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Abstract

The analysis and interpretation of the large data sets produced by high-throughput biological

experiments are among the most important and challenging problems in science today. The

goal of this thesis is to demonstrate the utility of a phenomenological approach to the study of

statistics in general, with a particular focus on understanding the results of such experiments.

The Renormalization Group (RG) has been a popular tool in physics for the construction

of phenomenological theories. RG may be interpreted as a search for stability, and it is in this

form that we make use of it here. We show that an RG stability argument (against addition

of new data) may be used to ‘derive’ standard statistical quantifiers such as the mean and

variance. The utility of this principle is also demonstrated in the context of more general

quantifiers. In particular, we show how it may be used to guide choices in the development

of a novel dimensional reduction scheme.

We have proposed a method, called the ICS Survey, that uses these ideas in the realm of

multiple experiments. The ICS survey is a data driven method that exploits the differences

between experiments by using them to perturb the system and identify stable parts. By doing

so, it successfully identifies the dominant processes (in those experiments) and the genes

involved in them, thereby solving some of the more vexing problems faced by exploratory

dimensional reduction methods. It is also one of the few methods attempting to make use

of the information contained in inter-experiment variability.

We have also discussed various methodological issues faced in the analysis of high-

throughput experiments. In particular, novel methods for noise removal and for visualization

are presented.
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Chapter 1

Introduction

1 Scope

Biology is the most rapidly evolving scientific discipline today; our present understanding of

biological systems is very different from that just a decade ago. Discoveries being made here

have more potential to impact lives than those in any other field. Thus, biological systems

represent some of the most exciting and important problems in science today. On the other

hand, as is typical of evolving fields, there are many different views that are popular, and it

is unclear how best to approach them.

From an organizational point of view, perhaps the most natural and useful way to think

of biological systems is as a two tier system [4]

biology = structure + information.

The structural information consists of, for example, arrangements of molecules that are

responsible for carrying out various biological functions. The information part is the encoding

of the set of instruction that orchestrate the functioning of the biological molecules.

As a concrete example, consider deoxyribonucleic acid (DNA), the molecule that is central

to all known life. DNA is made of two polymers, each consisting of a complementary sequence

of molecules known as nucleotides. The chemical and physical properties of the molecules

determine the structure and possible functions of DNA. The traditional application of physics

to biology has involved the study of the structural part, and much insight has been gained
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in this way.

However, it is the information of the type contained in the specific sequence of nucleotides

that allows organisms to reproduce and is ultimately what distinguishes them from other

complex collections of molecules. So the structural part may be thought of as a tool used by

the informational part. The properties of the structural part do place many limits on what

can be achieved, and understanding them is important. Nevertheless, a true understanding

of biology will come only from an understanding the organization of the informational part.

It is instructive to make an analogy with computers. The structural part of biology

corresponds to the semi-conductor devices that are used to make computers, while the infor-

mational part is like the programs running on them. Is an understanding of semi-conductors

really important to do computer science? It is true that without semi-conductor science,

we would never have had computers, and if a computer stops working then a knowledge of

semi-conductor devices may come in handy. However, computers could have been built on a

completely different foundation than semiconductors, and the general principles of computer

science would been unchanged. Thus, computer science transcends the materials basis on

which it was built.

Much the same can be said for the informational and structural parts of biology. The

structural molecules are what makes biological systems possible, and many illnesses are

probably related to structural defects. Yet, to truly understand the general design principles

of biological organisms, a different level of description (namely, the informational one) is

what is needed.

Just like with computers, in biology too, the material properties are in the structural

part and this has therefore been the focus of physics approaches. The informational portion

has so far not received much attention from physicists. It is our hope that this balance will

be redressed eventually, and by using some standard methodology from statistical physics,

this thesis attempts to take a small step in that direction.
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1.A Physics and Phenomenology

To clarify what we mean by applying physics to understanding informational biology, it is

worth pondering what it means to do physics. The Webster’s English Dictionary defines

Physics as “a science that deals with matter and energy and their interactions”. All natural

objects are made up of matter and energy, so effectively this means every natural science is

physics. While this is true in a sense, it is also true that if a physicist and a biologist were

to consider the same phenomena, their approach would be very different.

Faced with a complicated system, a physicist would work under the assumption that

there are some deep, yet simple, rules governing it. If he/she is a good physicist, he/she

would probably not attempt to explain every single detail of the system, and instead would

attempt to identify the rules governing meaningful global variables. In short, he/she would

attempt a phenomenological description of the system.

A conventional definition of a phenomenological theory would be one “which expresses

mathematically the results of observed phenomena without paying detailed attention to their

fundamental significance” [5]. This definition describes a typical trait of phenomenological

theories, but misses their deeper significance1. The true significance of phenomenology stems

from the (completely non-trivial) observation that to understand many systems in nature,

we do not need to know their microscopic details.

In fact, there are numerous examples of systems that are completely different microscop-

ically, but show great similarity in the relations between certain observables. The goal of

the phenomenology is to capture this universal structure. At the same time, even in these

theories, microscopics do play a role. Thus, to construct a phenomenological theory we must

describe the system at a level where its essence (or universal structure) can be separated

from that which is incidental. We shall have more to say about this in Chapter 2.

Many of the great theories in modern physics are phenomenological theories in this sense.

For example, consider the Navier-Stokes equation which describes the slow flow of an ordinary

1The ideas in this section are very heavily influenced by the lectures of Y. Oono. See for example [6]
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liquid:

ρ
[∂v
∂t

+ (v · ∇)
]
v = η∆v −∇p,

where p is the pressure, v is the flow velocity field with an incompressibility condition

∇·v = 0, ρ is the density, and η is the shear viscosity. Here, ρ and η are the phenomenological

parameters that are a function of the system details. This equation applies to fluids as diverse

as air and molasses, with just a change in these parameters subsuming all the microscopic

differences. The form of the equation on the other hand is the universal description we are

after.

It should be clear from the above description that to approach the informational part

of biology, a phenomenological approach is the only option. The goal of this thesis is to

demonstrate the utility of such a phenomenological approach to the study of biological

systems in general, and to the analysis of high-throughput gene expression experiments in

particular.

1.B The Renormalization Group

To construct a meaningful phenomenological theory it is necessary to be able to identify

which (combination of) observables are truly relevant, while ignoring the many other inci-

dental parameters that are just details. This is in general a non-trivial task, often requiring

extra-ordinary ingenuity. Thankfully, there is a technique to guide us (provided we have

some insight about the system). It is known as the Renormalization Group (RG) approach.

The basic idea of the Renormalization Group is as follows [6]. Since we are looking

to construct a phenomenological theory, we must already have a system we are studying

at some macroscopic scale, while the ‘fundamental’ interactions are at a lower microscopic

scale. Macro and micro need not refer to length scales, they could just as well be long

time vs short time or large number of particles vs small number. Practically speaking, it is

impossible to know all the details, making it virtually pointless to construct a theory that
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depends on them. Therefore, any meaningful theory (or any quantity it is meaningful to

study theoretically) cannot depend on details strongly.

RG is simply a way to identify combinations of variables that are insensitive to micro-

scopic details. It is expected that these can now be modeled theoretically. In actual practice

in physics, this is achieved in one of at least two ways

1. Wilson-Kadanoff (WK) type RG [7]: By looking at the system from increasing distance

(scaling), with a fixed resolution to find the properties that persist.

2. Stückelberg-Petermann (SP) type RG [8]: Shake the system by changing the micro-

scopic details and removal of parts that change dramatically (i.e., the divergences).

The remaining part is expected to be universal.

We will make use of a slight variation on the Stückelberg-Petermann type RG, where

instead of removing singularities we look for stable parts, i.e., parts that are not affected

by changes in microscopic details. These stable parts are expected to reveal meaningful

universal relations. This will be the guiding principle of our approach even when the RG

machinery is not used explicitly.

2 The Biology

2.A Bioinformatics and Phenomenology

Over the last two decades the barriers to performing high-throughput experiments have fallen

dramatically. Thus, experiments that report simultaneously on a very large number (i.e.,

on the scale of the whole genome) of biological elements are now performed routinely. This

has resulted in an enormous amount of experimental data being generated regarding various

aspects of biological systems. With the vast amounts of data available, the challenge has

shifted from methods of producing data to techniques to interpret it. Information theoretic
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techniques have been adopted to handle this torrent of data, giving the resulting field of

analyzing and interpreting biological data the name Bioinformatics.

Living organisms are the ultimate complex systems. Data generated by them provides

a window into this complexity. If we believe that there are simple laws governing this

complexity, then it must be the case that simple relations can be extracted from this data.

That is, the high dimensional data should really have a low dimensional structure modulo

microscopic parameters. In other words, simple phenomenological relations can be created

for this data.

From the biological point of view, high-throughput experiments capture information

about a huge number of processes running in parallel within the organism. Some of these

may be relevant to the particular experiment, but the majority will not be. Thus, there is a

natural way to imagine a phenomenological approach that identifies the information relevant

to the experiment under consideration and discards the rest.

Currently there are many dimensional reduction methods purportedly attempting to

do this. In reality, their actual goals are much more modest, and they do not respect the

biology in any way. Not surprisingly, as we shall see, their performance is still quite poor. As

novel techniques are being developed there is presently a lack of clarity about the properties

that such techniques should possess. In the course of this thesis we shall attempt to make

the argument that an RG motivated approach that attempts to identify stable portions

(unaffected by microscopic details) can provide a framework for this. Looking even further,

it may be even be hoped that RG could unify various dimensional reduction schemes, in the

same way that it has unified singular perturbation techniques.

2.B Understanding the Biology

Before we can even thinking about a phenomenological approach, we must know our system,

with a clear understanding of measurable quantities. To this end, let us look at the biological

system we shall be considering. While most of what follows is applicable in a much broader
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context, we shall be restricting ourselves to the study of what is known as gene expression,

as measured through microarray based experiments. These terms shall be explained shortly.

Protein molecules are among the most important active players in a cell. They are

involved in virtually all functions in a cell from acting as enzymes to facilitate other reactions

to acting as antibodies to protect the cell. Thus, in many cases, actions that a cell needs

performed are achieved by the production of the appropriate proteins. Each protein is made

up of units called amino acids, with the sequence of amino acids uniquely defining a protein.

The information based on which amino acids should be assembled into a protein is stored

biologically as the sequence of nucleotides on the DNA. The parts of the DNA which encode

for these proteins are known as protein coding genes. Although only a minority of genes

code for proteins (they may also code for types of RNA), for sake of simplicity when we use

the word gene it shall refer to a protein coding gene.

Gene expression is the process by which information from a gene is used in the synthesis of

a function gene product (such as a protein). It is an involved process, with many subtleties.

However, for the purpose of this discussion, the following gross oversimplification captures

the significant steps in higher organisms (Eukaryotes):

1. Transcription: First the DNA sequence for the appropriate protein coding gene is

read, and an RNA sequence having a complementary code is constructed. This RNA

known as precursor messenger RNA (pre-mRNA) now contains the relevant sequence

information to build the protein.

2. Splicing: The pre-mRNA sequence contains parts called exons that will be converted

into proteins, but also others called introns which will not. The introns are removed,

and the exons spliced together to produce mRNA.

3. RNA transport: The mRNA which is synthesized in the nucleus is now transported

out into the cytosol through the nuclear pores.

7



4. Translation: The mRNA finally reaches the ribosome. Here, the mRNA is read se-

quentially, and one by one the amino acids prescribed by the sequence are brought and

assembled together. Once this process is complete we are left with a single molecule

of the required protein.

For a more detailed picture see, for example, [9].

While the process of generating a protein from the DNA is comparatively simple, the

sequence of steps involved in deciding/detecting which proteins are required at a given point

of time, and sending a signal to produce it is far more complex, especially in Eukaryotes.

For example, if a cell is subjected to a stimulus which needs a response, some proteins

detect this information and convey it to another protein which might promote the expression

(i.e., transcription) of a gene which produces a single protein. This protein could in turn

promote or repress other proteins to produce the appropriate response to this stimulus.

What we are typically interested in understanding is the organization of such a signal-

ing/response mechanism involved with some macroscopically observable biological trait e.g.,

response to heat shock. Since any such macroscopic property is controlled by the functioning

of a much larger number of microscopic genes/proteins, this process is hard to decipher. Ad-

ditionally, individual proteins/genes are usually responsible for very minor functions. These

minor functions are re-used by many different processes. Consequently, a particular protein

may be produced under multiple different scenarios and may act in concert with different

proteins under different conditions. Since a typical measurement captures many processes,

identifying the contribution of a particular gene/protein to a specific process is difficult.

The experimental way this problem is approached is to subject the cell to some external

stimulus, and study the production of all the proteins, then to identify the proteins that are

generated specifically in response to the stimulus. Unfortunately, proteins tend to be unsta-

ble, and it is difficult to measure protein expression levels. Therefore, instead of measuring

protein levels directly, the expression levels of various genes are measured in terms of the

corresponding mRNA levels. Thus, the gene expression/mRNA levels serve as a surrogate
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for the proteins. By looking at the expression patterns of genes under different circumstances

it is hoped that we can infer which genes function together under what circumstances.

When genome scale measurements are required, the measurement of the mRNA levels are

most commonly performed using experimental setups known as microarrays. An explanation

of the functioning of microarrays can be found in Appendix B. A single microarray experi-

ment can potentially produce a single expression value for the entire set of genes. To extract

relations between genes, typically more information is required. Microarray experiments are

therefore repeated across other conditions. We shall henceforth refer to the expression values

for a single gene across multiple conditions as its expression profile and such a genome-scale

collection of expression profiles as an experiment. The conditions could be different points

of time, different tissues, cancerous vs non-cancerous, etc.

3 Traditional Approaches

3.A Problems with Traditional Approaches

Typical exploratory methods of analyzing such data attempt to group genes with similar

expression profiles together in the expectation that they will be related. Examples of such

methods include cluster analyses, principal component analysis, etc. While there is some

merit to this procedure, in practice the results have a number of short-comings:

1. No groups of genes stand out, and limited information on the structure of the popula-

tion can be gleaned from these results. Thus, biological validation is required for the

results to be of any use.

2. When the results are biologically validated (for example, by Gene Ontology based

annotation of genes), it is rarely found that groups of genes deemed to be close are

biologically related. At best, there may be an over-expression for genes of one type.

Thus, the predictive power of these results is minimal.
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3. Genes known to belong to a single class are often deemed to be unrelated. Optimisti-

cally this may be interpreted as implying that there are sub-classes, showing different

expression profiles. Unfortunately, this is usually not the case.

4. Lack of reproducibility: If the entire experiment was performed again, and analyzed

in the same way, often the genes which are deemed to be near and far change.

3.B Reasons for Problems

The reasons for the poor performance of these methods are as follows:

1. Co-expression6= Relation: Related genes sometimes have expression profiles that look

quite different. For example, cell cycle related genes will have sinusoidal profiles, but

if the genes are expressed in different cell cycle phases, the correlation will be poor.

Thus, there is a fundamental problem in looking just for co-expression. Conversely,

unrelated genes could accidentally have similar profiles.

2. Small number of measurements: Typically, the number of genes is about two orders of

magnitude larger than the number of conditions under which each gene is measured.

This reduces the resolution power to differentiate between gene expression profiles.

3. Noisy measurements: Microarray measurements are notoriously noisy, exacerbating

the problem of few measurements.

4. High dimensionality of space: The expression profiles capture a very large number

of processes in parallel. Thus, it is conceivable that it is quite difficult to perform

dimensional reduction and the dimensionally reduced results may be misleading.

5. Methodological biases: Various dimensional reduction methods are biased in non-

biological ways (for example, cluster analysis assumes, and then forces, a grouping

tendency).
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6. Variation of experimental parameters: The results of biological experiments depend on

a huge number of parameters, many of which are out of the experimentalists control.

It is therefore not surprising that when experiments are repeated, these parameters

change, and thus results are not reproducible.

4 Our Approach/Roadmap

In Chapter 2, we introduce the Renormalization Group as a tool to construct phenomeno-

logical models, and consider its application to statistics. RG is interpreted as a search for

stability, and we propose that stability against addition of data should be a requirement

for good statistical quantifiers. In particular, it is shown that the traditional statistical

quantifiers such as mean and variance can be ‘derived’ in this way.

In Chapter 3, we extend this stability principle to more general statistical quantifiers,

in particular those produced by dimensional reduction. We introduce and discuss non-

Metric Multidimensional Scaling (nMDS), which shall be our dimensional reduction scheme

of choice for this thesis. Modified versions of nMDS are considered, and it is found that the

one conforming to the RG stability principle performs best.

Chapter 4 is a methodological chapter focusing on current practices and visualization.

The agenda of this chapter is essentially to undermine Cluster Analysis, which is by far the

most popular exploratory data analysis method. We discuss Cluster Analysis in detail, with

a particular emphasis on its abuse and the biases introduced by its use. We believe one of the

pillars of its popularity is its use in the clustered heatmap, the dominant visualization method

in Bioinformatics. With this in mind, we introduce NeatMap, an R package developed by

us to produce heatmap-like-plots using dimensional reduction methods such as nMDS in

preference to cluster analysis.

Chapter 5 deals with the problems faced by dimensional reduction methods in the analysis

of noisy experiments. We propose a noise reduction procedure based on the phenomenological
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idea that meaningful relations must be simple, and therefore conform to the dimensionally

reduced structure. Data not conforming to this structure must then be related to microscopic

details and are discarded as noise. This procedure is found to perform well when applied to

a subset of the data corresponding to a single process, but exhibits the same problems as

traditional methods when working with the entire data set.

