq(N, V ) = kB log Ω = kBXN, (0.0.4)

where X is an arbitrary constant. (0.0.3) reads

log P (NA, NB) = Sq(NA, VA) + Sq(NB, VB)− Sq(N, V ). (0.0.5)

Near equilibrium, note that log P is negligible, and45

Sq(N, V ) = Sq(NA, VA) + Sq(NB, VB). (0.0.6)

Analytically,

Sq(N, V ) = kBN [log(V/N) + X] (0.0.7)

kB and X will be determined in 8.

5. Continuous random number

Dirac delta. This is defined as the weak limit. Note that the width of the function δε(cx) os50

a factor of 1/|c| times that of δε(x).

Bayes’ theorem; also log likelihood calculation is illustrated (p56).55

6. The classical ideal gas: energy dependence of entropy

With the assumption of uniform probability density in momentum space, we can calculate

the probability distribution for the energy from that of the momenta, using the methods

from Section 5-4 with the aid of δ-function.

P (EA, EB) =

∫
dpA δ(EA −HA)

∫
dpA δ(EB −HB)∫

dp δ(E −H)
. (0.0.8)

Introduce

ΩE(E, N) =

∫
dpA δ(E −H), (0.0.9)

and we have

P (EA, EB) =
ΩE(EA, NA)ΩE(EB, NB))

ΩE(E, N)
. (0.0.10)

Then, spherical evaluation of ΩE is honestly done (p64-5). The result asymptotically reads

P (EA, EB) = (EA/E)3NA/2(EB/E)3NB/2 (0.0.11)

Again, the sharpness of the distribution is demonstrated. ΩE is introduced analogically ([C]

not logically clear) and

SE(E, N) = kBN

[
3

2
log(E/N) + X

]
(0.0.12)
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is written. ([C] X need not be identical.)

[C] As a whole the argument is sloppy.

7. Classical gases: ideal and otherwise

The full S is given with X arbitrariness comment.71

Equilibrium conditions are worked out with the max entropy principle (∼p76).

Indistinguishable particles: what is particles are distinguishable?76

Indistinguishable case is calculated with the x-coordinate ordering. This naturally produces77

the 1/N ! factor.

“The result is the same as the distinguishable case (p41).” The result assumes the binomial

factor due to the free particle exchange between two subparts A and B.

The author claims:

The result that the entropy is exactly the same for classical systems with distinguishable and

indistinguishable particles might be surprising to some readers, since most of the literature

for the past century has claimed that they were different. My claim that the two models have

the same entropy depends crucially on the definition of entropy that I have used. However, I

think we might take as a general principle that two models with identical properties should

have the same entropy. Since the probability distributions are the same, their properties

are the same. It is hard to see how any definition that results in different entropies for two

models with identical properties can be defended.

[C] However this must be due to a logical error.

Second law: entropy max ⇒ equilibrium: this is an extremely important result ([C] the83

argument sounds circular.) Any constraint means lower entropy: this is the second law of

thermodynamics.

Zeroth Law85

8. T, P, µ and all that

What do we mean by temperature? Standard: ideal gas law89

To derive the ideal gas law, we need MB distribution. It is obtained as a marginal:

P (r1, p1) =
Ω(E − p2

1/2m, V, N − 1)

Nh3Ω(E, V, N)
(0.0.13)

From this

P (r1) =
V Ω(E − p2

1/2m, V, N − 1)

Nh3Ω(E, V, N)
(0.0.14)

Expanding this, we get

P (r1) = −βp2
1/2m + · · · (0.0.15)

Using this, the pressure on the wall is calculated.93

Temperature scale. Thus, the derivatives of S are discussed one by one.94
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Part II Thermodynamics

9. The postulates of laws of thermodynamics

The point of view taken in this book is that statistical mechanics is the more fundamental101

theory. Thermodynamics is based on assumptions that can be understood in the context of

statistical mechanics. What we will call the ‘Postulates of Thermodynamics’ and the ’Laws

of Thermodynamics’ are, if not theorems, at least plausible consequences of the theory of

statistical mechanics.

Thermodynamics can give different insights, and is often more efficient.102

A macroscopic state is not a property of a thermodynamic system; it is a description of103

a thermodynamic system based on macroscopic. Due to the experimental uncertainty of

macroscopic measurements, a macroscopic state is consistent with an infinity of microscopic

states.

Formally, this might seem to be a rather loose definition of what we mean by ’macroscopic

state’. In practice, however, there is rarely a problem. Because microscopic fluctuations are

so much smaller than experimental uncertainties, it is relatively easy to specify which mi-

croscopic states are consistent with macroscopic measurements. measurements.

Postulates104

1. Existence of equilibrium states

There exist equilibrium states of a macroscopic system that are characterized uniquely by a

small number of extensive variables.

