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This is a set of lectures of thermodynamics for beginning graduate students. Each

‘lecture’ (chapter) is constructed from relatively short ‘units’1 that focus on single

concepts or propositions. These units reference each other as hypertext. These lec-

ture notes explain thermodynamics at the graduate level based on the elementary

knowledges of physics and chemistry of macroscopic phenomena.

However, this current version contains many comments that criticize or correct

conventional approaches and existing textbooks, which are not required for a text-

book.

Also, the part dedicated to chemical thermodynamics is still in a preliminary form,

although the needed principles are all given.
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1just as Perspectives on Statistical Thermodynamics (Cambridge University Press, 2017).
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1 Introduction

1.1 What is thermodynamics?

We drive automobiles that consume fuel or use batteries, and we use fridges and

air conditioners to control temperatures by transferring heat, while consuming elec-

tricity. These activities are based on interconversions of various forms of energy:

electrical, chemical, thermal and so on.

Thermodynamics originated as a scientific field with the goal of comprehending

phenomena concerning temperature and heat within the realm of our everyday ex-

periences. Its purpose was to understand macroscopic phenomena and explore the

interconversion of different forms of energy in physics and chemistry.

There were two key observations that established thermodynamics: the first was

the recognition by Mayer and Joule (→A.9, 7.14) that ‘heat’ is a form of energy,

and the second was the recognition by Carnot (→A.8, 8.13 or 15.2) and by Clau-

sius (→8.1) that, as a form of (transferring) energy, ‘heat’ is peculiar, and we must

handle thermal phenomena with special care.

1.2 What are thermal phenomena?

We mentioned ‘thermal phenomena,’ but it may not be clear what ‘thermal’ or ‘heat-

related’ implies.

To clarify, we can provide some representative examples. We intuitively under-

stand what ‘warm’ or ‘cold’ means; we know heating water can make it boil, and

rubbing wood together can produce fire. Phenomena related to these typical exam-

ples are thermal phenomena.

We may roughly say: ‘Macroscopic physical phenomena in which the fundamen-

tal laws of macroscopic electromagnetism and mechanics do not hold’ are thermal

phenomena. For example, when there is friction, the fundamental laws of mechanics

cease to hold; relative motions subside eventually, violating the law of inertia. In

particular, the conservation of mechanical energy does not hold in such cases.

1.3 What foundation should thermodynamics be based on?

What is the clear meaning of the word we use daily such as ‘temperature’ or ‘heat?

According to a dictionary, “‘temperature’ is the degree or intensity of heat present in
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a substance or object.” Then, ‘heat’ is explained as “the quality of being hot; high

temperature.” To avoid circularity, we must try to understand ‘thermal phenomena’

in terms of something we know clearly.

Since the aim of thermodynamics is to describe ‘macroscopic thermal phenomena,’

it must be founded on critically scrutinized empirical facts and on the logic that is

accepted as legitimate in the established macro physics and chemistry.

As has been stated in 1.1 we wish to have a clear understanding of thermal phe-

nomena at our scale (→1.4). Therefore, the empirical facts thermodynamics should

be founded on must be empirical facts at our scale. As an empirical science, thermo-

dynamics also tries to be free from any particular metaphysics,2 such as mechanical

Weltanschauung.3

Thermodynamics employs the logic and mathematics traditionally employed in

macrophysics, because the backbone of macrophysics such as mechanics and electro-

magnetism was established before thermodynamics was completed. Consequently,

for the understanding of nonthermal physics we entirely rely on this physics.

Accordingly, those who wish to understand thermodynamics ought to know ele-

mentary mechanics and electromagnetism.4 As logic/mathematical tools, the reader

should know rudimentary linear algebra and (multivariable) calculus. Rudimentary

chemistry (or common sense chemistry) is also needed, although a very terse sum-

mary will be stated later (→4.3).

1.4 What is ‘our scale’?

‘Macroscopic’ usually means ‘observable directly by our senses.’

The macroscopic space scale ranges roughly over our size times 10±6 ≈ 2±20 (1

𝜇m ∼ 1,000 km), the macroscopic time scale ranges roughly over 0.1 s, the reciprocal

of the frequency of our lowest audible sound, and our life scale (∼ 109 s or, roughly,

10±5 days). Thermodynamics aims to precisely describe and systematize thermal

2The word ‘metaphysics’ may mean various different things, but here metaphysics is understood
as an attempt to understand the world rationally based on a priori principles: “our world must
be such and such.”

More succinctly, “Metaphysics is to expand one’s cognition without synthetic judgement” [See,
K. Karatani, Transcritique: on Kant and Marx (MIT Press 2005)]. Here, ‘synthetic judgment’ is
judgment referring to empirical facts.

3The picture of the world assuming that it can be totally understood if we understand the
behaviors of particles governed by mechanics. A typical example can be seen in A.17.

4Relativity and quantum mechanics, although not usually mentioned, are not excluded so far
as non-thermal macrophysics is concerned.
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phenomena observable in this macroscopic space-time.

1.5 Why must we seriously take our existence as human beings?

As seen in 1.4, this exposition emphasizes ‘our scale.’ Why are we, human beings,

in the foreground? Isn’t science objective and independent of human beings?

It is often said that the so-called empirical science is a logical summary of the world

observed objectively, detached from the human beings.5 Still, we cannot experience

the world apart from our being human beings. Whatever our experiences are, they are

events we human beings take part in through our bodily sense organs (and nervous

systems), so it is obvious that we cannot directly recognize phenomena occurring

away from our scale (→1.4). Therefore, empirical sciences inevitably respect our

scale; the foundation of science is: Je pense et sens, donc Je suis.6

Against this ‘primitive’ assertion, there may be an objection that we have various

devices such as microscopes, telescopes, etc.

We cannot say that what we see through a telescope is an image of an object that

really exists in the world simply by looking at the world through the telescope. We

trust telescopes, because many people can confirm the correspondence between the

actual object and its telescopic image. Then, we extrapolate this correspondence to

the objects we cannot directly confirm. One might add that the explanation of the

principle by geometrical optics also reinforces our trust in the telescope. Needless to

say, to this end we trust our logic and mathematics. Besides, what is demonstrated

5According to T. Tanaka Development of Physical World Picture (Iwanami, 1988) Max Planck
emphasized in his Die Einheit des physikalischen Weltbildes (The unity of Physical World Picture)
[However, I failed to find any directly quotable statements in the original article corresponding to
the following summary.]: “Science starts with empirical observations that depend on human beings,
but, once established, they turn into objective reality apart from the presence of human beings.
That is, the progress of science is a step-by-step approach toward objective understanding that does
not depend on the human framework.”

This sounds very reasonable, but facts supporting science must be verified empirically. Empirical
verification is impossible apart from the human being. This fact remains even after the verification.
Thus, the characterization of the progress of science according to Planck (summarized by Tanaka)
is meaningless. Besides, we should not forget that this conclusion depends on the logic we regard
legitimate.

Incidentally, the statement “once established, they turn into objective reality” even suggests
that the fact not established by human beings does not exist objectively, a statement reminiscent of
some postmodern philosophy (See, for example, A. Sokal and J. Bricmont, Fashionable Nonsense—
Postmodern intellectuals’ abuse of science (Picador USA, New York 1998).

6unifying Descartes (1596-1650) and Gassendi (1592-1655).
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by geometrical optics is that there is a direct correspondence between the actual

object and the image we observe. That is, however sophisticated the observation is,

its basis is our direct sensory recognition. Therefore, to construct the physics for the

understanding of the phenomena at our scale is the very foundation of the totality

of physics as an empirical science.

Empirical science is an intellectual activity based on the immediacy of experience

principle that we must be skeptical about what we cannot directly experience.7,8

1.6 Two categories of our experiences

Empirical sciences are based on our experiences through our bodily senses (and ner-

vous systems9), but these experiences are not simply the totality of our experiences

7The last chapter of D. L. Everett, Don’t Sleep, There Are Snakes, Life and language in the
Amazonian jungle (Pantheon 2008) eloquently describes the immediacy of experience principle.

“Hey Dan, what does Jesus look like? Is he dark like us or light like you?”
I said, “Well, I have never actually seen him. He lived a long time ago. But I do have his words.”
“Well, Dan, how do you have his words if you have never heard him or seen him?”
They then made it clear that if I had not actually seen this guy (and not in any metaphorical

sense, but literally), they weren’t interested in any stories I had to tell about him. Period. (p266)
Then from p270 and on:

I began to seriously question the nature of faith, the act of believing in something unseen. Re-
ligious books like the Bible and the Koran glorified this kind of faith in the nonobjective and
counterintuitive—life after death, virgin birth, angels, miracles, and so on. The Pirahãs’ values of
immediacy of experience and demand for evidence made all this seem deeply dubious.

However, interestingly, there might be a historical fact related to Jesus. It is certain that Mary
was pregnant before her marriage to Joseph; “Usually, when such potentially damaging stories
appear in the Gospels, it indicates that the underlying oral or written tradition was simply too
persistent or well-known for the writer to ignore.” (Jean-Pierre Isbout, Search for the Historical
Jesus (The Teaching Company, 2022)). Additionally, the name of the true father of Jesus, a Roman
soldier named Tiberius Julius Abdes Pantera (22 BCE-40 CE), was mentioned in Celsus’ work, The
True Discourse (ca. 178 CE). Very interestingly, in 1859, his tomb was discovered in Germany,
revealing that this soldier was indeed stationed in Palestine until 9 CE (Jean-Pierre Isbout, ibid.).
However, most historians do not consider Celsus’ account to be credible.

8However, we must not forget that “to believe only what one sees,” and “to think with one’s
own brain” are also hotbeds of “anti-scientism,” “conspiracy theories,” etc. See C. D. Ruiz and
T. Nilsson, “Disinformation and echo chambers: How disinformation circulates on social media
through identity-driven controversies,” J. Public Policy & Marketing 42, 18 (2022). These may be
bundled as the so-called “naive empiricism.” Its crucial characteristic or defect is to ignore or to
make little of phylogenetic experiences (→1.6)

9For example, the law of inertia may be incorporated in the neurons connecting the retina and
the visual cortex. See Johnson et al., Position representations of moving objects align with real-time
position in the early visual response eLife 12, e82424 (2023).
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since birth. For example, the mechanism from the photoreceptor cells to our brains

supporting vision is constructed in such a way that all our sensory inputs as to our

surrounding world are consistent. We are not born in the state of tabula rasa, but

in the state resulting from the evolution process of the past three gigayears (3 Ga);

we were born in the state in which the totality of our ancestors’ experiences since

life was born is built in, so to speak. For example, the three-dimensionality of the

world at our scale is built in (or hard-wired) in the semicircular canals. There are

two categories of experiences, experiences during our lifetime and those during our

phylogeny.

Even if we collect all the empirical facts, science is not possible. Especially in

physics we wish to find the logic unifying the collection of empirical facts. This is

the task in which our central nervous system is directly involved. It is a very inter-

esting question in what sort of worlds organisms with logical capability can evolve.

The author does not have the answer to this question, but the fact that the shapes

of fishes reflect fluid dynamic properties of water strongly suggests that our having

logical capability is a reflection of the logical and lawful nature of the world we have

evolved in. Needless to say, our nervous system is not tabula rasa when ontogeneti-

cally formed.10

It is not always the case that our direct experiences are consistent with our logic

we regard natural. In such cases, mathematical logic takes priority, because phylo-

genetically accumulated empirical facts must be the most reliable empirical facts.11

1.7 What is the characteristic of thermodynamics?

Thermodynamics is a mathematically consistent system to try to understand macro-

scopic thermal phenomena on the basis of the facts that are as immediately (→1.5)

empirical as possible.

Thermodynamics is a physics diametrically different from the physics with rooms

for mythological fictions that aims at answering the questions such as “what is the

world made of?” or “How did the world begin?”.12 The most important cultural

value of thermodynamics may reside here.

10See K. Lorenz, Behind The Mirror: A Search for a Natural History of Human Knowledge
(Harcourt Brace Jovanovich, 1977).

11Even the so-called tautology is a property of our world that is sufficiently stable. Perhaps
there is nothing trivial that is analytic (in Kant’s sense) in the world.

12See, for example, S. Hossenfelder, Existential Physics—a scientist’s guide to life’s biggest ques-
tions (Viking, 2022).
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1.8 Non-thermal macrophysics is the basis

The basic strategy to construct thermodynamics is to extend the already completed

basic laws of non-thermal macrophysics to understand empirical facts of macroscopic

thermal phenomena. Here, non-thermal macrophysics whose basic laws are complete

is represented by mechanics and electromagnetism,13 but relativity and quantum

mechanics are not excluded as long as macrophysics is concerned.

Only nonthermal macrophysics is available to supply bases and scaffolds for us to

construct thermodynamics (except for chemistry); observables and concepts about

thermal phenomena are not understood as objects of physics before constructing

thermodynamics. We are allowed to use only concepts and observables that have

nothing to do with ‘heat’, when we try to describe thermal phenomena and to con-

struct thermodynamics. In other words, we must build thermodynamics, assuming

we know only macrophysics unrelated to thermal phenomena.

Consequently, apparatuses preventing any involvement of ‘heat,’ and changes that

do not produce any ‘heat’ (that is, changes for which nonthermal macrophysics holds)

turn out to be the crucial conceptual and experimental devices. The former is the

‘adiabatic wall’ (→7.7) and the latter is the ‘reversible quasistatic process’ (→6.6)

1.9 Two restrictions imposed on thermodynamics

Even if thermodynamics is completed, we will not be able to realize a general and

ambitious theoretical framework that allows us to understand all the thermal phe-

nomena of any macroscopic systems. There are two fundamental restrictions.

(1) Not all the states of a given system can be understood. Only the states can be

discussed in which no change can be observed by us macro-observers (called ‘equi-

librium states’).14

(2) Equilibrium states of not all the macroscopic systems can be understood. Only

the systems can be discussed such that, when divided into halves,15 each half must

have exactly the half energy of the original system (the system must be ‘additive’

13Here, ‘basic laws’ imply the elementary basic parts such as Newton’s laws of mechanics. ‘Com-
plete’ does not mean that we have understood everything macroscopically mechanical or electromag-
netic. We still have tons of things our understanding of which are incomplete such as nonintegrable
mechanical systems or electromagnetism of complicated materials.

14There is no theoretical framework that allows us to understand all ‘nonequilibrium states.’
There is a framework called ‘nonequilibrium thermodynamics’ that can discuss states slightly de-
viated from ‘equilibrium states,’ but it is not a big deal.

15We assume the original system is macroscopically spatially uniform.
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→2.13).16

16assuming the same energy origin is adopted for all the energy measurements.
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A Appendix: From the theory of heat to thermo-

dynamics

This Appendix provides an overview of the prehistory of thermodynamics.17 The actual exposition
of thermodynamics will begin in Section 2. By reading through this appendix, readers will realize
how meager empirical facts originally supported the so-called chemical thermodynamics. This his-
torical contingency still appears to impede the exposition of thermodynamics today.

A.1 Before ‘modern’ heat theory
Although temperature has been of interest since ancient times due to its relevance to medicine,
interests in devices that could convert ‘heat’ into work did not gain much attention. Despite the
fascination with firearms, this did not lead to the concept of a relationship between the ‘ordinary’
slow motions and ‘heat’.

Particles or the element of fire were conceived, so ‘heat’ and chemistry (or its precursor, alchemy)
were inseparable. Chemistry aimed to comprehend the diversity of the material world, but its
strategy vacillated between the two extremes, monism and pluralism. Monism assumed that the
fundamental substance was unique, but the diversity of its motions and interactions produced the
materialistic diversity of the world. In contrast, pluralism assumed that there were various parti-
cles to begin with. The success of the Newtonian mechanics encouraged the monistic approaches
to understand the diversity of materials in terms of the diversity of forces that interacted among
particles.18

However, the limitation in the monistic approach that attributes all material complexity to force
complexity was gradually recognized, and chemistry was systematized by Boerhaave’s19 Elementa
Chemiae (1732) in terms of pluralistic materials theory and the element of fire: ⟨fire⟩. Contem-
poraneously, it was recognized from the publication of Newton’s then unpublished manuscriptsx
that he had conceived ‘ether’ long before. This with the increasing interests in electromagnetic
phenomena made ⟨fire⟩ acceptable as related to Newton’s ether. It was also during 1730-40 when

17The author heavily relies on an excellent book: Y. Yamamoto, Historical development of
thermodynamic thoughts 1-3 (Chikuma 2008-2009) to construct the narrative outline, although the
units on Carnot A.6 and A.7 considerably deviate from this book.

18⟨⟨From the preface to Principia⟩⟩ Newton wrote in author’s preface to Principia (the
following English translation is taken from the first US version published by D. Adee in 1846),
“I wish we could derive the rest of the phenomena of nature by the same kind of reasoning from
mechanical principles; for I am induced by many reasons to suspect that they may all depend
upon certain forces by which the particles of bodies, by some causes hitherto unknown, are either
mutually impelled towards each other, and cohere in regular figures, or are repelled and recede from
each other; which forces being unknown, philosophers have hitherto attempted the search of nature
in vain; but I hope the principles here laid down will afford some light either to this or some truer
method of philosophy.”(Principia, author’s preface (May 8, 1686).)

19Herman Boerhaave (1668-1738) https://en.wikipedia.org/wiki/Herman_Boerhaave

https://en.wikipedia.org/wiki/Herman_Boerhaave
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Linnaeus’ Systema naturae20 was published, and when reductionism was critically reassessed (e.g.,
the reevaluation of the empiricism of Bacon).21

A.2 Beginning of the modern heat theory
The modernization of chemistry and heat theory was initiated by Black22 of Glasgow.

His teacher Cullen23 criticized Boerhaave for ascribing most qualities to corresponding particular
elements and adopted repulsive forces due to thermal ether and affinities (selective attractive forces
meaning intrinsic tendency for various substances to bind in multifaceted fashion) as the conceptual
framework to unify understanding of chemical phenomena. As a result, affinity and repulsive force
become the central issues of chemistry.

Black adopted the fact that two objects in contact reaching states without any further change
indicate the same temperatures as the foundational universal law of heat theory. As can be seen
from this, the invention of thermometers was the key to the development of modern heat theory.24

Black demonstrated that he could introduce the concept of heat capacity operationally which was
consistent with the idea that ‘heat’ was conserved: when two objects at different temperatures are
brought to equilibrium through thermal contact, the ratio of the temperature changes of these two
objects is the inverse ratio of their heat capacities.25 Black viewed the heat capacity as the strength
of a certain chemical attractive force between ‘heat substance’ and the ordinary substance. That
is, his heat theory was along the extension of Cullen’s chemistry, which attempted to systematize
chemical reactions in terms of selective attractive forces and repulsive forces, and was a source of
the later ‘caloric theory’ of Cleghorn26 and Lavoisier.27

The heat theory starting from Black was a source of thermodynamics, but no heat engines
appeared. There was one more source, also in which caloric was deeply ingrained.

A.3 Steam engines before Watt

20Systema naturae, sive regna tria naturae systematice proposita per classes, ordines, genera, &
species (Leiden: Haak 1735). https://en.wikipedia.org/wiki/Systema_Naturae

21Francis Bacon (1561-1626) https://en.wikipedia.org/wiki/Francis_Bacon
22Joseph Black (1728-1799) https://en.wikipedia.org/wiki/Joseph_Black.
23William Cullen (1710 -1790) https://en.wikipedia.org/wiki/William_Cullen
24The modern thermometer was invented by Galileo, but the mercury thermometer was invented

by Fahrenheit (1686-1736) https://www.youtube.com/watch?v=vPmZohDmgwo. For Celsius’ con-
tribution, see https://www.youtube.com/watch?v=rjht4oAByCI.
⟨⟨Remark on temperature⟩⟩ Here, what we can observe directly are the temperature changes
and whether thermal equilibrium is achieved or not. We cannot directly observe ‘heat.’ Therefore,
‘temperature’ is the fundamental quantity for heat theory. However, notice that this is a historic
view when heat theory was not a part of physics but an independent discipline (or perhaps a part
of chemistry). In thermodynamics, heat theory must be a part of macrophysics. Concepts and
quantities directly concerning ‘heat’ are not operationally fundamental, and must be derived as a
subordinate concept from the concepts and quantities more fundamental in physics.

25Let 𝐶1 and 𝐶2 be the heat capacities of the individual objects. From 𝐶1Δ𝑇1 + 𝐶2Δ𝑇2 = 0,
we get 𝐶1/𝐶2 = |Δ𝑇2/Δ𝑇1|.

26William Cleghorn (1751-1783) https://www.uh.edu/engines/epi1956.htm
27Antoine Lavoisier (1743-1794) https://en.wikipedia.org/wiki/Antoine_Lavoisier

https://en.wikipedia.org/wiki/Systema_Naturae
https://en.wikipedia.org/wiki/Francis_Bacon
https://en.wikipedia.org/wiki/Joseph_Black
https://en.wikipedia.org/wiki/William_Cullen
https://www.youtube.com/watch?v=vPmZohDmgwo
https://www.youtube.com/watch?v=rjht4oAByCI
https://www.uh.edu/engines/epi1956.htm
https://en.wikipedia.org/wiki/Antoine_Lavoisier
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The idea to produce work through converting heat did not appear to exist till the modern era since
Hero’s ‘aeolipile’28. For the modern idea of heat engines the discovery of vacuums was crucial.29

As the Magdeburg hemispheres Magdeburg hemispheredemonstrated, the power of atmospheric
pressure was overwhelming. Papin30 invented a device that utilizes atmospheric pressure to push a
piston into a cylinder in which a vacuum was created by cooling the vapor in it (1690).

At about the same time Savery31 obtained a patent for a practical lifting pump.32 There was a
strong incentive in England to solve the flooding problem of coal mines. Newcomen33 who was born
in Devon, the birthplace of Savery, perfected an atmospheric engine by 1710, based on a similar
principle as Papin’s atmospheric engine.34

A.4 Watt and his engines
Watt35 was an instrument maker with his shop in University of Glasgow, who had good personal
relationships with distinguished professors such as Black (→A.2). He came from an intellectual
family, and his assets were his intelligence and good personality.36

28Hero of Alexandria (ca. 10-70 CE) https://en.wikipedia.org/wiki/Hero_of_Alexandria.
29⟨⟨Significance of the discovery of vacuums⟩⟩ As stressed by Yamamoto the greatest dis-

coveries in modern physics regarding gases were the discoveries of atmospheric pressure and vacuum
by Torricelli (1608-1647), Pascal (1623-1662), and von Guericke (1602-1686). This was a ground-
breaking revelation that distinguished the medieval from the modern era, and its significance is
second only to the heliocentric theory. Even Galileo explained the inability of water to be lifted
more than 10 meters by the competition between the aversion of air to vacuum and the force of
gravity.

The dramatic demonstration of atmospheric pressure is best exemplified by von Guericke’s public
experiment in Regensburg in 1654, known as the Magdeburg hemispheres. An actual reenactment
of the experiment, where horses are used to pull apart the hemispheres, can be seen in the following
video: https://www.youtube.com/watch?v=IIQC8iEnCIY.

30Denis Papin (1647-1713), https://en.wikipedia.org/wiki/Denis_Papin.
31Thomas Savery (ca. 1650-1715) https://en.wikipedia.org/wiki/Thomas_Savery.
32For an explanation of the principle of his pump, see https://www.youtube.com/watch?v=

0vK80s2WEno. As can be seen from this video, vapor pushes water up, so the work is not solely
due to atmospheric pressure. How an actual device installed at a mine works is illustrated in
https://www.youtube.com/watch?v=Dt5VvrEIj8w (after around 1min 10 sec). In principle, the
pump could lift water from any depth. However, the contemporary precision of metal work caused
leaks and high pressure boilers were prone to explosion, so in practice the work was done by
atmospheric pressure.

33Thomas Newcomen (1664-1729), https://en.wikipedia.org/wiki/Thomas_Newcomen.
34Newcomen and his engine (with Watt’s engine as well) are depicted in https://www.youtube.

com/watch?v=QltRwiu4U2Q. To understand the mechanism alone https://www.youtube.com/

watch?v=9GqVQPMCtY4 is recommended. An actually restored engine can be seen in https:

//www.youtube.com/watch?v=4DZxwGoNI5Q; https://www.youtube.com/watch?v=HC6LUWSBXjk

is more faithful to the original.
35Jame Watt (1736-1819), https://en.wikipedia.org/wiki/James_Watt.
36His personal relationships with his friends and business partners were always congenial and

long-lasting [https://en.wikipedia.org/wiki/James_Watt].

https://en.wikipedia.org/wiki/Hero_of_Alexandria
https://www.youtube.com/watch?v=IIQC8iEnCIY
https://en.wikipedia.org/wiki/Denis_Papin
https://en.wikipedia.org/wiki/Thomas_Savery
https://www.youtube.com/watch?v=0vK80s2WEno
https://www.youtube.com/watch?v=0vK80s2WEno
https://www.youtube.com/watch?v=Dt5VvrEIj8w
https://en.wikipedia.org/wiki/Thomas_Newcomen
https://www.youtube.com/watch?v=QltRwiu4U2Q
https://www.youtube.com/watch?v=QltRwiu4U2Q
https://www.youtube.com/watch?v=9GqVQPMCtY4
https://www.youtube.com/watch?v=9GqVQPMCtY4
https://www.youtube.com/watch?v=4DZxwGoNI5Q
https://www.youtube.com/watch?v=4DZxwGoNI5Q
https://www.youtube.com/watch?v=HC6LUWSBXjk
https://en.wikipedia.org/wiki/James_Watt
https://en.wikipedia.org/wiki/James_Watt
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In the winter of 1763-4, he was asked to repair a model of Newcomen’s engine (Fig. A.1 Left).
The model consumed a lot of fuel. When steam is introduced to the cylinder, it must be hot, but
to make a vacuum, it must be cool. In short, the same cylinder must be alternately hot and cool,
wasting a lot of heat. He realized that the cylinder could be maintained hot, if the steam could be
cooled in a separate cooler (condenser; Fig. A.1 Right).

The epoch-making development after the separate condenser was the ‘expansion principle,’ which
Watt patented in 1782. Watt observed that the steam, after pushing the piston, gushed into the
condenser, wasting its ability to do work. Thus, he stopped supplying steam before the piston
moves all the way to the end of the cylinder and let the steam cool while expanding and doing work
(the expansion principle). This resulted in 2.5 times more work produced from the same amount of
fuel. Later, Carnot held Watt’s expansion principle in high regard, saying that Watt was the first
to use steam under gradually decreasing pressure.

Figure A.1: The very model of Newcomen’s engine Watt repaired; Right: An atmospheric engine
improved by Watt. [Fig. of https://en.wikipedia.org/wiki/Watt_steam_engine]

Fig. A.1 The actual Newcomen engine model Watt repaired.
The plate says: ‘In 1764, James Watt. In working to repair this Model, belonging to the Natural
Philosophy Class in the University of Glasgow, made the discovery of a separate Condenser, which
has identified his name to with that of the STEAM ENGINE.’.
Right: An atmospheric engine improved by Watt. The yellow box shows the separate condenser.

Thanks to this principle, it was discovered that the higher the steam temperatures, the more
powerful the engines became. Woolf made high pressure engines practical (1814), which was not
only powerful, but also fuel-efficient.

A.5 Applications of steam engines outstripped science37

Remarkable historical facts before the development of thermodynamics were the extensive applica-

37We must not forget that the economical foundation of the Industrial Revolution was colonial-
ism and slavery [see Eric Williams, Capitalism and Slavery (The University of North Carolina,1944;
3rd Edition 2021)]. HP of University of Glasgow had the following statement (which is removed
now):

https://en.wikipedia.org/wiki/Watt_steam_engine
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tions of steam engines to transportation.
Trevithick’s38 steam locomotive ‘Puffing Devil’ was made in 1804, and the opening of Stephen-

son’s39 Stockton-Darlington railway was 1825.40 On the opening day of the Manchester-Liverpool
railway, September 15th, 1830, eleven-year-old Joule (→A.9) went to see the trains to the suburbs
of Manchester with his elder brother; there was obviously no thermodynamics whatsoever.41

Applications to ships were even older, as smaller engines were not necessary. In 1807, Fulton42

connected New York and Albany (240 km) in 32 hours with a ship powered by Watt’s engine.
Turner’s painting of 1839:“The fighting Temeraire tugged to her last berth to be broken up,

1838” symbolizes the era.43

Watt’s great scientific and engineering achievements are rightly celebrated. But it is also true
that his family profited through the trade in slave-produced goods (such as sugar, rum and cotton
from Antigua and other Caribbean islands) and on occasion they were actively involved in the
purchase and sale of enslaved people. In March 1762, for example, Watt’s brother John arranged
for the shipment of a young boy, who was quite likely enslaved, from the Caribbean to Glasgow.

In later years, Watt undoubtedly made money by producing machinery for businesses in the
Caribbean which owned enslaved people. On the other hand, during the Haitian revolution in
1791, Watt is on record cancelling an order placed by a French farm for a steam engine intended for
the colony of Saint Domingo (now Haiti). Watt writes: “We sincerely condole with the unhappy
sufferers, though we heartily pray that the system of slavery so disgraceful to humanity were abol-
ished by prudent though progressive measures.”

We cannot celebrate the achievements of James Watt and other great men and women of the
Enlightenment without remembering their society’s complicity in race slavery and imperialism, and
without acknowledging that our present-day experience and understanding of race developed out
of the attempts of Enlightenment thinkers to address the basic contradiction between professing
liberty and upholding slavery.

38Ricard Trevithick (1771-1833), https://en.wikipedia.org/wiki/Richard_Trevithick.
39George Stephenson (1781-1848), https://en.wikipedia.org/wiki/George_Stephenson.
40Stephenson’s locomotive model made of glass is seen in https://www.youtube.com/watch?v=

73txXT21aZU. A replica of his ‘Rocket’ is given in https://www.youtube.com/watch?v=yNn0LC_

9imY; why it lacked brakes is explained in https://www.youtube.com/watch?v=3woUopc1ZS4. The
history up to Rocket can be seen in https://www.youtube.com/watch?v=wOGYZC-IJPQ.

41Also noteworthy is that Clapeyron supervised the construction of the first railway line be-
tween Paris and Saint-Germain; In 1835, upon authorization of a line from Paris to St. Germain,
Clapeyron and Lamé (who left shortly thereafter to accept the chair of physics at the École Poly-
technique) were charged with direction of the work. [based on Milton Kerker, “Sadi Carnot and
the Steam Engine Engineers,” Isis 51, 257 (1960) footnote 15]. According to Kerker, “(Clapeyron
was) specializing in the design and construction of steam locomotives. In 1836, he traveled to Eng-
land to order some locomotives that would negotiate a particularly long continuous grade along the
Saint-Germain line. When the illustrious Robert Stephenson declined to undertake the commission
because of its difficulty, the machines were built in the shops of Sharp and Roberts, according to the
designs of Clapeyron. He extended his activities to include the design of metallic bridges, making
notable contributions in this area.”

42Robert Fulton (1765-1815), https://en.wikipedia.org/wiki/Robert_Fulton; Robert Ful-
ton’s biography: https://www.youtube.com/watch?v=2w6x5QdswYE.

43The painting is explained in https://www.youtube.com/watch?v=8O-fna8HrWw&list=WL&

https://en.wikipedia.org/wiki/Richard_Trevithick
https://en.wikipedia.org/wiki/George_Stephenson
https://www.youtube.com/watch?v=73txXT21aZU
https://www.youtube.com/watch?v=73txXT21aZU
https://www.youtube.com/watch?v=yNn0LC_9imY
https://www.youtube.com/watch?v=yNn0LC_9imY
https://www.youtube.com/watch?v=3woUopc1ZS4
https://www.youtube.com/watch?v=wOGYZC-IJPQ
https://en.wikipedia.org/wiki/Robert_Fulton
https://www.youtube.com/watch?v=2w6x5QdswYE
https://www.youtube.com/watch?v=8O-fna8HrWw&list=WL&index=3
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A.6 Father and son Carnot
In England steam engines were greatly improved during the Napoleonic Wars, so the information
did not spread to France. After the wars ended in 1815, France was shocked by the progress in
England, particularly by the practical high pressure engines (→A.4). In France, not so abundant
in coal resources, saving fuel was emphasized and Woolf engines (→A.4) were built already in 1815.
However, it was not understood why high pressure engines had good fuel efficiency. The answer
was given by Carnot later on. His work was heavily influenced by his father Lazare Carnot,44 and
the caloric theory (→A.2) played a crucial role.

On the Continent, taking advantage of its non-flat terrain, utilization of water power was highly
developed. L. Carnot was one of the engineers who completed the study of maximizing the efficiency
of water powered machines.

L. Carnot generalized the principle of the loss of ‘energy’ due to inelastic collisions to the machine
actions in general.45 In his On machines in general (1782)46 he mentioned two conditions to obtain
the maximum efficiency of hydraulic machines: (1) losing all the fluid movement by its action on
the machine, and (2) by insensible degrees without any percussion. (1) means all the energy is
transferred to the machine, and (2) implies that the transfer must be quasistatic. A universality
statement can also be found, claiming that if (1) and (2) are satisfied, independent of the actual
mechanism of the hydraulic machines maximum efficiency can be realized. When Carnot wrote
that there was a complete theory for machines that do not obtain motion from heat, he must have
had his father’s theory in his mind.

Carnot47 visited his father in 1821, who had exiled himself to Magdeburg. It is almost certain
that they discussed the problems of steam engines, since L. Carnot had been interested in the engine
built in Magdeburg in 1818. After returning to Paris, Carnot wrote up his later famous paper in
1822-3.

A.7 Basic consideration by Carnot

index=3. C. Scallen, Museum Masterpieces: The National Gallery, London (Great Courses) “Lec-
ture 22 British and French Masters c. 1785-1860” contains a nice introduction to this masterpiece.

By the way the impressionist style of paintings by Turner, Monet, and others depict trends in
19th century air pollution partly due to rampant use of steam engines. See A. L. Albright and P.
Huybers, Paintings by Turner and Monet depict trends in 19th century air pollution, Proc. Nat.
Acad. Sci. 120, e2219118120 (2023). There is a followup exchange for this article: M. F. Marmor,
Most paintings by Turner and Monet show stylistic evolution, not changes in pollution, Proc. Nat.
Acad. Sci. 120, e2302177120 (2023) and a reply to it by the authors: Reply to Marmor: Multiple
perspectives for appreciating the meaning and beauty of Turner and Monet paintings Proc. Nat.
Acad. Sci. 120, e2303372120 (2023).

44Lazare Nicolas Marguerite, Count Carnot (1753-1823) https://en.wikipedia.org/wiki/

Lazare_Carnot.
45See, for example, the Borda-Carnot equation https://en.wikipedia.org/wiki/

BordaCarnot_equation.
46Its English translation is published in Phil. Mag. in several parts: https://babel.

hathitrust.org/cgi/pt?id=mdp.39015035394322&view=plaintext&seq=314 (LIX).
47Nicolas Léonard Sadi Carnot (1796-1832),

https://en.wikipedia.org/wiki/Nicolas_Lonard_Sadi_Carnot.
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Carnot observed: According to established principles at the present time, we can compare the mo-
tive power of heat to that of a waterfall with sufficient accuracy. Then, using the caloric theory, he
considered the heat engine under the following two premises:
(1) Wherever there exists a temperature48 difference, we can produce power.49

The work is produced by a steam engine not because caloric is consumed, but because caloric
moves from a hot body to a cold body.
(2) A practical condition for a working substance to produce power is that it can overcome certain
resistances in their changes of volume. [This is Watt’s expansion principle.]

Notice that (1) is the analogy between the flow of water with a height difference and the flow of
caloric with a temperature difference, and (2) is the analogy between the water pushing the blade
and the expanding working substance pushing the piston.

Carnot then translated L. Carnot’s quasistatic condition for the maximum efficiency machine
(→A.6) as follows: the maximum efficiency is realized through operating the machine quasistati-
cally; the exchange of heat must be between the systems at the same temperatures and the pressure
difference must be infinitesimal.50 The ideal engine that realizes the maximum efficiency must be
reversible in the sense that the process can be reversed by supplying exactly the same amount of
work that the engine produced. Carnot must have thought that all the transfer was gentle and
infinitesimal, so the process could be reversed only with higher order differences.

A.8 Carnot’s theorem
Carnot considered the maximum efficiency engine working between a high temperature heat source
(furnace) at temperature 𝑇𝐻 and a low temperature heat source (condenser) at temperature 𝑇𝐿

as a cycle, following the basic consideration of L. Carnot (as explained in A.7). According to the
argument in A.7 a higher efficiency engine is not conceivable, but the efficiency could still depend
on a particular working substance. Carnot demonstrated, using the reversibility of a maximum
efficiency engine, that the maximum efficiency is universal as illustrated in Fig. A.2.51 That is, the
maximum efficiency is not dependent on the working-substance.
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Figure A.2: It is impossible to exceed the efficiency of the Carnot engine.

48Needless to say, here ‘temperature’ is an empirical temperature in the heat theory since Black.
49“Wherever there exists a difference of temperature, wherever it has been possible for the

equilibrium of the caloric to be re-established, it is possible to have also the production of impelling
power.”

50Use of infinitesimal without any question reflects the wide acceptance of analysis in France.
51Notice that, if we use the modern terminology, the proof demonstrates: “Carnot’s theorem

must be true because energy is conserved.” (a wrong reason)
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Fig. A.2 Left: The left engine is the Carnot engine = the maximum efficiency engine, and the right
engine is a supposedly more efficient engine that can produce more work 𝑊 > 𝑤 from the same
heat 𝑄.
Center: Since the left engine is reversible, using a part of the work supplied by the ‘better’ engine,
it can be operated as a caloric pump. Consequently,
Right: The whole device is equivalent to a perpetuum mobile producing work 𝑊 − 𝑤 > 0 without
any supply of caloric (i.e., adiabatically).

A.9 Mayer and Joule: conservation of energy
Mayer,52 on a voyage to Java as a ship’s doctor, became interested in thermal phenomena and
came up with the idea that all the phenomena in the world depend on the changes in materials and
their interactions caused by ⟨force⟩ and that the total amount of ⟨force⟩ is conserved, with only
its quality changing.” From the requirement of conservation of ⟨force⟩ and the fact that ‘motion’
disappears by the two-body inelastic collision, he concluded that heat and work were both forms
of ⟨force⟩, and that they could mutually interconvert under a fixed law (1841). Then, he provided
the conversion rate of heat and work for the first time, considering the Mayer cycle (→14.8).

Independently from this, Joule53 demonstrated that the constancy of the heat-work conversion
rate (the so-called work equivalent of heat) using various phenomena.

Thus, it was established that thermal energy is a form of energy, and that the sum of mechanical
energy and thermal energy is conserved, if correctly converted, for all the physical phenomena.

However, this observation was not immediately widely accepted. Conceptually, the biggest
obstacle was Carnot’s theorem (→A.8), which was understood to imply the nonequivalence of heat
and work. For example, Thomson recognized the significance of Joule’s work, but was troubled
by the apparent contradiction with Carnot’s theorem, and believed further empirical facts were
needed.

A.10 How did Clausius proceed?
Clausius’s54 thinking was as follows.55 As Mayer and Joule had demonstrated (→A.9), if consump-
tion of work produces heat, heat is not conserved. Therefore, it is natural and logical to assume
that when work is produced, heat is consumed. Therefore, other than the ‘first principle’ that the
sum of heat and work is conserved, he postulated the following principle:56

In all cases work results from heat, an amount of heat proportional to the work produced
is consumed, and, conversely, the same amount of heat can be produced by consuming an
equal amount of work.

It is important to note that the work-heat equivalence holds only when work results from heat.
As noted in A.7 in Carnot’s original idea caloric = heat was conserved. However, this idea

52Julius Robert von Mayer (1814-1878), https://en.wikipedia.org/wiki/Julius_von_Mayer.
53James Prescott Joule (1818-1889), https://en.wikipedia.org/wiki/James_Prescott_

Joule.
54R. Clausius (1822-1888) https://en.wikipedia.org/wiki/Rudolf_Clausius.
55R. Clausius, Über die bewegende Kraft der Wärme und die Gesetze sich daraus für die

Wärmelehre selbst ableiten lassen, Annalen der Physik 155 368 (1850).
56https://archive.org/details/ueberdiebewegen00claugoog/page/n11/mode/2up p7

https://en.wikipedia.org/wiki/Julius_von_Mayer
https://en.wikipedia.org/wiki/James_Prescott_Joule
https://en.wikipedia.org/wiki/James_Prescott_Joule
https://en.wikipedia.org/wiki/Rudolf_Clausius
https://archive.org/details/ueberdiebewegen00claugoog/page/n11/mode/2up
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contradicts the above principle. Therefore, the engine converts only a part of heat into work.
Clausius found that if there were a more efficient engine than the reversible engine, Carnot’s logic
(→Fig. A.2 in A.8) in the proof of his theorem implies that heat flows from a lower temperature57

heat source to a higher temperature heat source without any other trace. Since such a process can
never occur naturally, Clausius concluded that work is done only if heat flows from a higher to a
lower temperature heat source and that if heat cannot flow from a lower temperature heat source
to a higher temperature heat source without any other trace, then Carnot’s theorem can be proved
(Fig. A.3).

Q
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q-- >0better
engine

Figure A.3: If heat can flow from a lower to higher temperature heat source, then Carnot’s
theorem does not hold.

Fig. A.3 Left: The left empty circle denotes a reversible engine, which may be used as a heat pump
if work 𝑊 is supplied. The ‘better engine’ on the right is a hypothetical engine with a better
efficiency, which requires heat 𝑞 (< 𝑄) from the higher heat source to produce the same amount of
work 𝑊 .
Center: If the better engine drives the reversible engine backward as a heat pump, heat 𝑄− 𝑞 > 0
is given to the higher heat source.
Right: According to the ‘first principle,’ this heat must have come from the lower temperature heat
source. Therefore, ‘heat flows from a lower temperature heat source to a higher temperature heat
source without any other trace.’ This is against the general experience that temperature differences
naturally diminish and cannot spontaneously increase.

Thus, Clausius’ paper of 1850 established the foundation of thermodynamics.58

57Here, ‘temperature’ is an empirical temperature in the tradition of heat theory.
58E. A. Guggenheim, Thermodynamics (Fifth, revised edition, North Holland 1967) p17 says:

The second law was foreshadowed by the work of Carnot (1824). The first and the second laws
were co-ordinated by Clausius (1850) and by Kelvin (1851).” quoting Clausius Ann Phys Lpz 1850
79 368, 500 and Thomson Trans Roy Soc Edinb 1853 20 261. Notice that Thomson acknowledged
Clausius’ priority in his early manuscripts (albeit not straightforward) [(according to Yamamoto
ibid., p086 of III) quoting p324 of C. Smith and M. N. Wise, Energy & Empire, a biographical
study of Lord Kelvin (Cambridge UP, 1989): “... in an early draft of his 1851 published paper ‘On
the dynamical theory of heat’:

The same conclusion has been arrived at by Clausius, to whom the merit of having first
enunciated and demonstrated it is due. It is with no wish to claim priority that the author of
the present paper states that more than a year ago he had gone through all the fundamental
investigations depending on it which are at present laid before the Royal Society, at that time
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A.11 Interpretation of the second law in terms of ‘equivalent’
In a 1854 paper, Clausius interpreted the second law as claiming that any non-spontaneous trans-
formation cannot occur without compensation by a spontaneous transformation.

The transformation of producing work from heat that cannot occur spontaneously cannot
occur without compensation by a spontaneous transformation that transfers heat from a
higher temperature object to a lower temperature object.

In other words, there are two kinds of transformation of energy, spontaneously possible and not.
Non-spontaneous transformations never occur without being compensated by spontaneous trans-
formations. Reversible transformations are the changes in which both kinds of transformations
balance.

Consider the following two spontaneous processes:
A: Process converting work 𝑊 into heat at temperature 𝜃;
B: Process converting heat 𝑄 at temperature 𝜃 into heat 𝑄 at temperature 𝜃′ (< 𝜃).
Their reversed processes are denoted as A−1 and B−1, respectively.

In a process that actually happens, A−1 is compensated by B (an engine), and B−1 is com-
pensated by A (heat pump). Transformations that can be substituted for each other are regarded
as equivalent transformations. To express this equivalence quantitatively, Clausius introduced a
quantity called the ‘equivalent of transformation’ which is proportional to the relevant energy and
additive with respect to the connection of successive transformations so that the total equivalents of
a reversible process is zero. The equivalent of a spontaneous transformation is chosen to be positive
as follows:

The equivalent of A is 𝑊𝑓(𝜃),
The equivalent of B is 𝑄𝐹 (𝜃, 𝜃′) with the sign convention 𝐹 (𝜃, 𝜃′) > 0 for 𝜃 > 𝜃′.

The equivalents of the reversed transformations are: −𝑊𝑓(𝜃) for A−1, and 𝑄𝐹 (𝜃′, 𝜃) for B−1. The
additivity implies 𝑄𝐹 (𝜃, 𝜃′) +𝑄𝐹 (𝜃′, 𝜃)) = 0, so we require

𝐹 (𝜃, 𝜃′) = −𝐹 (𝜃′, 𝜃). (A.1)

A.12 Carnot engine in terms of Clausius’ equivalents
Carnot’s reversible engine may be interpreted as follows (Fig. A.4):
Engine direction: Heat 𝑄𝐻 − 𝑄𝐿 at temperature 𝜃𝐻 is transformed into work 𝑊 and the process
is compensated by the natural transformation converting heat 𝑄𝐿 at temperature 𝜃𝐻 into heat 𝑄𝐿

at temperature 𝜃𝐿.

considering the conclusion as highly probable even should Carnot’s hypothesis be replaced by
the contrary axiom of the dynamical theory; and that more recently succeeded in convincing
himself demonstrative of its truth, without any knowledge of its having been either enunciated
or demonstrated previously, except by Carnot.[footnote 16: William Thomson, Early draft
of the ‘Dynamical theory of heat’, PA132, p. 10. Our emphasis. ...]

On p327 of the same book, we find: “In whatever way one judges Thomson’s independence
from Clausius, his interaction with Rankine during 1850 was crucial.” On p325 we read “Rankine’s
response to Clausius’s first paper on the motive power of heat (published earlier that year in
Poggendorff’s Annalen) reinforced Thomson’s awareness of the need for new ‘proof’ of Carnot’s
criterion....”
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Heat pump direction: Work 𝑊 is naturally converted to heat 𝑄𝐻 − 𝑄𝐿 at temperature 𝜃𝐿, while
compensating the transformation of heat 𝑄𝐻 at temperature 𝜃𝐿 into that at temperature 𝜃𝐻 .
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Figure A.4: Carnot’s reversible engine interpreted in terms of equivalent compensation; Left:
heat engine, Right: heat pump.

For reversible processes the total equivalent must be zero: for the reversible engine

−𝑊𝑓(𝜃𝐻) +𝑄𝐿𝐹 (𝜃𝐻 , 𝜃𝐿) = 0, (A.2)

and for the reversible pump
𝑊𝑓(𝜃𝐿) +𝑄𝐻𝐹 (𝜃𝐿, 𝜃𝐻) = 0. (A.3)

Adding the above two formulas with the aid of (A.1), we get

𝑊 [𝑓(𝜃𝐿)− 𝑓(𝜃𝐻)] + [𝑄𝐿 −𝑄𝐻 ]𝐹 (𝜃𝐻 , 𝜃𝐿) = 0. (A.4)

The ‘first principle’ implies 𝑊 = 𝑄𝐻 −𝑄𝐿, so the above formula implies

𝑓(𝜃𝐿)− 𝑓(𝜃𝐻) = 𝐹 (𝜃𝐻 , 𝜃𝐿) > 0. (A.5)

Hence, 𝑓(𝜃) is a monotone decreasing function. Therefore, Clausius introduced a monotone increas-
ing function 𝑇 (𝜃) 59 as

𝑇 (𝜃) = 1/𝑓(𝜃). (A.6)

Thus, we have the following summary:

(1) The equivalent of the process of converting work 𝑊 (= 𝑄) into heat 𝑄 at temperature
𝑇 is 𝑄/𝑇 .
(2) The equivalent of the process of heat 𝑄 transferred from heat source at temperature 𝑇𝐻

to that at 𝑇𝐿 is 𝑄/𝑇𝐿 −𝑄/𝑇𝐻 .

(1) agrees with the equivalent of heat 𝑄 from temperature 𝑇𝐻 = ∞ to 𝑇𝐿 = 𝑇 in (2). Thus,
Clausius concluded that work is equivalent to an infinite temperature heat.

Furthermore, (2) may be interpreted algebraically as the sum of the equivalent of absorbing heat
𝑄 at temperature 𝑇 written as 𝑄/𝑇 ; the high temperature heat source absorbs heat −𝑄 whose

59This is still an empirical temperature, but actually identical to the absolute temperature
(→11.6).
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equivalent is −𝑄/𝑇𝐻 .
Here 𝑇 is not the temperature of the system but the heat source. Furthermore, the sign con-

vention of 𝑄 is ‘seen from the heat source.’ Thus, the process of heat source releasing |𝑄| is with
𝑄 < 0. [Remark: This sign convention is the opposite of the usual thermodynamic convention
(→7.1) which is system-centered.]

A.13 Clausius was almost reaching entropy
Suppose there are many heat sources with temperature 𝑇𝑖. For a process in which heat 𝑄𝑖 is
absorbed by the 𝑖th heat source, the equivalent of the process is

𝑁 =
∑︁ 𝑄𝑖

𝑇𝑖
. (A.7)

If there are numerous heat sources and if we may use differential expressions, then

𝑁 =

∮︁
𝑑𝑄

𝑇
. (A.8)

Consider a cycle, where the system exchanges heat with the sources and returns to the original
state. Suppose 𝑁 < 0 for this cycle. This means that the cycle cannot occur spontaneously. If
𝑁 > 0 and if the cycle is reversible, then 𝑁 < 0, so for a reversible cycle only 𝑁 = 0 is allowed.

(A.8) implies that the integral of 𝑑𝑄/𝑇 is conserved in reversible processes. Apart from the
sign convention, 𝑁 is just ‘entropy’ (→14.5). However, it took Clausius ten years to introduce
‘entropy’, eventually in 1864.

A.14 Clausius’ twists and turns
As we have seen up to A.13 Clausius almost reached the concept of ‘entropy,’ which is a thermody-
namic quantity of central importance, through the idea of equivalent and compensation (→A.11).
However, there were processes for which ‘equivalents’ could not be computed, because the princi-
ple of the equivalents of transformations could not be used. For example, take an adiabatic free
expansion (→17.12). The gas does not do any work nor exchange any heat, but the process is
irreversible, so there must be a remaining positive ‘equivalent.’ How much is it? This cannot be
obtained by considering transformations as ‘heat ⇐⇒ external work’ and ‘high temperature heat
⇐⇒ low temperature heat’ alone.

Clausius solved this problem as follows: He divided internal energy into real heat corresponding
to the translational kinetic energy and the rest. Then, he thought the work to the latter as ‘internal
work,’ and conceived the two transformations, ‘heat ⇐⇒ real heat’ and ‘heat ⇐⇒ internal work.’
Then, he wrote 𝑑𝑄 = 𝑑𝐻 + 𝑑𝑄′, where 𝑑𝐻 is the real heat and 𝑑𝑄′ is the rest. From this he wrote

𝑑𝑄

𝑇
=

𝑑𝐻

𝑇
+ 𝑑𝑍. (A.9)

He interpreted the volume increase as internal work, and ‘equivalent’ 𝑍 was assigned to it. He
named 𝑍 ⟨disgregation⟩ (1862). The naming suggests that Clausius thought of it as measuring the
extent of irreversibility due to the spread/diffusion of material. Clausius thought 𝑑𝑍 depended only
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on volume 𝑉 .60 Then, 𝑑𝑍 is exact. Therefore, Clausius concluded (in the ‘modern’ saying) that as
the sum of two exact differentials 𝑑𝑆 = 𝑑𝑄/𝑇 is exact; 𝑆 is named ‘entropy.’ Thus, entropy change
is due to diffusions of heat and of matter.

Although Clausius removed any mention of ⟨disgregation⟩ from his 1876 reprint of his entropy
papers, his twists and turns were not useless. ‘Thermal chemistry’ was grafted to ⟨disgregation⟩
(→A.15).

A.15 Horstmann and the beginning of chemical thermodynamics61

Horstmann,62 who attended Clausius’ thermodynamics lectures at ETH in 1866, applied the ideal
gas law to the ⟨disgregation⟩ part of entropy as 𝑑𝑍 = (𝑃/𝑇 )𝑑𝑉 and calculated the 𝑑𝑍 = (𝑃/𝑇 )𝑑𝑉
of substance A as

𝑍A = 𝑍0
A −𝑅 log(𝑃A/𝑃0). (A.11)

He considered the reaction A ←→ B. When the extent of reaction is 𝜉 for the reaction (→25.9),

Δ𝑍(𝜉) = (𝑍B − 𝑍A)𝜉. (A.12)

If the reaction heat is 𝑄 (per unit reaction), the entropy change can be expressed as

Δ𝑆 =
𝑄𝜉

𝑇
+Δ𝑍(𝜉). (A.13)

Applying the entropy maximization principle as the equilibrium condition

𝑄/𝑇 +
𝑑𝑍

𝑑𝜉
= 𝑄/𝑇 + (𝑍B − 𝑍A) = 𝑄/𝑇 +Δ𝑍0 +𝑅

(︀
log(𝑃A/𝑃0)− log(𝑃B/𝑃0)

)︀
= 0. (A.14)

Thus, we have
log(𝑃A/𝑃B) = −𝑄/𝑇 −Δ𝑍0. (A.15)

That is,
𝑃A
𝑃B

= 𝐶𝑒−𝑄/𝑇 . (A.16)

This relation was experimentally verified.
Thus, the condition for chemical equilibrium, or the criterion for equilibrium, is given in the

form “If the entropy of the system is denoted as 𝑆, then at equilibrium, 𝛿𝑆 must be equal to zero”.
This provision is considered to be the pioneering theoretical content and this Horstmann’s work

60If we use the modern thermodynamics

𝑑𝑍 =
1

𝑇

[︂(︂
𝜕𝐸

𝜕𝑉

)︂
𝑇

+ 𝑃

]︂
𝑑𝑉. (A.10)

61T. Inoue, “Formation process of dissociation equilibrium by A. Horstmann—Beginning of
chemical thermodynamics in the latter half of the 19th century.” Kagakushi Kenkyu II 26, 1
(1987).

62August Friedrich Horstmann (1842-1929) https://en.wikipedia.org/wiki/August_

Friedrich_Horstmann.

https://en.wikipedia.org/wiki/August_Friedrich_Horstmann
https://en.wikipedia.org/wiki/August_Friedrich_Horstmann
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was regarded as a demonstration of the applicability of the entropy theory to chemistry.
van’t Hoff63 pursued application of thermodynamics to chemistry, influenced by Horstmann’s

work: “According to Horstmann, the principles of thermodynamics is applicable to chemistry.”64

However, the supporting facts were no more than what is summarized above.

A.16 Faraday, Joule and quantitative applications of electrochemistry
Faraday65 demonstrated all the electricities (bioelectric, electricity by magnetic induction, electric-
ity from batteries, etc.) were identical, and the quantity of electricity was measured in terms of the
consumption of zinc of the Daniell cell. That is, electrochemistry was indispensable in measuring
charge and current. Faraday established Faraday’s law: a chemical equivalent corresponds to a def-
inite amount of electricity. Joule constructed a galvanometer in 1839 and even proposed a standard
method to quantify electricity.66 Joule’s law as to Joule heating was discovered while pursuing the
relation between the amount of electricity and heat. The work equivalent of heat was for the first
time measured through converting work into electrical energy.

A biographer of Joule summarized67 his work as follows: through measuring electric action,
Joule was able to trace a definitive quantity of physical effect throughout the entire field of physics.

Notice that the foundation of his work was electrochemical in nature.

A.17 What did Helmholtz say about chemical energy?68

At the end of his exposition, “On the conservation of force”69 Helmholtz70 discussed the combustion
of coal.

The carbon and oxygen atoms adhere firmly to form a new compound in combustion: “this
attraction between the atoms of carbon and of oxygen performs work just as much as that which
the earth in the form of gravity exerts upon a raised weight.” “When carbon and oxygen atoms
have rushed against each other, the newly-formed particles of carbonic acid must be in the most
violent molecular motion—that is, in the motion of heat.”

Can we reverse the process? Plants just do that. An easier example is the electrolysis of water.
To this end electric current must be supplied from a Galvani cell, but it is produced by oxidation
of metal. That is, to return water, a combustion product, to hydrogen gas another ‘combustion

63Jacobus Henricus van ’t Hoff Jr. (1852-1911) See https://en.wikipedia.org/wiki/

Jacobus_Henricus_van_%27t_Hoff.
64M. J. H. van’t Hoff, Etudes de dynamique chimique (1884), p124.
65Michael Faraday (1791-1867), https://en.wikipedia.org/wiki/Michael_Faraday.
66O. Reynolds, Memoir of James Prescott Joule (Manchester Literary and Philosophical Society,

1892) p42.
67O. Reynolds, ibid., p66.
68“Chemical energy” here means energy in general associated with chemical reactions in an

informal fashion.
69Hermann von Helmholtz, On the Conservation of Force Introduction to a Series of Lectures

Delivered at Carlsruhe in the Winter of 1862-1863 (Translated by Edmund Atkinson). “Force”
means energy throughout his exposition just as in Mayer’s writings (→A.9).

70Hermann von Helmholtz (1821-1894). https://en.wikipedia.org/wiki/Hermann_von_

Helmholtz.

https://en.wikipedia.org/wiki/Jacobus_Henricus_van_%27t_Hoff
https://en.wikipedia.org/wiki/Jacobus_Henricus_van_%27t_Hoff
https://gallica.bnf.fr/ark:/12148/bpt6k9812616k/f8.item.texteImage
https://en.wikipedia.org/wiki/Michael_Faraday
https://en.wikipedia.org/wiki/Hermann_von_Helmholtz
https://en.wikipedia.org/wiki/Hermann_von_Helmholtz
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reaction’ is used; to overcome a chemical force another chemical force71 is used, but the current
may be produced by magnetic induction as well.

Thus, Helmholtz used a mechanical toy model of chemical reaction and electrical energy-chemical
energy equivalence ‘to establish’ the law of conservation of energy unifying, electromagnetism,
mechanics, heat theory and (electro)chemistry.

A.18 How about the second law for chemistry?
Helmholtz’ rhetoric ‘established’ the conservation of energy as the most general principle of the
world. His article quoted in A.17 was immediately translated into English. This indicates the
importance of his exposition.

However, the first law is not truly a thermodynamic principle. The second law is the key. Thus,
van’t Hoff appreciated Horstmann’s demonstration as we have seen in A.15. Notice that this
was likely the only work on the applicability of entropy to chemical reactions before Gibbs, who
introduced chemical potential in his epoch-making work.72 Is there any statement justifying that
‘chemical coordinates’ (or the amounts of chemical) may be handled in the same way as usual work
coordinates, as opposed to heat? No, there is none. Helmholtz’s mechanical model hypnotized
thermodynamics.

71Notice that chemical force = chemical energy in Helmholtz writing.
72J. W. Gibbs, “On the equilibrium of heterogeneous substances,” Trans. Connecticut Academy,

III 108 (1875-6), 343 (1877-8).
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2 Preliminary I: Equilibrium states

2.1 What is a macroscopic system?

Throughout these lecture notes, a ‘system’ implies an object of our scale (→1.4)

occupying a definite spatial domain.73 Its boundary is macroscopically definite. The

system boundary is definite due to walls made of a certain material (as in the case

of a gas in a canister) or perhaps the boundary of the system itself (as in the case of

a solid block).

For macroscopic systems if their sizes increase, the amounts of physical quantities

(e.g., its mass) carried by (or immediately associate with) the boundary walls become

less significant relative to those carried by the system bulk, so we ignore the effects

of the physical quantities carried by the walls. Therefore, the effect of a wall is only

to impose a boundary condition to the system under consideration, mathematically

speaking, so ‘wall’ and ‘boundary condition’ will be used interchangeably. Inserting

a new wall in a system is interpreted as imposing a boundary condition between the

parts created by insertion of the wall.74

The world surrounding a given system is called the environment of the system.75

2.2 What sort of states of macroscopic systems do we wish to under-

stand?

Even if a system is macroscopic (→1.4), its state can be diverse; an explosion may

have just occurred inside or is ‘dead’ for a long time so macro-observers like us

cannot discern any change. If a system is changing in time and is not spatially ho-

mogeneous, in order to describe its state even macroscopically, a small number of

observables must not be sufficient. Therefore, it is sensible to start with aiming at

understanding the simplest states first, and then to use the results to construct a

fuller theory to understand more general states.

If a macrosystem is left for a sufficiently long time in a constant environment (that

73Its boundary is macroscopically two-dimensional (not fractal) just as an ordinary block.
74We can say that systems whose walls are allowed to be abstracted as boundary conditions

may be studied by thermodynamics. Thus, information thermodynamics that utilizes mesoscale
examples with very clear boundary conditions like boxes are often dubious.

75Here, the word ‘world’ is used, but, in practice, it is a small portion of the world that surrounds
the system and has immediate interactions with the system.
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does not cause ‘dissipation’76), very often the system reaches a state in which ‘nothing

happens.’ Such a state is called an equilibrium state. Thus, ‘thermodynamics’—the

theory of heat, work and energy transformations—aims, to begin with, at a theo-

retical system to describe ‘equilibrium states’ and their quasistatic changes (→A.6)

precisely.

2.3 What is an equilibrium state?

It was stated at the end of 2.2 that a state is called an equilibrium state in which noth-

ing happens and that is reached eventually by a macrosystem left for a sufficiently

long time in a constant environment (→2.1). The terms used in this statement

may be fairly clear, so the meaning of ‘equilibrium state’ may be clear. However,

still the meaning of the following terms should be better specified: “constant envi-

ronment,” “sufficiently long time,” “leaving,” “eventually,” and “nothing happens”

(→2.4-2.6).77

2.4 “Nothing happens”

“Nothing happens” in our context means that no time dependence can be observed

within our space-time scale (→1.4).78

If our space-time resolution is much finer than our scale, then we could observe

space-time dependent phenomena called ‘fluctuations’. However, they are averaged

out at our scale.

In thermodynamics, “nothing happens” means that there is no time dependence

for any macroscopic observables.

76A system has no dissipation when the macroscopic energy conservation law holds (→3.10).
77Some supposedly mathematically rigorous expositions assume ‘equilibrium state’ as a primitive

concept, so it is not defined. The present exposition will not adopt a pseudo mathematical approach
but try to be as operational as possible (that is why, e.g., atomistic explanations are avoided).

The fundamental problem of a formal or mathematical system is that the relation between the
actual world and the world of logic/mathematics is not usually specified. We are interested in
natural science, so any theoretical framework must be firmly grounded on the actual phenomena in
the world. Thus, very explicit description of the relation between the theoretical system and the
actual phenomena must be in the theoretical system for natural science. In these lecture notes, we
assume that the macrophysics and chemistry are sufficiently founded on the ‘rough ground’ (as said
by Wittgenstein in 107 of Philosophical Investigations (Blackwell Publishers, 1953 50th anniversary
commemorative edition)).

78We may roughly say that the time scale in the range of 2±20 days and the length scale 2±20

m.
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2.5 “Sufficiently long time”

In 2.4, the long time scale is set to be ∼ 106 days, but if we wait longer, some change

may happen.

If the time scale we are interested in is, for example, a day, then if nothing happens

even if we wait for 10 days, we may practically say that there is no change for a

sufficiently long time.

Feynman states roughly as follows: if all the fast processes that should happen

have happened and if all the slow processes that might happen have not yet started

significantly, then the system is in equilibrium.

“Eventually” implies, ideally, ‘forever after’, but, as implied above, actually or in

practice the word implies that our observation time scale is much longer than the

time scales of all the fast events in the system (and still no extremely slow processes

have started).

2.6 “Constant environment”

A ‘constant environment’ implies an environment (see just below and 2.1, esp., the

last footnote) for which “nothing happens” (→2.4) for a “sufficiently long time”

(→2.5). Here, we assume that the system we consider has a definite and stable

boundary (→2.1). An environment is a part of the world that is enclosing the system

and that may affect it. How the environment interacts with the system across the

boundary is also specified as a property of the environment (that is, the boundary

conditions between the system and its environment are the part of the properties of

the environment).

Generally speaking, however, it is not so easy to specify the external environment,

so often in thermodynamics, it is assumed that there is nothing outside the system;

that is, it is assumed that the system is isolated from the rest of the world: The

state is called an equilibrium state, if nothing happens (→2.4) in the system after

isolating it for a sufficiently long time (→2.5).79

79Precisely speaking, according to this definition of equilibrium, it is not simple, for example,
to define the equilibrium state in an isothermal (= constant temperature) environment. Perhaps,
we can prepare a system attached to a heat bath at a constant temperature for a sufficiently long
time, and then isolate it. However, according to the definition using isolation, the system before
isolation is not in equilibrium, and after isolation it is not isothermal, strictly speaking. Therefore,
we need a convention or an assumption of some sort stated explicitly. For example, the state of a
system is (thermodynamically) the same even if it is isolated from its original environment. Thus,
we assume the partitioning-rejoining invariance 2.12 explicitly.
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However, the state of a system may be constant under the effect of constant

external influence. For example, the system may be under a constant electric field.

Even in such cases after a sufficiently long time the system would reach a constant

state, but if we take out a portion from the system and isolate it, its state should often

be different from the one before isolation. Therefore, relaxing the isolation condition,

we allow the imposition of static uniform fields (e.g., electric field, magnetic field,

etc.) after isolating the system80 as a condition for a “constant environment.”81

“Leaving” implies that we human observers/experimenters do not do anything to

the system enclosed in its environment.

2.7 Definition of ‘equilibrium state’

Taking account of 2.6, we would say:

An equilibrium state of a system is a state without any macroscopic change

after it is left for a sufficiently long time in a constant environment that does

not cause any dissipation.

Needless to say, ‘constant environment’ (→2.6), ‘sufficiently long time’ (→2.5),

‘macroscopic change’ (→2.4) are used as specified above.

However, an equilibrium state is completely determined by its current state of

the system irrespective of its history, so it may not be satisfactory to characterize

‘equilibrium’ by how it is prepared. Therefore, we prefer:

A state of a system is an equilibrium state, if there is a constant environment

in which we can embed the system with an appropriate boundary condition

(wall) without causing any change of the state of the system and without any

dissipation.

It is desirable to guarantee that an equilibrium state does exist, so we may add

80Generally speaking, imposing a uniform external field could induce a sort of flow in the system
causing ‘dissipation.’ However, if a uniform external field is imposed after the system is isolated,
then usually lasting flow would not be induced, so there would be no dissipation.

‘Without dissipation’ is, roughly speaking, even if we put the system and the environment
together in a Dewar jar, the temperature does not go up. Or, the system taken as a movie played
backward does not look unnatural; added work to the system can be recovered completely without
any trace in the system.

81However, as Akira Shimizu clearly points out, that there is an effect of external field from
outside implies that the system allows long range interactions. Thus, we cannot say that the
system is energetically additive (→2.10). However, still there are situations in which the system
energy is additive, so we are allowed to develop an ordinary thermodynamics for such systems.
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that the system left alone for a sufficiently long time in a constant environment will

reach an equilibrium state. Still it should be emphasized that for the definition of

an equilibrium state, how it is reached should be irrelevant.

2.8 Uniqueness of the equilibrium state

Prepare a system that is materially closed (i.e., no import/export of any matter

allowed) and is left in an environment E until it reaches an equilibrium state (→2.7).

If we repeat this experiments from the macroscopically identical initial condition in

the same environment E, the final state is usually the same.82,83

This uniqueness is an empirical fact, so we assume this as the basic premise

(principle) of thermodynamics (for simple systems →2.9).

2.9 Simple systems and compound systems

We wish to avoid complicated equilibrium states to begin with. In an extreme case

we may prepare unrelated systems in various equilibrium states and then juxtapose

them without any interaction between them to declare the resultant collection to

be a single equilibrium system. Then, we may introduce various interactions (i.e.,

walls or boundary conditions →2.1) among them. Thus, we can make indefinitely

complicated equilibrium systems. Still, to develop a general theory, we should start

with the simplest systems.

We define ‘simple systems’ just below and then we assume all the systems in

thermodynamics are simple systems or compound systems constructed from simple

systems by joining them with appropriate boundary conditions as mentioned just

above.

As ‘simple systems,’ it should be advantageous to pay special attention to the sys-

tems that are spatially homogeneous. Unfortunately, however, there is no guarantee

that such a system is always spatially homogeneous irrespective of its states (perhaps

phase separation could occur, for example). Therefore, we define a system to be a

simple system, if we can actually observe the system to have a spatially uniform

82Here, the adverb ‘usually’ appears. Precisely speaking, for simple systems (→2.9) the unique-
ness of the final equilibrium state is always the case. Some complications could happen for com-
pound systems (→2.9 as illustrated in 16.7), but such cases are very rare, so we may practically
assume the reproducibility of the equilibrium state.

83Here, ‘the same’ means that we cannot discern any difference macroscopically. The precise
uniqueness of the equilibrium state can only be provided after the equivalence of two equilibrium
states is clearly defined. See 5.1.
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equilibrium state (under some condition).84

In contrast, a compound system is defined as a system that is not homogeneous

but cannot be thermodynamically distinguished from a system made by connecting

various simple systems across appropriate walls.

2.10 What sort of macrosystems do we wish to understand?

For a simple system (→2.9), prepare its copy.85 Both are left in the identical spatially

uniform time-independent environment E till no change is observed macroscopically.

Thus, the two systems reach an identical equilibrium state (→2.8). Then, combine

these two systems with an arbitrary boundary condition (i.e., through a certain wall

→2.1) and leave the combined system86 in the same environment E as a whole as

illustrated in Fig. 2.1.

E
E

E

B

B

B

Figure 2.1: Thermodynamics deals with systems in which each small but macroscopic portion
(e.g., the oval ’B’) exhibits no change in its macroscopic state before and after combining with its
copy. The lower right case demonstrates a disqualified scenario, where the oval (representing any
macroscopic portion) undergoes a change in its state after the combination.