In Chapter 6, we propose a method that solves many of these problems by working with

multiple experiments. The traditional approach is to treat variation across experiments

as random noise, which is a nuisance to be removed by averaging. Instead, we use these

differences as microscopic perturbations to shake the system. By looking for stable well

conserved parts, we can identify the dominant processes in the cell and the genes involved

in them. Unlike traditional methods, the separation of processes is clear enough to allow us

to use it as a method of identifying genes belonging to specific categories. In this way many

of the problems with traditional methods are removed.

Finally in Chapter 7, we summarize this work and consider possible future problems. We

revisit each of the preceding chapters, identify the important results, and discuss possible

future directions.
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Chapter 2

Renormalization Group and Data
Mining

1 Introduction

We live in a complex world. Physical objects we encounter in our daily lives each composed

of a huge (' 1023) number of molecules. Each of these molecules is composed of numerous

atoms, which in turn are made of more fundamental particles. Each of these fundamental

particles interacts (however weakly) with all other fundamental particles. We cannot observe

any of these fundamental interactions or details directly. So if observables depended on them,

their behavior would seem random and irrational to us. The world would seem completely

unpredictable. In such an unpredictable world, it would not make any sense to be rational

and intelligence would serve no purpose at all.

We can invoke the anthropic principle to say that if intelligence exists in this world, it

is because the world is rational and there are understandable natural laws. The world must

be predictable in some sense and the laws cannot depend critically on microscopic details.

Therefore, one may expect that most phenomena should be understandable without recourse

to microscopic details. Thus, a phenomenological description should be possible.

As an example, let us consider polymers in a dilute solution. A polymer is a long molecule

formed by connecting low molecular weight molecules called monomers. In a solvent, the

monomers tend to repel each other, and thus the polymer chain performs a self-avoiding

walk, i.e., a random walk where a site is never revisited. Irrespective of the monomer and
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solvent being used, the end to end vector R is found [10] to satisfy the relation

〈
R2
〉

= c0M
2ν ,

where M is the molecular weight, ν is a universal exponent (ν ' 0.588) independent of the

choice of polymer-solvent pair, while c0 is the parameter sensitive to molecular details of

both polymer and solvent.

This is an example of a phenomenological relationship. It essentially involves describing

a phenomenon as [6]

phenomenon = universal structure + materials properties

The universal behavior in this case is the scaling law. It is considered universal because it ap-

plies to many different compounds. The constant factor contains the material or microscopic

properties.

How does one go about constructing a phenomenological theory? We must somehow

find a combination of variables that is universal in nature and separate it out from the

material details. In general, this is very difficult to do, and would require extraordinary

insight. Thankfully there is a framework that provides a guiding principle for this process;

it is known as The Renormalization Group (RG). The basic idea of RG is that the universal

structure cannot depend on microscopic details, and so if we remove the part that depends

critically on the microscopic details, what is left behind must be universal.

How does one decide if a quantity is universal or not? There must be a scale at which

we are observing the phenomena L0. The interactions occur at some scale l. For example,

in the polymer case l should be the length of the monomer. If l/L0 � 1, then we can say

it is microscopic. These scales, in general, need not be length scales. They could be small

number of particles vs a large number, genotype vs phenotype, etc.
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An observable f of the system is studied as l/L0 → 0. If the limit exists, then the

observable has a definite value in the macroscopic world, and if we are close enough to

the limit it does not depend on the microscopic details. Thus, whatever the state of the

microscopic world, it has a definite value and is therefore universal. On the other hand, if

the limit is not defined, that means the macroscopic observable is affected by microscopic

details. Of course, in reality, l/L0 is not exactly 0 and instead has a small but definite value

for each system. Since the limit is not defined, f(l/L0) takes on differing values depending

sensitively on the idiosyncrasies of the microscopics.

If the system allows such divergent parts to be separated out as l/L0 → 0, then the

remainder is universal while the separated divergent part depends on microscopic details.

Thus, a phenomenological description has been constructed. A system, which allows such a

separation is called renormalizable and this procedure is called renormalization.

Actual implementation of these ideas is achieved in one of two ways:

1. The first is a direct implementation of the ideas above. We take the limit and look

for the divergent parts. What is left behind must be universal. This is known as

Stückelberg-Petermann (SP) type RG

2. Another way to take the limit is to observe the system from further and further away.

The properties that are preserved are global features that we are interested in. This is

known as the Wilson-Kadanoff (WK) type RG.

So far, our discussion was completely general. In our case, we are interested in character-

izing properties of data-sets or more precisely in finding the ‘true’ mathematical structure

characterizing a population of objects. The population can be thought of as a realization of

some statistical distribution. In the asymptotic limit of a large number of samples we assume

that we can obtain true structures. Thus, in our case, the macroscopic limit corresponds to

a large number of samples.

It is not hard to visualize the utility of the Wilson-Kadanoff type RG in this scenario. We
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consider more and more points, and look at them from afar and look to see what features

are well preserved. In fact, Jona-Lasinio showed [11, 12] that RG is just the extension

of the central limit theorem (which applies to independent variable) to strongly correlated

variables. For completeness sake, in Appendix A we show how such an approach may be

used to ‘derive’ the central limit theorem.

The utility of the Stuckelberg-Petermann type RG is harder to visualize. We make use of

this type of RG in the context of singular perturbations applied to an appropriate dynamical

system to derive a Langevin type RG equation. It is then shown independently that an

appropriately chosen dynamical system driven by samples from a population produces a

very similar result, with the mean and central limit theorem as specific terms. It is known

that SP type RG essentially involves a search for stability by removing divergent parts. This

motivates a derivation of these statistical quantifiers based on such a stability principle.

This stability principle is one of the guiding principles for the rest of the thesis. In

future chapters we shall extend this idea to more general quantifiers such as the results of

multivariate dimensional reduction techniques, and we shall also show how such a stability

idea may be used to combine multiple experiments.

2 RG and Statistics

2.A Renormalization and Langevin equation

We now consider Stückelberg-Petermann type RG as applied to deal with singular pertur-

bations in differential equations. Its main idea is that the effect of the perturbation causing

qualitative changes results in a series that does not converge uniformly with respect to time.

To convert the series into uniformly converging series by modifying the constants of motion

is the renormalization procedure. The RG equation is the equation summarizing the asymp-

totic effects of perturbations. Writing down the RG equation is the essence of many singular

perturbation methods; we can do so in a fairly abstract fashion [13].
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The problem we wish to discuss in order to pave our road to statistical problems from

RG theory is the one discussed initially by Hasselmann [14] and mathematically by Kifer

and others [15] recently. Consider the following singular perturbation problem:

dx

dt
= f(x, y),

dy

dt
=

1

ε
g(x, y), (2.1)

where x and y are in certain regions of appropriate Euclidean spaces, f and g are well-

behaved (e.g., sufficiently smooth) functions on the direct product of the regions for x and

y, and ε is a small positive real number. The starting point of an RG approach to singular

perturbation is to consider the problem at the shortest time scale [16]. Therefore, we rewrite

the above system in terms of τ = t/ε:

dx

dτ
= εf(x, y),

dy

dτ
= g(x, y). (2.2)

The naive perturbation result reads

x = A+ ε

∫ τ

0

f(A, y0(A, σ))dσ + o[ε], (2.3)

where

dy0

dτ
= g(A, y0). (2.4)

If y0 governed by (2.4) is sufficiently chaotic for each constant A (e.g., an axiom A system),

we may assume the physically observable invariant measure µA (e.g., an SRB measure) exists,

so the naive perturbation result may be rewritten as

x = A+ t〈f〉(A) + o[1], (2.5)

where

〈f〉(A) =

∫
f(A, y)dµA(y). (2.6)
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The renormalization A→ A(t) cures the nonuniformity of the convergence of the perturba-

tion series (2.5) (to the lowest nontrivial order) and the RG equation reads

dA(t)

dt
= 〈f〉(A(t)). (2.7)

Thus, x = A(t) is the solution to order unity1. This is also the well-known result of the

so-called averaging method (extended to chaotic dynamics).

The error of this leading order result may be estimated by exploiting the shortness of

the correlation of y0(A, τ). The integral in (2.3) may be interpreted (essentially) as a sum

of independently and identically distributed (i.i.d) random variables. We expect the large

deviation principle to hold with a sufficiently smooth rate function. Therefore,

P

(
1

τ

∫ τ

0

f(A, y0(A, σ))dσ − 〈f〉(A) ∼ ξ

)
∼ exp [−τI(ξ)] , (2.8)

where I(ξ) is the rate function. For small enough ξ, the rate function is quadratic, and so

we can write:

I(ξ) =
ξ2

2b(A)
,

We then make use of the Gaussian property that

P
(
y(x) ∼ ξ

)
= e−ξ

2/2b ⇒ 〈y2〉 = b

to calculate b(A) as

b(A) = lim
τ→∞

τ〈
(1

τ

∫ τ

0

f(A, y0(A, σ))dσ − 〈f〉(A)
)2

〉,

= lim
τ→∞

1

τ

∫ τ

0

dt1

∫ τ

0

dt2

〈
[f(A, y0(A, t1))− 〈f〉(A)][f(A, y0(A, t2))− 〈f〉(A)]

〉
,

1This is only formal. 〈f〉A may not even be continuous, and the reduced equation may not have any
solution in some cases. The meaning of the approximation of the true solution x(t) in terms of A(t) is also
quite delicate. Mathematically, we expect the modulus of the discrepancy integrated over [0, t/ε] converges
to zero as ε→ 0.
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=
2

τ

∫ τ

0

dt1

〈
[f(A, y0(A, t1))− 〈f〉(A)][f(A, y0(A, 0))− 〈f〉(A)]

〉
,

= 2

∫ ∞
0

dt1

∫
dµA(y0(A, 0))[f(A, y0(A, t1))− 〈f〉(A)][f(A, y0(A, 0))− 〈f〉(A)].

We may write

x(t) = A+ t〈f〉(A) +
√
εb(A)B(t) + o[ε1/2], (2.9)

where B(t) is the Wiener process. Notice that the fluctuating term is also secular (diverg-

ing roughly as
√
t). Renormalization immediately gives the following stochastic differential

equation2:

dA(t) = 〈f〉(A(t))dt+
√
εb(A(t))dB. (2.10)

The first term corresponds to the strong law of large numbers, and the second to the central

limit theorem for the noise effect. This is almost a trivial observation, so one might conclude

it is not even worth mentioning. However, perhaps this is only the tip of a larger picture.

2.B Renormalization and Statistical Features

We now show how all the statistical quantities appearing in the descriptive statistics (e.g.,

moments, density distribution function, spectrum) can be obtained by perturbing an appro-

priate dynamical system by the quantity {ξn} (or its function) whose statistical description

we wish to have. The simplest case is

xn+1 = xn + εξn, (2.11)

where ξn are iid random variables. ε is put to indicate that the term is a perturbation term,

but since the system is linear, ε has no actual meaning; we can scale it out. The general

2The interpretation of this stochastic equation is delicate. Our interpretation (conjecture) is, under the
condition that the averaged equation (2.7) is well-behaved, that

∫
dt(ẋ − 〈f〉)2/2εb(A) is the rate function

for the large deviation of the true solution from A(t). That is, we interpret the Langevin equation (2.10) as
a shorthand notation of the large deviation principle. For this point of view, see [17].
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solution for the simplest case with the variance reads (compare with (2.9))

xn = A+ ε

n−1∑
k=0

ξk = A+ εn〈ξ1〉+ ε
√
nσχ+ o[n1/2], (2.12)

where the equality is in law, A is a constant, χ is a random variable obeying N(0, 1), and σ is

the standard deviation. The analogy with the dynamical example in the preceding section is

obvious. Renormalizing A as An, by absorbing the divergence, we have the renormalization

group equation (compare with (2.10))

An+1 − An = ε〈ξ1〉+ εσχ. (2.13)

Here, we have used
∑n

k=1 χk =
√
nχ in law with {χk} being a set of iid variables obeying

N(0, 1). Therefore, not surprisingly, the strong law of large numbers and the central limit

theorem are naturally recovered from the RG picture. Needless to say, if the distribution of

ξk is with a fat tail, we have a different power of n in the second term.

2.C Stability as a Guiding Principle

Intuitively, the SP RG shakes the system and then identifies significantly and persistently

perturbed parts. From the knowledge SP RG infers asymptotic behaviors that are insensitive

to perturbations. Such an idea is of course common especially in the so-called data driven

statistics [18]. For example, the bootstrap methods watch how the statistical results change

against sample perturbations (due to resampling); if a result ‘shakes’ too much, it is rejected.

The idea of statistical test in general may be understood as an application of the same idea

of stable reproduction.

In the RG procedure sketched above, the renormalized constants were determined to

absorb the most dangerous terms that could spoil the series expansion calculation. Thus,

to pursue the stability of x − A is the renormalization procedure. This may look a simple
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restatement of the SP-RG theory, but perhaps it is better to say that the pursuit of stable

results against perturbation is the fundamental objective of RG, the SP scheme being its

corollary.

Actually, this point of view is consistent with the observation [13] that it is absolutely

necessary (and actually sufficient) to absorb the secular behavior (persistent effect of per-

turbation) to obtain the result correct to order ε up to time 1/ε from the first order naive

perturbation calculation. In other words, to glean the asymptotic effect of the perturbation

on a dynamical system we need not accurately compute the perturbation effect, but have

only to pay due attention to secular terms. Approximate minimization of the perturbation

effect (that is, approximate minimization of x − A) through modification of the invariants

(that is, A→ A(t)) gives the information on asymptotic behaviors of the system.

The example shown earlier may be reinterpreted in the framework of pursuit of stability.

The computation of the expectation value is to choose m so that asymptotically

n−1∑
k=0

(ξn −m) = o[n]. (2.14)

That we can choose such m is the strong law of large numbers. This is reminiscent of the

formulation of the strong law of large numbers in terms of the futility of gambling [19]. In

the case of reductive perturbation no condition other than stability (no divergence) is needed

to extract asymptotic results, so we can expect the same for statistical feature extractions.

This approach will be generalized in following chapters.

This approach makes a few assumption. Firstly, we must assume that the population

is fixed; for example, it has no systematic time dependence to ensure statistical uniformity.

Secondly, an infinitely large population of objects is an idealization. For example, if we wish

to analyze gene activities of an organism, we imagine the population of numerous microarray

experimental results under the same condition even if the number of genes under study is

not very numerous. These assumptions are not really very restrictive other than statistical
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uniformity. For example, curve fittings and parameter estimations may be interpreted as

prototype examples. Any estimation problem is ultimately justified by the law of large num-

bers and its refinements. Even the problem of fitting a curve to a finite set of sample points

assumes that there are infinitely many such finite sets sampled from the same population.

Thus, statistical estimates are always supported by asymptotic results.

3 Concluding Remarks

In this chapter we have introduced the renormalization group and considered its application

to statistics. The connection in the case of Wilson-Kadanoff RG is fairly straightforward

(and was illustrated with a proof of the Central Limit Theorem in Appendix A).

Our contribution is to make this connection in the case of SP RG. We have started with

an observation that statistics and data mining may be regarded as a part of RG theory. If

the idea that asymptotic statistical estimation problems may be understood as dynamical

system problems whose time variable corresponds to the number of samples and the standard

RG are combined, we can conclude that the pursuit of stability against adding new samples

allows us to estimate statistically asymptotic features. This point of view seems to give a

unified perspective for some other statistical problems, as will be shown in following chapters.
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Chapter 3

nMDS

1 Introduction

In the last chapter, we demonstrated the utility of an RG based principle to motivate the

standard statistical quantifiers to characterize populations. Such simple characterizations are

not very useful or meaningful in the context of microarray experiments. Typically, we are

given expression profiles for a large number of genes, and we would like to know their relative

relations between the genes based on these profiles. While the number of genes itself can be

very large (∼ 104), and the expression profiles lie in a moderately high dimensional space

(∼ 101−102) it is generally believed that, for most processes, groups of genes act in concert.

Thus, the expression profiles should, in the correct basis, lie in some lower dimensional space

that admits a meaningful phenomenological description. The extraction of this correct basis

has been the goal of a variety of dimensional reduction methods.

Such dimensional reduction methods thus characterize the population by replacing each

gene expression profile by a lower dimensional counterpart in such a way that genes with

similar gene expression profiles will be placed close to each other in the lower dimensional

space. The lower dimensional embedding may be thought of as a more sophisticated version

of the simple statistical quantifiers studied in the last chapter. We shall discuss the utility

of the RG stability principle to these more generalized statistical quantifiers. To do this we

shall make use of a specific data reduction scheme known as non-Metric Multidimensional

Scaling (nMDS). nMDS shall also be our dimensional reduction scheme of choice for the rest

of this thesis.
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To begin with, we shall discuss the standard implementation of nMDS. The utility of

nMDS shall be demonstrated with artificial and biological examples. To illustrate the po-

tential of the RG principle we shall consider improvements to the standard implementation of

nMDS. We find that we are faced with two, seemingly very similar, implementations, which

one might expect to produce comparable results. Of these, one implementation conforms to

the RG stability principle of being maximally consistent with the existing structure, while

the other does not. We shall show that the performance of the first implementation is far

better than the other, thereby proving the utility of the RG stability principle.

2 Traditional nMDS

Given a set of points lying in some high-dimensional space, the basic goal of dimensional

reduction is to find a lower dimensional representation capturing the essence of the relative

relations. Based on which aspects are captured, there are many dimensional reduction

schemes. In this thesis we primarily use a scheme known as non-Metric Multidimensional

Scaling (nMDS) [20, 21, 22, 23]. nMDS is a completely data driven scheme, and in our

experience its performance is superior to other methods of its class (except perhaps in terms

of computational requirements).