2. Entropic maximization

The values assumed by the extensive parameters of an isolated composite system in the

absence of an internal constraint are those that maximize the entropy over the set of all

constrained macroscopic states.

whenever we release a constraint on a composite system, the entropy will increase: ∆S ≥
0. Thus, equilibrium may be obtained by maximization of entropy.

3. Additivity

The entropy of a composite system is additive over the constituent subsystems.

4. Monotonicity

The entropy is a monotonically increasing function of the energy for equilibrium value of the

energy.

5. Analyticity

The entropy is a C1 function of extensive parameters.

6. Extensivity106
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Entropy is an extensive function of the extensive variables

S(λ...) = λS(...). (0.0.16)

However, this is not true for all systems. For example, gas with absorbing wall (Problem on

p233).

The laws of thermodynamics are stated next. Only the third law cannot be understood107

classically.

10. Perturbation of thermodynamic state functions

Exact and inexact differential dω = 0 is discussed.110

Conservation of energy revisited.113

11. Thermodynamic processes

The concept of a quasi-static process is an idealization. [C] but is realistic enough because116

dissipation is proportional to δx2.

Heat engine. Max efficiency is obtained from Clausius.119

12. Thermodynamic Potential

Legendre transformation is discussed as the relation between the point and the line repre-125

sentation, but not quite convex analytic.

Massieu functions.130

13. Consequence of extensivity

Euler’s theorem; Gibbs-Duhem133

An important consequence of the Gibbs-Duhem relation is that for extensive systems we

only need r + 1 equations of state for an r-component system to recover the fundamental

relation and with it access to all thermodynamic information.

[C] Here, eq of states mean the formula for extensive quantified in terms of intensive quan-

tities and N . The fundamental equation of state is a hyperplane in r + 2-space (r + 1 and

E). Therefore, trivially, we need r + 1 extensive variables.

14 Thermodynamic identities

in thermodynamics it is rarely obvious what the ‘other’ variables are. Consequently, it is138

extremely important to specify explicitly which variables are being held constant when taking

a partial derivative.

Maxwell relations; Jacobian used.142

Examples: Joule-Thomson coefficient.148

General strategy151

1. Express the partial derivative as a Jacobian.
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2. If there are any thermodynamic potentials in the partial derivative, bring them to the

numerator. Unless you have a good reason to do something else, insert ∂(T, P ) in this step.

3? Eliminate thermodynamic potentials if you know the derivative. For example:(
∂F

∂T

)
V,N

= −S. (0.0.17)

4. Eliminate thermodynamic potentials by using the differential form of the fundamental

relation. For example: if you want to evaluate(
∂F

∂P

)
T,N

(0.0.18)

use Gibbs to guess the useful Maxwell. etc.

[C] Not so practical.

15. Extremum Principles

Energy minimum principle from entropy maximum principle. Let the system be S =156

S(U,X). Then, for an isolated system near equilibrium

δS =

(
∂2S

∂X2

)
U

δX2 +

(
∂S

∂U

)
X

δU =

(
∂2S

∂X2

)
U

δX2 +
1

T
δU (0.0.19)

Now comes the subtle part. Up to this point the system is isolated, so the total energy is

fixed.

If we wish to change the system under constant S, the heat exchange is killed, and the

process must be reversible, so changing X must be ‘slowed down by applying force. Thus

the internal energy changes (spontaneously is reduced ⇒ Energy minimum principle)

For the analysis of the entropy maximum principle, we isolated a composite system and released an

internal constraint. Since the composite system was isolated, its total energy remained constant. The

composite system went to the most probable macroscopic state after release of the internal constraint,

and the total entropy went to its maximum. Because of the increase in entropy, the process was

irreversible.

Now we are considering a quasi-static process without heat exchange with the rest of the universe,

so that the entropy of the composite system is constant. However, for the process to be quasi-static

we cannot simply release the constraint, as this would initiate an irreversible process, and the total

entropy would increase. Outside forces are required to change the constraints slowly to maintain

equilibrium conditions. This means that the energy of the composite system for this process is not

constant.

The piston-Gas illustration is a good one. We can turn (0.0.19) around:

δU = −T

(
∂2S

∂X2

)
U

δX2 + TδS (0.0.20)
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Since δS =, this implies energy minimum.

Min principle for Helmholtz. Max or min work is discussed (p161).159

16. Stability Conditions

Intrinsic stability: In this chapter we look inside a composite system to see what conditions a167

subsystem must satisfy as a consequence of the extremum principles in 15. These are called

the ‘intrinsic’ stability conditions.

Since any thermodynamic system could become a subsystem of some composite system,

the stability conditions we derive will be valid for all thermodynamic systems.