After a sufficiently long time, we compare the states of an arbitrarily chosen small

but macroscopic volume ‘B’ (illustrated as small ovals in Fig. 2.1) in the system

before and after the combination. We only deal with the systems that we cannot

discern any macroscopic (→1.4) change in the above two states of ‘B’ for any wall

between the system and the copy (Fig. 2.1). Let us call a system satisfying this

invariance an additive system.

84A simple system need not be made of a single chemical. The condition is that we can actually
observe it to be spatially homogeneous under some condition.

85A system in a macroscopically indistinguishable state; for simplicity, let us assume the simple
system is in a spatially uniform state. If you wish to be general, then the nonuniform spatial
structure must be faithfully copied.

86such a system will be called a compound system (→2.9).
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2.11 Nonadditivity due to long-range interactions

If the ‘reaching’ range of interactions between the parts of the system is not small

(i.e., the decay rate of the interaction strength as a function of distance is small),

the additivity (in the sense of 2.10) may be violated. This could cause alteration of

energy density as the system volume varies. Gravitational and electrostatic (Coulom-

bic) interactions have such a property.

Gravitational interaction within the system is not significant at our scale, so in the

usual thermodynamics, this is ignored.87 Electrostatic interactions are quite large,

so if there are ‘naked’ charges, we are not allowed to ignore them. However, if the

system is electroneutral, for example, plus and minus charges could shield each other,

and the electrostatic interaction range may be macroscopically infinitesimal. Thus,

we may generally assume that electrostatic interactions do not cause nonadditivity.

However, if the distance between the positive and negative charges are fixed as in

electric dipoles, electrostatic shielding is not complete, so the electrostatic interaction

energy decays as 𝑟−3, where 𝑟 is the spatial distance. Consequently, the additivity

mentioned above fails, and, furthermore, even if the system volume is maintained,

the total energy can depend on the macroscopic shape of the system. There are many

systems such as ferroelectrics containing molecules with permanent electric dipoles.

The same difficulty is encountered for ferromagnetic materials for which macroscopic

magnetism arises from the collection of permanent magnetic dipoles.

As we will see later, for the systems mentioned above, sufficiently general mathe-

matical theory cannot be constructed. Thus, thermodynamics discusses only (ener-

getically) additive systems for which the total energy88 of the system is proportional

to its volume.

2.12 Partitioning-rejoining invariance of equilibrium states89

If a macroscopic system is divided cleanly into two pieces of roughly equal sizes,90

then the resultant pieces are again macroscopic systems. Here, ‘dividing cleanly’

87The gravitational interaction with the system and some big external bodies (e.g., the earth)
cannot be ignored, but the effect is uniform over the system and appropriately handled within the
thermodynamics we will develop.

88The origin of energy must be appropriately chosen.
89If uniform external fields such as an electric field are imposed, we must perform the partitioning-

rejoining procedure under the same external fields.
90The illustration Fig. 2.2 might suggest ‘brute force breaking of the system into two’, but various

gentle methods are possible; for example, if you wish to divide an ice block, you can melt it and
then freeze it into two half blocks.
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refers to a non-fractal dividing surface and the surface areas of the pieces must be

proportional to 2/3 power of their volumes, if length is scaled, (such partition is

called the van Hove partition).

If a macroscopically non-uniform system in equilibrium may be divided into small

and uniform macrosystems, we have only to understand spatially uniform systems.

Therefore, the following is explicitly required for convenience:91

A macroscopic part of an equilibrium macrosystem is again in equilibrium.

If a macroscopic system is in equilibrium, the divided pieces are again in equilib-

rium.

Figure 2.2: The partitioning-rejoining invariance of equilibrium states: A macrosystem is parti-
tioned into two pieces A and B (1→2) and then rejoin them (2 → 3).

If the resultant two pieces are rejoined,92 we get a macrosystem whose state is

(thermodynamically) indistinguishable93 from the original equilibrium state:

An equilibrium state is partitioning-rejoining invariant. Needless to say, the

constraints (walls), if any, must not be altered before and after partitioning.

2.13 Partition additivity and additivity

91Actually, for the macroscopic part under consideration the rest of the system + the environment
is its environment, and the part is in equilibrium with this environment, so the above requirement
need not be made particularly according to the second definition in 2.7.

92This rejoining may not be at the cut ends, since thermodynamic quantities/observables are
shape-independent. The reader might worry about the symmetry-broken phases: must not we
respect the consistency of order parameters at the connection boundary? Thermodynamics do not
respect the order parameter orientations that do not affect the system internal energy, so we may
ignore this consistency. The same applies to the flow that can exist in superfluid phases. We need
not pay any attention to the flow field if the accompanying kinetic energy is not affected.

93Precisely speaking, we must clearly specify when we may say that two states are identical to
tell the indistinguishability. As mentioned before, see 5.1.
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2.12 tells us that it is natural to consider physical quantities whose total amount

is equal to the sum of the amounts in each part obtained by partitioning. Such a

quantity is called, in thermodynamics, an additive quantity.

Note that here what are added are quantities carried by the parts of originally a

single system, quite distinct from the ordinary additivity in mathematics.

In mathematics, a set function94 𝑄 is additive, if

𝑄(𝐴 ∪𝐵) = 𝑄(𝐴) + 𝑄(𝐵) (2.1)

for the sets 𝐴 and 𝐵 that are mutually exclusive: 𝐴 ∩𝐵 = ∅.
In distinction, the additivity mentioned in conjunction to partitioning-rejoining

invariance implies for any sets 𝐴 and 𝐶

𝑄(𝐴) = 𝑄(𝐴 ∩ 𝐶) + 𝑄(𝐴 ∖ 𝐶). (2.2)

That is, it is the additivity with respect to the partition of a set 𝐴 into two mutually

exclusive subsets. This additivity is a distinct concept from the ordinary additivity,

so in these lectures, we call this additivity partition additivity.95

2.14 Thermodynamic limit

It is said in 2.12 that a macrosystem roughly divided into halves results in two

macro systems, but, needless to say, we cannot indefinitely repeat this procedure to

make smaller macrosystems. If we wish to do so, the initial macrosystem must be

‘infinitely’ large. Theoreticians are fond of thinking in this limit, so the limit has a

name: the ‘thermodynamic limit.’

We have only to recognize that the systems we study macroscopically are very

close to this limit.96

94A set function is a map whose domain is an appropriate family of sets (say, a ring of sets) with
its values in R.

95An illustration of the need for the distinction: Consider a system with chemical reactions. In
equilibrium, if we cut the system into two parts, for any chemical in the system, its total amount
is the same as the sum of the amounts in the parts. That is, the total amount of any chemical
does not change before and after the cut, so it is partition additive. Needless to say, the amount
of a chemical is an extensive quantity (→3.1). If you prepare two systems with perhaps different
chemical compositions and combine them to make a single system, the total amount of a chemical
before and after joining can be different due to chemical reactions, so the amount of chemicals
cannot be additive.

96‘Close’ in the following sense; all the densities of extensive quantities almost agree with the
limit densities (→5.5).
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3 Preliminary II: Work coordinates

3.1 Extensive quantities

Prepare a system that is uniform at our scale (or, more precisely, a simple system

→2.9).

As we have seen in 2.14, in thermodynamics it is natural to consider a very large

system size limit, so we should first pay attention to the quantities that increases

without bound as the system size increases.

We should not, however, forget that we restrict systems we consider to a class of

additive systems (→1.9, 2.10): if the energy of the system depends on a quantity

that is not partition additive (→2.13), then the partitioning-rejoining invariance of

equilibrium states 2.12 would not hold. Therefore, when we consider a physical

quantity 𝑄𝑉 that diverges as the system volume 𝑉 increases indefinitely, we need

not take account of the quantities for which 𝑄𝑉 /𝑉 is not bounded from above. If

𝑄𝑉 is asymptotically proportional to 𝑉 and 𝑄𝑉 /𝑉 converges to a density which is

not identical to zero, we call such quantities extensive quantities.

3.2 Fundamental variables are extensive variables

The quantities that increase with the system volume are not restricted to the ad-

ditive quantities. For example, the surface area of the system or the accompanying

surface energy is often proportional to the 2/3 power of the system mass.

Earlier it was said the theoreticians like the thermodynamic limit (→2.14). In

this limit all the extensive/partition additive quantities diverge and become meaning-

less. Consequently, as the corresponding meaningful quantities, densities (extensive

quantities/volume) are considered. However, then, the densities of the quantities

like surface energy vanish identically in the thermodynamic limit. Accordingly, all

the basic quantities describing systems in thermodynamics are extensive quantities.

Volume, energy, amount of a chemical, etc., are the examples.

3.3 Thermodynamic coordinates are extensive or intensive

An extensive quantity is a first degree homogeneous function (→3.5) of the amounts

of materials, so a fundamental variable 𝑄 of thermodynamics is a first degree ho-
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mogeneous function of other fundamental (so extensive) quantities 𝑄𝑖.
97 If we write

𝑄 = 𝑄(𝑄1, 𝑄2, · · · , 𝑄𝑛), for any 𝜆 (> 0) we have98

𝜆𝑄 = 𝑄(𝜆𝑄1, 𝜆𝑄2, · · · , 𝜆𝑄𝑛). (3.1)

If 𝑄 is partial-differentiable with respect to 𝑄𝑖, the corresponding partial derivative

𝑞𝑖 is a homogeneous function of degree zero (→3.5(1)). That is, irrespective of 𝜆

(> 0),

𝑞𝑖 = 𝑞𝑖(𝜆𝑄1, 𝜆𝑄2, · · · , 𝜆𝑄𝑛). (3.2)

A quantity that is a homogeneous function of degree zero of the amount of ma-

terials is called an intensive quantity. Although not fundamental quantities (→3.8),

intensive variables are also important and convenient in thermodynamics. As we will

see later, temperature 𝑇 , pressure 𝑃 , etc., are the examples of intensive quantities.

3.4 Why do intensive quantities show up in thermodynamics?

As can be seen from 3.3, the reason why intensive quantities show up in thermody-

namics is not because they do not diminish as the system size increases. If that is

the reason, we have to keep, e.g., all the quantities that depend on positive fractional

powers of the system volume such as its surface energy. Sometimes, the general ob-

servation: “all the variables of thermodynamics are extensive or intensive” is referred

to as the fourth law of thermodynamics, but its essence is captured by the fact that

all the fundamental variables of thermodynamics are extensive (→3.2).

3.5 Homogeneous functions
Let 𝑢 be a function defined on an 𝑛-cone99 whose apex is at the origin. For any 𝜆 (> 0) if

97A fundamental quantity may be regarded as a function of non-fundamental quantities as well,
but such a functional form is not the basic relations in thermodynamics. For example, as we will see,
the internal energy may be written as a function of temperature 𝑇 . Since 𝑇 is not a fundamental
variable, such a functional relation is not a basic thermodynamic relation.

98Let {𝑀𝑖} denote the amounts (e.g., moles) of materials/chemicals in the system. Then an
extensive quantity 𝑄𝑗 is a first degree homogeneous function of {𝑀𝑖}. Since 𝑄 is also extensive,

𝜆𝑄({𝑀𝑖}) = 𝑄({𝜆𝑀𝑖}).

Note that
𝑄({𝜆𝑀𝑖}) = 𝑄({𝑄𝑗({𝜆𝑀𝑗})}) = 𝑄({𝜆𝑄𝑗({𝑀𝑖})),

so these two equalities imply that 𝑄 is a first degree homogeneous function of {𝑄𝑖}.
99𝑛-cone is a subset 𝐶 of 𝑛-vector space such that 𝑥 ∈ 𝐶 ⇒ 𝛼𝑥 ∈ 𝐶 for any positive 𝛼.
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there is a real number 𝑝 such that

𝜆𝑝𝑢(𝑥1, · · · , 𝑥𝑛) = 𝑢(𝜆𝑥1, · · · , 𝜆𝑥𝑛), (3.3)

𝑢 is called a homogeneous function of degree 𝑝.
(1) If 𝑢 is differentiable, partially differentiating (3.3) with 𝑥𝑗 (𝑗 ∈ {1, · · · , 𝑛}) with the aid
of the chain rule, we get

𝜆𝑝 𝜕𝑢

𝜕𝑥𝑗
= 𝜆𝑢𝑥𝑗

(𝜆𝑥1, · · · , 𝜆𝑥𝑛). (3.4)

Therefore, 𝜕𝑢/𝜕𝑥𝑗 = 𝑢𝑥𝑗
is a homogeneous function of degree (𝑝−1) for any 𝑗 (∈ {1, · · · , 𝑛}).

(2) Assuming that 𝑢 is differentiable, we differentiate (3.3) with respect to 𝜆 to get

𝑝𝜆𝑝−1𝑢(𝑥1, · · · , 𝑥𝑛) =
∑︁
𝑖

𝑥𝑖
𝜕𝑢

𝜕𝜆𝑥𝑖
. (3.5)

Setting 𝜆 = 1, we find

𝑝𝑢 =
∑︁
𝑖

𝑥𝑖
𝜕𝑢

𝜕𝑥𝑖
. (3.6)

(3) [Euler’s theorem for homogeneous functions] If 𝑢 is differentiable, (3.6) is a neces-
sary and sufficient condition for 𝑢 to be a homogeneous function of degree 𝑝.

To show this we have only to construct a general solution for (3.6), following the solution
method of quasilinear partial differential equations (→3.6).

3.6 Euler’s theorem for homogeneous functions
Let 𝑢 be a differentiable function defined on a 𝑛-cone whose apex is at the origin.
Theorem [Euler] A necessary and sufficient condition for function 𝑢 to be a homogeneous
function of degree 𝑝 is that the following quasilinear partial differential equation holds:

𝑛∑︁
𝑖=1

𝑥𝑖
𝜕𝑢

𝜕𝑥𝑖
= 𝑝𝑢. (3.7)

[Demonstration] If we differentiate (3.3) with respect to 𝜆, as already noted in 3.5(2), the
chain rule gives

𝑝𝜆𝑝−1𝑢(𝑥1, · · · , 𝑥𝑛) =

𝑛∑︁
𝑖=1

𝑥𝑖
𝜕

𝜕𝜆𝑥𝑖
𝑢(𝜆𝑥1, · · · , 𝜆𝑥𝑛). (3.8)

If we set 𝜆 = 1, we get (3.7).
To demonstrate the converse, we have only to solve the quasilinear partial differential

equation (3.7).100 Writing its characteristic equation with a clever use of the parameter 𝜆 as

𝑑𝑢

𝑝𝑢
=

𝑑𝑥𝑖

𝑥𝑖
= −𝑑𝜆

𝜆
, (3.9)

100There is an elementary explanation of the general solution method for quasilinear partial
differential equations in Note 3.4 of Y. Oono, The Nonlinear World (Springer, 2013) p159-160.



3. PRELIMINARY II: WORK COORDINATES 37

its general solution can be written as

𝐹 (𝜆𝑝𝑢, 𝜆𝑥1, · · · , 𝜆𝑥𝑛) = 0 (3.10)

in terms of an arbitrary differentiable function 𝐹 . That is, if 𝑢 is a function of {𝑥𝑖}, then
𝜆𝑝𝑢 must be a function of {𝜆𝑥𝑖}, so indeed 𝑢 is a homogeneous function of degree 𝑝.

3.7 Internal energy

Thermodynamics began as a branch of physics that sought to understand how the

energy of a system changes due to exchange of heat and work between the system

and its environment. Therefore, the energy 𝐸 of the system is a necessary variable

in constructing thermodynamics.

The total energy of the system includes the kinetic and potential energies as a

whole. We usually observe a system from the co-moving coordinates, so the energy

𝐸 relevant to thermodynamics is the total energy minus the mechanical energy as a

whole (i.e., the kinetic and potential energies of the center of mass) and is referred

to as the internal energy.101

It is worth reiterating that thermodynamics discusses only systems whose internal

energy is partition additive/extensive (→2.10).

Remark In the above, the total mechanical energy is excluded from the energy in

the system, but other energies associated with the system could be excluded as well,

if they do not change by the processes under consideration.

3.8 Intensive variables are not fundamental variables

In rudimentary thermodynamics, temperature appears as an important variable. As

we have seen in Appendix A (→A.2) temperature was historically crucial.102 How-

ever, we know temperature cannot uniquely specify macroscopic states of a system

101Also the system is assumed to be not rotating around its center of mass.
102Empirical temperatures For the concept of empirical temperature, two key points should

be considered:
(1) Any empirical concept must be grounded upon our direct bodily senses. However, there is no
reason to believe that “temperature” is a scalar quantity, as sensations of “hot” and “warm” are
sensed by different mechanisms. While we tend to perceive ”hot” and “warm” as only differing
in extent, it is possible that our understanding of “temperature” is influenced by later-established
concepts. Therefore, using empirical temperature as a foundation for thermodynamics can be
logically circular.
(2) Even if one relies on metaphysical principles to believe that temperature is a scalar quantity,
it is important to note that an ideal gas is just one example. To establish the universality of
temperature independent of specific materials, it is necessary to demonstrate that the temperature
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as illustrated by ice-water; even if the temperature is the same, the internal energy

of the ice-water system can change according to the ratio of ice and liquid water

present. Thus, the internal energy is a better observable to distinguish macroscopic

equilibrium states.

It is easy to understand why intensive quantities are not suitable for specifying

states by considering the fact that we can always devise a wall that allows two sys-

tems to share the same values of a particular intensive quantity. In contrast, we

cannot devise a wall that equalizes extensive quantities of the systems in contact

through it, whenever these systems equilibrate each other.

3.9 Thermodynamic coordinates, introduction

As we have already discussed, the internal energy 𝐸 is a key quantity of thermody-

namics, so we need it to describe the system under study.

To specify a system, we must first designate its material composition (very often,

its chemical composition). To this end we can use the mole numbers {�̃�𝑖} of all the

chemical compounds {𝑖} present in the system (more details later →4.6). Collec-

tively, we denote the chemical composition of a given system as �̃� = {�̃�𝑖}.
In order to describe the macrophysics of the system on this material stage spec-

ified by �̃� ,103 we choose a set {𝑋𝑖} of extensive observables (as actors) that are

required to describe macrophysical events in the system that alter 𝐸 (more details

later →3.10). Thus, {𝑋𝑖} are called work coordinates, which will be collectively

denoted as 𝑋.

As discussed in 1.8 we may assume the quantities and concepts are unambiguous,

if they are understood within nonthermal macrophysics and chemistry. Work coor-

dinates are all understood with nonthermal macrophysics. Also we assume we have

knowledge of elementary chemistry (→4.3).

scale remains consistent under different materials, with a diffeomorphic relationship. Without the
framework of thermodynamics, it becomes challenging to guarantee that the temperature of an
ideal gas is monotonically related to the absolute temperature.

103However, as we will later realize (e.g., 4.5), �̃� is not a convenient way to describe the mate-
rialistic aspects of the system. This is because, unless we can freely halt chemical reactions at any
given moment in the system while modifying other variables, particularly work coordinates 𝑋, as
assumed in standard chemical thermodynamics textbooks, this approach is highly unnatural and
almost impossible to implement. Hence, when we delve into comprehensive chemical thermody-
namics, we will make every effort to avoid this artificial assumption.
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3.10 Work coordinates and work

If we consider only the operations without any energy dissipation,104 to change the

work coordinates 𝑋 implies that the energy 𝐸 is changed in a fashion we can quantify

with the aid of the fundamental laws of electromagnetism and/or mechanics. There

is nothing special; these are the operations on the states of the system observed in

the experiments that verify electromagnetic and mechanical fundamental laws and

theories. To realize such experiments often we have only to slow down the processes

(quasistatic processes→A.6).105 The world solely governed by the fundamental laws

of macroscopic electromagnetism and mechanics is the world whose movies do not

look strange even if they are played backward.106 This is often the case, because

dissipation107 is absent. Under the condition in which dissipation can be ignored,

the variation of the work coordinates is reversible in the sense that the change can

be step by step retraced without leaving any trace.

When a work coordinate 𝑋𝑖 is changed infinitesimally and reversibly, the accom-

panying internal energy change may be written as a work form 𝑥𝑖𝑑𝑋𝑖, where 𝑥𝑖 is, as

can be seen from 3.3, an intensive quantity (something like a force) that is a func-

tion of 𝐸 and 𝑋 given by the nonthermal macrophysics. It is called the conjugate

intensive quantity of 𝑋𝑖. Thus, generally, the work form reads

𝜔 =
∑︁
𝑖

𝑥𝑖𝑑𝑋𝑖. (3.11)

If the system is materially closed (→4.3), then the conservation law of electromag-

netic and mechanical energies implies that 𝜔 is exact (→9.10): 𝜔 = 𝑑𝐸. This is

why {𝑋𝑖} are called work coordinates.108 Some examples of work coordinates will

104⟨⟨Without dissipation⟩⟩ ‘without dissipation’ implies that macroscopic electromagnetic and
mechanical energies are not lost from the system (conserved). Crudely speaking, if we put the
system and environment in a Dewar jar during the process, no temperature increase is detected.
The dissipation may not directly be by the irreversible processes in the system itself, but also due
to the production of sound or (electromagnetic) radiation. Such a production itself may be purely
mechanical and/or electromagnetic, but these radiations never return to the system completely, so
their production usually entail dissipation.

105However, quasistatic processes in electrodynamics can be pretty fast from our ‘everyday’ stan-
dard. The conversion rate between mechanical and electrical energies is said to be up to 95% with
the conventional devices. Superconducting devices can significantly improve this number.

106if there is no radiation of waves (sound, electromagnetic, etc.) from the system; note, however,
that if the system is enclosed in a ‘isolated room’ of finite size, radiation means ordinary dissipation
unless there is a radiation equilibrium between the system and the room.

107including production of radiations as discussed in a preceding footnote.
108Thermodynamics does not pay any attention to the quantities that do not change energy, so
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be given in Appendix B (→B.1-B.3).

Needless to say, the procedure or mechanism to alter work coordinates is realizable

within nonthermal macrophysics. That is, it is assumed that electromagnetism and

mechanics without any dissipation is possible, so we can construct reversible source

of work macrophysically.

3.11 Changing work coordinates without thermal phenomena

As long as there is no ‘friction’109 we may realize a change in work coordinates

without dissipation. The key observation is, for example, the Joule heat loss during

the transport of charges may be reduced as much as we wish by slowing down the

process.

Suppose we wish to move charge 𝑞 as an electric current 𝐼. If the resistance of the

wire is 𝑅, the heat generation per unit time is given by 𝑅𝐼2 (Joule heating). The

needed time is ∆𝑡 = 𝑞/𝐼, so the total amount 𝑄 of heat generated is give by

𝑄 = ∆𝑡×𝑅
(︁ 𝑞

∆𝑡

)︁2
=

𝑅𝑞2

∆𝑡
. (3.12)

Therefore, if ∆𝑡 is large, that is, if we slow down the process, this can be made as

small as we wish.

However, (3.12) tells us that slowing down by increasing 𝑅 is useless.110

from the potential list of work coordinates the extensive quantities are excluded whose conjugate
intensive quantities are identically (macroscopically) zero.

109⟨⟨The so-called friction⟩⟩ As discussed just below, if the ‘frictional force’ is proportional to
the ‘changing rate’ (as viscosity in fluids), the dissipated energy is a higher order small quantity.
However, for the kinetic friction due to dry friction between solids, the friction force is constant
independent of the changing rate (speed), so however slow the relative motion is, the amount of
dissipated energy is independent of the changing rate. Thus, quasistatic change cannot be realized
however slowly we perform the process.

Precisely speaking, as Granick and his collaborators extensively studied [e.g., S. Granick, Y. Zhu
and H. Lee, Slippery questions about complex fluids flowing past solids, Nature Materials 2, 221
(2003)] what happens at the interface between a fluid phase and a solid surface is very complicated,
and ‘dry friction’ (slip) can happen, although the effect is very small for ordinary fluids.

110Since the voltage difference is 𝑉 = 𝑅𝑞/Δ𝑡, reducing the voltage difference 𝑉 to transport the
charge is the practical way to reduce dissipation.

Notice that increasing 𝑅 is analogous to choking the passage, analogous to making the size of the
gas leak hole smaller. Indeed, the dissipation rate decreases, but the process itself is not reversible
as we will discuss later. Also slowing down chemical reactions with the aid of negative catalysts is
analogous.
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3.12 A slightly more general discussion
If there is no ‘friction,’ and if the general theory for linear transport phenomena applies, we
can proceed as follows:

Suppose a small change of a work coordinate 𝑋 requires energy change 𝑑𝐸 = 𝑥𝑑𝑋. Let

us assume that connecting system I with 𝑥 = 𝑥I and system II with 𝑥 = 𝑥II the flow of 𝑋
from I to II is driven by the difference in 𝑥. If 𝑋 is conserved, then

𝑑(𝐸I + 𝐸II)

𝑑𝑡
= (𝑥II − 𝑥I)

𝑑𝑋

𝑑𝑡
(3.13)

and linear transport law with transport coefficient 𝐿 (like Ohm’s law)

𝑑𝑋

𝑑𝑡
= 𝐿(𝑥II − 𝑥I) (3.14)

would hold. If we streamline the above relations as

𝑑𝐸

𝑑𝑡
= −𝛿𝑥𝑑𝑋

𝑑𝑡
(3.15)

and
𝑑𝑋

𝑑𝑡
= 𝐿𝛿𝑥, (3.16)

we have
𝑑𝐸

𝑑𝑡
= −𝐿𝛿𝑥2 = − 1

𝐿

(︂
𝑑𝑋

𝑑𝑡

)︂2

. (3.17)

The minus sign is put, because we discuss the electromagnetic and mechanical energy 𝐸 of
the system and its decrease due to dissipation.

As can be seen from this, if we change 𝑋 by Δ𝑋 in time Δ𝑡, then the total change of 𝑋
is of course Δ𝑋, but the total change of the energy due to dissipation is

1

𝐿

(︂
Δ𝑋

Δ𝑡

)︂2

Δ𝑡 =
(Δ𝑋)2

𝐿Δ𝑡
. (3.18)

That is, even if Δ𝑋 is constant, if the needed time Δ𝑡 is made sufficiently long, the total
dissipation can be reduced as much as we wish.111

111However, if the driving force is large, increasing Δ𝑡 by reducing 𝐿 is useless, since 𝐿 and Δ𝑡
appear together, as already noted at the end of 3.11.
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B Appendix B. Examples of work and work form

This topic is of the non-thermal macrophysics, so thermodynamics simply adopts
the results, but, for convenience, some examples are given here.

B.1 Work due to volume change
Let us find the work form 𝜔 for a quasistatic112 change of the system volume from 𝑉 to 𝑉 + 𝑑𝑉 .
Let us write the surface area element as 𝑑𝑆 and its small displacement along the outward normal
as 𝛿𝑙 (Fig. B.1).

dS F

δl

dA

V + dV
V

P

Figure B.1: Volume work

If the force per unit area 𝐹 acts on the surface area element 𝑑𝑆, displacing it by 𝛿𝑙, the work done
to the system is 𝐹 · 𝑑𝑆𝛿𝑙. If we collect them all over the surface of the volume, we get the volume
work:

𝜔 =

∫︁
𝜕𝑉

𝛿𝑙𝐹 · 𝑑𝑆. (B.1)

The work must be done quasistatically, so the external force per unit area 𝐹 and the system pressure
𝑃 at each part of the surface must be in balance. Let us denote the area of the surface element 𝑑𝑆
by 𝑑𝐴. Then,

𝐹 · 𝑑𝑆 + 𝑃𝑑𝐴 = 0, (B.2)

so (B.1) becomes

𝜔 = −
∫︁
𝜕𝑉

𝛿𝑙𝑃𝑑𝐴. (B.3)

The volume change is given by

𝛿𝑉 =

∫︁
𝜕𝑉

𝛿𝑙𝑑𝐴, (B.4)

and the pressure is everywhere the same during quasistatic changes, so (B.3) becomes

𝜔 = −𝑃𝑑𝑉. (B.5)

Notice that this 𝑃 is the mechanical quantity and has nothing to do with thermodynamics. There
is no thermodynamic pressure, but only mechanical pressure. Do not forget that all the work
coordinates are defined outside thermodynamics.

112sufficiently slowly; in this case slowing down also implies reversibility, because the dissipation
is due to volume viscosity, so linear irreversible formalism used in 3.12 applies.
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B.2 Work done by magnetic field
For the needed Maxwell’s equations see B.4.

Magnetic field itself does not do any work directly on charged systems. The work done by
magnetic field is the work done on the current by the electric field induced by the magnetic field.
Thus, the term relevant to work is 𝐽𝑓 ·𝐸 due to the current 𝐽𝑓 supplied from outside the system
and 𝐸. Subtracting (B.24)·𝐻 from (B.24)·𝐸 and ignoring the displacement current, we get

𝐸 · curl𝐻 −𝐻 · curl𝐸 = 𝐸 · 𝐽𝑓 +𝐻 · 𝜕𝐵
𝜕𝑡

(B.6)

If we look at the formulas

∇· (𝐴×𝐵) = (∇𝐴+∇𝐵) · (𝐴×𝐵) = 𝐵 · (∇𝐴×𝐴)−𝐴 · (∇𝐵×𝐵) = 𝐵 ·curl𝐴−𝐴 ·curl𝐵, (B.7)

the left-hand side of (B.6) reads div(𝐻 ×𝐸), so

div(𝐻 ×𝐸) = 𝐸 · 𝐽𝑓 +𝐻 · 𝜕𝐵
𝜕𝑡

. (B.8)

If all the systems and relevant apparatuses are contained in a finite space, we may assume the fields
decay sufficiently quickly to zero outside this space, so integrating the above formula over the whole
space, we obtain

0 =

∫︁
𝑑𝑉 𝐸 · 𝐽𝑓 +

∫︁
𝑑𝑉 𝐻 · 𝜕𝐵

𝜕𝑡
. (B.9)

If we add work quasistatically, the current is constant throughout the experiment, so the strength
of the magnetic field is also constant. Integrating the above equation over the whole experimental
duration, and writing the total change of 𝐵 as 𝛿𝐵, we get

𝐻 · 𝛿𝐵 = −
∫︁

𝑑𝑡𝐸 · 𝐽𝑓 . (B.10)

Since the energy is supplied by working against the current due to the change of the magnetic field,
the right-hand side gives the energy supplied to the magnet with the correct sign. Therefore, the
work form for the work done by the magnetic field reads

𝜔 = 𝐻 · 𝑑𝐵. (B.11)

If we decompose as 𝐵 = 𝜇0𝐻 + 𝜇0𝑀 , (B.11) becomes

𝜔 = 𝑑

(︂
1

2
𝜇0𝐻 ·𝐻

)︂
+ 𝜇0𝐻 · 𝑑𝑀 . (B.12)

Here, 𝐻 is the magnetic field created by the device, so it exists even without the magnet. The first
term is the change of the vacuum magnetic field energy. Therefore, if we remove it and regard 𝜇0𝐻
as the actual external field, we get

𝜔 = 𝐵 · 𝑑𝑀 . (B.13)

However, this is not always correct. It is correct when the so-called demagnetizing field can be
ignored as in the case of a long magnet with the magnetic field applied parallel to its long axis. It
is totally different for a spherical magnet.

This difficulty is simply due to the magnetic interaction being long-ranged (→2.10).
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B.3 Work done by electric field113

Since electric field does not enter inside conductors, the electric field energy does not change ac-
cording to the state of the conductor, so the state of a conductor is not altered by the external
electric field.

For dielectrics, the electric field goes into the bulk of the material. Therefore, the field has a
strong thermodynamic effect. Electric work is done by displacing true charges, so in terms of the
true charge density change 𝛿𝜌 and electric potential 𝜙, the work may be written as

𝛿𝑊 =

∫︁
𝑑𝑉 𝜙𝛿𝜌 (B.14)

The integration here is over the volume of the dielectric. Noting that

𝐸 = −grad𝜙, div 𝛿𝐷 = 𝛿𝜌, (B.15)

the integration result is given by

𝛿𝑊 =

∫︁
𝑉

𝑑𝑉 𝜙 div 𝛿𝐷 =

∫︁
𝑑𝑉 [div (𝜙 𝛿𝐷)− grad𝜙 · 𝛿𝐷] (B.16)

=

∫︁
𝜕𝑉

𝑑𝑆 · 𝜙 𝛿𝐷 +

∫︁
𝑉

𝑑𝑉𝐸 · 𝛿𝐷 (B.17)

We may ignore the surface contribution for macroscopic systems. Only the second term is the
extensive contribution. If the electric field is uniform, the work form reads

𝜔 = 𝐸 · 𝑑
∫︁
𝑉

𝑑𝑉𝐷 = 𝑑

∫︁
𝑑𝑉

𝜀0
2
𝐸2 +𝐸𝑑

∫︁
𝑉

𝑑𝑉 𝑃 . (B.18)

The first term exists even for non dielectrics, so 𝐸 · 𝑑𝑃 is the work density. Note, however, that
this conclusion applies only for macroscopic objects.

B.4 Our convention for the electromagnetic field
In this lecture notes, we follow the 𝐸-𝐵 correspondence, which is the world standard, and use the
SI unit system. That is, we assume all the magnetic fields are due to currents, and the Maxwell’s
equation in the vacuum reads

div𝐸 = 0, curl𝐸 = −𝜕𝐵

𝜕𝑡
, (B.19)

div𝐵 = 0, curl𝐵 =
1

𝑐2
𝜕𝐸

𝜕𝑡
. (B.20)

If we have materials. we introduce two auxiliary fields, the electric flux density 𝐷 and the magnetic
field strength 𝐻:

𝐷 = 𝜀0𝐸 + 𝑃 , 𝐻 =
1

𝜇0
𝐵 −𝑀 . (B.21)

Here, 𝑃 is the polarization and 𝑀 is the magnetization. They must be determined from the bound
charge density 𝜌𝑏 and the bound current (localized loop currents) density 𝐽𝑏 in the material:

𝜌𝑏 = −div𝑃 (B.22)

113following Landau-Lifshitz
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and the macroscopic Maxwell’s equation under the presence of material reads

div𝐷 = 𝜌𝑓 , curl𝐸 = −𝜕𝐵

𝜕𝑡
, (B.23)

div𝐵 = 0, curl𝐻 = 𝐽𝑓 +
𝜕𝐷

𝜕𝑡
, (B.24)

where 𝜌− 𝜌𝑏 = 𝜌𝑓 (the free charge density) and 𝐽 − 𝐽𝑏 = 𝐽𝑓 (the free current density).
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4 Preliminary III: Materials coordinates

4.1 Materials stage of thermodynamics

Usually, thermodynamics textbooks discuss internal energy 𝐸 and work coordinates

such as volume 𝑉 to describe a system. However, these textbooks often overlook

the materialistic basis of the system before introducing these thermodynamic coor-

dinates. It is important to remember that even the ordinary thermodynamic coor-

dinates 𝐸 and 𝑋 require materials to exist and be carried by them.114

Thus, we have already mentioned the material stage (→3.9). On this stage, the

quantities 𝐸 and 𝑋 act as actors (→3.9), playing their roles in the thermodynamic

processes.

However, the material stage of thermodynamics differs significantly from the ordi-

nary stage for dramas, as it undergoes substantial changes when the actors perform

their actions. These changes often cause trouble and complications. For instance,

if there are variations in the quantities (𝐸,𝑋), it leads to passive changes in the

material composition of the system.115 Even without any intervention from the ex-

perimenter, chemical changes are induced.

4.2 Conventional approaches with chemical reactions

Due to the trouble alluded in 4.1, serious textbooks adopt one of two strategies to

address this issue:

(1) To allow all chemical reactions to be halted at will, without disturbing the equi-

librium state116 (→4.16) or to be in a special metastable equilibrium known as frozen

equilibrium117.

(2) To acknowledge that chemical reactions exist in nonequilibrium states, while the

ordinary thermodynamic coordinates 𝐸 and 𝑋 still adhere to the ordinary equilib-

114The author calls this the no ghost principle. Even information requires its carrying material.
115In physics, where there is action, there is reaction. If the stage changes, actors would be

strongly affected. However, in thermodynamics, there is a notable asymmetry. We can fix 𝐸 and
𝑋 from outside the system, in principle, even when the chemical composition of the system changes.
We can fix the chemical composition with the aid of appropriate chemical reservoirs while altering
𝐸 and 𝑋. However, the maintained chemical composition is no more an equilibrium composition
of the system with the modified 𝐸 and 𝑋. Instead, it is a nonequilibrium steady state. In general,
we cannot fix the chemical composition while maintaining the system equilibrium.

116J. G. Kirkwood and I. Oppenheim, Chemical Thermodynamics (McGraw-Hill, 1961), p.100.
117E. A. Guggenheim, Thermodynamics (North-Holland, Fifth revised edition 1967), p.35.
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rium thermodynamics118.

Approach (2) is an eclectic strategy, and the consistency of its fundamental as-

sumption, that only chemistry can be maintained in a non-equilibrium state without

modifying ordinary equilibrium thermodynamics, raises concerns, so we will disre-

gard this strategy.

Approach (1) may be more realistic if all reactions proceed very slowly; in such

cases, a small amount of appropriate catalysts can be added to accelerate the re-

actions. However, it is worth noting that many reactions occur spontaneously at

non-negligible rates. Negative catalysts can be proposed to inhibit such reactions,

but this would require adding stoichiometric amounts of catalysts to the system. In

short, approach (1) relies on unrealistic assumptions.

Therefore, in the present exposition, we will outline equilibrium thermodynamics

without interfering with any natural chemical reactions in the system.

4.3 Elementary chemistry thermodynamics relies on

Here, elementary chemistry thermodynamics relies on is briefly summarized. Notice

that it is provided by chemistry to thermodynamics; thermodynamics simply accepts

it as a collection of empirical facts.

(i) The law of definite proportions: This law states that a chemical compound always

contains its component elements in fixed ratio (by mass).119

(ii) Chemical reactions occur: The amounts of chemicals the experimenter adds to

the system are generally different from the actual changes of the amounts in the

system.

We accept at least the following three principles:

(I) Mixing and separating of chemical compounds are possible quasistatically and

reversibly.

(II) Any mixture of chemicals eventually reaches a unique equilibrium composition

for each 𝐸,𝑋.120 In other words, a chemical equilibrium state is unique in the fol-

118I. Prigogine and R. Defay, Thermodynamique Chimique (Editions Desoer, 1950).
119However, in, e.g., mineralogy or geochemistry nonstoichiometric compounds are not at all rare,

so this law must be relaxed: in a given equilibrium state, the available compounds in the system
must exhibit the definite composition (that may depend on 𝐸 and 𝑋, the ordinary thermodynamic
coordinates).

120On the uniqueness of chemical equilibrium Even if the initial equilibrium state of a
chemical system is clearly specified, the final equilibrium state attained through relaxing some
internal constraints may not be unique, as non-quasistatic processes can occur. However, if the
ordinary thermodynamic coordinates (𝐸,𝑋) of the final state are specified, then the chemical
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lowing sense:

For a closed system (= a system without any materials exchange with its environ-

ment), if moles of sufficiently many chemical compounds121 to specify the material

composition of the system are given, the current chemical composition is uniquely

determined.

(III) Any chemical reaction122 may be realized as an ionic reaction electrochemically.

This fact is necessary to demonstrate (in principle) the equivalence of chemical and

mechanical work.

4.4 What is a chemical reaction?

What is the essence of chemical reactions as physical phenomena? It is the change

of the system chemical composition without any materials exchange between the

system and its environment.

4.5 Trouble with expressions of amounts of chemicals

As is in (II) of 4.3, for a closed system, if (𝐸,𝑋), the set of all the ordinary ther-

modynamic coordinates (internal energy and work coordinates), is given, the moles

of chemicals actually present in the system in equilibrium are uniquely determined.

Generally speaking, if (𝐸,𝑋) changes, the chemical equilibrium would shift. There-

fore, even if we do not modify the system chemical composition �̃� directly from out-

side the system, �̃� changes. That is, the chemical composition variables �̃� = {�̃�𝑖}
are not independent from (𝐸,𝑋).

However, the 𝑖th compound may be added to the system independently of other

chemicals. In this sense the variables expressing the moles of chemicals {𝑁𝑖} should

composition of this final state is uniquely determined. This is the claim of (II).
The reader might argue that even if the final state (e.g., specified by 𝑇 and 𝑃 in typical lab

experiments) is the same, the yield of a compound can vary significantly due to experimental
procedures, much like cooking. Many reactions proceed very slowly, so this variation is simply a
result of nonequilibrium effects. Furthermore, the compound you intend to synthesize may only
exist as a metastable state.

As discussed in 2.5 about the nature of equilibrium states, sometimes we can ignore very slow
reactions when studying the chemical thermodynamics of a system.

121For example, all the amounts of chemical compounds used to prepare the system materially
at the start of an experiment

122Even a simple conformational change that does not require any chemical bond changes is a
kind of chemical reaction. In such cases, no bond need be dissociated or reconnected, but still we
can realize it through bond dissociation/reconnection processes.
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be handled as independent variables. Still, we must not forget that even if we add

𝛿𝑁𝑖 moles of the 𝑖th chemical to the system, the amount of chemical 𝑖 present in the

system may not increase by 𝛿𝑁𝑖.

For example, consider the following reaction:

A + B ←→ C. (*)
Chemicals A, B or C may be added to the system freely and separately by the ex-

perimenter, so the moles to express their amounts appear as independent variables.

However, due to the chemical equilibrium, the actual amount of C present in the

system is determined by the amounts of A and B in the system, so only two of A,

B, and C are independent.123

4.6 Descriptions of experimental operations and of chemical composition

of a system

4.5 tells us that there are two aspects for chemical quantities (moles of chemical

compounds): (i) the operational aspect expressing the amounts of the chemicals the

experimenter can add to the system, (ii) the descriptive aspect expressing the actual

amounts of the chemicals in the system. Here, in case (i) all the amounts of chemicals

may be understood as independently modifiable variables, but not so in case (ii).

4.7 Closed systems do not have independent variables describing amounts

of chemicals

In particular, if the system is closed, there is no independent variable expressing the

amount of chemicals.

Operationally in the sense of (i) in 4.6, no such variable can exist, since no op-

eration, i.e., adding or subtracting a chemical, is allowed; Descriptively in the sense

of (ii) in 4.6, although the amounts of compounds can change, e.g., by varying the

internal energy, such changes are subordinate to or dependent on (𝐸,𝑋), so there is

no independent variable describing chemicals at all.

4.8 The moles of chemicals actually existing in the system are inconve-

nient thermodynamic variables

123For a closed system with fixed (𝐸,𝑋), the chemical equilibrium is definite. Consequently, as
will be explained in 4.7, there is absolutely no amounts of chemicals the experimenter can change
at will.
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Let us denote as �̃�𝑖 the mole number of the 𝑖th chemical that is actually present in

the system and that the experimenter can add to the system separately (indepen-

dently) from other chemicals. We denote �̃� = {�̃�𝑖}, collectively. If we know �̃� , the

chemical composition of the equilibrium state of the system at present is completely

known to us.124 Let us call �̃� as the chemical composition (variables or coordinates).

However, if we adopt chemical composition �̃� to describe the materials stage of

the system as a part of thermodynamic variables as the conventional textbooks, as

already alluded above (→4.1), at least the following inconveniences follow:125

(i) The presence of chemical equilibria implies that �̃�𝑖 are mutually related, so �̃�

cannot be a collection of independent variables.

(ii) Even if the system is closed, if 𝐸 and 𝑋 (i.e., the ordinary thermodynamic vari-

ables) are changed, usually, {�̃�𝑖} also change. That is, �̃� cannot be independent of

(𝐸,𝑋).126 In particular, if the system is closed, �̃� are completely subordinate to

(𝐸,𝑋).

(iii) Even if the experimenter add 𝛿�̃� to the system, usually, its composition is not

given by �̃� + 𝛿�̃� .

Consequently, the chemical composition variables �̃� that are adopted as the stan-

dard chemical variables by all the textbooks are at least very inconvenient and actu-

ally inadequate variables, if we avoid an artificial assumption that all the chemical

reactions can be halted freely at any moment while keeping the system in equilibrium

(→4.2).127

124⟨⟨Intrinsically accompanying compounds⟩⟩ Precisely speaking, not all the chemicals in the
system can be operationally separately handled by the experimenter. In the usual chemical ther-
modynamics, the chemicals that the experimenter cannot regulate are ignored. A typical example
is the chemicals that may be called ‘intrinsically accompanying compounds’ that always accompany
a given chemical. For example, if we take an amount of liquid water, H3O

+, H5O2
+, etc., come

inevitably with it. Or if we take acetic acid gas, we cannot avoid dimers. The amounts of associated
chemicals are fixed due to chemical equilibria (and very often their amounts are small), so we ignore
these chemicals.

However, the composition of a ‘pure chemical’ changes due to, say, 𝐸, so the choice above is
only an approximate procedure.

125The ordinary chemical thermodynamic textbooks assume, as noted in 4.2, that all the chemical
reactions can be freely halted at any moment as an equilibrium state. If we assume this artificial
(and unrealizable) assumption, the following problems disappear. However, in this exposition of
thermodynamics, we maximally avoid such an unnatural assumption.

126As can be guessed easily, �̃� are partition additive but not additive quantity (→2.13).
127A dire consequence of this assumption is that the formulation of the second (law turns out to

be difficult, if the law also governs chemical reactions.
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4.9 Materials coordinates and chemical composition variables128

4.6 tells us that the variables (i) to describe experimental operations and the vari-

ables (ii) to describe the actual composition of the system must be distinct variables.

Furthermore, 4.8 tells us that variables (ii) (chemical composition coordinates) �̃�

are disqualified as the basic independent thermodynamic coordinates.

Let us use the ordinary symbol 𝑁𝑖 for the variable (i) to describe the chemical

operation (collectively, 𝑁 = {𝑁𝑖}). 𝑁 denote the amounts of chemicals the exper-

imenter prepares to make the system whose ordinary thermodynamic coordinates

(i.e., internal energy and work coordinates) are (𝐸,𝑋) and its chemical composition

is �̃� . Let us call 𝑁 the materials coordinates (or chemical coordinates).129

The chemical composition of the equilibrium state (specified by) (𝐸,𝑋,𝑁 ) is

uniquely fixed (→4.3 (II)).

Notice that the materials coordinates 𝑁 are additive.130 For example, for the

system whose work coordinate is only the volume 𝑉 , if we prepare two copies with

the states (𝐸, 𝑉,𝑁 ) and (𝐸 ′, 𝑉 ′,𝑁 ′) and combine them into a single system un-

der a closed adiabatic condition, the resultant equilibrium state can be given by

(𝐸 +𝐸 ′, 𝑉 +𝑉 ′,𝑁 +𝑁 ′). If the chemical compositions of (𝐸, 𝑉,𝑁 ) are �̃� and that

of (𝐸 ′, 𝑉 ′,𝑁 ′) �̃�
′
, the chemical compositions of (𝐸 + 𝐸 ′, 𝑉 + 𝑉 ′,𝑁 + 𝑁 ′) are not

necessarily �̃� + �̃�
′
.

4.10 A simple illustration exhibiting the non-additivity of chemical composition
variables
Let us allow the exchange of chemicals between the two systems. For simplicity, the systems
are assumed to have only one work coordinate 𝑉 , which is fixed. As a reaction in the system

128It is generally believed that the amounts of chemicals are not continuous, so ‘𝑑𝑁 ’ does not
make sense. However, according to the macroscopic observation at our scales (→1.4) no discrete
nature of the matter shows up. Even the law of constant compositions (→4.3 (i)) does not logically
imply the discrete nature of matter, even though this is a natural conclusion. Also note that
we cannot ignore nonstoichiometric compounds. Therefore, in thermodynamics, the amounts of
chemicals are modeled by an interval of reals R.

129In order to construct a system with the state (𝐸,𝑋, �̃�) the chemicals the experimenter must
prepare are generally not unique. For example, if a system is with the reaction A + B ←→ C, we
can appropriately mix all A, B, C, or only A and C to construct the same equilibrium state (see
25.5, 25.6 for detail).

We can also choose 𝑁 so that they numerically agree with the current composition �̃� . However,
if we add 𝛿𝑁 moles to this system, the resultant state has its materials coordinates �̃� + 𝛿𝑁 , but
of course its chemical composition is, generally speaking, not �̃� + 𝛿𝑁 due to chemical reactions.

130This is due to the conservation of elements and the law of constant compositions, but does not
logically imply atomism. This fact is imported from elementary chemistry to thermodynamics.
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assume (*) in 4.5. In systems I and II the reactions must be in equilibrium. Combining
these two systems, the materials coordinates for the combined systems are simply the sum:

𝑁A
I +𝑁A

II and 𝑁B
I +𝑁B

II (and for C 𝑁C
I +𝑁C

II).

What happens to chemical composition variables such as �̃�A? As shown in the following

calculation example, the chemical composition of the resultant system is not �̃�
I
+ �̃�

II
,

which is not an equilibrium state.
We rely on rudimentary chemistry. For the concentrations, there is a relation [C]/[A][B]

= 𝐾, where [X] implies the molarity of chemical X. For systems I and II, let the concentra-
tions (molarities) of chemicals be a, b, c and A, B, C (respectively, using obvious notations).
Assume I and II have the same volume and temperatures. 𝐾 does not change before and
after the combination of the systems, so the question is: if 𝑐/𝑎𝑏 = 𝐾 and 𝐶/𝐴𝐵 = 𝐾, can the
same hold for the average concentrations: [(𝑐+𝐶)/2]/[(𝑎+𝐴)/2][(𝑏+𝐵)/2] = 𝐾? Needless
to say, this holds only for very special choices. If 𝐾 = 1, 𝐴 = 3𝑎, 𝐵 = 3𝑏 and 𝐶 = 9𝑐 imply
[10/2]/[4/2][4/2] = 5/4 ̸= 1. Thus, �̃� I

A + �̃� II
A ̸= �̃� I+II

A , etc.

4.11 The significance of materials coordinates

Since materials coordinates are not very explicit in the ordinary thermodynamics,

let us summarize the significance of introducing such coordinates.

As seen in 4.9 the materials coordinates are additive, but chemical composition

variables are not (although still partition additive →2.13).

The materials coordinates are individually independent variables and are also

independent from the ordinary thermodynamic coordinates 𝐸 and 𝑋. If the exper-

imenter adds 𝛿𝑁 moles of chemicals, then the materials coordinates of the system

changes as 𝑁 →𝑁 + 𝛿𝑁 . Note, however, in contrast to 𝐸 or 𝑋, the values of the

materials coordinates do not immediately give the current chemical composition �̃�

of the system. The equilibrium composition �̃� are given in terms of 𝑁 only when

the ordinary thermodynamic coordinates 𝐸 and 𝑋 are specified (→4.12).

4.12 Reaction map: 𝑅
The relation between 𝑁 and �̃� may be described by the ‘reaction map’ 𝑅: 𝑅 is the map
that provides the equilibrium composition �̃� for the system with the materials coordinates
𝑁 when the ordinary thermodynamic coordinates are given by (𝐸,𝑋): 𝑅𝐸,𝑋(𝑁) = �̃� .

If the experimenter adds 𝛿𝑁 moles of chemicals to the system (i.e., if the materials coor-
dinates are changed as 𝑁 →𝑁 + 𝛿𝑁), 𝑅𝐸,𝑋(𝑁 + 𝛿𝑁)−𝑅𝐸,𝑋(𝑁) is the actual chemical

composition change 𝛿�̃� in the system.
If the system is closed, its materials coordinates 𝑁 can be fixed, but its chemical compo-

sition variables �̃� = 𝑅𝐸,𝑋(𝑁) depend on (actually, determined by) 𝐸 and 𝑋 and are not
independent variables at all.
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4.13 Materials coordinates and work

Following the ordinary work coordinates in 3.10, for reversible and quasistatic pro-

cesses the energy change associated with the process to change materials coordinates

is expressed as the following form (chemical form or mass form)

𝜁 =
∑︁

𝜇𝑖𝑑𝑁𝑖 (4.1)

analogous to (3.11). Here, 𝜇𝑖 is an intensive variable called the chemical potential of

the chemical 𝑖.131 When there is no change of work coordinates, for a reversible and

quasistatic adiabatic process this form is exact, i.e., we can write 𝜁 = 𝑑𝐸.

However, it is not obvious whether the materials coordinates may be treated just

as the ordinary work coordinates in thermodynamics (→4.5-4.11). If they may

be, this is an empirical fact, so the relevant facts should be mentioned. This is

empirically established by electrochemistry (esp., emf due to Faraday and Joule)

and the empirical equivalence of electric and mechanical energies.

4.14 Operational coordinates

If we do not distinguish electromagnetic and mechanical works and chemical works

(the so-called mass action →4.13), they will be collectively called the generalized

work. The work coordinates and materials coordinates will be collectively called op-

erational coordinates (or generalized work coordinates) and written as 𝑌𝑖 (collectively

𝑌 ). The name is chosen because experimenters can vary them independently at their

will, in principle. In particular, it should be noted that 𝑌 does not include chemical

composition �̃� .

However, do not forget that work coordinates and materials coordinates have

significant distinctions (see esp. 4.8 (iii)).

4.15 Reversible and adiabatic change of materials

131There is an opinion that at the beginner level it is pedagogically advantageous to introduce the
concept of chemical potential apart from thermodynamics [for example, G. Job and F. Herrmann,
Chemical potential—a quantity in search of recognition, Eur. Phys. J., 27, 353 (2006))]. A justi-
fication says that pressure, temperature, etc., may be introduced independent of thermodynamics.
Of course for pressure this is all right, since 𝑃 is a purely mechanical concept, but it is question-
able as to 𝑇 ; its natural and proper introduction requires thermodynamics. Furthermore, chemical
potential was initially introduced by Gibbs to thermodynamics, so the justification above may not
be appealing, although its intuitive introduction as a quantity indicating the direction of changes
involving chemicals may be pedagogically of some meaning.
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To consider the chemical form 𝜁 (4.1) we need quasistatic reversible and adiabatic

changes of materials coordinates. Such changes are allowed due to the possibilities

of reversible mixing/separating of chemicals and reversibility of chemical reactions

(→4.3). The mechanical work-chemical work equivalence must have been self-evident

for those who considered chemical reactions just as (classical) mechanical changes as

Helmholtz (→A.17), but this is not any scientific proof of the equivalence.132

To define chemical potentials operationally, a cylinder with a piston closed by an

appropriate semipermeable membrane is used (for more details →17.5). There are

two potential problems here.

The first problem is the well-known realizability of semipermeable membranes (or

selectively permeable membranes): it is only fictitious to assume a membrane that

can segregate a selected chemical perfectly, so such a fancy device should be expelled

from the theory.133 However, a selective permeable membrane is a symbol to describe

the reversible process (I) in 4.3: mixing and separating chemicals can be realized

reversibly; the separation process may use (appropriately idealized) reversible chro-

matography, fractionating column, etc.

The second problem is to realize exchange of finite amount of chemicals adiabat-

ically. That is, whether 𝑑𝐸 =
∑︀

𝜇𝑖𝑑𝑁𝑖 can be realized. When the work coordinate

is only 𝑉 , the process is illustrated in Fig. 4.1. The procedure is not very simple,

so we will not use this process. A practically meaningful cases are under constant

temperature and pressure, so we will discuss the cases with these conditions later

(→17.5).

Fig. 4.1 Adiabatic reversible addition of chemicals is possible, in principle.

The shade of red expresses the concentration of a particular chemical.

A: We assume that the total amount of chemical we wish to add to the system is known. The pure

chemical is in the round container, which is enclosed by a diathermal wall that does not exchange

132Bohr told Heisenberg as follows, “By ’stability’ I mean that the same substances always have
the same properties, that the same crystals recur, the same chemical compounds, etc. In other
words, even after a host of changes due to external influences, an iron atom will always remain an
iron atom, with exactly the same properties as before. This cannot be explained by the principles
of classical mechanics, certainly not if the atom resembles a planetary system.” (W. Heseinberg,
Physics and Beyond (translated by A. J. Pomerans, Harper & Row, 1971) p40.). Compare this
with Helmholtz’ talk (→A.17).

133This complaint may sound reasonable for critical people, BUT compared with the ‘standing
assumption’ in the standard chemical thermodynamics textbooks that chemical reactions may be
stopped at our will without destroying the system equilibrium is a much more drastic and fancy
assumption than this.
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Figure 4.1: Adiabatic reversible addition of chemicals is possible, in principle.

any work coordinates (i.e., no displacement to change the container volume in the present case).

Thus the total system is with a uniform temperature, and is enclosed by adiabatic walls.

B: We embed the container into the system. During this process we may choose the work coordi-

nates, e.g., the volume, of the system quasistatically appropriately. Accordingly, 𝐸 may change.

C: Regulate the volume of the round container appropriately to make the chemical potential inside

and that of the same material in the system identiocal. 𝐸 may change during this process.

D: Then, change the wall of the container with the selective permeable membrane for the target

chemical.

E-F: Appropriately changing the volume of the round container and the work coordinate of the

system we can squeeze out the chemical in the round container quasistatically.

G: Finally, the work coordinates are returned to the original values reversibly and quasistatically.

Thus, without changing the work coordinates we have added the chemical reversibly and adiabati-

cally.

4.16 Why no distinction between materials coordinates and chemical component
variables appears in any textbooks
Perhaps this may be clearly understood from Kirkwood-Oppenheim’s book or Tasaki’s book.
In short, the situations in which 𝑁 and �̃� must be distinguished are clearly avoided. That
is, when chemicals are added (i.e., the operation by the experimenter), it is assumed that
no chemical reactions are occurring at all. When chemical reactions occur and chemical
compositions passively change even without direct material intervention by the experimenter,
the system is considered closed. Therefore, in the former case we only need 𝑁 and in the
latter case only �̃� .

As is written in KO (p100):
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The application of the general criteria for equilibrium to systems in which chemical
reactions may occur involves the ability to freeze the chemical reactions at any desired
point. Thus, a system containing 𝑟 substances which may undergo a chemical reaction
must be considered to be made up of 𝑟 independent components. At equilibrium,
of course, the number of moles of any component is determined by specifying the
number of moles of the 𝑟 − 1 other components and the values of the other pertinent
thermodynamic parameters.

From this the equilibrium condition is obtained by a criterion of equilibrium under the re-
straint of closure: (𝛿𝐸)𝑆,𝑉 ≥ 0.

The requirement for systems with chemical reactions is that “systems in which chemi-
cal reactions may occur involve the ability to freeze the chemical reactions at any desired
point.” While freezing reactions, the chemical coordinates are considered as our materials
coordinates, and therefore, the convexity of 𝐸 is preserved. As a result, as noted in the
last paragraph, the usual thermodynamic variational principle for equilibrium states may be
demonstrated.

However, with the conventional variables (corresponding to our chemical composition vari-
ables), if you turn on chemical reactions, the convexity of 𝐸 is lost (→4.10 for an example),
so the validity of the usual thermodynamic variational principle for equilibrium states is no
longer guaranteed. Consequently, the variational principle for chemical reactions cannot be
established.

It is needless to say that the requirement to freeze reactions is quite unnatural; there is no
device that can be conceived as an idealization of actual methods, as in the case of selective
membranes.

Much more seriously, as we will see later, with the conventional material/chemical quan-
tity expressions, the second law of thermodynamics with chemical reactions is hardly formal-
izable. Therefore, to put it bluntly, in the conventional approach the existence of entropy is
not shown when chemical reactions occur.

Under the so-called Mechanical Weltanschauung, there is no problem, since chemistry is
not considered special, as explained by Helmholtz (→A.17). Therefore, we can apply the
second law with works alone, deeming it sufficient. However, ‘Weltanschauung’ is not science;
lacking empirical basis, no matter how plausible it may sound. Thus, the conventional (or
at least the original) formulation of chemical thermodynamics does not properly adhere to
scientific moral code.
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5 Preliminary IV: Thermodynamic space

5.1 Equilibrium states are distinguished by thermodynamic coordinates

Can we use the thermodynamic coordinates (→3.9) of a system to distinguish all

the equilibrium states that we can macroscopically distinguish? Of course not. Note

that, by definition (→3.10), thermodynamic coordinates cannot identify any changes

that do not affect the internal energy, even if we can discern the change in the equi-

librium state. For example, the difference in the three-dimensional shapes of the

system or the relative positions of coexisting phases (say, ice and water) in it are

irrelevant to thermodynamics.

Precisely speaking, a thermodynamic state (or state, for simplicity) is an equiv-

alence class with respect to the thermodynamic coordinates of equilibrium states.

Therefore, thermodynamics focuses on the changes of thermodynamic states rather

than equilibrium states. From now on, however, we will not distinguish thermody-

namic states and equilibrium states.

5.2 Thermodynamic space

The space spanned by the thermodynamic coordinates of a (simple134) system is

called its thermodynamic space. The two equilibrium states that thermodynamics

distinguishes correspond to two distinct points in this space (→5.1). Two equilibrium

states whose thermodynamic coordinates agree are considered (thermodynamically)

identical.

All thermodynamic coordinates may be measured in some energy unit,135 so we

may regard the thermodynamic space as the usual Euclidean space,136 a metric space.

We may regard it as the ordinary linear vector space with the usual metric. Thus,

we can use the ordinary calculus in this space.

The thermodynamic space of a compound system is essentially the direct product

of the thermodynamic spaces of the constituent simple subsystems.

134This concept is not confined to simple systems. For a compound system its thermodynamic
space may be the direct product of the thermodynamic spaces of the constituent simple systems or
its convenient subspace.

135This is true even for materials coordinates
136Or, any vector space whose metric is equivalent to that of the ordinary Euclidean space.
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5.3 Thermodynamic coordinates are privileged variables

For a given system its thermodynamic coordinates are the privileged coordinates

with the following properties:

(1) They are extensive quantities that may be described and manipulated by non-

thermal macrophysics and chemistry. In other words, thermodynamics is not needed

to describe and to measure thermodynamic coordinates.

(2) They specify equilibrium states = thermodynamic states uniquely (by definition

→5.1).

5.4 State quantity, state function

A physical quantity of a system is called a state quantity, if its value is fixed when the

system is in a particular equilibrium state. That is, a quantity that can be described

as a function (called a state function) whose domain is in the thermodynamic space

is called a state quantity. A function of state functions is a state function. For

example, temperature and pressure are not basic thermodynamic quantities (→3.8),

but they are still state quantities. Therefore, their functions are state functions as

well.

5.5 Thermodynamic densities and fields

The fundamental variables of thermodynamics are extensive variables (→3.2). Con-

sequently, variables appearing in thermodynamics are extensive and intensive vari-

ables (→3.2). Also it was explained why theoreticians like to take the thermody-

namic limit (→2.14), in which all the extensive quantities diverge and become mean-

ingless. Therefore, to describe thermodynamics in this limit extensive quantities per

unit volume, that is, the thermodynamic densities are used. Thus, in mathematical

physics the key thermodynamic variables are the thermodynamic densities and their

conjugate intensive variables (called thermodynamic fields).

The systems that we deal with at our scale (→1.4) are finite but they are typically

very close to the thermodynamic limit; all the thermodynamic densities are virtually

identical to their thermodynamic limit values.

In practice, it is often much more convenient to use the original extensive quanti-

ties rather than corresponding densities.137 Therefore, in most cases, we will not use

thermodynamic densities in the following expositions.

137For example, changing only the system volume while keeping all other operational coordinates
is not so easy to describe in terms of densities.
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5.6 Let us study the topology of the totality of equilibrium states

The totality of the equilibrium states ℰ of a system under study need not be the whole

thermodynamic space (→5.2) of the system. If ℰ is not simply connected (→5.7),

then two paths connecting two different equilibrium states may not be continuously

deformed into each other within ℰ , so the results of line integrals can depend on the

paths taken. The following part of this section explains that the topology of ℰ is

‘maximally’ simple and such ‘complications’ never occur.

5.7 Some topological terms138

arcwise connection mutually homotopic curves one-point contractible set
not simply connected set;
curves are not homotopic

Figure 5.1: Arcwise connection, homotopy, one point contractibility, simple connection

⟨⟨Connected⟩⟩ An open set is connected, if it cannot be divided into two disjoint

open sets. A set is connected, if there is no way to cover it by two disjoint open sets

that both have intersections with the set.

⟨⟨Arcwise connected⟩⟩ A set is arcwise connected, if any two points in the set may

be connected by a continuous curve in it. Note that connectedness does not imply

arcwise connectedness.

⟨⟨Simply connected⟩⟩ Suppose a set is arcwise connected and its any open set

contains an arcwise connected open set.139 If any closed continuous curve can be

continuously contracted to a point in the set, we say the set is simply connected.

Any closed continuous curve in a simply connected set is homotopic (see below) to

a point.

138A superb introductory book is: I. M. Singer and J. A. Thorpe, Lecture notes on elementary
topology and geometry (Scott, Foreman and Company, Glenview, IL, 1967). Every student should
read this.

139This condition says that the set is locally arcwise connected.
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⟨⟨Homotopic⟩⟩ A continuous curve 𝑓(𝑡): 𝑡 ∈ [0, 1] ↦→ ℰ is homotopic to another

continuous curve 𝑔(𝑡): 𝑡 ∈ [0, 1] ↦→ ℰ , if there is a continuous map 𝐹 (𝑡, 𝑠) : [0, 1] ×
[0, 1] ↦→ ℰ dependent not only on 𝑡 but one more parameter 𝑠 ∈ [0, 1] such that

𝐹 (𝑡, 0) = 𝑓(𝑡) and 𝐹 (𝑡, 1) = 𝑔(𝑡). In short, if we can continuously deform the graph

of 𝑓 to that of 𝑔 without leaving ℰ , we say 𝑓 and 𝑔 are homotopic.

⟨⟨One-point contractible⟩⟩ If a set 𝑆 is homotopic to a point 𝑃 in 𝑆, the set is

said to be one-point contractible: that is, if we can construct a continuous function

𝐹 (𝑥, 𝑡) : 𝑆 × [0, 1] ↦→ 𝑆 such that 𝐹 (𝑥, 0) = 𝑥 and 𝐹 (𝑥, 1) = 𝑃 ∈ 𝑆, we say 𝑆 is

one-point contractible. In short, if we can continuously shrink a set to a point within

the set, we say the set is one-point contractible.

5.8 Various equilibrium states

The concept of ‘simple systems’ was introduced earlier (→2.9) and it was stated that

indefinitely complicated equilibrium systems may be conceived. Here, for simplicity,

we assume all the simple systems are in spatially uniform equilibrium states.

If we prepare two simple systems and regard them jointly as a single system (Fig.

5.2A → B), even if there is no interaction between them, the resultant system is in

equilibrium, since it satisfies the characterization of equilibrium states (→2.7). The

resultant system is a compound system (→2.9).

A

B

C

D

E

Figure 5.2: Various states of a compound system

Fig. 5.2 We can combine simple systems to make a compound system. The resultant compound

system could be various, depending on the boundary conditions (walls) between the constituent

simple systems.

A: Two simple systems in different equilibrium states.

B: It is of course possible to regard these simple systems as parts of a single system.

C: Even if these simple systems are connected through a wall that does not exchange any extensive

quantities, there is no change of states from B.
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D: Through varying the boundary conditions (i.e., wall properties →2.1), we can allow exchanges

of some extensive quantities for a finite time span or forever to prepare various equilibrium states

of a compound system.

E: We can further relax the constraints imposed by the wall; eventually, we could bring the com-

pound system to a simple system (if both are made of the same materials).

As is illustrated in Fig. 5.2, by combining two simple systems, we can prepare

various interpolative equilibrium states of a resultant compound system. Needless to

say, we can start with as many simple systems as we wish, with walls of various types

as we wish to separate them,140 so we can make indefinitely complicated compound

systems.

In thermodynamics, an inhomogeneous system may be understood as a compound

system.141

5.9 ℰ is a smoothly deformed convex set

Prepare two systems A and B. The thermodynamic coordinates of A are {𝐸A,𝑌 A}
and those of B {𝐸B,𝑌 B}, where 𝑌 denotes the operational coordinates (→4.13)

(𝑋,𝑁 ). Grafting these two systems in certain proportions as illustrated in Fig. 5.3,

we make a compound system. Then, we remove the wall, leaving the system to reach

an equilibrium state.

As illustrated in Fig. 5.3, for any 𝜆 ∈ [0, 1] we can make an interpolated system (this

may not be a simple system) with its equilibrium state reached from the starting

equilibrium state (of a compound system), whose total amount of the thermodynamic

coordinates just before merging can be written as

Λ = (𝜆𝐸A + (1− 𝜆)𝐸B, 𝜆𝑌 A + (1− 𝜆)𝑌 B). (5.1)

140⟨⟨Requirement for walls⟩⟩ It should be fair to explicitly postulate that we can make a wall
(prepare a boundary condition) between any systems that allows exchange of any set of extensive
quantities (= operational coordinates→4.13) for any length of time.

The wall is assumed to have only local effects, except through the exchange of extensive quanti-
ties. If the reader knows phase transitions, she might question this, e.g., quoting Peierls’ argument
(for example, see Y. Oono, Perspectives on Statistical Thermodynamics (Cambridge, 2017) p419
and Q32.4 on p430). However, in this case the change in the order parameter has no energetic
effect, so thermodynamically, we can ignore the effect (→23.7).

141As already noted (biological) ‘cells’ are sufficiently macroscopic. Remember that still no one
imagined that we are made of cells. To regard spatially inhomogeneous macroscopic equilibrium
systems as compound systems is sufficiently accurate.
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BA

Figure 5.3: Making interpolated systems

If 𝑌 are additive (→2.13) (e.g., conserved) as 𝐸, then Λ itself denotes the thermo-

dynamic coordinates of the resultant system. In this case if A and B are equilibrium

states, then so is Λ: A, B ∈ ℰ ⇒ Λ ∈ ℰ . This implies that ℰ is a convex set

(→5.10).

This means that, since materials coordinates are all additive,142 if all the work

coordinates are also additive, then ℰ is a convex set. However, the additivity is

not guaranteed for all the work coordinates, so Λ may not be the thermodynamic

coordinates of the final state. The true final equilibrium state ‘C’ {𝐸C,𝑌 C} is with

𝐸C = 𝜆𝐸A + (1 − 𝜆)𝐸B. Its operational coordinates 𝑌 C must be a continuous

function of 𝜆𝑌 A + (1 − 𝜆)𝑌 B. Therefore, ℰ may not be a convex set, but must be

a set of a homeomorphic image of a convex set.

Consequently, any continuous curves connecting two particular points in ℰ are

homotopic (→5.7). Furthermore, ℰ is one-point contractible (→5.7).

REMARK However, non-additive work coordinates are usually never discussed in

the conventional thermodynamics.143 Therefore in this set of lectures, we as-

sume that ℰ is convex.