Rather than jumping into the technical details of nMDS, let us get a general idea of what

it does using an example [24]. 1000 major cities were considered all around the earth, and

the distance between them was calculated as

δij = cosθij,

where θij is the angle between cities i and j measured with the origin as the center of the

globe. The distances between the different cities were compared, and this information (i.e.,

the inequalities and not the actual distances) was passed to nMDS. nMDS needs neither
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Figure 3.1: nMDS embedding of cities on the surface of a globe

the high dimensional profiles, nor does it need the inter-point distances (just their inequal-

ity relations); this is why it is considered non-metric. Based on this information, nMDS

constructed a representation of these 1000 points by embedding them in a 3 dimensional

Euclidean space. The result is shown in Fig. 3.1.

The spherical structure of the earth is automatically generated. Since the embedding

could be any shape in 3D, this is a proof that the earth is in fact round. The shapes of

continents can also be discerned, and the positions of the cities seem to be correct within

some small error bar. Thus, the low-dimensional representation of data points generated

by nMDS captures the underlying geometry (if present) based just on the relations between

the pairwise distances. As we shall discuss later, in practice, for computational reasons,

rather than passing inequalities the actual distances or data from which the distances can

be calculated are usually passed to nMDS.

2.A Implementation

Let us now consider nMDS more rigorously. nMDS is an unsupervised data geometrization

method placing N points representing the objects under study, e.g., genes, in a certain
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metric space E, such that the pairwise distances d(i, j) of the points in E have consistency

with the pairwise dissimilarities δ(i, j) of the corresponding objects in the input data. More

precisely, nMDS tries to ensure that if δ(i, j) > δ(k, l), then d(i, j) > d(k, l) for all i, j, k and

l denoting objects being analyzed. It is considered non-metric because, strictly speaking,

the δ(i, j) values need not be known; only their order relationships, whether δ(i, j) > δ(k, l)

or not. If we have a reasonable number (N > 30, say) of points, this condition is typically

strong enough to ensure a unique geometrical pattern for good data, as seen in the example

above. There are many ways to implement nMDS [25]. We shall essentially be using the

algorithm proposed by Taguchi and Oono [26, 27]. A flowchart explaining it is shown in

Fig. 3.2.

A major distinction of this nMDS algorithm from most other implementations is that

the comparison of the distance in E and the dissimilarity is performed after converting both

into rank orders. If the pairwise dissimilarity δ(i, j) has ranking Rij in the set of all the

available dissimilarities, and d(i, j) has ranking rij in the set of all the pairwise distances of

the points in E, the points in E are so positioned to minimize

∆ ≡
∑
i6=j

(Rij − rij)2.

The minimum of this is clearly when Rij = rij for all i and j, i.e., when the pairwise rankings

in the original and embedded space exactly match. This is achieved through an over-damped

dynamics driven by the ranking mismatch. The updating scheme used is:

xi → xi + α
∑
j 6=i

[Rij − rij]
xi − xj
|xi − xj|

,

where the positions of the points in E are given by xi and α is an appropriately small

number to make the relaxation dynamics stable. The xi are initially chosen randomly, and

the positions are updated using the rule above until a fixed point is reached. It should be
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profile pairwise 
distances δ(i,j)

Calculate rankings of 
gene profile distances
R(i,j)=Rank[δ(i,j)]
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Yes
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Fixed point positions
are nMDS results

Stop

Start

Read gene expression 
data

Figure 3.2: nMDS Flowchart
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clear that the desired minimum of ∆ does correspond to fixed point of the dynamics. Like

all non-linear optimization methods, there is a risk of getting trapped in a fixed point that

is a local minimum, although in practice the dependence on initial condition seems to be

weak compared to other methods. Additionally, the quality of the result can be gauged by

the value of ∆ as compared to an appropriate null result e.g., one produced by a random

ranking, although this will be too lenient.

There are proposals (for example, by Taguchi [28]) about determining the optimal di-

mension of E, but in this thesis, for simplicity, we discuss only examples for which two (or

at most three) dimensional Euclidean spaces supposedly suffice. In any case, the role of

dimensional reduction is to produce patterns that can be recognized by humans, and we

cannot typically comprehend more than 3 or 4 dimensions.

2.B Example

The utility of nMDS in the analysis of biological data has been shown previously [27], but

completeness sake we discuss one example here. We consider a microarray based study of

the gene expression in the honey bee (apis mellifera) as a function of class and age.

The bee society shows a very pronounced social class structure, being divided into nurses

and foragers. Typically, when bees are young (2 to 3 weeks) they act as nurses taking care

of the brood, while once they get older they turn into foragers that go outside the hive and

forage for food. Under normal circumstances, the transition from nurse to forager is dictated

by age. Under special circumstances (such as death of all the foragers), the transitions may

occur earlier or later as per the requirements of the hive.

Whitfield et al. [29] set about trying to study the genetic basis for these phenotypic

changes. To this end, they considered 60 bees, representing all possible combinations of age

and class viz. young nurse, old forager, old nurse and young forager. The gene expression

of about 5.5k genes was measured for these 60 bees using microarrays. Thus, we can either

study the relations between the genes (each of which is a 60 dimensional vector) or that
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among the individuals (who are represented by 5.5k dimensional vectors).

Here, we do both. First, nMDS was used to perform a 2D embedding of the individual

bees. Bees were compared using the Pearson1 correlation coefficient of their gene expression

vectors. The result of this is shown in in Fig. 3.3 .As can be seen here, there is a fairly clear

separation of individuals in terms of class, although age based separation is not as clear (it is

better in higher dimensions). Thus, it has been shown that there is a genetic basis to social

class. This separation is much clearer than can be achieved using comparable methods such

as Principal Component Analysis (PCA).

Then, the 500 genes that showed the greatest variance over the different individuals were

considered, and nMDS was used to embed them into 3D. Stereoplots of this result may be

seen in Fig. 3.4. Note that the different cells in Fig. 3.4 all represent this same embedding

(the positions of the points are all identical), only the coloring is different. Each cell, in

fact, shows one representative bee of each age/class combination. We then color each of

the 500 genes according to its expression in this individual. Clearly similar genes have

been automatically grouped together, and we can roughly say which groups of genes are

responsible for change in class, aging etc.

3 Modified Dynamics

In the traditional implementation of nMDS, all possible pairwise dissimilarities are consid-

ered together, and rankings produced in the original and embedded spaces. Thus, if there are

N points, there will be N(N − 1)/2 dissimilarities. The input to nMDS is, strictly speaking,

just the pairwise inequalities, of these pairwise dissimilarities of which there shall be on the

order of N4 (although if rankings were to be passed it would be O[N2]). For a large number

of points this is an exorbitant amount of information to store.

1For two vectors x and y, their Pearson correlation is given by
∑
i

(xi−µx)(yi−µy)
σxσy

, where µz and σz
represent the man and standard deviation of the vector z respectively.
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Figure 3.3: nMDS Embedding of Bee Individuals: Individuals are colored according to their
class (blue for nurses, and pink for foragers), and the point shapes are decided by their age
(triangles for old, and circles for young). Clearly, there is good separation between nurses
and foragers.
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Young Nurse Old Forager

Old Nurse Young Forager

Figure 3.4: 3D nMDS embedding of the 500 genes with the highest variance in the Bee data.
Results are colored according to the gene expression levels of 4 individuals, belonging to the
age/class combination indicated

3.A Local Schemes

To combat this problem an alternate scheme was considered, where instead of comparing all

possible dissimilarities, only those dissimilarities with a point in common would be compared.

Thus, for each point we only have information about which points are closer and which are

farther, but do not know how these compare to distances with respect to other points. More

specifically, in the original scheme, all inequalities δ(a, b) < δ(c, d) were considered, while

now we shall only be considering those of the form δ(a, b) < δ(a, c). This reduces the number

of inequalities to be considered from O(N4) to O(N3).

The implementation of the dynamics is very similar. However, instead of a single rank-

ing of all the pairwise dissimilarities, there are now different rankings centered around every

point. Thus, for each point i, the set of all dissimilarities to that point, viz.
(
δ(i, 1), δ(i, 2), . . . , δ(i, N)

)
,

are considered. This set of dissimilarities are now ranked from closest to farthest, and Ri(j)

is the rank of the jth point in terms of its dissimilarity to i. Similar rankings ri(j), can be
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generated in the embedded space E.

As before, the goal of the method is to get the rankings R in the original space and those

r in the embedded space to match by minimizing a potential of the form

∆ =
∑
i6=j

[Ri(j)− ri(j)]2.

Although, this looks very similar to the previous form of ∆, there is one big difference.

While Rij = Rji in general Ri(j) 6= Rj(i). For example, in Fig. 3.5, point 4 is the farthest

from 1, so R1(4) = 3, while 1 is the closest point to 4 meaning R4(1) = 1. This broken

symmetry complicates the implementation of the optimization dynamics, and in fact gives

us two possible choices:

1. Intrinsic Scheme: In this scheme, the position of a point is updated according to its

own view of the closeness of other points. So for a point i, its position is updated using

its own ranking of the other points by the rule

xi → xi + α
∑
j 6=i

[Ri(j)− ri(j)]
xi − xj
|xi − xj|

. (3.1)

2. Extrinsic Scheme: In this scheme, the position of a point is updated according to other

points view of its closeness to them. So for a point i, its position is updated using

other points ranking of it by the rule

xi → xi + α
∑
j 6=i

[Rj(i)− rj(i)]
xi − xj
|xi − xj|

. (3.2)

At face value, both of these schemes look quite similar, and the correct configuration will

be a fixed point for both of them. The nature of the ‘forces’ at an intermediate step in the

dynamics may be seen in Fig. 3.6 . Still, it is unclear a priori which one is better. It turns

out the RG stability principle provides a way.
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1 4

2

3

Global Rankings

R(1,2)=R(2,1)=1

R(1,3)=R(3,1)=2

R(2,3)=R(3,2)=3

R(1,4)=R(4,1)=4

R(2,4)=R(4,2)=5

R(4,3)=R(3,4)=6

Local Rankings

R1(2)=1 R1(3)=2
R1(4)=3

R2(1)=1 R2(3)=2
R2(4)=3

R3(1)=1 R3(2)=2
R3(3)=3

R4(1)=1 R4(2)=2
R4(3)=3

Figure 3.5: Comparison of Local and global rankings:
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Figure 3.6: Comparison of the Intrinsic and Extrinsic schemes: The figure on the let repre-
sents the true configuration that is the goal of the method. The two other figures show the
forces cause by point D in an intermediate state using the Intrinsic and Extrinsic schemes

3.B Application of RG Stability

The RG stability principle is the idea that a good statistical quantifier should be stable

against addition of data. In other words, if the value of the quantifier with N points should

actively pursue being as consistent as possible with that with N − 1 points. In the context

of the two schemes considered above, suppose we have already constructed a configuration

πN−1 = {xi}N−1
i=1 in Ed from N − 1 samples. Let us add one more sample and determine the

corresponding point xn in Ed.

To the lowest nontrivial order, we may assume that πN−1 is fixed, because we are looking

for an asymptotically stable pattern, and try to locate xN in Ed relative to πN−1. xN must

be consistent with the ranking of dissimilarities around each point in πN−1. We position

xN so that the overall rank mismatch is as small as possible. That is, we require that the

change of the already estimated pattern is minimized by judiciously choosing the position

corresponding to the newly added sample. This is the stability condition for the already

estimated pattern. Notice that the positioning step corresponds to replacing ξn with ξn−m

in (2.14). That is, positioning process may be understood as the subtraction step in the RG.

If we consider the Extrinsic scheme to update the position xN , the rankings used are
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Figure 3.7: Embedding of the 100 points sampled from a circle. (A) is the result obtained
with scheme S after 100 iterations; (B) is the result obtained with scheme NS after 1000
iterations. Both schemes used the same α = 0.001. Clearly, scheme S converges to the
correct configuration quickly, while NS does not. The circle shown in (A) is a stationary
pattern. The pattern (B) is actually not the final one; eventually NS results tend to a more
symmetric three-leaved clover-like pattern that actually rigidly rotates slowly. That is, the
‘ω-limit set’ is a sort of limit cycle.

Ri(N) and ri(N) with i ∈ (1, 2, . . . , N−1). Thus, the position xN is determined with respect

to a configuration which is already meaningful (or in analogy with the mean subtraction

case, the correct m is being subtracted). Consistency with respect to the old configuration

is actively pursued. On the other hand, in the intrinsic scheme the position xN uses its

rankings of the other points viz., RN(i) and rN(i) with i ∈ (1, 2, . . . , N − 1). Since the

position of xN is not correct, all the rankings are with respect to an incorrect reference.

Thus, the intrinsic scheme does not conform to the RG stability principle.

Representative results due to the two schemes are illustrated in Fig. 3.7 when the popu-

lation is a point set consisting of a unit circle. That is, the ‘mathematical structure’ we must

be able to extract is a circle. The input data are only the local ranking information: for each

point the input data give only the qualitative information about which point is closer or far-

ther from itself, but not the actual distance to the point. Interestingly, the fate of the initial

condition prepared by a slight perturbation of the correct configuration is markedly different

between the two schemes as seen in Fig. 3.8. That is, the correct solution is not a stable
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Figure 3.8: For scheme S the circle, i.e., the correct geometrical result, in Fig. 1 is a stable
fixed point, but for scheme NS this correct figure is not a stable fixed point. Shown in this
figure are residual errors by various schemes as a function of the number of iterations. The
initial configurations were prepared from the correct result by displacing the point positions
with uniform random noise of various amplitudes. The curves NS1, NS2, NS3 and NS4 show
the residual errors for the initial condition with the displacement noise amplitudes 0.25, 0.05,
0.025, and 0.01, respectively. The error level eventually attained corresponds to the pattern
similar to (B) in Fig. 1. In comparison, a result due to scheme S for a displacement noise
amplitude 0.05 is also given as curve S. Notice that the dynamical system under study is not
a continuous dynamical system, but with finite increments, so even for scheme S there is a
residual error due to this quantization noise. That is why the curve S does not go to zero
even asymptotically.

solution of the Intrinsic scheme. Thus, the pursuit of stability or, in other words, maximal

consistency with the already incorporated information can be a good guiding principle for

data analysis (and pattern recognition).

As mentioned earlier, the traditional nMDS scheme required O[N4] inequalities, while

these modified schemes require O[N3] inequalities. The information contained in these in-

equality sets are actually both of order N2 logN , so the difference just mentioned may not be

important. The number of inequalities is typically not an issue in the analysis of biological

data since the input is typically not the inequalities themselves. Instead, either the pairwise

distances or raw profiles (from which the pairwise distances can be calculated) is supplied.

Then the distances are compared as required to generate the rankings used in the nMDS

algorithm. For this reason we do not use the modified schemes in the rest of the thesis,
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although the results produced by the extrinsic scheme are comparable to those produced by

the standard nMDS.

The inequality difference is likely to be an advantage in other fields (such as the human-

ities) where nMDS is used. For example, if we were trying to understand something about

the color space by asking people to judge which colors were closer, then requiring fewer

comparison is a big advantage. Also it is easier, and perhaps more meaningful, to ask if red

is closer to yellow than it is to green than if yellow is closer to blue than red is to green.

One other possible advantage is that it should be easier to parallelize the ranking step when

many different rankings of smaller sets need to be performed, than a single ranking of a

giant set. Since ranking is the most time consuming step, and multi-node cluster are now

the norm, this could offer a significant computational advantage.

4 Conclusion

In this chapter we introduced nMDS, a dimensional reduction scheme we shall repeatedly

use throughout this thesis, and demonstrated its utility. We also demonstrated the use of

the RG stability principle in a more general setting: we showed that such an argument could

be used to guide algorithmic choices in implementations of statistical quantifiers as complex

as dimensional reduction schemes. It also led to the development of a modified scheme that

could offer significant advantages in fields (such as the humanities) where nMDS is used.
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Chapter 4

Visualization and Clustering

1 Introduction

Cluster Analysis is a term used to describe a class of unsupervised data-reduction methods

that classify observations into groups known as clusters, such that the observations within

a cluster are related in some way (at least more so than those in different clusters). Cluster

Analysis has become one of the most popular and widely used unsupervised data-reduction

methods. It continues to be used in a diverse range of fields including market research [30],

search result grouping [31] and image segmentation [32]. Within biology too, cluster analysis

holds a dominant position. It is the method of choice in applications such as constructing

phylogenies [33], sequence analysis [34], and what is most relevant to us, as an exploratory

tool in the analysis of high-throughput experiments [35].

Undoubtedly, some of this popularity is deserved. Cluster Analysis is fast, its results

easy to understand and when there are groups of well separated objects to be identified,

its performance is hard to beat. For these reasons, Cluster Analysis is the best choice for

dimensional reduction in many contexts. However, in other fields, it is the preferred method

among the masses, in spite of (and usually at the expense of) many other methods which are

far more suitable. For example, as we shall show nMDS often outperforms cluster analysis,

and yet is virtually unknown among biologists.

The simplicity of cluster analysis results belie the many assumptions that are implicitly

made (depending on the specific algorithm chosen), which in turn severely dent its claims of

being a truly data-driven method. This chapter is primarily meant as a propaganda piece
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to warn against the dangers of using cluster analysis (and to draw attention to NeatMap, a

visualization program created by us) . To this end, we will first provide a quick introduction

to cluster analysis. The most popular cluster analysis algorithm types will be surveyed, and

we will discuss the underlying assumptions made by them while identifying their relative

weaknesses and strengths.