[C] This book strictly uses compartmentalized system to derive the stability criteria. That

is, ‘fluctuations’ are considered as compartmentalized systems. Energy minimum principle

implies

U(S, X + ∆X, N) + U(S, X −∆X, N)− 2U(S, X,N) ≥ 0 (0.0.21)

Or (
∂U

∂X

)
S,N

≥ 0 (0.0.22)

This is the stability condition.

Stability criterion wrt other potentials are discussed similarly.

17. Phase Transitions

VdW eq is derived from A.178

Reduced form.180

Maxwell construction.184

Meta and unstable states are mentioned. A-V plot and tangential construction (convex hull)

is discussed.

Latent heat, Clapeyron and phase rule are discussed

18. Nernst postulate

The entropy of a thermodynamic system goes to a constant as the temperature goes to zero.194

Planck’s stronger version is that the constant is 0.

It reveals the pervasive influence of quantum mechanics on macroscopic phenomena.

Ideal gas contradicts this.

Consequences of the third law:195

Specific heats vanish in the T → 0 limit.

Thermal expansion coefficient must vanish (use Maxwell).

Part III Classical Statistical Mechanics
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19. Ensembles in classical statistical mechanics

Microcanonical and MD.202

The standard derivation of the canonical distribution is given.204

P (E) =
1

Z
Ω(E)e−βE (0.0.23)

Liouville’s theorem: The canonical distribution is invariant in time. This is shown with the207

aid of Liouville’s theorem. The probability must satisfy a continuity equation

∂P

∂t
+ ∆(vP ) = 0, (0.0.24)

On the other hand
dP

dt
=

∂P

∂t
+ v∆P. (0.0.25)

If the canonical equation of motion is used, we can see v is incompressible, so (0.0.24) implies

that (0.0.25) vanishes:
dP

dt
= 0 (0.0.26)

The interpretation of (0.0.26) is that the probability density in the neighborhood of a moving

point remains constant throughout the trajectory.

Canonical peak position, and fluctuation discussed.209

Gibbs-Helmholtz equation.212

Configuration space. Master equation; detailed balance214
215 One particle factorization approximation:
217 This trick is used repeatedly in statistical mechanics. Even when it is not possible to make

an exact factorization of the partition function, it is often possible to make a good approxi-

mation that does allow factorization.

Factorization of the partition function is the most important trick you need for success in

statistical mechanics. Do not forget it!

Classical harmonic oscillators

H = K +
∑
|q|r system.220

H =
∑

c|pi|+ mg
∑

zi.224

Classical rubber band defined by conformational angles only.

20. Classical Ensembles: grand and otherwise

21. Irreversibility

Trivial irreversibility:234
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Consider a particle moving in empty space. At some initial time it is observed to be located

in some finite region of space. Since the particle is moving, it will eventually leave this

region. If space is infinite, it will not return. This is, technically, irreversible behavior, but

of a trivial kind.

This trivial form of irreversibility is real, and occurs in the radiation of light from a star.

It is quite general in infinite systems, whether classical or quantum. An open system also

displays this trivial form of irreversibility, since it is really just a piece of an infinite system.

However, we would like to separate this trivial irreversibility from the non-trivial irre-

versibility that we experience every day.

[C] However, is there any ultimate difference?

Loschmidt, Zermelo236

If a system is subdivided into semimacroscopic cells for which ordinary equilibrium ther-242

modynamics applies, then the entropy increase can be mimicked.

Part IV Quantum Statistical Mechanics

22 Quantum ensemble

Basic quantum mechanics248

Random phase approximation253

The decomposition of a density operator into ket-bra sum is not unique, but usually we256

decompose it into eigenspace projections:

It is usual to express the density matrix operator in terms of the eigenstates of a system,

which gives the impression that the ensemble also consists entirely of eigenstates. Even

though we know that this is not the case, the demonstration above shows that all predic-

tions based on the (erroneous) assumption that a macroscopic system is in an eigenstate will

be consistent with experiment.

23. Quantum canonical ensemble

The derivation is quite parallel to the classic case. The logic is applied to the subsystem258

eigenenergies:

Pn =
1

Z
e−βEn . (0.0.27)

Quantum mechanical entropy; the origin of the third law.263

The discrete entropy (the original Shannon) cannot be negative. Before taking the thermo-

dynamic limit T → 0 implies obviously, the ground state probability reads P0 = 1/ΩG, the

ground state degeneracy. Therefore,

lim
T→0

S(T ) = −kBΩG
1

ΩG

log
1

ΩG

= kB log ΩG. (0.0.28)
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What Nernst said is that the entropy density vanishes, so if ΩG is sub-exponential as a func-265

tion of N . However, WG = aN can occur for disordered systems.