5.10 Convex set

A set in a Euclidean space is a convex set, if the line segment connecting any two

points in the set is in the set (Fig. 5.4).

any common set of two convex sets is a convex set.

142Do not forget that the ‘standard or conventional choice’ adopted by all the textbooks, chemical
compositions, �̃� , are not additive. However, this difficulty is evaded by the assumption that
chemical reactions can be halted at any time as we wish.

143except for chemical composition variables �̃� as the standard description of the amounts of
chemicals.
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Not a convex set convex setNot a convex set

Figure 5.4: A convex set contains the line segment connecting two arbitrary points in the set.

The direct product of two convex sets is a convex set.

Thus, the totality ℰ of equilibrium states of a given system is a convex set as we

have seen in 5.9).

5.11 Convexity and the choice of thermodynamic coordinates

As we have learned from the expression of chemical amounts in a system that are

state variables, convexity of ℰ , the totality of the equilibrium states of the system,

depends on the choice of the variables. This is stressed by Lieb and Yngvason on

p33, “it is essential to note that the convex structure depends heavily on the choice

of coordinates for” the thermodynamic space.144 Thus, to cover chemical reactions

thermodynamically, even within their ‘axiomatic system,’ how to describe amounts

of chemical should have been discussed carefully.

5.12 Can we discuss the topology of ℰ from partitioning of a system?

In 5.9 the nature of ℰ was investigated through combining different equilibrium

states. In contrast, Shimizu’s Thermodynamics avoids ‘dynamical changes due

to making two systems in contact,’ so he starts with Λ in 5.9, so to speak, and

then find its decomposition/partition into two simple systems. This is, in a

certain sense, ingenious especially when the coordinates are not additive.

To be precise, let us quote the relevant statement from Shimizu’s textbook:

Theorem 4.2 contains the following statement: The entropy 𝑆 of a system

satisfies the following inequality for the sum of the entropies 𝑆(𝑖) of simple

subsystems that result from partitioning the system according to partition 𝐶

144E. H. Lieb and J. Yngvason, “The physics and mathematics of the second law of thermody-
namics,” Phys. Rep. 310 1 (1999). Incidentally, they wrote already on p7, “It is well known, as
Gibbs (1928), Maxwell and others emphasized, that thermodynamics without convex functions may
lead to unstable systems.” “In our treatment it (= convexity) is essential for the description of
simple systems.”
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({𝑖} denotes the pieces formed by partition 𝐶)

𝑆(𝐸,𝑋, 𝐶) ≥
∑︁
𝑖

𝑆(𝑖)(𝐸(𝑖),𝑋(𝑖)).

Here, the range of (𝐸(𝑖),𝑋(𝑖)) is chosen to be additively consistent with (𝐸,𝑋).

Comments on this statement follow:

(1) Here ‘additive’ must be interpreted as in the usual mathematics sense (not

Shimizu’s sense, i.e., ‘partition additive’ →2.13).

(2) Even if the word additive’ is understood as in the standard mathemat-

ics, still the above statement needs the domain of the functions 𝑆 (and 𝑆(𝑖))

specified. For example, the volume range may depend on the amount of the

materials, so the ‘range’ is not simply determined by (the properly understood)

additivity alone.145 Thus, the range depends on ℰ . Then, the ‘shape’ of ℰ can-

not be determined by the additivity range alone.

(3) It is the other way around: ℰ specifies the ‘range’ of the variables resulting

from partitioning the original variables. Thus, even if ℰ consists of two disjoint

sets, we can choose the range of variables so that the partition satisfies the

additivity.

Not a convex setNot an arcwise connected set

Figure 5.5: Additive constraints cannot determine whether ℰ is convex or not. The red state
may be the additivity consequence of the green and the yellow states. We can choose the ranges
of these states even if ℰ is not convex. If the green and the yellow states are given beforehand, Λ
corresponds to any point on the segment connecting the green and the yellow states, so Λ may land
on the ‘orange’ portion of the segment connecting the green and the yellow states. Thus, ℰ must
be a convex set.

Thus, the decomposability (or possibility of partitioning) of (𝐸,𝑌 ) does not

properly impose any constraint on the topology of ℰ [Actually, the decompos-

ability is restricted by the geometry of ℰ ]. See Fig. 5.5.

145Generally, on the boundary 𝜕ℰ the thermodynamic coordinates need not be independently
changed. That is ℰ need not be a direct product of intervals of the thermodynamic coordinates.
Therefore, the domain of 𝑆 must be given before discussing its additivity.
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The convexity of ℰ must be demonstrated separately from decomposability

as we did (→5.9).
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6 Preliminary V: Quasistatic processes

6.1 Points in the thermodynamic space

As we see in 5.3 any point (𝐸,𝑌 ) in the thermodynamic space of a system represents

at most one equilibrium state (= thermodynamic state →5.1) of the system.

However, the coordinate values do not tell us whether the system is in equilibrium

or not, so a point in the thermodynamic space may also correspond to some states of

the same system with the identical 𝐸,𝑌 ) but not in equilibrium. For example, for

a single component gas, its thermodynamic coordinate system is (𝐸, 𝑉 ). However,

the energy and the volume can also be defined for non-equilibrium states, such as a

swirling gas in a box. As a result, a process that can be described by a continuous

curve in the thermodynamic space is not guaranteed to express a quasistatic and/or

a reversible process.146 If the system is a compound system, the situation can be

more complicated.

In short, a process along which thermodynamics can be applied corresponds to a

definite continuous curve in the thermodynamic space, but a continuous curve in the

thermodynamics space need not represent processes to which thermodynamics can

be applied.

To minimize confusion we introduce the concept of ‘quasiequilibrium state’ in this

section.

6.2 Quasiequilibrium states: simple systems

The state P of a simple system (→2.9), whose thermodynamic coordinates are well

defined (thus, it has a well-defined representative point P in the thermodynamic

space), satisfying the following conditions, will be called a quasiequilibrium state:

(1) In a sufficiently small neighborhood of P is an equilibrium state R of the sys-

tem,147 and

(2) State P eventually reaches R, if the system is left alone in the single uniform

environment ℬ that can maintain R.

That is, the state P may not be an equilibrium state, but there is a true equi-

librium state R sufficiently close to P, and if the system in state P is left in an

146Needless to say, most nonequilibrium processes cannot even lie in the thermodynamic space.
147P can agree with R. That is, a point representing an equilibrium state can also represent a

quasiequilibrium state.
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environment that maintains R, the system eventually reaches R (Fig. 6.1).148

P

R
R

P

equillibrium state

quasiequilibrium state

R

～＝

left

＝
environment

alone

maintaining R

Figure 6.1: Quasiequilibrium state for simple systems

Suppose an irreversible change in a simple system is caused by a system-environment

mismatch. For example, imagine a hot coffee in a thermos placed in a living room.

If the thermos is of high quality, the state P of the coffee inside would be almost

constant; if it is immersed in a heat bath ℬ at approximately the same temperature,

then it sooner or later reaches a true equilibrium state R, which is indistinguishable

from P. That is, the state P is not a true equilibrium state, because it is cooling, but

state P as a quasiequilibrium state is still located almost overlapping with equilib-

rium state R in the thermodynamic space. Thus, this state P is a quasiequilibrium

state.

6.3 Quasiequilibrium states: compound systems

Since the case of general compound systems (→2.9) can be complicated, let us dis-

cuss a compound system consisting of two simple systems. If these simple systems

are in quasiequilibrium states (→6.2) individually, the state P of the compound sys-

tem corresponds to a point in its thermodynamic space (→2.9).

If we wish to say the compound system is in a ‘quasiequilibrium state,’ we must

find a single uniform environment149 ℬ for the compound system such that the system

in state P left alone in ℬ eventually reaches an equilibrium state R of the compound

system that is almost indistinguishable from P.

148R can be P itself.
149Here, the environment must be a single uniform one, because, if we allow multiple environ-

ments, the subsystems of a given compound system can have its own environment and the whole
compound system may be maintained in a nonequilibrium steady state.
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An obvious problem is that combining two (quasi)equilibrium simple systems may

not create a compound system in equilibrium. Suppose one simple system is hot wa-

ter and the other cold water, and the boundary does not allow easy exchange of energy

(i.e., informally, ‘approximately thermally insulating’). If the combined system is in

a good thermos, then far before the whole system reaches a room temperature, the

system would relax to an almost thermal equilibrium at some common temperature.

Even during the relaxation process the two simple systems can individually stay in

quasiequilibrium states (at distinct temperatures), but there is no single uniform

environment that can maintain this state of the compound system; as a state of a

compound system, even though the change is slow, there is no equilibrium state close

to the state.

A state represented by a point in the thermodynamic space, but without satisfy-

ing (1) of 6.2 may be called a pseudoequilibrium state.150,151 See the bottom of Fig.

6.2. The example in the preceding paragraph is a pseudoequilibrium state.

If one simple system is hot water, and if the other is also hot water of similar

temperature, then, although the state P of the compound system is not in equilib-

rium, both simple systems are in quasiequilibrium, so P is in the thermodynamic

space of the compound system. Furthermore, there is a (uniform) equilibrium state

R sufficiently close to P. Therefore, P is a quasiequilibrium state of the compound

system, satisfying (1) and (2) of 6.2. In this example, if the whole system is in

a thermos, and cools gradually, P is not a true equilibrium state of the compound

system. Thus it is called a quasiequilibrium state. See Fig. 6.2Top.

6.4 Quasistatic process

If at every moment of the process the state of the system (irrespective of its inter-

150When we discuss a compound system, note that the boundary conditions (walls) between
subsystems are included in the definition of the compound system, so we do not touch them.

In the case being discussed here, if the wall between the simple systems totally isolates them, the
state is a quasiequilibrium state, because there is an environment to keep it as an equilibrium state
of a compound system (e.g., an adiabatic environment). As seen from this example, the magnitude
of the relaxation times is the key. If the internal relaxation is quicker than that of the external
relation, the system cannot be in a quasiequilibrium state, but a pseudoequilibrium state. In the
opposite case, we may regard the state of the compound system as a quasiequilibrium state. Recall
the characterization of equilibrium states by Feynman 2.5.

151A pseudoequilibrium state is a state that changes quasistatically, but there is no single bath
to maintain an equilibrium state very close to it. We can apply thermodynamics to the process
consisting of pseudoequilibrium states, but the process is not generally reversible.
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environment

compound system

The compound system is in a quasiequilibrium state
              but environment + system is not 

The compound system is in a pseudoequilibrium state

(room temperature)

Figure 6.2: Quasi- and pseudoequilibirium states for compound system

acting exterior world—its environment, etc) is in a quasiequilibrium state (→6.2,

6.3), we say the process is a quasistatic process.152 Along a quasistatic process we

can apply thermodynamics.153

Roughly speaking, when a system changes due to interactions with its environ-

ments, a process is a quasistatic process if any state along it can settle down to a

very close equilibrium state if the system-environment interaction is severed.

By definition, the quasistatic process is about the system under consideration

alone, because what matters is whether the system is always in quasiequilibrium

states. Even if the system is interacting with something else, we do not care whether

this other system is in (quasi)equilibrium or not. We also do not care whether the

system is in equilibrium with it.

Informally speaking, at least for simple systems, if the process is sufficiently slow,

it is a quasistatic process154 for the system. For compound systems slowing down

alone is not enough due to the possibility of pseudoequilibrium states (→6.3).155

Remark: Notice that a ‘quasistatic process’ is not simply a ‘sufficiently slow pro-

152Warning: The definition of ‘quasistatic process’ may vary depending on the source. Many
books require that not only the system itself, but its environment are quasistatic in our sense and
that the system and its environment must be in equilibrium. Then, they say that we can apply
thermodynamics along quasistatic processes according to their definition. However, thermodynam-
ics can be used under less strict conditions (e.g., no system-environment equilibrium is required
(→14.13), the definition is not suitable for this purpose.

153Needless to say, if the initial and the final states are in equilibrium, we can always use ther-
modynamics to compute the state quantity evolution. Here, what is said is that along a quasistatic
process at any point along the process we can use thermodynamics to compute the state quantities.

154This does not mean that the process is retraceable.
155Still, for individual subsystems we may use thermodynamics.
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cess’, distinct from Tasaki’s explicit characterization. Historically, as can be seen

in A.6, the chief motivation to introduce a quasistatic process was to avoid any

loss/dissipation. Therefore, to equate being quasistatic and being slow does not cor-

rectly capture the connotation of the word ‘quasistatic’ in the original spirit.

6.5 ‘Physics’ of quasistatic process
The idea of quasistatic process first appeared in the theory of hydraulic machines (→A.6).
Carnot adopted this idea in his reversible engine as a process with changes at an infinitesimal
rate (→A.7). The idea was readily accepted thanks to the popularity of analysis in France
at that time.

Macroscopic observations are observations ignoring (or averaging-out) fluctuations that
are spatially small and temporally rapid according to the law of large numbers. In other
words, the observational errors of macroscopic observation occur only when the errors sig-
nificantly exceed (standard) deviations of fluctuations. Even if we ignore fluctuations, they
do not cease to exist, but in equilibrium there is no systematic deviation in one direction
caused by equilibrium fluctuations (the average vanishes). However,156 by nudging these
fluctuations gently externally, the averages of fluctuations can be made nonzero.157 Thus,
quasistatic processes can be realized at rates sufficiently small but finite. The mathematical
infinitesimal rate is a theoretical idealization of such small but finite rates.

In other words, deviations from the law of large numbers, i.e., the deviations theoretically
understandable by the large deviation principle can, realize quasistatic processes.158

6.6 Reversible quasistatic processes

During a process of a system, if its environment is in a quasistatic state and if the

compound system made of the system itself and its environment is also in a qua-

sistatic state (→6.3), then the process is step-by-step retraceable, so it is reversible

in particular.

6.7 Reversible process, quasistatic process and infinitesimal process

There is no direct logical relation among the concepts, ‘reversible process,’ ‘qua-

sistatic process,’ and ‘sufficiently slow infinitesimal process.’ Here, some related

remarks are collected.

(1) A quasistatic process is a process in which the system is in quasiequilibrium states

156The discussion here essentially follows that of Koichi Ohno, Learning Thermodynamics from
Basics (Iwanami 2001) p88 [In Japanese]

157This is the content of the so-called fluctuation-response relations in equilibrium statistical
thermodynamics.

158Einstein’s thermodynamic fluctuation theory exactly describes this large deviation theoretical
framework as discussed in YO, Perspectives on statistical thermodynamics (Cambridge UP, 2017).
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(→6.2). For work coordinates, if there is no ‘dry friction,’ such a process is realizable

by sufficiently slowing down the changing rates (→3.11). Materials coordinates may

be handled basically in the same fashion as the work coordinates, although some

care is required. For heat see 14.12.

(2) Even if the changing rate of operational coordinates or their conjugate variables

is small, the change need not be reversible. It is possible to realize the situation

analogous to the slowly cooling cup of coffee for work coordinates. A gas container

with a pinhole is an example. For the gas in the container of volume 𝑉 , its state,

e.g., its pressure 𝑃 , is almost constant. However, for the portion of the gas leaking

from the hole, its volume expands very quickly from a tiny one to ‘the whole world.’

Very similar to this, we could connect two containers containing gases of different

pressures, respectively, with a small pin hole. Each container is in a quasiequilibrium

state, so each container changes quasistatically. However, the whole system is not

in equilibrium (not even in a pseudoequilibrium state →6.3). This is an example of

irreversible changes of a compound system consisting of simple systems undergoing

quasistatic changes.

It is easy to make such a counterexample for chemical reactions with the aid of

the so-called negative catalysts that can indefinitely slow down chosen reactions.

(3) However small a change relative to the whole system, if the change itself is vi-

olent (not controllable), then even though the change is quasistatic for the system

and may be infinitesimal, it may not be reversible. It may be easy to imagine such

a situation with a gun powder ignited in small portions. Suppose a container of gas

is with a piston, and its outside is a vacuum. If the piston is pulled out stepwisely

very rapidly as 𝑉 → 𝑉 + 𝑑𝑉 → 𝑉 + 2𝑑𝑉 → · · ·, then each step is a free expansion

of the gas, so is irreversible. That is, even if the change as a whole (from the point

of view of the whole system) is ‘slow’ and infinitesimal, it is irreversible.159

6.8 Why is thermodynamics useful?

Thermodynamics discusses only equilibrium states, even though this world is full of

nonequilibrium phenomena. Why is thermodynamics still useful? Because:

(i) Equilibrium states do not depend how they are prepared (→2.7).

(ii) Equilibrium states may be realized with good approximation.

159In this case, the gas is always in a quasiequilibrium stateand so is its environment, but there
is no (near) equilibrium relation between the system and its environment. That is why the process
is not reversible.
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In particular, the starting state S of a process is very often a time independent

state, and so is the destination state F. Therefore, often it is not a bad approximation

to regard these states as equilibrium states; the changes of state quantities (→5.4)

are completely determined by the thermodynamic coordinates of these two states.

To compute the change of state quantities without knowing the actual process from

S to F, we have only to devise a convenient curve in the (operational) thermodynamic

space connecting S and F. The process described by the curve can be realized as a

quasistatic reversible process (→C.5). A simple example is in 11.13.
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7 ‘The first law’ of thermodynamics

7.1 Sign convention

When energy is added to the system in the ordinary sense of the word (that is, not

in an algebraic sense), such as, when the external world does work on the system, we

say that the system receives a positive (+) amount of energy. If the system does work

on its surroundings, we say the system receives a negative (−) amount of energy.

From now on, for any extensive quantity, if the system gains the quantity in the

ordinary sense of the word, we assume a positive (+) amount of the quantity enters

the system. If the system loses the quantity in the ordinary sense of the word, we

say a negative (−) amount of the quantity enters the system.

In other words, our algebraic sign convention is based on a system-centered point

of view. [Note that this sign convention is the opposite of Clausius’ convention for

his equivalents (→A.11).]

7.2 The so-called ‘first law of thermodynamics’

As stated in A.9 the works of Mayer and Joule led to the recognition that the law

of conservation of energy applies to energies beyond mechanical energy; specifically,

the sum of (correctly converted) ‘heat’ 𝑄 and (generalized) work 𝑊 (→4.13) is con-

served as energy. That is, the increase of the system energy ∆𝐸 may be written

as ∆𝐸 = 𝑄 + 𝑊 . This relation has long been referred to as the first law of ther-

modynamics. Given the tradition of quantitative heat theory preceding Mayer’s and

Joule’s works (→A.2), it was sensible to summarize the law of conservation of energy

in this form.

Within non-thermal macrophysics, energy is a well-defined quantity in electro-

magnetism and mechanics, and so is work. In contrast, if ‘heat’ is to be quantitated

independent of physics, as seen in A.2, we need ‘temperature.’ However, if we

question what temperature is, its relation to the non-thermal macrophysics is quite

opaque.160

Thus, ‘heat’ remains a mysterious concept in macrophysics unless it is directly

160Needless to say, to understand thermal properties of gases, the kinetic theory of gases was
devised according to classical mechanics. It directly connected temperature and kinetic energy, and
certainly encouraged the mechanical Weltanschauung (→1.3). Still, such ‘speculations’ cannot be
used to establish temperature within macrophysics.
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related to work.161

The measurement of work 𝑊 is already established in non-thermal macrophysics

(→3.11). Therefore, the most direct way to define ‘heat’ is as ∆𝐸 −𝑊 , provided a

means of measuring ∆𝐸 is established.

161That temperature is a measure of extent of molecular motion is not only a meaningless expla-
nation macroscopically, but also not conceptually correct. Quantum mechanically, temperature is
not exactly the extent of molecular motion.
⟨⟨How fundamental is scalar temperature as a concept?⟩⟩
Since thermodynamics must be based on macroscopic empirical facts (recall our basic discussions
1.5-1.8), if you wish to construct thermodynamics in terms of the concept directly related to tem-
perature (e.g., ‘isothermy’), we must be able to establish the concept purely empirically without
thermodynamics and nonempirical assumptions/particular Weltanschauungs.

We believe that ‘temperature’ is considered a scalar quantity nowadays, but it is highly question-
able whether this belief is purely empirical. In contrast to pairs like short-long or light-heavy, we
have at least two temperature-related pairs: cool-warm and cold-hot. These pairs correspond to bi-
ologically distinct mechanisms for sensing sensations such as warmth and heat. It is also important
to note that sensors for hot and cold are different. In summary, the biological temperature ‘scale’
is a combination of distinctly sensed quantities, making it difficult to argue for a purely empirical
basis for a scalar measure of temperature-related quantities. This distinction is quite different from
the concept of length or weight (force).

We use words and concepts to describe something that exists outside the realm of concepts/ideas.
No matter how many words and sophisticated mathematical concepts we accumulate, the connec-
tion between a concept and the actual entity cannot be uniquely established. Only if we have a
“God-given” (innate) connection between the actual entity and the signals in our nervous system,
can we unambiguously employ the concept/idea in empirical science. For instance, the force sensor
is a calcium channel that converts molecular deformation into ion flux. Temperature, on the other
hand, lacks such a clear biological mechanism, making it inherently ambiguous.

Then, why do we assume that there is a linear scale of temperature? The author strongly sus-
pects that there are a few non-empirical components to our understanding of temperature. Initially,
it was associated with the movement of the ’fire particle’ and other concepts related to alchemy.
These notions naturally became connected to kinetic theories influenced by the mechanical Weltan-
schuung. Naturally, the latter directly supported the establishment of the first law, as Helmholtz
did (→A.17). Eventually, the concept of temperature as a scalar quantity was solidified by the
contributions of Carnot, Clapeyron, and Thomson, and was finally defined in terms of entropy
(→11.6).

When was ‘temperature’ really empirically established as a scalar quantity? The author suspects
that it was only after the second law, which is unequivocally empirical. This suggests that using
the notion of temperature or related concepts like isothermy to establish thermodynamics, as often
done in elementary introductions, is logically circular.

One might propose that by assuming the usual empirical temperature as a scalar quantity and
then constructing thermodynamics to demonstrate the possibility of defining thermodynamic tem-
perature. However, this argument can be considered, at best, a self-consistency argument, which is
not sufficient for establishing a fundamental theoretical framework.
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7.3 Energetic equivalence of work coordinates and materials coordinates

The energy change due to any chemical reaction can, in principle, be converted

reversibly and quasistatically to electrical energy.162 Any reaction, including bio-

chemical reactions, may be understood as a redox reaction, that is, the exchange of

electrons. According to Faraday’s law of electrolysis163 and the fact that reversible

cells can convert chemical energy to electrical energy 𝑞𝑉 reversibly, where 𝑞 is the

charge involved in the reaction and 𝑉 the electromotive force of the cell.

Here, ‘in principle’ is added to the statement, because devising a reversible cell

is not always simple. This applies to any chemical reaction; realizing reactions in

principle possible is usually hard, particularly if the reactions are interesting and

practically important.

7.4 Generalized work done by the external systems to the system

For thermodynamics how to compute generalized work forms (→3.10 and 4.13) for

reversible quasistatic processes is dictated by non-thermal macrophysics and chem-

istry.

Ordinary macroscopic machines are designed to perform macroscopic work with

high efficiency even at considerable speeds.164 The work form may be computed ac-

cording to the conventional macrophysics as illustrated in Appendix B after Section

4 (B.1, etc.).165,166

The energy change due to chemical changes (→4.13), the so-called mass action,

may be reversibly converted to electrical work, so there is no new conceptual problem

162Usually no such general argument is stated, but in essence, if all the chemical reactions may
be realized as ionic reactions, this is possible (→4.3III).

163In a modern expression, we may say, “The amount of charge going through the reactor and
the extent of reaction is proportional.”

164For example, electric motors and dynamos are said to function at about 90% efficiency (me-
chanical energy ↔ electric energy). It is said if superconductors are used, about 10% efficiency
increase is possible.

165This does not require that a complete theory for a particular work to be known. What is
required is that the relevant work coordinate (extensive quantity) is operationally definable, and
that the change of energy without dissipation due to the coordinate modification may be measurable
(e.g., we can make a table of the conjugate variable empirically).

166Using a lossless generator or motor mechanical potential energy may be reversibly converted
to various forms of work, so Δ𝐸 based on (3.11) may be written as 𝑀𝑔ℎ in terms of some mass 𝑀
and a vertical displacement ℎ, where 𝑔 is the acceleration of gravity. Therefore, by measuring ℎ,
the (generalized) work done to the system by the external system can be, in principle, measured.
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(→7.3).167

Thus, the generalized work done by the external systems to the system can be

measured.

7.5 Energy change and work coordinate changes of the system

Even if the (generalized) work, whose amount is ∆𝐸, is done on the system as de-

scribed in 7.4, there is no guarantee that the (generalized) work done by the external

system was converted to reversible changes of operational coordinates (→4.13) of

the system. A portion of the added external work ∆𝐸 may be dissipated inside the

system, converted to ‘heat.’ Nevertheless, we can measure how operational coordi-

nates of the system have been changed, and the total energy ∆𝐸 added to the system

is also known. Therefore, if the thermodynamic coordinates of the initial equilibrium

state are known, those for the final equilibrium state can also be known.

7.6 Necessity of adiabatic environment168

During the process described in 7.4, the generated ‘heat’ should not leave the system,

nor ‘heat’ should enter the system from outside. When the added generalized work

∆𝐸 (as described in 7.4) is definite, the final energy of the system must also be

increased by ∆𝐸 during the experiment. Furthermore, whether such a condition

(henceforth called an adiabatic condition →7.7) is met or not must be verifiable

experimentally.169 The environment where an adiabatic condition is met is called an

adiabatic environment.

7.7 Adiabatic condition, adiabatic process

167Experimentalists took this fact for granted as seen in A.16, and theoreticians also did not
seem to have any question about it as seen in Helmholtz’s exposition (→A.17) and in Gibbs’ basic
thermodynamic paper quoted in 11.9.

168There is an approach to define adiabaticity and energy conservation simultaneously (e.g.,
Tasaki defines energy through adiabatic work). However, energy was originally defined and its
conservation law was established in mechanics (and is the backbone of mechanical Weltanschau-
ung). No concept of adiabaticity is needed for the definition of mechanical energy. The concept of
adiabaticity was required when we attempt to go beyond pure mechanics. Therefore, here, in line
with our basic policy 1.8, we presuppose energy before adiabaticity.

169These lecture notes focus more on the experimental verifiability of concepts and the mea-
surability of various quantities than ordinary thermodynamics textbooks. This is in response to
operational criticisms made by Glenn Paquette.
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A wall is called an adiabatic wall, if the total generalized work required for a system

in this environment from any initial equilibrium state A to any final equilibrium state

B depends only on A and B and not on the actual process connecting them.170

Here, other than fixing A and B, whether the process is reversible or quasistatic or

not does not matter. ∆𝐸 agrees with the energy the external systems loses.During

the process the generalized work may be dissipated in the system. However, if the

process is reversible and quasistatic, then integrating 𝜔 + 𝜁 (the general work form

for quasistatic processes (4.1), (3.11)), we can obtain ∆𝐸.

7.8 Adiabatic wall allowing no materials exchange

We may define adiabatic walls as in 7.7, but to do physics the definition must be

operational. That is, we must be able to check experimentally that ‘the total sum of

the generalized work is constant.’

Let us consider a wall that does not allow any exchange of matter. Let us check

whether this wall is adiabatic. To this end we consider a closed system enclosed by

the wall just specified. The thermodynamic coordinates of such a system consist

of internal energy 𝐸 and work coordinates 𝑋. We further assume that the system

has an ‘energy meter property’ (→7.9).171 Then, we can always determine ∆𝐸 for

the system by observing conjugate variables of the work coordinates. Therefore, in

principle, we can experimentally check whether the wall is adiabatic or not.

7.9 Energy meter property

Let us say that a system has an energy meter property, if its intensive conjugate

variables 𝑦 of its operational coordinates 𝑌 depend on internal energy (density) in-

jectively under fixed 𝑌 (more precisely, their densities).172

For example, all the thermometers are energy meters, that is, have an energy

meter property; the so-called gas thermometer has the pressure that depends mono-

tonically on the energy density under constant volume, so it is an energy meter.173As

170Here, it should be emphasized that the work may be added irreversibly, or in whatever modes
the work may be added. For reversible-quasistatic isothermal processes, the work form becomes
exact (→18.1), but note that this is possible only for reversible processes.

171This is always possible, since there are systems that have the energy meter property. Besides,
no system is known that lacks the energy meter property.

172That is, if 𝑦(𝐸,𝑌 ) ̸= 𝑦(𝐸′,𝑌 ) ⇒ 𝐸 ̸= 𝐸′.
173The reader may think that the energy meter property is more conveniently defined by the

difference in 𝑌 under constant 𝑦. Here, 𝑦 are not fundamental variables and, as we will see later,
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in this example, all the conjugate variables of operational thermodynamic coordi-

nates are defined and measured within non-thermal macrophysics and chemistry, so

we can measure them without knowing thermodynamics. In particular, whether ∆𝐸

is identical or not can be observed.

Just as not all the materials can make thermometers, there is no guarantee that

all the materials/systems have an energy meter property. However, no example are

currently known to lack this property.

7.10 Non-adiabatic environment

If the system can exchange energy with its environment even without exchange of

generalized work, the environment is not adiabatic. The energy exchange without

any generalized work in a non-adiabatic environment is called ‘heat’; more precisely, if

energy transfer is possible without any generalized work, we say energy is transferred

as heat. In other words, if the total energy change is not solely due to generalized

work, the discrepancy is said to be due to heat exchange.

Note that ‘heat’ is a mode of exchanging energy. It is not that something called

‘heat’ flows in or out (in contradistinction to ‘caloric’→A.2). The energy entering a

system as ‘heat’ and that as generalized work lose their distinction inside the system.

7.11 Quantitating ‘heat’

How can we measure the energy exchanged as heat?

Suppose a system enclosed in a wall goes from its initial equilibrium state (𝐸,𝑌 )

to a final equilibrium state (𝐸 + ∆𝐸,𝑌 ′) through performing generalized work �̃�

on the system. ∆𝐸 − �̃� = 𝑄 is the amount of heat the system exchanged with its

environment. �̃� is measurable, because it can be supplied by mechanisms that can

be realized quasistatically (→7.4).174

Thus, for ‘heat’ 𝑄 to be operationally defined, the problem is how to measure

∆𝐸. If the system is an energy meter (→7.9), measuring conjugate variables, we

can determine ∆𝐸.

𝜕𝑦𝑖/𝜕𝑌𝑖 is never negative (→22.9), so the condition: 𝑦(𝐸,𝑌 ) ̸= 𝑦(𝐸′,𝑌 ) ⇒ 𝐸 ̸= 𝐸′ is adopted as
the characterization of the energy meter property.

174‘Quasistatically’ for the environment or the external devices to supply work; this does not
necessarily mean that the process is quasistatic for the system itself.
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7.12 Thermal contact

A contact between two systems that is not adiabatic and does not allow exchange of

any operational coordinates (→4.13) is called thermal contact. Suppose two systems

are in thermal contact but are isolated as a whole. After a long time the whole system

(generally as a compound system) would reach an equilibrium state. We say the two

systems reach a thermal equilibrium.175 What happens during the thermal contact is

that one system loses energy 𝑄 as heat, and the other gains energy 𝑄 as heat. This

𝑄 may be measured as explained in 7.11.

7.13 Are work and heat always distinguishable?

Up to this point all the statements have assumed that, as a mode to transfer energy,

heat and work can always be distinguished, but this is not always true. If the change

of a state is violent, then the spatiotemporal scale of the system state inhomogeneity

could range from microscopic to macroscopic, making the distinction between heat

and work ambiguous. However, in thermodynamics, we assume the distinction is

clear, or, we discuss only ‘slow’ changes with the clear distinction between work and

heat.

Here, ‘distinction’ means that heat and work may be distinguished as different

modes of transferring energy. Once inside the system, the distinction is lost. It was

once thought that heat was a flow of a special element called ‘caloric,’ so even after

energy transfer as heat ‘caloric’ remained in the system. However, the idea lost pop-

ularity after Mayer and Joule (→A.9), especially after Joule’s detailed experiments

demonstrated convincingly that heat and work quantitatively interchange.

However, if the heat-work conversion does not happen, the total amount of heat a

system exchanges with its environment is conserved, so heat treated as a conserved

quantity (just as thought in the caloric theory) is still effective (as Black originally

assumed →A.2).

7.14 Conservation of energy in thermodynamics

The quantitative definition of heat in 7.11 determines 𝑄 to satisfy the conservation

of energy. Therefore, the so-called first law of thermodynamics ∆𝐸 = 𝑊 + 𝑄 is no

longer considered as a law of physics.

So, what is the core empirical fact intrinsic to thermodynamics? It is the principle

175Notice that this does not mean that the two systems are in equilibrium under any contact;
they are in equilibrium only with respect to the exchange of heat.
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to be called the Mayer-Joule principle (→A.9): “Work can always be converted to

heat at a definite conversion ratio.” Chemical work is a type of work (→4.13). The

generated heat can be added to any system, so the Mayer-Joule principle should read

precisely as:

Generalized work can be converted to heat at a universal constant conversion

rate and added to any system.

The law of conservation of energy incorporating this principle is the so-called ‘first

law of thermodynamics.’176

In summary:

(i) Using generalized work (→7.4) and adiabatic processes (→7.7), the change of

internal energy can be measured (→7.9). And

(ii) If the process is not adiabatic, the change of internal energy and the net gener-

alized work added to the system can be different, and the discrepancy is defined as

‘the energy transfer as heat’ (→7.11).

(iii) Generalized work may always be converted to heat with a definite conversion

rate (the Mayer-Joule principle), and

(iv) (ii) and (iii) are consistent with the law of conservation of energy of the non-

thermal macrophysics and chemistry.

7.15 Comparison of mechanical energy and thermal energy

Suppose a mass of 1 kg is running at speed 100 km/h. Its kinetic energy is 386 J. If

this mass is water and is heated with the thermal energy obtained by converting this

kinetic energy, its temperature will not increase even by 0.1 K (actually about 0.092

K). This illustrates how thermal energy is ‘much greater’ than ‘macroscopic mechan-

ical energy.’ Therefore, even the utilization of a ‘tiny amount’ of thermal energy can

produce huge amount of work. This tells us how heat engine was revolutionary for

humankind.

176However, in thermodynamics, we wish to restrict the number of coordinates as few as possible,
so violent changes must be avoided.
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8 The second law of thermodynamics

8.1 The second law of thermodynamics: preliminary
Clausius’ work (→A.10) demonstrating Carnot’s theorem (→A.8) in a consistent fashion
with the Mayer-Joule principle (→A.9) clearly established that ‘heat’ is a unique mode of
energy transfer. Clausius’ logical core, in his own words, goes ‘through basically the same
line of thought’: if we deny Carnot’s theorem, then we would have to accept a process that
is highly improbable in reality.

Today, we demand that “a process highly improbable in reality” never happens as a prin-
ciple called the second law of thermodynamics. As we will see below, there are various forms
of the principle, but all are equivalent.177

8.2 The second law must explicitly consider materials coordinates as well
The ordinary electromagnetic and mechanical work may be reversibly and quasistatically
converted to chemical energy through electrochemistry. This is possible due to Faraday’s law
of electrolysis and the existence of reversible electric cells (→A.16, ??).

Consequently, there is no difficulty of principle nature to extend the first and the second
laws of thermodynamics to handle materials coordinates (→4.13). Needless to say, however,
the laws must clearly include chemistry as well.

There are two important points to pay special attention:
(1) The usual statement of the principles does not particularly quote any relevant empirical
facts, but do not forget that the relation between the ordinary work and chemical work men-
tioned above requires empirical support.
(2) We must not forget the peculiar nature of chemical coordinates (→4.9, 4.11).

8.3 Clausius’ principle

When two systems are in (any) thermal contact (→7.12), very often one system

always loses internal energy as heat, while the other always gains internal energy as

heat.178 The system losing energy is called a hotter system and the other a colder

system. Recall that we can measure the amount of heat a system gains (→7.11).

Clausius’ principle may be stated as:

“It is impossible to transfer energy as heat from a colder system to a hotter

system without leaving any trace in the surrounding world (environment).”

In thermodynamics what is not forbidden by its principles may happen (→8.4).

177If not, what would happen? As long as all the natural phenomena are related, we would be
able to violate (or overcome) the second law.

178The reason why ‘always’ appears here is that when a pair of systems are brought into thermal
contact with each other, the hotter one is always hotter and the colder one colder. That is, the
hotter-colder relation is solely determined by the individual states of the two systems. Note that
the concepts ‘hotter’ and ‘colder’ are, at present, not related to any kind of temperature.
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Thus, “It is allowed to transfer energy as heat from a hotter system to a colder system

without leaving any trace in the surrounding world (environment).” Needless to say,

“It is possible to transfer energy as heat from a colder system to a hotter system

with some trace left in the surrounding world (environment).”

8.4 Metaprinciple of thermodynamics

In 8.3 is a rather strong statement, “anything that is not forbidden by its principles

may happen,” but since no exception to this statement is known, we should accept

this statement as an empirical principle about all the principles of thermodynamics.

Therefore, we demand metapriciple of thermodynamics:

“Negation of anything that thermodynamic principles explicitly forbids is al-

lowed.”

Here, It is important not to ignore the word “explicitly” in the metaprinciple to

prevent any misuse of the principle.179

8.5 Planck’s principle

Planck’s principle is conventionally stated as:

If work coordinates do not change before and after the adiabatic process, the

system internal energy cannot decrease.

However, there is no reason to exclude materials coordinates, so the law is revised

as follows:

If operational coordinates (→4.14) do not change before and after the adiabatic

process, the system internal energy cannot decrease.

As stated in 4.9, note that this does not fix the chemical composition of the system.

In fact, if work coordinates return to the original values, and if chemical composi-

tion also returns to the original one, the system internal energy cannot change, so

this principle loses its meaning. Note further that the system need not be closed

179For example, while thermodynamics does not address anything about nonequilibrium phenom-
ena, it should not imply anything allowed can happen in nonequilibrium. Therefore, even if the
usual thermodynamic principles do not say anything about the relation between 𝑊 (work) and 𝑍
(mass action →17.1), the metaprinciple does not imply that there is no constraint between the
mutual conversion of them, since nothing is explicitly forbidden in this case. Thus, we must say
something about their relation explicitly even with the metaprinciple, if we adopt the conventional
second laws that do not mention anything about chemistry.
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materially throughout the process; only before and after the process the materials

coordinates of the system must be ‘the same’180 (→4.9).

This principle, together with the metaprinciple 8.4, implies that as long as the

state is in ℰ , the internal energy may be increased without altering the operational

coordinates before and after the process.181

Remark 1 Note that this is not a principle solely for closed systems. Furthermore,

chemical reactions may occur freely. The conventional thermodynamic textbooks

never mention materials changes/chemical reactions. When the second law is intro-

duced, at least a clear statement about the ‘equivalence’ of work and mass action in

contradistinction to heat must be made.

Remark 2: ‘Halting chemical reactions at will’ cannot save chemical ther-

modynamics The standard approach, when stated honestly, explicitly assumes that

we can halt chemical reactions at any time without disrupting the system equilibrium

(→4.16). With this assumption + the conventional Planck’s principle mentioned at

the beginning of this unit, can we develop chemical thermodynamics? Since reactions

can be halted at any time, we can treat chemical composition variables and inter-

nal energy as independent variables. Thus, even with chemical reactions present in

the system, the conventional Planck’s principle can be made meaningful. However,

the principle makes sense only while the reactions are suspended. To discuss the

true chemical equilibria of the system we must release the chemistry from our artifi-

cial grip and allow the chemical reactions to proceed. Unfortunately, at that point,

the conventional Planck’s principle loses its meaningfulness, since nothing is stated

about chemical reactions. Thus, we are forced to develop chemical thermodynamics

without the second law.

8.6 Clausius’ principle implies Planck’s principle

If Planck’s principle does not hold, we can decrease the system internal energy adi-

abatically without changing the operational coordinates. Since we cannot export

energy as heat adiabatically, the system must have performed some (generalized)

work on its environment. That is, we can extract work without modifying the oper-

ational coordinates.182

180The choice of materials coordinates for a given state is not unique, so what is meant by ‘the
same’ is that we can choose the identical materials coordinates before and after the process.

181This corresponds to S1: the existence of irreversible process of Lieb and Yngvason.
182Remark: if we choose chemical composition coordinates �̃� instead of 𝑁 (→4.16) as basic

thermodynamic coordinates just as in the conventional textbooks, no change of energy while fixing
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Prepare a cooler heat bath (→8.8) and a hotter heat bath (Fig. 8.1).

(i) Bring the system and the cooler heat bath into thermal equilibrium through ther-

mal contact (→7.12).

(ii) Then, thermally isolate the system from the heat bath and obtain work adi-

abatically from the system without changing its operational coordinates (violating

Planck’s principle).183

(iii) Next, bring the system into thermal contact with the cooler heat bath; note that

the procedure can bring the system completely to the original state as prepared in

(i). If heat flows out from the system or there is no heat exchange at all, the first

law (the conservation of energy) is violated, so to return to the original state given

in (i) the heat must be brought to the system from the heat bath. Thus, the cooler

heat bath must have lost energy as heat, which was already converted to generalized

work. Therefore,

(iv) We can then add this work as heat to any hot heat source according to Mayer-

Joule’s principle (→7.14), violating Clausius’ principle.

Therefore,184 if Clausius’ principle holds, Planck’s principle must hold as well.

thermal ～＝

adiabatic

W

friction heat

Q

Q

Q
in summary

Planck

Clausius

(i) (ii) (iii)

(iv)

colder heat bath
colder heat bath

hotter heat bathhotter heat bath

equilibrium

~

Figure 8.1: Clausius’ principle implies Planck’s principle

Fig. 8.1 Clausius’ principle implies Planck’s principle.

(i) Bring the system and the cooler heat bath in thermal equilibrium through thermal contact.

the chemical composition is generally possible; that is, Planck’s principle loses its meaning. This
difficulty cannot be removed even if chemical reactions may be halted at any time as assumed in
the standard textbooks (→Remark 2 in 8.4).

183Notice that this may not be a cycle for the chemical composition; the system may have done
electrochemical work.

184Recall (¬𝐵 ⇒ ¬𝐴) ⇐⇒ (𝐴⇒ 𝐵). For example, “If not mortal, it is not alive.” This means
“if alive, it is mortal.” This is the relation between a proposition and its contraposition. This
relation is always used in the demonstration of the equivalence of the principles in thermodynamics
(→8.9, 8.10, 8.13).
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(ii) Then, thermally isolate the system and obtain (generalized) work �̃� from the system without

changing its operational coordinates (violating Planck’s principle).

(iii) Next, bring the system in thermal contact with the cooler heat bath again; Heat 𝑄 flows to the

system, whose state returns to that in (i), but the heat 𝑄 was converted to �̃� in (ii). [Incidentally,

Thomson’s principle (→8.7) is also violated, so Thomson’s principle is shown to imply Planck’s

principle.]

(iv) We can add �̃� as heat to any hot heat source according to Mayer-Joule’s principle (→7.14),

violating Clausius’ principle.

8.7 Thomson’s principle

Thomson’s principle may be stated as185

It is impossible to do generalized work without leaving any trace other than

absorbing heat from a single heat bath.

Here, the condition “without leaving any trace” is quite important (Fig. 8.2);

(i) (ii)

balloon
balloon

heating

Figure 8.2: Doing work with a single heat source ‘with a trace’

185The conventional Thomson’s principle is stated without taking any chemical reactions into
account, but we must explicitly state ‘generalized work’ in the principle to construct chemical
thermodynamics properly.

Tasaki requires the following form of ‘Kelvin’s principle’ and then applies it to chemical reactions:
For any isothermal cycle at temperature 𝑇 , the work done by the system cannot be positive: that
is, 𝑊 ≤ 0 must hold.

While his system is based on isothermal systems, the formulation is different from ours. Still
with the conventional specification of the amounts of chemicals, we encounter the following problem:
if 𝑊 ̸=, it is very likely that after ‘the cycle’ for work coordinates, the system equilibrium states
will be different. Consequently, if chemical reactions exist, their equilibria generally shift. This
implies that if we demand a true isothermal cycle to be realized, then, generally speaking, only
𝑊 = 0 is allowed. Thus, to formulate Kelvin’s principle with chemical reactions we must demand,
as Tasaki later does with chemistry, that the reactions may be freely regulated by the experimenter.
In particular, all the reactions are halted to make sense of Kelvin’s principle. This means that we
cannot apply the second law to chemical reactions.
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for example, if we warm a balloon, we can do some work with a single heat bath,

but after doing the work, the balloon stays inflated, so the production of work with

a single heat bath in this case does not violate Thomson’s principle.

Clausius regarded a ‘work source’ (a device to produce work) as the heat bath

hotter than any ordinary heat baths (→A.12), so it cannot absorb heat from any

heat bath. In this sense, Clausius’ principle implies Thomson’s principle.

The metaprinciple (→8.4) implies: “If there are several heat baths not mutually

in thermal equilibrium, we can make a device producing (generalized) work without

leaving any trace other than exchanging heat with these heat baths.”

8.8 Heat source or heat bath

We have already used heat sources or heat baths. A heat bath is a constant tem-

perature environment in thermal contact with a system. While in modern times, it

can be realized as a heat pad with high-speed feedback regulation, it is essentially an

idealized version of a constant temperature bath. We may imagine a sufficiently large

well-stirred water tank, maintained at a constant temperature. However, a heat bath

is assumed to be in an equilibrium state at a constant temperature despite interact-

ing with a system. Hence, it cannot be of finite size. Therefore, math-inclined people

argue that using such an unrealistic device in the foundational theory of physics is

inappropriate.

Consequently, to be precise, theoreticians introduce an increasing sequence of

baths and its limit is understood as the idealized heat bath. In practice, a suffi-

ciently large well-stirred bath realizes the idealized heat bath quite accurately.186

An ingenious strategy is to use the first order phase transition (→23.4), exempli-

fied by Laplace’s ice calorimeter (Fig. 8.3). It is a good example, and also historically

the first one. Some people criticize this idea as a cheat, since it relies on very special

materials properties of particular substances. However, the materialistic diversity

of our world is real. Since phase transition temperatures can be continuously fine-

tuned, we should note that any heat bath can be devised with Laplace’s idea, in

186Mathematical limits in thermodynamics should be taken with a grain of salt. As discussed in
6.5, thermodynamic infinitesimal is not really mathematical infinitesimal. Consequently, ‘infinite’
in thermodynamics should be understood as the reciprocal of ‘thermodynamic infinitesimal.’ That
is, it is very big but finite. Thus the ‘temperature fluctuation’ of a heat bath is invisible from our
scale.

In other words, mathematics (analysis) of thermodynamics is mathematics with errors, but those
errors cannot be systematically collected to build something we cannot ignore at our scale.
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principle.

From the system’s perspective, the heat bath assisted by first-order phase tran-

sitions cannot be distinguished from suitable heat pads when high-speed feedback

control is employed.

In any case, since the idea of heat bath is quite natural, heat baths will be used

freely without any hesitation throughout these lecture notes.

A

B
C

Figure 8.3: Laplace’s ice calorimeter

Fig. 8.3 Laplace’s ice calorimeter

Left: According to Wikipedia Calorimeter (part; however, the original photo has been cleaned). A

contains ice-water and B contains 0 ∘C ice. A contains the ice to realize adiabaticity, so the formed

water is discarded through the spout, if necessary. The water due to the melting in B is collected

by the container and is weighed.

Right: a schematic figure. Both A and B are maintained at 0 ∘C due to the melting ice, so no net

heat exchange exists between them. That is, B+C is an adiabatic system. The melting of the 0 ∘C

ice in B is used to measure the heat generated in C. A is used as a heat bath kept at 0 ∘C.

8.9 Planck’s principle implies Thomson’s principle

If Thomson’s principle (→8.7) does not hold, we can prepare a single heat bath

engine. This engine may be joined with a heat storage device that does not change

its operational coordinates while absorbing or releasing heat.187 After supplying heat

187Precisely speaking, as noted in C.3 explicitly, we must assume that we can, in principle, change
the system internal energy without changing its operational coordinates. This assumption is not
an artificial one and has already been used to state Planck’s principle (→8.5).
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to the heat storage, we can enclose the engine and the heat storage with adiabatic

walls and consider the whole as a single adiabatic system. Operating the system

we can produce work adiabatically without changing the operational coordinates of

the system (→Fig. 8.4). Therefore, Planck’s principle is violated. Thus, if Planck’s

principle holds, then Thomson’s principle must also hold.

～＝

heat source
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W
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source engine

Figure 8.4: Planck’s principle implies Thomson’s principle

Fig. 8.4 Planck’s principle implies Thomson’s principle.

(i) Maintaining the operational coordinates of the heat storage, heat 𝑄 is introduced to it from the

external heat source.

(ii) The total system is thermally isolated, and then the single-heat source engine is operated to

convert heat 𝑄 to generalized work �̃� .

As a single system, this process violates Planck’s principle.

8.10 Thomson’s principle implies Clausius’s principle

Thomson’s principle (+ metaprinciple 8.4) allows us to prepare a heat engine that

produces work 𝑊 while absorbing heat 𝑄 from a hotter heat source and discarding

heat 𝑄′ to a cooler heat source 8.7).188 If we assume that Clausius’s principle can be

violated, then heat 𝑄′ may be transferred to the hotter heat bath without leaving any

trace other than this heat transfer (Fig. 8.5). Thus, we have realized a single heat

source engine,189 so Thomson’s principle is violated. Thus, if Thomson’s principle

holds, so does Clausius’ principle.

Fig. 8.5 Thomson’s principle implies Clausius’ principle.

188This does not mean that any choice of 𝑊 , 𝑄, 𝑄′ such that 𝑊 = 𝑄−𝑄′ is possible as Carnot’s
theorem (→A.8) implies.

189We could even transfer heat from the cooler to the hotter heat bath, while producing work.
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Figure 8.5: Thomson’s principle implies Clausius’ principle

If we deny Clausius’ principle, the exhaust 𝑄′ of engine may be returned to the hotter heat source,

and we can realize the single heat source engine, violating Thomson’s principle.

8.11 Three principles are equivalent

So far, we have demonstrated Clausius ⇒ Planck ⇒ Thomson ⇒ Clausius (→8.6,

8.9, 8.10). Therefore, all the principles are equivalent.

8.12 Isn’t there any revision of Clausius’ principle due to chemical reac-

tions?

As already stated in 8.5 (especially Remark 2) and 8.7, both Planck’s and Thom-

son’s principles, as presented in conventional textbooks, require revision in the world

where chemistry is relevant. How about Clausius’ principle?

Clausius’ principle holds true in any world with or without chemistry, and thus

does not require revision. However, the principle is equivalent to other principles in a

particular world, so even if we can demonstrate the equivalence of Clausius’ principle

with, say, Planck’s principle in a world without chemistry (that is the usual version

of this principle), this demonstration is meaningful only in such a world.190

8.13 Carnot’s principle
In the paper that established thermodynamics, Clausius demonstrated that if there were a
heat engine that was more efficient than a reversible engine, (the so-called) Clausius’ principle
would be violated (→A.10) as explained in Fig. ??. Since the second law of thermodynamics
follows from Carnot’s theorem that there is no engine more efficient than a reversible engine
(see just below), We may call “There is no more efficient engine than a reversible engine,” or
more simply, “The efficiency of a heat engine has an upper bound less than 1” as Carnot’s

190A metaphor: in an additive group 𝐺 the unit element ‘0’ must satisfy 0+𝑥 = 𝑥 for any 𝑥 ∈ 𝐺,
so for a finite field, R or Z the same law must hold, but the proof that something is equal to 0 in a
finite field may not necessarily apply to R.
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principle.
To derive Clausius’ principle from Carnot’s principle is trivial now. If we deny Clausius’

principle, Thomson’s principle is violated, so we can make a heat engine whose efficiency is
1, thus violating Carnot’s principle. Therefore, all the principles so far stated are equivalent:
Carnot ≡ Clausius ≡ Thomson ≡ Planck.
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9 Partial derivatives and differential forms

From now on, we need rudiments of analysis of multivariable functions. Thus, nec-

essary mathematical topics are collected here for convenience. This is not a compre-

hensive introduction to the subject, so the reader is expected to have studied serious

introductory textbooks on analysis. The reader may skip this section, and return to

it later, if needed.191

9.1 Partial derivative and directional derivative

The reader is expected to be familiar with the rudiments of multivariable analysis,

e.g., continuity of multivariable functions. Partial differentiation is assumed to be

well understood; for example, the partial differentiability of a two variable function

𝑦 = 𝑓(𝑥1, 𝑥2) with respect to 𝑥1 is the differentiability of 𝑓 with fixed 𝑥2 as a single

variable function of 𝑥1.
192

Along a line we may interpret 𝑓 as a single variable function. If it is differen-

tiable, the derivative along the line is called the directional derivative. The direc-

tional derivative along a specific coordinate direction is the usual partial derivative.

One challenge with multivariable functions is that partial differentiability of a

function at a point does not even guarantee its continuity there. Even if all the di-

rectional derivatives at the origin is well defined, the function may not be continuous

at the origin. See

𝑓(𝑥, 𝑦) =

{︂
𝑥2𝑦/(𝑥4 + 𝑦2) if (𝑥, 𝑦) ̸= (0, 0)

0 if (𝑥, 𝑦) = (0, 0)
. (9.1)

191Lieb and Yngvason [The physics and mathematics of the second law of thermodynamics, Phys.
Rep. 310, 1 (1999)] write on p10: “Giles’ work and ours use very little of the calculus. Contrary
to almost all treatments, and contrary to the assertion (Truesdell and Bharata, 1977) that the
differential calculus is the appropriate tool for thermodynamics, we and he agree that entropy and
its essential properties can best be described by maximum principles instead of equations among
derivatives. To be sure, real analysis does eventually come into the discussion, but only at an
advanced stage (Section 3 and Section 5 in our treatment).”

The author agrees with them, if we do not worry about how work and energy are obtained in the
macroscopic physics or how macroscopic physics is practiced. However, it is important to recognize
that thermodynamics is not a standalone discipline separate from physics and chemistry (→1.8).
Therefore, it is natural to express work in terms of the work form (→3.10). Consequently, analysis
becomes an integral part of this exposition.

192Needless to say, for this to be possible, 𝑥1 and 𝑥2 must really be independent. It is a trivial
statement, but, as we will see later, we must take it very seriously as alluded in 9.8.
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In this case, along any line going through the origin 𝑓 goes to zero continuously, but

along (𝑥, 𝑦) = (𝑡, 𝑡2) with 𝑡→ 0 𝑓 goes to 1/2 at the origin.193

9.2 Notation for partial derivatives in thermodynamics

In mathematics, the partial derivative of 𝑓(𝑥, 𝑦) with respect to 𝑥 and 𝑦 are written,

respectively, as
𝜕𝑓

𝜕𝑥
and

𝜕𝑓

𝜕𝑦
. (9.2)

In this notation the former is understood that 𝑦 is kept constant, and the latter 𝑥.

In the tradition of thermodynamics, however, the independent variables kept con-

stant are explicitly designated as(︂
𝜕𝑓

𝜕𝑥

)︂
𝑦

,

(︂
𝜕𝑓

𝜕𝑦

)︂
𝑥

. (9.3)

The reason is that in thermodynamics, when 𝑓 is differentiated with respect to 𝑥,

what is fixed may not be 𝑦, but something else, say, 𝑧 = 𝑥− 𝑦. In mathematics, in

such a case 𝑓 is regarded as another function 𝑔 of 𝑥 and 𝑧 such that 𝑓(𝑥, 𝑦) = 𝑔(𝑥, 𝑧)

and the partial derivative must be written as(︂
𝜕𝑓

𝜕𝑥

)︂
𝑧

=
𝜕𝑔

𝜕𝑥
. (9.4)

Example: Let 𝑓(𝑥, 𝑦) = (𝑥2 − 𝑦2) tan 𝑦 and 𝑧 = 𝑥 − 𝑦. Compute the following partial
derivatives in the thermodynamic notation and express them in terms of 𝑥 and 𝑦.(︂

𝜕𝑓

𝜕𝑥

)︂
𝑦

,

(︂
𝜕𝑓

𝜕𝑥

)︂
𝑧

,

(︂
𝜕𝑓

𝜕𝑧

)︂
𝑥

. (9.5)

Answer: (︂
𝜕𝑓

𝜕𝑥

)︂
𝑦

=
𝜕𝑓

𝜕𝑥
= 2𝑥 tan 𝑦 (9.6)

is clear. To differentiate 𝑓 with respect to 𝑥 while keeping 𝑧 constant means that 𝑓(𝑥, 𝑦) is
rewritten as a function of 𝑥 and 𝑧 as 𝑔(𝑥, 𝑧):

𝑔(𝑥, 𝑧) = 𝑓(𝑥, 𝑥− 𝑧) = 𝑧(2𝑥− 𝑧) tan(𝑥− 𝑧) (9.7)

193taken from R. E. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis (Holden-Day,
Inc., San Francisco, 1964). This is a very useful book.
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and then partial differentiate it with respect to 𝑥. Therefore,(︂
𝜕𝑓

𝜕𝑥

)︂
𝑧

=
𝜕𝑔

𝜕𝑥
= 2𝑧 tan(𝑥− 𝑧) + 𝑧(2𝑥− 𝑧)/ cos2(𝑥− 𝑧) = 2(𝑥− 𝑦) tan 𝑦 + (𝑥2 − 𝑦2)/ cos2 𝑦,

(9.8)(︂
𝜕𝑓

𝜕𝑧

)︂
𝑥

=
𝜕𝑔

𝜕𝑧
= 2(𝑥− 𝑧) tan(𝑥− 𝑧)− 𝑧(2𝑥− 𝑧)/ cos2(𝑥− 𝑧) = 2𝑦 tan 𝑦 − (𝑥2 − 𝑦2)/ cos2 𝑦.

(9.9)

In passing, why don’t you confirm Young’s theorem 9.7 below? Indeed, we have

𝑔𝑥𝑧 = 𝑔𝑧𝑥 = 2 tan 𝑦 − 2(𝑥− 2𝑦) sec2 𝑦 − 2(𝑥2 − 𝑦2) tan 𝑦 sec2 𝑦. (9.10)

Why does not thermodynamics adopt an explicit function designation as in stan-

dard mathematics?

In mathematics 𝑓 is a symbol for a function, and a function is defined including its

independent variables (and the domain), but in thermodynamics the symbol 𝑓 de-

notes a particular physical quantity such as internal energy 𝐸 or pressure 𝑃 and not

simply a function. Therefore, its independent variables depend on various situations.

For the above example 𝑓 and 𝑔 are distinct as functions, but if they denote the same

physical quantity, they are denoted by the identical symbol 𝑓 in thermodynamics.

This can make it unclear what the independent variables are when partial derivatives

are computed. That is why the notation as (9.3) is essential in thermodynamics.

9.3 (Strong) differentiability

For a multivariable function to have a tangent plane at a point, it is quite insufficient

that the function is partial differentiable at the point (recall the example in 9.1).

If a multivariable function has a tangent plane at a point, it must be (strongly)

differentiable there:194 Let ∆𝑓 = 𝑓(𝑥1 + ∆𝑥1, 𝑥2 + ∆𝑥2)−𝑓(𝑥1, 𝑥2). If we can choose

constants 𝐴 and 𝐵 such that

∆𝑓 = 𝐴∆𝑥1 + 𝐵∆𝑥2 + 𝑜

[︂√︁
∆𝑥2

1 + ∆𝑥2
2

]︂
(9.11)

holds,195 then we say 𝑓 is differentiable at (𝑥1, 𝑥2). That is, differentiability means

194Often this differentiability is called strong differentiability (especially in functional analysis),
but, henceforth, we will not always use this terminology, except when we emphasize that strong
differentiability is distinct from the mere existence of all the partial derivatives.

195𝑜: A quantity 𝑞(𝑥) dependent on 𝑥 satisfies 𝑞(𝑥) = 𝑜[𝑥] near 𝑥 = 0, if lim𝑥→0 𝑞(𝑥)/𝑥 = 0.
In other words, 𝑞(𝑥) = 𝑜[𝑥] means that 𝑞 is a higher order infinitesimal than 𝑥. For example,
𝑥1.01 = 𝑜[𝑥].
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that we can use a linear approximation of the function locally.

If 𝑓 is differentiable, 𝐴 and 𝐵 are given by partial derivatives, so we write

𝑑𝑓 =
𝜕𝑓

𝜕𝑥1

𝑑𝑥1 +
𝜕𝑓

𝜕𝑥2

𝑑𝑥2, (9.12)

and call 𝑑𝑓 the total derivative of 𝑓 . Do not forget that for this to hold, partial

differentiability is not enough, but we need strong differentiability of 𝑓 .

9.4 Condition for (strong) differentiability

Theorem If all the partial derivatives of a function exist at a point and are all

continuous there, then the function is strongly differentiable there.

Let us demonstrate this for a two variable function. If we apply the mean value

theorem for 𝑥1 and 𝑥2, respectively, to

∆𝑓 = 𝑓(𝑥1 + ∆𝑥1, 𝑥2 + ∆𝑥2)− 𝑓(𝑥1, 𝑥2) (9.13)

= [𝑓(𝑥1 + ∆𝑥1, 𝑥2 + ∆𝑥2)− 𝑓(𝑥1, 𝑥2 + ∆𝑥2)] + [𝑓(𝑥1, 𝑥2 + ∆𝑥2)− 𝑓(𝑥1, 𝑥2)],

(9.14)

we can write with 𝜃, 𝜃′ ∈ (0, 1)

∆𝑓 = 𝑓𝑥1(𝑥1 + 𝜃∆𝑥1, 𝑥2 + ∆𝑥2)∆𝑥1 + 𝑓𝑥2(𝑥1, 𝑥2 + 𝜃′∆𝑥2)∆𝑥2 + 𝑜

[︂√︁
∆𝑥2

1 + ∆𝑥2
2

]︂
.

(9.15)

Here, the standard abbreviations for partial derivatives are used:

𝜕𝑓

𝜕𝑥
= 𝑓𝑥,

𝜕2𝑓

𝜕𝑥𝜕𝑦
= 𝑓𝑦𝑥 [note the order of independent variables], etc. (9.16)

Since we have assumed that the partial derivatives are continuous, when ∆𝑥1 and

∆𝑥2 tend to zero, we see (9.15) converges to (9.12). It should be clear that even if

the number of variables is more than 2, the same logic applies.

9.5 The expression of total derivative in terms of gradient

For an 𝑛-variable function 𝑓 that is partial differentiable

grad𝑓 =

(︂
𝜕𝑓

𝜕𝑥1

, · · · , 𝜕𝑓

𝜕𝑥𝑛

)︂
(9.17)
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is called the gradient (or the gradient vector) at 𝑥 = (𝑥1, · · · , 𝑥𝑛). In terms of the

gradient vector, the total derivative (9.12) reads (if 𝑓 is strongly differentiable→9.3)

𝑑𝑓 = grad𝑓 · 𝑑𝑥. (9.18)

The multivariable Taylor expansion of 𝑓 around 𝑥0 to the first order may be

written as

𝑓(𝑥) = 𝑓(𝑥0) + grad𝑓(𝑥0) · (𝑥− 𝑥0) + 𝑜[‖𝑥− 𝑥0‖]. (9.19)

9.6 Exchanging the order of partial differentiations

Since the partial derivative 𝜕𝑓/𝜕𝑥1 is a function of 𝑥1 and 𝑥2, we may conceive their

partial derivatives (second order partial derivatives). The same applies to 𝜕𝑓/𝜕𝑥2

as well. Then, we can make two ‘mixed’ second-order partial derivatives, partial

differentiation with 𝑥1 first or that with 𝑥2 first.

Theorem If 𝑓𝑥1𝑥2 and 𝑓𝑥2𝑥1 are both continuous in a domain, then 𝑓𝑥1𝑥2 = 𝑓𝑥2𝑥1 in

the domain.

We can show this as follows. In a neighborhood of a point (𝑎, 𝑏) in the domain,

let

∆ = 𝑓(𝑎 + ∆𝑥1, 𝑏 + ∆𝑥2)− 𝑓(𝑎 + ∆𝑥1, 𝑏)− 𝑓(𝑎, 𝑏 + ∆𝑥2) + 𝑓(𝑎, 𝑏). (9.20)

Applying the mean value theorem with respect to 𝑥1 to 𝑓(𝑥1, 𝑏+ ∆𝑥2)− 𝑓(𝑥1, 𝑏), we

can choose 𝜃 ∈ (0, 1) such that

∆ = ∆𝑥1[𝑓𝑥1(𝑎 + 𝜃∆𝑥1, 𝑏 + ∆𝑥2)− 𝑓𝑥1(𝑎 + 𝜃∆𝑥1, 𝑏)]. (9.21)

Applying the mean value theorem with respect to 𝑥2, we can choose 𝜃′ ∈ (0, 1) such

that

∆ = ∆𝑥1∆𝑥2𝑓𝑥1𝑥2(𝑎 + 𝜃∆𝑥1, 𝑏 + 𝜃′∆𝑥2). (9.22)

Using the assumption about the continuity of the second order partial derivatives,

we have

lim
(Δ𝑥1,Δ𝑥2)→(0,0)

∆/∆𝑥1∆𝑥2 = 𝑓𝑥1𝑥2(𝑎, 𝑏). (9.23)

If we repeat the same computation starting with 𝑥2 instead of 𝑥1, we get

lim
(Δ𝑥1,Δ𝑥2)→(0,0)

∆/∆𝑥1∆𝑥2 = 𝑓𝑥2𝑥1(𝑎, 𝑏). (9.24)
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9.7 Young’s theorem196

However, in thermodynamics, we may not assume the continuity of second-order

partial derivatives, so the theorem in 9.6 is of limited use. It is much more conve-

nient that we can claim the exchangeability of partial differentiations from the mere

existence of all the second-order partial derivatives.

Theorem [Young] If 𝑓𝑥1 and 𝑓𝑥2 are both partial differentiable at a point, 𝑓𝑥1𝑥2 =

𝑓𝑥2𝑥1 there.

We can show this as follows. In (9.21) set ∆𝑥1 = ∆𝑥2 and introduce

𝑓𝑥1(𝑎+𝜃∆𝑥1, 𝑏+∆𝑥1) = 𝑓𝑥1(𝑎, 𝑏)+𝜃∆𝑥1𝑓𝑥1𝑥1(𝑎, 𝑏)+∆𝑥1𝑓𝑥1𝑥2(𝑎, 𝑏)+𝑜[∆𝑥1] (9.25)

and

𝑓𝑥1(𝑎 + 𝜃∆𝑥1, 𝑏) = 𝑓𝑥1(𝑎, 𝑏) + 𝜃∆𝑥1𝑓𝑥1𝑥1(𝑎, 𝑏) + 𝑜[∆𝑥1]. (9.26)

We obtain

∆ = ∆𝑥2
1𝑓𝑥1𝑥2(𝑎, 𝑏) + 𝑜[∆𝑥2

1]. (9.27)

Thus,

lim
Δ𝑥1→0

∆/∆𝑥2
1 = 𝑓𝑥1𝑥2(𝑎, 𝑏). (9.28)

Even if we exchange 𝑥1 and 𝑥2, the assumption in the theorem does not change, so

we get 𝑓𝑥1𝑥2 = 𝑓𝑥2𝑥1 .

9.8 Remark on the domain of the function and its partial derivatives
Note that the partial derivatives of 𝑓 are not always well defined at the boundary of its
domain. For example, if 𝑓(𝑥, 𝑦) is defined only on a smooth curve 𝐶: (𝑥(𝛼), 𝑦(𝛼)) on the
𝑥𝑦-plane parameterized by 𝛼,

𝑑𝑓

𝑑𝛼
= 𝑓𝑥

𝑑𝑥

𝑑𝛼
+ 𝑓𝑦

𝑑𝑦

𝑑𝛼
(9.29)

is not meaningful if 𝑓 is not defined on the tubular neighborhood of 𝐶. 𝑓 may not be defined
outside 𝐶. Therefore, neither 𝑓𝑥 or 𝑓𝑦 may be defined.

The above is a trivial remark: it gives an example of 𝑓 not differentiable with respect to,
say, 𝑥 if 𝑓 is confined to 𝐶, but we encounter analogous situations in thermodynamics very
often. For example, if we wish to express a thermodynamic quantity 𝑆 = 𝑆(𝐸, 𝑉, �̃�) in terms
of the chemical composition �̃� , the partial derivative of 𝑆 with respect to 𝐸 is impossible,
since fixing �̃� usually fixes 𝐸 as well.197 If we write the totality of 𝑁 as 𝒞 and that of �̃� as

196due to William Henry Young (1863-1942) https://en.wikipedia.org/wiki/William_

Henry_Young.
197This is a dire mathematical difficulty, if chemical reactions occur. Therefore, conventional

textbook require that chemical reactions can be stopped freely at any time to avoid this problem.
Certainly, the difficulty mentioned here may be evaded, but as has already been pointed out in
4.16, we will encounter much more fundamental difficulty.

https://en.wikipedia.org/wiki/William_Henry_Young
https://en.wikipedia.org/wiki/William_Henry_Young
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𝑊 , 𝑅𝐸,𝑋 : 𝒞 ↦→ 𝑊 is a retraction, so it is meaningful to introduce the materials coordinates
as 𝑆 = 𝑆(𝐸, 𝑉,𝑅𝐸,𝑋(𝑁)). We realize that the partial derivative of 𝑆 with respect to 𝐸 is
possible, even if 𝑁 is fixed.

9.9 Differential forms

Let 𝑓1, · · · , 𝑓𝑛 be functions of 𝑛 variables. The following linear combination

𝜔 =
𝑛∑︁

𝑖=1

𝑓𝑖𝑑𝑥𝑖 (9.30)

is called a 1-form. (9.18) is an example.

9.10 Exact form

If a 1-form 𝜔 is written as the total derivative of a function, that is, if, as (9.18), we

can write 𝜔 = 𝑑𝑓 , 𝜔 is called an exact form.

9.11 External differentiation

For differential forms we can define an operation 𝑑 called external differentiation:

(i) If operated on a function 𝑓 , it gives the total derivative (→9.3):198

𝑑𝑓 =
∑︁ 𝜕𝑓

𝜕𝑥𝑖

𝑑𝑥𝑖. (9.31)

(ii) 𝑑 operated on the differential of independent variables vanish: 𝑑(𝑑𝑥𝑖) = 0.