We then turn to the visualization. With the advent of high-throughput experiments,

whole genome measurements across multiple conditions have become common. It is almost

hopeless to expect humans to comprehend such a large amount of data to infer anything

meaningful. On the other hand, human interpretation and pattern recognition ability is still

not even close to being matched by computers. Therefore, the best strategy for analyzing

data is:

1. First use a dimensional reduction algorithm to produce a simpler reduced represen-

tation of the data that can be grasped by humans. The performance of dimensional

reduction schemes is still not good enough that this result is biologically meaningful

2. The dimensionally reduced result must be then visualized in a way that takes advan-

tage of human pattern recognition skills and encourages the formulation of biological

hypotheses

Just as there are many different dimensional reduction schemes, there are many possible

ways of visualizing their results. Much work has been put into understanding the proper-

ties of the dimensional reduction schemes and inventing specialized ones. Sadly, much less

thought seems to have been put into visualization methods.

For example, the visualization of gene expression data is completely dominated by a

single method known as the clustered heatmap. It has been used in thousands of publications

spanning a multitude of organisms and a variety of data types [36, 37, 38, 39]; it has even

been dubbed [40] a “post genomic visual icon.” As we shall show, the clustered heatmap is a

deeply flawed visualization method. By using cluster analysis as its engine not only does it
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inherit all the associated problems, but it then proceeds to completely misuse those results.

Yet, due to a lack of viable alternatives, its dominance has been unchallenged.

It is our belief that the continued popularity of cluster analysis is at least partly due to the

lack of associated visualization methods with the visceral impact of the clustered heatmap.

Thus, a major step in our agenda to replace cluster analysis is to generate alternatives to

the heatmap. To this end, we have created an R package called NeatMap, which shall be the

focus of the rest of this chapter. NeatMap offers a variety of novel heatmap-like plot types

in two and three dimensions intended to be driven by dimensional reduction methods other

than cluster analysis. The superiority of these plots to the traditional clustered heatmaps is

shown by using a variety of examples.

2 Cluster Analysis

As mentioned above, cluster analysis is a term used to describe statistical methods that

classify a set of observations into groups in a way that the observations in a group are

related in some meaningful way. Cluster Analysis includes a variety of different algorithms

and approaches. In order to focus this discussion we will restrict ourselves to some of

the most popular types. In particular, we will only discuss hard-clustering, where each

observation is associated with one and only one cluster. Thus, methods like fuzzy clustering

[41], that allow observations to be assigned to multiple groups, will not be covered. While

such approaches are useful, they are not very popular for the kind of applications we are

interested in. Additionally, they typically require further assumptions about the probabilities

of belonging to different groups, making them conceptually closer to parametric approaches

such as Gaussian Mixture Models (GMM) [42].

On the other hand, we do not want to restrict the possible application types, and so

we would like to be as general as possible when we define observations. They are just

elements we wish to classify. In the case of gene expression experiments, when we are
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interested in understanding the relationships between genes, each gene (or more accurately

a vector consisting of it expression levels under different conditions) would be considered an

observation. In the case of the 1000 cities on the globe we considered in the last chapter,

each city would correspond to an observation.

Thus, as far as we are concerned, we will restrict our discussion to the set of algorithms

that conform to the following definition: Let us assume we are given a set of N observations

S = {x1, . . . ,xN}, that either a) are objects existing in space with a well defined distance

measure (such as the gene expression profiles, allied with an appropriate distance measure)

or b) have a known set of pairwise distances dij (like the distances between cities on the

globe). A cluster analysis algorithm is one that generates a partition P = {P1, . . . , Pk} of S

in a way that the patterns in each Pi are maximally alike, while those in different ones are

less similar.

This definition is deliberately vague in order to allow us to encompass the different algo-

rithms that are considered to perform cluster analysis. To be more specific, it is instructive

to classify cluster analysis algorithms in two ways:

1. By the structure of their algorithmic operation (operational classification)

2. By the property they aim to optimize (optimization-function based classification)

2.A Operational Classification

Here, algorithms are classified in terms of the general structure of the procedure by which

clusters are constructed from the raw data. For this, we follow the general classification

proposed by Jain et al. [43]. In terms of this classification, clustering algorithms can broadly

be assigned to two categories, Agglomerative/Hierarchical vs Partitional/Divisional.
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Agglomerative/Hierarchical Algorithms

In an agglomerative algorithm, initially each element is in its own singleton cluster. Then

at each step the closest clusters are merged. In this way larger and larger clusters are

formed. The process can be stopped at an appropriate point to get a desired number of

clusters. Based on the order in which clusters are merged, a hierarchy of cluster relations

is established. This is typically represented in dendrogram form. Thus, apart from the

final assignment into clusters, hierarchical algorithms also provide information about inter-

pattern relationships. Since at each step, all pairwise distance between cluster have to be

calculated, computational complexity goes as O(N2), where N is the number of patterns.

The various hierarchical algorithms differ in terms of their linkage, i.e., the way in which

distances between two intermediate clusters are defined. Some of the most prominent ones

are

1. Single Linkage Hierarchical Clustering: The distance between two clusters A and B

is the smallest pairwise distances with one element in the pair from each of the two

clusters:

dAB = min{d(a, b)|a ∈ A, b ∈ B}.

2. Complete Linkage Hierarchical Clustering: The distance between two clusters A and

B is the maximum of the pairwise distances with one element in the pair from each of

the two clusters:

dAB = max{d(a, b)|a ∈ A, b ∈ B}.

3. Average Linkage Hierarchical Clustering: The distance between two clusters A and B

is the average of the pairwise distances with one element in the pair from each of the

two clusters:

dAB =
1

|A||B|
∑
a∈A

∑
b∈B

d(a, b).
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Partitional Algorithms

In the case of partitional algorithms, rather than providing the entire hierarchy of relations,

the output is just the assignment of patterns into clusters. This usually means that the

number of clusters k needs to be specified by the user in advance. Assignment into clusters

is usually achieved by optimizing a scoring function. Since the time requirements of an ex-

haustive combinatorial search are prohibitive, usually some kind of iterative scheme starting

with a random configuration is implemented, and the best scoring configuration over multi-

ple runs is selected. Unlike the hierarchical schemes, partitional algorithms do not compare

all possible pairs and therefore implementations with computational complexity of O(N) are

possible. The most popular of the partitional schemes is k-means clustering.

Rather than work with the pattern dissimilarities, k-means works with the multidimen-

sional pattern vectors directly. To begin with, centroids for the k clusters are chosen ran-

domly in the space containing the pattern vectors. Then, each pattern is assigned to its

nearest centroid (or more precisely, the cluster represented by the centroid). The centroids

are then recomputed with the updated membership, and this process is repeated till the

memberships of the various clusters reach a fixed point. k-means attempts to minimize the

Within Cluster Sum of Squares (WCSS) given by:

WCSS =
k∑
j=1

nj∑
i=1

||x(j)
i − cj ||2,

where x
(j)
i represents the ith pattern in the jth cluster, with centroid cj . It should be clear

that a configuration minimizing this will be a fixed point of the dynamics. However, the

converse is not true. k-means clustering has a tendency to get caught in local minima,

making the initial configuration very important.

A comparison of the agglomerative and paritional algorithms is shown in Table 4.1.

Due to its great speed, k-means is the best choice for applications such as computer vision

problems, where there are a very large number of points, or where high performance is critical.
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Table 4.1: Comparision of Agglomerative and partitional schemes
Criterion Agglomerative Partitional
Output Hierarchical Tree showing

relations among all patterns
Assignment of patterns into
Clusters

Computational Complexity O(N2) O(N)
Convergence to True Solution Guaranteed Uncertain
Reproducability Absolute Depends on Initial Condi-

tions
Example Complete Linkage k-means

For the problems of interest to us, we do not know the number of clusters beforehand, and

we are interested in the relations between all the elements, not just their assignment into

clusters. Given the advances in computing, gene expression data sets, which typically contain

10k points, can easily be analyzed with the agglomerative/hierarchical algorithms. We shall

therefore primarily focus on these for the rest of this thesis.

n

2.B Optimization Function Based Classification

Another instructive way to classify clustering algorithms is in terms of the cluster properties

they aim to optimize:

1. Compactness: The goal is to get the patterns in each cluster to be as similar as

possible, and to produce compact and tight clusters. This approach is ideally suited

to spherically shaped clusters, but can fail for more complicated cluster shapes, see

for example, Fig. 4.1. Examples of Cluster Analyses with this goal include, k-means

clustering, average and complete linkage hierarchical clustering.

2. Connectedness: The aim here is the elements close to each other should belong to the

same cluster in order to produce a more contiguous structure. Since this criterion is

essentially local, it is strongly affected by the properties of a few data points rather

than the cluster as a whole, making the results unstable. On the other hand, it is well
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suited to arbitrary cluster shapes. Single linkage hierarchical clustering is an algorithm

of this type.

2.C Problems with Cluster Analysis

Cluster analyses are the most popular class of unsupervised, data-driven dimensional reduc-

tion algorithms. They owe this popularity to their speed, ability to deal with large data

sets, and the intuitive and (seemingly) easy to interpret nature of their results. Given the

popularity of these methods, it is important to critically evaluate the nature of the results

they produce. In this section, we will discuss some of the problems associated with the use

of cluster analysis as an exploratory data analysis method. These problems are, for the most

part, one of

1. Biases introduced by the underlying assumptions of cluster analysis

2. Lack of stability of cluster analysis results

3. Biases in cluster analysis results caused by discarding of information

We elaborate on each of these below.

Assumed Cluster Properties

As mentioned above, the various cluster analysis algorithms are best suited to different types

of clusters. In an exploratory analysis, we usually do not know the structure of the data

before hand. Therefore, to explore the utility of cluster analysis as an exploratory tool, it is

worth studying its performance when the data does not conform to expectations.

The algorithms that value compactness work best for tight spherical clusters. We there-

fore consider their performance on more extended distributions as shown in Fig. 4.1. Here

two clusters were created, in two dimensions, by sampling points from two highly asym-

metric (σx/σy = 20) normal distributions with the length of the clusters far exceeding their
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k=2 k=3 k=4

Complete
Linkage

Average
Linkage

k-means

Single
Linkage

Figure 4.1: Performance of different cluster analysis algorithms for highly asymmetric distri-
butions: The data is sampled from two highly skewed two dimensional normal distributions.
Different cluster analysis techniques were applied to this data for multiple choices of number
of clusters k. In each plot, points are colored according to the cluster to which they belong
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Figure 4.2: Performance of the agglomerative cluster analysis algorithms for highly asym-
metric distributions: The data is sampled from two highly skewed two dimensional normal
distributions, as in Fig. 4.1. The dendrograms for the three methods are shown. Leaves are
colored according to the identity of the Gaussian to which they belong.

separation. It is clear that the algorithms which value compactness fare poorly, while single

linkage clustering which aims for connected clusters does much better. This can also be seen

from the dendrograms generated by the agglomerative schemes (see Fig. 4.2). In this case

leaves are colored according to the true cluster (i.e., Gaussian) that they belong to.

In a real data analysis scenario, without the aid of some other method, we would not

know the true distribution of points in their native high dimensional space. The classification

of points into the various clusters, or the structure of the dendrogram is all we would have

to go by. Neither of these, by themselves, suggest the complete mis-classification that took

place in this example. Thus, cluster analysis schemes could potentially give very misleading

results if applied to data that does not support the type of clusters that they expect.

Lack of Stability

While it may seem that single linkage hierarchical clustering seems to perform quite well,

it is almost never used in real world application on account of its extreme instability. This

point is illustrated in Fig. 4.3. Cluster Analysis is applied to four isotropic, well separated,

2D Gaussians, and this is repeated on four instances of points sampled from the same distri-

butions. Average and complete linkage hierarchical clustering along with k-means clustering

place points from the four Gaussian in different clusters in all 4 instances. However, single
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Average
Linkage

Complete
Linkage

Single
Linkage

k-means

Figure 4.3: Stability of cluster analysis algorithms: Different cluster analysis algorithms
are applied to data sampled from 4 equally spaced, symmetric two dimensional Gaussian
distributions, and cluster analysis is applied to them, assuming there are 4 clusters (k =
4). The different columns correspond to different instances of sampling from the same
distributions
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Average
Linkage

Complete
Linkage

k-means

Original

Original
+

10% New

Figure 4.4: Stability Against Addition of New Data: In the upper row, cluster analysis
is applied to data sampled from the two asymmetric Gaussians used in Fig. 4.1. In the
second row, 10% new points are added sampled from the same distribution, and clustering
is repeated.

linkage hierarchical clustering is badly affected by outlying points and ends up joining 2 of

the Gaussians in all but one instance.

The good performance of the other methods is due to the fact that they are designed to

faithfully identify clusters of this type. If we work with elongated clusters, these algorithms

too are unstable. For example, if we consider the two asymmetric Gaussians in Fig. 4.1

and add 10% new points sampled from the same distribution, the cluster results change

dramatically (see Fig. 4.4). Thus, cluster analysis does not pass the RG based stability

criterion in this case.

Discarded Intra-Cluster Information

The partitional algorithms do not provide information about the relations between patterns,

except the cluster they have been assigned to. It may seem that using the dendrogram

produced by agglomerative schemes, we may infer the relations between arbitrary patterns,
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Figure 4.5: Discarded Clustering Information: The complete linkage dendrogram result
is superimposed on the data. cluster analysis is applied to data sampled from the two
asymmetric Gaussians used in Fig. 4.1. In the second row, 10% new points are added
sampled from the same distribution, and clustering is repeated.

but this is misleading. Consider an intermediate stage of agglomeration. At this stage,

many patterns have already been combined into clusters, and the algorithm will proceed

by coalescing the two closest clusters. The definition of closest used is determined by the

kind of linkage used. All of the linkage schemes make use of some pre-determined statistical

relation between the two clusters as a whole, and ignore all other information regarding the

relations between individual elements. More seriously, when the two clusters are combined,

there is no way of knowing how close elements from one of the original clusters is to those in

the other clusters. Only relations at the cluster level are preserved, and within cluster data

is lost. This essentially comes from the belief that intra cluster distances are much smaller

than inter cluster ones, making such relations meaningless.

However, this approach can have unintended consequences, when the above assumption
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is not true. For example, Fig. 4.5 shows the cluster analysis dendrogram superimposed on

the data points for the same data that was used in Fig. 4.1 (this was generated using the

NeatMap package to be discussed later in the chapter). At various locations, the dendrogram

shows bridges connecting the two Gaussians. However, it is obvious from the picture that

there are points within the same Gaussian that are closer to the bridge head, and which

one might expect should be connected first. This is caused precisely by this effect described

above. Looking at the dendrogram itself, the information about the nearness of such points

is completely lost. The biological consequences of this will be discussed in conjunction with

NeatMap.

2.D Correct Usage of Cluster Analysis

Although we have pointed out various problems faced while using cluster analysis, these are

largely due to the use of cluster analysis to perform tasks it wasn’t intended to rather than

due to inherent problems with cluster analysis itself. The goal of cluster analysis is to assign

patterns to groups. It is therefore implicitly assumed that these groups are meaningful,

and sufficiently different from each other. Cluster Analysis was not intended to provide

a compact depiction of the relations between the various patterns, and it is ill-suited for

this task. However, for exploratory analysis of biological data, often this is precisely what

we need. This makes cluster analysis a poor choice for such tasks. Yet, because of their

simplicity and speed it is very tempting to attempt to glean some information from the

application of cluster analyses. While this is a potentially dangerous approach, there are

ways of minimizing the risk of producing misleading results [44].

1. Check for clustering tendency: Possibly using PCA/MDS or specialized measures for

this task. If no clustering tendency is seen (which is the case for most gene expression

data), cluster analysis should not be applied.

2. Selection of algorithm: The appropriate clustering algorithm for desired task must be
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chosen.

3. Validation of results: There are a variety of approaches that validate the results pro-

duced by cluster analysis. Some of these repeat the clustering and check for robustness,

others provide measures of cluster quality. Results that are poor should not be used.

4. Comparison to other methods: Cluster Analysis should be compared using different

algorithms and their results should be validated using other methods such as nMDS.

The NeatMap package provides an easy way to do this.

5. Do not overextend the results. The cluster analysis results should primarily be used

to group patterns into clusters. Any information extracted beyond this should be

considered unreliable.

Unfortunately, it is hard to find bioinformatics papers that use cluster analysis without

violating at least a few of these points.
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3 Heatmaps

3.A What is a Heatmap?

Results of experiments are often measurements of properties of objects under different con-

ditions. For example, in gene expression experiments, the expression levels of multiple genes

are measured across different conditions (e.g., times, tissues, etc.). Such data may be easily

represented in matrix form, with each row corresponding to a single gene, and each column

a specific condition under which the expression levels of genes are measured. The heatmap

is just a visualization of this matrix in color form, with each matrix cell colored according

to its expression level.

Figure 4.6 shows two such matrices. As the heatmap on the left shows, such a visual-

ization by itself typically does not provide much insight. However, if the rows and columns

of the matrix are re-ordered so that similar ones are placed close to each other, then the

patterns supported by the data are far clearer. In the example in Fig. 4.6, such reordering

has been performed to produce the heatmap the right. Now, it is clear that there are three

groups of genes each showing high-expression in a different set of genes.