Factorization
∑∏

=
∏ ∑

. A warning is also given.268

simple harmonic; Einstein model

24. Black-body radiation

In physics, the expression ’black body’ refers to an object that absorbs all radiation incident282

on it and reflects nothing. It is, of course, an idealization, but one that can be approximated

very well in the laboratory.

A black body is not really-black Although it does not reflect light, it can and does radiate

light arising from its thermal energy. This is, of course, necessary if the black body is ever

to be in thermal equilibrium with another object.

[C] The explanation is not recommended.285

Low frequency agrees with equipartition.287

Background radiation289

25. Harmonic solid

Debye approximation301

Debye-blackbody correspondence is mentioned. Harmonic crystal with alternating masses.304
306

26 Ideal quantum gases

Single particle quantum state, and density of single-particle states. To derive the density δ309

is used as

D(ε) =

∫ ∞

0

dnx

∫ ∞

0

dny

∫ ∞

0

dnz δ(ε− εn). (0.0.29)

Many-particle quantum state = microstate.

number representation314

With distinguishable particles, we can derive the ideal gas law. This derivation requires317

only: distinguishability, extensivity and wave function factorization.

U = (2/3)PV discussed.321

27 Bose-Einstein distribution

Perhaps the most startling property of systems governed by Bose- Einstein statistics is that326

they can exhibit a phase transition in the absence of interactions between the particles. In

this chapter we will explore the behavior of an ideal gas of bosons and show how this unusual

phase transition arises.

Bose-intein condensation329

We can trace the strange behavior of bosons at low temperatures to the form of the boson
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occupation number

〈n0〉 =
1

e−βµ − 1
(0.0.30)

If we were to set µ = 0, the occupation number would be infinite. This means that for very

small but non-zero values of µ, the occupation number of the ground state can be arbitrarily

large. In fact, it can even contain all the bosons in the system!

From the equation330

〈n0〉 = N(1− (T/Tc)
2/3), (0.0.31)

we can obtain the low temperature behavior of the chemical potential:

µ ∼ −kBT

N
(1− (T/Tc)3/2)−1. (0.0.32)

For macroscopic system this is extremely small. The occupation of the second level is dis-332

cussed as well.

The isothermal compressibility of ideal Bose gas below Tc is infinite.333

Fermi-Dirac statistics

The chemical potential is a rather weak function of temperature, so that its zero-temperature337

limit usually provides a very good approximation to its value at non-zero temperatures. This

limit is so important that it has a name, the Fermi energy, εF .

Particle-hole symmetry338
1

eβ(ε−µ) + 1
= 1− 1

e−β(ε−µ) + 1
. (0.0.33)

Compressibility of metals: the bulk modulus B = −V (∂P/∂)T is given by341

B =
~2

3m
π4/3

(
N

V

)5/3

. (0.0.34)

Therefore,

B =
2N

3V
εF . (0.0.35)

The numerical predictions of eq. (0.0.35) turn out to be within roughly a factor of 2 of the

experimental results for metals, even though the model ignores the lattice structure entirely.

This is remarkably good agreement for a very simple model of a metal. It shows that the

quantum effects of Fermi-Einstein statistics are responsible for a major part of the bulk

modulus of metals.

Sommerfeld expansion.344

Fermions with internal levels.348

A model system with energy gaps.349
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Consider a system with the following density of states:

D(ε) =


0 0 > ε
A(ε1 − ε) e1 > ε > 0
0 ε2 > ε > ε1

A(ε− ε2) ε > ε2

(0.0.36)

where A is a constant, and ε2 > ε1 > 0. The number of particles is given by N = Aε2
1/2, so

the Fermi energy is εF = (ε1 + ε2)/2.

In the last assignment we found that the Sommerfeld expansion gives incorrect results for

this model. In this assignment we will calculate the low-temperature behavior correctly.

1. Show that if ε1 � kBT , µ = εF is a very good approximation, even if kBT ' ε2 − ε1.

2. Calculate the energy of this model as a function of temperature for low temperatures.

Assume that ε1 � ε2 − ε1 � kBT .

3. Calculate the heat capacity of this model as a function of temperature for low temperatures

from your answer to the previous question. Assume that ε1 � ε2 − ε1 � kBT .

2.9 Insulators and Semiconductors

Gap and fermi energy are explained.361

Semiconductor statistics365

30. Phase transitions and the Ising Model

Ising chain by factorization: Let τj = σj−1σj. Then, all τ are independent and take ±1.371

Z =
∑
{τ}

N∏
j=1

eβJτj = 2
N∏

j=2

∑
τ

eβJτ = 2(2 cosh βJ)N−1. (0.0.37)

If j and h are nonzero, we need the transfer matrix technique.

rmp375The result of the transfer matrix calculation. It is analytic.

Mean field approximation, graphical solution376

Critical exponent380

Landau theory382
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