For the product of differentials, we use ∧ (wedge), and the following anti-commutativity

is assumed:

𝑑𝑥1 ∧ 𝑑𝑥2 = −𝑑𝑥2 ∧ 𝑑𝑥1. (9.32)

Consequently, the product of the same vanishes: 𝑑𝑥1 ∧ 𝑑𝑥1 = 0. Otherwise, just as

the ordinary multiplication the combination and distributive rules hold.

𝑑𝑥1 ∧ 𝑑𝑥2 may be interpreted intuitively as the area of a rectangle formed by two

infinitesimal vectors: 𝑑𝑥1 along the 𝑥1 axis and 𝑑𝑥2 along 𝑥2. If we understand that

the area changes its sign when the rectangle is flipped over, we can see that 𝑑𝑥2∧𝑑𝑥1

corresponds to the rectangle being flipped over.199

198In mathematics 𝑓 is often assumed to be infinite times differentiable; in this unit we assume
functions are as many times differentiable as needed.

199Recall the vector product.
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(iii) 𝑑(𝑓𝑑𝑥) = 𝑑𝑓 ∧ 𝑑𝑥.200

If we externally differentiate (9.12) using (iii) and assuming 𝑓 is twice differen-

tiable, Young’s theorem 9.7 implies 𝑑2𝑓 = 0:

𝑑2𝑓 = 𝑑𝑓𝑥1 ∧ 𝑑𝑥1 + 𝑑𝑓𝑥2 ∧ 𝑑𝑥2 (9.33)

= (𝑓𝑥1𝑥1𝑑𝑥1 + 𝑓𝑥1𝑥2𝑑𝑥2) ∧ 𝑑𝑥1 + (𝑓𝑥2𝑥1𝑑𝑥1 + 𝑓𝑥2𝑥2𝑑𝑥2) ∧ 𝑑𝑥2 (9.34)

= 𝑓𝑥1𝑥1𝑑𝑥1 ∧ 𝑑𝑥1 + 𝑓𝑥1𝑥2𝑑𝑥2 ∧ 𝑑𝑥1 + 𝑓𝑥2𝑥1𝑑𝑥1 ∧ 𝑑𝑥2 + 𝑓𝑥2𝑥2𝑑𝑥2 ∧ 𝑑𝑥2

(9.35)

= 𝑓𝑥1𝑥2𝑑𝑥2 ∧ 𝑑𝑥1 + 𝑓𝑥2𝑥1𝑑𝑥1 ∧ 𝑑𝑥2 (9.36)

= (𝑓𝑥2𝑥1 − 𝑓𝑥1𝑥2)𝑑𝑥1 ∧ 𝑑𝑥2 = 0. (9.37)

As can be seen from this, we generally have 𝑑2 = 0.

9.12 Closed form

If a 1-form

𝜔 =
∑︁
𝑖

𝑓𝑖(𝑥1, · · · , 𝑥𝑛)𝑑𝑥𝑖 (9.38)

is externally differentiated to give 𝑑𝜔 = 0, 𝜔 is called a closed form. As can be seen

readily by computation, if
𝜕𝑓𝑖
𝜕𝑥𝑗

=
𝜕𝑓𝑗
𝜕𝑥𝑖

, (9.39)

𝜔 is closed. (9.39) is called Maxwell’s relation in thermodynamics.

The relation implies the exchangeability of the order of partial differentiation, if

𝜔 = 𝑑𝐹 (→9.7):
𝜕2𝐹

𝜕𝑥𝑖𝜕𝑥𝑗

=
𝜕2𝐹

𝜕𝑥𝑗𝜕𝑥𝑖

. (9.40)

9.13 Poincaré’s lemma

As we have seen in 9.12, an exact form is a closed form. Is the converse true? That

is, is there a function 𝐹 such that 𝜔 = 𝑑𝐹 , if 𝑑𝜔 = 0? This holds on a one-point

contractible domain (→5.7). This is called Poincaré’s lemma.201

200This is a very special case of the external differentiation of general products.
201The totality of equilibrium states ℰ is a one-point contractible set in the thermodynamic space

(→5.9), so Maxwell’s relation for internal energy is equivalent to the first law of thermodynamics
(if 𝐸 is twice differentiable; this is, however, not always true).
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9.14 Line integration

Here, for simplicity, we discuss curves that can be parameterized with a (piecewise)

𝐶1-function.

Let 𝐶 be a continuous curve with length202 in 𝑛-space.203 We assume that the

curve 𝐶 is parameterized by a (piecewise) 𝐶1-function 𝑐(𝑡). Integrating the 1-form

(9.38) with the parameterization 𝑥 = 𝑐(𝑡) implies∫︁
𝐶

𝜔 =

∫︁ 1

0

𝑑𝑡
∑︁
𝑖

𝑓𝑖(𝑐(𝑡)) · 𝑐′(𝑡)𝑑𝑡. (9.42)

In the domain where the 1-form is defined, to integrate an exact form 𝜔 = 𝑑𝐹

along a curve 𝑥 = 𝑐(𝑡) connecting 𝐴 and 𝐵 gives, since 𝑐(0) = 𝐴 and 𝑐(1) = 𝐵,∫︁
𝐶

𝜔 =

∫︁ 1

0

𝑑𝑓(𝑐(𝑡))

𝑑𝑡
𝑑𝑡 = 𝑓(𝐵)− 𝑓(𝐴). (9.43)

That is, the result of the integral of an exact form depends only on the initial and

the final points of the curve.

9.15 Path dependence of line integrals: examples
Since the differentials of state functions (→5.4) are exact, if the initial values are known, then the
values at the final state can be computed along any path connecting the initial and the final states.
(→9.14). In particular, if the integration path is a closed curve, the integral vanishes.

To check the exactness of 𝜔, checking its closedness is incomplete. As can be seen from 9.13,
if its domain is one-point contractible, we have only to check 𝑑𝜔 = 0. That is, we have only to
confirm Maxwell’s relations in the domain. For thermodynamics, the totality of equilibrium states
ℰ is one-point contractible (→5.7), so this is enough.

To confirm 𝑑𝜔 = 0 we have only to compute the external differentiation (→9.11)
Let us perform detailed calculations of line integrals of two variable examples.

𝜔 = 𝑦2𝑑𝑥+ 2𝑥(𝑦 + 1)𝑑𝑦. (9.44)

202⟨⟨Continuous curve with length⟩⟩ If a curve may be parameterized in terms of a (piecewise)
𝐶1-function, by writing 𝑥 = 𝑐(𝑡), the length 𝐿 of the curve reads

𝐿 =

∫︁ 1

0

‖𝑐′(𝑡)‖𝑑𝑡, (9.41)

where ‖ ‖ is the vector length.
203‘𝑛-space’ means 𝑛-dimensional space. Generally, a geometric object XXX of dimension 𝑛 will

be denoted as 𝑛-XXX.
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(i) This is not closed: 𝑑𝜔 ̸= 0.
To show this checking “Maxwell’s relations” is one way, but (although actually exactly the same)

to use external differentiation (→9.11) may be smarter:

𝑑𝜔 = 2𝑦𝑑𝑦 ∧ 𝑑𝑥+ 2(𝑦 + 1)𝑑𝑥 ∧ 𝑑𝑦 = [2(𝑦 + 1)− 2𝑦]𝑑𝑥 ∧ 𝑑𝑦 ̸= 0. (9.45)

(ii) The line integral of 𝜔 depends on the actual path: to integrate 𝜔 from the origin to (1, 1), let
us compare the path A: along 𝑦 = 𝑥2, and B: along 𝑥2 + (𝑦 − 1)2 = 1.

To perform a line integral parameterizing the path is convenient.
A: 𝑥 = 𝑡, 𝑦 = 𝑡2 (𝑡 ∈ [0, 1])∫︁

𝑦=𝑥2 for 𝑥=0→1

[𝑦2𝑑𝑥+ 2𝑥(𝑦 + 1)𝑑𝑦] =

∫︁ 1

0

𝑑𝑡 [𝑡4𝑑𝑡+ 2𝑡(𝑡2 + 1)2𝑡𝑑𝑡] (9.46)

=

∫︁ 1

0

𝑑𝑡 (5𝑡4 + 4𝑡2) = 1 + 4/3 = 7/3 ≈ 2.33.

(9.47)

B: Let us write 𝑥 = sin 𝑡, 𝑦 = 1− cos 𝑡 (𝑡 ∈ [0, 𝜋/2]). Then,∫︁ 𝜋/2

0

[(1− cos 𝑡)2 cos 𝑡𝑑𝑡+ 2 sin 𝑡(2− cos 𝑡) sin 𝑡𝑑𝑡] (9.48)

=

∫︁ 𝜋/2

0

𝑑𝑡 [4− cos 𝑡− 6 cos2 𝑡+ 3 cos3 𝑡] (9.49)

= 2𝜋 − 1− 6× 𝜋

4
+ 3× 2

3
=

𝜋

2
+ 1 ≈ 2.57. (9.50)

Certainly, the integral values depend on the paths.

(2) The following 1-form is exact:
𝜔 = 𝑦2𝑑𝑥+ 2𝑥𝑦𝑑𝑦. (9.51)

(i) Let us confirm 𝑑𝜔 = 0.

𝑑𝜔 = 2𝑦𝑑𝑦 ∧ 𝑑𝑥+ 2𝑦𝑑𝑥 ∧ 𝑑𝑦 = [2𝑦 − 2𝑦]𝑑𝑥 ∧ 𝑑𝑦 = 0. (9.52)

However, this is not generally enough to demonstrate the exactness of 𝜔. For example, let us
consider the following 1-form

𝜉 = (−𝑦𝑑𝑥+ 𝑥𝑑𝑦)/(𝑥2 + 𝑦2) (9.53)

on the unit disk centered at the origin excluding the origin (its domain is not one-point contractible).
𝑑𝜉 = 0 and formally we may compute 𝜉 = 𝑑Arctan(𝑦/𝑥), but this is not a derivative of a single-
valued function.
(ii) Along the same paths A and B above, let us integrate 𝜔. For A∫︁

𝑦=𝑥2 for 𝑥=0→1

[𝑦2𝑑𝑥+ 2𝑥𝑦𝑑𝑦] =

∫︁ 1

0

𝑑𝑡 [𝑡4𝑑𝑡+ 2𝑡(𝑡2)2𝑡𝑑𝑡] (9.54)

=

∫︁ 1

0

𝑑𝑡 5𝑡4 = 1. (9.55)
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For B ∫︁ 𝜋/2

0

[(1− cos 𝑡)2 cos 𝑡𝑑𝑡+ 2 sin 𝑡(1− cos 𝑡) sin 𝑡𝑑𝑡] (9.56)

=

∫︁ 𝜋/2

0

𝑑𝑡 [2− cos 𝑡− 4 cos2 𝑡+ 3 cos3 𝑡] (9.57)

= 𝜋 − 1− 4× 𝜋

4
+ 3× 2

3
= 1. (9.58)

(iii) Since 𝜔 = 𝑑(𝑥𝑦2), of course, 𝑥𝑦2(𝑥 = 𝑦 = 1)− 𝑥𝑦2(𝑥 = 𝑦 = 0) = 1.

9.16 Integral of 2-forms

A linear combination of the wedge products of differentials of two independent vari-

ables such as 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗 is called a 2-form. In 2-space it is of the following form:

𝜔 = 𝑓𝑑𝑥 ∧ 𝑑𝑦. Its integration on a 2-area 𝑚 is defined as follows:∫︁
𝑚

𝜔 =

∫︁
𝑚

𝑓𝑑𝑥𝑑𝑦. (9.59)

The integrals of differential forms are linear with respect to the integrands:∫︁
𝑚

(𝜔 + 𝜔′) =

∫︁
𝑚

𝜔 +

∫︁
𝑚

𝜔′. (9.60)

The integral of 𝑑𝑦∧𝑑𝑥 is negative of that of 𝑑𝑥∧𝑑𝑦. If 𝑚 is a small rectangle 𝜀𝑥×𝜀𝑦
around (𝑥, 𝑦), and if 𝑓 is continuous∫︁

𝑚

𝜔 ≃ 𝑓(𝑥, 𝑦)𝜀𝑥𝜀𝑦. (9.61)

9.17 Change of independent variables in integrals: Jacobian

Suppose 𝑓 is a function of (𝑋, 𝑌 ) and the map: (𝑋, 𝑌 ) ↦→ (𝑥, 𝑦) maps 𝑀 to 𝑚.

Then,∫︁
𝑀

𝑓(𝑋, 𝑌 )𝑑𝑋 ∧ 𝑑𝑌 =

∫︁
𝑚

𝑓(𝑋(𝑥, 𝑦), 𝑌 (𝑥, 𝑦))(𝑋𝑥𝑑𝑥 + 𝑋𝑦𝑑𝑦) ∧ (𝑌𝑥𝑑𝑥 + 𝑌𝑦𝑑𝑦)

=

∫︁
𝑚

𝑓(𝑋(𝑥, 𝑦), 𝑌 (𝑥, 𝑦))(𝑋𝑥𝑌𝑦𝑑𝑥 ∧ 𝑑𝑦 + 𝑋𝑦𝑌𝑥𝑑𝑦 ∧ 𝑑𝑥)

=

∫︁
𝑚

𝑓(𝑋(𝑥, 𝑦), 𝑌 (𝑥, 𝑦)) [𝑋𝑥𝑌𝑦 −𝑋𝑦𝑌𝑥] 𝑑𝑥 ∧ 𝑑𝑦. (9.62)
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This is a well-known formula for changing independent variables of integrals. The

quantity in [ ] is the Jacobian:

𝑋𝑥𝑌𝑦 −𝑋𝑦𝑌𝑥 =

⃒⃒⃒⃒
𝜕𝑋
𝜕𝑥

𝜕𝑌
𝜕𝑥

𝜕𝑋
𝜕𝑦

𝜕𝑌
𝜕𝑦

⃒⃒⃒⃒
=

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
. (9.63)

That is,

𝑑𝑋 ∧ 𝑑𝑌 =
𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
𝑑𝑥 ∧ 𝑑𝑦. (9.64)

9.18 Young’s theorem or Maxwell’s relations in terms of Jacobians

Let 𝜔 =
∑︀

𝑥𝑖𝑑𝑋𝑖 be an exact 1-form (→9.10). Then,

0 = 𝑑𝜔 =
∑︁

𝑑𝑥𝑖 ∧ 𝑑𝑋𝑖 (9.65)

In particular, if only two independent variables are changed, we have

0 = 𝑑𝑥𝑖 ∧ 𝑑𝑋𝑗 + 𝑑𝑥𝑗 ∧ 𝑑𝑋𝑖 =

(︂
𝜕𝑥𝑖

𝜕𝑋𝑗

)︂
𝑋𝑐

𝑗

𝑑𝑋𝑗 ∧ 𝑑𝑋𝑖 +

(︂
𝜕𝑥𝑗

𝜕𝑋𝑖

)︂
𝑋𝑐

𝑖

𝑑𝑋𝑖 ∧ 𝑑𝑋𝑗. (9.66)

This implies Young’s theorem (→9.7).204 If we integrate this on the 𝑥𝑖𝑋𝑖-plane

around an infinitesimal square 𝜀 around a point, we get (→9.17)∫︁
𝜀

𝑑𝑥𝑖 ∧ 𝑑𝑋𝑖 +

∫︁
𝜀

𝑑𝑥𝑗 ∧ 𝑑𝑋𝑗 =

∫︁
𝜀

[︂
1 +

𝜕(𝑥𝑗, 𝑋𝑗)

𝜕(𝑥𝑖, 𝑋𝑖)

]︂
𝑑𝑥𝑖𝑑𝑋𝑖 = 0. (9.67)

Therefore, if the Jacobian is continuous,205 Young’s theorem or Maxwell’s relation is

equivalent to
𝜕(𝑥𝑗, 𝑋𝑗)

𝜕(𝑥𝑖, 𝑋𝑖)
= −1. (9.68)

Here, all the variables kept constants are not written for the partial derivatives; as

the Jacobian, essentially the 2× 2 portion need be considered.

204As before, 𝑋𝑐
𝑖 in the suffix means that the variable 𝑋𝑖 is removed from the total set of inde-

pendent variables.
205Especially, if all the relevant partial derivatives are continuous. Therefore, when we discuss

Maxwell’s relation, our conclusion holds.
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10 Structure of thermodynamic space

10.1 Possibility of reversible and quasistatic adiabatic processes

Let ℰ be the totality of the equilibrium system of a system under consideration. Take

a point 𝑃 ∈ ℰ and let its projection onto the operational coordinate hyperplane be

𝑃 ′ (Fig. 10.1).

Y

Y

E

1

2

E

P

Q’

Q

P’

Figure 10.1: The totality ℰ of the equilibrium states of a system and an adiabatic and reversible-
quasistatic process in it; The vertical broken lines denote constant operational coordinate lines. The
adiabatic reversible and quasistatic change of operational coordinates from 𝑃 ′ to 𝑄′ along the red
broken curve on the operational coordinate hyperplane (the pale blue plane) results in the change
of 𝐸 according to 𝑑𝐸 = 𝜔 + 𝜁 (as illustrated by the red curve 𝑃 to 𝑄).

Our strategy is to construct thermodynamics based on the non-thermal macroscopic

physics and chemistry (→1.3). We are allowed to change operational coordinates

adiabatically and reversible-quasistatically as long as allowed by non-thermal macro-

physics and chemistry. The system internal energy 𝐸 changes according to the gen-

eralized work form (𝜔 in 3.10 + 𝜁 in 4.13). Consequently, there exists a reversible

quasistatic adiabatic process through an arbitrary state 𝑃 ∈ ℰ whose projection onto

the 𝑌 -plane may be specified.206

206This says the projection is unique, but for a given projection its ‘preimage’ need not be unique;
for a given curve on the 𝑌 -plane the curve (corresponding to a reversible-quasistatic and adiabatic
process) through 𝑃 constructed by integrating the generalized work form cannot be demonstrated to
be unique by the standard uniqueness argument for the solutions of differential equations, since we
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10.2 There is a region not accessible by adiabatic processes from an equi-

librium state

The following considerations rely on all the facts, principles, etc., we have so far

discussed. In particular, we rely on Planck’s principle (→8.5) as the second law of

thermodynamics (stated here again for convenience):

Planck’s principle: By an adiabatic process with the identical initial and the

final operational coordinates, the system internal energy cannot be reduced

(Fig. 10.2). In paticular, along a line parallel to the energy axis, the system

cannot go down adiabatically.

Y

Y

E

if adiabatic

1

2

even if adiabatic

Figure 10.2: Planck’s principle: from the state denoted by a small white disk on the vertical line
the red-shaded portion cannot be adiabatically reached; the green-shaded portion may be accessible,
but not reversibly. The vertical line is a operational-coordinate constant line parallel to the energy
axis.

Here, the ‘adiabatic process’ may be any realizable one whose initial and the final

operational coordinates are identical (that is, the initial and the final work and

materials coordinates agree).

Remark Planck’s principle itself only forbids adiabatic reduction of internal energy.

Therefore, it does not say anything about the green states in Fig. 10.2. We take the

metaprinciple (→8.4) for granted.

know, at best, only the continuity of the conjugate intensive variables (e.g., we cannot claim Lipshitz
continuity). If we use the second law of thermodynamics, we can demonstrate the uniqueness of
the process (→10.3). For the argument here we only need the existence of a process specified by
the projection onto the 𝑌 -plane; the existence is guaranteed by the first law of thermodynamics.
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10.3 Uniqueness of the internal energy change by a reversible and qua-

sistatic adiabatic process

Take a point 𝑃 ∈ ℰ in the thermodynamic space (𝐸,𝑌 ) (Fig. 10.3). Let the curve

𝑃 -𝑄 be a result of integrating the generalized work form along 𝑃 ′-𝑄′ on the 𝑌 -plane

as discussed in 10.1.

P

Q

A

B

L

Y

Y

E

adiabatically 

inaccessible 

from P

adiabatically accessible, 

but 

quasistatic-adiabatically

inaccessible from P

1

2Q’P’

Figure 10.3: Integration of the generalized work form along 𝑃 ′-𝑄′(the broken red curve on
the 𝑌 -plane as in Fig. 10.1) provides a unique solution curve (red curve). The line 𝐿 denotes the
totality of the states whose operational coordinates are identical to those of 𝑄′ (parallel to the
energy axis).

Let 𝐿 be the line going through 𝑄′ parallel to the energy axis (Fig. 10.3). In Fig.

10.3 the broken red curve 𝑃 ′-𝑄′ denotes a specified operational coordinate change

for a reversible quasistatic adiabatic process (as in Fig. 10.1). Integrating the gener-

alized work form along this curve has not yet been shown to give a unique solution,

but the red curve in the figure is understood as a possible integration result as in

Fig. 10.1.

Planck’s principle tells us that we cannot go to state 𝐴 that is below 𝑄 along 𝐿 (in

the red-shaded portion in Fig. 10.3) from 𝑃 adiabatically; if possible, since 𝑃 → 𝑄

is retraceable, we can adiabatically realize 𝑄 → 𝑃 → 𝐴, but 𝑄 and 𝐴 are on 𝐿, so

this violates Planck’s principle.

How about state 𝐵 in the green-shaded portion above 𝑄 in Fig. 10.3? 𝑃 → 𝐵

is not forbidden adiabatically (→8.4), but cannot be realized reversibly; if possible

𝐵 → 𝑃 → 𝑄 may be adiabatically realized and Planck’s principle is violated.

Thus, we have found that if we integrate the generalized work form along the

curve 𝑃 ′ → 𝑄′, the integration result is uniquely given by 𝑃 -𝑄.
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10.4 Construction of reversible adiabatic hypersurface

Take any continuous curve 𝐶 on the operational coordinate hyperplane spanned

by 𝑌 . We have found in 10.3 that the solution curve 𝐸(𝐶) in ℰ obtained by

integrating the generalized work along 𝐶 starting from 𝑃 is unique. Since 𝐶 ↦→
𝐸(𝐶) is a continuous map,207 there must be a continuous map 𝒜 defined on an

appropriate convex set on the operational coordinate hyperplane whose range 𝐴𝑃 is

a hypersurface passing through 𝑃 such that 𝒜(𝐶) = 𝐸(𝐶).

Since 𝐴𝑃 is meshed by integration curves of 𝑑𝐸 =
∑︀

𝑦𝑖𝑑𝑌𝑖 starting from 𝑃 ,208 it

is strongly differentiable at 𝑃 and its tangent vector is given by 𝑦 = (𝑦1, · · ·).

10.5 Reversible adiabatic hypersurfaces foliate ℰ
Take a hypersurface 𝐴𝑃 (curves in it are denoted by the red curves in Fig. 10.4)

constructed as in 10.4 and choose an arbitrary point 𝑄 on it. Then, construct the

adiabatic reversible surface 𝐴𝑄 passing through 𝑄 (a curve in it is denoted by the

green curve in Fig. 10.4) constructed just following the method in 10.4. If 𝐴𝑃 and

𝐴𝑄 do not agree, then there is a point 𝑅 in ℰ such that one of them is above the

other along the 𝐸 axis. Assume at 𝑅 on 𝐴𝑄, 𝐴𝑄 is above 𝐴𝑃 as illustrated in Fig.

10.4. Then, we are allowed to go along 𝑅𝑄𝑃𝑅′, where 𝑅′ on 𝐴𝑃 is just below 𝑅.

Thus, Planck’s principle would be violated.

Therefore, 𝐴𝑃 and any adiabatic reversible hypersurface sharing a common point

must agree:

𝑄 ∈ 𝐴𝑃 ⇒ 𝐴𝑄 = 𝐴𝑃 . (10.1)

Therfore, 𝐴𝑃 is anywhere strongly differentiable.

10.6 Adiabatic reversible surfaces do not switch their order along the

207Here, the meaning should be clear; to be precise, we must introduce a topology in the set of
all continuous curves in the thermodynamic space spanned by 𝐸 and 𝑌 . This can be done with the
aid of the Frechét distance 𝜌𝐹 : for two continuous curves 𝑎 and 𝑏, 𝜌𝐹 (𝑎, 𝑏) is the shortest length of
the leash you need to walk your dog along 𝑏 while you walk along 𝑎, intuitively.

208More precisely, we can make an 𝜀-net covering 𝐴𝑃 for any positive 𝜀 consisting of integration
curves of 𝑑𝐸 =

∑︀
𝑦𝑖𝑑𝑌𝑖 starting from 𝑃 . A subset 𝑀 of 𝐴 is an 𝜀-net of 𝐴, if for any 𝑥 ∈ 𝐴 there

is 𝑚 ∈𝑀 such that distance ‖𝑥−𝑚‖ < 𝜀.
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Figure 10.4: The red curve is on 𝐴𝑃 and the green on 𝐴𝑄. The illustration assumes that 𝑅 on
𝐴𝑄 is above 𝑅′ on 𝐴𝑃 , where 𝑅 and 𝑅′ have the same operational coordinates. Along any curve the
process is reversible, so 𝑅→ 𝑄→ 𝑃 → 𝑅′ is adiabatically realizable, violating Planck’s principle.

energy axis

Given an equilibrium state, an adiabatic reversible surface through it is uniquely

determined (→10.4). Furthermore, ℰ may be decomposed into mutually exclusive

adiabatic reversible surfaces like mille-feuille.209 The stacking of these hypersurfaces

is simple in the following (mathematically standard) sense. Take two adiabatic re-

versible surfaces. If one is above the other along a line parallel to the 𝐸-axis, this

ordering is kept along any line parallel to it. Switching ordering as in Fig. 10.5 is

not allowed as explained below.

P' Q

P

P'

'Q

P QY Y

Y

Y

E

1

2

Figure 10.5: The adiabatic reversible surfaces do not switch their ordering along the energy
axis. Here, vertical lines are parallel to the energy axis.

Suppose 𝑃 ′ and 𝑃 have the same operational coordinates. We can go from 𝑃 ′ to 𝑄′

or 𝑃 to 𝑄 adiabatically and reversibly. We can also go adiabatically from 𝑄′ to 𝑄

209Mathematically, we cay ℰ is foliated by adiabatic reversible hypersurfaces.
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along the line parallel to the energy axis. Then, using the reversibility of 𝑃 -𝑄, we

can go 𝑃 ′ → 𝑄′ → 𝑄→ 𝑃 adiabatically. This violates Planck’s principle.

10.7 Adiabatic reversible hypersurfaces: summary

Let us summarize the structure of the totality of the equilibrium states ℰ of a system

we have realized so far.

The totality of the equilibrium states of a system ℰ is separated into hypersurfaces

consisting of equilibrium states that may be transformed into (reachable to and from)

each other by reversible adiabatic processes (→10.5). These hypersurfaces have the

same order along any line parallel to the 𝐸-axis (→10.6).

Any point on a line with constant operational coordinates (i.e., on a line parallel

to the 𝐸 axis) is in one and only one reversible adiabatic hypersurface, so the totality

of these hypersurfaces and an interval of the real numbers are one to one continuously

correspondent (i.e., homeomorphically correspondent).

Each reversible adiabatic hypersurface 𝐴 may be constructed by integrating the

generalized work form 𝑑𝐸 =
∑︀

𝑦𝑖𝑑𝑌𝑖 starting from any single equilibrium state on

it. Thus, (𝑦1, · · · , 𝑦𝑚) defines a gradient vector field whose potential function is 𝐸,

and 𝐴 is strongly differentiable.

Physicochemically speaking, a reversible adiabatic hypersurface 𝐴𝑃 describes all

the macrophenomena that can happen non-thermally without any dissipation, if the

system is initially prepared in state 𝑃 . In particular, if we forget about chemistry

all together, it is the space where all the macroscopic mechanical and electromag-

netic phenomena occur, if the system is initially prepared in state 𝑃 .210 Therefore,

the phenomena that can occur within this hypersurface may be discussed without

thermodynamics. Thermodynamics expands the realm of macrophysics/chemistry

by making possible to discuss the transitions between these hypersurfaces.

210However, do not forget the constraint that thermodynamics can handle only additive systems
(→2.10).
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C Appendix C. Realizability of paths in the ther-

modynamic space

C.1 Why we consider the physical realizability of any path

For a given system, the totality ℰ of its equilibrium states forms a convex set (or a

homeomorphic image of a convex set→5.9). Therefore, for any two points 𝑃 and 𝑄

in ℰ , there exists a continuous curve that connects them in ℰ . Is this curve realizable

as an actual physico-chemical reversible quasistatic process (→A.6)?211

Thermodynamic textbooks often assume (though not always explicitly) that all

processes connecting two equilibrium states in ℰ are realizable, so the following

discussions may be taken for granted (and ignored). However, it is important to

explicitly demonstrate the experimental realizability of all continuous paths in ℰ as

reversible and quasistatic processes. Then, we may guarantee the applicability of

thermodynamics along any continuous curve in ℰ .

C.2 Adiabatic reversible processes

As discussed in 10.3, if we integrate the generalized work form (𝜔 + 𝜁) along a con-

tinuous curve on ℰ𝑃 (the hyperplane passing with constant 𝐸 through 𝑃 ) connecting

𝑃 and 𝑄′ (Fig. 10.2), we obtain a unique solution curve connecting 𝑃 and a certain

point 𝑄 (on 𝐴𝑃 ) with the same operation coordinates as 𝑄′. Therefore, there is an

adiabatic reversible and quasistatic process between 𝑃 and 𝑄.

C.3 Changing 𝐸 while keeping operational coordinates constant

Planck’s principle discusses a state change vertically along a line parallel to the 𝐸

axis. It states that it is impossible to decrease 𝐸 along this line adiabatically, while

increasing 𝐸 along the line is adiabatically possible, but the process is practically

achieved by heating the system with heat obtained from the dissipation of some

work. Therefore, we make the following explicit assumption:212

211Do not forget that being quasistatic does not guarantee the retraceability of a process. If there
is no interaction with the environment, usually being quasistatic is enough to be retraceable.

212If we apply the metaprinciple (→8.4), we may claim that non-adiabatic reversible changes
may be allowed to move freely along any constant operational coordinate line, but here, to be clear
this assumption is stated.
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A system may exchange heat reversibly and quasistatically, as long as its state

is in ℰ , with its environment without modifying the operational coordinates.

With this natural assumption, we may claim the existence of a reversible qua-

sistatic process between any two equilibrium states 𝑃 and 𝑄 as shown in C.4.

C.4 Any two equilibrium states may be connected by a reversible and

quasistatic process

For a given system, the totality ℰ of its equilibrium states is a convex set (or a

homeomorphic image of a convex set →5.9). Therefore, any two points 𝑃 and 𝑄 in

ℰ can be connected by a continuous curve in ℰ . Therefore, there must be a reversible

and quasistatic process connecting these states.

Can we actually realize a physico-chemical reversible quasistatic process (→A.6)

connecting any two points 𝑃 and 𝑄 in ℰ?

Choose a state 𝑄′ on 𝐴𝑃 (→10.3) with the same operational coordinates as 𝑄

(that is, 𝑄′ is the crossing point of the line parallel to the 𝐸 axis passing through

𝑄 and 𝐴𝑃 ). This construction, as discussed in 10.3, yields an adiabatic reversible

process from 𝑃 to some state 𝑄′ that has identical operational coordinates as 𝑄.

If 𝑄 = 𝑄′, then this adiabatic process is sufficient, but generally these two states

are distinct. In that case, we may (→C.3) heat or cool the system reversibly while

keeping the operational coordinates to bring 𝑄′ to 𝑄. Thus, we have shown that

there is a reversible quasistatic process between any two equilibrium states.

C.5 Any continuous curve may be realized as a reversible quasistatic

process

Since we may assume the thermodynamic space as a Euclidean space (→5.2), we

can define a distance between two continuous curves connecting the same pair of

points.213 In ℰ arbitrarily close to a continuous curve connecting 𝑃 and 𝑄, we can

draw a physically realizable continuous process combining adiabatic and reversible

continuous curves and line segments parallel to the 𝐸 axis, so any continuous curve

may be physically realized as a reversible quasistatic process.

Therefore, we may connect any pair of states in ℰ with a reversible quasistatic

process that corresponds to any continuous curve in ℰ connecting the two states.

213There may be many ways, but for example, we can use the Frechét distance.
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C.6 There is an adiabatic process between any equilibrium states

Thanks to Mayer-Joule’s principle (→7.14), we can effectively add heat to the sys-

tem through supplying work to it. However, Planck’s principle (→8.5) tells us that

we cannot remove heat adiabatically through (generalized) work.

Therefore, if the situation is the Left of Fig. C.1, then there is an adiabatic pro-

cess from 𝑃 to 𝑄, because we can irreversibly go from 𝑄′ to 𝑄. However, if the

situation is the Right of Fig. C.1, then we cannot go from 𝑄′ to 𝑄 adiabatically. In

this case, we can go from 𝑄 to 𝑄′ adiabatically, so an adiabatic process from 𝑄 to

𝑃 is realizable.214
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Figure C.1: Left: we can go from 𝑃 to 𝑄′ adiabatically, and if 𝑄′ has a smaller internal energy
than 𝑄 we can go from 𝑄′ to 𝑄 along the vertical line (irreversibly). Right: if 𝑄 is below 𝑄′, then
we can never go to 𝑄 from 𝑄′ adiabatically. However, we can adiabatically go from 𝑄 to 𝑄′. Since
𝑃 -𝑄′ is reversible, we can adiabatically go from 𝑄 to 𝑃 .

Thus, we have shown that for any pair of equilibrium states we can adiabatically

go from at least one state to the other.

214As noted repeatedly, the chemical compositions of 𝑄 and 𝑄′ may not be identical.
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11 Construction of entropy

11.1 Outline of the logic introducing entropy

As summarized in 10.7 we can foliate ℰ into smooth leaves (hypersurfaces) that

stack continuously along the 𝐸 axis. We can define a differentiable function 𝑆 that

captures this geometrical structure of ℰ : 𝑆 is constant on each leaf that corresponds

to one adiabatic hypersurface, and can change its value by adding or subtracting

heat reversibly (→C.3). This function 𝑆 is called entropy.

11.2 A differentiable state function can be defined that is constant on

adiabatic reversible hypersurfaces: an overview

We now know that the totality ℰ of equilibrium states of a system can be foliated into

strongly differentiable adiabatic and reversible hypersurfaces (= leaves of the folia-

tion). These leaves are ordered along the 𝐸-axis as described in 10.6. Importantly,

each leaf of the foliation can be continuously and one-to-one (i.e., homeomorphically)

mapped onto an interval of real numbers.

We may define a function 𝑆 = 𝑆(𝐸,𝑌 ) that is constant on each leaf. The function

is also strictly monotone increasing along the energy axis: for 𝐸 < 𝐸 ′ ⇒ 𝑆(𝐸,𝑌 ) <

𝑆(𝐸 ′,𝑌 ) for each 𝑌 .

As we will discuss in 11.3, we may define 𝑆 as a differentiable function of 𝐸

under constant 𝑌 . Combining this fact and the strong differentiability of the leaves

of the foliation of ℰ , we can claim that 𝑆(𝐸,𝑌 ) depends on 𝐸 and 𝑌 differentiably

(→11.4). To demonstrate the strong continuous differentiability of 𝑆(𝐸,𝑌 ), we

need a convexity of this function that will be discussed in 13.7.

Remark. We are to define a state function 𝑆 to be called ‘entropy’ that is maximally

convenient for thermodynamics. We are not proving that such a quantity exists, but

rather trying to construct a convenient state function 𝑆 that well-captures the nat-

ural foliated structure of ℰ .215

11.3 Transition between adiabatic hypersurfaces through heat exchange

How can we change the value of the function 𝑆?

By definition, if we can change the internal energy of the system without any

215Our attitude is: the foliated structure of ℰ is fundamental.
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change in the operational coordinates (i.e., along a line parallel to the energy axis),

we can surely change the value of 𝑆. This implies that we can surely change the

value of 𝑆 by adding or subtracting heat. Here, the procedure is performed in the

thermodynamic space, so ‘exchanging heat’ implies ‘exchanging heat reversibly and

quasistatically’216 between the system and its environment.

Since 𝑆 may be defined as a strictly increasing continuous function of 𝐸, adding

infinitesimal heat 𝛿𝑄 > 0 to the system must increase 𝑆 (→11.2). The change of

internal energy is 𝛿𝐸 = 𝛿𝑄. Therefore, we may demand 𝛿𝑆 ∝ 𝛿𝑄. Thus, we may

assume the relation between 𝐸 and 𝑆 at least partially differentiable under constant

𝑌 . Since 𝑄 is extensive (→3.1), we may assume 𝑆 to be extensive as well. Thus,

we may assume that 𝑆 is an extensive (not only partition additive →2.13) state

function that is at least partially differentiable with respect to 𝐸.

We wish to emphasize again that we are not proving the existence of a function

𝑆 that is partially differentiable with respect to 𝐸. We are free to construct 𝑆 in a

way that captures the smoothly foliated structure of ℰ as nicely as possible.

11.4 𝑆(𝐸, 𝑌 ) is partially differentiable with respect to thermodynamic

coordinates

Let 𝐸 = 𝐸(𝑌 ) describe a leaf with constant 𝑆. If we displace the operational

coordinates from 𝑌 to 𝑌 +𝛿𝑌 along this leaf, the state coordinates become (𝐸(𝑌 +

𝛿𝑌 ),𝑌 + 𝛿𝑌 )), so we have, since 𝑆 is constant on the leaf,

𝑆(𝐸(𝑌 + 𝛿𝑌 ),𝑌 + 𝛿𝑌 ) = 𝑆(𝐸(𝑌 ),𝑌 ). (11.1)

Therefore, thanks to the partially differentiability of 𝑆 with respect to 𝐸 and strong

differentiability of the leaf 𝐸 = 𝐸(𝑌 ), we have

𝑆(𝐸(𝑌 ),𝑌 + 𝛿𝑌 ) +
𝜕

𝜕𝐸
𝑆(𝐸(𝑌 ),𝑌 + 𝛿𝑌 )

𝑑𝐸

𝑑𝑌
𝛿𝑌 = 𝑆(𝐸(𝑌 ),𝑌 ). (11.2)

That is,

𝑆(𝐸(𝑌 ),𝑌 +𝛿𝑌 )−𝑆(𝐸(𝑌 ),𝑌 ) = − 𝜕

𝜕𝐸
𝑆(𝐸(𝑌 ),𝑌 +𝛿𝑌 )

𝑑𝐸

𝑑𝑌
𝛿𝑌 = 𝑂[𝛿𝑌 ]. (11.3)

Therefore, we conclude that 𝑆(𝐸,𝑌 ) is partial differentiable (actually, strongly

differentiable) with respect to 𝑌 .

216The actual realizability of such a procedure will be discussed later (→14.12).
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Thus, we may conclude that 𝑆 is partial differentiable with respect to the ther-

modynamic coordinates.

11.5 Thermal contact in terms of adiabatic and reversible hypersurfaces

Let us consider a compound system consisting of systems I and IIthat is, as a whole,

in an adiabatic condition, where each system is closed materially, and the operational

coordinates of each system are fixed. Suppose heat 𝛿𝑄 is exchanged reversibly and

quasistatically between the two systems through thermal contact. For example,

𝛿𝑄I = 𝛿𝑄, 𝛿𝑄II = −𝛿𝑄. (11.4)

For each system the change in 𝑆 must be proportional to 𝛿𝑄 (→11.3), so we may

choose state functions 𝜃I and 𝜃II appropriately (actually, the partial derivatives of 𝐸

with respect to 𝑆 for each system) to write 𝛿𝑄I = 𝜃I𝛿𝑆I and 𝛿𝑄II = 𝜃II𝛿𝑆II. Since 𝑆

is extensive (→11.3), 𝑆 of the compound system is given by 𝑆 = 𝑆I + 𝑆II. For the

compound system this change is totally internal (i.e., adiabatic) and reversible, so

0 = 𝛿𝑆 = 𝛿𝑆I + 𝛿𝑆II = 𝛿𝑄

(︂
1

𝜃I
− 1

𝜃II

)︂
. (11.5)

Thus, we have 𝜃I = 𝜃II: if two systems are in thermal equilibrium (→7.12), then 𝜃’s

agree. Conversely, if 𝜃’s agree, then the two systems are in thermal equilibrium. If

𝜃I < 𝜃II, then for 𝛿𝑄 > 0, that is, if system I obtains energy as heat and system II

loses by the same amount (i.e., if system II is hotter than system I), we see217

𝛿𝑆 = 𝛿𝑄

(︂
1

𝜃I
− 1

𝜃II

)︂
> 0. (11.6)

The infinitesimal change we are considering now is an adiabatic process and pushes

the state above the adiabatic and reversible hypersurface (i.e., 𝑆 const surface), that

is, in the direction allowed by the second law, so system I must be colder than system

II (→8.3).

11.6 What is temperature?: absolute temperature

An intensive state quantity is called an empirical temperature, if it takes the same

217Rigorously speaking, the following ‘direct’ calculation is not thermodynamically legitimate; we
must connect the initial and the final equilibrium states with a reversible and quasistatic process
and compute the change in 𝑆 (as we will do in 14.12). However, when the change is infinitesimal
as in the present discussion, the following crude formula gives the correct result.
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value between systems in thermal equilibrium and a hotter system exhibits a larger

value (→8.3).218 In particular, 𝜃 in 11.5 is an empirical temperature and is called

the absolute temperature, which will henceforth be denoted by 𝑇 . 𝑆 will be called

the entropy of the system.

Let 𝑑𝑄 be the 1-form219 expressing the amount of heat reversibly added to the

system. Then, we have

𝑑𝑆 =
1

𝑇
𝑑𝑄. (11.7)

Since 𝑑𝑆 is a differential of a state function, it is an exact form (→9.10). Thus, 𝑇

is an integrating factor of the no-exact form 𝑑𝑄.

Since 𝑑𝑄 is the reversible energy change under constant operational coordinates

𝑌 , we can write (︂
𝜕𝐸

𝜕𝑆

)︂
𝑌

= 𝑇 (11.8)

and regard this as the definition of the absolute temperature. However, since we have

not chosen any unit of 𝑆, the unit of 𝑇 is not determined at this point. As we will

see later, if we choose the equation of state of the one-mole ideal gas as 𝑃𝑉 ∝ 𝑇 ,

then the 𝑇 in this formula and that given by (11.8) are proportional (→15.4), so

the choice of the proportionality constant 𝑅 = 𝑃𝑉/𝑇 determines the unit of 𝑇 and

𝑆 (→11.13).

11.7 Structure of the thermodynamic space and entropy: a summary

Let us summarize the structure of the thermodynamic space which is captured ana-

lytically by the entropy 𝑆.

(1) The thermodynamic space is foliated by the adiabatic and reversible hypersur-

faces on each of which entropy 𝑆 is constant. These hypersurfaces are strongly

differentiable (→11.2).

(2) Under the condition keeping all the operational coordinates constant (i.e., along

a line parallel to the energy axis) entropy is a strictly monotone increasing function

of 𝐸 (→11.3), and 𝑑𝑆 = 𝑑𝑄/𝑇 , if heat 𝑑𝑄 is added reversibly (→11.6).

(3) Thanks to (1) and (2) we can show (→11.4) that 𝑆 is partial differentiable with

218However, whether the existence of the so-called empirical temperature can really be empirically
claimed is a delicate issue as noted in 3.8. 𝜃 introduced here may well be the only unquestionable
empirically constructed temperature.

219𝑑𝑄 is not meant to be the differential of 𝑄, but 𝑑𝑄 as a whole denotes a 1-form (→9.9).
Probably writing it as 𝑞 and call it a heat form may be better.
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respect to the thermodynamic coordinates.

(4) Planck’s principle (→8.5) may be restated as follows: Entropy never decreases

under adiabatic conditions.

11.8 Gibbs’ relation

For quasistatic processes generalized work may be expressed in terms of the gener-

alized work form 𝜔 + 𝜁, so the first law of thermodynamics (→7.14) may be written

as

𝑑𝐸 = 𝑑𝑄 +
∑︁
𝑖

𝑦𝑖𝑑𝑌𝑖 (11.9)

in terms of operational coordinates (→4.13). Combining this with the entropy-

reversible heat exchange relation 𝑑𝑄 = 𝑇𝑑𝑆 (→11.6), we get

𝑑𝐸 = 𝑇𝑑𝑆 +
∑︁
𝑖

𝑦𝑖𝑑𝑌𝑖. = 𝑇𝑑𝑆 +
∑︁
𝑖

𝑥𝑖𝑑𝑋𝑖 +
∑︁
𝑗

𝜇𝑗𝑑𝑁𝑗. (11.10)

Gibbs recognized this as the fundamental relation in thermodynamics and com-

pleted the foundation of thermodynamics (→11.9). Thus, this relation is called

Gibbs’ relation.

The thermodynamics before Gibbs concentrated on the formulation of the second

law, but Gibbs reformulated thermodynamics as an even practically useful versatile

system in terms of entropy obtained by the efforts before Gibbs. The starting point

of the reformulated thermodynamics is this Gibbs’ relation. Each term takes the

form of [an intensive quantity] multiplied by 𝑑[the corresponding (i.e., conjugate)

extensive quantity].

Since entropy is the central quantity for thermodynamics, it is often natural and

convenient to write Gibbs’ relation for 𝑑𝑆:

𝑑𝑆 =
1

𝑇
𝑑𝐸 −

∑︁
𝑖

𝑦𝑖
𝑇
𝑑𝑌𝑖. (11.11)

Remark: As noted in 11.9, Gibbs did not assume chemical reactions to occur in

the system. Thus, his 𝑑𝑁𝑖 are operational coordinates. That is, they are materials

coordinates.
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11.9 Gibbs’ original formulation
Here, the original passage from Gibbs’ classic book220 introducing Gibbs’ relation is copied:

(p62) Let us first consider the energy of any homogeneous part of a given mass, and
its variation for any possible variation in the (p63) composition and state of this part.
(By homogeneous is meant that the part in question is uniform throughout, not only in
chemical composition, but also in physical state) If we consider the amount and kind
of matter in this homogeneous mass as fixed, its energy 𝐸 is a function of entropy 𝑆,
and its volume 𝑉 , and the differentials of these quantities are subject to the relation

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉, (11.12)

𝑇 denoting the (absolute) temperature of the mass, and 𝑃 its pressure. For 𝑇𝑑𝑆 is
the heat received, and 𝑃𝑑𝑉 the work done, by the mass during its change of state.
But if we consider the matter in the mass as variable, and write 𝑁1, 𝑁2, · · · , 𝑁𝑛 for
the quantities of the various substances 1, 2, · · ·, 𝑛 of which the mass is composed,
𝐸 will evidently be a function of 𝑆, 𝑉,𝑁1, · · · , 𝑁𝑛, and we shall have for the complete
value of differential of 𝐸

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇1𝑑𝑁1 + · · ·+ 𝜇𝑛𝑑𝑁𝑛, (11.13)

𝜇1, · · · , 𝜇𝑛 denoting the differential coefficients of 𝐸 taken with respect to 𝑁1, · · · , 𝑁𝑛.
The substances 1,· · · , 𝑛 of which we consider the mass composed, must of course

be such that the values of the differentials 𝑑𝑁1, · · · , 𝑑𝑁𝑛 shall be independent, and
shall express every possible variation in the composition of the homogeneous mass
considered, including those produced by the absorption of substances different from
any initially present. It may therefore be necessary to have terms in the equation
relating to the component substances which do not initially occur in the homogenous
mass considered, provided, of course, the substances, or their components, are to be
found in some part of the whole given mass.221

Then, the original goes on to the phase rule (→23.9) discussion.
It is clear that chemical reactions are not in his scope at least in the book.

11.10 Gibbs’ relation and chemical reactions

As warned in 4.11 (also noted in 11.8) 𝑑𝑁 in 𝑑𝑌 in this formula represents the

amount of chemicals we add or remove from the system independently (operational

coordinates). Therefore, due to chemical reactions (i.e., due to the shift of chemical

equilibria) actual changes of the chemical composition coordinates may not be given

220The Scientific Papers of J. Willard Gibbs V1 Thermodynamics (Kessinger’s Legacy Reprints
version; a reprint of 1906 Longmans, Green and Co. version). Notations of the thermodynamic
variables have been replaced with the corresponding ones in these notes. The page numbers referred
to are those in this version.

221Thus, chemical reactions are totally ignored; the changes of 𝑁𝑖 are due to (algebraic) addition
only.
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by 𝑑𝑁 (for example, even if we add 𝑑𝑁𝑖 of chemical 𝑖, in the system the amount of

chemical 𝑖 may not change by 𝑑𝑁𝑖 due to chemical reactions). The actual chemical

composition changes 𝑑�̃� are given by, when the ordinary thermodynamic coordinates

𝐸 and 𝑋 are specified,

𝑑�̃� ≡ 𝑅𝐸,𝑋(𝑁 + 𝑑𝑁 )−𝑁 , (11.14)

where 𝑅 is the reaction map (→4.12) giving the equilibrium composition under the

condition specified by the ordinary thermodynamic coordinates 𝐸 and 𝑋.222

We can also express Gibbs’ relation in terms of the chemical composition change

(including the effects of chemical equilibrium shifts), i.e., 𝑑�̃� , as

𝑑𝐸 = 𝑇𝑑𝑆 +
∑︁
𝑖

𝑥𝑖𝑑𝑋𝑖 +
∑︁
𝑗

𝜇𝑗𝑑�̃�𝑗. (11.15)

This is because adding 𝑑𝑁 and adding 𝑑�̃� (both as the increment of materials

composition of the system) to the system result in the identical equilibrium state.

Do not forget that not all the 𝑑�̃� are independently changeable due to chemical

equilibrium relations. The resultant materials coordinates are given by 𝑁 + 𝑑�̃� or

equivalently by 𝑁 + 𝑑𝑁 .223 However, the actual system energy change may still be

written in terms of 𝑑𝑁 as in (11.10).

In any case, the key point is that Gibbs’ relation is an exact 1-form for 𝐸 with

the operational coordinates as independent variables.224,225

222Needless to say, the system before addition must be in equilibrium: 𝑅𝐸,𝑋(𝑁) = �̃� =

𝑅𝐸,𝑋(�̃�). Here, �̃� as the variable of 𝑅 denotes the particular choice of the materials coordi-
nates whose values agree with the chemical component variables.

223Simple illustration: consider A ←→ B with the equilibrium condition to be the identity of the
amounts of A and B. Let us add 𝛿𝑁A and 𝛿𝑁B to the system. Then, obviously, 𝛿�̃�A = 𝛿�̃�B =
(𝛿𝑁A + 𝛿𝑁B)/2.

224In traditional thermodynamics, the chemical composition variables are regarded as the basic
chemical coordinates. However, they are not independent variables, in general, so Gibbs’ relation
may not be written in terms of them. For example, if �̃� is fixed, in most cases, no state change
can occur, because chemical equilibria depend on the internal energy and the work coordinates.
Thus, we must distinguish the operational change of 𝑁 and the actual change (along the actual
quasistatic path) of �̃� as stressed in 4.5-4.11.

225One might introduce the so-called extent of chemical reactions (or reaction coordinates) 𝜉 that
are supposedly independent of each other by introducing appropriate catalysts. However, even if
you introduce (orthogonal) reaction coordinates, still you cannot fix the reaction coordinates at
your will while changing 𝐸 and 𝑋, because the chemical equilibria shift, meaning 𝜉 changes.
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11.11 Partial derivatives with chemical reactions

Even though 𝑁 and other variables are operationally independent, as variables for

description of the chemical composition of the system, �̃� cannot generally be inde-

pendent of other variables; you cannot fix them freely while changing 𝐸 and 𝑋. It is

important to recall that �̃� is, unfortunately, the standard thermodynamic variable

in the conventional textbooks.

Gibbs’ relation tells us

𝑇 =

(︂
𝜕𝐸

𝜕𝑆

)︂
𝑋 ,𝑁

, (11.16)

but the conventional formula

𝑇 =

(︂
𝜕𝐸

𝜕𝑆

)︂
𝑋 ,�̃�

(11.17)

is usually meaningless.226 (11.16) is equivalent to

𝑇 =

(︂
𝜕𝐸

𝜕𝑆

)︂
𝑋 ,closed

. (11.18)

Also, we may write

𝑥𝑖 =

(︂
𝜕𝐸

𝜕𝑋𝑖

)︂
𝑆,𝑋𝑐

𝑖 ,𝑁

, (11.19)

but the conventional formula

𝑥𝑖 =

(︂
𝜕𝐸

𝜕𝑋𝑖

)︂
𝑆,𝑋𝑐

𝑖 ,�̃�

(11.20)

is meaningless.

We can fix 𝑆 and 𝑋 while changing some of the materials coordinates. Therefore,

𝜇𝑖 =

(︂
𝜕𝐸

𝜕𝑁𝑖

)︂
𝑆,𝑋 ,𝑁𝑐

𝑖

(11.21)

is meaningful, but with the chemical composition variables, an analogous expression

in the standard textbooks is meaningless.227

226To avoid this difficulty, honest textbooks explicitly demand that �̃� can be fixed at our will
while changing other thermodynamic coordinates. We have already noted in Remark 2 of 8.5 that
this ad hoc convention cannot rescue chemical thermodynamics.

227In this ‘unit’ there are several statements about meaningless nature of the conventional text-
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11.12 Fundamental equations

Describing a system thermodynamically involves setting up its thermodynamic space

and giving its entropy 𝑆 as a function of its thermodynamic coordinates (𝐸,𝑌 ).

Therefore, 𝑆 = 𝑆(𝐸,𝑌 ) is referred to as the fundamental equation of the system.

However, a fundamental equation is specific to a particular system and is not a

universal function that applies to all systems. As a result, thermodynamics cannot

provide it for a given system. Instead, it may be an empirical result or a product of

theories outside of thermodynamics.228

To describe a system or a material, equations of state are often used. For example,

the relation among the pressure 𝑃 , volume 𝑉 and temperature 𝑇 for a gas is a famous

example. However, since non-fundamental variables (→3.2) such as 𝑃 and 𝑇 appear,

such an equation of state is insufficient to determine the fundamental equation; we

need knowledge of 𝐸. Let us see the problem for an ideal gas (→11.13).

11.13 Fundamental equation of ideal gases

The relation between pressure 𝑃 , volume 𝑉 and temperature 𝑇 for an 𝑁 mole ideal

gas is usually called the equation of state of an ideal gas:

𝑃𝑉 = 𝑁𝑅𝑇. (11.22)

Here, 𝑅 is the gas constant.229 This relation is, like all other equations of state, not

a result of thermodynamics, but a result of experiments or some other theories.

book expressions. However, we must note that not all the textbooks are imprecise. For example,
Kirkwood and Oppenheim, Chemical Thermodynamics (McGraw-Hill, 1961) clearly states that the
usual Gibbs’ formula for open systems applies when there is no chemical reaction (p52 for homoge-
neous systems, p56 for inhomogeneous systems). It is also stated clearly on p48 that, for a closed
system, the changes due to chemical components do not appear at all in the expression of the first
law.

However, on p101 we find the following statement: ‘In a closed system in which the masses of
the components are changed,

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 +
∑︁

𝜇𝑑𝑁 (8.4)

From this the chemical equilibrium condition under constant 𝑆 and 𝑉 is discussed. Thus, clearly
there is a confusion.

228For example, if thermodynamics is applied to chemical industry, almost always detailed ex-
perimental data are used, while detailed steam tables (e.g., found in this) are employed for steam
engines.

229𝑅 = 8.314 462 618 153 24 m2·kg/s2·K·mol.

https://www.thermopedia.com/content/1150/
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To describe an ideal gas thermodynamically, we must first set up its thermody-

namic space, and then provide its entropy as a function of thermodynamic coordi-

nates or give its internal energy as a function of entropy and operational coordinates.

For an ordinary gas with a fixed amount its thermodynamic coordinates are only 𝑉

in addition to 𝐸. Therefore, its fundamental equation takes the form: 𝑆 = 𝑆(𝐸, 𝑉 ),

which is not provided by thermodynamics, but requires empirical data. One such

piece of data is the so-called equation of state (11.22), while the other is a relation

between 𝐸 and some other variables (called a thermal equation of state). For an ideal

gas, we use the ‘fact’ that 𝐸 depends only on 𝑇 linearly.

If we heat the gas without any work, all the added heat would be converted to the

internal energy. Thus, under constant volume (i.e., the work coordinate constant),

we assume (based on empirical results)

𝐸 = 𝐶𝑉 𝑇, (11.23)

where 𝐶𝑉 is a constant (later called the constant volume heat capacity →14.6).

Gibbs’ relation (→11.8)

𝑑𝑆 =
1

𝑇
𝑑𝐸 +

𝑃

𝑇
𝑑𝑉 (11.24)

and (11.23) tell us that under a constant volume condition

𝑑𝑆 =
𝐶𝑉

𝐸
𝑑𝐸. (11.25)

Since entropy is a state quantity, 𝑑𝑆 is exact (→9.10). Therefore, the entropy of

an equilibrium state F = (𝐸, 𝑉 ) is obtained from that of the initial state I = (𝐸0, 𝑉0)

by any process described by any continuous curve230 connecting I and F (→9.14).

Therefore, let us line integrate (11.24) along the path first going from I to state M

= (𝐸, 𝑉0) and then from M to F (Fig. 11.1). For a 1 mole gas 𝑃/𝑇 = 𝑅/𝑉 , so the

fundamental equation for a 1 mole ideal gas reads

𝑆 = 𝑆0 +

∫︁ 𝐸

𝐸0

𝐶𝑉

𝐸
𝑑𝐸 +

∫︁ 𝑉

𝑉0

𝑅

𝑉
𝑑𝑉 = 𝑆0 + 𝐶𝑉 log

𝐸

𝐸0

+ 𝑅 log
𝑉

𝑉0

. (11.26)

From this, we can get everything we wish to know thermodynamically:

𝑃

𝑇
=

(︂
𝜕𝑆

𝜕𝑉

)︂
𝐸

=
𝑅

𝑉
,

1

𝑇
=

(︂
𝜕𝑆

𝜕𝐸

)︂
𝑉

=
𝐶𝑉

𝐸
. (11.27)

230Actually, ‘continuity’ alone is inconvenient, so throughout these lectures, we assume that the
curve has a length (→9.14).
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Figure 11.1: The green path is the integration path for (11.26). We may use any curve (say, the
red curve) connecting I and F in the thermodynamic space, but a practical path must be something
like the green one.
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12 Principle of increasing entropy

12.1 How to make various non-homogeneous equilibrium states

We have seen in 5.8 that we can prepare an equilibrium state of a compound system

(→2.9) by combining simple systems in equilibrium through various walls (boundary

conditions→2.1) and then leave it for a sufficiently long time in a fixed environment

that does not cause any dissipation even after any time dependence subsides. Here,

a wall (= boundary condition) is specified by a set of extensive quantities allowed to

be exchanged across it.

In thermodynamics, only equilibrium systems that can be constructed as described

in the preceding paragraph are discussed. Note that the component simple sys-

tems appearing in the construction of a compound system can be macroscopically

(→1.4) extremely small. Thus, as stages for the usual macrophysics (fluid dynam-

ics, rheology, etc.) such compound systems provide sufficiently detailed macroscopic

description of a system.231

12.2 Constrained equilibrium states

If we remove all the walls between any simple subsystems defining a compound sys-

tem (→12.1) in equilibrium (i.e., if all the boundary constraints on intrasystem

exchanges of extensive quantities are abolished), the system would eventually settle

down to an equilibrium state of a simple system.232

Since the system as a whole was in equilibrium233 even before abolishing walls,

the original system should be regarded as in an equilibrium state but is not allowed

to reach the unconstrained equilibrium state by constraints (walls). Therefore, let us

call the original equilibrium state of the compound system a constrained equilibrium

state. Since all the walls need not be abolished at once, there are many different

constrained equilibrium states for a given (compound) system.

To (partially) remove constraints may be expressed as reducing or weakening the

constraints.

231Needless to say, this does not mean in fluid dynamics, rheology, etc., small macroscopic parts
of a system are in equilibrium.

232Usually; always, especially if all the component simple systems are made of the same chemical
components.

233According to our definition of ‘equilibrium’ 2.7.
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The devices imposing constraints (in many cases walls) themselves do not con-

tribute thermodynamic quantities to the system; they exert thermodynamic effects

only through interfering the exchange of extensive quantities. Therefore, as stated

before, such devices (walls) are very often identified with particular mathematical

boundary conditions imposed there.234

12.3 The principle of increasing entropy

Suppose an equilibrium state of an adiabatic (in particular, isolated) system spon-

taneously changes into another equilibrium state (e.g., after reducing constraints

→12.2). The system entropy can never decrease by this change. This is called the

principle of increasing entropy.235 This is because we can never go below the initial

reversible adiabatic hypersurface adiabatically (→Fig. 10.2). If you wish to decrease

entropy, you must cool the system (→11.7(3)).

This logic tells us, more generally, that the system entropy never decreases with

the process of relaxing the constraints under an adiabatic condition. In a closed sys-

tem under an adiabatic condition, if a change occurs spontaneously from an initial

to a final equilibrium state, the system entropy can never decrease.

However, this only means that if the initial entropy and that of the final equilib-

rium state is compared, the latter cannot be smaller. Even if we say the entropy

increases with a process through relaxing constraints, it does not mean the system

entropy at any time point increases during the process. Do not forget that entropy

is defined only for equilibrium states.236

234Needless to say, this identification is allowed only when (sub)systems are macroscopic. Nowa-
days, systems with a very few microscopic particles or microscopic mechanical degrees of freedom
are discussed as thermodynamic systems, and their boundaries are often mathematical boundary
conditions. Whether such an idealization is meaningful or not should be critically considered case
by case.

235⟨⟨Δ𝑆 > 0 shown?⟩⟩ Note that what is actually demonstrated up to this point is only Δ𝑆 ̸< 0;
that is, we have only demonstrated that, if Δ𝑆 < 0, then the second law would be violated. Δ𝑆 > 0
has never been demonstrated, so, logically speaking, ‘increasing’ is an exaggeration. However, within
the thermodynamic framework, we have examples in which actually Δ𝑆 > 0 can be demonstrated
under the condition for Δ𝑆 ̸< 0, so it is admissible to use this name for the principle.

The situation is quite different from the so-called pure mechanical demonstration of the second
law (e.g., using Jarzynski’s inequality).

236Thus, it is meaningless to mention the thermodynamic entropy of the universe.



12. PRINCIPLE OF INCREASING ENTROPY 125

12.4 The entropy maximizing principle

Due to 12.3, if the entropy of a closed adiabatic system becomes maximum under

given constraints, the system cannot change any further, so the system is in (con-

strained) equilibrium.237

The converse also holds under the metaprinciple of thermodynamics (→8.4). If

the system entropy is not max, then there is no thermodynamic proposition (or prin-

ciple) that is violated even if a spontaneous change happens to increase its entropy.

Therefore, the system cannot be in equilibrium. Thus, ‘entropy max’ and ‘equi-

librium’ are equivalent. This is called the maximum entropy principle or entropy

maximizing principle.

Since the metaprinciple 8.4 is used, in practice, what thermodynamics tells us

is that it does not concern whether the maximum principle actually holds or not;

in contrast, the principle of increasing entropy demands an increase (precisely, non-

decrease; see a footnote in 12.3).

12.5 Entropy max does not imply entropy extremum

Even if a system is in equilibrium, its entropy need not be maximum due to entropy

being extremal. This is simply because the maximum of a continuous function occurs

at an extremum or at the domain boundary (see, for an example, 16.6).

12.6 Thermodynamic variations

Variations of a thermodynamic state of a system are not simple displacements of the

corresponding point in the thermodynamic state of the system.

A thermodynamic variation is specified by a partition 𝒫 into macroscopic pieces

of the system under study. The thermodynamic coordinates of macroscopic sub-

systems are chosen under the condition that the total extensive quantities of these

subsystems agrees with the original total amounts.238 The boundary conditions be-

tween subsystems may be chosen appropriately so that the state of the resultant

compound system can stay in equilibrium (in order to use thermodynamics). Unless

otherwise stated, the walls (boundary conditions) in the original compound systems

237Here, the uniqueness of the state with max entropy may not always be true. However, the
change of one state to another with the same entropy does not usually occur spontaneously in a
macroscopic system (within a short time).

238If you wish to consider non-additive extensive quantities, the combined extensive quantities
must be consistent with the amount in the original state as noted in the next footnote.
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are kept and the imposed constraints are respected when thermodynamic variations

are constructed (Fig. 12.1).

Original wall

after thermodynamic variationOriginal compound system
Compound systerm 

Figure 12.1: Unless otherwise stated, the walls (boundary conditions) in the original compound
systems are kept and the imposed constraints are respected when thermodynamic variations are
constructed.

For a function of thermodynamic coordinates 𝐽(𝐸,𝑌 ), its variation 𝛿𝐽 due to the

given thermodynamic variation is computed as

𝛿𝐽(𝐸,𝑌 ) =
∑︁
𝑖∈𝒫

𝐽(𝐸𝑖,𝑌 𝑖)− 𝐽(𝐸,𝑌 ), (12.1)

where 𝒫 denotes the set of subsystems by a particular partition of the original sys-

tem into subsystems, 𝐸 =
∑︀

𝑖∈𝒫 𝐸𝑖 and 𝑌 =
∑︀

𝑖∈𝒫 𝑌 𝑖.
239 That is, a thermodynamic

perturbation is defined by a particular spatial partition 𝒫 (with appropriate bound-

ary conditions and a particular distribution of thermodynamic coordinates {𝐸𝑖} and

{𝑌 𝑖}).
The quantities with 𝛿 are often called virtual variations. This means that we do

not worry too much about actual realizability of the variations. Here, 𝛿 does not

mean that the variation is small in any sense. Still, we can say a thermodynamic

perturbation 𝛿 is small if the thermodynamic densities (→5.5) change only slightly.

Remark. 𝛿𝐽 above is not defined as the difference between the original state and

any result after modification. It is defined by comparing two equilibrium states, the

original state that is in equilibrium and the final equilibrium state that the system

reaches in a sufficiently long time after modification/variation is applied. All thermo-

dynamic perturbation results are not simple variations due to perturbative operations

239If there are work coordinates that are not additive, then the choice of the values for each piece
is complicated, but still we may assume the distribution of variables compatible with 𝒫 is possible.
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but the variations eventually realized after the system subjected the operations to

equilibrates.

12.7 Variational principle given by the second law

For an equilibrium state of a system, if there were a thermodynamic variation for

which ∆𝑆 > 0, then there would be an equilibrium state with larger entropy. There-

fore, the entropy maximization principle (→12.4) tells us that the original equilib-

rium state was not a true equilibrium state of the system. In other words, for any

thermodynamic variation, any equilibrium state must satisfy:

∆𝑆 ≤ 0. (12.2)

Traditionally, (12.2) is called the (thermodynamic) stability criterion of an equilib-

rium state, but as the derivation tells us, it is a universal property of any equilibrium

system.240

For a compound system, if the internal constraints due to the walls (internal

boundary conditions) may be removed, then there may be a thermodynamic vari-

ation with ∆𝑆 > 0. In this case, the original equilibrium state is no longer an

equilibrium state after removing (some of) the internal constraints, and the system

can spontaneously evolve to a new equilibrium state with a larger entropy. Thus,

∆𝑆 > 0 ⇐⇒ the state can spontaneously evolve to a new equilibrium state

(12.3)

may be called the evolution criterion for an equilibrium state under an adiabatic

condition (after relaxing the constraints).241

240As we will learn soon, it is equivalent to −𝑆 being convex. See 13.5.
241As noted in 12.4, the evolution criterion is often true, but whether the change actually happens

or not is, strictly speaking, beyond the power of thermodynamics; if thermodynamics forbids, even
God cannot disobey, but what thermodynamics allows may not happen easily (can be realized by
God).
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13 Convexity and principle of minimizing internal

energy

13.1 Convex analysis and thermodynamics

We have seen that the thermodynamic space of a system is a Euclidean space spanned

by the internal energy 𝐸 and the operational coordinates {𝑌𝑖} (→11.7). The ther-

modynamic space is (trivially) foliated by reversible adiabatic hypersurfaces on which

entropy is constant. If a certain point in ℰ (= a certain thermodynamic state) is

given, its entropy is determined as a state quantity by the fundamental equation

(→11.12). Or, if the operational coordinates and entropy 𝑆 are fixed, the internal

energy of the system is determined, so internal energy is given as a state function of

𝑆 and operational coordinates as 𝐸 = 𝐸(𝑆,𝑌 ).

As we will see soon, 𝐸 and 𝑆 (precisely, −𝑆) are (under certain reservations

but substantially242) convex functions. Convexity imposes strong constraints on the

mathematical structure of thermodynamics. For example, a convex function is a

𝐶1-function if it is strongly differentiable. This implies that absolute temperature is

continuous with respect to operational coordinates.243

The subfield of analysis discussing convex functions is called convex analysis. It

is highly desirable that any physicist has rudimentary knowledge of convex analysis,

but it is not covered by the standard math courses for physics students. In this set

of lecture notes, convex functions are defined in this section with some of their ele-

mentary properties explained. Other crucially important topics on convex analysis

will be discussed later in Section 18.

13.2 Epigraph and convex function

Let us write a function 𝑓 with 𝑛 independent variables 𝑥1, · · · , 𝑥𝑛 as 𝑦 = 𝑓(𝜇)

(𝜇 = (𝑥1, · · · , 𝑥𝑛)).244 Then, the graph of 𝑓 is, if continuous, a 𝑛-hypersurface in

242If there is no non-additive work coordinates
243However, do not forget that 𝑇 may not be differentiable, if it is considered as a function of the

variables other than the thermodynamic coordinates.
If chemicals are described in the conventional fashion as in the textbooks, then we cannot

thermodynamically claim that chemical potentials are continuous as functions of thermodynamic
coordinates.

244The domain of 𝑓 is assumed to be convex. In standard textbooks of convex analysis such as
Rockafellar’s Convex Analysis for any function 𝑓 its value outside its usual domain is set 𝑓 = +∞
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𝑛 + 1 space (𝑦, 𝜇) any of whose point is at the height 𝑦 at position 𝜇 in the 𝑛-

hyperplane (0, 𝜇). The point set above this graph including the graph is called the

epigraph of function 𝑓 (Fig. 13.1). More precisely:

Let 𝐶 be the domain of 𝑓 . Its epigraph epi 𝑓 is defined by

epi 𝑓 = {(𝑦, 𝜇) | 𝑦 ≥ 𝑓(𝜇), 𝜇 ∈ 𝐶}

Note the equality sign in 𝑦 ≥ 𝑓(𝜇) in the definition.