As mentioned in the introduction, the (clustered) heatmap is the most popular visual-

ization scheme for gene expression data. There are good reasons for this popularity:

• Unlike the methods we used to visualize the nMDS and cluster analysis, both the

relations between the genes and those between conditions can be seen at the same

time (in the sense that similar genes/conditions should be closer to each other in the

heatmap ordering).

• It allows us to visualize the entire data set, not just the dimensionally reduced results.

In the traditional visualization, the profiles underlying the dimensionally reduced re-

sults are not seen.

• The large contiguous bands of color produced by heatmaps encourage the formulation
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Raw Matrix Reordered Matrix

Figure 4.6: A schematic representation of a heatmap: The matrices above show the expres-
sion of 60 genes across 15 conditions. Blue and red represents low and high gene expression
respectively. The figure on the left is meant to be a matrix of data drawn from some exper-
iment. The figure on the right is the same matrix with the rows and columns reordered to
best represent the data. In this case, after reordering it is clear there are 3 different groups
of genes, each of which is over-expressed in a different set of conditions. This insight was
not evident before reordering.
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of general relations between the variables being measured (for example, see Fig. 4.6).

This is, after all, the goal of visualization methods.

• It is visually striking (the importance of this should not be underestimated)

3.B Problems with the Clustered Heatmap

When the reordering of the rows and columns of a heatmap is achieved using cluster analysis,

it is known as a clustered heatmap. Since the relations between all elements are important,

some kind of agglomerative scheme is usually chosen. While we believe heatmap type vi-

sualizations are very powerful, there are reasons to be sceptical about their implementation

via cluster analysis:

1. As the astute reader would have noticed that cluster analysis does not produce an

ordering of elements. This is the fundamental problem of clustered heatmaps. The

result of an agglomerative cluster analysis is a dendrogram. In a clustered heatmap,

the ordering of dendrogram leaves for the genes (conditions) is used to order the rows

(columns) of the heatmap. However, this leaf ordering is not specified by cluster

analysis. In fact, for a given cluster analysis result, the ordering of leaves may be

changed by swinging the arms of the tree at each bifurcation. Closeness in leaf order is

not the same as closeness in dendrogram. The nearness of two leaves in a dendrogram is

defined as the distance between them along the tree, not along the branch tip ordering.

While these measures are related (especially for very similar elements), they could be

very different [45]. Thus, the ordering of the branch tips does not respect the intrinsic

topology (if any) of the data, making it a poor choice for use in a heat map.

2. To compensate for these failings ‘swinging’ based reordering using an independent

method is often required, post-clustering, to capture the structure of the data. How-

ever, these methods are quite dangerous because
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• Unlike the clustering schemes, the reordering algorithms, while complex enough

to warrant dedicated software packages, are often not elaborated upon or even

stated, thereby reducing the reproducibility of the result.

• Such procedures could potentially place (deliberately or otherwise) objects that

are distant along the tree in close proximity in the row/column order. Heat maps

are commonly read in this order rather than by their dendrogram structure (if this

were not the case, such reordering schemes would not be needed). Effectively a

spurious pattern could be created, leading to incorrect results (e.g., see clustered

heat map for Spellman data in Results)

3. On top of this, all the problems inherent in cluster analysis (as discussed earlier) are

also present:

• During clustering, when objects are assigned to different clusters, further analysis

essentially involves these clusters as a whole, and the relationship between the

elements themselves is lost (see analysis of human gene atlas in Results)

• When the assumptions made by cluster analysis are violated the results become

unpredictable as shown earlier. In particular cluster analysis results are unreliable

when there is no clear clustering/grouping tendency.

• As suggested earlier, it is considered good practice to test for clustering tendency

before performing clustering or to perform bootstrap-like methods to estimate

cluster quality post-clustering [44]. Unfortunately, this kind of information is not

typically provided in a heat map. Thus, validation is only by visual inspection of

the color patterns, and this may be misleading.

For all these reasons, we would like to have a heatmap-like visualization method that does

not make use of cluster analysis.
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3.C Replacing the Clustered Heatmap

Biological data often has a low dimensional structure that may be visualized as a spatial

pattern, so direct use of a suitable dimension-reducing algorithm could, in many cases, be

more natural and better characterize the data than the current combination of structure

destroying clustering + restoring algorithm. There are many such algorithms whose utility

in the analysis of biological data has been demonstrated [46, 24]. Multiple packages (for

example, in R [47]) implement them. Despite this, we believe their use has been limited, at

least partially, by the lack of associated visualization methods with the visceral impact of

the clustered heat map.

Here, we present an R package called NeatMap to meet this need while addressing some

of the deficiencies of the clustered heat map. It consists of novel plot-types in two and

three dimensions intended to be used in conjunction with any dimension-reduction scheme

capable of embedding results in low dimensional Euclidean space (e.g., Principal Component

Analysis (PCA) and Multi-Dimensional Scaling (MDS)). This places weaker constraints on

the data than does cluster analysis, which requires the data to exist in an tree space. Like

the heat map, and unlike typical visualization schemes for these methods, NeatMap displays

the entire dataset underlying the result. It also has provisions to superimpose the cluster

analysis results, for mutual validation. This feature is not commonly implemented in software

packages, and our implementation is more informative about individual points than existing

implementations [48]. Also note that unlike the clustered heat map, the layout of the plot

is almost entirely determined by the output of the dimension-reduction scheme, thereby

respecting the intrinsic structure in the data more than would a clustering based reordering.

There are a number of alternatives to hierarchical clustering (see, for example, the R

package seriation [2]) designed specifically to produce an ordering that reflects the relative

relations between elements. NeatMap is a visualization method, and in general it is not

intended to compete with these (in fact they can easily be used in conjunction). However,
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some of these techniques involve ordering by the first component of PCA/MDS. Unless, this

component captures most of the relevant information, NeatMap, which uses 2D embeddings,

is likely to better utilize the dimensional reduction results.

3.D Availability and Requirements

Project name: NeatMap

Project home page: http://cran.r-project.org/web/packages/NeatMap/index.html

Operating system(s): Platform independent

Programming language: R

Other requirements: R, R packages(ggplot2 and rgl)

License: GPL-3

3.E Neatmap Implementation

The general class of data considered involves factors (e.g., genes) being measured across

multiple conditions (e.g., samples, times, tissues, etc.). For each factor, these measurements

will be referred to as its profile. It is assumed here that some dimension-reduction scheme,

(e.g., PCA) has been used to depict the relationship between factors by embedding them

into a 2D Euclidean space. The plots described here allow us to visualize these relationships,

while simultaneously showing the profiles underlying them. non-Metric MultiDimensional

Scaling (nMDS) [24] was used as the dimension-reduction scheme for the demonstrations

in this chapter, since, generally speaking, the embedding produced by nMDS is more in-

formative than the corresponding PCA result. An R implementation of nMDS is included

for convenience in the package. There are multiple plots in this package, each emphasizing

different aspects of the factor-condition relationship:
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1. heatmap1: This is the traditional heat map, except a dimension-reduction scheme

other than clustering (for examples see [2]) may be used for ordering of rows and/or

columns. Neatmap itself provides a novel way to do this from a 2D embedding method:

normalize the data, or use an amplitude neutral distance measure such as the Pearson

correlation. Then, the embedded result produced by PCA, nMDS, etc., is often annular

and can be parameterized, approximately, by a single variable, viz., the angular position

(Fig. 4.7d). This is a better option than using the ordering based on a single component.

The standard cluster dendrogram may be superimposed on the heat map for mutual

validation.

2. circularmap: Similar to heatmap1 except the arrangement is circular (Fig. 4.7e)

rather than linear to emphasize the periodicity of the angular positions obtained as

above (or using other methods [3] that produce annular results). It is easy to make

comparisons across conditions and factors. The factor clustering result may be super-

imposed on this plot.

3. lineplot: The 2D dimensionally-reduced factor relationship result is gridded, and the

profiles of all the factors within each grid cell are displayed together as line graphs

(Fig. 4.7c). This provides a global understanding of the nature of the data and its

embedding. However, individual factors are harder to pick out, and comparison across

conditions is more difficult.

4. profileplot3d: Addresses the inability of heatmap1 and circularmap to depict

radial information by visualizing the profiles in a 3rd dimension using a rotatable 3D

environment (Fig. 4.10c).

5. draw.dendrogram3d: Cluster validation of the 2D embedding result for factors

(Fig. 4.10b) in a 3D environment. The clustering result for both factors and con-

ditions may be superimposed on profileplot3d.
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The functions above are dimension-reduction method neutral; dimensionally-reduced re-

sults provided by the user are plotted. Convenience wrapper functions make.heatmap1,

make.circularmap, and make.profileplot3d are also provided. They take just the raw

data as input, perform dimension-reduction using either nMDS or PCA, and finally produce

the appropriate plots.

All 2D plots were implemented by using ggplot2 [49] and 3D plots using rgl [50]. These

libraries have numerous functions for additional customization and modification of the plots

produced by NeatMap.

3.F Results

The utility of the plots described above are demonstrated by using two different micro-array-

based datasets. The 2D plots are illustrated using the Spellman et al. [1] dataset identifying

cell cycle related genes in yeast, while micro-array data from the human gene atlas study

[51], profiling gene expression across multiple tissues, is used for the 3D plots.

2D plots

Spellman et al. [1] produced genome-wide time course profiles in yeast using micro-arrays

under different synchronization methods. Fourier analysis was then used to identify genes

with the correct periodicity as cell cycle related. We consider these cell cycle related genes

and study their profiles under alpha synchronization. Since a natural time ordering of the

measurements exists, we are only interested in the relationship between genes.

For comparison to the plots produced by NeatMap we used the Multiexperiment Viewer

(MeV) software to generate the standard clustered heat map for this data (Fig. 4.7a). Aver-

age linkage hierarchical clustering of the Pearson correlation, followed by MeV’s function for

optimal reordering of genes were used. Although the periodicity of these genes is clear, and

locally good groupings are seen, the pattern as a whole appears quite jagged. This is because

a cluster like topology was forced on an essentially continuous distribution. Closely related
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a) Clustered Heatmap b) nMDS Result c) lineplot

d) heatmap1 e) circularmap

Figure 4.7: Different ways of representing the cyclic genes for the alpha experiment in
Spellman et al. [1]. (a) is the standard heat map using average-linkage hierarchical clustering
(+rearrangement) in MeV, shown here for comparison. (b) is the result of 2D nMDS. The
profiles for all the genes in each grid cell in (b) are shown using lineplot in the corresponding
grid cell in (c). (d) shows heatmap1 with the angular positions of genes in (b) used to
reorder the rows in (a). (e) is circularmap using the angular positions of points in (b).
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a) PCA Result b) lineplot

c) heatmap1 d) circularmap

Figure 4.8: The NeatMap plots in Fig. 4.7 produced using PCA instead of nMDS. Spellman
et al. data using alpha synchronization was visualized using PCA and NeatMap. The profiles
were normalized to have zero mean and unit variance, and all profiles with missing data were
discarded. (a) is the standard PCA result, (b), (c) and (d) show the lineplot, heatmap1
and circularmap functions respectively applied to (a).

groups of genes are correctly clustered together but the global relations between genes in

different clusters (which is essential for complete ordering) are lost. Fig. 4.7b shows the

result produced by a 2D embedding of the gene profiles using nMDS, again with the Pearson

correlation. A clear continuous ring like pattern emerges naturally. (PCA, with normalized

profiles, shows a similar result although the ring structure is more diffuse; see Fig. 4.8)

Such a ring-like structure is very common when an amplitude-normalized distance mea-

sure such as the Pearson correlation is used. In this situation, it is natural to parameterize

the position of a gene by a single angle. This is what heatmap1 does. For each gene,
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its angular position in the nMDS result (Fig. 4.7b), with respect to its center of mass, is

determined, and the profiles are placed (Fig. 4.7d) in a standard heat map ordered according

to this angle. The periodic nature of the profiles is now clear, and it is evident that points

are arranged by time of up-regulation; essentially the cell cycle phase in which the gene is

expressed. Note that heatmap1 also accepts orderings produced by other methods. The

R package seriation [2] offers a variety of these, and heatmap1 plots using them for the

Spellman data set are shown in Fig. 4.9. In general, the NeatMap ordering is superior, ex-

cept for the case of Rank Two Ellipse [3]. This method, like NeatMap, uses angular ordering

based on normalized profiles (the correlation matrix itself in this case). heatmap1 also

allows the superimposition of clustering results. Evidently, the local arrangements in nMDS

and clustering are consistent. Large scale rearrangement, produced by incorrect ‘swinging’,

however, makes the clustered heat map result seem poor.

There are some long lines in the gene clustering result in Fig. 4.7c spanning the entire

length of the heat map. This is a consequence of the periodicity of the angular variable, which

results in the two opposite ends of the heat map being almost identical. To avoid artifacts

from this periodicity, one may use circularmap (Fig. 4.7e). The ordering of profiles is

identical to heatmap1, except they are placed along a circle according to their angular

positions in Fig. 4.7b. One additional advantage of this format is that the non-uniformity

in the phase distribution stands out more clearly. It is much harder to gain this type of

information from a traditional heat map display.

Fig. 4.7c shows the lineplot based on the nMDS result in Fig. 4.7b. As explained

earlier, each cell in the grid in Fig. 4.7c shows the time course profiles of all the genes in the

corresponding cell in Fig. 1b. The sinusoidal nature of the profiles is much clearer in this

plot. It also emerges that the radial coordinate in this case is a measure of ‘cyclicity’, with

the genes close to the centre being less cyclic.

The lineplot emphasizes the overall nature and change in profiles with position. How-

ever, compared to heatmap1 and circularmap, comparison of expression at a fixed time
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a) Travelling Salesman b) PCA 1st Component c) Rank-Two Ellipse

d) Gruvaeus and Wainer e) MDS 1st Component f) Optimal Leaf Ordering

Figure 4.9: heatmap1 may be used in conjunction with orderings produced using external
algorithms. The R package seriate [2] contains a number of these. heatmap1 using the
Spellman data [1] and different ordering schemes using seriate are shown in the figure. a)
uses the Travelling Salesman Algorithm, b) orders rows according to the first component
of the PCA embedding of the rows, c) is ordering according to elliptic ordering method
proposed by Chen [3], d) by the method proposed by Gruvaeus and Wainer, e) by the 1st
component of the MDS embedding of rows, f) by the Optimal Leaf Ordering algorithm.
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across genes is more difficult. It is also more difficult to quickly look up a specific gene. On

the other hand, heatmap1 and circularmap are intended for essentially one dimensional

results. To deal with the more general case we must use 3D rotatable plots.

Assuming the profiles are stored in matrix form in alpha.profiles, the code to produce

Fig. 4.7 c, d, and e (except for specific graphics options) is:

pos.nMDS<-nMDS(alpha.profiles)$x;# Perform nMDS embedding

lineplot(pos.nMDS,alpha.profiles,normalize=T); #1c

make.heatmap1(alpha.profiles,row.normalize=T); #1d

make.circularmap(alpha.profiles); #1e

To use PCA instead of nMDS, a single parameter specifying this would need to be added to

each of these plots.

3D plots

We illustrate the 3D plots using the gene atlas dataset. Su et al. [51] used microarrays to

analyze the expression profiles of genes in a variety of tissues in both humans and mouse.

There is no natural ordering of the genes or tissues, but the relationships between tissues

are more easily understood. We therefore primarily focus on these.

Since, in the present context, we are not interested in cross-species comparison, for this

demonstration only human data was used (mouse gives similar results). The 1000 genes on

the HG-U133A array showing largest variance across the 79 tissues were analyzed. Func-

tionally, there are broadly 3 groups of tissues: those from the brain proper, some nervous

system related tissues, and those from other parts of the body. The result of applying hier-

archical clustering (average-linkage) using the Pearson correlation to the tissues is shown in

Fig. 4.10a. Three distinct clusters are seen, one of which is composed solely of brain tissues.

However, the nervous tissues are mixed with the other non-brain tissues in the second cluster

and no relation to the brain can be gleaned from the leaf order or distance along the tree.
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Figure 4.10: Representations of the human gene atlas data: (a) is the average-linkage hi-
erarchical clustering (using pearson correlation) result applied to the tissues, (b) shows
the superimposition of the clustering result on a 2D nMDS embedding of tissues using
draw.dendrogram3d, (c) shows the expression profiles underlying (b) using profile-
plot3d.
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A 2D embedding of the same data using nMDS with Pearson correlation was also per-

formed. The cluster analysis result was superimposed on the 2D nMDS result in a rotatable

3D environment using draw.dendrogram3d (Fig. 4.10b). The same 3 clusters are present,

and there is broad agreement between the clustering and nMDS results. Unlike the cluster-

ing result, however, the relationship between the brain and nervous system tissues is much

clearer. The nervous system genes are also quite similar to the central cluster of tissues in

Fig. 4.10b. Apparently, cluster analysis assigns them to this cluster, and in doing so their

relationship to the proper brain tissues is lost.

The profiles underlying the nMDS result may be displayed in a rotatable 3D environment

by using profileplot3d. Fig. 4.10c shows this with the cluster analysis results for genes and

tissues superimposed on it. The genes were ordered according to their angular positions

in a ring-like nMDS embedding using the Pearson correlation, much like heatmap1. The

separation between the 3 groups of tissues can be seen as before. However, profileplot3d

makes it clear that there are different set of genes up-regulated in these groups.

Assuming the data is stored in matrix form (with genes along the rows and tissues along

columns) in atlas.profiles, the cluster analysis result for tissues in alpha.cluster, and

the three groups are color coded in alpha.group.colors the code to produce the plots in

Fig. 4.10 are:

atlas.nMDS<-nMDS(profiles)$x;

draw.dendrogram3d(atlas.nMDS,atlas.cluster,labels=colnames(atlas.profiles),

label.colors=alpha.group.colors);

make.profileplot3d(alpha.profiles,column.method=‘‘nMDS’’,

labels=colnames(atlas.profiles),label.colors=alpha.group.colors);
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4 Conclusions

Cluster Analysis is by far the most popular exploratory data analysis method for analysis of

gene expression. In this chapter, we have critically studied its performance and found that,

except when there is a very clear grouping tendency in the data and within group relations

are not of interest, cluster analysis is a poor choice. Despite this, cluster analysis has enjoyed

a great deal of popularity, at least partly because of the popularity of the clustered heatmap

as a visualization method. We have shown that while heatmaps are a powerful visualization

technique, the use of cluster analysis to drive them is deeply flawed. To encourage the

adoption of alternate data-driven dimensional techniques such as nMDS, we have created an

R package called NeatMap where heatmap like plots are generated using such techniques in

preference to cluster analysis. Using the well-known Spellman yeast cell-cycle and human

gene atlas microarray datasets, we have shown that a dimension-reduction method (nMDS

was used in this paper for illustration) in conjunction with NeatMap is more informative

than the clustered heat map. It is hoped that this package will increase the popularity of

these methods and spur the development of novel visualization schemes.
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Chapter 5

Noise Reduction

1 Introduction

In the last two chapters we have discussed how dimensional reduction techniques can be

used to produce low dimensional representations of biological data that are then amenable

to human interpretation. In working with a low dimensional representation, rather than the

raw data, one potentially runs the risk that the results are biased by the idiosyncrasies of the

dimensional reduction algorithm. Most popular algorithms have been tested enough that we

can be reasonably sure that if there is a very clear low dimensional structure present it will

be extracted correctly. However, if this structure is hazy, things are more problematic. In

the context of biological data, we expect related genes to act in concord and thus to be well

captured by a low dimensional representation. Thus, if a low dimensional representation is

not found, it is likely that either a) the genes represent multiple processes and/or b) the data

is noisy. In the analysis of high-throughput experiments, both problems are ever-present;

a whole genome study undoubtedly will capture genes involved in multiple processes, and

microarray type experiments are notoriously noisy. The way to deal with the first problem

is to perform some kind of pre-selection to isolate genes belonging to a single process before

performing dimensional reduction. This best way to do this will be discussed in the next

chapter where we show a data driven method to identify genes involved in different processes.

The focus of this chapter will be on dealing with noisy data, and for the most part we shall

assume that pre-selection has already been performed.

High-throughput biological experiments are very noisy. So it is natural to expect that
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not all data points carry the same amount of biological information. When applying dimen-

sional reduction to such a noisy data set, it is quite possible that the noise makes the low

dimensional law diffuse, thereby hampering performance. Our idea is that if there were some

way to remove the more noisy/less informative points preferentially, then the dimensional

analysis result with the remaining points would be more meaningful. This point is illustrated

in Fig. 1.

Our method to identify noisy points makes use of the belief (assuming pre-selection has

been performed reasonably well) that genes will act in concert and so biologically mean-

ingful points should satisfy the extracted low dimensional law. Thus, points that are not

consistent with the low dimensional law are far more likely to be noisy ones. In this way,

noisy points may be identified and removed. From the point of view of constructing a phe-

nomenological theory, one may say that the goal of dimensional reduction is to extract the

universal structure. This should not depend on details, and must therefore be low dimen-

sional. Thus, aspects which are not low dimensional are likely to be microscopic details we

are not interested in.

This procedure pre-supposes that we have the correct low dimensional law. If the data is

very noisy to begin with, this may not be the case. We therefore implement our noise removal

procedure iteratively. The dimensional reduction is performed, and the most noisy points

are removed with respect to this result. The data sans the removed points is dimensionally

reduced again, and the noise removal procedure is performed once more. This is repeated

until no improvement is possible by noise removal.

Since the goal of the procedure is to improve the dimensionally reduced result, we shall

refer to it as data honing. The utility of honing is first demonstrated using the artificial noisy

example shown in Fig. 1, where the true low dimensional structure is known. The nMDS

based honing procedure successfully identifies this structure. Then we show how nMDS +

honing may be used to improve real biological data illustrated with the micro-array data

produced by Cho et al. [52] .
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196 Points
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Honed 
Result

Figure 5.1: Basic Idea of the Honing Procedure: We start with a 3 leaf clover shaped ‘law’
in 2D, to which we add a high-dimensional noise giving us 500 points in a 10 dimensional
space. This is embedded back into 2D, but the correct pattern is not recovered. A noise
removal procedure is applied to remove noisy points, and the 197 point pattern resembling
the 3 leaf clover is recovered
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The reader may wonder, if the pre-selection is meaningful, why we do not simply perform

pre-selection with a more stringent cutoff, thereby removing noisy data points. The answer

is that except for the ICS Survey method we propose in the next chapter, there are very

few data-driven pre-selection methods. The methods that do exist risk strongly biasing the

results. Even the ICS Survey only works in a multiple experiment setting, and that too for

only the most prominent processes. For the cases when biological information is available we

propose a more data and biology driven method to perform this pre-selection, and show how

honing can be used for further improvement and reduction of possible biases. This is applied

to the well known cell cycle related micro-array data set by Spellman et al. [1]. We show

that honing improves the biological interpretability of the data, and allows us to determine

the set of cell cycle related genes in a more reliable fashion.

2 Method

2.A Basic Idea

The basic assumptions here are that genes in related processes work collectively and co-

operatively. Thus, the patterns detectable from the gene expression data correspond to

biologically meaningful collective behaviors. These assumptions are likely to be violated if

we consider whole genome observations. In this case, some means of pre-selection must be

used to extract a subset where the behavior of interest is the dominant feature. In the fol-

lowing discussion we assume this has already been done. Therefore, the basic idea of (data)

honing is as follows:

(I) Applying a pattern extraction method to the data set, the pattern supported by the data

is extracted. Then,

(II) The consistency of the individual data points to the extracted pattern is determined.

(III) Less consistent data points (called diffuse points) are removed, and the pattern becomes

sharpened (honed).
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An iterative scheme can be devised removing only a fraction of the diffuse points at a time

and restarting the pattern extraction step with the remaining data points until no honing is

needed (as determined by some statistical criterion).

Step (I) is accomplished by expressing the mutual relationships among genes geometri-

cally in a certain (low-dimensional) space. We use Pearson correlation coefficient of their

expression profiles to quantify the similarity between two genes. nMDS, as described in

Chapter 3, is used to find a configuration of points in an Euclidean space E such that the

distance between the points in E is consistent with the similarity of the corresponding genes.

In short, nMDS gives a visual representation of the closeness of gene expression profiles.

Although honing is discussed in the context of nMDS, the basic procedure is essentially

independent of the data reduction method. In Appendix C, we illustrate the honing method

with PCA instead of nMDS. Experience suggests that although nMDS is computationally

more demanding than PCA, it is generally a more powerful pattern extractor/dimensional

reducer than PCA; if PCA works, nMDS certainly works, but not vice versa.

In Step (II) for each gene, we use a measure of its consistency with the nMDS result, in

terms of its local ranking mismatch. Step (III) requires a criterion to judge what mismatch

is sufficiently bad. This is realized with the aid of a kind of bootstrap method in a data

driven fashion. Genes with significant mismatches are removed by this statistical method.

The procedure is iterated to extract robust patterns supported by the original data.

2.B Identification of Noisy Points

nMDS is used to embed the gene expression profiles in a Euclidean space E of desired

dimensionality d as discussed in the last chapter. In practice, it is found that certain points

are consistently embedded much more poorly than others. To identify such points, a local
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quantity called the (rank) mismatch is used. The mismatch ∆(i) for a point i is defined by

∆(i) =
∑
j 6=i

[Ri(j)− ri(j)]2,

where Ri(j), as defined in the last chapter, is the ranking of δ(i, j) (i.e., the dissimilarity

between the ith and jth points) among the dissimilarities of all the points to the ith point.

ri(j) is the corresponding ranking in the embedded result. With this definition, steps (I)

and (II) outlined above can be implemented.

A gene with a large rank mismatch implies that it is difficult to place the corresponding

point in a low dimensional space consistently with the given data. If we assume that the

obtained pattern captures important features of the data set, it is sensible to discard poorly

embedded points (diffuse points). To this end, an objective criteria is required to remove

them. Typically, there are no points that are perfectly embeddable; a continuum of mismatch

values is seen. Therefore, appropriate statistical tests must be formulated in order to discard

only points failing them. Here, we outline an iterative method, the bootstrap scheme.

2.C Determining How Many Points to Discard

Bootstrap Scheme

Suppose we wish to discard s% of the points with the worst rank mismatches. Since the rank

mismatch is a stochastic variable, even if a particular gene has a mismatch ranking within

s% (s should not be too small; usually 5 or 10) from the worst end, we cannot immediately

be sure that we may discard this gene. To judge the reliability of its mismatch ranking,

(100−s)% of genes are sampled randomly and embedded together with the gene. Repeating

this procedure, a bootstrap distribution of the mismatch ranking of the particular gene is

generated. If the mismatch ranking distribution of the worst s% genes and that of the next

worst s% are not statistically distinguishable, there is no reason to discard the worst s% as
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Figure 5.2: Bootstrap Scheme: The sequence of steps used to decide if more honing is needed
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such. Furthermore, discarding them will not significantly improve the clarity of the analysis

result. Thus, the discarding process (the recursive honing process) is stopped when this

‘improvability limit’ is reached. For a schematic diagram of this procedure with s = 10, see

Fig. 5.2. One may wonder why we do not use traditional, less computationally intensive

methods such as a comparison to randomized or shuffled profiles. As it turns out (especially

for long profiles), nMDS sees shuffled profiles as being so different from realistic profiles,

that they represent an excessively weak null hypothesis. That is to say, nearly all points

invariably pass such tests.

Algorithm with nMDS

We are now in a position to consider an algorithm to implement the honing procedure. For

actual implementation the choice s = 10 was made.

1. Analyze the data set by nMDS to extract the structure supported by the data.

2. Calculate the rank mismatch of each data point and identify the worst s% of points

in terms of rank mismatch. These are candidates for removal (called the candidate

set).

3. Calculate the empirical distribution of rank mismatch of each gene after randomly

sampling (100− s)% of the data set many times. Now, focus on the distribution of

rank mismatch for the members of the candidate set in (2).

4. If the distribution obtained in (3) strongly supports the results of (2), remove the

candidate set in (2). See below for an explicit criterion.

5. With the remaining genes as the starting set for the next iteration repeat the pro-

cedure from (1) to (4) until (3) no longer supports (2).
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Cutoff criterion

In Step 4 of the algorithm above, to decide if the bootstrap results support the set of points

we have selected for removal, the following criterion is used.

As indicated in the algorithm, for each point, the bootstrapping procedure gives us a

distribution for its normalized rank, i.e., Rank/N . This distribution resembles a Gaussian

centered close to its pre-bootstrap rank. The uncertainty in rank is characterized by the 3σ

value of this distribution. More specifically (for a choice of s = 10%), when the distribution

becomes so broad that for some point i

〈RM(i)〉 ≥ 0.9 but 〈RM(i)〉 − 3σ(RM(i)) ≤ 0.8

the honing process is stopped, and the result is accepted. Here, 〈RM(i)〉 and σ(RM(i)) are

the mean and standard deviation, respectively, of the normalized rank distribution of the

point i.

3 Results

3.A Artificial Data

Let us first consider an example where the correct underlying noise-subtracted result is

known. A 3-leaf clover like structure shown in Fig. 5.3 (a 2D pattern) is corrupted by

noise: to each point we added an 8 dimensional noise orthogonal to the given pattern, so

that the input data is now 10 dimensional. The noise amplitude for each point is chosen

randomly from a random distribution which is Gaussian. Then, each component of the

noise is sampled from a uniform distribution with this amplitude. This helps to increase

non-uniformity. The average noise amplitude in each of the noise directions is about 0.6

times the average amplitude in the 2D pattern dimensions. Thus, we are dealing with a very

noisy object. This 10 dimensional data is then embedded back into 2D Euclidean space via
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Figure 5.3: Underlying Structure

nMDS. Ideally the original 2D pattern would be recovered. In Fig. 5.4, for a given number

of points, the left hand side shows the nMDS results. The right hand side exhibits the

bootstrap normalized rank distributions for the worst 10% of embedded points. The plus

marks denote their average values and the bars indicate the 3σ width. To begin with, the

worst points are much worse than the others, and hence the distribution of their ranks is

very narrow, as can be seen from the small sizes of the error bars. As more and more points

are discarded, the worst points become more like the majority, and hence their distribution

(quantified by the 3σ error-bars) broadens. Honing is stopped when the error bars go below

0.8.

As can be seen from the figure, the nMDS result before polishing looks nothing like it

should. Its quality gradually improves as points are discarded iteratively, the most pro-

nounced improvements appearing in the first few steps. The final result as suggested by the

cutoff criterion is clearly recognizable as the correct law.

3.B Micro-array Data for Fibroblast by Cho et al.

Let us now consider the analysis of actual microarray based data of primary fibroblasts

prepared from human foreskin produce by Cho et al. [52]. For each gene, microarrays are

used to find the expression levels as a function of time. This was done twice, giving us
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Figure 5.4: Recursive honing results with s = 10: For a given number of points, the figure on
the left shows the embedding result, while the one on the right shows the result of bootstrap
procedure for the bottom 10% of embedded genes. The plus marks show their mean ranks,
while the error bars are the 3σ width. The bootstrap procedure (with s = 10) requires us
to stop when any of these goes below 0.8
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two experiments N2 and N3. Cho et al. averaged the profiles across the two experiments

and identified cell cycle related genes as those showing a strong Fourier component with the

time period of the cell cycle. Shedden and Cooper [53] bitterly criticized this procedure.

They noted that the cell cycle related genes identified using the average of profiles from

two experiments were not necessarily supported by the individual experiments separately,

thereby casting doubt on the validity of the results.

The use of a small subset of genes selected by Fourier analysis, instead of the whole

set, for the analysis does have some problems. There has been some controversy over the

exact identity of the set of cell cycle related genes, and this has been seen in many different

species. Thus, it is worthwhile developing a general methodology to deal with it. Different

studies (for example, in yeast see [54, 55, 56]) come up with their own sets of cell cycle

related genes. These sets have varying sizes and show a less than impressive overlap with

each other (although there is perhaps a small core set of genes common to all studies). Also,

in selecting based on some externally imposed criterion, we run the risk of ignoring the

underlying biology supported by the data set. However, since cell-cycle related genes form a

minority of the genome, and behave quite differently from the other, pre-selection is essential

to study cell cycle related behavior. We will elaborate on this further later in this chapter.

A nMDS embedding, without honing, of the average (of experiments N2 and N3) gene

expression profiles of the cell cycle related genes, as identified in Cho et al.’s paper, yields a

configuration of points arranged along a ring in conformity with the identification by Cho et

al. (Fig. 5.5(a)); the genes corresponding to different cell cycle phases separate out nicely,

showing that gene positions are directly connected to the time in the cell cycle when they

are up-regulated. We now repeat this procedure, i.e., nMDS embedding without honing,

for the time series generated by experiment N3 alone. In this case (Fig. 5.5(b)), the cyclic

pattern reflecting the cell cycle is still recognizable but diffuse. This is in conformity with

the observation by Shedden and Cooper. After honing the N3 data, (Fig. 5.5(c)) we can

see that the cell cycle phases are nicely separated. Honing indeed sharpens the majority
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Figure 5.5: nMDS positions for genes identified by Cho et al. to be up-regulated in specific
cell cycle phases: (a) exhibits the result using the average of experiments N2 and N3; (b)
exhibits the result produced by the data from N3 only; (c) is the result obtained after honing
the N3 data.
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behavior that is periodic. Thus, we may conclude that there is a genuine periodic pattern

supported by each data set, and the averaging effect, due to combining two data sets, could

enhance periodicity by reducing the noise. That is, the averaging method adopted by Cho

et al. has been justified.

3.C Yeast Cell Cycle Data by Spellman et al.

In the case discussed above, even without honing the averaged result seems quite good. This

is because we only considered the cell cycle related genes; a fraction of the entire data set.

Without this pre-selection, there would be genes corresponding to many different processes,

and the data would not be easily described in a single low dimensional space. In this section,

we investigate the effect of such pre-selection procedures using microarray based time course

profiles of genes in yeast produced by Spellman et al. [1].

In their paper, six different synchronization methods were used to ensure that all cells

started in the same cell cycle phase before gene expression measurements were made. Of

these, the profiles produced by Cln3 and Clb2 are too short to be used. Spellman et al. have

pointed out (and we, and other authors, have confirmed this independently) that Elutriation

behaves very differently from the other synchronization method. We therefore consider only

the data produced by cdc15, cdc28 and alpha synchronization. For each gene, the time

course profiles for these three experiments were concatenated to produce 59 dimensional

time expression vectors. This allows us to simultaneously treat all three synchronization

methods without any need for fine tuning, and yet focus on genes which are consistent

over all of them. On the other hand, information contained in the differences between the

experiments is discarded. A method to exploit these differences will be the focus of the next

chapter.