A function 𝑓 defined on a convex set (→5.10) whose epigraph epi 𝑓 is a convex

set is called a convex function.

(inside)

domain of  f

graph of f (skin)

epigraph of  f 
Inside + graph

y

C
μ

Figure 13.1: An epigraph and the corresponding convex function

A function that is convex upward is called a concave function. Convex functions

are convex downward in mathematics.

13.3 Jensen’s inequality

A crucial inequality for convex functions is:

Theorem [Jensen’s inequality]

For a function 𝑓 : 𝐶 ↦→ R to be a convex function a necessary and sufficient condition

is

𝑓

(︃∑︁
𝑖

𝜆𝑖𝜇𝑖

)︃
≤
∑︁
𝑖

𝜆𝑖𝑓(𝜇𝑖), (13.1)

and its domain is extended to the whole space. Here, we will not use this convention which is
standard for convex analysis, but adopt the usual convention for functions. This will not be stated
explicitly.
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where 𝜆𝑖 ≥ 0 and
∑︀

𝑖 𝜆𝑖 = 1. This inequality is called Jensen’s inequality. In other

words, if we write a general weighted average as ⟨ ⟩

𝑓(⟨𝜇⟩) ≤ ⟨𝑓(𝜇)⟩ (13.2)

is a necessary and sufficient condition for 𝑓 to be a convex function. Its meaning

should be clear from the following Fig. 13.2 (for two variables 𝜇 = (𝑥1, 𝑥2)).

1
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Figure 13.2: A convex function with two independent variables; Jensen’s inequality (in this
illustration for three points) means that the green dot on the graph is below the white dot (inside
the epigraph).

13.4 Analytic properties of convex functions

Some important properties of a convex function are summarized without proof.

(1) A convex function is Lipshitz continuous.245

(2) A convex function is directionally continuously differentiable (→9.1) along any

line in its domain except for countably many points.

(3) A convex function is continuously differentiable at a point where it is strongly

differentiable (→9.3).

13.5 Entropy is a concave state function

Consider two equilibrium systems 1 and 2 whose thermodynamic coordinates are

(𝐸1,𝑌 1) and (𝐸2,𝑌 2), respectively. Both states are assumed to be in the same

set of equilibrium states ℰ of a simple system. From these two systems we make a

245𝑓(𝑥) is Lipshitz continuous at 𝑥, if in a neighborhood of 𝑥 we can choose a positive number 𝐾
such that |𝑓(𝑥)− 𝑓(𝑦)| < 𝐾|𝑥− 𝑦|. For the ordinary continuity, no bound for 𝐾 is required.
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compound system, and then remove the wall between 1 and 2. The entropy before

removing the isolating wall the entropy of the compound system is

𝑆(𝐸1,𝑌 1) + 𝑆(𝐸2,𝑌 2). (13.3)

After removing the wall constraints, if work coordinates satisfy additivity,246 the

entropy of the resultant combined system is 𝑆(𝐸1 +𝐸2,𝑌 1 +𝑌 2). According to the

principle of increasing entropy (→12.3) we have

𝑆(𝐸1 + 𝐸2,𝑌 1 + 𝑌 2) ≥ 𝑆(𝐸1,𝑌 1) + 𝑆(𝐸2,𝑌 2). (13.4)

If we apply the extensivity of entropy (→11.3) for 𝜆 ∈ [0, 1]

𝜆𝑆(𝐸,𝑌 ) = 𝑆(𝜆𝐸, 𝜆𝑌 ), (13.5)

so, combining the two relations, we get

𝑆(𝜆𝐸1 + (1− 𝜆)𝐸2, 𝜆𝑌 1 + (1− 𝜆)𝑌 2) ≥ 𝜆𝑆(𝐸1,𝑌 1) + (1− 𝜆)𝑆(𝐸2,𝑌 2). (13.6)

That is, −𝑆 is a convex function according to the theorem in 13.3; in other words,

𝑆 is a concave function.247

If we wish to extend the above convexity argument to compound systems, we

assume two systems are with the identical internal constraints (walls/boundary con-

ditions), and when two systems are combined, we assume that the choice of the

two states respect the constraints and the combination is realized between the cor-

responding pieces of the subsystems defining the compound systems (schematically

illustrated in Fig. 13.3). Then, an inequality analogous to (13.6) holds.

13.6 The so-called stability criterion 𝛿𝑆 > 0 and convex analysis

We have shown for any equilibrium state its entropy increases by any thermodynamic

variation in 12.7. It is copied here for convenience:

∆𝑆 ≤ 0. (13.7)

246Note that partition additivity (→2.13) is not enough.
247Warning. With the conventional expression of chemicals entropy is not a concave function.

Following the ad hoc convention of freely freezing chemical reactions, while reactions are frozen,
entropy is concave.
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Two original compound system 
with the identical internal wall

Combined and equilibrated while respecting the internal wall

Figure 13.3: Convex combinations of compound systems must respect internal boundary condi-
tions a schematically illustrated here.

First of all notice that this inequality is simply Jensen’s inequality applied to −𝑆,

since −𝑆 is convex. As remarked just below (12.2), its the property of any equilib-

rium state. Convex analysis confirms this statement for simple systems.

For a compound system, (13.7) holds, if all the original internal constraints (walls/boundary

conditions) in the system are respected when thermodynamic variations are con-

structed. Here, we assume that any imposed thermodynamic variation never alters

the internal constraints (if any for compound systems). Then, again, (13.7) is a

convexity result that is due to the nature of entropy.

13.7 Entropy is 𝐶1 with respect to thermodynamic coordinates

We have demonstrated that 𝑆(𝐸,𝑌 ) is partially differentiable (→11.4) concave func-

tion. This and 13.4 (2) imply that all the partial derivatives are continuous. There-

fore, The theorem shown in 9.4 implies that 𝑆(𝐸,𝑌 ) is strongly differentiable.248

Thus, we may conclude that entropy as a function of thermodynamic coordinates is

strongly and continuously differentiable.

Consequently, conjugate intensive variables (the so-called thermodynamic fields

→5.5) are all continuous functions of thermodynamic coordinates. In particular,

temperature and chemical potentials are continuous functions of thermodynamic co-

ordinates.249

13.8 The inverse function of a monotone decreasing convex function is

248Since we did not show previously that 𝑆(𝐸,𝑌 ) is strongly differentiable, we cannot use 13.4
(3).

249Here, the continuities here are shown only when the independent variables are the thermody-
namic coordinates or those with 𝐸 being replaced by 𝑆.
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also a monotone decreasing convex function

Let 𝑥 and 𝑦 be reals and 𝑦 = 𝑓(𝑥, 𝑍) be a convex function defined on 𝐶 ⊂ R× R𝑛.

Furthermore, we assume for each 𝑍 ∈ R𝑛 𝑓 is a strictly monotone decreasing function

of 𝑥 ∈ R (that is, 𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1, 𝑍) > 𝑓(𝑥2, 𝑍)). At each 𝑍 we can uniquely

solve 𝑦 = 𝑓(𝑥, 𝑍) for 𝑥, so we can define the function 𝑥 = 𝑔(𝑦, 𝑍) on (𝑦, 𝑍) ∈
𝑓(𝐶) × R𝑛. The resultant 𝑔 is convex. This assertion should be clear from the

following illustration Fig. 13.4:

x

y

Z

x

y

P

G

Figure 13.4: A strictly decreasing convex function with respect to one coordinate: Red dots
(green and purple dots also) are on the graph of the function (the yellow surface). Jensen’s inequality
is illustrated by the white dot above green dot 𝐺 or right of purple dot 𝑃 . The blue dots are on the
𝑦𝑍 hyperplane and the orange on the 𝑥𝑍-hyperplane. The essence may be exhausted by the right
diagram, exhibiting, “The inverse function of strictly decreasing convex function is also a strictly
decreasing convex function”; the graph seen along either arrow is convex.

13.9 Internal energy is convex

13.5 tells us that −𝑆 = −𝑆(𝐸,𝑌 ) is a convex function, and when 𝑌 is fixed, −𝑆
is strictly decreasing function of 𝐸, since its derivative is −1/𝑇 < 0. Therefore,

as shown in 13.8, 𝐸 is convex as a function of (−𝑆,𝑌 ). Thus,250 𝐸 = 𝐸(𝑆,𝑌 ) is

convex.

13.10 Internal energy minimization principle

Since 𝐸 is convex, combining systems I and II in equilibrium to make a new system

250For example, if 𝑦 = 𝑓(𝑥) is convex, then on the same region 𝑦 = 𝑓(−𝑥) (the mirror image with
respect to the plane perpendicular to 𝑥) is convex as well.
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S

E

Y

Figure 13.5: −𝑆 is a strictly decreasing convex function of 𝐸 when 𝑌 is fixed, so 𝐸 is a convex
function of (𝑆,𝑌 ).

(by relaxing some constraints between I and II), we have an analogous inequality

(i.e., Jensen’s inequality for 𝐸) as (13.6)

𝐸(𝜆𝑆1 + (1− 𝜆)𝑆2, 𝜆𝑌 1 + (1− 𝜆)𝑌 2) ≤ 𝜆𝐸(𝑆1,𝑌 1) + (1− 𝜆)𝐸(𝑆2,𝑌 2). (13.8)

In particular, if we apply a thermodynamic variation (→12.6), since 𝐸 is convex,

we have

𝛿𝐸 ≥ 0. (13.9)

This is a universal property of the internal energy of any equilibrium state under

any thermodynamic variation just as the counterpart for entropy already discussed

in 13.6.

13.11 Continuous strong differentiability of internal energy and entropy

We know 𝑆 is continuously (strong) differentiable with respect to the thermodynamic

coordinates (→13.7). An analogous argument shows that 𝐸 is continuously (strong)

differentiable with respect to 𝑆 and work coordinates.

Haven’t the conjugate variables of the work coordinates been introduced from

outside thermodynamics, due to the nonthermal macrophysics? Why, then, are their

properties constrained by thermodynamics? One way to understand the situation is

that thermodynamics does not alter the properties of conjugate variables, but the

systems that do not have continuous conjugate variables do not realize proper equilib-

rium states for which thermodynamics holds or some members of the thermodynamic

coordinates are not additive.
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14 Heat and entropy

14.1 Entropy: summary

Let us summarize the properties of entropy 𝑆.

(1) The thermodynamic space is foliated by strongly differentiable hypersurfaces de-

fined by reversible adiabatic accessibility (→11.7 for a summary) on which entropy

is constant.

(2) Entropy is a continuously (strongly) differentiable concave function of the inter-

nal energy and operational coordinates 𝑌 (→11.3). This implies that the internal

energy is a continuously (strongly) differentiable convex function of 𝑆 and 𝑌 (→??).

(3) If we add heat 𝑞 = 𝑑𝑄 quasistatically to the system under constant work coordi-

nates without material exchanges (that is, while keeping all the operational coordi-

nates constant), the system entropy changes by 𝑑𝑆 = 𝑑𝑄/𝑇 (→11.6). Consequently,

the differential form for the first law of thermodynamics may be written as Gibbs’

relation: 𝑑𝐸 = 𝑇𝑑𝑆 +
∑︀

𝑦𝑑𝑌 (→11.8).

(4) Planck’s principle implies that entropy can never decrease under adiabatic con-

ditions. This leads to the principle of increasing entropy 12.3.

14.2 Heat bath and heat exchange

A system is called a heat bath, if it is in thermal contact (→7.12) with a system and

is kept at a constant temperature (→8.8). Note, however, that even if a system is

in contact with a single heat bath, if there is no net exchange of heat with it, the

system is adiabatic.

If a heat bath of temperature 𝑇𝐵 exports energy 𝑄 (> 0) as heat, the entropy of

the heat bath decreases by 𝑄/𝑇𝐵:

∆𝑆bath = − 𝑄

𝑇𝐵

. (14.1)

If energy |𝑄| is released by the system to the heat bath, that is, if the system gains

heat 𝑄 (< 0) from the heat bath, the heat bath gains heat −𝑄 (> 0) from the

system, so (14.1) can always be used with the sign of 𝑄 understood algebraically.

14.3 The existence of intrinsic heat bath

Suppose a system is in equilibrium. Is there any heat bath that does not change the
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system state even when in thermal contact with it? In other words, is there always

a heat bath that is in thermal equilibrium with a given equilibrium system?

For a system in equilibrium, we can define its temperature. The concavity of en-

tropy and its differentiability implies temperature is a continuous quantity (→13.7),

so there must be a heat bath at the same temperature of a given system. Let us call

such a heat bath an intrinsic heat bath of the system. In particular, even if a system

is in thermal contact with its intrinsic heat bath, the system state does not change.

Even if the system is adiabatic before this thermal contact, its state does not change.

The existence of the intrinsic heat bath eloquently tells us that thermodynamic

equilibrium states cannot be described as a system described in terms of mechanics

and electrodynamics of the system alone in general.251

14.4 Clausius’ inequality

Suppose a system is in thermal contact with a heat bath of temperature 𝑇𝐵, and the

compound system consisting of the system and the heat bath as a whole is under

adiabatic conditions. If energy 𝑄 is transferred as heat from the heat bath to the

system and if the whole system reaches an equilibrium, (14.1) tells us that the total

entropy change ∆𝑆total is given by

∆𝑆total = ∆𝑆 − 𝑄

𝑇𝐵

, (14.2)

where ∆𝑆 is the system entropy change. Since the whole system is adiabatic, the

total entropy cannot decrease (the principle of increasing entropy→12.3), so we must

have ∆𝑆total ≥ 0. Consequently,

∆𝑆 ≥ 𝑄

𝑇𝐵

. (14.3)

This is called Clausius’ inequality. Here, note that the temperature in the inequality

is not the system temperature (though it is the final temperature of the system)

251Can a system in thermodynamic equilibrium be fully described solely in terms of pure mechan-
ics? Statistical mechanics assumes it is possible, but it is crucial for the reader to understand that
despite being called statistical “mechanics,” this framework does not actually rely on mechanics (be
it classical, quantum, or any other form). For instance, it does not require the fundamental element
of mechanics: equations of motion. From an empirical science perspective, it remains unknown
whether a many-body system truly follows mechanics.
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14.5 More general Clausius’ inequality

Suppose a system is in thermal contact with more than one heat bath and obtains

heat 𝑄𝑖 from heat bath 𝑖 at temperature 𝑇𝑖.
252 If the system and all the heat baths

are collectively under adiabatic conditions, the total entropy change may be written

as (cf. (14.2))

∆𝑆total = ∆𝑆 −
∑︁
𝑖

𝑄𝑖

𝑇𝑖

. (14.4)

During the process the system can do work as long as the whole system is adiabatic.

Again, the principle of increasing entropy (→12.3) implies

∆𝑆 ≥
∑︁
𝑖

𝑄𝑖

𝑇𝑖

. (14.5)

This is also called Clausius’ inequality. For the equality to hold, the heat exchange

with each heat bath must be quasistatic, so the system temperature must be adjusted

each time it exchanges heat with different heat baths (as in 15.1).

For any cycle for the system (a process whose intial and final system states are

identical), since entropy is a state quantity, (14.5) becomes

0 ≥
∑︁
𝑖

𝑄𝑖

𝑇𝑖

. (14.6)

The equation equivalent to this was derived by Clausius before he reached the entropy

concept (→A.13).

14.6 Heat capacity

For simplicity, let us consider a system with a single temperature in equilibrium.

We add heat 𝛿𝑄 reversibly and quasistatically (under a certain condition), and the

system temperature changes as 𝑇 → 𝑇 + 𝛿𝑇 . The proportionality constant 𝐶(𝑇 )

(which may depend on 𝑇 ) in the following formula:

𝛿𝑄 = 𝐶(𝑇 )𝛿𝑇 (14.7)

is called the heat capacity of the system (under a specific condition at temperature

𝑇 ).

252The contacts with various heat baths may be simultaneous, allowing heat transfer from a heat
bath to another via the system. What matters here is the total amount of heat (net heat) 𝑄𝑖 for
each bath 𝑖, which maintains equilibrium.
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There are many heat capacities under various conditions (e.g., under constant

volume). The condition ‘cond’ is attached as 𝐶𝑉 for the capacity under constant

volume condition.

The amount of required heat causing a uniform change in a system scales with

the system volume (or mass), so the heat capacity is an extensive quantity.

If heat is added reversibly (→14.10), then 𝛿𝑄 may be written in terms of entropy.

Therefore, generally we may write (if 𝑆 is differentiable with 𝑇 253)

𝐶cond(𝑇 ) = 𝑇

(︂
𝜕𝑆

𝜕𝑇

)︂
cond

. (14.8)

However, no entropy is needed to define the heat capacity.

14.7 The relation between internal energy and heat capacity

If we apply Gibbs’ relation to (14.8), generally, we have,

𝐶cond(𝑇 ) =

(︂
𝜕𝐸

𝜕𝑇

)︂
cond
−
∑︁
𝑖

𝑦𝑖

(︂
𝜕𝑌𝑖

𝜕𝑇

)︂
cond

. (14.9)

The chain rule gives (here, 𝑌 𝐶
𝑖 implies that only 𝑌𝑖 is removed from 𝑌 = {𝑌𝑖})254(︂

𝜕𝐸

𝜕𝑇

)︂
cond

=

(︂
𝜕𝐸

𝜕𝑇

)︂
𝑌

+
∑︁
𝑖

(︂
𝜕𝐸

𝜕𝑌𝑖

)︂
cond,𝑌 𝑐

𝑖

(︂
𝜕𝑌𝑖

𝜕𝑇

)︂
cond

, (14.10)

so we have255

𝐶cond(𝑇 ) =

(︂
𝜕𝐸

𝜕𝑇

)︂
𝑌

+
∑︁
𝑖

{︃(︂
𝜕𝐸

𝜕𝑌𝑖

)︂
cond,𝑌 𝑐

𝑖

− 𝑦𝑖

}︃(︂
𝜕𝑌𝑖

𝜕𝑇

)︂
cond

. (14.11)

If the thermodynamic coordinates are only 𝐸 and 𝑉 as for the ordinary gas,

(14.11) gives

𝐶𝑃 = 𝐶𝑉 +

{︂(︂
𝜕𝐸

𝜕𝑉

)︂
𝑃

+ 𝑃

}︂(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

. (14.12)

253Remember that the strong differentiability of 𝑆 is guranteed only for thermodynamic coordi-
nates (→13.7).

254If the condition includes some 𝑌𝑖, the derivative with ‘cond, 𝑌 𝑐
𝑖 ’ should be removed or set 0.

255Note that if the conventional chemical coordinates—the chemical composition variables �̃�—
are used as the usual thermodynamic textbooks, the corresponding formula becomes complicated.
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For an ideal gas (→11.13) the internal energy 𝐸 is a function of 𝑇 , and for 1

mole of an ideal gas 𝑃𝑉 = 𝑅𝑇 , so the above formula reduces to Mayer’s relation

(→14.8):

𝐶𝑃 = 𝐶𝑉 + 𝑅. (14.13)

Here, 𝐶𝑃 and 𝐶𝑉 are constant pressure and constant volume molar specific heat,

respectively.

14.8 Mayer’s relation

(14.13) was the relation used by Mayer to determine the work equivalent of heat

(→A.9). Needless to say, however, the relation was not derived with the aid of

thermodynamics, but by using Mayer’s cycle illustrated in Fig. 14.1. Here, one mole

of an ideal gas is used.

PV

Adiabatic free expansion

This portion is nonequilibrium, so 

the path is not on the PV surface.

Figure 14.1: Mayer’s cycle

Fig. 14.1 Mayer’s cycle consists of three processes: Reversible and quasistatic compression under

constant pressure 1, reversible and quasistatic heating under constant volume 2, and adiabatic free

expansion 3. Mayer knew Gay-Lussac’s ‘law of constant temperature’: no temperature changes

under adiabatic free expansion.

The gas does not do any work and adiabatic during Process 3 in Fig. 14.1, so

its internal energy is constant. During Process 1 the system is compressed under

constant pressure, and energy is obtained by the system as work::

𝑊 = 𝑃1(𝑉2 − 𝑉1) = 𝑅(𝑇2 − 𝑇1) > 0. (14.14)

During this process the system temperature goes down from 𝑇2 to 𝑇1 under constant

pressure so the system obtains negative heat 𝑄1:

𝑄1 = 𝐶𝑃 (𝑇1 − 𝑇2) < 0. (14.15)
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Process 2 is heating under constant volume, and the system absorbs heat 𝑄2:

𝑄2 = 𝐶𝑉 (𝑇2 − 𝑇1) > 0. (14.16)

After one cycle, the system must return to the original state, so the internal energy

must return to its original value:

𝑊 + 𝑄1 + 𝑄2 = 0 ⇒ 𝑅(𝑇2 − 𝑇1) + 𝐶𝑃 (𝑇1 − 𝑇2) + 𝐶𝑉 (𝑇2 − 𝑇1) = 0. (14.17)

Thus, Mayer’s relation (14.13) has been obtained.

𝑄1 + 𝑄2 may be thermally measured and 𝑊 can be mechanically obtained, so

the conversion factor of the unit of heat cal and unit of work J, that is, the work

equivalent of heat cal/J should be determined.

The data for Mayer’s original computation in 1842 were:

𝐶𝑃 = 0.267 cal/g·deg, the specific heat ratio 𝛾 = 𝐶𝑃/𝐶𝑉 = 1.421 and the thermal

expansion coefficient 𝛼 = 1/274 K−1 to compute the volume expansion.

From these values we can obtain cal/J=3.59. Get this number, using the gas of 1

cm3; Mayer adopted the mass of the 1 cm3 gas to be 0.0013 g, and the pressure to

be 1 atm: 𝑃 = 1033× 980 dyn/cm2 (Answer256).

14.9 “Emden’s problem”

Suppose a leaky room of volume 𝑉 is maintained at pressure 𝑃 as the outside. If air

is regarded as an ideal gas 𝑃𝑉 = 𝑁𝑅𝑇 , and 𝐸 = 𝑁𝐶𝑉 𝑇 hold, so the following ratio

is constant (the constant volume specific heat of diatomic ideal gas is 5𝑅/2):

𝐸/𝑃𝑉 = 𝐶𝑉 /𝑅 = 5/2. (14.22)

Since this ratio does not depend on temperature, the internal energy of the air in

the room is, as long as the air pressure does not change, constant even if the room

256Choose 𝑇2 − 𝑇1 = 1 deg.

𝑄1 = −0.0013× 0.267 = −0.0003471 cal, (14.18)

𝑄2 = 0.0013× 0.267/1.421 = 0.0002443 cal (14.19)

⇒ 𝑄2 −𝑄1 = 0.0001028 cal. (14.20)

On the other hand, the work is obtained as 𝑊 = 𝑃Δ𝑉 = 1033 × 980 × (1/274) = 3695 erg =
0.0003695 J, so the work equivalent of heat is given by

0.0003695 J = 0.0001028 cal ⇒ cal/J = 3695/1028 = 3.59. (14.21)

This should be 4.18, but the Mayer could not get very accurate source data.
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is heated.257

Even if the room is perfectly thermally insulated, the energy loss still occurs

with the air leaking from the room as a result of thermal expansion. If the room

temperature is 𝑇 , the number of moles 𝑁(𝑇 ) of air in the room is fixed by 𝑃𝑉 =

𝑁(𝑇 )𝑅𝑇 , so the heat 𝑑𝑄 needed for 𝑇 → 𝑇 + 𝑑𝑇 is given by

𝑑𝑄 = 𝑁(𝑇 )𝐶𝑃𝑑𝑇 =
𝑃𝑉 𝐶𝑃

𝑅𝑇
𝑑𝑇. (14.23)

Therefore, the required energy to warm the room from 𝑇1 to 𝑇2 is obtained as

𝑄 =

∫︁ 𝑇2

𝑇1

𝑑𝑇
𝑃𝑉 𝐶𝑃

𝑅𝑇
=

𝑃𝑉 𝐶𝑃

𝑅
log

𝑇2

𝑇1

= 𝐶𝑃𝑁0𝑇1 log
𝑇2

𝑇1

, (14.24)

where 𝑁0 is the initial amount of air in the room.

To warm the 𝑁0 mole air from 𝑇1 to 𝑇2, if the volume is constant, then the needed

heat is 𝑄𝑉 = 𝑁0𝐶𝑉 (𝑇2 − 𝑇1); if the pressure is constant, then the needed heat is

𝑄𝑃 = 𝑁0𝐶𝑃 (𝑇2− 𝑇1). What is the order of the magnitude of these needed heats?258

14.10 Reversible quasistatic and adiabatic process for ideal gas: Pois-

son’s relation

For reversible quasistatic and adiabatic processes an ideal gas satisfies 𝑃𝑉 𝛾 = con-

stant. This is called Poisson’s relation. Here, 𝛾 is the specific heat ratio as in 14.8:

𝛾 = 𝐶𝑃/𝐶𝑉 .

For an ideal gas 𝑑𝐸 = 𝐶𝑉 𝑑𝑇 under any condition (→11.13), so the 𝑃, 𝑉, 𝑇 -relation

in an adiabatic reversible and quasistatic process always satisfies

𝑑𝐸 = −𝑃𝑑𝑉 = 𝐶𝑉 𝑑𝑇 ⇒ 𝐶𝑉 𝑑𝑇 + 𝑃𝑑𝑉 = 0. (14.25)

257R. Emden, Why do we have winter heating? Nature 141, 908 (1938). Still, heating is costly
despite (14.22). Where is all the money gone? The original discussion focused on the reason why
the Earth does not heat up despite the Sun’s radiation, and concluded that it is due to radiation
emitted by the Earth.

258𝑄𝑉 < 𝑄 < 𝑄𝑃 . The second inequality is physically obvious. The first inequality maybe
understood as follows: Increase the temperature by 𝑑𝑇 under constant volume first. Then, to
reduce the pressure to the original value, increase the volume. This process does work, so the
temperature goes down. Therefore, to get the 𝑑𝑇 increase, we need a bit more energy. Thus, even
if we take the reduction of the total amount of air due to leakage into account, we need more energy
than the case of strictly constant volume.
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Combining this with the equation of state 𝑃𝑉 = 𝑅𝑇 , we get

𝐶𝑉 𝑑𝑇 + 𝑃𝑑𝑉 = 𝐶𝑉 𝑑

(︂
𝑃𝑉

𝑅

)︂
+ 𝑃𝑑𝑉 =

(︂
𝐶𝑉

𝑅
+ 1

)︂
𝑃𝑑𝑉 +

𝐶𝑉

𝑅
𝑉 𝑑𝑃. (14.26)

Then, use Mayer’s relation (14.13) and divide the result with 𝑃𝑉 :

𝐶𝑃𝑑 log 𝑉 + 𝐶𝑉 𝑑 log𝑃 = 0 ⇒ 𝑑 log𝑃 + 𝛾𝑑 log 𝑉 = 0. (14.27)

Integrating this, we obtain Poisson’s relation.

There should not be any entropy change before and after adiabatic, reversible and

quasistatic processes. Confirm this (Answer259).

14.11 Temperature-altitude relation

When air ascends, we may approximate its thermal phenomenon by adiabatic, re-

versible and quasistatic expansion. Approximating air as an ideal gas, find how

many degrees the air temperature goes down per 1 km ascending. This question is

equivalent to the following:

At altitude 𝑧 let the pressure, temperature and density, 𝑃 (𝑧), 𝑇 (𝑧), 𝜌(𝑧), respec-

tively. The average molecular weight of air is 𝑀 . Obtain 𝑑𝑇 (𝑧)/𝑑𝑧.

The molar volume is 𝑀/𝜌(𝑧), so the equation of state reads

𝑃 (𝑧)𝑀/𝜌(𝑧) = 𝑅𝑇 (𝑧). (14.29)

The force balance in the vertical direction for a horizontal disk of unit area with

thickness 𝑑𝑧 (Fig. 14.2)tells us

𝑃 (𝑧) + 𝑑𝑃 (𝑧) + 𝑔𝜌(𝑧)𝑑𝑧 = 𝑃 (𝑧). (14.30)

Therefore,
𝑑𝑃 (𝑧)

𝑑𝑧
= −𝜌(𝑧)𝑔. (14.31)

259The entropy of an ideal gas is given by its fundamental equation (11.26). Let us rewrite this
with the aid of Mayer’s relation (14.13) as:

𝑆 = 𝑆0 + 𝐶𝑉

[︂
log

𝐸

𝐸0
+ (𝛾 − 1) log

𝑉

𝑉0

]︂
. (14.28)

Poisson’s relation 𝑃𝑉 𝛾 with 𝑃 = 𝑅𝑇/𝑉 gives 𝑃𝑉 𝛾 ∝ (𝑇/𝑉 )𝑉 𝛾 = 𝑇𝑉 𝛾−1 = constant. For an ideal
gas 𝐸 ∝ 𝑇 (→(11.23)), so we get 𝐸𝑉 𝛾−1 = constant. Thus, (14.28) implies 𝑆 = 𝑆0.
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P( ) + dPz ( )z

P( )z
ρ( )z g

dz

dz

Figure 14.2: The force balance in the vertical direction for a horizontal disk of unit area with
thickness 𝑑𝑧

If we eliminate the density with the aid of the equation of state (14.29), we get

𝑑𝑃 (𝑧)

𝑑𝑧
= −𝑀𝑔

𝑃 (𝑧)

𝑅𝑇 (𝑧)
. (14.32)

We wish to have a differential equation for 𝑇 (𝑧), so we use 𝑃 (𝑇/𝑃 )𝛾 = 𝑃 1−𝛾𝑇 𝛾 =

constant obtained from Poisson’s relation 𝑃𝑉 𝛾(→14.10) and the equation of state

to write 𝑃 (𝑧) in terms of 𝑇 (𝑧). This relation gives (1 − 𝛾)𝑑𝑃/𝑃 + 𝛾𝑑𝑇/𝑇 = 0, so

(14.32) becomes

1

𝑃 (𝑧)

𝑑𝑃 (𝑧)

𝑑𝑧
= − 𝛾

1− 𝛾

1

𝑇 (𝑧)

𝑑𝑇 (𝑧)

𝑑𝑧
= −𝑀𝑔

1

𝑅𝑇 (𝑧)
. (14.33)

That is,
𝑑𝑇 (𝑧)

𝑑𝑧
= −𝑀𝑔(𝛾 − 1)

𝛾𝑅
. (14.34)

𝑀 = 29 g/mol, 𝛾 = 1.41, 𝑅 = 8.314× 107 erg/K, and 𝑔 = 980 cm/s2 give about

10 K/km.

14.12 Reversible and quasistatic heat exchange

For simplicity, let us assume that the heat capacity of the system is constant 𝐶. The

system has an initial temperature 𝑇 . It is placed in thermal contact with a heat

bath of temperature 𝑇𝐵 (> 𝑇 ), and the temperature changes from 𝑇 to 𝑇 + 𝛿𝑇 . Let

us also assume that the system is sufficiently small with good heat conductance and

that 𝛿𝑇 is sufficiently small. Then, there is no irreversible process inside the system

due to the inhomogeneity of the system temperature. The entropy change of the

system is given by

𝛿𝑆𝑆 =

∫︁ 𝑇+𝛿𝑇

𝑇

𝐶𝑑𝑇

𝑇
= 𝐶 log

𝑇 + 𝛿𝑇

𝑇
= 𝐶

[︃
𝛿𝑇

𝑇
− 1

2

(︂
𝛿𝑇

𝑇

)︂2

+ 𝑂[𝛿𝑇 3]

]︃
. (14.35)
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The heat bath loses energy 𝐶𝛿𝑇 as heat, so its entropy change is given by

𝛿𝑆𝐵 = −𝐶𝛿𝑇

𝑇𝐵

, (14.36)

since the heat bath temperature does not change. Therefore, the total entropy change

of the system + heat bath reads

𝛿𝑆 = 𝛿𝑆𝑆 + 𝛿𝑆𝐵 = 𝐶

(︂
1

𝑇
− 1

𝑇𝐵

)︂
𝛿𝑇 − 𝐶

2𝑇 2
𝛿𝑇 2 + 𝑂[𝛿𝑇 3]. (14.37)

Therefore, as long as 𝑇 ̸= 𝑇𝐵, however slowly the temperature is changed, still the

term first order in 𝛿𝑇 remains, so the total entropy increases. Actually, if 𝛿𝑇 > 0,

𝑇 < 𝑇𝐵 and if 𝛿𝑇 < 0, 𝑇 > 𝑇𝐵 (Clausius’ principle 8.3), the first term of (14.37) is

always positive unless 𝛿𝑇 = 0.

Consequently, only if 𝑇 = 𝑇𝐵, if the change is slow (is quasistatic), entropy does

not change.

By the way, isn’t (14.37) a bit odd? The term 𝛿𝑇 2 is negative, so as long as heat

transfer is quasistatic, can we reduce the total entropy of system + heat bath adia-

batically? This is ridiculous. Think (while hiding the footnote260) why we reached

such a conclusion.

14.13 Stepwise heat exchange

14.12 suggests that if we reduce the temperature difference between the two systems

in thermal contact, the increase of entropy is reduced. Suppose we wish to change

260The reason for this ridiculousness is due to the system temperature changes from 𝑇 = 𝑇𝐵 to
𝑇𝐵 → 𝑇𝐵 + 𝛿𝑇 ; irrespective of the sign of 𝛿𝑇 , the system in thermal contact with the heat bath
of temperature 𝑇𝐵 attains the temperature other than 𝑇𝐵 , violating Clausius’ principle. That is,
(if we wish to have 𝛿𝑇 > 0 or 𝛿𝑇 < 0) the temperature should be 𝑇𝐵 − 𝛿𝑇 → 𝑇𝐵 . For this change
(14.35) becomes

𝛿𝑆𝑆 =

∫︁ 𝑇𝐵

𝑇𝐵−𝛿𝑇

𝐶𝑑𝑇

𝑇
= −𝐶 log

𝑇𝐵 − 𝛿𝑇

𝑇𝐵
= 𝐶

[︃
𝛿𝑇

𝑇𝐵
+

1

2

(︂
𝛿𝑇

𝑇𝐵

)︂2

+𝑂[𝛿𝑇 3]

]︃
. (14.38)

Therefore, the total entropy change is, when 𝑇𝐵 = 𝑇 ,

𝛿𝑆 = 𝛿𝑆𝑆 + 𝛿𝑆𝐵 =
𝐶

2𝑇 2
𝐵

𝛿𝑇 2 +𝑂[𝛿𝑇 3] > 0. (14.39)

That is, just as the case of works (→3.11), if not performed quasistatically, even without temper-
ature difference entropy increases.
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the system temperature from 𝑇1 to 𝑇2 (> 𝑇1). This suggestion implies that the

entropy change due to the heat exchange by using a single heat bath of temperature

𝑇2 should be larger than that due to the heat exchange in two steps, first 𝑇1 → 𝑇𝑚

by using a heat bath of an intermediate temperature 𝑇𝑚 (𝑇1 < 𝑇𝑚 < 𝑇2), and then

𝑇𝑚 → 𝑇2 by using a heat bath of temperature 𝑇2. As long as 𝑇𝑚 ∈ (𝑇1, 𝑇2) the total

entropy change should be smaller. Is this true?

As 14.12 let us assume the system heat capacity 𝐶 is constant and it is in thermal

contact with a heat bath, but system + heat bath is isolated. First, the system

temperature is initially 𝑇1 and the heat bath is at temperature 𝑇𝑚. The total entropy

change is given by

∆𝑆 + ∆𝑆𝐵 =

∫︁ 𝑇𝑚

𝑇1

𝑑𝑇
𝐶

𝑇
− 𝐶(𝑇𝑚 − 𝑇1)

𝑇𝑚

= 𝐶 log
𝑇𝑚

𝑇1

− 𝐶
𝑇𝑚 − 𝑇1

𝑇𝑚

. (14.40)

In the second step, the initial system temperature is 𝑇𝑚 and the heat bath is at

temperature 𝑇2, so

∆𝑆 + ∆𝑆𝐵 = 𝐶 log
𝑇2

𝑇𝑚

− 𝐶
𝑇2 − 𝑇𝑚

𝑇2

. (14.41)

Therefore, the total entropy change due to two steps is

∆𝑆(2) = 𝐶 log
𝑇2

𝑇1

+ 𝐶

[︂(︂
𝑇1

𝑇𝑚

+
𝑇𝑚

𝑇2

)︂
− 2

]︂
. (14.42)

The total entropy change due to one step is

∆𝑆(1) = 𝐶 log
𝑇2

𝑇1

+ 𝐶

[︂(︂
𝑇1

𝑇2

)︂
− 1

]︂
= 𝐶 log

𝑇2

𝑇1

+ 𝐶

[︂(︂
𝑇1

𝑇2

+ 1

)︂
− 2

]︂
. (14.43)

Suppose 𝐴 and 𝐵 are positive numbers. Then the following function satisfies

𝑓(𝐴) = 𝑓(𝐵) and strictly convex (𝑓 ′′(𝑇 ) = 2𝐴/𝑇 3 > 0):

𝑓(𝑇 ) =
𝐴

𝑇
+

𝑇

𝐵
. (14.44)

Therefore, 𝑓(𝐴) = 𝑓(𝐵) > 𝑓(𝑇 ) for any 𝑇 between 𝐴 and 𝐵 (min 𝑓(𝑇 ) = 𝑓(
√
𝐴𝐵))

implies ∆𝑆(2) < ∆𝑆(1).

If we repeat this logic, as seen from (14.43), the term except for the log term

would asymptotically vanish in the many step limit. That is, if we prepare various

intermediate temperature heat baths, ultimately, we can change the system temper-

ature quasistatically at our will. This ‘ultimate situation’ can be well approximated

for fluid systems in a smart fashion (→14.14).
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14.14 Reversible and quasistatic heat exchange for fluid systems: rete

mirabile

For fluids, we can change its temperature reversibly; for example, by exchanging the

temperatures between two fluids as shown in Fig. 14.3.

Figure 14.3: Two fan-shaped containers are connected by thin flat tubes in the middle. The
containers have rotating adiabatic pistons and the two fluids do not mix. The thin tube is divided
by a diathermal membrane (denoted by a blue line) to realize the so-called countercurrent exchange.
The heat exchange becomes closer to quasistatic exchange if the tube becomes thinner. In this thin
limit, the right and the left portions of the figure exchange matter, but there is no heat exchange
at all, resulting reversible heat exchange between the two fluids.

A wiser method is to prepare numerous thin countercurrent exchange tubes and

connect the two containers with these tubes as in Fig. 14.4.

Such an ingenious mechanism cannot be ignored by organisms. Such a device

(organ) is called ‘rete mirabile’ (pl. retia mirabila). For example, for water fowls

retia mirabila in the legs and feet transfer heat from the outgoing (hot) blood in the

arteries to the incoming (cold) blood in the veins. The same mechanism is utilized

to maintain mammalian testes at low temperature (pampiniform plexus).261 Not

only heat but small ions and ATP exchange can use similar mechanisms (https:

//en.wikipedia.org/wiki/Rete_mirabile).

Lesson: Anything thermodynamics does not forbid may be realized.

14.15 Can we equate temperatures reversibly and quasistatically?

261cf. B. R. Robinson, J. K. Netherton, R. A. Ogle, and M. A. Baker, Testicular heat stress,
a historical perspective and two postulates for why male germ cells are heat sensitive, Biological
Review 98, 603 (2023).

https://en.wikipedia.org/wiki/Rete_mirabile
https://en.wikipedia.org/wiki/Rete_mirabile
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Figure 14.4: A schematic diagram of rete mirabile. If there is a mechanism to circulate fluid,
fluids can be exchanged forever while separating the temperatures of the both parts.

Two blocks with identical heat capacities 𝐶 are initially at temperature 𝑇1 and

𝑇2 (> 𝑇1), respectively. If we bring them to thermal contact while isolating the

whole system, they eventually reach a thermal equilibrium. The final temperature

is 𝑇𝑚 = (𝑇1 + 𝑇2)/2 according to the first law. Therefore, the total entropy change

is given by

∆𝑆 =

∫︁ 𝑇𝑚

𝑇1

𝐶𝑑𝑇

𝑇
+

∫︁ 𝑇𝑚

𝑇2

𝐶𝑑𝑇

𝑇
= 𝐶 log

𝑇𝑚

𝑇1

+ 𝐶 log
𝑇𝑚

𝑇2

= 2𝐶 log
𝑇𝑚√
𝑇1𝑇2

. (14.45)

Needless to say, (since − log 𝑥 is convex, due to Jensen’s inequality 13.3) 𝑇𝑚 =

(𝑇1 + 𝑇2)/2 >
√
𝑇1𝑇2, so ∆𝑆 > 0; the process is neither quasistatic nor reversible.

If the final temperature is
√
𝑇1𝑇2, there is no entropy change, so we may bring

the two blocks to the same temperature reversibly and quasistatically. However,

𝑇1 +𝑇2 > 2
√
𝑇1𝑇2 implies that the total energy of the blocks must be reduced. Since

the whole system is adiabatic, the internal energy must be reduced with a reversible

work.

That is, between two heat sources whose temperatures are initially 𝑇1 and 𝑇2, re-

spectively, we can operate a reversible engine (e.g., the Carnot engine A.8) (→15.1)

until the temperature difference of the two sources disappears to realize the above

situation. To check this explicitly may be a nice exercise of elementary thermody-

namics.
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15 Heat engine and heat pump

15.1 The efficiency of a reversible engine

A device that converts heat obtained from heat sources to work is called a heat

engine. Thomson’s principle 8.7 tells us that no engine works with only one heat

source. Therefore, the metaprinciple 8.4 tells us that with two heat sources at

different temperatures we can make a heat engine.

Suppose there are a high temperature heat source (→8.3) of temperature 𝑇𝐻 and

a low temperature heat source (→8.3) of temperature 𝑇𝐿 (< 𝑇𝐻). Consider a heat

engine that obtains heat 𝑄𝐻 from the high temperature heat source and 𝑄𝐿 from the

low temperature heat source to deliver work −𝑊 (> 0) (that is, the engine obtains

work 𝑊 < 0) during a single cycle. After one cycle the engine state returns to the

original state, so the internal energy of the engine does not change:

𝑊 + 𝑄𝐻 + 𝑄𝐿 = 0. (15.1)

To make a ‘lossless’ engine, according to the father and the son Carnot, the heat

exchange between the engine and heat source must be performed quasistatically

(→A.6-A.8), so the heat exchange must be done reversibly and quasistatically (i.e.,

isothermally →14.12). Due to the heat from the high-temperature heat source, the

entropy of the engine changes by

∆𝑆𝐻 =
𝑄𝐻

𝑇𝐻

. (15.2)

Similarly, due to the heat from the low-temperature heat source, the entropy of the

engine changes by

∆𝑆𝐿 =
𝑄𝐿

𝑇𝐿

. (15.3)

After the completion of a single cycle, the state of the engine returns to the original

state, so there must not be any change in state quantities, in particular, in the engine

entropy. Therefore,

0 = ∆𝑆𝐻 + ∆𝑆𝐿 =
𝑄𝐻

𝑇𝐻

+
𝑄𝐿

𝑇𝐿

. (15.4)

An ‘efficiency’ 𝜂 is always considered as the ratio of ‘gain’/‘expenditure,’ so for

an engine the expenditure is the heat 𝑄𝐻 we supply from the high-temperature
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heat bath (a furnace), and the gain is the work |𝑊 | engine produces. Notice that

𝑊 < 0, since the energy balance is considered from the engine-centered point of

view. Therefore, the efficiency of the engine is defined by

𝜂 =
|𝑊 |
𝑄𝐻

= − 𝑊

𝑄𝐻

. (15.5)

(15.1) implies

𝜂 = −𝑊/𝑄𝐻 = (𝑄𝐻 + 𝑄𝐿)/𝑄𝐻 = 1 + 𝑄𝐿/𝑄𝐻 . (15.6)

(15.4) gives

𝑄𝐿/𝑄𝐻 = −𝑇𝐿/𝑇𝐻 , (15.7)

so that we get the efficiency of the reversible engine:

𝜂 = 1− 𝑇𝐿/𝑇𝐻 . (15.8)

15.2 Carnot’s theorem: A reversible engine gives the efficiency upper

bound

Consider a general engine functioning between the two heat sources as in 15.1.

What is its efficiency? That the efficiency of the reversible engine is the maximum

is Carnot’s theorem (→A.8, which is equivalent to other second laws →8.13). To

demonstrate the theorem here we use Clausius’ inequality 14.4. If we remove the

reversibility condition, (15.2) and (15.3) become

∆𝑆𝐻 ≥
𝑄𝐻

𝑇𝐻

, ∆𝑆𝐿 ≥
𝑄𝐿

𝑇𝐿

. (15.9)

Except for this change, the remaining argument is the same as 15.1. The overall

change of entropy after one cycle is zero, so (15.4) is replaced by

0 = ∆𝑆𝐻 + ∆𝑆𝐿 ≥
𝑄𝐻

𝑇𝐻

+
𝑄𝐿

𝑇𝐿

. (15.10)

Now, (15.7) is, since 𝑄𝐻 is positive, replaced by

𝑄𝐿/𝑄𝐻 ≤ −𝑇𝐿/𝑇𝐻 . (15.11)

This implies Carnot’s theorem:

𝜂 = 1 + 𝑄𝐿/𝑄𝐻 ≤ 1− 𝑇𝐿/𝑇𝐻 . (15.12)
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15.3 Thermodynamic determination of absolute temperature scale

Absolute temperature is defined by (→(11.18))(︂
𝜕𝐸

𝜕𝑆

)︂
𝑌

= 𝑇. (15.13)

Usually, the concept of absolute temperature is associated with Thomson, but do

not forget that absolute temperature is essentially the temperature scale introduced

by Carnot far before entropy.

Carnot (and Clapeyron) clearly recognized that the efficiency of the heat engine

can be used as a thermometer. Especially, Carnot defined Θ(𝜃) (later called the

Carnot function) from the efficiency 𝛿𝜂 of the Carnot engine functioning between

two heat baths of empirical temperatures 𝜃 and 𝜃 − 𝛿𝜃:262 (𝛿𝜃 > 0)

𝛿𝜂

𝛿𝜃
=

1

Θ(𝜃)
. (15.14)

If absolute temperature 𝑇 is a strictly increasing function of empirical temperature

𝜃, (15.12) gives

𝛿𝜂 = 1− 𝑇 (𝜃 − 𝛿𝜃)

𝑇 (𝜃)
=

𝑇 ′(𝜃)

𝑇 (𝜃)
𝛿𝜃. (15.15)

That is,

Θ(𝜃) = 1

⧸︂
𝑑log 𝑇 (𝜃)

𝑑𝜃
(15.16)

It is convenient to use 𝜃 satisfying the equality Θ(𝜃) = 𝑇 (𝜃). If this is required,

(15.16) becomes Θ′(𝜃) = 1, so this is equivalent to demanding 𝜃 = Θ = 𝑇 . This was

emphasized much later by Thomson: this relation allows us to define temperature

solely by the principle of thermodynamics independent of particular materials such

as mercury or ethanol.

𝑇 already appeared in the equation of state of an ideal gas. Let us demonstrate

this 𝑇 is indeed the thermodynamically defined absolute temperature 𝑇 defined by

(15.13) (→11.6)

262𝛿𝜂 = 1− (𝑇 − 𝛿𝑇 )/𝑇 = 𝛿𝑇/𝑇 = 𝛿 log 𝑇 .



15. HEAT ENGINE AND HEAT PUMP 151

15.4 𝑇 in the ideal gas equation of state is absolute temperature

Carnot conceived the following reversible engine that uses (1 mole of) an ideal gas

as its working substance (Fig. 15.1):

(i) The engine does work through expansion while absorbing heat from the high

temperature heat source (at 𝑇𝐻) (A→B in Fig. 15.1).

(ii) Then, it continues to expand while doing work and cools from 𝑇𝐻 to 𝑇𝐿 (B→C).

Notice that this portion was Watt’s novelty in his engine appreciated highly by

Carnot as noted in A.4.

(iii) Next, the engine volume isothermally shrinks (i.e., the engine is done some pos-

itive work) while discarding heat to the low temperature heat source at 𝑇𝐿 (C→D).

(iv) Finally, the system is compressed adiabatically (the engine is done some positive

work as well) and its temperature goes up from 𝑇𝐿 to the original 𝑇𝐻 (D→A).

P

V

A

B

C

D

T

T

H

L

Figure 15.1: The Carnot cycle: AB and CD are quasistatic isothermal processes, and BC and DA
are quasistatic adiabatic processes. The working substance is an ideal gas, so during the isothermal
process its internal energy is constant. This implies that during isothermal processes the work the
system does (or is done to the system) and the heat it absorbs (or it discards) must be identical.

The work added to the system (= the engine) is given by (note that 𝑊 < 0, since

the engine gives us work |𝑊 |)

𝑊 = −
∮︁
ABCDA

𝑃𝑑𝑉 (15.17)

That is, the work |𝑊 | done by the engine per cycle is given by the area enclosed by

the figure in Fig. 15.1.

During the isothermal process A→B the engine does work, but the internal energy
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of the ideal gas does not change without temperature change (→(11.23)). Therefore,

this work must be supported by the heat 𝑄𝐻 absorbed from the heat bath at tem-

perature 𝑇𝐻 . Therefore,

𝑄𝐻 =

∫︁
A→B

𝑃𝑑𝑉 =

∫︁
A→B

𝑅𝑇𝐻

𝑉
𝑑𝑉 = 𝑅𝑇𝐻 log

𝑉𝐵

𝑉𝐴

> 0. (15.18)

According to the similar logic, the heat |𝑄𝐿| released to the low temperature heat

bath (the system absorbs heat 𝑄𝐿 (< 0)) during the isothermal process C→D must

be the same as the work done to the system:

|𝑄𝐿| = −
∫︁
C→D

𝑃𝑑𝑉 =

∫︁
C→D

𝑅𝑇𝐿

𝑉
𝑑𝑉 = 𝑅𝑇𝐿 log

𝑉𝐶

𝑉𝐷

. (15.19)

To relate these two heats we need the volume relations during the reversible

adiabatic process. From Poisson’s relation (→14.10) 𝑃𝑉 𝛾 = constant, so we see

𝑇𝑉 𝛾−1 = constant. Therefore, we have 𝑇𝐻𝑉
𝛾−1

A = 𝑇𝐿𝑉
𝛾−1

D and 𝑇𝐻𝑉
𝛾−1

B = 𝑇𝐿𝑉
𝛾−1

C .

Thus, 𝑇𝐻/𝑇𝐿 = 𝑉 𝛾−1

D /𝑉 𝛾−1

A = 𝑉 𝛾−1

C /𝑉 𝛾−1

B , that is, 𝑉B/𝑉A = 𝑉C/𝑉D holds, since

𝛾 > 1. Using this relation in (15.18) and (15.19), we obtain (15.4). The remaining

argument is just as in 15.1 and we obtain (15.8). Hence, 𝑇 in the ideal gas equation

of state is the thermodynamic absolute temperature.

15.5 The efficiency of reversible engine with more than two heat sources

For a reversible engine working with heat 𝑄𝑖 supplied by the 𝑖-th heat bath of tem-

perature 𝑇𝑖 there is no entropy change for a cycle, so the general Clausius’ equality

(→14.5) holds: ∑︁
𝑖

𝑄𝑖

𝑇𝑖

= 0. (15.20)

To be clear, if 𝑄𝑖 > 0 (resp., 𝑄𝑖 < 0), then 𝑄𝑖 will be marked with + (resp., with −)

as 𝑄+
𝑖 (resp., 𝑄−

𝑖 ). Then, (15.20) reads∑︁
+𝑖

𝑄+
𝑖

𝑇𝑖

+
∑︁
−𝑖

𝑄−
𝑖

𝑇𝑖

= 0. (15.21)

Now, let us replace the temperatures of the heat source supplying + heat with the

highest temperature 𝑇max among the temperatures of the heat baths. We get∑︁
+𝑖

𝑄+
𝑖

𝑇𝑖

≥
∑︀

+𝑖 𝑄
+
𝑖

𝑇max
, (15.22)
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Similarly, let us replace the temperatures of the heat source supplying − heat with

the lowest temperature 𝑇min. We get (since 𝑄−
𝑖 < 0)

∑︁
−𝑖

𝑄−
𝑖

𝑇𝑖

≥
∑︀

−𝑖 𝑄
−
𝑖

𝑇min
. (15.23)

Adding these two inequalities and write 𝑄± =
∑︀

𝑄±
𝑖 . (15.20) implies

𝑄+

𝑇max
+

𝑄−

𝑇min
≤ 0. (15.24)

Notice that this inequality has the same structure as (15.10).

The conservation of energy implies 𝑊 +𝑄++𝑄− = 0. The efficiency of the engine

𝜂 should be defined as work/total expenditure, so its calculation becomes exactly the

same as the calculation of the efficiency of an engine working with two heat sources:

𝜂 =
𝑊

𝑄+
≤ 1− 𝑇min

𝑇max
. (15.25)

“More general” Carnot’s theorem263 The proof of Carnot’s theorem in 15.2 requires,

strictly speaking, equilibration of the engine after every cycle. To remove (or reduce the

effect of) this restriction, we may use 𝑛 (≫ 1) cycles as a single cycle. Furthermore, during

this long operation of an engine, the source temperatures need not be constant. Note that

this variable source temperature problem can be cast as the many heat source problem just

discussed (→15.5), so the available max and min temperatures are written 𝑇𝐻 and 𝑇𝐿,

respectively, and the overall efficiency is given by (15.25).

263This is emphasized by H Tasaki in an Appendix of his Thermodynamics.
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16 Equilibria between two systems

16.1 Equilibrium condition between two systems

Let us prepare two systems I and II whose equilibrium states may be expressed

in terms of an identical set of thermodynamic coordinates (𝐸,𝑌 ). Assume that

these two systems as a whole are isolated and in contact with each other through

various walls (= various boundary conditions). Allow the exchange of an operational

coordinate between I and II. Then, the entropy of I + II cannot be less than the

sum of the original entropies before coming into contact according to the principle

of increasing entropy (→12.3):

𝑆I+II ≥ 𝑆I + 𝑆II. (16.1)

In particular, the entropy maximization principle 12.4 implies that after reaching

the new equilibrium state 𝑆I+II must be maximized for the exchanged coordinate.

This is the most general equilibrium condition.

−𝑆I+II is (substantially →13.1 footnote) convex, so its minimum is unique and

global. Thus, the local maximum of 𝑆I+II is global, and the max value is unique.

However, the max value may not be given by the extremal value of 𝑆I+II. There-

fore, for example, if an operational coordinate 𝑌 is exchanged between I and II, and

if Gibbs’ relation is

𝑑𝑆 =
1

𝑇
𝑑𝐸 − 𝑦1

𝑇
𝑑𝑌1 − · · · −

𝑦

𝑇
𝑑𝑌 − · · · , (16.2)

the equilibrium condition need not be obtained from the extremal principle:264

𝜕

𝜕𝑌I
𝑆I −

𝜕

𝜕𝑌II
𝑆II = 0 (16.3)

or the identity 𝑦I/𝑇I = 𝑦II/𝑇II. For each thermodynamic coordinate, we must check

whether (16.3) is admissible.

16.2 Equilibrium due to thermal contact

Let us consider the case where only 𝐸 can be exchanged among the thermodynamic

264As noted already, we allow chemical reactions to occur.
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coordinates (𝐸,𝑌 ).265 This implies that only heat exchange can occur between I

and II (or, I and II are in thermal contact →7.12). (16.1) becomes

𝑆I+II(𝐸) ≥ 𝑆I(𝐸I) + 𝑆II(𝐸 − 𝐸I), (16.4)

and the 𝐸I that maximizes the right-hand side gives the equilibrium condition. How-

ever, whether the condition is an extremal condition or not is not automatically clear.

Temperature is defined so that (1) the temperatures of two systems in thermal

contact are equal if and only if they are in thermal equilibrium (→7.12), and that (2)

the ‘high’ or ‘low’ of temperature is defined consistently with the direction of heat flow

(consistent with Clausius’ principle 8.3) (→11.6). Therefore, in particular, thermal

equilibrium is equivalent to temperature equilibrium (equality), so (→11.11)(︂
𝜕𝑆I(𝐸I)

𝜕𝐸I

)︂
𝑌 I

+

(︂
𝜕𝑆II(𝐸 − 𝐸I)

𝜕𝐸I

)︂
𝑌 II

=
1

𝑇I
− 1

𝑇II
(16.5)

must vanish in thermal equilibrium. That is, the thermal equilibrium condition is

an extremal condition.

Note that the equality of temperature is not the consequence of the entropy maxi-

mization principle (→12.4). The logic is the other way around: the fact that thermal

equilibrium is the temperature equality (and the concavity of entropy) implies that

the entropy is extremized in thermal equilibrium. Thus, we may say that the thermal

equilibrium condition may be written as a principle for entropy, but it is not derived

from the requirement for entropy.

16.3 Infimal convolution
When a certain thermodynamic coordinate is exchanged between two systems, the entropy
after reaching equilibrium between the two systems is determined by the principle of max-
imizing entropy (→12.4). The entropy of the compound system thus formed is again a
concave function, if coordinates are additive (not merely partition additive →2.13).

265Needless to say, the chemical equilibria shift, so the chemical composition of the system cannot
be fixed, generally speaking. Therefore, with the conventional choice of the chemical coordinates as
in most text books, changing 𝐸 while fixing all the thermodynamic coordinates is generally impos-
sible. Thus, for example in the chemical thermodynamics book by Kirkwood and Oppenheim, no
chemical reaction is permitted when Gibbs’ relation is discussed. Furthermore, reactions are halted
when partial derivatives with respect to the ordinary thermodynamic coordinates are computed to
avoid mathematical difficulties of keeping chemical composition variables constant. After entropy
maximization with frozen reactions, do they allow reactions to proceed? Then, the states of I and
II change, so the equilibrium temperature would also change. Thus, do they discuss iterative way
to determine the equilibrium condition?



156

The general theorem behind this fact is the theorem of infimal convolution.
Let 𝑓 and 𝑔 be convex functions: R𝑛 → R. Then, the following construction

ℎ(𝑥) = inf
𝑥=𝑥1+𝑥2

[𝑓(𝑥1) + 𝑔(𝑥2)] ≡ (𝑓 � 𝑔)(𝑥) (16.6)

is called infimal convolution. The resultant function is also convex.
[Demonstration] Let us demonstrate Jensen’s inequality (→13.3) directly:

𝜆ℎ(𝑥) + (1− 𝜆)ℎ(𝑥′) = 𝜆 inf
𝑥=𝑥1+𝑥2

[𝑓(𝑥1) + 𝑔(𝑥2)] + (1− 𝜆) inf
𝑥′=𝑥′

1+𝑥′
2

[𝑓(𝑥′
1) + 𝑔(𝑥′

2)]

= inf
𝑥=𝑥1+𝑥2,𝑥′=𝑥′

1+𝑥′
2

{𝜆[𝑓(𝑥1) + 𝑔(𝑥2)] + (1− 𝜆)[𝑓(𝑥′
1) + 𝑔(𝑥′

2)]}

= inf
𝑥=𝑥1+𝑥2,𝑥′=𝑥′

1+𝑥′
2

{[𝜆𝑓(𝑥1) + (1− 𝜆)𝑓(𝑥′
1)] + [𝜆𝑔(𝑥2) + (1− 𝜆)𝑔(𝑥′

2)]}

≥ inf
𝑥=𝑥1+𝑥2,𝑥′=𝑥′

1+𝑥′
2

[𝑓(𝜆𝑥1 + (1− 𝜆)𝑥′
1) + 𝑔(𝜆𝑥2 + (1− 𝜆)𝑥′

2)]

(16.7)

≥ inf
𝜆𝑥+(1−𝜆)𝑥′=𝜆(𝑥1+𝑥2)+(1−𝜆)(𝑥′

1+𝑥′
2)
[𝑓(𝜆𝑥1 + (1− 𝜆)𝑥′

1) + 𝑔(𝜆𝑥2 + (1− 𝜆)𝑥′
2)]

(16.8)

= ℎ(𝜆𝑥+ (1− 𝜆)𝑥′). (16.9)

Here, in (16.8) note that fixing 𝑥 and 𝑥′ independently is conditionally more constrained
than fixing 𝜆𝑥+ (1− 𝜆)𝑥′.

16.4 Equilibrium states attained through work coordinate exchanges

The equilibrium of the resultant compound system realized through exchange of

work coordinates between systems I and II has the entropy obtained by infimal

convolution (→16.3, because −𝑆 is convex). For example (→16.1) (here, only one

work coordinate 𝑋 and internal energy 𝐸 are explicitly written; other operational

coordinates are all fixed)

𝑆(𝐸,𝑋) = sup
𝑋=𝑋I+𝑋II

[𝑆I(𝐸I, 𝑋I) + 𝑆II(𝐸II, 𝑋II)] (16.10)

is automatically concave. However, the condition sup need not be realized by an

extremal condition. As noted already in 16.1, this depends on the domain of the

entropy function, so there is no general theory as we will see in 16.6.

If the max condition can be obtained from the extremal condition, the equilibrium

condition reads (︂
𝜕𝑆I
𝜕𝑋I

)︂
𝑋𝑐

I

+

(︂
𝜕𝑆II
𝜕𝑋II

)︂
𝑋𝑐

II

=
𝑥I
𝑇I
− 𝑥II

𝑇II
, (16.11)

where 𝑋𝑐 means to remove 𝑋 from the totality of the operational coordinates 𝑌 .
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16.5 Equilibrium states attained through contacts allowing chemical ex-

changes

Let us keep 𝐸 and the operational coordinates 𝑌 other than the mole number 𝑁 of

one chemical, and exchange only this chemical substance between two systems I and

II to obtain a new equilibrium. Assume the two systems as a whole is materially

closed for simplicity:

𝑆(𝐸,𝑁,𝑌 ∖𝑁) = sup
𝑁I+𝑁II=𝑁

[𝑆I(𝐸,𝑁I,𝑌 I ∖𝑁I) + 𝑆II(𝐸,𝑁II,𝑌 II ∖𝑁II)]. (16.12)

Here, 𝑁 and 𝑌 on the left-hand side are given by the sum of 𝑁I, 𝑁II and 𝑌 I,𝑌 II,

respectively. The actual material exchange process may be imagined as illustrated

here (Fig. 16.1):

Nδ

selective membranes

I II

Figure 16.1: The two systems are connected via selective membranes allowing only the designated
chemical to go through. The central connecting portion is not needed, but is here to clearly show
that only the target component is exchanged.

To begin with, let us recall what happens if a chemical is introduced by a small

amount 𝛿𝑁 into the system. Note that the reactions do not contribute any energy

change near equilibrium. That is, the case with reactions is exactly the same as the

case without reactions, although the actual changes of the chemical components may

be different.

Now, let us consider the exchange of a chemical between two systems I and II as

illustrated in Fig. 16.1. It is clear at each end of the connecting ‘pipe’, the situation is

exactly as we considered above. Therefore, the chemical potential of this compound

must agree between I and II. Thus,(︂
𝜕𝑆I
𝜕𝑁𝑖I

)︂
𝐸I,𝑋I,𝑁

𝑖
I

+

(︂
𝜕𝑆II(𝑁𝑖 −𝑁𝑖I)

𝜕𝑁𝑖I

)︂
𝐸II,𝑋II,𝑁

𝑖
II

=
𝜇𝑖I

𝑇I
− 𝜇𝑖II

𝑇II
, (16.13)

where 𝑖 implies to remove 𝑁𝑖.
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16.6 Pressure equilibrium

If two systems interact through a wall that allows exchange of volume (that is,

through a movable piston) only, and if there is no restriction for the range of the

wall (except for the nonnegativity of the volumes), (16.3) becomes(︂
𝜕𝑆I
𝜕𝑉I

)︂
𝑋I∖𝑉I,𝑁 I

=

(︂
𝜕𝑆II
𝜕𝑉II

)︂
𝑋II∖𝑉II,𝑁 II

(16.14)

This implies
𝑃II
𝑇I

=
𝑃II
𝑇II

. (16.15)

If the wall is not adiabatic, this means that the pressures must agree.

However, in this case it is easy to restrict the range of the volume; we have only to

place stoppers for the piston (Fig. 16.2). Needless to say, the agreement of 𝑃/𝑇 does

not hold. Still, the total entropy is maximized under the presence of stoppers.266,267

The value is not extremum, but is on the boundary of the domain of the volume

variable.

3P P 2P 2P

3P P 2.4P 1.6P

stoppers

Figure 16.2: Pressure equilibria of ideal gases with and without stoppers; the red wall is movable
and diathermal. In both cases, the entropy is maximized under the conditions.

266Even in this case we can directly apply infimal convolution (→13.2). The reader might be
worried about the range of the variables, but there is no difficulty, if we redefine our convex function
𝑓 whose domain is 𝐶 as a convex function 𝑓 whose domain has no boundary but 𝑓 = +∞ outside
𝐶 (the standard choice in convex analysis as noted in the footnote of 13.1).

267Complication due to dry friction: If there is dry friction between the piston and the cylinder,
it is hard to determine the final position of the piston. Therefore, the final equilibrium states are
not unique. In this case, can we control the final state precisely by fine-tuning the initial condition?
Since the mechanism of dry friction is rather microscopic, the author is pessimistic.
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It seems to be possible to ‘impose stoppers’ to work coordinates. This is quite

different from the heat exchange.268

16.7 Adiabatic piston

Consider an adiabatic box with an adiabatic piston as illustrated in Fig. 16.3.

adiabatic wall

I II

Figure 16.3: An adiabatic box equipped with an adiabatic piston (blue)

Suppose, for example, System II is initially at a higher pressure than System I.

Releasing the piston, we wait for a long time. What is the eventually reached equi-

librium state?

To determine the states of the system, we must determine all the thermodynamic

coordinates of both systems. If both the boxes are filled with gases, we must deter-

mine the following four extensive variables: 𝐸I, 𝐸II, 𝑉I, and 𝑉II. The sum of internal

energies and volumes are conserved. Furthermore, the pressures must be identical.

Thus, we have three equalities. With one more equation, the states are completely

determined. The relation may be a relation holding for System I only (for example,

the gas in I undergoes a polytrope change269).

If we perform the experiment reversibly and quasistatically, then the total entropy

must also be preserved, so the final equilibrium state must be unique. For example

for an ideal gas, Poisson’s relation uniquely determine the final temperatures and

the piston position.

What happens, then, if the process is not quasistatic? Since the process is not

quasistatic, dissipations of kinetic energy must occur in the systems. The details

268Generally speaking, it seems very hard to invent stoppers for extensive quantities whose ex-
changes are due to accumulations of ‘microscopic exchanges.’ That is, to invent (macroscopic)
stoppers for materials coordinates seems almost impossible.

269A polytropic process is a process for which 𝑃𝑉 𝑛 is constant for some 𝑛 > 0. This is used to
approximately describe various actual processes. The final state depends on 𝑛; This implies that
the final equilibrium state depends sensitively to the actual process.
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of the process, such as friction between the piston and the wall, determine how the

kinetic energy is distributed between I and II, making the resultant equilibrium state

an open set in ℰ .

For example, if there is no friction at all between the piston and the walls, the

piston starts to oscillate, and irreversible expansions and compressions of the gases

occur. Thus, the kinetic energy is distributed to I and II through heating of the

gases. In general, however, there is a friction between the piston and the wall, so

heat is also generated at the piston-wall contact as well. This depends on the details

of the piston and the wall, and we must also consider how the generated heat is

distributed between I and II. Thus, even macroscopically many different outcomes

can occur, so the resultant equilibrium state cannot be unique.270

270We can make examples like the adiabatic piston for many other situations. For example,.
consider an adiabatic wall allowing the exchange of chemical B. Assume for simplicity the volume
do not change. If we can determine 𝐸 and 𝑁B the states are determined. There are four quantities
we must determine for the two systems. The total energy and the total amount of B are fixed
without chemical reaction. Furthermore, the chemical potential of B must agree. We have three
relations. We must worry about the method to transfer 𝐵 between the two systems; there can be
numerous different ways.
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17 Mixing entropy

17.1 Review: Open systems and closed systems

Up to this point for simple and compound systems, the usual electromagnetic/mechanical

works and the chemical works are treated basically without much distinction. How-

ever, we already know chemical coordinates are not as simple as the usual work

coordinates (esp.,see Section 5).

A system is said to be closed, if it does not exchange any material with its environ-

ment. In conventional thermodynamics, closed systems are first considered, and then

the so-called mass action 𝑍 (= 𝜁 in 4.13) due to materials exchange is taken into

account. The conservation law of energy (the so-called first law →7.14) is extended

to include the 𝑍 term:

∆𝐸 = 𝑄 + 𝑊 + 𝑍. (17.1)

Based on this equation the thermodynamics of open systems is developed tradition-

ally. That is, once the ‘first law’ is generalized as (17.1), the thermodynamics of

open systems is constructed without any new empirical facts or principles.

However, since thermodynamics is a phenomenology, clear supporting empirical

statements are desirable that the general theory of open systems based on (17.1) can

be constructed even if chemical reactions occur.

This book attempts to minimize the deviation from conventional textbooks while

correcting them. Still, it is worth noting that chemistry is not straightforward. For

the convenience of those who may have avoided chemistry until this point, an ex-

planation of how to choose chemical coordinates and their controllability will be

repeated.

17.2 Amount of materials as thermodynamic coordinates

The conservation of energy may be assumed to hold as (17.1), but what about the

second law? Does it remain intact even with chemical coordinates? Since thermody-

namics began with the study of the relationship between heat and work, the second

law more or less explicitly mentions work and work coordinates, but chemical coor-

dinates and chemical energy are not mentioned until open systems are considered.

The problem we must consider is whether we may handle the work coordinates

and the chemical coordinates as the quantities of the same nature. Heat and work

are, even if energetically their amounts are the same, thermodynamically fundamen-
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tally different quantities (→A.10, 8.3). How about chemical work (mass action)

thermodynamically?

To assert that work coordinates and chemical coordinates are the quantities of

the same nature, we must verify that no constraints as stated by the second law is

imposed on the mutual conversion of work and chemical coordinates [or, if we adopt

Clausius’ expression (→A.11), without any compensation].

17.3 What is the meaning of non-existence of restrictions due to the sec-

ond law?