First, we demonstrate the need for pre-selection. All the genes missing less than 5% of

their data were embedded into 3D using nMDS. The (negative of the) Pearson correlation

coefficient was used as the dissimilarity measure. The result is shown as a stereo-plot in Fig.
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5.6. A set of 84 genes previously identified as being cell cycle related (based on small scale

experiments) are marked in color according to the cell cycle phase in which they are known

to be upregulated. Since this set is large and represents all cell cycle phases, we expect cell

cycle related genes, in general, to be placed fairly close to these (this has been confirmed

using the set of 800 genes proposed by Spellman based on a Fourier based identification).

It is clear that this set of cyclic genes is differently distributed than the bulk of genes,

being concentrated roughly at two opposite poles, while the region in between, where the

majority of genes are located, shows a very low density of cell cycle related genes. Thus, the

properties of these genes are different from the bulk, and without pre-selection one would

expect those properties would be swamped out, especially if honing were to be performed.

That said, it does seem as if the nMDS embedding captures some cell cycle related

information. It is possible to define an angle along a great circle, which roughly corresponds

to the time of up-regulation of these cell cycle related genes, and not too many few cell cycle

related genes are present away from this plane. Thus, the closeness to this plane seems to be

a rough measure of cylicity. In this sense we have managed to identify some cell-cycle related

behavior without pre-selection. Even though the predictive power is poor, to the best of our

knowledge not even this has been achieved previously. A much better data-driven method

will be proposed in the next chapter.

When honing is applied to this data set cell-cycle related genes seem to be preferentially

removed. The results before and after honing are shown in Fig. B1 (a) and (b), respectively.

The cell cycle phases do not separate out, even after honing. Since cell cycle related behavior

no longer represents the majority, it seems these genes are preferentially removed by the

honing procedure. Here, only about a quarter of the genes have been discarded, and already

a dramatic reduction of marked genes is seen. With further honing, the remaining marked

genes disappear rapidly. Local enrichments of specific Gene Ontological categories are seen,

although these results are not consistent over experiments and synchronization methods,

and therefore other sources of validation are required. So, this result is at best of dubious
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Figure 5.6: nMDS positions for the genes missing less than 5% of their profiles. Those that
are known biologically to be cell-cycle related are marked in black.

reliability. Thus, we have to conclude that, even with honing, pre-selection is necessary to

see a reliable cell-cycle related behavior.

One may be tempted to believe that a clever pre-selection removes the need for honing.

For example, instead of applying honing to reduce the number of genes in the Cho data,

perhaps we could have simply chosen fewer (and consequently more strongly periodic) genes

using Fourier analysis. This approach is dangerous because:

1. Pre-selection is only possible when we know precisely what kind of gene expression

profiles we are looking for (in this case periodic). It would not work in exploratory

studies.

2. Even if the assumptions about the nature of gene expression profiles used for pre-

selection seem reasonable, non-data-driven pre-selection risks imposing an un-natural

behavior on the data set.

3. Pre-selection methods usually rank genes according to their quality. The cutoff is often
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(a) (b)

Figure 5.7: Embedding of data without pre-selection: (a) All genes embedded into 2D. Only
the genes known, biologically, to be up-regulated in specific cell cycle phases are colored (b)
The honed result, after removing a quarter of the genes, of (a).

arbitrary, and even in those cases where p-values are found the null results used involve

straw-man type scenarios casting doubts on their validity.

That said, for a single experiment, in most cases, pre-selection is inevitable (a data

driven way to perform pre-selection in the context of multiple experiments is shown in the

next chapter). There are very few properties that are expressed genome-wide. So, if we use

all genes or genome-wide data, the property of interest is likely to get swamped out. We now

show how honing can be used in conjunction with known biological information to avoid the

dangers listed above.

1. First identify a set of genes known biologically to possess the property we are interested

in. This set of genes shall henceforth be known as anchor genes.

2. Then, choose a large set of genes having profiles similar to this anchor set.

3. This set is deliberately chosen to be large enough that the pre-selection step does not

unduly constrain the selection. Yet, the size of the set must be small enough that the

genes are reasonably coherent with respect to the property of interest.
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4. We then apply the honing procedure to reduce this set to a smaller set of genes that

are truly coherent and consistent with the anchor gene behavior.

Thus, pre-selection produces a candidate set, and honing is used to arrive at the true

list of core genes. It is hoped that this will remove the effect of any idiosyncrasies of the

pre-selection method. The process of pre-selection is clearly biology driven, meaning fewer

assumptions need to be made. Honing stops discarding genes when we can’t be sure if the

genes to be discarded are any worse than the remaining ones, thereby providing a statistically

meaningful way of determining how many genes should be preserved. In this way, such a

procedure could help avoid some of the possible dangers outlined above.

If a biology driven means of pre-selection is not possible, one may use standard pre-

selection methods (such as Fourier analysis). Let us now apply these ideas to the Spellman

et al. [1] data set. Since pre-selection is used simple as a means of producing a candidate set

of genes from which we hope to extract the core set of cell cycle genes, it is advantageous to

keep the pre-selection methods as simple as possible. With this in mind we consider three

methods of pre-selection. The set of 84 genes mentioned above are the anchors referred to

below.

1. NN1: For each gene, find its Pearson correlation coefficient with respect to all the

anchor gene profiles, and pick out the anchor gene it is closest to. We then rank all

the genes in terms of their closeness to anchor gene nearest to them, in the sense

described above. This is the most naive means of pre-selection. It is easily affected by

anchor genes of poor quality (some anchor genes in Fig. 5.6 are seen to be distributed

differently from the others).

2. NN10: This is a more sophisticated version of NN1. Instead of ranking genes by the

distance of the closest anchor gene, the average of the distances to the 10 closest anchor

genes is used. This reduces fluctuations produced by bad anchor gene data. The choice

of 10 was based on the number of aberrant anchor genes seen in Fig. 5.6, and is thus
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still data driven.

3. Spellman: Finally, for purpose of comparison we consider the set of 800 cell cycle

related genes produced by Spellman. They performed a great deal of fine tuning and

tweaking to align the profiles corresponding to different synchronization methods, and

using Fourier analysis, they arrive at a cyclicity score for all the genes. Based on a

somewhat arbitrary criterion they decided that 800 of these were cyclic.

For NN1 and NN10 the best 1000 genes were selected. With this choice clear separation

of cell cycle phases is seen, much in the same way as for Cho’s data. They look very much

like Fig. 5.9(a), which is the result for Spellman’s selection. As the size is increased beyond

this, the behavior worsens rapidly. For Spellman’s data set, 625 genes were used. These are

all the genes selected by them and present in our set after removal of missing data. Honing

applied to these different sets suggests that between 480 and 330 genes be preserved. As a

compromise for easy comparison, we selected the best 350 genes by honing for the 3 pre-

selection methods. we also used just the pre-selection criterion themselves, without honing,

to select sets of the top 350 genes. The overlaps for these two methods are compared in

Fig. 5.8. It is clear that applying honing to larger pre-selected sets leads to a significant

improvement in the overlap of these sets, thereby minimizing the effect of pre-selection. As

a conservative estimate, we select the 295 genes common to all three honing selected sets, as

being cell-cycle related.

To understand the effect of honing, we compare the nMDS results on the 625 gene set

based on Spellman’s selection to our proposed set of 295 cell cycle related genes. This can be

seen in Fig. 5.9. Honing concentrates genes which are known, biologically, to be up-regulated

in specific cell cycle phases. We may now use this result to classify the remaining genes into

cell cycle phases.
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(a) (b)

Figure 5.8: Overlaps between the top 350 genes selected using different pre-selection meth-
ods: (a) exhibits the result using only pre-selection (b) exhibits the result produced by
applying honing to larger pre-selected sets

(a) Spellman Selection (b) Honed Selection

Figure 5.9: (a) exhibits the result using 650 genes selected by Spellman before honing; (b)
exhibits the result produced after honing down to 295 genes. The colors of the arcs in (b)
are chosen to be the same as the that of genes belonging to the corresponding phase
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4 Conclusions

The success of pattern or structure extracting algorithms is often limited by the presence of

points in data sets which are corrupted by noise. In this chapter we have proposed the idea

that this problem can be alleviated by identifying such points and removing them, a process

called data honing. If the biologically interesting pattern represents majority behavior, we

propose that the noisy points are those that are inconsistent with the extracted structure

(supported by the majority of data points). Their removal therefore enhances the extracted

structure in a fully data-driven fashion. This general idea may be used by any pattern

extracting multivariate analysis method. A concrete implementation was provided in the

context of nMDS (a discussion of PCA based honing is illustrated in the appendix.). The

utility of this method was illustrated by extracting the (known) correct pattern from a noisy

artificial data set, and by validating the controversial data set produced by Cho et al.

The idea proposed above assumes that the genes of biological interest are in a majority.

However, in real data where there are typically multiple processes at work this is hardly

ever the case. In the context of the much cited study by Spellman et al. [1], attempting to

identify the cell cycle related genes in yeast it is shown that a) when considering all genes, it

is difficult to extract any biologically meaningful results by standard methods and b) honing

fails to improve the results. Consequently, some means of pre-selection to identify only

genes belonging to a single process is required. Unfortunately, pre-selection methods are

typically not biology driven and risk imposing their artificial biases on the data. A method

to overcome this problem by using honing in conjunction with a biology driven pre-selection

method is proposed. It is found that honing reduces the effect of pre-selection, and allows

us to arrive at a core of genes believed to be cell cycle related. This core of cell cycle related

genes shows improved clustering of biological properties such a time of up-regulation.
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Chapter 6

Variability and Internal Consistency

1 Introduction

Living organisms are the ultimate complex systems. At any given point of time, there are

thousands of processes running in parallel, and intertwined in ways we will not understand

for years to come. It should therefore not be surprising that the outcome of experimental

measurements on cells can depend on a huge number of factors. Apart from the specific

biology that the experiment is trying to capture, some of the important classes of factors

affecting expression of genes are found to be:

• Genetics: (Non-clone) individuals have different genomes, which means the instructions

they use for control of gene regulation are different

• Epigenetics: Even if individuals are very similar genetically, there are a number of

other sources of control that are not genetic in origin. For example, methylation

causes methyl groups to be added to the DNA, and methylated regions are less tran-

scriptionally active. Thus, even cloned populations, under identical conditions, could

show different expression.

• Organism State: The state of an organism varies as a function of time. Different

processes change in different ways. While it is perhaps possible to ensure that genes

involved in a single process are in sync across cells, this is impossible genome-wide

• Environmental: The state of a cell is at least partly a product of its environment (not

just its present state, but also the history)
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• Noise: Many cellular functions are carried out by molecules in very low concentrations,

so that stochastic fluctuations become significant.

• Experimental Protocol: Even slight differences in the way an experiment is performed

can have a significant impact on the outcome. For example, a recent survey [57] of

microarray results on identical sample from multiple groups should surprisingly poor

reproducibility.

Some of these factors we can know and control, but the majority we cannot. It is therefore

inevitable that when experiments are repeated, the results are somewhat different. The

question we are going to attempt to address in this chapter is whether there is any biological

information in this variability of gene expression across experiments. Such variability is

seen across various other quantifiers in a population, and there are various techniques to

take advantage of them [58]. However, in the context of gene expression, such variation is

typically assumed to be caused by random, meaningless, uncorrelated noise to be removed

by averaging. In this chapter, we present a method that instead makes use of the variability

of gene expression across experiments and uses it to solve many of the problems we faced in

the previous chapter.

Given the complexity of biological systems, gene expression could potentially depend

critically on the state of just a few molecules in the cell, making prediction of biological

behavior impossible. In practice though, we find that even when they are subjected to

vastly different environments, living organisms behave (at least at a macro level) in a reliable,

reproducible fashion. This is a testament to their robustness.

For this to happen there must be design systems in place which ensure that, irrespective

of the microscopic details of the state of the cell, the important functions are performed

normally. One might use this idea in reverse to identify the important functions; look at the

cell under many different conditions and the functions that are always being performed the

same way are likely to be important. This is the guiding principle of this chapter. Thus,
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instead of perturbing the system directly, we make use of noise and fluctuations to infer

properties of the system.

In physics terms this is essentially the RG principle that the quantities worth studying

cannot depend on microscopic details, and so by shaking the system (or more specifically,

its microscopic details) and looking for parts that do not move, we can identify the right

variables to study.

The macro/phenotypic behavior is generated by the complex and microscopic ‘network’

of gene interactions. High-throughput experiments, such as microarrays, provide us with a

snapshot of the state of the genetic machinery by telling us about the expression levels of

thousands of genes at a given point in time. Since the individual gene expression profiles

themselves represent raw microscopic details we expect them to be affected by the change in

experimental parameters. What one might expect to stay fixed is the groups of genes involved

in a particular process, and consequently the relations between their gene expression profiles.

With this in mind, we have designed a method that looks for groups of genes whose

relations (irrespective of their strengths) are well preserved in the expectation that these

groups are related. The basic idea of this method is summarized schematically in Fig. 6.1.

Each point in the picture corresponds to a single gene, and its position a representation of its

expression profile. Many of our beliefs/assumptions about biological systems are captured

by the picture:

• The gene expression profile for a single gene can vary unpredictably from experiment

to experiment.

• Biologically related genes can have significantly different expression profiles.

• Closeness in expression profile for a single experiment does not necessarily imply a

biological relationship.

• Related genes respond in correlated ways to changes in experimental parameters.
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Figure 6.1: Basic Idea of the ICS Survey: The different points here are supposed to reflect the
positions of genes in the high dimensional space of their expression profiles. As parameters
change between experiments, the expression profiles change too, altering the positions of the
various genes. However, the relative positions of groups of related genes (same color) are
preserved, while those of unrelated ones are not.
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• Unrelated genes respond differently.

• Therefore relations between the gene expression profiles of related genes are better

preserved, i.e., they act as rigid bodies in gene expression space.

• We can identify related groups of genes by looking for such rigid bodies.

• There may be many such rigid bodies, by identifying them we can identify the dominant

processes captured by the experiments.

This idea was applied to the microarray-based study of gene expression in yeast performed

by Spellman et al. [1] that we studied in the last chapter. Unlike in the last chapter, where

the experiments were combined to look for the averaged patterns, here we explicitly look for

the differences in gene expression across experiments. It was found that there are essentially

two rigid gene groups supported. One of them corresponds to periodic genes which were

found to be related to the cell cycle, while the other group seems to consist of genes that

showed a strong response to the cell cycle arrest methods employed. The latter group showed

a strong over-representation of genes related to the ribosome. Our method, despite being

completely data-driven, shows very clear separation of groups with classification accuracy

rivalling that of methods specifically designed to identify cell-cycle/ribosomal genes. This

unequivocal separation of groups is the key advantage of this method and solves many of

the shortcomings of traditional methods noted in the introductory chapter.

2 Method

2.A Basic Idea

Before explaining the details of our approach, let us motivate it with an example. Fig. 6.2

shows the expression profiles of a few selected genes based on the Spellman data. Profiles for

the three different cell-cycle arrest methods used by Spellman et al. [1] are shown separately.

94



Two groups of genes were considered, one related to ribosome biosynthesis and the other to

the cell-cycle. Comparison of their time course expression profiles across the synchronization

methods shows that the cell-cycle-related genes roughly preserve their relative relations by

phase shifting all the profiles equally. The ribosomal genes all have similar expression profiles

for each synchronization method. However, the change in expression levels from protocol to

protocol is unclear. Thus, each group maintains robust intra-group (anti)correlation patterns

across protocols, but the intergroup relations exhibit no regularity. This difference between

inter- and intra-group relations can clearly be seen in the correlation matrices of the gene

expression profiles in Fig. 6.2. This observation motivates the already mentioned idea that

the extent of robustness of relations among gene expression levels can be a means to unravel

biologically important features of the system.

As mentioned in the introduction, geometrically if we think of genes as points lying in

a high dimensional space, closely (e.g., functionally) related genes could form robust con-

stellations that are stable against modification of experimental factors, even though mutual

relations between these constellations are strongly affected. A method shall now be proposed

to identify groups of genes that form robust constellations of this type (i.e., groups of genes

among which relative relations are well preserved). Each constellation may then expected to

represent one class of genes related in a biologically significant way. It should be noted here

that moderate but consistently reproducible relations among genes may be exploited in this

analysis, while typically it is only the strongest relations that are considered.

The geometrical analogy above might lead the reader to think it may be better to perform

a dimensional reduction procedure to embed the genes in a low dimensional space first and

then look for consistency in this low dimensional result. An illustration for PCA can be

seen in the fourth row of Fig. 6.2. Here, the 6 (cell cycle related + ribosomal) genes were

combined with 94 other randomly chosen genes. PCA was then performed on these 100

genes. In the PCA result, neither do the cell cycle genes appear to be related, nor is the

robustness of their phase relationship captured by PCA. Although PCA places the ribosomal
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alpha cdc15 cdc28

Figure 6.2: Each column represents data from a different experiment in [1]. The first row
exhibits the profiles for three cell-cycle-related genes pds1 (p), alk1 (a), swe1 (s). Clearly,
the profiles preserve their shapes (and relative relations) over experiments. The second row
exhibits three ribosomal genes enp2 (e), rpa49 (r) and mpp10 (m). In each experiment, the
ribosomal genes have nearly identical profiles, but they change dramatically from experiment
to experiment. There is little conserved relation between the profiles of genes in these
different groups. As shown in the third row, the inter- and intra-group correlation coefficients
reflect the same patterns. However, the results of PCA do not. These six genes were
combined with 94 randomly selected genes, and PCA was performed. The positions of these
genes based on the first two principal components is shown in the third row (the first letter
of each gene name is used to denote its position). The consistency of phase relationships
between the cell cycle related genes is not captured by PCA. Although the ribosomal genes
consistently cluster, without biological knowledge, they don’t stand out in any way.