Let us review the relationship between heat and work: According to Mayer and

Joule, we can convert work 𝑊 to heat 𝑄 at temperature 𝑇 (without any other trace)

(→7.14). Then, we cannot restore 𝑊 from the resultant heat 𝑄 to restore the origi-

nal ‘world’ state as shown by Carnot [We must consume a part of 𝑄 for compensation

(→A.11; Fig. 17.1 I)].271

Q Q q

wW

W

U U

W

W W

Z Z ZZ

I

II

III

‘‘

Figure 17.1: Possible constraints due to the second principle: 𝑄, 𝑞 (< 𝑄) heats; 𝑊 , 𝑤 (< 𝑊 ):
works; 𝑈 : potential energy; 𝑍, 𝑍 ′: chemicals (the so-called mass actions). For all cases the state
of the device denoted by a circle must return to the original state after the process.

In contrast, there is no such restriction on the relationship between mechanical

potential energy and work (without any friction and all the processes must be qua-

sistatic; Fig. 17.1 II). If work 𝑊 is converted to the potential energy 𝑈 , it is possible

to convert 𝑈 to work 𝑊 exactly without leaving any trace other than, e.g., lowering

271Needless to say, we can convert heat 100% to work utilizing an isothermal expansion process
of a gas, but in this case the gas changes its volume, so it is not without trace as illustrated in 8.7.
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the weight; this is the meaning of ‘without the restriction imposed by the second law

[i.e., no compensation in Clausius’ sense (→A.11) is required].

Needless to say, the 𝑈 -𝑊 relation is an empirical fact established in macroscopic

mechanics and/or electromagnetism.

How about chemical energy 𝑍 and work 𝑊? Is there any restriction imposed by

the second law or something similar? To convert chemical energy carried by chem-

ical compounds, usually, material exchange is inevitable, although all the reactions

may happen in a closed system. Here, the circles in Fig. 17.1 denote ‘converters’

(an engine, a motor, etc.), In the conversion between 𝑊 and 𝑍 the device may be a

(reversible) electric cell, so 𝑊 may be electric potential energy. ‘Chemical fuel’ with

the energy 𝑍 is introduced and then ‘chemical exhaust’ 𝑍 ′ is discarded (𝑊 = 𝑍−𝑍 ′).

We must establish the 𝑊 -𝑍 relation empirically as well: switching the exhaust

𝑍 ′ and the fuel 𝑍, ‘W’ can ‘restore’ the fuel perfectly. To study this what kind of

experiments should we perform? Perhaps, the most effective experiments are electro-

chemical experiments, using electric cells. The importance of electrochemistry is not

only because of recent practical applications, but also from a fundamental science

point of view.

In essence, the reversible relation between electric cell reactions and electrolytic

reactions demonstrates the equivalence of chemical work and ordinary work.272

In summary, it is empirically justified to extend Thomson’s principle 8.7 and

Planck’s principle 8.5 to versions that include not only ordinary works but also gen-

eralized works, such as chemical works. Work coordinates and chemical coordinates

(more precisely, materials coordinates) can be considered thermodynamic coordi-

nates (and are collectively referred to as operational coordinates). Our second laws

have already been extended to cover chemical reactions273 (Section 8).

17.4 Why the conventional chemical thermodynamics is not logical

As noted in 17.2, the conventional approach is to complete the thermodynamics

without any chemical reaction and then graft chemistry to it. For this approach

to be admissible, the basic principles of thermodynamics, especially the second law,

must also apply to chemical reactions. Unfortunately, however, Thomson’s principle

and Planck’s principle must be augmented to this end. If the work-chemical work

272As already seen inA.16 the establishment of the first law and this observation was intertwined.
273However, as emphasized repeatedly, do not forget that the changes of chemical coordinates

must be handled with care.
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equivalence (→17.3) is explicitly stated, we do not need to revise Thomson’s prin-

ciple. However, for Planck’s principle (→8.5), the fundamental difference between

the work coordinates and chemical composition variables (→4.9) must be taken into

account as in 8.5.

Clausius’ principle (→8.3) remains unchanged even with chemical reactions. This

is because the principle retains the same form in any restricted world (say, the world

where chemical reactions are forbidden). Thus, even if Planck’s principle can derive

Clausius’ principle, this proof is in the world where a particular version of Planck’s

principle holds, e.g., in a world where chemical reactions are prohibited.

The construction of the foliations of the thermodynamic space requires a princi-

ple equivalent to Planck’s principle. Therefore, to construct entropy that can cover

chemical reactions, it must be based on Planck’s principle revised to include chemical

reactions explicitly (→8.5).

If chemical changes are prevented, then for a given system the internal energy

and the work coordinates cannot generally be altered in the world where chemical

reactions occurs.

Therefore, to incorporate chemical reactions into a thermodynamic system, the

entropy of this thermodynamic system must be constructed in the world where chem-

ical reactions are permitted.

Thus, the ‘rootstock’ for chemical thermodynamics must be specially prepared

to graft chemistry; chemical reactions should be incorporated into thermodynam-

ics from the beginning. See 4.16 about the problems of the conventional chemical

thermodynamics.

17.5 Selectively permeable membrane and mass action

There are numerous distinct materials (chemicals). We must assume that we can

distinguish them, since they are considered distinct. While distinguishing distinct

chemicals is the job of chemistry, in thermodynamics, we must assume that we can

(at least in principle) specify the chemicals that may be exchanged between the

system and its environment. This assumption is equivalent to the one that we can

specify the properties of the walls enclosing the system accordingly.

The idealized device that enables this procedure is the selectively permeable mem-

brane (henceforth, selective membrane to be short), which allows only a specified set

of chemicals to be exchanged across it. In principle, it can distinguish stereoisomers
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and isotope-replaced compounds.274 The amount of a compound may be measured

in any manner, but it is convenient to use mole numbers to describe chemical reac-

tions. Therefore, unless stated otherwise, mole numbers will be used to describe the

amount of a compound. If the amount of a chemical is changed by 𝑑𝑁 adiabatically

and quasistatically, the system energy change will be written as275

𝑑𝑍 = 𝜇𝑑𝑁. (17.2)

Here, 𝑁 is an extensive quantity. Generally, there are many different compounds;

274The selectively permeable membrane is equivalent to the commonly used ‘semipermeable mem-
brane’ in elementary thermodynamics. Some authors try to avoid the use of such a device, arguing
that it “cannot exist” in reality. However, here, our basic idea is that such objections to semiperme-
able membranes arise due to misunderstanding of the concept of the selective membrane (→4.15).

The selective membrane is a black box that represents high precision separating processes. Se-
lective membranes appear everywhere in organisms with high precision (for isotope replacement the
precision is limited but still not non-selective). They may not be passive, so to use them in ther-
modynamics is often claimed to be illegitimate. However, since equilibrium thermodynamics does
not impose any limit on the conversion of work to chemical work, even active separation processes
can be realized quasistatically, so where there is separability (= distinguishability) of compounds,
we may assume that we can separate them quasistatically and reversibly. Therefore, wherever
compounds are separable (= distinguishable), we can separate them quasistatically and reversibly,
and the process may be summarized as a selective membrane. For example, pure substance A
can be separated by distillation (e.g., multi-stage distillation) from a mixture. The needed phase
transitions can be reversibly and quasistatically realized. We can add pure A to another system
reversibly and quasistatically as well. Describing such processes in terms of selective membranes
as black boxes should be perfectly consistent with thermodynamics (recall, e.g., adiabatic walls).
In the case of biomembranes, a selective transport of a particular compound across it could be
accompanied by the consumption of ATP or by the countercurrents of other compounds, but even
active transport can be described in terms of (chemical) works and should be possible to realize
as a reversible and quasistatic process; it is a matter of ingenuity since thermodynamics does not
forbid it.

Thus, in short, any distinguishable compounds maybe reversibly and quasistatically separable.
This should be a chemical principle (→4.3 (I)), and its materialization is the selective membrane
(like an ohmic resistor in the circuit theory).

There is a famous quiz: can we tell chemicals A and B are identical or different compounds by
measuring their mixing entropy? As is well known, this is impossible since the measurement of the
mixing entropy requires a cycle recovering pure A and B from the mixture. Conversely, if we know
A and B are different, we can in principle separate them quasistatically, and their mixing entropy
may be measured.

If we accept the principle used here, we may assume that a selective membrane exists for any
pure substance.

275Here, 𝑑𝑍 is, as 𝑑𝑄, a symbol for a 1-form and does not imply the differential of 𝑍.
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they are distinguished by suffixes as

𝑑𝑍 =
∑︁
𝑖

𝜇𝑖𝑑𝑁𝑖. (17.3)

𝜇𝑖 is called the chemical potential of chemical 𝑖. 𝑑𝑁𝑖 is the amount of chemical 𝑖

added by the experimenter to the system (the increment of the materials coordinate

for chemical 𝑖 as discussed in 4.13).

Remark: Probably, it is no more necessary by now to repeat, but the actual amount

of chemical 𝑖 in the system may not change by 𝑑𝑁𝑖 due to chemical reactions.

17.6 Thermodynamic space for open systems

To describe thermodynamics we need the internal energy and operational coordinates

consisting of work coordinates and materials coordinates (as chemical coordinates).

As stated in 17.2 thermodynamically work and chemical coordinates are ‘equivalent’

with respect to the second law.

Thus, we write Gibbs’ relation 11.8 as

𝑑𝐸 = 𝑇𝑑𝑆 +
∑︁
𝑖

𝑥𝑖𝑑𝑋𝑖 +
∑︁
𝑖

𝜇𝑖𝑑𝑁𝑖. (17.4)

Or, if entropy is placed at the center of the organization of thermodynamics,

𝑑𝑆 =
1

𝑇
𝑑𝐸 −

∑︁
𝑖

𝑥𝑖

𝑇
𝑑𝑋𝑖 −

∑︁
𝑖

𝜇𝑖

𝑇
𝑑𝑁𝑖. (17.5)

17.7 Chemical potential

A basic (albeit not practical) operational method to determine the chemical potential

𝜇𝑖 of chemical 𝑖 is illustrated in (Fig. 17.2).

A small cylinder containing only chemical 𝑖 is attached to the system. A hard

selectively permeable membrane that allows only 𝑖 to pass is placed between the

cylinder and the system. The work required for this process can determine 𝜇𝑖.
276

276Needless to say, the process must be reversible and quasistatic. However, whether such a
process is realizable or not cannot be decided by speculation. For example, one must determine
whether the magnitudes of the force needed to push in and pull out the piston is identical. Of course,
we usually assume they are identical, but that can be guaranteed only by empirical evidence.

Still, it is natural to expect that the quasistatic motion of the piston is reversible, if reactions
are in equilibrium.
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System

Selective membrane

i

that can pass only chemical i

Figure 17.2: An operational definition of chemical potential

As can be seen from Gibbs’ relation, it is possible to keep all work coordinates

constant while pushing the piston, such as by suppressing the associated volume

change.277 Although how to add chemicals adiabatically to the system has already

been discussed (→4.15), it is complicated. To avoid such procedures, as will be

discussed in Section 18, we may use an isothermal process. ∆𝐴 = 𝑊 − 𝑄 may be

measured, where 𝑊 is the work added to the system due to pushing in the chemical,

and 𝑄 is the exchanged heat to keep the system temperature constant. Both are

measurable. Therefore,

𝑑𝐴 = −𝑆𝑑𝑇 + 𝑥𝑑𝑋 + 𝜇𝑖𝑑𝑁𝑖 + · · · . (17.6)

implying that 𝑑𝐴 = 𝜇𝑖𝑑𝑁𝑖 can be used to measure 𝜇𝑖. However, the chemical poten-

tial obtained this way is a function of 𝑇 and 𝑌 (not 𝐸 and 𝑌 ).

17.8 The Gibbs-Duhem relation

Since 𝐸 = 𝐸(𝑆, {𝑋𝑖}, {𝑁𝑖}) is a first-degree homogeneous function (→3.5), (3.6)

implies

𝐸 = 𝑆
𝜕𝐸

𝜕𝑆
+
∑︁
𝑖

𝑋𝑖
𝜕𝐸

𝜕𝑋𝑖

+
∑︁
𝑖

𝑁𝑖
𝜕𝐸

𝜕𝑁𝑖

= 𝑆𝑇 +
∑︁
𝑖

𝑋𝑖𝑥𝑖 +
∑︁
𝑖

𝑁𝑖𝜇𝑖. (17.7)

Taking the total differential of the above formula, we get

𝑑𝐸 = 𝑇𝑑𝑆 + 𝑆𝑑𝑇 +
∑︁
𝑖

(𝑥𝑖𝑑𝑋𝑖 + 𝑋𝑖𝑑𝑥𝑖) +
∑︁
𝑖

(𝜇𝑖𝑑𝑁𝑖 + 𝑁𝑖𝑑𝜇𝑖) (17.8)

=

[︃
𝑇𝑑𝑆 +

∑︁
𝑖

𝑥𝑖𝑑𝑋𝑖 +
∑︁
𝑖

𝜇𝑖𝑑𝑁𝑖

]︃
+

[︃
𝑆𝑑𝑇 +

∑︁
𝑖

𝑋𝑖𝑑𝑥𝑖 +
∑︁
𝑖

𝑁𝑖𝑑𝜇𝑖

]︃
.(17.9)

277Notice that the chemicals pushed into the system can carry some other quantities such as
‘magnetization’ or ‘electric charge.’ If these properties are inseparable, it is not convenient to keep
related work coordinates constant. Instead, the chemical potential should be extended to include
these quantities as electric chemical potential we will see later.
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However, we have Gibbs’ relation (17.4), so this implies

𝑆𝑑𝑇 +
∑︁
𝑖

𝑋𝑖𝑑𝑥𝑖 +
∑︁
𝑖

𝑁𝑖𝑑𝜇𝑖 = 0.278 (17.10)

This is called the Gibbs-Duhem relation. If there is only one chemical, this formula

gives the differential of its chemical potential as

𝑑𝜇 = − 𝑆

𝑁
𝑑𝑇 −

∑︁
𝑖

𝑋𝑖

𝑁
𝑑𝑥𝑖. (17.11)

17.9 Chemical potential of an ideal gas

(17.11) reads for an ideal gas

𝑑𝜇 = − 𝑆

𝑁
𝑑𝑇 +

𝑉

𝑁
𝑑𝑃 = − 𝑆

𝑁
𝑑𝑇 +

𝑅𝑇

𝑃
𝑑𝑃 (17.12)

due to the equation of state 𝑃𝑉 = 𝑁𝑅𝑇 . Therefore, if the temperature is constant

we can integrate this as

𝜇(𝑇, 𝑃 ) = 𝜇(𝑇, 𝑃⊖) + 𝑅𝑇 log
𝑃

𝑃⊖ (17.13)

In particular, if the chemical potential at the standard pressure 𝑃⊖ = 1 (in chemistry,

pressure is often measured in atm, and this implies 𝑃⊖ = 1 atm) is 𝜇(𝑇, 𝑃⊖) = 𝜇⊖(𝑇 ),

then we may write

𝜇(𝑇, 𝑃 ) = 𝜇⊖(𝑇 ) + 𝑅𝑇 log𝑃. (17.14)

278We are aware that there are many equivalent choices of materials coordinates. For example,
𝑁 in this formula may be replaced with �̃� as

𝑆𝑑𝑇 +
∑︁
𝑖

𝑋𝑖𝑑𝑥𝑖 +
∑︁
𝑖

�̃�𝑖𝑑𝜇𝑖 = 0.

This is apparently identical to the conventional formula in terms of chemical composition variables.
However, in this formula �̃�𝑖 is a particular value of the materials coordinate 𝑁𝑖, and is not a
variable. In terms of the conventional variables (i.e., chemical composition variables) we cannot
write the Gibbs-Duhem relation, simply because these variables are not independent from other
variables (e.g., work coordinates), and also from other chemicals, either.
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17.10 Dalton’s law of partial pressures

The pressure of a mixture of two distinct gases 1 and 2 with mole numbers 𝑁1 and

𝑁2, respectively, is given by

𝑃 = (𝑁1 + 𝑁2)𝑅𝑇/𝑉, (17.15)

if we assume both gases are ideal. Dalton understood this formula as the sum of

the ‘partial pressures’ of individual gases, denoted by 𝑃1 and 𝑃2 respectively as

𝑃 = 𝑃1 + 𝑃2:

𝑃1 = 𝑁1𝑅𝑇/𝑉, (17.16)

𝑃2 = 𝑁2𝑅𝑇/𝑉. (17.17)

This is called Dalton’s law of partial pressures. If we introduce the mole fraction 𝑥

of gas 1 as

𝑥 =
𝑁1

𝑁1 + 𝑁2

, (17.18)

the partial pressures read

𝑃1 = 𝑥𝑃, 𝑃2 = (1− 𝑥)𝑃. (17.19)

17.11 Understanding partial pressures in terms of selective membranes

Partial pressure may be understood as follows (Fig. 17.3). Assume the temperature

is constant.

Let the mole numbers of component gases 1 and 2 be 𝑁1 and 𝑁2, respectively. Un-

der pressure 𝑃 their volumes are 𝑉1 = 𝑥𝑉 and 𝑉2 = (1−𝑥)𝑉 , respectively, where 𝑥 is

the mole fraction of gas 1. The sum 𝑉1 +𝑉2 is exactly 𝑉 as illustrated in Fig. 17.3A.

Assuming that the containers are adiabatic, we allow each gas to freely expand to

volume 𝑉 as Fig. 17.3B. Since the temperature does not change, the pressures are

𝑃1 and 𝑃2 in 17.10, respectively. If we ‘superpose’ these two gases (B→C→D), the

pressure in D is 𝑃 = 𝑃1 + 𝑃2, since they do not interact.

Fig. 17.3 A: Let the mole numbers of the component gases 1 (green) and 2 (red) be 𝑁1 and 𝑁2,

respectively. The individual volumes are 𝑉1 = 𝑥𝑉 and 𝑉2 = (1 − 𝑥)𝑉 , respectively, and the total

volume is exactly 𝑉 . If we remove the separating wall between ‘green’ and ‘red’ and wait for equi-

libration, the resulting mixture of ideal gases is shown in D. The temperature does not change.
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A B

C
D

D

x x1 -- Selective membrane

Selective membrane
filtering green gas out

filtering red gas out

Figure 17.3: Dalton’s law of partial pressures

If we use the selective membranes, Dalton’s law of partial pressures may be understood in terms

of the adiabatic free expansion of the gases.

B: If we adiabatically and freely expand each gas in the compartments of A to volume 𝑉 , each will

become a gas with its corresponding partial pressure.

C: Replace the bottom wall of the box with the red gas (resp., the upper wall of the box with the

green gas) with a selective membrane that excludes the red gas (resp., the green gas) and merge

the two boxes quasistatically. Since two gases do not interact, no work is needed for the merging

process B→D. Thus, the total internal energy is constant throughout the process.

Needless to say, we assume that the processes using selective membranes are re-

versible, but the assumption is valid by the definition of the selective membranes

(→17.5).

17.12 Mixing entropy

Mixing two substances usually makes the substances hard to separate, so our com-

mon sense tells us that the process A→D in Fig. 17.3 is irreversible. Indeed, A→B

in A→B→C→D is irreversible due to the free expansion, so the entropy of the whole

system should increase by the process A→D. This increase of entropy is called the

mixing entropy. The process B→C→D is reversible thanks to the selective mem-

branes, this entropy increase should be due to the process A→B (see Remark be-

low).

The entropy of an ideal gas (i.e., the fundamental equation of an ideal gas) is

given by (11.26). Adiabatic free expansion keeps the internal energy, so the system

temperature does not change. Therefore, the fundamental equation tells us that for

the 𝑁 mole of an ideal gas the entropy change due to the volume change 𝑉 → 𝑉 ′ is
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given by

𝑆(𝑉 ′) = 𝑆(𝑉 ) + 𝑁𝑅 log
𝑉 ′

𝑉
. (17.20)

Therefore, for gas 1 and gas 2 the entropy changes are given by

𝑆1B = 𝑆1A −𝑁1𝑅 log 𝑥, (17.21)

𝑆2B = 𝑆2A −𝑁2𝑅 log(1− 𝑥), (17.22)

respectively, and the total entropy change reads

∆𝑆 = −𝑁𝑅{𝑥 log 𝑥 + (1− 𝑥) log(1− 𝑥)}, (17.23)

where the total mole number is written as 𝑁 = 𝑁1 + 𝑁2.

Remark As we have seen, the mixing itself is a reversible process if performed qua-

sistatically. Therefore, some authors assert that the irreversibility of the mixing

process is due to diffusion (i.e., the expansion through other materials). However,

the irreversibility is between A and B in Fig. 17.3. Thus, even ‘diffusion’ through

something is irrelevant. The crux of mixing entropy is simply the irreversible ex-

pansion. Notice that this is consistent with 4.3 (I). See also the last paragraph of

17.16.

17.13 Raoult’s law and ideal liquid mixtures

Consider a mixture of liquid A and liquid B at temperature 𝑇 . The liquids have

vapor pressures (→19.9 for the definition) 𝑃A0 and 𝑃B0, respectively, at 𝑇 , when

they are pure. Raoult found for many liquid mixtures, approximately:

The vapor pressure of the mixture is the sum of individual partial pressures

given by 𝑃A = 𝑥𝑃A0 and 𝑃B = (1 − 𝑥)𝑃B0, where 𝑥 is the mole fraction of A

in the liquid mixture.

This empirical law is called Raoult’s law.

The liquid mixture for which Raoult’s law hold exactly is called an ideal liquid

mixture.

17.14 The chemical potentials of the components of an ideal liquid mix-

ture

Let us write the chemical potentials of pure liquids A and B at temperature 𝑇 and
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pressure 1 (atm) be 𝜇⊖
A and 𝜇⊖

B. Also let us write the chemical potentials of vapor A

and vapor B at temperature 𝑇 and pressure 1 (atm) be 𝜇⊖
AG and 𝜇⊖

BG, respectively.

If we assume the vapors are ideal gases, their chemical potentials have the form of

(17.14), so the equilibrium relation for each component between the liquid and the

vapor phases read, as given in 17.9,279

𝜇⊖
A = 𝜇⊖

AG + 𝑅𝑇 log𝑃A0, (17.24)

𝜇⊖
B = 𝜇⊖

BG + 𝑅𝑇 log𝑃B0, (17.25)

where 𝑃A0 and 𝑃B0 are the vapour pressures of liquid A and liquid B, respectively, at

temperature 𝑇 as in 17.13. If we denote the chemical potentials of the components

in the mixture as 𝜇A and 𝜇B, respectively, each component must be in equilibrium

with the corresponding vapor component with its partial pressure:

𝜇A = 𝜇⊖
AG + 𝑅𝑇 log(𝑥𝑃A0), (17.26)

𝜇B = 𝜇⊖
BG + 𝑅𝑇 log((1− 𝑥)𝑃B0). (17.27)

Comparing the above two sets of equations, the chemical potentials of the compo-

nents may be given by

𝜇A = 𝜇⊖
A + 𝑅𝑇 log 𝑥, (17.28)

𝜇B = 𝜇⊖
B + 𝑅𝑇 log(1− 𝑥). (17.29)

A mixed liquid with these component chemical potentials is called an ideal liquid

mixture.

17.15 Mixing entropy of ideal liquids

(17.7) tells us, generally for a two component liquid mixture,

𝐸 = 𝑆𝑇 − 𝑃𝑉 + 𝜇A𝑁A + 𝜇B𝑁B. (17.30)

Before mixing the two components, the term 𝜇A𝑁A + 𝜇B𝑁B reads

𝑥𝑁𝜇⊖
A + (1− 𝑥)𝑁𝜇⊖

B, (17.31)

279In the following formulas, precisely speaking, the chemical potentials of the pure liquids must
be at their respective vapor pressures (→19.9), but the chemical potential of the ordinary liquid is
insensitive to the pressure if it is not very high (say, 10 atm).
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where 𝑁 = 𝑁A + 𝑁B. After mixing, we have

𝑥𝑁 [𝜇⊖
A + 𝑅𝑇 log 𝑥] + (1− 𝑥)𝑁 [𝜇⊖

B + 𝑅𝑇 log(1− 𝑥)]. (17.32)

For ideal liquids, it is assumed that mixing does not change the internal energy or

volume, so the entropy change ∆𝑆 reads, under the constant temperature-pressure

condition,

𝑇∆𝑆 = −∆(𝜇A𝑁A + 𝜇B𝑁B). (17.33)

Comparing (17.31) and (17.32), we conclude

∆𝑆 = −𝑁𝑅[𝑥 log 𝑥 + (1− 𝑥) log(1− 𝑥)], (17.34)

which is the increase in entropy due to mixing and is called the mixing entropy.

Notice that this formula is exactly the same as the one for ideal gas mixing case

(17.23).

17.16 Meaning of the mixing entropy

For simplicity, we consider a one-to-one mixing, i.e., the 𝑥 = 1/2 case.

？

Figure 17.4: Experiment to eject a particle from a one-to-one mixture

Let us consider an experiment to eject a particle from the left half of the sys-

tem280 (Fig. 17.4). Before mixing, always green particles are detected; we know this

even before performing any experiments. But, what about after mixing? We would

280According to the official standpoint of thermodynamics, we do not (cannot) inquire whether a
substance is made of particles or not. However, it is a macroscopic fact that if a macroscopic object
is irradiated by appropriate beam, particles are ejected. We cannot know the ’actual’ structure of
the object—even for a gas; it must be quite different from the collection of flying ball bearings. In
reality, nobody knows what is going on.

Note that we are only using a macroscopically verifiable fact here: if we mix similar substances
with a definite mole ratio, and then eject a particle, the probability to get a particular molecular
species is proportional to the mole fraction.
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detect both red and green particles evenly, so we cannot predict the outcome of each

experimental run (Fig. 17.4Right).

What question should we ask to know the outcome of a particular run? We have

only to make one question that can be answered by YES or NO: “Is it green?”281 By

“mixing,” what we knew without asking any questions becomes uncertain, and we

need to obtain new knowledge that can be obtained from a single YES-NO question

to restore “perfect knowledge” about the system.

The required knowledge may be quantitated by the number of questions to obtain

it. The amount of knowledge we can obtain from a single unbiased YES-NO question

(called the information we can obtain) is called ‘1 bit of information’.

For the case with 𝑥 = 1/2, the mixing entropy is given by ∆𝑆 = 𝑁𝑅 log 2. To

obtain complete information about the left half, we must keep asking the question till

the half becomes empty. How many times must we ask? Since 1 mole is exhausted

if ejection experiments are repeated 𝑁𝐴 (Avogadro’s constant) times, through the

mixing process we lose 𝑁𝑁𝐴 bits of information. This means entropy per particle

𝑁𝑅 log 2/𝑁𝑁𝐴 = 𝑘𝐵 log 2 corresponds to 1 bit, where 𝑘𝐵 is the Boltzmann constant.

Next, let us consider doubling the volume of a gas by adiabatic free expansion

(Fig. 17.5). Once again, we will consider particle ejection experiments.

? ?

Figure 17.5: Doubling the volume of a gas by adiabatic free expansion

Before the volume is doubled, particles always come out from the left side, but af-

281It goes without saying that the answer to the YES or NO question must be totally unpredictable
(‘unbiased YES-NO question’). However, is the condition “totally unpredictable” a perfectly unam-
biguous prerequisite? There is ambiguity here, because ‘randomness’ is a tricky concept, usually,
for example, tied to the total symmetry of the space.

It is often said that randomness is guaranteed only by quantum mechanics, but this depends
on its theoretical structure and Born’s probability interpretation. The assertion is a convention; it
osund obvious for some according to their world view.



17. MIXING ENTROPY 175

ter doubling the volume, we cannot predict whether a particle will come out from the

left or the right half. In this case, we have lost the information that could be obtained

from a single unbiased YES-NO question, “Is it from the left?”. Notice that the en-

tropy increase is exactly the same as the above mixing problem: ∆𝑆 = 𝑁𝑇 log 2.

These two examples teach us two lessons:

The entropy increase due to a process looks quantitatively connected to the amount

of knowledge we need to describe the system after the process as precisely as before

the process. Additionally, as noted before (→17.12), the entropy increase by mixing

is solely due to expansion.

17.17 Entropy and phase transition

Phase transitions and related topics will be discussed in detail later (Section 23).

For now, let us consider the changes we encounter daily such as freezing of water

or boiling to produce water vapor. Such changes are called phase transitions. For

water liquid phase (water coming out of a faucet), gas phase (vapor) and sold phase

(ice) are distinct at our daily temperature and pressure. During phase transitions,

water exchanges the so-called latent heat such as melting heat or boiling heat with

its environment.

Let 𝐿 be the latent heat absorbed by the system when it turns from phase A to

phase B, then the entropy change due to the phase transition A→B is given by

∆𝑆A→B =
𝐿

𝑇
. (17.35)

For example, 1 mole of ice melts at 0 ∘C = 273 K under 1 atm to become liq-

uid water. The latent heat is 5940 J/mole. Therefore, 1 mole of liquid water at 0
∘C has a larger entropy by ∆𝑆 = 6010/273 = 22.0 J/K·mol = 2.65𝑅 (𝑅 = 8.314

J/K·mol) than 1 mole of ice. What does this mean from the information standpoint?

As we have seen in 17.16 1 bit/molecule corresponds to entropy change of 𝑅 log 2 =

0.693𝑅 J/K per mole. Therefore, the melting entropy is 2.65/0.693 ≈ 3.8 bits/molecule.

To understand the state of a single molecule in liquid water as accurately as in ice,

we must ask about 4 more YES-NO questions.282

282If we may use a detailed molecular model, this number may be interpreted as follows: in cold
water a water molecule still cannot move freely due to hydrogen-bonding networks, but can rotate
relatively freely than in a crystal. To specify its rotation axis by its residing octant, we already
need 3 bits.



176

18 Isothermal process and Legendre-Fenchel trans-

formation

18.1 Thermodynamics of isothermal processes

A process in which initial and the final states have the same temperature is called

an isothermal process. As is usual in thermodynamics, we do not care whatever

happens during the process. To begin with during the process the system need not

be in equilibrium, so even mentioning temperatures during the process is meaningless.

However, the most practical way to achieve an isothermal process is to maintain the

system in thermal contact with a heat bath. This guarantees that the initial and

the final equilibrium states are at the same temperature; Of course, we cannot say

anything about the system temperature in between, even if the system remains in

thermal contact with a heat bath of temperature 𝑇 .

To utilize thermodynamics we must connect the intial and the final states with a

reversible quasistatic process. For isothermal processes it is convenient to devise an

appropriate reversible quasistatic isothermal process. Let us consider Gibbs’ relation

(→17.6) for an isothermal process. To keep the system temperature, free exchange

of heat between the system and its environment should be allowed, so instead of 𝑑𝐸,

we should consider

𝑑𝐸 − 𝑑𝑄 = 𝑑𝑊 + 𝑑𝑍 =
∑︁

𝑦𝑖𝑑𝑌𝑖 =
∑︁

𝑥𝑖𝑑𝑋𝑖 +
∑︁

𝜇𝑖𝑑𝑁𝑖. (18.1)

Reversibly and quasistatically 𝑑𝑄 = 𝑇𝑑𝑆 and the system temperature 𝑇 is constant.

Therefore, it is convenient to rewrite (18.1) as

𝑑𝐸 − 𝑇𝑑𝑆 = 𝑑(𝐸 − 𝑇𝑆) = 𝑑𝑊 + 𝑑𝑍 =
∑︁

𝑥𝑖𝑑𝑋𝑖 +
∑︁

𝜇𝑖𝑑𝑁𝑖. (18.2)

Thus, to introduce

𝐴 = 𝐸 − 𝑇𝑆, (18.3)

called the Helmholtz energy, is convenient. For isothermal reversible quasistatic

processes (17.1) implies

𝑑𝐴 = 𝑑𝑊 + 𝑑𝑍. (18.4)

Here, just as 𝑑𝑄 previously, 𝑑𝑊 and 𝑑𝑍 are symbols for 1-forms and do not imply

exact forms (→9.9).
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If the system is materially closed without the 𝑑𝑍 term, 𝑑𝐴 = 𝑑𝑊 , so (as adiabatic

processes283) quasistatic work form is exact for isothermal processes.

18.2 The change of Helmholtz energy for isothermal but not quasistatic

processes: work principle

First, let us consider a closed system (thus there is no 𝑍, although chemical reactions

or chemical equilibrium shifts may occur in the system). For isothermal reversible

quasistatic processes (18.4) implies

∆𝐴 = 𝑊, (18.5)

where 𝑊 is the work done to the system from outside reversibly and quasistatically.

What happens, if the work is not reversible and generally involves some dissipation

(in the system)? Naturally, the system heats up, but the generated heat would escape

to the attached heat bath. That is, not all the added work is converted to the system

energy:

∆𝐴 ≤ 𝑊. (18.6)

This is called the principle of minimum work. That is, to cause a given change ∆𝐴

the minimum work specified by (18.5) is possible if the work is added reversibly.

If a system does work on the external world, if that is done without loss (i.e.,

reversibly without dissipation) the maximum work should be taken out. This is

called the maximum work principle. In this case 𝐴 is reduced, and the system loses

energy as work, so both ∆𝐴 and 𝑊 are negative according to our sign convention.

The argument (18.6) is algebraic, so it should always be correct. Therefore,

|∆𝐴| ≥ |𝑊 |. (18.7)

This is the maximum work principle: we can take out the largest work if reversible.

For the general cases with mass actions (that is, for the system being no more

closed), we have only to replace 𝑊 with 𝑊 + 𝑍:

∆𝐴 ≤ 𝑊 + 𝑍. (18.8)

If there is no work, but chemical energy could be extracted by chemical reactions,

we have |∆𝐴| ≥ |𝑍| as (18.7). However, in practice, not only the constant temper-

ature, but also the constant pressure condition becomes important. This topic will

be postponed to the section discussing the Gibbs energy (→19.6).

283However, as seen in 7.7, for adiabatic processes work form (if defined) becomes exact for any
adiabatic process (need not be quasistatic).
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18.3 Clausius’ inequality and work principle

The derivation of the work principle in 18.2 may be admissible in physics, but it may

not sound like a formal demonstration. Therefore, here, the principle is rederived

by using Clausius’ inequality (→14.4). To realize an isothermal process, we may

assume that the system is always in thermal contact with a heat bath at a constant

temperature 𝑇 . Needless to say, the system may not be in equilibrium during the

process, so its temperature may be meaningless. If we apply Clausius’ inequality

∆𝑆 ≥ 𝑄

𝑇
(18.9)

to 𝑄 = ∆𝐸 −𝑊 , we have

𝑇∆𝑆 = ∆(𝑇𝑆) ≥ ∆𝐸 −𝑊 ⇒ 𝑊 ≥ ∆(𝐸 − 𝑇𝑆) = ∆𝐴. (18.10)

This is just (18.6).

18.4 Helmholtz energy minimization principle

If a closed system does not exchange work with its environment, the inequality (18.6),

which holds under constant temperature, reads

∆𝐴 ≤ 0. (18.11)

That is, under constant temperature, if a change can actually happen without any

external net contribution of operational coordinate change, then its Helmholtz energy

should decrease. This implies that the intial state of the system was actually not an

equilibrium state. That is, if we can apply thermodynamics to the system

∆𝐴 ≥ 0 (18.12)

must hold. Here ∆ implies the result of a thermodynamic variation under constant

𝑇 . That is, just as 12.6 but defined as follows with the constant 𝑇 condition: For a

function of 𝑇 and operational coordinates 𝐽(𝑇,𝑌 ),

∆𝐽(𝑇,𝑌 ) =
∑︁
𝑖∈𝒫

𝐽(𝑇,𝑌 𝑖)− 𝐽(𝑇,𝑌 ), (18.13)
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where 𝒫 denotes the set of subsytems by a particular partition of the original system

into subsystems, and 𝑌 =
∑︀

𝑖∈𝒫 𝑌 𝑖.
284

For any equilibrium state under constant temperature (18.12) must hold. This is

called the Helmholtz energy minimization principle, which is a global principle for

a state to be in equilibrium. (18.12) is just a Jensen’s inequality, because 𝐴 under

constant 𝑇 is a convex function of 𝑌 , simply because so is 𝐸 (→13.9).

18.5 Legendre transformation

The transformation: 𝐸 → 𝐴 = 𝐸 −𝑆𝑇 is called the Legendre transformation, which

changes the independent variables 𝑆,𝑋,𝑁 of 𝐸 to 𝑇,𝑋,𝑁 . Certainly,

𝑑𝐸 = 𝑇𝑑𝑆 + 𝑥𝑑𝑋 + 𝜇𝑑𝑁 ⇒ 𝑑𝐴 = −𝑆𝑑𝑇 + 𝑥𝑑𝑋 + 𝜇𝑑𝑁 . (18.14)

However, the formula alone does not explain the meaning of the Legendre transfor-

mation at all.

When we write

𝐸(𝑆,𝑋,𝑁 )→ 𝐴(𝑇,𝑋,𝑁 ) = 𝐸(𝑆,𝑋,𝑁 )− 𝑇𝑆,

the 𝑇 in the formula is not arbitrary but is determined by 𝐸(𝑆,𝑋,𝑁 ):285

𝑇 =

(︂
𝜕𝐸

𝜕𝑆

)︂
𝑋 ,𝑁

. (18.15)

Let us consider the relationship between 𝐸 and 𝐴 geometrically. Since the other

variables are unaffected, let us suppress 𝑋,𝑁 from now on.

Consider a state whose entropy is given by the green dot (Fig. 18.1). Its temper-

ature 𝑇 is the slope of the tangent line to 𝐸 at that point, since 𝐸 is a (monotone

284Here, we consider only simple systems, but generalizing our discussion to compound systems
is just as discussed before in 12.6 .

285Warning. Recall that the following partial derivative makes sense, only when there are no
chemical reactions in the system, if we adopt the conventional expression of the amounts of chemicals
in the system. Thus, conventional thermodynamics textbooks (if honest) clearly state that chemical
reactions can be freely stopped/frozen at will. The following differentiation is computed while all
the reactions are frozen. What is a logical consequence? If you follow existing thermodynamic
textbooks, the use of Legendre-Fenchel transformation is not permitted in the presence of chemical
reactions: Hence, free energies such as Gibbs energy cannot be used in chemical thermodynamics.
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Figure 18.1: Legendre transformation

increasing) convex function of 𝑆 (→??). Draw a line (red line) with the same slope

passing through the origin, 𝐸 = 𝑇𝑆. Then, 𝐴 = 𝐸 − 𝑇𝑆 is the 𝐸-coordinate value

of the yellow dot subtracted that of the red dot. This implies that the minimum of

the (signed) distance measured along the 𝐸-axis of the curve 𝐸 = 𝐸(𝑆) and the line

𝐸 = 𝑇𝑆 is 𝐴. Thus, we have the following expression (the conditions are written to

the right of a vertical bar):

𝐴 = min
𝑆
|𝑌 [𝐸(𝑆,𝑌 )− 𝑇𝑆]. (18.16)

The suffix 𝑌 to the right of | implies that the minimum min𝑆 is taken under the

condition that the operational coordinates are fixed. Since 𝐸 is differentiable with

respect to 𝑆, the conditional minimization indeed gives(︂
𝜕𝐸

𝜕𝑆

)︂
𝑌
− 𝑇 = 0, (18.17)

so (18.16) agrees with the elementary Legendre transformation.

Now, rewrite (18.16) as

−𝐴 = max
𝑆
|𝑌 [𝑇𝑆 − 𝐸(𝑆,𝑌 )]. (18.18)

Since 𝐸 is a convex function, in particular, a convex function of 𝑆, this formula is

just the (partial) Legendre-Fenchel transformation (→18.6, 18.7).

From now on, in these notes any Legendre transformation will be discussed as the

Legendre-Fenchel transformation partly to emphasize that transformation is a tool

of convex analysis (→13.1) and that the differentiability of functions is not required.

The second point is crucial when we discuss phase transitions (→23.11).
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18.6 Legendre-Fenchel transformation

For a convex function 𝑓 : R𝑛 → R (→13.2)

𝑓 *(𝑥) = sup
𝑦

[𝑥 · 𝑦 − 𝑓(𝑦)] (18.19)

is called the conjugate function of 𝑓 . [Here, sup and max may not be fastidiously

distinguished.286] The transformation 𝑓 → 𝑓 * is called the Legendre-Fenchel transfor-

mation. If 𝑓 is everywhere differentiable, as we have seen in 18.5, Legendre-Fenchel

transformations agree with the conventional Legendre transformation.

Pay special attention to the following two theorems

(1) The conjugate function 𝑓 * of a convex function 𝑓 is convex. [Proof →18.9]

(2) The conjugate of the conjugate of a convex function is the original convex func-

tion: (𝑓 *)* = 𝑓 ** = 𝑓 . [Proof→18.10]

These two theorems imply for 𝐸 and 𝐴:

(1) −𝐴 is a convex function of 𝑇 (That is, 𝐴 is convex upward as a function of 𝑇 ).

(2) If we know 𝐴, we can completely recover 𝐸.

Remark. Legendre-Fenchel transformation is a standard terminology in convex

analysis. Although non-differentiable cases are also discussed under Legendre trans-

formation these days, the use in partial differential equations and mechanics (sym-

plectic dynamics) is traditionally restricted to differentiable cases as the original Leg-

endre transformation. As seen in 23.11 the applications to nondifferentiable cases

are essential to understanding phase transitions (→23.11). To guarantee the com-

pleteness (→18.12) of thermodynamic functions this generalization is crucial, and

hence the name ‘Legendre-Fenchel transformation’ will be used throughout these

notes.

18.7 Partial Legendre-Fenchel transformation

As we have already seen in 18.5, the Legendre-Fenchel transformation of 𝐸 to 𝐴 is

286⟨⟨sup and max⟩⟩ ‘max’ denotes the maximum value. 𝑀 = max𝑦∈𝐶 𝑓(𝑦) implies that the
function 𝑓 assumes at a point in 𝐶 actually the largest value 𝑀 . In contrast, 𝑀 = sup𝑦∈𝐶 𝑓(𝑦)
implies that 𝑀 is the least upper bound of the values of 𝑓 on 𝐶 (that is, the least upper bound
of the set 𝑓(𝐶) is 𝑀), so there need not actually be a point in 𝐶 where 𝑓 takes the value 𝑀 . For
example, on 𝐶 = (−1, 1) for 𝑓(𝑦) = 1 − 𝑦2 max𝑦∈𝐶 𝑓 = sup𝑦∈𝐶 𝑓 = 1, but for 𝑔 = 𝑦2 there is no
max𝑦∈𝐶 𝑔(𝑦). Still, sup𝑦∈𝐶 𝑔(𝑦) = 1, so sup and max must be distinguished, but for many cases we
will discuss, max exists intuitively, so we may consider sup as max.
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with respect to the variable 𝑆 and its conjugate 𝑇 . No other variables are involved.

Such transformation should be called a partial Legendre-Fenchel transformation. Its

mathematics is almost the same as is explained in 18.6: we fix all the remaining

variables, and at each fixed value, we can define its Legendre-Fenchel transformation.

We will use the following notation (as already used):

𝑓 *(𝑥, 𝑧) = sup
𝑦
|𝑧[𝑥 · 𝑦 − 𝑓(𝑦, 𝑧)]. (18.20)

Its inverse transformation is

𝑓(𝑦, 𝑧) = sup
𝑥
|𝑧[𝑥 · 𝑦 − 𝑓 *(𝑥, 𝑧)]. (18.21)

18.8 What happens if 𝐸 is totally Legendre-Fenchel transformed?

In thermodynamics, the Legendre-Fenchel transformation is always with respect to a

genuine subset of the thermodynamic coordinates (→18.7). Since 𝐸 is a first-degree

homogeneous function (→3.5) of extensive variables, obviously we have

0 = sup
𝑆,𝑌

[𝑆𝑇 + 𝑦 · 𝑌 − 𝐸], (18.22)

which may seem like a meaningless result, but is it? Since 0 is obviously a convex

function, 𝑓 ** = 𝑓 (→18.6 (ii)) implies 0* = 𝐸:

𝐸 = sup
𝑇,𝑦

[𝑆𝑇 + 𝑦 · 𝑌 ]. (18.23)

This formula implies that if all the extensive quantities are measured, the most

important thermodynamic quantity can be determined. Thus, an apparently self-

evident formula (18.22) could be regarded as a foundation of thermodynamics.

18.9 Conjugates of convex functions are convex
As the following computation demonstrates, if 𝑓* is defined as (18.19), whatever 𝑓 may be,
𝑓* satisfies Jensen’s inequality (→13.3), so it is convex. For any 𝜆 ∈ [0, 1]

𝜆𝑓*(𝑥*
1) + (1− 𝜆)𝑓*(𝑥*

2) = 𝜆 sup
𝑥1

[𝑥1 · 𝑥*
1 − 𝑓(𝑥1)] + (1− 𝜆) sup

𝑥2

[𝑥2 · 𝑥*
2 − 𝑓(𝑥2)]

= sup
𝑥1,𝑥2

{𝜆[𝑥1 · 𝑥*
1 − 𝑓(𝑥1)] + (1− 𝜆)[𝑥2 · 𝑥*

2 − 𝑓(𝑥2)]}

≥ sup
𝑥1=𝑥2

{𝜆[𝑥1 · 𝑥*
1 − 𝑓(𝑥1)] + (1− 𝜆)[𝑥2 · 𝑥*

2 − 𝑓(𝑥2)]}

= sup
𝑥
{𝜆[𝑥 · 𝑥*

1 − 𝑓(𝑥)] + (1− 𝜆)[𝑥 · 𝑥*
2 − 𝑓(𝑥)]}

= sup
𝑥
[𝑥 · (𝜆𝑥*

1 + (1− 𝜆)𝑥*
2)− 𝑓(𝑥)]

= 𝑓*(𝜆𝑥*
1 + (1− 𝜆)𝑥*

2). (18.24)
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Therefore, 𝑓* is convex irrespective of 𝑓 . In particular, the conjugate of a convex function is
again convex.

18.10 𝑓** = 𝑓 , if 𝑓 is convex
Let 𝑓 : R𝑛 → R be a convex function. Then, 𝑓** = 𝑓 .

By definition for ∀𝑥 and for ∀𝑦

𝑓*(𝑥) ≥ 𝑥 · 𝑦 − 𝑓(𝑦). (18.25)

If 𝑓 is convex, then for each 𝑦 there is 𝑥 such that the equality holds.287 Therefore, in the
inequality below left for each 𝑦 there is 𝑥 satisfying the equality. That is, the equation in the
right holds:

𝑓(𝑦) ≥ 𝑥 · 𝑦 − 𝑓*(𝑥) ⇒ 𝑓(𝑦) = sup
𝑥
[𝑥 · 𝑦 − 𝑓*(𝑥)]. (18.26)

This is the definition of 𝑓**, and implies 𝑓** = 𝑓 .

18.11 Helmholtz energy in terms of Legendre-Fenchel transformation: general
case
Let us rewrite (18.16) as

−𝐴(𝑇 ) = max
𝑆
|𝑌 [𝑇𝑆 − 𝐸(𝑆,𝑌 )] = sup

𝑆
|𝑌 [𝑇𝑆 − 𝐸(𝑆,𝑌 )]. (18.27)

Since 𝐸(𝑆) is convex, the above formula is a (partial) Legendre-Fenchel transformation 18.6
(or 18.7) of a convex function. That is,

−𝐴 = 𝐸*. (18.28)

Thus, we immediately know that −𝐴 is a convex function of 𝑇 ; 𝐴(𝑇 ) is a concave function
of 𝑇 , Also, we have

(−𝐴)* = 𝐸** = 𝐸. (18.29)

More explicitly, this reads

𝐸 = sup
𝑇
|𝑌 [𝑇𝑆 − (−𝐴)] = sup

𝑇
|𝑌 [𝑇𝑆 +𝐴]. (18.30)

The implication of this formula is important. 𝐸 = 𝐸(𝑆,𝑌 ) is a function completely de-
scribing the thermodynamics of a given system (→18.12). Since Helmholtz energy 𝐴 allows
the construction of 𝐸 as seen in (18.30), 𝐴 is, though dependent on non-thermodynamic
coordinate 𝑇 , also a function that completely describes the thermodynamics of the system.

287To understand this really intuitively we need geometry of a convex function and its supporting
planes. This is explained in Appendix at the end of this section (→D.2).

If 𝑓 is not convex, for each 𝑦 there is no guarantee for 𝑥 giving the equality to exist, so 𝑓** = 𝑓
need not hold. As seen in 18.9, 𝑓** is convex and agrees with 𝑓 where it is convex, so 𝑓** is called
the convex hull of 𝑓 .
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18.12 Complete thermodynamic functions

A thermodynamic function that can reconstruct or restore the internal energy 𝐸 =

𝐸(𝑆,𝑌 ) as a function of 𝑆 and operational coordinates 𝑌 through a Legendre-

Fenchel transformation is called a complete thermodynamic function. The Helmholtz

energy is an example as seen in 18.5.

18.13 Gibbs-Helmholtz equation for the Helmholtz energy

Since the Helmholtz energy is a complete thermodynamic function 18.12, there

should be a formula obtaining the internal energy from the Helmholtz energy. Since

𝐸 = 𝐴 + 𝑇𝑆 and 𝑑𝐴 = −𝑆𝑑𝑇 + 𝑦𝑑𝑌 ,

𝐸 = 𝐴− 𝑇

(︂
𝜕𝐴

𝜕𝑇

)︂
𝑌

= 𝐴 +
1

𝑇

(︂
𝜕𝐴

𝜕1/𝑇

)︂
𝑌

=

(︂
𝜕𝐴/𝑇

𝜕1/𝑇

)︂
𝑌
. (18.31)

This formula is a rehash of (19.7) for the Gibbs energy.
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D Appendix D: Geometrical meaning of the Legendre-

Fenchel transformation

D.1 Convex functions are supported by hyperplanes from below

Let 𝑓 : R𝑛 → R be a convex function. Since its epigraph epi 𝑓 (→13.2) is a convex

set, there is a hyperplane 𝜇 = ℎ(𝑥) = 𝑥 · 𝑏 − 𝛽 below it. That is, we can choose

𝑏 ∈ R𝑛 and 𝛽 ∈ R so that

𝑓(𝑥) ≥ 𝑥 · 𝑏− 𝛽 (D.1)

holds.288 See Fig. D.1 Left. In particular, for each 𝑏 we can choose 𝛽 as small as

possible so that the hypersurface 𝑦 = 𝑥 · 𝑏 − 𝛽 touches epi𝑓 . A hyperplane tangent

to epi 𝑓 is called a supporting hyperplane of 𝑓 . Thus, we see that the graph of 𝑓

is enveloped by all the supporting hyperplanes of 𝑓 itself (Fig. D.1Right). That is,

𝑓 can be reconstructed from the totality of the parameters (𝑏, 𝛽) characterizing the

supporting hyperplanes of epi 𝑓 (→D.2). This is the essence of the Legendre-Fenchel

transformation 18.6.

−1

b

（   ,    )b −1

normal

−β

b x. − βy =

f

at the red spot

f

supporting

hyperplanes
supporting plane direction

Figure D.1: Examples of supporting planes of 𝑓

288Notice that 𝑦 = 𝑥 · 𝑏 − 𝛽 expresses a hyperplane in R𝑛 × R passing through (0,−𝛽) and
perpendicular to (𝑏,−1):

(𝑏,−1) · (𝑥, 𝑦 + 𝛽) = 0 ⇒ 𝑏 · 𝑥− 𝑦 − 𝛽 = 0 ⇒ 𝑦 = 𝑏 · 𝑥− 𝛽. (D.2)
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D.2 Reconstruction of a convex function from its supporting planes

Let 𝑓 : R𝑛 ↦→ R be a convex function. Let 𝜇 = 𝑥* · 𝑥− 𝜇* be a hyperplane that has

epi 𝑓 on its upper side (allowing tangential contacts) and 𝐹 * be the set of totality of

the parameters (𝑥*, 𝜇*) allowed for such hyperplanes:

𝐹 * = {(𝑥*, 𝜇*)} | 𝑓(𝑥) ≥ 𝑥* · 𝑥− 𝜇* for ∀𝑥 ∈ R𝑛}. (D.3)

That this set is a closed convex set may be demonstrated as follows:

Suppose (𝑥*
1, 𝜇

*
1) and (𝑥*

2, 𝜇
*
2) belong to 𝐹 *. For ∀𝑥 ∈ R𝑛

𝑓(𝑥) ≥ 𝑥*
1 · 𝑥− 𝜇*

1, (D.4)

𝑓(𝑥) ≥ 𝑥*
2 · 𝑥− 𝜇*

2, (D.5)

so for any 𝜆 ∈ [0, 1]

𝑓(𝑥) ≥ (𝜆𝑥*
1 + (1− 𝜆)𝑥*

2) · 𝑥− (𝜆𝜇*
1 + (1− 𝜆)𝜇*

2). (D.6)

holds. That is, (𝜆𝑥*
1 + (1− 𝜆)𝑥*

2, 𝜆𝜇
*
1 + (1− 𝜆)𝜇*

2) ∈ 𝐹 *.

For ∀𝑥 ∈ R𝑛

𝑓(𝑥) ≥ 𝑥* · 𝑥− 𝜇*, (D.7)

so for ∀𝑥 ∈ R𝑛

𝜇* ≥ 𝑥* · 𝑥− 𝑓(𝑥) (D.8)

holds. Therefore,

𝜇* ≥ sup
𝑥

[𝑥* · 𝑥− 𝑓(𝑥)]. (D.9)

That is, (𝑥*, 𝜇*) ∈ 𝐹 * implies that this is the epigraph of 𝑓 * defined as

𝜇* ≥ 𝑓 *(𝑥*) = sup
𝑥

[𝑥* · 𝑥− 𝑓(𝑥)]. (D.10)

or 𝐹 * = epi𝑓 *. 𝐹 * is a closed convex set, so 𝑓 * is a convex function, which is the

conjugate of 𝑓 .

Notice that 𝑓 * is the upper bound of the affine function 𝑔(𝑥*) = 𝑥 ·𝑥*−𝜇 at each

𝑥* under the condition: (𝑥, 𝜇) ∈ 𝐹 = epi𝑓 .
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D.3 Gradient inequality

Let 𝑓 be a convex function. If for ∀𝑧 𝑥* satisfies

𝑓(𝑧) ≥ 𝑓(𝑥) + 𝑥* · (𝑧 − 𝑥) (D.11)

for a given 𝑥, 𝑥* is called the subgradient of 𝑓 at 𝑥, and the inequality (D.11) is called

the subgradient inequality (see Fig. D.2).

x z

f( )z

f( )x

h( )z = x  (z 
  x) + f( )x
_

*.

Figure D.2: Subgradient 𝑥* and subgradient inequality illustrated

This inequality implies that the following affine function illustrated in Fig. D.2

ℎ(𝑧) = 𝑥* · (𝑧 − 𝑥) + 𝑓(𝑥) (D.12)

expresses the supporting hyperplane (→D.1) of epi𝑓 that is in contact with it at

(𝑥, 𝑓(𝑥)).

If 𝑓 is not differentiable at 𝑥 its subgradients are not unique. The totality of

subgradients at 𝑥 is called the subdifferential of 𝑓 at 𝑥 and is denoted as 𝜕𝑓(𝑥).

If a convex function 𝑓 is differentiable at 𝑥, (D.11) reads

𝑓(𝑧) ≥ 𝑓(𝑥) +∇𝑓(𝑥) · (𝑧 − 𝑥). (D.13)

Let us call this the gradient inequality.

D.4 A consequence of the gradient inequality

If we write (D.13) around 𝑥 and around 𝑥′, for any point 𝑧

𝑓(𝑧) ≥ 𝑓(𝑥) +∇𝑓(𝑥) · (𝑧 − 𝑥), (D.14)

𝑓(𝑧) ≥ 𝑓(𝑥′) +∇𝑓(𝑥′) · (𝑧 − 𝑥′). (D.15)
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Therefore, we obtain

𝑓(𝑥′) ≥ 𝑓(𝑥) +∇𝑓(𝑥) · (𝑥′ − 𝑥) ⇒ 𝑓(𝑥′)− 𝑓(𝑥) ≥ ∇𝑓(𝑥) · (𝑥′ − 𝑥), (D.16)

𝑓(𝑥) ≥ 𝑓(𝑥′) +∇𝑓(𝑥′) · (𝑥− 𝑥′) ⇒ 𝑓(𝑥)− 𝑓(𝑥′) ≥ ∇𝑓(𝑥′) · (𝑥− 𝑥′).

(D.17)

Adding these two inequalities we obtain

0 ≥ ∇𝑓(𝑥) · (𝑥′ − 𝑥) +∇𝑓(𝑥′) · (𝑥− 𝑥′) = −(∇𝑓(𝑥)−∇𝑓(𝑥′)) · (𝑥′ − 𝑥). (D.18)

That is, we have obtained

(∇𝑓(𝑥)−∇𝑓(𝑥′)) · (𝑥− 𝑥′) ≥ 0. (D.19)

If we apply this to 𝐸, we get an inequality for differences between any two points

in the thermodynamic space:

∆𝑆∆𝑇 +
∑︁

∆𝑥𝑖∆𝑋𝑖 +
∑︁

∆𝜇𝑖∆𝑁𝑖 ≥ 0. (D.20)
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19 Constant temperature-pressure processes and

Gibbs energy

19.1 Thermodynamics of isothermal and isobaric processes

Experiments are often conducted in environments with constant temperature and

pressure due to their relative ease. For systems in which chemical reactions are of

primary interest, Gibbs’ relation may be written as

𝑑𝐸 − 𝑇𝑑𝑆 + 𝑃𝑑𝑉 = 𝑑(𝐸 − 𝑇𝑆 + 𝑃𝑉 ) =
∑︁
𝑉 𝑐

𝑥𝑖𝑑𝑋𝑖 +
∑︁
𝑖

𝜇𝑖𝑑𝑁𝑖, (19.1)

where
∑︀

𝑉 𝑐 𝑥𝑖𝑑𝑋𝑖 denotes the works other than the volume work. Therefore, similar

to the case of Helmholtz energy (→18.1), it is convenient to define the Gibbs energy

as

𝐺 = 𝐸 − 𝑇𝑆 − (−𝑃 )𝑉 = 𝐸 − 𝑇𝑆 + 𝑃𝑉. (19.2)

This is also a Legendre transformation as the Helmholtz energy in elementary ther-

modynamics. To make its mathematical properties explicit the following Legendre-

Fenchel transformation is recommended (→18.6, 18.7):

−𝐺 = sup
𝑆,𝑉
|𝑌 ∖𝑉 [𝑇𝑆 + (−𝑃 )𝑉 − 𝐸]. (19.3)

The conditions (what to keep const, etc.) are written after |. Do not forget that the

conjugate of 𝑉 is −𝑃 . From the general theory of the Legendre-Fenchel transforma-

tion (→18.6) −𝐺 is a convex function of 𝑇, 𝑃 (while keeping all the work coordinates

other than 𝑉 fixed under a materially closed condition). Therefore, we can recover

𝐸:

𝐸 = sup
𝑇,𝑃
|𝑌 ∖𝑉 [𝑆𝑇 + (−𝑃 )𝑉 − (−𝐺)] = sup

𝑇,𝑃
|𝑌 ∖𝑉 [𝑇𝑆 − 𝑃𝑉 + 𝐺]. (19.4)

This is similar to the case of 𝐴 (→18.11). Therefore, 𝐺 is also a complete thermo-

dynamic function (→18.12).

19.2 Results of partial Legendre-Fenchel transformation

𝐸 is a convex function289 of 𝑆, 𝑋 and 𝑁 . If we Legendre-Fenchel-transform 𝐸 with

289if there are no non-additive extensive quantities
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respect to 𝑆, the resulting −𝐴 is a convex function of 𝑇 if all other variables are

fixed under materially closed conditions. Although 𝐸 is a convex function of all its

variables, 𝐴 is concave only with respect 𝑇 ; if 𝑇 is fixed, as a function of 𝑋 it is a

convex function; 𝐴 itself is neither convex nor concave.

A similar remark applies to 𝐺. −𝐺 is a convex function of 𝑇 and 𝑃 , which means

𝐺 is a two-variable concave function of 𝑇 and 𝑃 when all the operational coordinates

are fixed except for 𝑉 ; 𝐺 itself is neither a convex nor convex function.

19.3 Enthalpy

The Legendre-Fenchel transformation in 19.1 may be understood in two steps; first

the transformation with respect to 𝑉 , then with respect to 𝑆:

−𝐻 = sup
𝑉
|𝑆,𝑌 ∖𝑉 [−𝑃𝑉 − 𝐸], (19.5)

−𝐺 = sup
𝑇
|𝑃,𝑌 ∖𝑉 [𝑇𝑆 −𝐻]. (19.6)

Combine these two equations gives us (19.3). 𝐻 is called the enthalpy. It is a

complete thermodynamic function, since inverse transformation(s) recovers 𝐸. Under

a constant pressure condition, ignoring the exchange of energy due to volume change,

the remaining energy change is ∆𝐻. For an ordinary chemical experiment in a lab,

this corresponds to the exchange of heat due to chemical reactions (the reaction

heat).

Comparing (19.6) and (18.27) we get the equation corresponding to (18.31):

𝐻 =

(︂
𝜕𝐺/𝑇

𝜕1/𝑇

)︂
𝑃,𝑌 ∖𝑉

. (19.7)

This is the Gibbs-Helmholtz equation, which allows us to calculate the Gibbs energy

change from the reaction heat.

19.4 Chemical potential and Gibbs energy

In chemistry there are often no work coordinates other than volume 𝑉 . This means

that there is no work contribution to the system other than the volume work. Thus,

we have

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉 𝑑𝑃 +
∑︁
𝑖

𝜇𝑖𝑑𝑁𝑖. (19.8)
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Therefore, under constant temperature and pressure we have

𝑑𝐺 =
∑︁
𝑖

𝜇𝑖𝑑𝑁𝑖. (19.9)

Consequently, if we add a chemical under constant temperature and pressure follow-

ing the procedure illustrated in Fig. 17.2, the required work 𝜇𝑖𝑑𝑁𝑖 should directly

give its chemical potential. However, note that, in contrast to the one explained in

17.7, its independent variables are 𝑇 and 𝑃 .

The meaning of the materials coordinate (→4.9) change 𝑑𝑁𝑖 is that the exper-

imenter adds 𝑑𝑁𝑖 moles of chemical 𝑖 to the system. Since this addition may be

through a selective permeable membrane for 𝑖, the chemical potential of 𝑖 in the

system must be identical to the measurable chemical potential 𝜇𝑖 itself. However,

the system has its own chemical reactions, so the amount of chemical 𝑖 in the system

need not (algebraically) increase by 𝑑𝑁𝑖 mole.

19.5 Chemical equilibrium condition

Suppose the chemical composition of the system before adding 𝑑𝑁𝑖 is �̃� . Addition

of 𝑑𝑁𝑖 changes the chemical composition of the system. Let this change be 𝑑�̃� =

{𝑑�̃�𝑖}. The required Gibbs energy for this change (under constant 𝑇 and 𝑃 ) is∑︁
𝑗

𝜇𝑗𝑑�̃�𝑗. (19.10)

Quasistatic and reversible addition of 𝑑𝑁𝑖 requires the Gibbs energy change of 𝜇𝑖𝑑𝑁𝑖.

Therefore, these two must be identical:

𝜇𝑖𝑑𝑁𝑖 =
∑︁
𝑗

𝜇𝑗𝑑�̃�𝑗. (19.11)

In general, the following equality must hold:

𝜇 · 𝑑𝑁 = 𝜇 · 𝑑�̃� . (19.12)

In particular, for a closed system

0 = 𝜇 · 𝑑�̃� (19.13)

must hold even if there are chemical reactions.290 This is the chemical equilibrium

condition for a closed system. In this section, however, we will consider the cases

without any chemical reactions (the reactions will be considered in Section 25).

290This is why the Gibbs relation does not have any chemical potential, if the system is closed
(as correctly pointed out in Kirkwood and Oppenheim).
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19.6 ‘Chemical work’ minimization principle

In many chemical experiments, systems have no work exchange except for the volume

work. Since

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉 𝑑𝑃 +
∑︁
𝑖

𝜇𝑖𝑑𝑁𝑖, (19.14)

𝑑𝐺 = 𝑑𝑍 (→17.1) under constant temperature and pressure conditions; materials

exchanges only change the Gibbs energy. Under reversible and quasistatic conditions,

we have

∆𝐺 = 𝑍. (19.15)

Then, what happens if the process is not reversible? Since 𝐺 = 𝐴 + 𝑃𝑉 , if 𝑊

consists only of volume work, then

∆𝐺 = ∆𝐴−𝑊 = ∆𝐴 + 𝑃∆𝑉, (19.16)

However, the (extended) minimum work principle (18.8) implies

∆𝐺 ≤ 𝑍. (19.17)

This inequality may be called the minimum chemical work principle.

In electrochemistry this principle gives the minimum electric energy required to

charge an electric cell. Also, exactly the same logic used in deriving the maximum

work principle (18.7) implies

|∆𝐺| ≥ |𝑍|. (19.18)

That is, the electric energy taken out from a cell is maximum if the process is

reversible. Thus, this should be called the maximum chemical work principle.

19.7 Principle of Gibbs energy minimization

If a closed system does not exchange work other than volume work, (19.17) holding

under constant temperature and pressure conditions becomes

∆𝐺 ≤ 0. (19.19)

That is, if a change can actually occur under constant temperature and pressure

without any external net contribution of operational coordinate change except for
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the volume coordinate, the Gibbs energy should decrease.

This implies that the intial state of the system was actually not an equilibrium

state, so under constant temperature and pressure, if the system is in equilibrium,

any variation of the state without exchanging materials and work other than volume

work implies

∆𝐺 ≥ 0 (19.20)

must hold for any thermodynamic variation under constant 𝑇 and 𝑃 . Thst is, just

as 12.6, but defined as follows with the constant 𝑇 and 𝑃 condition: For a function

𝐽(𝑇, 𝑃,𝑌 ′) of 𝑇 , 𝑃 and operational coordinates except for 𝑉 denoted as 𝑌 ′,

∆𝐽(𝑇, 𝑃,𝑌 ′) =
∑︁
𝑖∈𝒫

𝐽(𝑇, 𝑃,𝑌 ′
𝑖)− 𝐽(𝑇, 𝑃,𝑌 ′), (19.21)

where 𝒫 denotes the set of subsytems by a particular partition of the original system

into subsystems, and 𝑌 ′ =
∑︀

𝑖∈𝒫 𝑌 ′
𝑖.
291 For any equilibrium state under con-

stant temperature and pressure (19.20) must hold. This is called the Gibbs energy

minimization principle, which is a global principle for a state to be in equilibrium.

(19.20) is just a Jensen’s inequality, because 𝐺 under constant 𝑇 and 𝑃 is a convex

function of 𝑌 ′, simply because so is 𝐸 (→13.9).

19.8 Phase equilibrium under constant temperature and pressure

When two distinct phases292 of a pure substance coexist (as ice floating in water), we

can interpret the two phases A and B in contact through an interface as two systems

A and B in contact through a wall that allows free exchange of matter, heat and

volume. The condition that these two systems are in equilibrium under constant 𝑇

and 𝑃 is the principle of Gibbs energy minimization (→19.7). The Gibbs energy of

the total system is the sum of the Gibbs energies of A and B. Thus, if there is only

one chemical substance (or without any chemical reaction), the chemical component

is identical to the materials coordinate, so the minimization principle gives:

𝐺A+B(𝑇, 𝑃,𝑁) = min𝑁 ′[𝐺A(𝑇, 𝑃,𝑁 −𝑁 ′) + 𝐺B(𝑇, 𝑃,𝑁 ′)]. (19.22)

Differentiating this with respect to 𝑁 ′, we get

−𝜇A + 𝜇B = 0. (19.23)

291Here, we consider only simple systems, but generalizing our discussion to compound systems
is just as discussed before in 12.6 .

292For a precise definition of ‘phase,’ see 23.2.
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That is, the chemical potentials must be the same between the two phases in equi-

librium.

19.9 Clapeyron-Clausius equation

Understanding how the boiling point changes as pressure changes is a practically

important question (recall the vacuum distillation). To this end, we need to know

how the chemical potential changes as a function of pressure. If the system has the

volume as the only work coordinate, then (17.11) becomes

𝑑𝜇 = 𝑣𝑑𝑃 − 𝑠𝑑𝑇, (19.24)

where 𝑣 is the molar volume 𝑣 = 𝑉/𝑁 and 𝑠 is the molar entropy 𝑠 = 𝑆/𝑁 .

T

P

dT

dP
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B

phase
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Figure 19.1: How does the coexistence temperature change, when the pressure is changed along
the coexistence curve? We wish to know the slope of the white arrow.

Let ∆ denote the change due to the transition A→B. Take 𝑑𝑇 and 𝑑𝑃 along the

white arrow in Fig. 19.1. ∆𝜇 = 0 becomes

∆𝑣 𝑑𝑃 = ∆𝑠 𝑑𝑇, (19.25)

where ∆𝑣 = 𝑣B − 𝑣A and ∆𝑠 = 𝑠B − 𝑠A. 𝑑𝑇/𝑑𝑃 is the slope of the white arrow:

𝑑𝑃

𝑑𝑇

⃒⃒⃒⃒
coexistence

=
𝑠B − 𝑠A
𝑣B − 𝑣A

. (19.26)

This is called the Clapeyron-Clausius equation. If we write the latent heat of A→B

as 𝐿, the relation between the latent heat and ∆𝑠 is given by (17.35), so (19.26)

becomes
𝑑𝑃

𝑑𝑇

⃒⃒⃒⃒
coexistence

=
𝐿

𝑇∆𝑣
. (19.27)
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Vapor pressure is the pressure exerted by a vapor in equilibrium with its condensed

phases (solid or liquid) at a given temperature 𝑇 in a closed system. Thus, if phase

B is a condensed phase (liquid or solid), and if A is a gas phase in the above, 𝑃 is

the vapor pressure of this substance at temperature 𝑇 .

19.10 Ideal dilute mixture

In 17.14, we considered an ideal liquid mixture of any proportion based on two

empirical laws, Dalton’s law of partial pressures and Raoult’s law. Dalton’s law

may be more reliable than Raoult’s law, which is not so reliable for real liquids of

comparable component ratios. However, if the mole fraction 𝑥 is sufficiently close to

0 or 1, Raoult’s law is fairly accurate. Therefore, the chemical potential formulas for

the ideal liquid mixtures (17.28) and (17.29) are fairly reliable for small 𝑥. If this is

the case, the mixture is called an ideal dilute mixture.

If a gas dissolves with only a small amount in a certain liquid, the mole fraction

𝑥 of the gas in the liquid is proportional to the gas pressure, known as Henry’s law.

This law is closely related to Raoult’s law if we accept Dalton’s law, but much more

reliable than Raoult’s law.

19.11 Melting point depression

Suppose material A is desolved in liquid B with a small mole fraction 𝑥. The chemical

potential of B at temperature 𝑇 (𝑃 is not varied, so it is not written) reads (see

(17.29))

𝜇𝐿(𝑇 ) = 𝜇⊖
𝐿(𝑇 ) + 𝑅𝑇 log(1− 𝑥). (19.28)

Here, 𝜇⊖
𝐿(𝑇 ) is the chemical potential of pure liquid B.293 If the mixture is cooled

sufficiently, crystals (i.e., the solid phase) of almost pure B will separate out. At the

melting point 𝑇𝑚 of pure B, if we write the chemical potential of pure solid B as

𝜇⊖
𝑆 (𝑇 ), then, as we have already seen in 19.8,

𝜇⊖
𝐿(𝑇𝑚) = 𝜇⊖

𝑆 (𝑇𝑚). (19.29)

If an impurity mixes with a melt, its freezing point goes down: 𝑇𝑚 → 𝑇𝑚−∆𝑇 . In

this situation the pure crystal is in equilibrium with the impurity-containing liquid

B whose chemical potential is (19.28). Thus, the equilibrium condition is

𝜇⊖
𝑆 (𝑇𝑚 −∆𝑇 ) = 𝜇⊖

𝐿(𝑇𝑚 −∆𝑇 ) + 𝑅(𝑇𝑚 −∆𝑇 ) log(1− 𝑥). (19.30)

293Throughout this section ⊖ implies quantities for pure substances.
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Assume 𝑥 is small. Taylor expanding this formula in 𝑥 (note that ∆𝑇 = 𝑂[𝑥]), we

obtain
𝜕

𝜕𝑇𝑚

[𝜇⊖
𝑆 (𝑇𝑚)− 𝜇⊖

𝐿(𝑇𝑚)]∆𝑇 = 𝑅𝑇𝑚𝑥. (19.31)

The partial derivative of 𝜇 is computed according to (17.11), so we get

[𝑠𝐿(𝑇𝑚)− 𝑠𝑆(𝑇𝑚)]∆𝑇 =
𝐿

𝑇𝑚

∆𝑇 = 𝑅𝑇𝑚𝑥, (19.32)

where 𝐿 is the melting heat. From this the extent of the melting point depression is

given by

∆𝑇 =
𝑅𝑇 2

𝑚

𝐿
𝑥. (19.33)

Even if we dissolve 𝑥 mol of a solute, its ‘molecule’ might separate into several

pieces to increase the effective molarity of the solute. This results in the melting point

depression larger than the expected value (19.33). This observation is historically

important, because it gave an evidence for ionization of electrolytes.

19.12 Boiling point elevation

If material A that hardly vaporizes is dissolved in a liquid, its boiling point 𝑇𝑏

increases by ∆𝑇 . At this elevated boiling point the pure vapor of the liquid and the

liquid containing A by 𝑥 mole fraction are in equilibrium. Therefore, the formula

corresponding to (19.30) reads

𝜇⊖
𝐺(𝑇𝑏 + ∆𝑇 ) = 𝜇⊖

𝐿(𝑇𝑏 + ∆𝑇 ) + 𝑅(𝑇𝑏 + ∆𝑇 ) log(1− 𝑥). (19.34)

Using a similar logic leading to 19.11, we obtain the boiling point elevation

∆𝑇 =
𝑅𝑇 2

𝑏

𝐿
𝑥, (19.35)

where 𝐿 is the evaporation heat of the pure liquid.

The reason why the boiling point increases due to the impurity from 𝑇𝑏 is that

its vapor pressure at 𝑇𝑏 is not 𝑃 but is reduced by ∆𝑃 . To estimate this amount

we have only to write down the agreement of the chemical potentials at 𝑇𝑏 under

pressure 𝑃 −∆𝑃 :

𝜇⊖
𝐺(𝑇𝑏, 𝑃 −∆𝑃 ) = 𝜇⊖

𝐿(𝑇𝑏, 𝑃 −∆𝑃 ) + 𝑅𝑇𝑏 log(1− 𝑥). (19.36)
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We need the pressure dependence of the chemical potential that may be obtained

from (19.24). Taylor-expanding the equality around 𝑃 , we get

−𝑣𝐺∆𝑃 = −𝑣𝐿∆𝑃 −𝑅𝑇𝑏𝑥. (19.37)

In the present case the molar volume 𝑣𝐺 of the gas is overwhelmingly larger than that

of the liquid 𝑣𝐿, so we may ignore 𝑣𝐿. Furthermore, the gas can be approximated as

an ideal gas, so we may use 𝑣𝐺 = 𝑅𝑇/𝑃 . Thus, we get

∆𝑃 = 𝑃𝑥. (19.38)

19.13 Osmotic pressure: van’t Hoff’s law

Suppose there is a pure solvent and a solution consisting of the solvent and a solute

in contact through a selective membrane that only allows the solvent to go through.

Since the chemical potential of the solvent is smaller in the solution than in the pure

solvent as seen in (19.28), the solvent pushes into the solution. To prevent this influx,

we must apply pressure on the solution side. The minimum pressure 𝜋 required to

prevent this influx is called the osmotic pressure (Fig. 19.2).

Pure
Solution

π

selective membrane

Solvent

for solvent

Figure 19.2: The horizontal arrow indicates the tendency for solvent to invade.

If the pressure of the solvent is 𝑃 , the solution must be maintained at pressure 𝑃 +𝜋

to prevent any flow. The equilibrium condition for the solvent reads

𝜇⊖
solv(𝑃 + 𝜋, 𝑇 ) + 𝑅𝑇 log(1− 𝑥) = 𝜇⊖

solv(𝑃, 𝑇 ). (19.39)

By the Taylor expansion, just as (19.30), we get van’t Hoff’s law:

−𝑣𝜋 = −𝑅𝑇𝑥 ⇒ 𝜋 = 𝑛𝑅𝑇, (19.40)

where 𝑛 is the molarity of the solute: since 𝑥 is a molar fraction, and 𝑥 ≪ 1, 𝑥 is

almost identical to the solute moles per one mole of the solvent, whose volume is 𝑣,

so the molarity 𝑛 of the solute is given by 𝑛 = 𝑥/𝑣.
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19.14 The colligative properties

Raoult’s law (→17.13), Henry’s law (→19.10), melting point depression(→19.11),

boiling point elevation (→19.12) and van’t Hoff’s law (→19.13) are all independent

of the peculiarities of individual substances and all due to the terms log 𝑥 or log(1−𝑥)

in the chemical potential (that is, due to the mole fraction), so they can be understood

in a unified fashion (or all at once as a bunch). Therefore, they are called the

colligative properties.294

294colligative ⇐ co + ligate = tying up together.
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20 Making full use of Jacobians

20.1 Strong differentiability of internal energy: a review

Internal energy is a strongly differentiable convex function of entropy 𝑆, work coor-

dinates 𝑋 and materials coordinates 𝑁 . Therefore,

𝑑𝐸 = 𝑇𝑑𝑆 +
∑︁

𝑥𝑖𝑑𝑋𝑖 +
∑︁

𝜇𝑖𝑑𝑁𝑖 (20.1)

is an exact form. From the convexity of 𝐸, the intensive conjugate variables, 𝑇 , 𝑥𝑖

and 𝜇𝑖 are (Lipshitz) continuous functions of thermodynamic coordinates. However,

the thermodynamic principles cannot show greater smoothness, such as the differen-

tiability of 𝑇 , from its principles.

Empirically, as long as there is no phase transition, fairly high-order partial dif-

ferentiability seems to hold. Therefore, let us assume that the internal energy is a

𝐶2 function of the thermodynamic coordinates in this section.295

Those who feel uneasy about the notation of partial derivatives in thermodynamics

should read 9.2.

20.2 Legendre-Fenchel transformation and changing independent vari-

ables

The independent variables of complete thermodynamic functions obtained from 𝐸

by Legendre-Fenchel transformation (→18.6) are not necessarily extensive quanti-

ties. Therefore, if the dimension of the thermodynamic space of a system is 𝒟, we

encounter situations requiring a set of 𝒟 thermodynamic variables to be replaced by

another set of 𝒟 thermodynamic variables. For example, the independent variables

of the Gibbs energy are 𝑇, 𝑃,𝑋 ∖ 𝑉 and 𝑁 , so it is required to express this set

in terms of 𝑆,𝑋,𝑁 to use the fundamental equation (→11.12). We have already

differentiated chemical potentials with respect to 𝑇 , for example.

Thus, to determine the outcome of twice differentiability of internal energy, it is

295Equilibrium statistical mechanics can demonstrate that 𝐸 is 𝐶𝜔 if there is no phase transitions
(rather, phase transitions are defined as the states where the 𝐶𝜔-nature of free energy is lost).
Remember that this is only a model result; not empirical at all. However, we should clearly
recognize that the statistical mechanics framework is a consequence of thermodynamics, if we
accept the typicality argument of the microstates. Thus, statistical mechanics is so good a model
of thermodynamics that one may wish to regard it more basic than thermodynamics under the
prejudice that smaller scales are closer to the fundamental.
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convenient to be able to compute freely the results of the derivatives of any thermo-

dynamic variable with respect to another thermodynamic variable.

20.3 Chain rule

Let us differentiate an 𝑛 variable function 𝑓(𝑋) of variables 𝑋1, · · · , 𝑋𝑛 (collectively

denoted as 𝑋) with another set of 𝑛 variables 𝑥1, · · · , 𝑥𝑛 (collectively denoted as

𝑥).296

Remark From this unit to unit 20.6 𝑋 and 𝑥 are not work coordinates and their

conjugates but general variables. Uppercase (resp., Lowercase) letters need not mean

extensive (resp. intensive) variables.

Here, we assume that the transformation 𝑋 → 𝑥 is diffeomorphic.297 The follow-

ing formal calculations are reliable as long as the smooth map 𝑋 → 𝑥 is bijective.

Let us assume that 𝑓 be a function of 𝑥, and apply the chain rule:(︂
𝜕𝑓

𝜕𝑥𝑖

)︂
𝑥𝑐
𝑖

=
𝑛∑︁

𝑗=1

(︂
𝜕𝑋𝑗

𝜕𝑥𝑖

)︂
𝑥𝑐
𝑖

(︂
𝜕𝑓

𝜕𝑋𝑗

)︂
𝑋𝑐

𝑗

. (20.2)

Here, the superscript 𝑐 means that from the relevant set of variables we remove the

one with this mark. If we define a column vector

𝜕

𝜕𝑋
=

(︃(︂
𝜕

𝜕𝑋1

)︂
𝑋𝑐

1

, · · · ,
(︂

𝜕

𝜕𝑋𝑛

)︂
𝑋𝑐

𝑛

)︃𝑡

, (20.3)

etc., where superscript 𝑡 implies the transposition, (20.2) can be succinctly expressed

as
𝜕𝑓

𝜕𝑥
=

[︂
𝜕𝑋

𝜕𝑥

]︂
𝜕𝑓

𝜕𝑋
. (20.4)

Here, the following 𝑛× 𝑛 matrix is used:[︂
𝜕𝑋

𝜕𝑥

]︂
= matr

(︃(︂
𝜕𝑋𝑗

𝜕𝑥𝑖

)︂
𝑥𝑐
𝑖

)︃
(20.5)

296In the rest of this section 𝑋 and 𝑥 denote general variables and not the work coordinates and
their conjugate variables.

297One to one and differentiable in both ways; More intuitively, a map that is ‘smooth’ and that
maps any sufficiently small cube around each point 𝑋 to another nondegenerate 𝑛-dimensional
shape around its image 𝑥; the map linearized at any point becomes a regular, i.e., invertible, linear
map.
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(︁
𝜕𝑋1

𝜕𝑥1

)︁
𝑥𝑐
1

(︁
𝜕𝑋2

𝜕𝑥1

)︁
𝑥𝑐
1

(︁
𝜕𝑋3

𝜕𝑥1

)︁
𝑥𝑐
1

· · ·
(︁

𝜕𝑋𝑛

𝜕𝑥1

)︁
𝑥𝑐
1(︁

𝜕𝑋1

𝜕𝑥2

)︁
𝑥𝑐
2

(︁
𝜕𝑋2

𝜕𝑥2

)︁
𝑥𝑐
2

. . . · · ·
(︁

𝜕𝑋𝑛

𝜕𝑥2

)︁
𝑥𝑐
2(︁

𝜕𝑋1

𝜕𝑥3

)︁
𝑥𝑐
3

. . . . . . . . .
(︁

𝜕𝑋𝑛

𝜕𝑥3

)︁
𝑥𝑐
3

...
...

. . . . . .
...(︁

𝜕𝑋1

𝜕𝑥𝑛

)︁
𝑥𝑐
𝑛

(︁
𝜕𝑋2

𝜕𝑥𝑛

)︁
𝑥𝑐
𝑛

· · · · · ·
(︁

𝜕𝑋𝑛

𝜕𝑥𝑛

)︁
𝑥𝑐
𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20.6)

If we further apply a diffeomorphism from 𝑥 to 𝑛 variables 𝑎1, · · · , 𝑎𝑛 (collectively

denoted as 𝑎), we can write

𝜕𝑓

𝜕𝑎
=

[︂
𝜕𝑥

𝜕𝑎

]︂ [︂
𝜕𝑋

𝜕𝑥

]︂
𝜕𝑓

𝜕𝑋
, (20.7)

and the variable changes may be written in terms of the matrix multiplication:[︂
𝜕𝑋

𝜕𝑎

]︂
=

[︂
𝜕𝑥

𝜕𝑎

]︂ [︂
𝜕𝑋

𝜕𝑥

]︂
. (20.8)

You should explicitly write the two-variable case to confirm the relation.

20.4 Jacobian

The determinant of the matrix introduced in (20.6), which is called the Jacobi matrix,

is known as the Jacobian. We use the following notation:

𝜕(𝑋1, · · · , 𝑋𝑛)

𝜕(𝑥1, · · · , 𝑥𝑛)
=

𝜕(𝑋)

𝜕(𝑥)
= det

(︂
𝜕𝑋

𝜕𝑥

)︂
= det

(︃(︂
𝜕𝑋𝑗

𝜕𝑥𝑖

)︂
𝑥𝑐
𝑖

)︃
. (20.9)

In this notation, the variables upstairs represent dependent variables and the vari-

ables downstairs represent independent variables.

In particular, if we have only two variables

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
=

⃒⃒⃒⃒
⃒
(︀
𝜕𝑋
𝜕𝑥

)︀
𝑦

(︀
𝜕𝑌
𝜕𝑥

)︀
𝑦(︁

𝜕𝑋
𝜕𝑦

)︁
𝑥

(︁
𝜕𝑌
𝜕𝑦

)︁
𝑥

⃒⃒⃒⃒
⃒ =

(︂
𝜕𝑋

𝜕𝑥

)︂
𝑦

(︂
𝜕𝑌

𝜕𝑦

)︂
𝑥

−
(︂
𝜕𝑋

𝜕𝑦

)︂
𝑥

(︂
𝜕𝑌

𝜕𝑥

)︂
𝑦

. (20.10)

20.5 Computational rules due to Jacobians being determinants

To take advantage of the Jacobian formulation of partial derivatives, we only need
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to memorize a few simple rules (as summarized in 20.12), some of which are direct

consequences of Jacobians being determinants.

If we exchange two columns or two rows, a determinant switches its sign. From

its definition (20.9), if we change the orders of two dependent or independent vari-

ables, the Jacobian switches its sign. In particular, for the two variable case we can

explicitly write

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
= −𝜕(𝑌,𝑋)

𝜕(𝑥, 𝑦)
=

𝜕(𝑌,𝑋)

𝜕(𝑦, 𝑥)
= −𝜕(𝑋, 𝑌 )

𝜕(𝑦, 𝑥)
. (20.11)

If we multiply a constant 𝑏 to a column or row of a determinant, the determinant

itself is multiplied by 𝑏. We only need the case where 𝑏 = −1. In particular, for the

two variable case we can explicitly write

𝜕(−𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
=

𝜕(𝑋,−𝑌 )

𝜕(𝑥, 𝑦)
=

𝜕(𝑋, 𝑌 )

𝜕(−𝑥, 𝑦)
=

𝜕(𝑋, 𝑌 )

𝜕(𝑥,−𝑦)
= −𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
. (20.12)

20.6 The chain rule in terms of Jacobians

The determinant of (20.8) reads

𝜕(𝑋1, · · · , 𝑋𝑛)

𝜕(𝑎1, · · · , 𝑎𝑛)
=

𝜕(𝑥1, · · · , 𝑥𝑛)

𝜕(𝑎1, · · · , 𝑎𝑛)

𝜕(𝑋1, · · · , 𝑋𝑛)

𝜕(𝑥1, · · · , 𝑥𝑛)
. (20.13)

Determinants are just numbers, so we can exchange the order of multiplication to

write
𝜕(𝑋1, · · · , 𝑋𝑛)

𝜕(𝑎1, · · · , 𝑎𝑛)
=

𝜕(𝑋1, · · · , 𝑋𝑛)

𝜕(𝑥1, · · · , 𝑥𝑛)

𝜕(𝑥1, · · · , 𝑥𝑛)

𝜕(𝑎1, · · · , 𝑎𝑛)
. (20.14)

Notice that this implies an algebraic rule: if we have the same factors in the

numerator and the denominator, we can cancel them. In the calculation utilizing

Jacobians, differential calculus turns into algebra. In thermodynamics such a formal

calculation invariably gives correct results.

In the two-variable case, this formal calculation rule may be illustrated as follows.

First, separate the two factors in the upstairs and downstairs (the numerator and

the denominator), and then throw in identical factors in the open slots:

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
=

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
=

𝜕(𝑋, 𝑌 )

𝜕(𝐴,𝐵)

𝜕(𝐴,𝐵)

𝜕(𝑥, 𝑦)
. (20.15)

Here, 𝐴 and 𝐵 may be anything that can be used as a set of independent variables.

That is, (𝐴,𝐵) are at least locally diffeomorphic to (𝑋, 𝑌 ) and to (𝑥, 𝑦).
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20.7 Partial derivatives in terms of Jacobians

In the Jacobian expression, the variables downstairs are independent variables for a

function 𝐹 of 𝑥

𝜕(𝐹, 𝑥2 · · · , 𝑥𝑛)

𝜕(𝑥1, 𝑥2, · · · , 𝑥𝑛)
= det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(︁
𝜕𝐹
𝜕𝑥1

)︁
𝑥𝑐
1

0 0 0 · · · 0 0(︁
𝜕𝐹
𝜕𝑥2

)︁
𝑥𝑐
2

1 0 0 · · · 0 0(︁
𝜕𝐹
𝜕𝑥3

)︁
𝑥𝑐
3

0 1 0 · · · 0 0

...
... 0 1

. . . . . .
...

...
...

...
. . . . . . . . .

...
...

...
...

. . . . . . . . .
...(︁

𝜕𝐹
𝜕𝑥𝑛

)︁
𝑥𝑐
𝑛

0 0 · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(︂
𝜕𝐹

𝜕𝑥1

)︂
𝑥𝑐
1

. (20.16)

In particular, for the two-variable case

𝜕(𝐹, 𝑦)

𝜕(𝑥, 𝑦)
= det

(︃ (︀
𝜕𝐹
𝜕𝑥

)︀
𝑦

0(︁
𝜕𝐹
𝜕𝑦

)︁
𝑥

1

)︃
=

(︂
𝜕𝐹

𝜕𝑥

)︂
𝑦

. (20.17)

Even for cases with many variables, if we wish to consider only two variables among

them, we may manipulate the formulas as if there are no other variables, as can be

guessed from the structure of the matrix in (20.16).

20.8 Basic relations obtained from the chain rule

Let 𝑋 and 𝑌 be thermodynamic variables. Then, trivially,

𝜕(𝑋, 𝑌 )

𝜕(𝑋, 𝑌 )
= 1. (20.18)

If we apply (20.15) to this formula, we obtain

1 =
𝜕(𝑋, 𝑌 )

𝜕(𝑋, 𝑌 )
=

𝜕(𝑋, 𝑌 )

𝜕(𝐴,𝐵)

𝜕(𝐴,𝐵)

𝜕(𝑋, 𝑌 )
. (20.19)

That is,
𝜕(𝑋, 𝑌 )

𝜕(𝐴,𝐵)
= 1

⧸︂
𝜕(𝐴,𝐵)

𝜕(𝑋, 𝑌 )
. (20.20)
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Combining this formula and the partial derivatives expressed in terms of Jacobians

(→20.7), for example, we obtain

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑌 )
= 1

⧸︂
𝜕(𝑥, 𝑌 )

𝜕(𝑋, 𝑌 )
⇒

(︂
𝜕𝑋

𝜕𝑥

)︂
𝑌

= 1

⧸︂(︂
𝜕𝑥

𝜕𝑋

)︂
𝑌

. (20.21)

Although this relation may appear trivial from an algebraic point of view, ana-

lytically, it is not so trivial. On the left-hand side, both 𝑋 and 𝑌 are regarded as

functions of 𝑥 and 𝑌 (𝑥, 𝑦), and the derivative is with respect to 𝑥 with 𝑌 (𝑥, 𝑦) being

fixed. On the right-hand side both 𝑥 and 𝑦 are regarded as functions of 𝑋 and 𝑌

and the derivative is with respect to 𝑋 with 𝑌 being fixed. An example of this is

(for specific heats →14.6)(︂
𝜕𝑇

𝜕𝑆

)︂
𝑉

= 1

⧸︂(︂
𝜕𝑆

𝜕𝑇

)︂
𝑉

=
𝑇

𝐶𝑉

. (20.22)

Since algebraic calculations are allowed, we can perform, for example,

𝜕(𝑥,𝑋)

𝜕(𝑦,𝑋)
=

𝜕(𝑥,𝑋)
⧸︂

𝜕(𝑦,𝑋)
=

𝜕(𝑥,𝑋)

𝜕(𝑦, 𝑥)

⧸︂
𝜕(𝑦,𝑋)

𝜕(𝑦, 𝑥)
= −𝜕(𝑋, 𝑥)

𝜕(𝑦, 𝑥)

⧸︂
𝜕(𝑋, 𝑦)

𝜕(𝑥, 𝑦)
.

(20.23)

In terms of partial derivatives, this reads(︂
𝜕𝑥

𝜕𝑦

)︂
𝑋

= −
(︂
𝜕𝑋

𝜕𝑦

)︂
𝑥

⧸︃(︂
𝜕𝑋

𝜕𝑥

)︂
𝑦

. (20.24)

If we set 𝑥 = 𝑃 , 𝑦 = 𝑇 , 𝑋 = 𝑉 , we obtain(︂
𝜕𝑃

𝜕𝑇

)︂
𝑉

= −
(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

⧸︂(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

=
𝛼

𝜅
, (20.25)

where 𝛼 is the isobaric thermal expansion coefficient and 𝜅 is the isothermal com-

pressibility:

𝛼 =
1

𝑉

(︂
𝜕𝑉

𝜕𝑇

)︂
𝑃

, 𝜅 = − 1

𝑉

(︂
𝜕𝑉

𝜕𝑃

)︂
𝑇

. (20.26)

20.9 Young’s theorem and Maxwell’s relations

Young’s theorem 9.7 states that if all the twice partial derivatives of 𝐸 exist, their
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results do not depend on the order of differentiation. That is, if we use 𝑌𝑖 to represent,

entropy, work coordinates or materials coordinates298

𝜕2𝐸

𝜕𝑌𝑖𝜕𝑌𝑗

=
𝜕2𝐸

𝜕𝑌𝑗𝜕𝑌𝑖

. (20.27)

That is, (︂
𝜕𝑦𝑖
𝜕𝑌𝑗

)︂
𝑌 𝑐
𝑗

=

(︂
𝜕𝑦𝑗
𝜕𝑌𝑖

)︂
𝑌 𝑐
𝑖

. (20.28)

This relation is called Maxwell’s relations in thermodynamics. For example, for a

gas with only volume as its work coordinate

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 (20.29)

yields the following Maxwell’s relation(︂
𝜕𝑇

𝜕𝑉

)︂
𝑆

= −
(︂
𝜕𝑃

𝜕𝑆

)︂
𝑉

. (20.30)

Physically, this is remarkable; it quantitatively relates the temperature change due to

a volume change under adiabatic conditions to the pressure change when entropy is

changed (i.e., heat is added) under constant volume. It should be hard to understand

the relation intuitively.299

20.10 Unified Maxwell’s relation in terms of Jacobians

Maxwell’s relations hold not only for internal energy, but for any sufficiently smooth

twice differentiable quantities. Therefore, for example, for complete thermodynamic

functions there are many Maxwell’s relations. However, the only formula that needs

to be memorized is the following:

𝜕(𝑋, 𝑥)

𝜕(𝑦, 𝑌 )
= 1. (20.31)

Here, uppercase letters denote extensive quantities, and lowercase letters denote

intensive quantities, and the alphabetical correspondence implies the conjugate rela-

tion: (𝑋, 𝑥) denotes, for example, (𝑆, 𝑇 ), (𝑉,−𝑃 ), (𝑁,𝜇), etc.

298If we choose the conventional chemical coordinates (= chemical composition variables), then
this is true only without any chemical reaction.

299Or, even by statistical mechanics alone.
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This formula has been demonstrated in 9.18.300 An algebraic formal ‘derivation’

is in 20.11.

20.11 Unification of Maxwell’s relations: algebraic ‘explanation’
Let us rewrite (20.28) as (︂

𝜕𝑥

𝜕𝑌

)︂
𝑋,···

=

(︂
𝜕𝑦

𝜕𝑋

)︂
𝑌,···

, (20.32)

denoting with · · · the other extensive variables than 𝑋 and 𝑌 . The essence of this equation
is

𝜕(𝑥,𝑋)

𝜕(𝑌,𝑋)
=

𝜕(𝑦, 𝑌 )

𝜕(𝑋,𝑌 )
. (20.33)

Therefore,
𝜕(𝑥,𝑋)

𝜕(𝑦, 𝑌 )
=

𝜕(𝑌,𝑋)

𝜕(𝑋,𝑌 )
= −1. (20.34)

By combining this with (20.11), we immediately obtain (20.31). Needless to say, this is not
a proof, but rather a mnemonic.

20.12 Summary of Jacobian technique

The definition of the Jacobian is provided in 20.4, esp., (20.9). Thus, the partial

derivative can be written as (→20.7)(︂
𝜕𝐴

𝜕𝐵

)︂
···

=
𝜕(𝐴, · · ·)
𝜕(𝐵, · · ·)

. (20.35)

All the calculations required when we use Jacobians are algebraic and are based

only on the following three rules:

(i) The rule for signs (→20.5): horizontal exchange of letters301 or changing the sign

of a letter switches the sign:

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
= −𝜕(𝑌,𝑋)

𝜕(𝑥, 𝑦)
=

𝜕(𝑌,𝑋)

𝜕(𝑦, 𝑥)
= −𝜕(𝑋, 𝑌 )

𝜕(𝑦, 𝑥)
, (20.36)

for example,
𝜕(−𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
= −𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
. (20.37)

300To derive the formula considering its physical meaning is with poor taste, but thus derived

𝜕(𝑃, 𝑉 )

𝜕(𝑇, 𝑆)
= 1

is known for a long time.
301which may be called ‘transposition.’
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(ii) Chain rule (→20.6): The same factors 𝜕(· · ·) may be inserted/removed:

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
=

𝜕(𝑋, 𝑌 )

𝜕(𝑥, 𝑦)
=

𝜕(𝑋, 𝑌 )

𝜕(𝐴,𝐵)

𝜕(𝐴,𝐵)

𝜕(𝑥, 𝑦)
. (20.38)

(iii) Maxwell’s relation (→20.10): for arbitrary conjugate pairs (𝑋, 𝑥) and (𝑌, 𝑦)

𝜕(𝑋, 𝑥)

𝜕(𝑦, 𝑌 )
= 1. (20.39)

Practice the usage of Jacobians through the examples in the next section.
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21 Entropic elasticity

21.1 Experiments with a rubber band

Prepare a wide rubber band (for bundling broccoli and asparagus). As a temperature

sensor use your lips. First, lightly touch the rubber band with your lips to confirm

that it is at room temperature; it should feel somewhat cool. Next, as illustrated

in the photo 21.1 Left, hold both ends of a very small portion of the band tightly

between your thumbs and fingers, and quickly and strongly stretch it (Fig. 21.1

Right).

Rapid  change

Hold firmly Stretch at once

Figure 21.1: If we stretch a small portion of a wide rubber band quickly and strongly, we can
approximately realize an adiabatic reversible quasistatic stretching of a rubber band.

Immediately after stretching, put the stretched portion to your lip. It should feel

warm. Keep stretching strongly for a while to allow it to equilibrate roughly with the

room temperature, and then suddenly stop stretching. The shrunk portion should

now feel cool, which you can confirm by touching it with your lips.

Although we use the term “quickly” to describe the stretching process, the actual

stretching speed is relatively slow compared to the relaxation rate of the rubber

polymers, resulting in a reversible quasistatic process. Furthermore, the heat flow

from the ambient air and our hands during the stretching process is limited, allowing

for an adequate adiabatic condition. In other words, we have approximately realized

an adiabatic reversible and quasistatic stretching of the rubber band.

21.2 Summary of empirical observations about rubber bands

From the experiment in 21.1 and related ones, we can observe the following:

(1) An adiabatic and reversible quasistatic stretching increases the temperature of

the stretched portion.

(2) Adiabatic and reversible quasistatic shrinking decreases the temperature of the
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shrunk portion. This is just the reversal of (1), and is not surprising, but still a

notable fact.

(3) If we suspend a weight with a rubber band and warm it, the weight is raised.

(4) To prevent the warming of the rubber band from raising the weight, we must

increase the weight.

The effects of (3) and (4) are not large and are not as easily observed as (1) and

(2).302

An obvious fact we must note is that increasing the length 𝐿 of the rubber band

requires a stretching force 𝐹 and, consequently, we must do some work.

21.3 Thermodynamics of a rubber band

To develop the thermodynamics of any system, we must first set up its thermody-

namic space. That is, we must choose its thermodynamic coordinates. To describe

the state of a rubber band, we need its internal energy and the length 𝐿. When

stretched, a rubber band becomes thinner, but it is empirically known that its vol-

ume is approximately constant, so, for example, its width is not an independent

coordinate. Therefore, we adopt 𝐿 as its work coordinate. The work required to

change 𝐿 with a stretching force 𝐹 is expressed as 𝜔 = 𝐹𝑑𝐿. Thus, the thermody-

namic space of the rubber band is spanned by 𝐸 and 𝐿, and the Gibbs relation is

given by

𝑑𝐸 = 𝑇𝑑𝑆 + 𝐹𝑑𝐿. (21.1)

The facts (1)-(4) in 21.2 are expressed as:

(1, 2)

(︂
𝜕𝑇

𝜕𝐿

)︂
𝑆

> 0. (21.2)

(3)

(︂
𝜕𝐿

𝜕𝑇

)︂
𝐹

< 0. (21.3)

(4)

(︂
𝜕𝐹

𝜕𝑇

)︂
𝐿

> 0. (21.4)

For an adiabatic and reversible quasistatic process the entropy of the system remains

constant, so 𝑆 = const. in (21.2) means the adiabatic condition.

302According to Shixian Zhang, Quanling Yang & Qing Wang, Solid-state cooling by elas-
tocaloric polymer with uniform chain-lengths Nature Commun. 13, 9 (2022), an adiabatic tem-
perature change of −15.3 K and an isothermal entropy change of 145 J kg−1K−1 are obtained from
poly(styrene-b-ethylene-co-butylene-b-styrene) near room temperature.
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21.4 Mutual relations of empirical facts (1)-(4)

Are the empirical observations (1)-(4) in 21.3 independent? The most straightfor-

ward method for examining the relationships among these partial derivatives is to

express them in terms of Jacobians (→20.7).

(1, 2)

(︂
𝜕𝑇

𝜕𝐿

)︂
𝑆

=
𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝑆)
> 0. (21.5)

(3)

(︂
𝜕𝐿

𝜕𝑇

)︂
𝐹

=
𝜕(𝐿, 𝐹 )

𝜕(𝑇, 𝐹 )
< 0. (21.6)

(4)

(︂
𝜕𝐹

𝜕𝑇

)︂
𝐿

=
𝜕(𝐹,𝐿)

𝜕(𝑇, 𝐿)
> 0. (21.7)

Very often the presence of 𝑆 in the formula is a nuisance. To eliminate 𝑆 we can use

a Maxwell’s relation (→20.10)
𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝐹 )
= 1 (21.8)

or specific heats (→14.6). Let us first use the chain rule (20.38) and Maxwell’s

relation:
𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝑆)
=

𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝑆)
=

𝜕(𝑇, 𝑆)

𝜕(𝐿, 𝐹 )

𝜕(𝐿, 𝐹 )

𝜕(𝐿, 𝑆)
=

𝜕(𝐿, 𝐹 )

𝜕(𝐿, 𝑆)
. (21.9)

𝑆 is still present, but its temperature dependence may be related to the heat capacity

and is easy to measure (→14.6):

𝜕(𝐿, 𝐹 )

𝜕(𝐿, 𝑆)
=

𝜕(𝐿, 𝐹 )

𝜕(𝐿, 𝑆)
=

𝜕(𝐿, 𝐹 )

𝜕(𝐿, 𝑇 )

𝜕(𝐿, 𝑇 )

𝜕(𝐿, 𝑆)
=

(︂
𝜕𝐹

𝜕𝑇

)︂
𝐿

𝑇

𝐶𝐿

. (21.10)

Here, 𝐶𝐿 is the heat capacity of the rubber band under constant length. Thus, we

arrive at (︂
𝜕𝑇

𝜕𝐿

)︂
𝑆

=

(︂
𝜕𝐹

𝜕𝑇

)︂
𝐿

𝑇

𝐶𝐿

. (21.11)

Since 𝐶𝐿 > 0, and the positivity of the left-hand side was easy to observe (empirical

fact (1) of 21.2), this equation means (4).

(3) and (4) appear like two sides of a coin. To understand the relation, let us start

with a single fact (say, (3)) and split its Jacobian expression as:(︂
𝜕𝐿

𝜕𝑇

)︂
𝐹

=
𝜕(𝐿, 𝐹 )

𝜕(𝑇, 𝐹 )
=

𝜕(𝐿, 𝐹 )

𝜕(𝑇, 𝐹 )
, (21.12)
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and then start thinking. Since (4) has the factor (𝑇, 𝐿), let us introduce this: using

the rule for the sign 20.12 (i), we get(︂
𝜕𝐿

𝜕𝑇

)︂
𝐹

=
𝜕(𝐿, 𝐹 )

𝜕(𝑇, 𝐿)

𝜕(𝑇, 𝐿)

𝜕(𝑇, 𝐹 )
= −

(︂
𝜕𝐹

𝜕𝑇

)︂
𝐿

(︂
𝜕𝐿

𝜕𝐹

)︂
𝑇

(21.13)

If we increase 𝐹 , length 𝐿 should increase, so the second partial derivative should

be positive (this is an example of Le Chatelier’s principle.→22.8). Therefore, (4)

implies (3). That is, if we know (1) the rest may be obtained by thermodynamics.

In this unit, that 𝐶𝐿 > 0 and that (𝜕𝐹/𝜕𝐿)𝑇 > 0 are taken for granted; if these

signs were opposite, horrible things would happen. For example, if the heat capacity

were negative, the injecting heat into such a system would reduce its temperature,

making it easier to absorb more heat. This would create something like a heat black

hole. These signs are determined by the fundamental constraint resulting from the

stability of the world, which we will discuss in the next section.

21.5 How does entropy change?

What happens to the entropy of a rubber band when it is stretched under a constant

temperature? Equivalently, what is the sign of the following partial derivative?

According to our experimental result(︂
𝜕𝑆

𝜕𝐿

)︂
𝑇

=
𝜕(𝑆, 𝑇 )

𝜕(𝐿, 𝑇 )
=

𝜕(𝑆, 𝑇 )

𝜕(𝐹,𝐿)

𝜕(𝐹,𝐿)

𝜕(𝐿, 𝑇 )
= −𝜕(𝐹,𝐿)

𝜕(𝑇, 𝐿)
= −

(︂
𝜕𝐹

𝜕𝑇

)︂
𝐿

< 0. (21.14)

That is, as long as the temperature is constant, entropy decreases as the band is

stretched.

Entropy is not so easy to reduce (→12.7); the above inequality tells us that the

reason why a rubber band resists being stretched is due to the entropy decrease. Such

elasticity is called the entropic elasticity; The experimental fact (4) that increasing

temperature ‘strengthens’ the rubber band is its characteristic.303

According to 17.16, entropy is related to the amount of knowledge we need to

describe a macro state in a detailed fashion. Following this point of view, (21.14)

implies that stretching makes the description of polymers making the rubber band

303⟨⟨Energetic elasticity⟩⟩ The concept in contrast to entropic elasticity is energetic elasticity.
This is due to the increase of energy by stretching and we encounter often with ordinary metal
springs. Under a constant temperature, its 𝐸 must increase with 𝐿. The ideal rubber band 21.6 is
significantly different from this behavior.
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simpler. Its exaggerated illustration is Fig. 21.2. That is, if stretched, the chains are

more constrained and the shapes become simpler.

Figure 21.2: If stretched, the range where the chains can wiggle is restricted. Three different
conformations are illustrated. The gray zone indicates the rough range where the chains can wiggle.

Then, what happens to the entropy if the rubber band length is kept constant,

while increasing the stretching force? If we rely on the intuitive picture Fig. 21.2,

the stretching force cannot be increased (or the spring constant cannot be increased)

unless somehow entropy must be increased. Can we show this? That is,(︂
𝜕𝑆

𝜕𝐹

)︂
𝐿

> 0 ? (21.15)

We always follow the same strategy:(︂
𝜕𝑆

𝜕𝐹

)︂
𝐿

=
𝜕(𝑆, 𝐿)

𝜕(𝐹,𝐿)
=

𝜕(𝑆, 𝐿)

𝜕(𝑇, 𝐿)

𝜕(𝑇, 𝐿)

𝜕(𝐹,𝐿)
=

𝐶𝐿

𝑇

⧸︂(︂
𝜕𝐹

𝜕𝑇

)︂
𝐿

> 0 (21.16)

The inequality is due to (4) of 21.3.

21.6 Ideal rubber band

Up to this point no internal energy has been mentioned. The actual rubber band

becomes brittle if the temperature is too low, and melt if it is too high, indicating

internal energy is crucial. However, around room temperature, 𝐸 does not signifi-

cantly depend on 𝐿. This is just as the ideal gas internal energy does not depend

on volume (work coordinate). Therefore, the rubber band whose 𝐸 does not depend

on 𝐿 is called an ideal rubber band. Just as the entropy of the ideal gas (i.e., the

fundamental equation of the ideal gas (11.26)) can be written as a sum of the part

dependent on 𝐸 and that dependent on 𝑉 , the entropy of the ideal rubber band can

be written as the sum of the 𝐸-dependent part and the 𝐿-dependent part:

𝑆(𝐸,𝐿) = 𝑆𝑒(𝐸) + 𝑆𝑐(𝐿). (21.17)
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Here, 𝑆𝑒 is the energy depending portion and is independent of the stretching of the

rubber bad. 𝑆𝑐 is the portion dependent on the stretching. The temperature 𝑇 is

determined by the derivative of 𝑆𝑒. The adiabatic free shrinking should maintain 𝐸,

so the temperature should not change. Isn’t this contradictory to the experimental

fact (2) of 21.2? When the rubber band shrinks, it is impossible to make the force

everywhere zero instantaneously, and also the relaxation time is very short, so even

if we instantaneously releases the rubber band, free shrinking never happens, and

only quasistatic change can be realized.

21.7 The principle of adiabatic cooling

If we allow a strongly stretched rubber band to relax at room temperature (adiabatic

relaxation), the rubber band cools down as we have already experienced (21.1 (2)):

since (︂
𝜕𝑇

𝜕𝐿

)︂
𝑆

> 0, (21.18)

if we reduce 𝐿 under constant 𝑆, 𝑇 must decrease. This is the principle of adiabatic

cooling (see Fig. 21.3).
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Figure 21.3: Initially, the system temperature is 𝑇1. Under constant temperature, we increase 𝐿:
𝐿1 → 𝐿2. This reduces the system entropy. Next, we return 𝐿 to the original length adiabatically
and reversibly. The entropy remains constant, so the system temperature goes down to 𝑇2. The
dotted curve denotes the process that occurs when the rubber band is stretched rapidly (i.e.,
adiabatically).

Unfortunately, we cannot use a rubber band to reduce the system temperature

sufficiently, because (21.17) does not hold at low temperatures and the band becomes

brittle. In actual low temperature physics experiments, dilute paramagnetic systems

are used (→21.8).
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21.8 Dilute paramagnets or ideal magnets: adiabatic demagnetization

The thermodynamic space of a magnet is spanned by the internal energy and mag-

netization 𝑀 . Therefore, its Gibbs relation is given by (→B.2)

𝑑𝐸 = 𝑇𝑑𝑆 + 𝐵𝑑𝑀. (21.19)

Here, for an ideal paramagnetic material, just as the ideal gas and idea rubber band,

the following fundamental equation holds:

𝑆 = 𝑆𝑒(𝐸) + 𝑆𝑐(𝑀). (21.20)

If an external magnetic field 𝐵 is imposed, the magnetization aligns to the magnetic

field direction. Therefore, there is a very good analogy to the stretching of a rubber

band with a stretching force. That is,(︂
𝜕𝑇

𝜕𝐵

)︂
𝑆

> 0 (21.21)

holds. Therefore, if 𝐵 is adiabatically reduced (adiabatic demagnetization), the sys-

tem temperature goes down. The principle is understandable by replacing 𝐿 with 𝐵

in Fig. 21.3.
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22 Stability of equilibrium states implied by con-

vexity

Here, we discuss the stability of equilibrium states of a system in general. The

stability of chemical equilibria specifically will be discussed in Section 24.

22.1 General remark on thermodynamic stability analysis

To study the stability of a state of a system, we apply a (small) perturbation to the

system to examine the fate of the resulting perturbed equilibrium state. Since ther-

modynamics only deals with equilibrium states, the eventually obtained equilibrium

state by the perturbation is understood as the resulting perturbed state, which is

compared with the original unperturbed state. This means we study the outcomes

of (small) thermodynamic variations (→12.6) applied to the system.

It goes without saying that the change of thermodynamic variables by a per-

turbation is obtained thermodynamically, since the resultant perturbed state is an

equilibrium state.

As you will learn soon, we do not pursue stability per se in the perturbational

analysis, but we only seek for the outcome of convexity of negative entropy −𝑆 or in-

ternal energy 𝐸. Basically, Jensen’s inequality (→13.3) gives the stability condition

for equilibrium systems.

22.2 Stability of equilibrium states of an isolated system due to convex-

ity304

For an isolated system, if it is a simple system, then the convexity of −𝑆 implies

that for any thermodynamic variation = (→12.6)

∆𝑆 ≤ 0. (22.1)

If the system is a compound system, and allowed thermodynamics variations never

alters the internal constraints, then we have the same inequality as above. However,

if thermodynamic variation does not respect the internal constraints, there can be

some variation satisfying

∆𝑆 > 0. (22.2)

304This is a repetition of 12.7.
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This implies that for the compound system under study, a certain relaxing of its

internal constraints spontaneously alter its equillibrium state. Therefore, (22.2) is

called the evolution criterion for the equilibrium system when internal constraints

are relaxed.

Traditionally, (22.1) is called the stability condition of the equilibrium system, but

it is nothing but Jensen’s inequality for a convex function −𝑆. Although (22.1) never

happens to equilibrium states (if internal constraints are respected), in contrast to

it, (22.2) may be understood as the stability condition.

22.3 Stability condition for general systems due to convexity

To study the effects of thermodynamic variations applied to a non-isolated system,

we use the usual trick to regard the system S to be a part of a very large isolated

system (Fig. 22.1), whose part other than the system itself is called the reservoir.305

Then, for the total big isolated system, (22.1) tells us

∆𝑆 + ∆𝑆res ≤ 0, (22.3)

where ∆ denotes a thermodynamic variation that respects the system/reservoir dis-

tinction. As noted at the end of 22.2 this is due to the convexity of the (negative)

total entropy, and not due to the stability of the equilibrium system.

In the reservoir the values of the conjugate variables of the thermodynamic coor-

dinates are kept constant and identical to those of the system before thermodynamic

variations. The extensive quantities may be exchanged freely between the system

and its surrounding bath. Let us assume that the system obtains extensive quantities

∆𝐸, ∆𝑉 , ∆𝑋, ∆𝑁 , etc., by the variation.306

For the reservoir portion, all the intensive quantities are constant, and we obtain

∆𝑆res = − 1

𝑇𝑒

∆𝐸 − 𝑃𝑒

𝑇𝑒

∆𝑉 +
∑︁ 𝑥𝑒

𝑇𝑒

∆𝑋 +
∑︁ 𝜇𝑒

𝑇𝑒

∆𝑁, (22.4)

305If you argue that assuming such a big system called a reservoir is theoretically dubious, you
must prepare increasing sequence of reservoirs to construct your theory. Alternatively, we may
utilize special materials that can maintain conjugate variables of the operational coordinates (see,
for example, 8.8).

306Here, we have assumed that all the thermodynamic coordinates may be freely exchanged,
but we can certainly consider more restricted cases such as only internal energy and volume may
be exchanged. To obtain the formulas for such cases, simply suppress coordinates not exchanged
between the system and the bath from the following formulas, in particular from (22.5).
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Figure 22.1: The system S is a small part of a very large isolated system. The intensive
quantities 𝑇𝑒, 𝑃𝑒, etc., are kept constant, because the total isolated system is very large. Their
conjugate extensive quantities (𝑆, 𝑉 , etc.) may be assumed to be exchanged freely between the
system and its surrounding portion of the total system call the reservoir.

where 𝑋 and 𝑁 denote various work coordinates (other than 𝑉 ) and materials co-

ordinates, respectively. We assume chemostats are separately prepared for each

chemical.307

For the system S its intensive quantities may be altered by thermodynamic vari-

ations, so we cannot obtain ∆𝑆 simply as (22.4), i.e., the change of the extensive

quantities alone. The entropy of the total system is ∆𝑆 + ∆𝑆res, so the inequality

(22.3) implies

∆𝑆 − 1

𝑇𝑒

∆𝐸 − 𝑃𝑒

𝑇𝑒

∆𝑉 +
∑︁ 𝑥𝑒

𝑇𝑒

∆𝑋 +
∑︁ 𝜇𝑒

𝑇𝑒

∆𝑁 ≤ 0. (22.5)

This is the result of convexity.

Remark In (22.5) ∆𝑁 is the exchange between the system and the surrounding

reservoir, and has nothing to do with the existence of chemical reactions in the

system or not. If chemical reactions occur in the system, we only need ∆�̃� ̸= ∆𝑁 if

we describe the change in terms of chemical compositions (recall 4.9). However, since

∆𝐸, ∆𝑋, etc., are not generally zero, there is no guarantee that 𝜇𝑒 ·∆�̃� = 𝜇𝑒 ·∆𝑁

holds.

22.4 The universal local stability criterion for an equilibrium state

If the thermodynamic variation ∆ is not large for the reservoir, it may be written in

terms of small thermodynamic variation 𝛿 as

∆𝑆res = − 1

𝑇𝑒

𝛿𝐸 − 𝑃𝑒

𝑇𝑒

𝛿𝑉 +
𝑥𝑒

𝑇𝑒

𝛿𝑋 +
∑︁ 𝜇𝑒

𝑇𝑒

𝛿𝑁. (22.6)

The variation of the system entropy ∆𝑆 may be (Taylor) expanded in terms of the

307As we have seen in 4.8 we may not ignore ‘intrinsically accompanying compounds’, so even
the so-called pure substance may not exclude chemical reactions, but usually, we ignore them.
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small thermodynamic variation 𝛿 as:308

∆𝑆 = 𝛿𝑆 + 𝛿2𝑆 + · · · . (22.7)

The first order term may be computed in terms of the derivatives in the original

equilibrium state, so we may write

𝛿𝑆 =
1

𝑇𝑒

𝛿𝐸 +
𝑃𝑒

𝑇𝑒

𝛿𝑉 − 𝑥𝑒

𝑇𝑒

𝛿𝑋 −
∑︁ 𝜇𝑒

𝑇𝑒

𝛿𝑁. (22.8)

This formula and (22.6) imply that for small thermodynamic perturbations applied

to the equilibrium state (22.3) can always be expressed as

𝛿2𝑆 ≤ 0 (22.9)

irrespective of the environment of the system. Note that this may be obtained

immediately from the concavity of entropy for small thermodynamic variations.309

It is universal, but only for small thermodynamic perturbations.

22.5 The universal local stability condition in terms of internal energy

variation

(22.5) may be rewritten as

∆𝐸 − 𝑇𝑒∆𝑆 + 𝑃𝑒∆𝑉 − 𝑥𝑒∆𝑋 − 𝜇𝑒∆𝑁 > 0. (22.10)

If we Taylor expand ∆𝐸 just as we did for ∆𝑆 in 22.4, with the same logic we can

obtain a universal local stability criterion

𝛿2𝐸 ≥ 0 (22.11)

which is equivalent to (22.9). Notice that this inequality can also be obtained imme-

diately from the convexity of 𝐸 (→13.10).310

308Notice that, since the reservoir is huge compared with the system itself, the first order approxi-
mation for the reservoir is much more accurate than that for the system; for example, the constancy
of the first derivatives is much less accurate for the system than for the reservoir, requiring higher
order terms.

309If there are non-additive work coordinates, such a universal result cannot be asserted.
310However, just as the case of the entropy inequality (22.9), if there are non-additive work

coordinates, the stability against their variation cannot be obtained this way.
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22.6 A positive definite quadratic form given by the Hessian of 𝐸

If we write all the standard variables of 𝐸: 𝑆, 𝑋, and 𝑁 as 𝑌 = {𝑌𝑖}, (22.11) can

be written as a positive definite quadratic form of 𝛿𝑌𝑖:

𝛿2𝐸 =
∑︁
𝑖,𝑗

𝜕2𝐸

𝜕𝑌𝑖𝜕𝑌𝑗

𝛿𝑌𝑖𝛿𝑌𝑗 ≥ 0. (22.12)

For example,

(𝛿𝑆, 𝛿𝑉, 𝛿𝑁)

⎛⎜⎝
(︀
𝜕𝑇
𝜕𝑆

)︀
𝑉,𝑁

(︀
𝜕𝑇
𝜕𝑉

)︀
𝑆,𝑁

(︀
𝜕𝑇
𝜕𝑁

)︀
𝑆,𝑉

−
(︀
𝜕𝑃
𝜕𝑆

)︀
𝑉,𝑁

−
(︀
𝜕𝑃
𝜕𝑉

)︀
𝑆,𝑁

−
(︀
𝜕𝑃
𝜕𝑁

)︀
𝑆,𝑉(︀

𝜕𝜇
𝜕𝑆

)︀
𝑉,𝑁

(︀
𝜕𝜇
𝜕𝑉

)︀
𝑆,𝑁

(︀
𝜕𝜇
𝜕𝑁

)︀
𝑆,𝑉

⎞⎟⎠
⎛⎝ 𝛿𝑆

𝛿𝑉
𝛿𝑁

⎞⎠ ≥ 0. (22.13)

22.7 A positive definite condition for the quadratic form

Let 𝐴 = matr(𝐴𝑖𝑗) be a 𝑛× 𝑛 symmetric square matrix. A necessary and sufficient

condition for the quadratic form ∑︁
𝐴𝑖𝑗𝑥𝑖𝑥𝑗 (22.14)

to be positive definite is that all of its principal minors are positive:

det(𝐴𝑘𝑙) ≥ 0, (22.15)

where matr(𝐴𝑘𝑙) is with 𝑘 and 𝑙 chosen in the same order from a subset 𝑈 ⊂
{1, 2, · · · , 𝑛}.

22.8 Le Chatelier’s principle

Since the Hessian of 𝐸 is nonnegative definite, as seen from 22.7, all the diagonal

elements are nonnegative: (︂
𝜕2𝐸

𝜕𝑌 2
𝑖

)︂
𝑌 𝑐
𝑖

≥ 0. (22.16)

That is, writing the conjugate intensive quantity of 𝑌𝑖 as 𝑦𝑖(︂
𝜕𝑦𝑖
𝜕𝑌𝑖

)︂
𝑌 𝑐
𝑖

≥ 0. (22.17)
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This is called Le Chatelier’s principle.

Since the sign of the inverse determinant is also the same, we get(︂
𝜕𝑌𝑖

𝜕𝑦𝑖

)︂
𝑌 𝑐
𝑖

≥ 0., (22.18)

but notice that this is not (𝜕𝑌𝑖/𝜕𝑦𝑖)𝑦𝑐𝑖 ≥ 0. For example, 𝐶𝑉 > 0 may be obtained

from (22.18), but this does not immediately imply 𝐶𝑃 > 0.311

22.9 More general Le Chatelier’s principle

The heat capacity should be positive irrespective of the conditions. This implies that(︂
𝜕𝑆

𝜕𝑇

)︂
𝑍

≥ 0, (22.19)

where 𝑍 is the set of variables chosen one variable from each conjugate pair other

than (𝑆, 𝑇 ). We can demonstrate this inequality, starting from the case for all 𝑍

being extensive variables inductively312 (→22.10, 22.11). However, the cleverest

way is to go back to 𝛿2𝐸 > 0. This may be expressed (→9.11(iii)) as

𝛿2𝐸 = 𝛿𝑇𝛿𝑆 − 𝛿𝑃𝛿𝑉 + 𝛿𝑥𝛿𝑋 +
∑︁

𝛿𝜇𝛿𝑁 > 0, (22.20)

so changing independent variables corresponds to choosing 𝛿𝑥 or 𝛿𝑋 from each pair

𝛿𝑥𝛿𝑋. Then, (22.19) should be obvious.

Le Chatelier’s principle indicates that the world we usually live, which is rather

close to equilibrium, is stable. Imagine what could happen, if the inequality in Le

Chatelier’s principle were flipped.

22.10 Stability condition under all the conjugate intensity variables are fixed
To begin with we demonstrate the following inequality. Here, the suffixes 𝑦𝑐𝑖 for the partial
derivative implies that all the conjugate intensive variables other than 𝑦𝑖 are fixed:(︂

𝜕𝑦𝑖
𝜕𝑌𝑖

)︂
𝑦𝑐
𝑖

≥ 0,

(︂
𝜕𝑌𝑖

𝜕𝑦𝑖

)︂
𝑦𝑐
𝑖

≥ 0 (22.21)

311(22.18) tells us that (𝜕𝑆/𝜕𝑇 )𝑉 = 𝐶𝑉 /𝑇 > 0, but we have not yet discussed the sign of
(𝜕𝑆/𝜕𝑇 )𝑃 .

312However, this approach is so cumbersome that, except for calculation practice, you should not
follow it.
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Indeed (note that in the following Jacobians (𝑦𝑖, 𝑦
𝑐
𝑖 ) does not mean two variables but general

𝑛 variable formulas) (︂
𝜕𝑦𝑖
𝜕𝑌𝑖

)︂
𝑦𝑐
𝑖

=
𝜕(𝑦𝑖, 𝑦

𝑐
𝑖 )

𝜕(𝑌𝑖, 𝑦𝑐𝑖 )
=

𝜕(𝑦𝑖, 𝑦
𝑐
𝑖 )

𝜕(𝑌𝑖, 𝑌 𝑐
𝑖 )

𝜕(𝑌𝑖, 𝑌
𝑐
𝑖 )

𝜕(𝑌𝑖, 𝑦𝑐𝑖 )
, (22.22)

but the left factor in the rightmost formula is the Hessian matrix of 𝐸 itself, so it is pos-
itive. The right factor must compute partial derivatives regarding {𝑌𝑖, 𝑦

𝑐
𝑖 } as independent

variables, so 𝜕𝑌𝑖/𝜕𝑦𝑘 = 0. Consequently, the first column becomes (1, 0, · · ·)𝑡. Thus, this
factor is equal to the determinant of (𝑛 − 1) × (𝑛 − 1) which is the principle minor of the
original Hessian matrix except for the first raw and column. Thus, it is positive (→22.6)

22.11 Exchange of upper- and down-stairs of general 𝑛× 𝑛 Hessian
More generally, (𝜕𝑦/𝜕𝑌 )cond is nonnegative under any condition (‘cond’ = 𝑧 = {𝑧1, · · · , 𝑧𝑛}
(𝑧𝑐𝑖 implies to remove 𝑧𝑖); Here, 𝑧𝑗 = 𝑦𝑗 or 𝑌𝑗) and 𝑍 is the conjugate of 𝑧. We have(︂

𝜕𝑦𝑖
𝜕𝑌𝑖

)︂
𝑧

=
𝜕(𝑦𝑖, 𝑧

𝑐
𝑖 )

𝜕(𝑌𝑖, 𝑧𝑐𝑖 )
=

𝜕(𝑦𝑖, 𝑧
𝑐
𝑖 )

𝜕(𝑌𝑖, 𝑍𝑐
𝑖 )

𝜕(𝑌𝑖, 𝑍
𝑐
𝑖 )

𝜕(𝑌𝑖, 𝑧𝑐𝑖 )
. (22.23)

The first factor in the right most term is the Hessian of 𝐸 itself, so it is nonnegative. The
second factor requires to calculate the partial derivatives regarding {𝑌𝑖, 𝑧

𝑐
𝑖 } as independent

variables. Since 𝜕𝑌𝑖/𝜕𝑧𝑘 = 0, we must demonstrate

𝜕(𝑧)

𝜕(𝑍)
≥ 0 (22.24)

for the (𝑛 − 1) × (𝑛 − 1) principal minor constructed by removing the first raw and colum
from 𝜕(𝑌𝑖, 𝑍

𝑐
𝑖 )/𝜕(𝑌𝑖, 𝑧

𝑐
𝑖 ). To show this we can step by step exchange the variable in the

numerator with the corresponding conjugate in the denominator and show this procedure
does not change the sign of the Jakobian.

The first step is as follows (𝑧 = 𝑦 or 𝑌 is the starting point). We have

𝜕(𝑥, 𝑧)

𝜕(𝑋,𝑍)
=

𝜕(𝑥, 𝑧)

𝜕(𝑋, 𝑧)

𝜕(𝑋, 𝑧)

𝜕(𝑥, 𝑍)

𝜕(𝑥, 𝑍)

𝜕(𝑋,𝑍)
=

(︂
𝜕𝑥

𝜕𝑋

)︂
𝑧

(︂
𝜕𝑥

𝜕𝑋

)︂
𝑍

𝜕(𝑋, 𝑧)

𝜕(𝑥, 𝑍)
, (22.25)

As we have seen in (22.17) and (22.21) the two partial derivatives in the right-most formula
is nonnegative, we see the 𝑛×𝑛 determinant obtained by exchanging 𝑥 and 𝑋 is nonnegative.
The resultant 𝑛 × 𝑛 matrix is nonnegative definite, its diagonal elements are nonnegative.
Thus, we may repeat the same argument as above for the case with one pair exchanged be-
tween numerator and denominator. That is, inequalities similar to (22.17) and (22.21) holds
for one pair of conjugate variables exchanged between numerator and denominator. We can
repeat this argument, so we may exchange as many conjugate variables between numerator
and denominator.

22.12 Le Chatelier-Braun’s principle

We know 𝐶𝑃 > 𝐶𝑉 for the ideal gas due to Mayer’s relation, but actually this is an
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example of the universal inequality:(︂
𝜕𝑋

𝜕𝑥

)︂
𝑦

≥
(︂
𝜕𝑋

𝜕𝑥

)︂
𝑌

. (22.26)

This can be demonstrated as follows.(︂
𝜕𝑋

𝜕𝑥

)︂
𝑦

=
𝜕(𝑋, 𝑦)

𝜕(𝑥, 𝑦)
=

𝜕(𝑋, 𝑦)

𝜕(𝑥, 𝑌 )

𝜕(𝑥, 𝑌 )

𝜕(𝑥, 𝑦)
(22.27)

=

[︂(︂
𝜕𝑋

𝜕𝑥

)︂
𝑌

(︂
𝜕𝑦

𝜕𝑌

)︂
𝑥

−
(︂
𝜕𝑋

𝜕𝑌

)︂
𝑥

(︂
𝜕𝑦

𝜕𝑥

)︂
𝑌

]︂(︂
𝜕𝑌

𝜕𝑦

)︂
𝑥

(22.28)

=

(︂
𝜕𝑋

𝜕𝑥

)︂
𝑌

−
(︂
𝜕𝑋

𝜕𝑦

)︂
𝑥

(︂
𝜕𝑦

𝜕𝑥

)︂
𝑌

. (22.29)

(22.29) implies(︂
𝜕𝑋

𝜕𝑦

)︂
𝑥

=
𝜕(𝑋, 𝑥)

𝜕(𝑦, 𝑥)
=

𝜕(𝑋, 𝑥)

𝜕(𝑦, 𝑌 )

𝜕(𝑦, 𝑌 )

𝜕(𝑥, 𝑌 )

𝜕(𝑥, 𝑌 )

𝜕(𝑦, 𝑥)
= −

(︂
𝜕𝑦

𝜕𝑥

)︂
𝑌

(︂
𝜕𝑌

𝜕𝑦

)︂
𝑥

, (22.30)

so (︂
𝜕𝑋

𝜕𝑥

)︂
𝑦

=

(︂
𝜕𝑋

𝜕𝑥

)︂
𝑌

+

(︂
𝜕𝑌

𝜕𝑦

)︂
𝑥

(︂
𝜕𝑦

𝜕𝑥

)︂2

𝑌

. (22.31)

Since the second term on the right-hand side is nonnegative,(︂
𝜕𝑋

𝜕𝑥

)︂
𝑦

≥
(︂
𝜕𝑋

𝜕𝑥

)︂
𝑌

. (22.32)

For example, for 𝑋 = 𝑆

𝐶𝑃 ≥ 𝐶𝑉 . (22.33)

Or for 𝑋 = 𝑉 , 𝑥 = −𝑃 so we have an inequality about the compressibility:

𝜅𝑇 ≥ 𝜅𝑆. (22.34)

What if Le Chatelier-Braun’s principle does not hold? As can be seen from (22.31)

then the Le Chatelier’s principle for the conjugate pair appearing in the conditions

(that is, for 𝑦 and 𝑌 ) is violated. That is, Le Chatelier-Braun’s principle does not

give any constraints substantially different from Le Chatelier’s principle.
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22.13 Constraints on the changes due to phase transitions

If a phase transition occurs, 𝐸 need not be twice differentiable. Consequently, we

cannot use (22.17). Note that Le Chatelier’s principle is a direct consequence of

the convexity of 𝐸. Even without sufficient differentiability, convexity still imposes

strong constraints on the changes of quantities around the phase transition. For

example, if we compare the low temperature phase and the high temperature phase,

the latter is expected to be with larger entropy. Such a relation can be concluded

from the gradient inequality (D.20); Let (𝑥,𝑋) be the conjugate pair. Then, if other

variables are kept constant, we have

∆𝑥∆𝑋 ≥ 0. (22.35)

Therefore, for example, we get

∆𝑇∆𝑆 ≥ 0, (22.36)

which supports the above expectation. We can also obtain the following natural

inequality:

∆𝑃∆𝑉 ≤ 0. (22.37)
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23 Phase transitions

23.1 Phases and phase diagrams: outline

A substance may exhibit qualitatively different properties under various conditions

(say, under different (𝑇, 𝑃 )). Roughly speaking, if we observe such a situation, we

say the substance is in different phases (→23.2 more precisely). Liquid water, ice

and vapor are different phases of water. “Qualitatively different properties” mean,

for example, “pushing one end of the system moves the other end” (the existence of

a long-range order), or “compressing does not visibly shrink the system” (coherence)

(see the table below).
long-range order coherence

solid phase YES YES
liquid phase NO YES
gas phase NO NO

To understand a substance begins with knowing its various phases and their char-

acteristic features. Thus, to begin with, we wish to make a sort of a map of the

thermodynamic space (or at least the space spanned by some thermodynamic vari-

ables such as 𝑇 and 𝑃 ) indicating the phase of the substance at each point on the

map. This map is called the phase diagram (see, for example, Fig. 23.1).

T

P

LS

Gt

cp

Figure 23.1: A representative phase diagram of an ordinary fluid

Fig. 23.1 A representative phase diagram of an ordinary fluid. S: solid phase; L: liquid phase; G:

gas phase; t: triple point; cp: critical point. The curves indicate the phase boundaries, where phase

transitions occur. The boundary between L and G ends at cp, so even if ‘fluid phase’ (= non-solid

phase) may be defined globally, liquid phase or gas phase cannot be globally defined.
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23.2 What is a phase?

Defining “phase” precisely is not a trivial task. Near a phase boundary coexisting

phases may be clearly distinguished, but the region where a particular phase occupies

may not be clearly defined as already pointed out for the gas and liquid phases of

an ordinary fluid in Fig. 23.1. Furthermore, even if a clear boundary exists in the

phase diagram we see, the diagram might be a low-dimensional section of a more

complete high-dimensional phase diagram, in which some of the phase boundaries

might disappear along the axis perpendicular to the diagram shown to us. Therefore,

when we use the word ‘phase’ precisely, we should do so with respect to the phase

diagram shown to us and locally, meaning that in a local region of the given phase

diagram. ‘The two phases are distinct, only if they can change into each other across

the phase boundary where phase transitions occur.”

23.3 What is a phase transition?

For a given system, its equilibrium state is uniquely mapped to a point in its ther-

modynamic space (→5.2). Even if the system has the coexistence of several phases,

its state is still uniquely mapped to a point in its thermodynamic space.

To illustrate this, let us draw the phase diagram of an ordinary fluid in its ther-

modynamic space (Fig. 23.2).

Fig. 23.2 A schematic phase diagram of an ordinary fluid in its thermodynamic space

The white dots are critical point (in both diagrams). The black small square (left) and the dark gray

triangle (right) indicate the triple point. The pale gray regions represent the two-phase coexistence

regions. The primary purpose of this figure is to illustrate that the coexistence lines and triple point

in the usual phase diagram (left inset) are unfolded into regions corresponding to various ratios of

coexisting phases; we can actually know the coexistence ratio of various phases from the diagram.

For example, take the solid-gas coexisting region S + G. The black dot ‘s’ on the solid-phase

boundary indicates a pure solid phase with a definite (𝐸, 𝑉 ) coordinates, and the black dot ‘g’ on

the gas-phase boundary indicates a particular gas phase with a definite (𝐸, 𝑉 ) (The figure also

contains another pair s’ and g’ to exhibit another solid-gas coexisting relationship).

The white square on the line connecting s and g can express a particular ratio of these two

coexisting phases. If the white square is located at the point with the line segment length ratio

𝛼 : (1 − 𝛼), then the coexistence state consists of sold phase ‘s’ and gas phase ‘g’ in the ratio
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L
G

S

T

1/P
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V

S

L

G

S + G

S + L

L + G

S + L

s

g

s - 
g coexiste

nce lin
e

α

1 − α

s’
g’

s’ - g’ coexistence line

Figure 23.2: Phase diagram in the thermodynamic space. The white dot is a critical point, the
black dot and the dark triangular region indicate a triple point (= three-phase coexisting states).
The gray regions are two-phase coexisting states. It is a conceptual illustration, but the key point
is that coexistence lines and a triple point in the usual phase diagram (left inset) are unfolded into
regions corresponding to various ratio of coexisting phases.

(1 − 𝛼) : 𝛼; This is known as the lever rule. Similar lines can be drawn in the solid-liquid coexis-

tence state. Thus, the coexistence region is a ruled surface in the thermodynamic space.

The position of any point in the dark gray representing three-phase coexistence phase expressed

in the barycentric coordinates of three white stars, uniquely indicating the states of the coexisting

three phases.

In this 2-dimensional phase diagram thermodynamic variables are, especially inter-

nal energy is, twice differentiable with respect to 𝑆 and 𝑉 in the areas corresponding

to individual phases. This smoothness is reduced at the phase boundaries; while 𝐸

never loses continuous differentiability, its derivatives are generally not differentiable.

It is important to note that a change in smoothness of 𝐸 is necessary for qualitative

changes to occur. However, if multiple phases coexist (as in the light or dark gray

regions in Fig. 23.2), then 𝐸 is again smooth.

Therefore, a mathematically clearcut characterization of a phase transition may

be (1) Phase coexistence of (2) some loss of smoothness of 𝐸 as a function of 𝑆 and

operational coordinates 𝑌 .313 Accordingly, the (local) definition of phase in 23.2 is

313One could say that a phase transition occurs, if a certain complete thermodynamic function
(→18.12) becomes less differentiable than in the bulk phases. Statistical mechanically one could
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mathematically clear.

23.4 First order and second order phase transitions

Phase transitions are often classified into two categories: the first order phase transi-

tions and the rest, called continuous or second order phase transitions. In first-order

phase transitions at least one thermodynamic density (→5.5) changes discontinu-

ously as a function of the conjugate thermodynamic field (→5.5), but for second

order phase transitions there is no jump in thermodynamic densities. Gas-liquid

phase transitions are usually first order, but under critical pressure, they become

second-order.

In many interesting examples, phase transitions occur between ordered and not so

ordered phases; we could say transitions occur between low entropy phases and high

energy phases. For example folding of proteins usually occur between high energy

random-coil states and low entropy folded states.

Intuitively, a first order phase transition occurs, if the stability of an ordered phase

is lost catastrophically. In other words, if slight reduction of order induces its further

reduction, a first-order phase transition occurs. Consequently, it is impossible to

observe an equilibrium state with reduced order.

In contrast, for a second order phase transition, the above mentioned positive

feedback loop of order reduction does not exist. Therefore, it is possible to observe

equilibrium states with reduced order. An equilibrium state with reduced order

may be intuitively analogized with an oscillator with a reduced spring constant,

whose fluctuations become enhanced. Even if fluctuations become large, the ordered

state endures them. Since the existence of a sort of order and its disappearance are

characteristic features of phase transitions, second order phase transitions become

theoretically very interesting.

23.5 Phase coexistence: the case of two phases

Let us assume that an isolated system (without chemical reactions) is described by

the thermodynamic coordinates (𝐸,𝑋), and phase I and phase II coexist under the

condition to exchange 𝐸 and 𝑋. We follow the argument in 19.8. We must maximize

the system entropy 𝑆 = 𝑆I + 𝑆II under the exchange of 𝐸 and 𝑉 (→12.4). Gibbs’

say that phase transition occurs if a certain complete thermodynamic function loses holomorphy.
However, experimentally, ‘holomorphy’ seems impossible to demonstrate, let alone analyticity.
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relation reads

𝑑𝑆 =
1

𝑇
𝑑𝐸 − 𝑥

𝑇
𝑑𝑋 − 𝜇

𝑇
𝑑𝑁, (23.1)

so, if 𝛿 denotes virtual variations (actually changes realized by fluctuations), the

equilibrium condition becomes

𝛿𝑆 =
1

𝑇I
𝛿𝐸I −

𝑥I
𝑇I

𝛿𝑋I −
𝜇I
𝑇I

𝛿𝑁I +
1

𝑇II
𝛿𝐸II −

𝑥II
𝑇II

𝛿𝑋II −
𝜇II
𝑇II

𝛿𝑁II = 0. (23.2)

Since 𝛿𝐸I + 𝛿𝐸II = 0, 𝛿𝑋I + 𝛿𝑋II = 0, 𝛿𝑁I + 𝛿𝑁II = 0, (23.2) becomes

𝛿𝑆 =

(︂
1

𝑇I
− 1

𝑇II

)︂
𝛿𝐸I −

(︂
𝑥I
𝑇I
− 𝑥II

𝑇II

)︂
𝛿𝑋I −

(︂
𝜇I
𝑇I
− 𝜇II

𝑇II

)︂
𝛿𝑁I, (23.3)

so, generally, the following equalities are required:

𝑇I = 𝑇II, 𝑥I = 𝑥II, 𝜇I = 𝜇II. (23.4)

The most common cases are with 𝑋 = 𝑉 and 𝑥 = −𝑃 , so the condition for the

chemical potentials is

𝜇I(𝑇, 𝑃 ) = 𝜇II(𝑇, 𝑃 ), (23.5)

which determines the phase coexisting curves in the 𝑇𝑃 phase diagram.314

This relation may be obtained from the principle of Gibbs energy minimization

under constant 𝑇𝑃 condition. From (23.5) we derived Clapeyron-Clausius’s equation

(→19.9).

The Gibbs energy of the system is given by

𝐺 = 𝑁I𝜇I + 𝑁II𝜇II. (23.6)

Therefore, the state can change without changing 𝐺 (only 𝑁I and 𝑁II vary; note

𝑁I + 𝑁II = constant). Consequently, the 𝑇𝑃 phase coexisting line becomes an area

in the thermodynamic space as we have seen in Fig. 23.2.

314Precisely speaking, 𝐸, 𝑉 and 𝑁 , and not 𝑇 and 𝑃 , are the thermodynamic variables in the
current situation of an isolated system. Thus, 𝑇 , 𝑃 and 𝜇 are functions of 𝐸, 𝑉 and 𝑁 . Therefore,
to obtain (23.5), we must write 𝐸𝑛, 𝑉𝑛 and 𝑁𝑛 (𝑛 = I or II) in terms of 𝑇 and 𝑃 , and then convert
𝜇(𝐸, 𝑉,𝑁) to a function of 𝑇 and 𝑃 . As stated just below, the result can be obtained directly with
the aid of the variational principle for 𝐺.
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23.6 The direction of changes due to phase transitions

We have already seen in 22.13 that being in equilibrium implies for any conjugate

pair (𝑥,𝑋) there is a constraint:

∆𝑥∆𝑋 ≥ 0. (23.7)

Since this is not usually discussed in elementary textbooks, let us repeat it with

examples.

If the changes are not zero, then ∆𝑃∆𝑉 < 0 or

(𝑃II − 𝑃I)(𝑉II − 𝑉I) < 0. (23.8)

This requires that the low pressure phase must have larger volume/material quantity

(say, molar volume). If we take freezing of water around 1 atm as an example, ice

has a larger molar volume than liquid water. This is consistent with the fact that

we can melt ice at a constant temperature by applying pressure.

∆𝑇∆𝑆 ≥ 0 implies that if there is a system that can solidify upon increasing its

temperature, the entropy of the solid phase must be larger than that of the fluid

phase. This actually happens in 3He (Fig. 23.3; the transition along the red arrow).

T

P

gas

liquid

solid

Figure 23.3: The Pomeranchuk effect

Fig. 23.3 The Pomeranchuk effect: if we raise temperature at the red spot, the liquid phase solidifies.

Therefore, the solid phase must have a larger entropy than the liquid phase. In this case, the reason

why the solid phase has a larger entropy is that the nuclear spins are not ordered in the solid phase.

The spins exhibits a antiferromagnetic order below 10−3 K. At the green spot, the solid phase has

a smaller entropy than the liquid phase just as the ordinary systems.

23.7 Thermodynamic phases when symmetry breaks spontaneously

Suppose a magnet becomes a ferromagnet. Then, its non-zero magnetization can
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point many directions. Ideally, all the directions have the same energy, so it is just

as the case of the shape unrelated to the system energy. That is, the direction of

the magnetization vector 𝑀 is an example of macroobservables that need not be

distinguished thermodynamically.

Of course, in practice, the magnetization directions are important, but that is not

relevant energetically.315

23.8 Phase equilibrium of a pure substance

Suppose 𝜑 phases (I, II, · · · , 𝜑) coexist. Let 𝜇x be the chemical potential of phase x.

Then, the following 𝜑− 1 equations must be satisfied:

𝜇I(𝑇, 𝑃 ) = 𝜇II(𝑇, 𝑃 ) = · · · = 𝜇𝜑(𝑇, 𝑃 ). (23.9)

Assume that there is no special functional relations among the chemical potentials of

the phases. Then, (23.9) gives 𝜑− 1 independent conditions. For these equations to

have solutions 𝑇 and 𝑃 there should be at most two independent equalities. Thus,

for a pure substance, at most three phases (𝜑 = 3) can coexist.

If three phases coexist, then the 𝑇 and 𝑃 are unique (locally in the phase diagram,

→23.10 (2)). This point is called the triple point. Until 2019 the Kelvin temperature

was defined by fixing the triple point of pure water to be 𝑇 = 273.16 K.316

23.9 Gibbs’ phase rule

Let us consider a system consisting of 𝑐 chemical species that are regarded indepen-

dent (→4.5; it is assumed that there is no reaction).

If 𝜑 phases coexist, the phase equilibrium conditions are:

(1) 𝑇 and 𝑃 are common to all the phases

(2) For each of the 𝑐 independent chemicals the chemical potential is identical for

all the phases. Thus, as we have seen in (23.9), each chemical must satisfy 𝜑 − 1

315If there is an external magnetic field 𝐵, then 𝑀 is energetically relevant. However, in this
case, in equilibrium, there is only one particular 𝑀 fixed. In any case, we need not consider the
coexistence of continuously many phases.

316The unit 𝐾 is now (since 2019 or at the 26th General Conference on Weights and Measures
in late 2018) defined with a value of the Boltzmann constant to be fixed as 𝑘𝐵 = 1.380649× 10−23

J·K−1. The unit J·K−1 = kg·m2·s−2·K−1, where the kilogram, meter and second are defined in
terms of the Planck constant, the speed of light, and the duration of the caesium-133 ground-state
hyperfine transition, respectively.
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equations (𝑗 = 1, · · · , 𝑐):

𝜇𝑗

I(𝑇, 𝑃, 𝑥
1
I , 𝑥

2
I , · · ·𝑥

𝑐−1
I ) = 𝜇𝑗

II(𝑇, 𝑃, 𝑥
1
II, 𝑥

2
II, · · ·𝑥

𝑐−1
II ) = · · · = 𝜇𝑗

𝜑(𝑇, 𝑃, 𝑥1
𝜑, 𝑥

2
𝜑, · · · 𝑥𝑐−1

𝜑 ).

(23.10)

Consequently, the number of equalities that must be satisfied is (𝜑− 1)× 𝑐.

To determine the composition of each phase, its 𝑐−1 mole fractions (𝑥1, 𝑥2, · · · , 𝑥𝑐−1)

must be known.317 The compositions are different from phase to phase, so we must

determine 𝜑 × (𝑐 − 1) mole fractions 𝑥1
x, 𝑥

2
x, · · ·𝑥𝑐−1

x (x = 1, · · · , 𝜑, if we distinguish

phases with suffixes). Therefore, to determine the state of the system, we must

determine 2 + 𝜑(𝑐 − 1) variables, 𝑇 , 𝑃 and 𝑥𝑗
x (𝑗 = 1, · · · , 𝑐 − 1, x = 1, · · · , 𝜑).

Therefore, in the generic case the number of variables remaining undetermined is

𝑓 = 2 + 𝜑(𝑐− 1)− 𝑐(𝜑− 1) = 𝑐 + 2− 𝜑. That is, even with the coexisting condition

constraints, still (𝑇, 𝑃 ) can move in the region of dimension 𝑓 in the phase space:

𝑓 = 𝑐 + 2− 𝜑. (23.11)

This 𝑓 is called the thermodynamic freedom, and the formula is called Gibbs’ phase

rule.

For a pure substance 𝑐 = 1 gives 𝑓 = 3 − 𝜑. Thus, if two phases coexist, 𝑓 = 1,

that is, the coexisting states make a 1 dimensional shape on the 𝑇, 𝑃 diagram (i.e.,

coexisting curve). If three phase coexist, then 𝑓 = 0, meaning the coexisting phase

makes a zero-dimensional shape (i.e., triple point).

23.10 Remarks on phase coexistence

(1) As can be seen from the derivation of the phase rule, the coexistence is discussed

under the condition of genericity; there are no ‘accidental’ relations among functions.

Therefore, mixtures or even pure chemicals can violate the phase rule, i.e., substances

for which 𝑓 is larger than that dictated by the phase rule (23.11) can be realized.318

(2) Does the phase rule hold globally for the phase diagram? No. For example,

a problem such as the number of crossing points between two curves in the plane

cannot be answered by a crude argument utilized in the derivation of the phase rule.

317The mole fraction 𝑥𝑖 of chemical 𝑖 is defined by 𝑥𝑖 = �̃�𝑖/
∑︀𝑐

𝑗=1 �̃�𝑗 . In this case, no chemical
reaction is assumed to occur, so we can also define 𝑥𝑖 in terms of materials coordinates as 𝑥𝑖 =
𝑁𝑖/

∑︀𝑐
𝑗=1 𝑁𝑗 .

318Indeed, it is possible to make a pure substance with quadruple point. For example, K. Akahane,
J. Russo and H. Tanaka, A possible four-phase coexistence in a single-component system, Nature
Commun. 7 12599 (2017).
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Therefore, we cannot answer how many triple points a given substance has. Two

triple points could exist very close with each other; we would not be surprised, if

they merged.

(3) Then, when the phase rule predict the coexistence, can the coexistence actually

occur? For the phases that thermodynamics can distinguish, the coexistence would

happen. However, if the phases are due to a spontaneous symmetry breaking, can

they coexist? This depends on the stability of the interface, for example, and is not

a concern of thermodynamics (→23.7).

(4) Then, are actually coexisting phases equilibrium phases and is the coexistence

true equilibrium? This is not a simple question. Liquid-liquid phase separations in

a cell or the resultant intracellular membraneless organelles need not be in equilib-

rium. Or, the folded states of proteins should be considered as distinct phases from

the random states, and the transitions between them are first-order like.319 How-

ever, nonequilibrium cases should not be rare; biologically meaningful states can be

nonequilibrium states with the true equilibrium state rarely attained, or even the

true equilibrium state could be harmful for organisms. Think of prions.

23.11 Legendre-Fenchel transformation with phase transitions

18.11 tells us that the Helmholtz energy can be obtained by a Legendre-Fenchel

transformation of the internal energy as

−𝐴(𝑇 ) = max
𝑆
|𝑌 [𝑇𝑆 − 𝐸(𝑆,𝑌 )] = sup

𝑆
|𝑌 [𝑇𝑆 − 𝐸(𝑆,𝑌 )]. (23.12)

That is, we have seen

−𝐴 = 𝐸*. (23.13)

This allows the inverse transformation; the convexity of 𝐸 allows

(−𝐴)* = 𝐸** = 𝐸. (23.14)

Thus, the Helmholtz energy 𝐴 is a complete thermodynamic function (→18.12).

However, is temperature 𝑇 not a proper thermodynamic coordinate (→3.8)? Still

do we not lose any information that the internal energy has when it is transformed to

the Helmholtz energy? This is a reasonable question. The answer is: 𝐸 as a function

is completely reconstructed from 𝐴, but the original value of 𝑆 cannot be recovered.

319This is a fact pointed out first by N. Gō.
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That is, there is lost information due to using non-fundamental thermodynamic

variables.

Let us assume that the original state has entropy 𝑆 with temperature 𝑇 . As we

have seen in the thermodynamic phase diagram Fig. 23.2 with a given 𝑇 various 𝑆 can

associate. By the transformation 𝐸 → −𝐴 all the state with the same temperature

are mapped to a single point, so naturally, the actual original entropy value is lost.

Still, the range of the values of entropy associated with a given 𝑇 is perfectly recovered

(see Fig. 23.4).320
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Figure 23.4: Between a and b entropy changes but the temperature is constant. Then, the
graph of 𝐸 is with a constant slope between a and b. This portion is mapped by the Legendre-
Fenchel transformation to a point p with the temperature given by the slope (and 𝐴 becomes
non-differentiable). However, the range of the slope of the lines tangent to −𝐴 at p (i.e., the red
fan) is not lost from the graph of 𝐴 and can be restored. Needless to say, we cannot tell from which
point the arrow started. This is the reason why 𝑇 is not a fundamental thermodynamic variable.

320Convex analytically, we say it is determined as the subdifferential (→D.3) of 𝐴 with respect
to 𝑇 .
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24 The third law of thermodynamics

24.1 Determination of the Gibbs energy: motivation for the third law

From the late 19th to the early 20th century, an important question of chemical

physics/chemistry was to determine the free-energy change ∆𝐺 of a chemical reac-

tion321 in terms of the reaction heat ∆𝐻. The ‘Thomsen-Berthelot principle’322 was

interpreted as ∆𝐺 = ∆𝐻 in the thermal theory of affinity.323

According to this theory no endothermic process can proceed spontaneously as

pointed out by Helmholtz (1882). Deriving the Gibbs-Helmholtz equation (19.7), he

showed that generally ∆𝐺 ̸= ∆𝐻:

∆𝐻 = ∆𝐺− 𝑇

(︂
𝜕∆𝐺

𝜕𝑇

)︂
𝑃

. (24.1)

Integrating the Gibbs-Helmholtz equation (19.7) in the form: ∆𝐻/𝑇 2 = −(𝜕(∆𝐺/𝑇 )/𝜕𝑇 )𝑃 ,

we obtain

∆𝐺 = −𝑇
∫︁ 𝑇

𝑇0

∆𝐻

𝑇 2
𝑑𝑇 +

∆𝐺(𝑇0)

𝑇0

𝑇. (24.2)

That there was no way to determine ∆𝐺(𝑇0)/𝑇0 from the reaction heat ∆𝐻 was the

central difficulty of chemical thermodynamics according to Nernst.324

24.2 Nernst’s proposal

Nernst asserted that ∆𝐺 and ∆𝐻 are not generally equal, but at sufficiently low

temperatures they are very close. Therefore, close to 𝑇 = 0, the equality must be

321Or, the affinity −Δ𝐺 of a chemical reaction.
322Julius Thomsen (1826-1909),

https://en.wikipedia.org/wiki/Hans_Peter_Jrgen_Julius_Thomsen ; Marcellin Berthelot
(1827-1907) https://en.wikipedia.org/wiki/Marcellin_Berthelot. This principle claims: all
chemical changes are accompanied by the production of heat and processes which actually occur
will be ones in which the most heat is produced (wikipedia).

323The thermal theory of affinity postulated that the heat evolved in a chemical reaction was the
true measure of its affinity.

324Walther Nernst (1864-1941) https://en.wikipedia.org/wiki/Walther_Nernst. See K.
Mendelssohn, The world of Walther Nernst: the rise and fall of German Science 1864-1941 (ebook
form from Plunket Lake Press, 2015; the original 1973).

https://en.wikipedia.org/wiki/Hans_Peter_Jørgen_Julius_Thomsen
https://en.wikipedia.org/wiki/Marcellin_Berthelot
https://en.wikipedia.org/wiki/Walther_Nernst
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very accurate, and Nernst proposed that in the 𝑇 → 0 limit(︂
𝜕∆𝐺

𝜕𝑇

)︂
𝑃

−
(︂
𝜕∆𝐻

𝜕𝑇

)︂
𝑃

→ 0 (24.3)

to remove all the difficulties.325

His assertion can be explained as follows: (24.2) is rewritten as

∆𝐺 = −𝑇
∫︁ 𝑇

𝑇0

(∆𝐻 −∆𝐻(𝑇0))

𝑇 2
𝑑𝑇 − 𝑇

∫︁ 𝑇

𝑇0

∆𝐻(𝑇0)

𝑇 2
𝑑𝑇 +

∆𝐺(𝑇0)

𝑇0

𝑇 (24.4)

= −𝑇
∫︁ 𝑇

𝑇0

(∆𝐻 −∆𝐻(𝑇0))

𝑇 2
𝑑𝑇 + ∆𝐻(𝑇0)−

∆𝐻(𝑇0)

𝑇0

𝑇 +
∆𝐺(𝑇0)

𝑇0

𝑇.

(24.5)

That is,

∆𝐺 = ∆𝐻(𝑇0)− 𝑇

∫︁ 𝑇

𝑇0

(∆𝐻 −∆𝐻(𝑇0))

𝑇 2
𝑑𝑇 +

(∆𝐺(𝑇0)−∆𝐻(𝑇0))

𝑇0

𝑇. (24.6)

Also integration by parts gives∫︁ 𝑇

𝑇0

(∆𝐻 −∆𝐻(𝑇0))

𝑇 2
𝑑𝑇 = − (∆𝐻 −∆𝐻(𝑇0))

𝑇

⃒⃒⃒⃒𝑇
𝑇0

+

∫︁ 𝑇

𝑇0

1

𝑇

(︂
𝜕∆𝐻

𝜕𝑇

)︂
𝑃

𝑑𝑇 (24.7)

Therefore, (24.6) now reads

∆𝐺 = ∆𝐻 − 𝑇

∫︁ 𝑇

𝑇0

1

𝑇

(︂
𝜕∆𝐻

𝜕𝑇

)︂
𝑃

𝑑𝑇 +
(∆𝐺(𝑇0)−∆𝐻(𝑇0))

𝑇0

𝑇. (24.8)

Note that L’Hospital’s theorem implies that

lim
𝑇→0

∆𝐺−∆𝐻

𝑇
= 0 (24.9)

is equivalent to Nernst’s proposal (24.3). Thus, according to his proposal, we get

∆𝐺 = ∆𝐻 − 𝑇

∫︁ 𝑇

0

1

𝑇

(︂
𝜕∆𝐻

𝜕𝑇

)︂
𝑃

𝑑𝑇. (24.10)

325Unfortunately in the 𝑇0 → 0 limit, the last term in (24.2) may not be finite, but ignoring this
fact, Nernst ‘demonstrated’ this assertion. Here, a corrected demonstration will be given instead of
the original dubious version.
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24.3 Consequences of Nernst’s assertion: The third law of thermody-

namics

(24.1) and (24.9) imply

lim
𝑇→0

(︂
𝜕∆𝐺

𝜕𝑇

)︂
𝑃

= 0. (24.11)

That is,

lim
𝑇→0

∆𝑆 = 0. (24.12)

This implies that the integral in the formal expression (24.10) must be finite and

well defined. Thus, the reaction heat completely determines the free energy change

(affinity) due to a reaction.

(24.12) means that for the totality of equilibrium states of the systems that can

be transformed with reversible processes (including the changes of the materialistic

‘stages’ as discussed in 4.8), their entropy densities at 𝑇 = 0 are identical. In other

words, all the reversible changes at 𝑇 = 0 occur without any entropy change. This

statement (24.12), or the formulas on which this statement is based, such as (24.3)

or (24.9), are called the third law of thermodynamics or Nernst’s principle.326

24.4 Reversible sectors of equilibrium states

Nernst’s principle tells us that we can choose a common origin of entropy for any

system mutually related by reversible processes. We may call such a set of systems

a reversible sector.

The distinction between different sectors may become serious when we consider

chemical reactions. For example, since we cannot synthesize any 13C organic com-

pounds from 12C compounds, the systems consisting of these chemicals make two

distinct reversible sectors. Thus, the the origin of entropy for each sector may be

different.

326⟨⟨Nernst’s joke on the three principles⟩⟩ Kurt Mendelssohn writes, “When lecturing on
‘his’ heat theorem, Nernst was careful to point to an interesting numerical phenomenon concerning
the discovery of the three fundamental laws of thermodynamics. The first one had three authors,
Mayer, Joule and Helmholtz; the second had two, Carnot and Clausius; whereas the third was the
work of one man only, Nernst. This showed conclusively that thermodynamics was now complete
since the authorship of a hypothetical fourth law would have to be zero.” (The world of Walther
Nernst: the rise and fall of German Science 1864-1941 (ebook form from Plunket Lake Press, 2015;
the original 1973) Chapter 4.
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In organic chemistry, the compounds in different sectors may participate in chem-

ical reactions. 12C compounds and 13C compounds can react to make ‘mixed’ chemi-

cals. A natural question is: even if such ‘intersector processes’ can occur, can we still

arbitrarily choose the entropy origins? Yes, we can, because there is no process in

the usual thermodynamics that connect the 12C world and the 13C world reversibly.

Therefore, there is no empirical means to check any entropy difference between these

two worlds. Thus, we are free to choose the origin of different reversible sectors (if

something is not observable, you can conveniently assume anything you wish about

it327).

24.5 Nernst-Planck’s theorem

24.3 tells us that the value of the entropy in the 𝑇 → 0 limit can be anything as long

as it is bounded from below. We know empirically that there is no such tendency of

divergence.

Planck recognized that this means that the entropy origin for each reversible sector

can be set 0. Thus,

lim
𝑇→0

𝑆 = 0 (24.13)

is called the Nernst-Planck theorem.

327In more detail: what we can obtain is the ‘cost’ to bring A and B from some starting points
to AB. The costs to bring A and B to their starting points depend on their conventions. Thus, the
total costs of making AB depends on all the costs A and B inherit, but as long as these inherited
costs are consistently given in their own worlds, no inconsistency shows up.
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25 Chemical reactions and chemical equilibria: Out-

line

This section provides an overview of the basic concepts of chemical thermodynam-

ics that are typically covered in standard thermodynamics textbooks. It should be

noted that any mathematically incorrect or flawed explanations and discussions in

traditional thermodynamics have been rectified.

25.1 The expression of material constitution of a system: summary

Even in a closed system, the amount of chemicals can change (→4.4), depending

on the system internal energy and work coordinates (𝐸,𝑋); this set is called the

ordinary thermodynamic coordinates (→4.5). This can cause various complications

as discussed in 4.5-4.12, but it was rather long ago (Section 4), so here let us review

the problems.

The key point is that “the operations the experimenter can perform” and “the

observations the experimenter can make” on the materials composition of the system

must be distinguished and must be expressed in terms of different variables.

The mole numbers of chemicals that the experimenter can add to or remove from

the system individually (→4.8) are called the materials coordinates (or chemical

coordinates). For example, the totality 𝑁 of the moles of the chemicals used to

construct the system to study can be chosen to describe the materials coordinates of

the system. The materials coordinates will dictate the materials constitution (chem-

ical composition) as long as the system is closed, even if chemical reactions occur.

Needless to say, the materials coordinates must be updated every time new chemicals

are added (for the detail see 25.5)

According to the principle II in 4.3, when the materials coordinates of the system

are 𝑁 , for each ordinary thermodynamic coordinate value set (𝐸,𝑋) the system

chemical composition variables �̃� , the amounts of chemicals currently present in

the system, are determined—the reaction map 𝑅 : �̃� = 𝑅𝐸,𝑋(𝑁 ) determines the

equilibrium chemical composition �̃� based on 𝐸,𝑋 and 𝑁 .

For the detailed distinction between the materials coordinates and the chemi-

cal composition variables review 4.9. The next unit illustrates chemical variables

(materials coordinates or chemical composition variables) of a system with a simple
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reaction.

25.2 Materials coordinates, a simple illustration
As an example, let us use the chemical reaction (*) in 4.5.

A + B ←→ C.

For simplicity, the system has a unit volume that is kept constant, so that the molarities
and the moles of the chemicals are numerically identical.328 Let us assume the following
equilibrium condition:

[C]/[A][B] = 𝐾 = 1, (25.1)

where [X] denotes the molarity of chemical X.

(1) Suppose we prepare a system with 2 moles each of A and B. In this case the materials
coordinates of the system may be chosen, for example, as (𝑁A, 𝑁B, 𝑁C) = (2, 2, 0). The
equilibrium composition may be computed as follows: When the above reaction reaches an
equilibrium, 𝑥 moles each of A and B are consumed and 𝑥 moles of C is formed, so (25.1)
implies 𝑥/(2 − 𝑥)2 = 1, which implies 𝑥 = 1 in equilibrium. Hence, the actual chemical
composition of the system may be written as (�̃�A, �̃�B, �̃�C) = (1, 1, 1). If you wish, you
could update the materials coordinates of the system as (𝑁A, 𝑁B, 𝑁C) = (1, 1, 1), although
this is not required; there are infinitely many possible choices of materials coordinates that
give identical chemical composition (→25.6) for a given system.

(2) For the reaction system in (1) if, for example, we change 𝐸 (or its temperature) while
the system is still closed, let us assume that the equilibrium constant 𝐾 in (25.1) (→25.21)
is modified to be 𝐾 = 3. Then, the equilibrium composition is given by (�̃�A, �̃�B, �̃�C) =
(2/3, 2/3, 4/3). Needless to say, its materials coordinates can still be chosen as (𝑁A, 𝑁B, 𝑁C) =
(2, 2, 0) (or, if we updated as suggested at the end of (1), (𝑁A, 𝑁B, 𝑁C) = (1, 1, 1)) as be-
fore. Of course, we can further update the materials coordinates to be (𝑁A, 𝑁B, 𝑁C) =
(2/3, 2/3, 4/3), if you wish.

(3) To prepare the system under consideration we only need to prepare the system according
to one of the many equivalent materials coordinate expressions of the system. For example,
we can prepare the same system with 2 moles of C only. In this case the materials coordi-
nates of the system can be (𝑁A, 𝑁B, 𝑁C) = (0, 0, 2), but in the state with 𝐾 = 1 (25.1)
implies (2 − 𝑥)/𝑥2 = 1, where 𝑥 is the moles of C decomposed. Thus, 𝑥 = 1. That is, the
system chemical composition is, just as in (1), (�̃�A, �̃�B, �̃�C) = (1, 1, 1) (which is not equal
to (2, 0, 0) + (0, 2, 0)).

(4) These are cases in which reactions occur spontaneously in the system, but we could
prepare the system by combining two half-volume systems. Suppose we prepare a system
with volume 1/2 containing only 2 moles of A (its materials coordinates are (2, 0, 0) and
so are its chemical composition) and a system with volume 1/2 containing only 2 moles
of B (its materials coordinates are (0, 2, 0) and so are its chemical composition). Com-
bine these two systems to make a volume 1 system with the materials coordinates given by

328In many cases for liquid systems, there is a ‘solvent’ that does not participate in the reactions.
We ignore the solvent in this example.
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(2, 0, 0) + (0, 2, 0) = (2, 2, 0). The resultant chemical compositions are not additive due to
chemical reactions, and many different states may result according to 𝐾. For example, if
𝐾 = 1 (as shown in (1)) the chemical composition is (1, 1, 1).

(5) Let us add 2 moles of C to the system prepared in (1). The materials coordinates
of the system become (2, 2, 0) + (0, 0, 2) = (2, 2, 2). If we wish to choose the materi-
als coordinates of the system prepared in (1) to be (1, 1, 1), the materials coordinates af-
ter adding 2 moles of C are (1, 1, 3). If 𝐾 = 1 and if we choose the materials coordi-
nates to be (2, 2, 2), assuming that 𝑥 moles of A is consumed before reaching chemical
equilibrium, (2 + 𝑥)/(2 − 𝑥)2 = 1, so 𝑥 = (5 −

√
17)/2, that is, the resultant chemical

composition is ((
√
17 − 1)/2, (

√
17 − 1)/2, (9 −

√
17)/2). If the materials coordinates are

(1, 1, 3), assuming that 𝑦 moles of C is decomposed before reaching a chemical equilibrium,
(3 − 𝑦)/(1 + 𝑦)2 = 1, so 𝑦 = (−3 +

√
17)/2 and the equilibrium chemical composition is

((
√
17− 1)/2, (

√
17− 1)/2, (9−

√
17)/2) as before.

25.3 Independent chemical ingredients

There are two interpretations of the independence of chemicals for a given system

(→25.1). One is the operational independence (can we add separately?) and the

other the independence of changes of composition of the system. The latter inde-

pendence is complicated and is hard to use (→4.8).

The materials coordinates are introduced to describe the operational indepen-

dence, but the intrinsically accompanying chemicals mentioned in 4.8 make opera-

tional introduction of really pure substance into the system practically impossible.

For example, to introduce a certain amount of water inevitably introduce certain

amount of OH−, H3O
+, etc. Under constant 𝑇 and 𝑃 the amount of these accom-

panying compounds are uniquely fixed (due to the chemical equilibrium conditions).

Therefore, even though in this case there are (at least) three chemicals, the equi-

librium condition 2H2O ←→ H3O
+ + OH− and electroneutrality tell us only one of

them is independently and operationally changed. Thus, usually, water is regarded

as the independent chemical.329

As is clear, the number of independent chemical components is less than that of

the independent materials coordinates due to chemical equilibrium relations. The

following has already been stated clearly in 4.8 (ii), but is repeated just below be-

cause of its importance.

If we ignore accompanying chemicals, all the materials coordinates are indepen-

dent. How about the chemical component variables? According to the elementary

329However, the amounts of accompanying compounds change when the system state changes,
since they are determined by chemical equilbria. In most cases, this effect is ignored.
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chemistry principle II (→4.3), for a closed system, the chemical component variables

are not thermodynamically independent variables at all.

25.4 Is there any way not to introduce two kinds of chemical variables?

We have introduced the materials coordinates and chemical composition coordinates,

because the variation of the ordinary thermodynamic coordinates (𝐸,𝑋) can vary

chemical composition, even if we do not perform any experimental manipulation of

chemicals. This causes mathematical dependence of chemical variables on (𝐸,𝑋).

Therefore, for example, the expression such as (in this unit, 𝑁 is interpreted as in the

conventional thermodynamics; not the materials coordinates, but generic chemical

coordinates) (︂
𝜕𝐸

𝜕𝑆

)︂
𝑋 ,𝑁

(25.2)

turns out to be extremely delicate (at best; meaningless if we follow the ordinary

analysis).

To avoid such a difficulty, the standard chemical thermodynamics, if honest, as-

sumes that 𝑁 may be kept constant in any equilibrium state (that is, any chemical

reaction may be frozen at will) without spoiling the thermodynamic equilibrium of

the system under study. Indeed, this assumption decouples 𝑁 and the ordinary

thermodynamic coordinates to make (𝐸,𝑋,𝑁 ) a set of genuine independent math-

ematical variables.

Since the second law is stated without chemical variables even in existing chemical

thermodynamics textbooks, we must understand that the convexity and variational

principles are all without chemical reactions (or ‘favorably interpreted’, under the

assumption that the chemical composition is fixed).

When we wish to discuss chemical reactions thermodynamically, we wish to apply

the thermodynamic variational principle (→12.6) to chemistry. However, with the

above convention, it is impossible to show the concavity of entropy as a function of

(𝐸,𝑋,𝑁 ). Thus, no variational principle applicable to chemical reactions has been

formulated.

To formulate chemical thermodynamics mathematically consistently, we need con-

vex analysis in the space spanned by (𝐸,𝑋,𝑁 ) without halting chemical reactions.

Thus, we need two types of variables as summarized in 25.1.

25.5 How to choose materials coordinates
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Suppose we need 𝑁 moles of chemicals to construct a system (as seen in 25.2 (3)) If

the equilibrium state of this system is (𝐸,𝑋,𝑁 ), its chemical components are given

in terms of the reaction map (→4.12) as �̃� = 𝑅𝐸,𝑋(𝑁 ).

There are many different ways to prepare the same system materially, so there

are many ways to choose its materials coordinates. For example, even we can

choose the current chemical composition �̃� = 𝑛 as the value of 𝑁 , since triv-

ially (𝐸,𝑋,𝑁 ) = (𝐸,𝑋,𝑛). There is a mathematically proper way to define 𝑁

as an equivalence class consisting of the above mentioned ‘many ways’ as explained

in 25.6. However, this choice is inconvenient and rather unfamiliar to physicists, so

more practical choices are discussed below.

The most important characteristics of the materials coordinates are the following

two:

(I) When additivity is needed, as in convex analysis, we can always choose additive

representation of the materials coordinates.

(II) When the result of chemical reactions is explicitly needed, we can choose the

values of materials coordinates identical to the chemical composition variable. That

is, choose 𝑁 = 𝑁 * such that 𝑁 * = 𝑅𝐸,𝑋(𝑁 *).

25.6 Mathematical expression of the materials coordinates and the representa-
tive elements330

When the ordinary thermodynamic coordinates of the system are given by the reaction map
(𝐸,𝑋), its materials coordinates𝑁 determine its chemical composition �̃� as �̃� = 𝑅𝐸,𝑋(𝑁)
in terms of the reaction map (→4.12). There are infinitely many choices of materials coor-
dinates that give the identical �̃� as we have seen in 25.2. Thermodynamically any choice
of the materials coordinates is equivalent. That is, if we introduce the equivalence relation
≈ among materials coordinates as

𝑁 ≈𝑁 ′ ⇐⇒ 𝑅𝐸,𝑋(𝑁) = 𝑅𝐸,𝑋(𝑁 ′), (25.3)

mathematically the materials coordinates should be the equivalence class of the range of

the materials coordinates R+𝐷
, where 𝐷 is the dimension of the materials coordinate space,

i.e., the number of operationally independently modifiable chemicals, due to ≈. That is, the
element of R+𝐷

/ ≈ corresponds to distinct materials coordinates.
If a chemical reaction ‘𝑏’ is stoichiometric, we can algebraically express it as (→25.9,

especially (25.9)) ∑︁
𝜈𝑏𝑖C𝑖 = 0. (25.4)

Therefore, irrespective of (𝐸,𝑋), if we use the reaction coordinate 𝜉𝑏 for reaction 𝑏, we can
write

𝛿𝑁𝑖 = 𝜈𝑏𝑖 𝜉
𝑏. (25.5)

330based on T. Tsujishita’s input.
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Therefore, if there are various reactions,

𝛿𝑁𝑖 =
∑︁
𝑟

𝜈𝑟𝑖 𝜉
𝑟. (25.6)

That is, the equivalence relation 𝑁 ≈𝑁 ′ is equivalent to the existence of 𝜉𝑟 such that

𝑁𝑖 −𝑁 ′
𝑖 =

∑︁
𝑟

𝜈𝑏𝑖 𝜉
𝑟. (25.7)

If the reactions are not stoichiometric, then not only the so-called stoichiometric coef-
ficients may depend on (𝐸,𝑋), but existing chemicals themselves also depend on (𝐸,𝑋).
Consequently, we cannot rewrite the equivalence class determined by 𝑅𝐸,𝑋 in terms of simple
chemical reaction formulas as above.

As noted in (2) of 25.5, practically it is convenient to choose an appropriate member in

an element of R+𝐷
/ ≈.

25.7 Proposed practical choice of the materials coordinates 𝑁

In conventional chemical thermodynamics textbooks, there is a requirement that

chemical coordinates (typically corresponding to our chemical composition variables)

can be freely frozen at any point. Subsequently, once the desired changes have been

completed, chemical reactions are permitted to progress in order to attain a new

state of chemical equilibrium. To adhere closely to this convention while avoiding

any artificial and frequently unfeasible procedures, the following proposal could be

considered the most suitable:

(I) When the system is in an equilibrium state, its material coordinates are set to

agree with the current chemical composition variables of the system. All calculations

involving derivatives in this state are carried out with respect to the chosen material

coordinates.

(II) If certain chemicals are introduced (in an algebraic manner), the material coor-

dinates are updated according to the following guidelines:

(II1) If the addition process is conducted quasistatically and reversibly, the mate-

rial coordinates are updated in line with (I), signifying that the chemical composition

variables of the final state are adopted as the material coordinates.

(II2) If the addition process lacks any specified conditions, then the updated ma-

terial coordinates are the simple sum of the material coordinates from the initial

equilibrium state and the added chemicals. The system will eventually attain a new

equilibrium state, and the determination of the final material coordinates aligns with

(I).

(III) In the case of a closed system, wherein we consider the quasistatic and re-

versible chemical reactions, we may designate the material coordinates as identical
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to the chemical composition variables for studying these reactions. Consequently, the

chemical coordinates for a given system are the equilibrium material coordinates, de-

noted by 𝑁 = 𝑁 *.

The base line is a follows

If no chemicals are introduced into the system, there is no requirement to revise

the material coordinates, regardless of the system’s developments. If the system is

not closed, the material coordinates should be adjusted simply by incorporating the

quantities of the added chemicals into the current material coordinates. In the con-

text of chemical reactions taking place within a closed system, a practical approach

is to utilize chemical composition variables; there is no obligation to consider them

as the materials coordinates, if you prefer not to. Nevertheless, upon concluding all

processes, it is advisable to update the material coordinates to agree with the final

chemical composition variables.

25.8 The algebraic expression of chemical reactions

If chemicals A, B, C, · · · react to produce chemicals Z, Y, X, · · ·, the corresponding

chemical changes or chemical reaction is represented by

𝑎 A + 𝑏 B + 𝑐 C + −→ 𝑧 Z + 𝑦 Y+ 𝑥 X + · · ·. (*)

Here, lower case letters are positive integers (usually) and are called stoichiometric

coefficients.331 Notice, however, that the above expression need not express the

actually occurring reactions, but can be a summary of various reactions in parallel

or a summary of a sequence of several reactions. Needless to say, the chemical

reaction in a system need not be a single reaction.

In the above expression, the left-hand side is called the original or reactant system

and the right-hand side is called the product system.

In thermodynamics it is convenient to write the above formula algebraically as∑︁
𝑖

𝜈𝑖C𝑖 = 0. (25.8)

Here, 𝜈𝑖 is called the generalized stoichiometric coefficient for chemical C𝑖. The sign

convention is: It is negative for the reactant system and positive for the product

system.

331Such expressions are enough for the usual chemistry and biochemistry, but for, e.g., geochem-
istry, many so-called nonstoichiometric compounds show up, so the coefficients need not be integers.



25. CHEMICAL REACTIONS AND CHEMICAL EQUILIBRIA: OUTLINE 245

Many reactions can occur simultaneously in the system, so each reaction is dis-

tinguished with a superfix 𝑏, and (25.8) is more generally expressed as∑︁
𝑖

𝜈𝑏
𝑖 C𝑖 = 0. (25.9)

25.9 The extent of chemical reaction

Suppose in (25.8) the reaction proceeds to the right and the moles of chemical C𝑖

(moles as the chemical composition in the system) changes by 𝛿�̃�𝑖. This quantity

and 𝜈𝑖 are proportional for all 𝑖 and has the same sign. Therefore, we introduce the

extent of chemical reaction 𝜉 through the following differential form:

𝑑𝜉 =
𝑑�̃�𝑖

𝜈𝑖
. (25.10)

If there are many chemical reactions in the system, the extent of the chemical reaction

for each reaction will be distinguished with a subscript as 𝜉𝑏. Here, the reactions need

not be ‘independent.’ The independence of reactions is just the linear independence

of the chemical reactions expressed as (25.8) regarding C𝑖 to be the basis vectors of

a linear system.

25.10 What process does the chemical reaction formula express?

It is not entirely clear what (25.8) or (*) of 25.8 actual represent as physical pro-

cesses. If it only describes the chemical equilibrium relation, then the chemical

potentials of the chemicals showing up on the both sides are determined by the

equilibrium mixture. However, for example, according to Kirkwood-Oppenheim’s

Chemical Thermodynamics the reaction consists of the following three stages:

(a) Pure reactants are mixed under 𝑇, 𝑃 .

(b) Chemical reactions are allowed to proceed.

(c) Pure products are separated from the product mixture.

According to Kirkwood a reaction implies the totality of (a) - (c). However, in many

experiments, only stage (b) alone is studied. Kirkwood-Oppenheim states that for

gas phase reactions (b) overwhelms, but in liquids mixing heats cannot be ignored,

so corrections are required.

25.11 van’t Hoff’s equilibrium box

An apparatus to observe chemical equilibrium maintained by reaction (*) of 25.8
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(that is, the stage (b) of 25.10) is proposed by van’t Hoff (van’t Hoff’s reaction box).

From the cylinders containing pure chemicals A, B, · · ·, Y, Z with selectively per-

meable membranes corresponding to them is constructed an apparatus illustrated in

Fig. 25.1. Here, each piston is regulated to change each chemical 𝑖 by 𝜈𝑖𝑑𝜉 according

to (25.10).

The mixture in the big box is an equilibrium mixture, so the reactions proceed

only quasistatically (→25.16). Actually, in chemical equilibria, no net reactions

proceed, so to maintain equilibrium, we do not need any such device.

Figure 25.1: Van’t Hoff’s equilibrium box

With this device it is in principle possible to realize all the chemical potentials

of pure substances in the cylinders participating in the reaction to be identical to

the ones in the box by changing the pressures of the cylinders. Therefore, in prin-

ciple, equilibrium thermodynamic experiments can be performed for any chemical

reactions.

A summary is given in 25.12.

Remark To perform equilibrium thermodynamic experiments some textbooks pro-

pose the use of ‘negative catalysts’ to slow down reactions. Usually, a catalyst is

a small amount whose concentration may be ignorable, but kinetically it changes

the reaction. This idea works to accelerate a reaction that hardly proceeds sponta-

neously. Here, however, we must kill the reactions that easily proceed spontaneously,

so any effective negative catalyst must stoichiometrically block reacting chemicals.

This is hardly realizable without changing the reaction mixture. Thus, negative cat-

alysts should not be relied on as a means to regulate the reaction speed.

Remark We have discussed intrinsic accompanying compounds in 4.8. Usually, mi-

nority accompanying compounds are ignored, even though the chemicals loaded in

the cylinders are with intrinsic accompanying compounds. Unfortunately, there are

cases of chemicals that are usually impossible to purify. Perhaps the most popular
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example may be N2O4 ←→ 2 NO2. In this example, neither chemical can be isolated.

Thus, we cannot even approximately use van’t Hoff’s reaction box. In such cases,

the inseparable mixtures of chemical should be handled as a single substance.

25.12 Are reactions and mixing processes separated or not?

Imagine an ideal situation where the original system without any reaction ((a) of

25.10) is first prepared, and then the reaction starts. This idealization cannot be re-

alized since the reactions start immediately after chemicals are mixed before reaching

mixing equilibrium.332 Therefore, the original and reactant systems are both ficti-

tious. Thus, such a question with the title of this unit occurs.333

If we can completely stop chemical reactions (as assumed by standard thermo-

dynamics textbooks) by some means, then, van’t Hoff’s box allows us to measure

the free energy changes for (a) and (c) in 25.10, in principle. After preparing a

reactant mixture, we can let the reaction proceed. However, the process cannot be

a quasiequilibrium reversible process,334 so, strictly speaking, we cannot apply ther-

modynamics.

The reaction we can discuss in thermodynamics is only chemical equilibrium. Us-

ing the van’t Hoff’s box containing the equilibrium mixture, we can measure the

needed ∆𝐺 to prepare this mixture from the standard states of chemicals. In a quite

parallel fashion, we can measure the needed ∆𝐺 to separate the mixture into prod-

ucts in their standard states. Therefore, we can measure the Gibbs energy change

by the reversible quasistatic process converting the reactant system to the product

system.

This is the ∆𝐺 for the totality of (a)-(c), and not (b) alone. However, we must

look at the structure of chemical potentials. The activity or fugacity basically ex-

presses (non-ideal) mixing entropy with chemical interactions. Therefore, when we

write

∆𝐺 =
∑︁
𝑖

𝜈𝑖𝜇𝑖, (25.11)

332In the standard chemical thermodynamic textbooks, chemical reactions may be halted at any
time without spoiling the system equilibrium. By this deus ex machina (a) and (b) of 25.10 are
totally decoupled; we can freely prepare (a).

333However, electrochemically, in principle, decoupling of (a) and (b) is possible with the aid of
van’t Hoff box. See 25.7.

334However, electrochemically, we may regulate chemical reactions to proceed quasistatic and
reversibly.
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usually, the effects of mixing and demixing of chemicals are included. If the chemical

potentials 𝜇𝑖 are those for the equilibrium mixture in a van’t Hoff reaction box, then

∆𝐺 = 0.

Then, what is ∆𝐺 due to a chemical reaction?

25.13 Gibbs energy change due to chemical reactions

In the reaction (25.8) if the extent of reaction changes by 𝛿𝜉,335 the free energy

change due to this reaction is written as

𝛿𝐺 =
∑︁

𝜇𝑖𝛿�̃�𝑖 = 𝛿𝜉
(︁∑︁

𝜈𝑖𝜇𝑖

)︁
. (25.12)

From this we see that the Gibbs energy change ∆𝐺 for a unit amount of this reaction

(usually, 1 mole change for a chemical with |𝜈𝑖| = 1) is given by

∆𝐺 =
∑︁

𝜈𝑖𝜇𝑖. (25.13)

Throughout this calculation we assume the system is closed and 𝑇 , 𝑃 constant.

Whether a reaction is thermodynamically permissible or not can be seen from

the stability of the system. If 𝑇 , 𝑃 are constant, and if there is no other work

than volume work (i.e., the usual case), according to the free energy minimization

principle (→19.7) if ∆𝐺 > 0 the reaction does not proceed (however, see 25.14).

If ∆𝐺 < 0, thermodynamics does not object the advancement of the reaction to

the right (that is, from the original or reactant to the product system). However,

whether the reaction actually happens or not is a separate issue (see 12.4)

Remark Notice that the usual thermodynamics textbooks do not explicitly state

the second law applicable to chemical reactions, and since the chemical composition

variables are used to describe the amounts of chemicals, it is hardly possible to

justify the free energy minimization principle for chemical reactions in the existing

textbooks.

25.14 Combinations making impossible possible

The essence of application of thermodynamics is to make a possible process through

combining/coupling thermodynamically impossible processes and possible processes.

335Since thermodynamics can discuss only equilibrium states, we can study only chemical reac-
tions in equilibrium. Then, the reader may wonder how nonzero 𝛿𝜉 is possible for a given equilibrium
state. Precisely speaking, it is the result of thermodynamic variation (→12.6).
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For chemical reactions a reaction with ∆𝐺 ≪ 0 and one with ∆𝐺 > 0 may be

coupled to advance the reaction with ∆𝐺 > 0. Many biochemical reactions are such

examples of this, and the wonders of biology are often realized by such couplings.336

As mentioned several times before, even if thermodynamics tells us that some

reaction is ‘very likely to occur (e.g., due to large negative ∆𝐺), the relevant rate

processes have nothing to do with thermodynamics. Consequently, to realize such a

reaction requires a great deal of ingenuity, trial and error or evolution processes.

25.15 Chemical substances with zero concentration

For the reaction A+B −→ C, if the concentration of C is zero or very close to zero,

its chemical potential would be well approximated by the ideal solution formula

(→19.10), so its chemical potential has an extremely large negative value. This

suggests that the generalized work we can obtain (→19.6) from such a reaction

could be very large. However, this never occurs. Why not?

This highlights the distinction between the ordinary work coordinates and the

chemical composition variables. In contrast to most work coordinates, the change

of chemical composition variables tend to deviate considerably from equilibrium as

soon as the changing rate becomes non-zero. For the case of zero concentration

chemicals, if we can wait sufficiently (i.e., if we can slow down the process sufficiently)

considerably large amount of generalized work could be produced.

In contrast to the mechanical work, the thermodynamically expected results would

not be obtained for the chemical work as soon as the rate becomes non-negligible.337

There is indeed a qualitative difference between mechanical action and mass action.

25.16 Chemical reactions have equilibrium states: thermodynamic un-

derstanding

As shown in (25.13), when 𝑃 and 𝑇 are held constant, the chemical equilibrium

336The origin of life itself is thought to be such an example. For example, just as we have
demonstrated, a geochemically natural process coupled with reduction of carbon dioxide, which
was impossible on the Hadean Earth, enables production of organic compounds [N. Kitadai et al.,
Metals likely promoted protometabolism in early ocean alkaline hydrothermal systems, Sci Adv 5
7848 (2020); Thioester synthesis through geoelectrochemical CO2 fixation on Ni sulfide, Commun.
Chem. 4, 37 (2021)]. As seen in these papers, even electrochemical coupling, that should be far
easier than the usual organic reaction coupling, requires special electrodes for the stage of chemical
reactions. That is, even energetically possible coupling is hard to realize.

337As we will see later, this can be clearly observed in electrochemistry as ‘overpotential.’
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condition in a closed system is (as already noted in 19.5)∑︁
𝜈𝑖𝜇𝑖 = 0. (25.14)

The sum can be made as large as possible by reducing the concentrations of some

chemicals in the reactant system. Instead, we can make the sum as small as possible

by reducing the concentrations of some chemicals in the product system. The sum

changes continuously, so we can always find a condition to satisfy the equilibrium

condition. That is, for any reaction there is a chemical equilibrium. This means that

thermodynamics and the elementary chemistry is consistent (→4.3 II).

25.17 Nonuniqueness of materials coordinates and chemical equilibrium

Suppose 𝑁 1 and 𝑁 2 are equivalent materials coordinates for a system. This implies

𝑅𝐸,𝑋(𝑁 1) = 𝑅𝐸,𝑋(𝑁 2) = �̃� . (25.15)

The extensivity of 𝐺 implies

𝜇 ·𝑁 1 = 𝜇 ·𝑁 2 = 𝜇 · �̃� . (25.16)

In particular,

𝜇 · (𝑁 1 −𝑁 2) = 0. (25.17)

This is of course consistent with 19.5 as long as chemical equilibrium is maintained,

since 𝜇 does not change:

𝜇 · 𝑑𝑁 = 0. (25.18)

25.18 Can we proceed chemical reactions quasistatically?

Thermodynamics can discuss, strictly speaking, only equilibrium. Then, when ∆𝐺

become large negative, isn’t this conclusion meaningless? Since chemical reaction

would proceed violently, nonequilibrium thermodynamics may be applicable. We

have a glimpse of such situations in 25.15.

Nevertheless, we should note the following two points:

(1) We can understand a given chemical reaction considerably, if we understand its

chemical equilibrium and its stability. At least we can know the reaction is thermo-

dynamically forbidden or not. Furthermore, needless to say, its chemical equilibrium
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maybe studied quasistatically (→25.16).

(2) Electrochemistry allows us to construct electric cells from any reactions (in prin-

ciple, at least). Even practically, many reactions allow us to construct electric cells

to convert the mass action to mechanical work reversibly. Furthermore, its reaction

rate may be controlled as needed. For example, an explosive reaction of hydrogen

and oxygen could be observed near equilibrium reaction if we construct a fuel cell

(→??). Even biochemical reactions such as the (half of the) TCA cycle could be used

to construct an electric cell (→??). The importance of the principles of electrochem-

istry should not be underestimated for the foundations of chemical thermodynamics.

(3) Even if the whole process is not quasistatic, still there are cases we can apply

equilibrium thermodynamics as has been noted in ?? (2). Thus, if a reaction does

not proceed spontaneously, a catalyst can added to make the reaction possible, just

as the pinhole between the gas canisters with different pressures. However, there

exists a distinction between the reaction mixture and a gas leak. In the context of

the reaction mixture, the reactant and product systems are typically not separated

as gases at distinct pressures. If the reaction mixture is in a quasiequilibrium state

(refer to 6.2), there are no issues here. However, to be precise, since there is no

equilibrium mixture close to the reaction mixture, we cannot employ equilibrium

thermodynamics to describe the chemical potentials of the involved substances. In

chemistry, however, if no spontaneous reactions happen, then the mixture is consid-

ered to be in an equilibrium state (recall 2.5), so we are allowed to use equilibrium

thermodynamics for reactions that do not proceed without catalysts.

How common are such reactions? We can assert that key physiological biochem-

ical reactions cannot proceed without enzymes. Since cellular physiology must be

meticulously regulated, spontaneity often disrupts intricate biological order.

25.19 The expression of chemical potentials

The chemical potential of chemical 𝑖 with the partial pressure 𝑃𝑖 in an ideal gas

mixture is given by

𝜇𝑖 = 𝜇⊖
𝑖 + 𝑅𝑇 log𝑃𝑖. (25.19)

Here, 𝜇⊖
𝑖 is its chemical potential in the standard state (→17.9, 17.10). For a

general real gas, fugacity 𝑓 is defined to maintain the shape of the formula (25.19)

as much as possible to write

𝜇𝑖 = 𝜇⊖
𝑖 + 𝑅𝑇 log 𝑓𝑖. (25.20)
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Needless to say, the fugacity must be determined empirically.

For an ideal liquid mixture the chemical potential of its component 𝑖 with the

molar fraction 𝑥𝑖 is given by338

𝜇𝑖 = 𝜇⊖
𝑖 + 𝑅𝑇 log 𝑥𝑖. (25.21)

If the mixture is not ideal, the activity 𝑎𝑖 is defined to replace the molar fraction to

maintain the functional form of (25.21) as

𝜇𝑖 = 𝜇⊖
𝑖 + 𝑅𝑇 log 𝑎𝑖. (25.22)

25.20 How to obtain chemical composition from materials coordinates

The chemical equilibrium condition is∑︁
𝑖

𝜈𝑖𝜇𝑖(𝑇, 𝑃,𝑁 ) = 0. (25.23)

If the equilibrium chemical composition is �̃�
𝑒
, then we can choose the materials

coordinates as 𝑁 = �̃�
𝑒
: ∑︁

𝑖

𝜈𝑖𝜇𝑖(𝑇, 𝑃, �̃�
𝑒
) = 0. (25.24)

However, generally, we do not know �̃�
𝑒

for a given 𝑁 when the system is closed (or

prepared). Therefore, we must be able to obtain �̃�
𝑒

from 𝑁 and (25.23). Notice

that there must be the extent of reaction 𝜉 such that

�̃�
𝑒

= 𝑁 + 𝜈𝜉, (25.25)

where 𝜈 = (𝜈1, 𝜈2, · · ·). Since 𝜇𝑖 are expressed in terms of �̃� , we must find 𝜉 such

that ∑︁
𝑖

𝜈𝑖𝜇𝑖 (𝑇, 𝑃,𝑁 + 𝜈𝜉) = 0. (25.26)

Here, 𝑁 may be the initial composition before the chemical reaction occurs. Due to

the convexity of 𝐺 with respect to 𝑁 , (25.26) has a unique solution for 𝜉.339 Thus,

we can obtain �̃�
𝑒

from (25.25).

338There are different choices for the standard state (→??), here, the pure state (i.e., 𝑥𝑖 = 1) is
chosen as the standard state.

339Precisely speaking, the extremal set need not be a point, but must be a convex set. This means
that the resultant equilibrium states can continuously change. Such an example must be extremely
rare, if known at all.
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25.21 Equilibrium condition for a chemical reaction: the law of mass

action

The equilibrium condition340 for the reaction (25.8) is given by

0 =
∑︁

𝜈𝑖𝜇𝑖 =
∑︁
𝑖

𝜈𝑖
[︀
𝜇⊖
𝑖 + 𝑅𝑇 log 𝑎𝑖

]︀
. (25.27)

This formula can be rewritten as

−∆𝐺⊖ ≡ −
∑︁
𝑖

𝜈𝑖𝜇
⊖
𝑖 (𝑇, 𝑃 ) = 𝑅𝑇 log

(︃∏︁
𝑖

𝑎𝜈𝑖𝑖

)︃
. (25.28)

The middle expression in the above does not depend on the system composition, so

we may define the chemical equilibrium constant dependent only on 𝑇 and 𝑃 as

𝐾(𝑇, 𝑃 ) = 𝑒−Δ𝐺⊖/𝑅𝑇 =
· · · 𝑎𝜈𝑝𝑝 · · ·
· · · 𝑎−𝜈𝑟

𝑟 · · ·
. (25.29)

Here, the chemicals appearing the numerator of the right-hand side are all chemical

in the original/reactant system and those on the denominator are chemicals of the

product system. (25.29) is called the law of mass action. All the exponents are

positive.

A large 𝐾 implies that the reaction shifts to the product system (to the right).

The following expression is intuitive and useful:

−∆𝐺⊖ = 𝑅𝑇 log𝐾. (25.30)

As seen from this −∆𝐺 is chemically very useful (see electromotive force in electro-

chemistry ?? or ??), so this quantity is called chemical affinity.

It is claimed that “the equilibrium constants can be computed, in principle,

statistical-mechanically,” but, except for the reactions among ideal gas species, the

computation of needed chemical potentials is almost impossible, so especially for

interesting reactions theoretical calculations are useless.

340We assume that the system is closed. In some cases we may use chemostats, but then we must
pay extra care not to realize nonequilibrium steady states. It is therefore wise to impose closedness
conditions.
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25.22 Changes in equilibrium condition: Le Chatelier’s principle

If we differentiate the chemical equilibrium constant with 𝑇 , we can get the reaction

heat, i.e., the enthalpy change ∆𝐻 due to the reaction. Due to the Gibbs-Helmholtz

relation (or its Gibbs energy version (19.7)) we have(︂
𝜕log𝐾

𝜕𝑇

)︂
𝑃,𝑁

=
∆𝐻⊖

𝑅𝑇 2
. (25.31)

∆𝐻⊖ is the enthalpy change in the standard state. The formula is called van’t Hoff’s

formula.

Similarly, we can obtain (︂
𝜕log𝐾

𝜕𝑃

)︂
𝑇,𝑁

= −∆𝑉 ⊖

𝑅𝑇
. (25.32)

Here, ∆𝑉 ⊖ is the volume change due to the reaction in the standard state. Notice

that ∆ in chemical reactions always denote (sum for the product system) − (sum

for the original/reactant system).

(25.31) implies that if the reaction is exothermic, i.e., if ∆𝐻⊖ < 0, then the equi-

librium can be shifted to the direction producing less heat by increasing the system

temperature (that is, 𝐾 is reduced, so the rightward advance of the reaction becomes

harder). This is an example of Le Chatelier’s principle (→22.8) that the response

of the system occurs in the direction to reduce the effect of external perturbations.

(25.32) is also such an example. Needless to say, they show that the world is stable.

25.23 Le Chatelier’s principle in terms of extent of reaction

Let us study how the extent of reaction 𝜉 changes if, for example, 𝑇 is changed under

chemical equilibrium condition. There are two key points:

(1) the original (unperturbed) equilibrium chemical composition may be described in

terms of materials coordinates whose values agree with the corresponding equilibrium

chemical composition �̃�
𝑒
.

(2) the chemical composition change due to chemical reaction in the closed system

may be described by the addition of chemicals 𝛿𝑁 = {𝜈𝑖𝑑𝜉} from outside.341

The chemical equilibrium condition is given by
∑︀

𝜈𝑖𝜇𝑖 = 0 (→19.5). Therefore,

after changing 𝑇 and 𝑃 , we must have∑︁
𝑖

𝜈𝑖𝜇𝑖(𝑇 + 𝛿𝑇, 𝑃 + 𝛿𝑃, 𝜉 + 𝛿𝜉) = 0. (25.33)

341Needless to say, there is no net import of materials coordinates.
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Taylor expanding this, we obtain

∑︁
𝑖

𝜈𝑖

(︃
−𝑠𝑖𝛿𝑇 + 𝑣𝑖𝛿𝑃 +

∑︁
𝑗

𝜈𝑗𝜇𝑖,𝑗𝑑𝜉

)︃
= 0, (25.34)

where partial derivatives are given by

−𝑠𝑖 =

(︂
𝜕𝜇𝑖

𝜕𝑇

)︂
𝑃,𝑁

, 𝜇𝑖,𝑗 =

(︂
𝜕𝜇𝑖

𝜕𝑁𝐽

)︂
𝑇,𝑃.𝑁𝑐

𝑗

. (25.35)

Therefore, we have∑︁
𝑖

𝜈𝑖(−𝑠𝑖)𝛿𝑇 +
∑︁
𝑖

𝜈𝑖𝑣𝑖𝛿𝑃 +
∑︁
𝑖

𝜈𝑖𝜈𝑗𝜇𝑖,𝑗𝛿𝜉 = 0, (25.36)

From this, ∆𝑆 =
∑︀

𝜈𝑖𝑠𝑖 is the entropy change for the unit chemical reaction extent,

so, for example, under constant 𝑃 we get(︂
𝜕𝜉

𝜕𝑇

)︂
𝑃

=
∆𝑆∑︀
𝜈𝑖𝜈𝑖𝜇𝑖,𝑗

. (25.37)

Since 𝜇𝑖,𝑗 is positive definite, and ∆𝑆 = 𝑄/𝑇 for an imported heat 𝑄, an exothermic

reaction (𝑄 < 0 or ∆𝑆 < 0) moves ‘backward’ when the temperature is increased.

How to pretend to proceed conventionally even if many quantities are mathe-
matically meaningless:
First, the usual (standard) derivation is given. Then, it is critically demolished and possible
approaches will be discussed that are not problematic in principle. Finally, probably the only
possible consistent framework will be given.

The chemical equilibrium condition is given by
∑︀

𝜈𝑖𝜇𝑖 = 0 (→19.5). Therefore, after
changing 𝑇 and 𝑃 , we must have∑︁

𝑖

𝜈𝑖𝜇𝑖(𝑇 + 𝛿𝑇, 𝑃 + 𝛿𝑃, 𝜉 + 𝛿𝜉) = 0. (25.38)

Taylor expanding this, we obtain

∑︁
𝑖

𝜈𝑖

⎛⎝−𝑠𝑖𝛿𝑇 + 𝑣𝑖𝛿𝑃 +
∑︁
𝑗

𝜈𝑗𝜇𝑖,𝑗𝑑𝜉

⎞⎠ = 0, (25.39)

where

𝜇𝑖,𝑗 =

(︃
𝜕𝜇𝑖

𝜕�̃�𝑗

)︃
𝑇,𝑃,�̃�𝑐

𝑗

. (25.40)
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Here, chemical coordinates are chemical composition variables �̃� , since they are the only
variables appearing in the conventional chemical thermodynamics. From this, Δ𝑆 =

∑︀
𝜈𝑖𝑠𝑖

is the entropy change for the unit chemical reaction extent, so, for example, under constant
𝑃 we get (︂

𝜕𝜉

𝜕𝑇

)︂
𝑃

=
Δ𝑆∑︀
𝜈𝑖𝜈𝑖𝜇𝑖,𝑗

. (25.41)

Thus, we have ‘derived’ (25.37).
The problem of this argument is that �̃� are not independent variables, so the partial

derivatives such as

−𝑠𝑖 =
(︂
𝜕𝜇𝑖

𝜕𝑇

)︂
𝑃,

˜𝑁
(25.42)

are not defined, because 𝜇 is defined only for equilibrium states (𝑇, 𝑃, �̃�), and if �̃� are fixed,
then 𝑇 cannot generally be varied in equilibrium.

One might define a 𝐶∞ extension of a function 𝜇 defined only on the equilibrium manifold
to its 𝜀-tubular neighborhood as 𝜇∞ that agrees with 𝜇 on the equilibrium manifold. In this
case partial derivatives such as (25.42) is calculated as

−𝑠𝑖 =
(︂
𝜕𝜇∞

𝑖

𝜕𝑇

)︂
𝑃,

˜𝑁
(25.43)

and the derivative (25.37) can be computed as the ratio of partial derivatives of 𝜇∞ correctly.
However, only the ratio is free from the arbitrary choice of 𝜇∞ outside the equilibrium
manifold, so it seems impossible to derive the Le Chatelier’s principle.

There may be an approach to use thermodynamic variations 12.6. A thermodynamic
variation is defined by a spatial partition 𝒫 of the system. Each part of 𝒫 must have the
same 𝛿𝑇 and 𝛿𝑃 in the present case:

𝛿𝜇𝑖 =
∑︁
𝑘∈𝒫

(︃
−𝑠𝑘𝑖 𝛿𝑇 + 𝑣𝑘𝑖 𝛿𝑃 +

∑︁
𝑖

𝜈𝑖𝜈𝑖𝜇
𝑘
𝑖,𝑗𝑑𝜉

𝑘

)︃
, (25.44)

where the partition result {𝛿𝜉𝑘}𝑘∈𝒫must be compatible with 𝛿𝜉. Unfortunately, 𝜉 is not an

additive variable, so the compatibility condition is complicated. Therefore, although in con-

trast to the standard argument there is nothing in the above formula that is mathematically

illegal even in terms of the chemical composition variables, we cannot tell the sign of the

partial derivative (25.37) from this.

25.24 Shift of chemical equilibrium due to added chemicals

For a closed system, the equilibrium shift is possible only by changing 𝑇 , 𝑃 or opera-

tional coordinates other than 𝐸 and 𝑉 . This can be understood through appropriate

generalization of 25.23.

Now, let us assume that the system is not closed, and materials coordinates are
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changed by 𝛿𝑁 under constant 𝑇 and 𝑃 . The equilibrium condition must be∑︁
𝑖

𝜈𝑖𝜇𝑖(𝑇, 𝑃, �̃�
𝑒

+ 𝛿𝑁 ) = 0. (25.45)

Here, we assume that the system is in equilibrium before perturbation, so its mate-

rials coordinates may be chosen as 𝑁 = �̃�
𝑒
. The resultant equilibrium state can

be obtained as discussed in 25.20. The point is that all the chemical potentials are

expressed in terms of the values of chemical composition �̃� . The key point is that

the variables we use are materials coordinates 𝑁 , but their values are given by the

current chemical composition:∑︁
𝑖

𝜈𝑖𝜇𝑖

(︁
𝑇, 𝑃, �̃�

𝑒
+ 𝛿𝑁 + 𝜈𝛿𝜉

)︁
= 0. (25.46)

In terms of components, we can rewrite this, after expansion, as∑︁
𝑖𝑗

𝜈𝑖𝜇𝑖,𝑗(𝛿𝑁𝑗 + 𝜈𝑗𝛿𝜉) = 0. (25.47)

For example, if we change only 𝑁1, we get∑︁
𝑖

𝜈𝑖𝜇𝑖,1𝛿𝑁1 = −
∑︁
𝑖𝑗

𝜈𝑖𝜈𝑗𝜇𝑖,𝑗𝛿𝜉. (25.48)

That is,
𝑑*𝜉

𝑑*𝑁1

= −
∑︀

𝑖 𝜈𝑖𝜇𝑖,1∑︀
𝑖𝑗 𝜈𝑖𝜈𝑗𝜇𝑖,𝑗

. (25.49)

Here 𝑑*/𝑑*𝑁1 implies the derivative of the extent of reaction by adding only 𝑁1 under

constant 𝑇 and 𝑃 while allowing all the chemical compositions to vary.342 Since the

system is stable, the denominator is positive. Maxwell’s relation implies 𝜇𝑖,1 = 𝜇1,𝑖,

so the above formula implies

𝑑*𝜉

𝑑*𝑁1

= − 1∑︀
𝑖𝑗 𝜈𝑖𝜈𝑗𝜇𝑖,𝑗

(︂
𝜕𝜇1

𝜕𝜉

)︂
𝑇,𝑃

. (25.50)

Therefore,
𝑑*𝜉

𝑑*𝑁1

(︂
𝜕𝜇1

𝜕𝜉

)︂
𝑇,𝑃

< 0 (25.51)

342Notice that all the materials coordinates other than 𝑁1 are kept constant.
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That is, if its chemical potential is reduced when the reaction proceed to the right

(toward the production side), then adding the chemical promotes the reaction. Gen-

erally speaking, adding 𝑁1 increases its chemical potential (just as exothermic reac-

tion increases the system temperature), so the reaction opposes this tendency.

When such an inequality as (25.51) is applied (more generally, when we consider

le-Chatelier-principle-related relations are used), do not forget the conditions under

which the the relations are derived. Thus, for (25.51) do not forget that 𝑇 and 𝑃

are fixed.343

343A good expository article may be found in Y. Yoshimura’ s homepage http://khem2022.

starfree.jp/index.htm: “There is a counterexample for Le Chatelier’s principle?”. This was
introduced to the author by Prof. Y. Tanimura.

http://khem2022.starfree.jp/index.htm
http://khem2022.starfree.jp/index.htm
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phase diagram, 224
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Poisson’s relation, 141
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quasistatic process, 39

Raoult’s law, 171

reactant system, 244
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rete mirabile, 146

reversible sector, 236
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scale, 5

second law of thermodynamics, 81

selective membrane, 164

selectively permeable membrane, 164

semipermeable membrane, 165

set function, 33

simple system, 29

simply connected, 59

state, 57

state function, 58

state quantity, 58

Stephenson, George (1781-1848), 14

strong differentiability, 93

subdifferential, 187, 233

subgradient, 187

subgradient inequality, 187

supporting hyperplane, 185

system, 25

system, macroscopic, 25

thermal contact, 79

thermal equation of state, 121

thermal equilibrium, 79, 155

thermal phenomenon, 3

thermodynamic coordinate, ordinary, 48,
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thermodynamic density, 58

thermodynamic fields, 58

thermodynamic fluctuation theory, 70

thermodynamic freedom, 231

thermodynamic limit, 33

thermodynamic perturbation, 126

thermodynamic space, 57

thermodynamic state, 57
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total derivative, 94
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triple point, 230

vacuum distillation, 194

van Hove partition, 32
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van’t Hoff’s formula, 254

van’t Hoff’s law, 197

van’t Hoff’s reaction box, 246

vapor pressure, 171, 195

wall, 25
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work coordinate, 38, 39
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