96



genes close together, they do not stand out as being special without additional biological

information. Thus, the correlation matrices capture the consistency information better than

PCA.

That said, the PCA result is quite instructive. It suggests why traditional exploratory

methods that attempt to find co-expressed groups of genes cannot always identify biologically

related groups of elements. Firstly, co-expression for a single experiment could be accidental,

and need not imply biological relation. Different processes running in a cell give different

and often contradictory signals depending on various conditions. Thus, if all the mutual

relations among genes are treated evenly, it is often unclear if the genes deemed to be close

are in any way functionally related. Secondly, just like the cell-cycle-related genes, there

could be groups of related genes that are not co-expressed. Such groups of genes are not

readily recognized as related by most dimension-reducing or information distilling techniques

such as cluster analyses and principal component analysis (PCA).

3 Implementation

The important message from the PCA result is that when different processes are considered

simultaneously, the desired consistency information has a tendency to get swamped out.

Therefore, the individual processes must be considered separately. Our strategy centers on

the existence of constellations of genes unambiguously associated with certain biological-

processes whose internal relations will be preserved across experiments. Such a set of genes

will be called an Internal Consistency Core (ICC) associated with the process. The method

adopted to characterize the data can then be considered to have the following steps:

1. Construct an ICC corresponding to a single process.

2. Create a method to measure the consistency of the gene expression profiles of an

arbitrary gene with respect to the ICC.
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3. Rank all the genes in terms of this consistency score.

4. Use some statistical test to determine how many of the top ranked genes should be

considered at the desired level of confidence. This extended set of genes should now all

correspond to the same process as the ICC, and will be called an Internally Consistent

Set (ICS). The ICS is the result of the method.

Going back to the geometrical analogy, the ICC genes may be considered as the core of

the rigid object while the ICS genes are the halo of other objects around this core that also

share this rigidness property.

The actual implementation of these steps shall be explained below. Based on the way the

ICC is selected, we have devised two methods. The first, called the Steered ICS, is a semi-

supervised method. It is assumed that a set of related genes are known to be biologically

related, and these are used as the ICC. The other, a data driven method known as ICS

Survey, initially starts with a random set of genes as the candidate ICC. This set is then

iteratively updated to improve consistency. Once no improvement is possible, the best ICC

candidate is treated as a true ICC, and the corresponding ICS is generated. By using different

randomly selected initial ICC candidates and repeating this method, a sampling of all the

ICCs (and consequently the significant processes) supported by the data is found.

3.A Calculating Consistency With Respect to a Set of Genes

This section describes the implementation of Step 2, and is the central engine of our method.

Suppose we have Ne experiments, measuring the gene expression profiles of Ng genes. Here,

we shall primarily consider time course profiles, but measurements across multiple tissues,

etc. can also be used. For a given experiment e and for each gene g, suppose the raw data

is its time expression profile xe
g. Let Ce(g, h) be a correlation between the profiles of genes

g and h for experiment e. The Pearson correlation coefficient was used for the results in the

paper, but other similarity measures by Spearman, Kendall, etc., also work. Let us assume
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that by some means (methods to do this will be shown later), we have a set of N genes which

are believed to constitute an ICC. Then to find the consistency of the gene g, with respect

to this ICC, the following steps are followed (a schematic version can be seen in Fig. 6.3):

1. Consider the gene expression profiles of the gene g and of theN ICC genes (h1 . . . hN)

across all Ne experiments

2. For each experiment, find correlation of g with each ICC gene, and construct a

vector of length N with these correlations (one such vector will be constructed for

each experiment)

(Ce(g, h1), · · · , Ce(g, hN))

3. Normalize each vector appropriately (mean zero, unit standard deviation), to allow

comparison over experiments on equal footing

ce
g =

1

σeg

(
Ce(g, h1)−me

g, · · · , Ce(g, hN)−me
g

)

4. Compare vectors across experiments, finding variance of each component across

experiments

5. Inconsistency score (larger the score, less the consistency) for the gene is given by

sum of these variances

Sg =
N∑
i=1

V are(c
e
g,i),

Here ceg,i is the i-th component of ce
g and V are denotes the variance over experiments. The

use of variance ensures that the strength of (anti)correlation per se is not considered, just

its consistency.
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Figure 6.3: Sequence of Steps to Find consistency of a gene g with respect to a known ICC.
Here, we assume there are 3 experiments and 5 genes in the ICC. Note that that the lengths
of the gene expression profiles in each experiment need not be the same.
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3.B Steered ICS

Steered ICS is a biology driven method to be used when we have a set of representative

genes belonging to a process we are interested in. In terms of its goals and inputs it is quite

similar to the NN1 and NN10, except that those methods are essentially single experiment

methodologies and they are limited to finding genes that are strongly correlated with at

least a few of the genes in the training set. Consequently, they need a much more complete

training set. Like these methods the steered ICS is clearly not data driven, and is limited to

only identifying genes related to the training set.

The steps involved in performing the Steered ICS are as follows:

1. Use the set of genes known to be biologically related as ICC.

2. Calculate the inconsistency scores Sg of all genes, as outlined in the previous section.

3. Rank all genes according to their Sg score.

4. Apply Random ICC test (described later) to determine how many of the top genes

to preserve at desired level of confidence.

This list of ICS genes is the result of the method and is expected to be functionally related

to the genes in the training set.

3.C ICS Survey

The ICS Survey is a truly data driven method which, unlike the Steered ICS, does not require

any additional biological input. Instead, it starts from a random set of genes which it treats

as its candidate ICC. The ICC is then updated to improve self-consistency, till a fixed point

is reached. The fixed point ICC may then be used to construct an ICS. By repeating this

procedure, a sampling of the different ICSs supported by the data may be found.

The steps involved in performing an ICS Survey are:
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1. Select a random set of N genes as the ICC candidate.

2. Calculate inconsistency scores Sg for all genes (including the ICC genes themselves)

with respect to the ICC.

3. Rank genes according to Sg.

4. N top ranked genes are new candidate ICC.

5. If new and old candidate ICCs are not the same, go to step 2.

6. Else, if the fixed point, ICC has been reached use top ranked genes based on this

fixed point ICC. Number of genes to be preserved may be decided using Random

ICC test.

7. Repeat from step 1 with another randomly selected set of genes to get sampling of

the ICCs supported by the data set.

Thus, essentially the ICS Survey involves starting with a random set of genes and using them

as an ICC to perform a Steered ICS. Then, using the top genes as the ICC, this process is

repeated until a fixed point is reached.

To avoid a situation in which the ICC update gets caught in a loop, if the algorithm does

not converge within a certain number of steps (chosen to be 50 for our implementation),

then that run is terminated.

The result of the ICS Survey when implemented for many random initial conditions is a

series of rankings (the top genes among which are the prominent ICS supported by the data).

It is quite likely that many of these rankings represent the same process, and therefore the

rankings must be analyzed as a whole to identify the distinct ICSs.
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ICC Size

So far, we have simply assumed that the number of genes N in an ICC was known. It is

not dictated by the method, and shall be decided by the user. Let us therefore consider the

effects of varying ICC size.

• In the case of the Steered ICS, the larger the set, the better the results. Thus, ICC

size will be decided by our confidence in the set of gold standard genes being used (we

do not want to use genes we are unsure of).

• In the case of the ICS Survey, if N is too large, we run the risk of not having processes

with containing so many genes.

• Even for moderately large sizes, some of the less dominant processes could be excluded,

and it could take longer to converge to a fixed point.

• If ICC size is too small, fluctuations could become important, and we cannot have

much confidence in the results produced.

Thus, for the ICS Survey an intermediate ICC size should be used. In practice, we have

found that an ICC of size between 20 and 50 genes strikes the right balance.

ICS Size (Random ICC Test)

To determine how many genes should be considered as an ICS, their inconsistency scores

based on a given ICC are compared to the distribution of lowest inconsistency scores con-

structed as follows. N genes are chosen randomly and treated as an ICC to calculate incon-

sistency scores for all the other genes. The lowest inconsistency score for this random ICC

is recorded. Repeat this procedure for many randomly chosen ICCs to obtain an empirical

distribution of the lowest inconsistency score. Then, the inconsistency score corresponding

to an appropriate p-value can be selected as a cutoff: the genes whose inconsistency score is

less than this cutoff are included in the ICS.
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Figure 6.4: 2D nMDS embedding of gene rankings for different seed ICCs: Each point
represents a single ranking of genes. The points are colored according to the overlap of the
top 200 genes with the Spellman et al. set of cell-cycle-related genes. A completely random
ranking of genes would give an overlap of about 30 genes.

4 Results

4.A Saccharomyces cerevisiae

We first analyzed the same data set we considered in the last chapter, namely the microarray

data by Spellman et al. [1] used to identify the cell cycle related genes in Saccharomyces

cerevisiae. As discussed earlier, there are multiple data sets corresponding to different meth-

ods used for cell synchronization. Here, as in the last chapter, we only considered alpha,

cdc15, and cdc28. Unlike then, here the experiments are compared not averaged. Genes that

were missing more than 25% of their time expression profiles in any of the 3 experiments

were discarded. This reduces the size of the gene set, from the 6178 studied by Spellman

et al., to 5239. Spellman et al. had proposed a set of 800 cell-cycle-related genes based on

Fourier analysis. 717 of these are contained in our reduced set. We shall use this set of genes
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as our gold standard for cell cycle related genes.

ICS survey

First, the ICS Survey was performed on this data set as descrbed above. 300 ICC candidates

of size N = 30 were selected randomly. Of these the 258 that reached a fixed point within 50

iterations were used to construct ICSs. In order to classify ICCs, inconsistency score rankings

of all the genes were produced for each ICC (as in Step 3 of the algorithm). Thus, each ICC

is represented by a particular ranking of genes. ICCs were embedded into 2D Euclidean

space with the aid of nMDS [24] according to the dissimilarity of the corresponding gene

rankings measured by the Spearman rank correlation.

The results are shown in Fig. 6.4. Each point represents an ICC. Despite selecting the

initial guesses in a completely random and unbiased fashion, essentially only two types of

ICC were found. Since the ICS are the top ranked genes according to the ranking being

used, this means that there are just two dominant ICS exhibited by these experiments.

In Fig. 6.4, the points are colored according to the overlap of the top 200 genes in the

ICC rankings and those in the gold standard list proposed by Spellman et al. If the two lists

were uncorrelated, an overlap of about 30 genes would be expected. Thus, Cluster A with

typical overlaps of 180 is very highly cell-cycle-related. Cluster B, on the other hand, shows

a worse than random overlap with the Spellman list, suggesting it is ordered according to a

very different criterion.

Cell-Cycle-Related Cluster

As is clear from Fig. 6.4, the ICC rankings in Cluster A are quite similar. The inconsistency

scores were therefore averaged to arrive at a single ranking of genes for this cluster. The top

180 averaged scores were found to pass the random ICC test (see Methods) at the p = 0.01

level of confidence. These top 180 genes therefore constitute an ICS. Of these 176 were on

the Spellman list. The effect of choosing a larger number of genes can be seen in Fig. 4.A.
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Figure 6.5: Comparison of steered ICS and the ICS survey results: Overlap of the top ranked
genes with the Spellman et al. list are shown. The black curve shows the results due to the
steered ICC, the gray curve from ICS survey while the dotted line shows the expected overlap
for a randomized ranking. The Inset figure is the result for just the top 180 genes passing
the random ICC test at the p = 0.01 level of confidence.

Clearly, this ICS is cell-cycle related.

This may also be independently inferred from observing the profiles themselves (first

column of Fig. 6.6) across the three experiments. It should be clear that the profiles are

all periodic, containing about two periods worth of data. The profiles are arranged1 in a

ring-like configuration with order roughly corresponding to their time of peak expression.

The angular position in the ring is essentially the cell-cycle phase. The non-uniformity of

distribution is an intrinsic property of the genes (the Spellman et al. set shows a similar

distribution of phases). Note that genes up-regulated at different cell-cycle phases show

poor correlations between their profiles, and would therefore be considered unrelated by

methods that look just for strong pair-wise correlations (such as traditional meta-analysis

methods [59, 60]).

1This plot can be generate using the NeatMap package to be discussed later. Essentially nMDS was
applied to the 300 profiles selected as being cell cycle related using their Pearson correlation as dissimilarity
measure. It is separate from the use of nMDS to determine the relations between ICSs
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Non-Cell-Cycle-Related Cluster

Cluster B is not related to the cell-cycle. Again, all ICC rankings are similar so the incon-

sistency scores were averaged and a single ranking was calculated. The average scores of the

top 650 genes pass the random ICC test at the p = 0.01 level of confidence. The expression

profiles of these genes, for the 3 experiments, are shown in the second column of Fig. 6.6.

It should be clear that all the profiles exhibit an initial jump, before relaxing into a more

stable behavior. On the basis of the direction of this jump, it should also be evident that

there are two distinct classes of behavior.

The coloring for these classes, for all three experiments, is based on the alpha results.

Clearly, the identities of the genes in the two behavioral classes are conserved. This suggests

that they are biologically meaningful, reproducible effects, but undoubtedly induced by

arresting procedures needed for synchronization. For the genes with profiles colored black, no

single dominant Gene Ontological (GO) category was found. The gray group, on the other

hand, shows a remarkable over-representation of genes related to the ribosome (Table 6.1).

The results for ribosome biogenesis are particularly noteworthy. There are 298 genes out

of 5186 annotated genes that belong to this GO category, but of these, 163 are in the 361

genes in the gray group. Thus, the majority of the ribosomal biogenesis may be selected in

this way. In addition, the 5 GO categories shown in Table 1 account for 211 of the 361 gray

genes. The extent of agreement suggests that this technique could be used to identify genes

related to the ribosome.

The existing method to identify ribosome related genes [61] takes advantage of the fact

that under perturbations that halt the production of ribosomes, all ribosome related genes

seem to behave in the same way (although this typical behavior may differ greatly depending

on the perturbation). They therefore attempted to find the typical ribosomal gene profile,

and find the genes with profiles matching this as closely as possible. The typical profile was

found by taking the average of the expression profiles of a set of genes they previously found
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Cluster A Cluster B

Figure 6.6: Profiles of selected genes: The first column shows 2D nMDS embedding across
experiments of the 180 genes in the Cell Cycle related ICS (Cluster A) based on the Pearson
correlation of their profiles. After embedding, the result was divided into a 15 by 15 grid,
and the profiles of the genes within each cell are displayed. The second column shows the
time course expression profiles for the 650 genes in non cell-cycle-related ICS (Cluster B)
over 3 different experiments. Two distinct kinds of behaviors are seen. The profiles are
colored according to their behavior in the alpha experiment.
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Table 6.1: GO categories over-expressed in the gray genes in Cluster B from Fig. 6.6: Total
# is the number of genes in a given GO category present among all the genes, whereas Gray
Group # is the number of these in 365 the gray genes. All p-values were calculated using
the GO Term Finder (Oct 29th 2008) tool at http://www.yeastgenome.org/ .
GO category Total # Gray Group # p value
ribosome biogenesis 298 163 1.21e-119
rRNA processing 168 96 4.27e-68
maturation of 5.8S rRNA 55 35 3.69e-25
ribosome assembly 55 27 6.04e-15
ribosome localization 29 16 2.97e-09

[62] to be ribosome related. When this method was applied to the present data set, the

results were found to be comparable, especially for the top ranked genes. Note that unlike

the ICS Survey this method needs biological information in the form of a set of genes known

to be related to the ribosome.

4.B Steered ICS

In the Spellman et al. case the purpose of experiments was to study cell-cycles, and as

mentioned in the last chapter there is a set of 80 gene known, on the base of small scale

experiments, to be cell cycle related. These genes were used to drive a steered ICS analysis.

Of the 80 genes, the 72 that survived our culling procedure were used as ICC. All the

genes under consideration were then ranked according to their consistency with this ICC.

The overlap of the top ranking genes in the Spellman et al. list and the top ICC ranking

genes is shown in Fig. 4.A. The agreement is almost identical to the data driven ICS method.

4.C Schizosaccharomyces pombe

If we consider data sets produced by different groups, then not only do we have to contend

with different synchronization methods, but also with differing experimental protocols. A

striking example of this is the identification of cell-cycle-related genes in S. pombe. Three

different groups [63, 64, 65] have attempted to do this using a variety of synchronization
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Gene Description
SPBP4H10.16C related gene in S.c involved in negative regulation of G1 cyclin
SPBC106.20 cell separation during cytokinesis
SPAC644.06C positive regulation of progression through mitotic cell cycle
SPBC725.16 G1/S transition of mitotic cell cycle
SPAC144.17C fructose 2,6-bisphosphate metabolic process
SPAC4F10.03C rRNA processing
SPBC11B10.09 G1/S transition of mitotic cell cycle
SPAC6B12.10C cell cycle
SPBC211.03C ER to Golgi vesicle-mediated transport
SPAC637.13c actin cytoskeleton organization and biogenesis
SPAC17C9.01c cell cycle arrest
SPAC589.06C phosphate transport
SPBC18H10.08C ubiquitin thiolesterase activity
SPAC637.13C phosphoinositide binding
SPAC1952.08C FMN binding
SPAC6G10.02C selection of site for barrier septum formation
SPAC23D3.10C cell wall catabolic process
SPAC144.04C ornithine catabolic process, by decarboxylation
SPAC31G5.16C GPI anchor biosynthetic process

Table 6.2: Genes included in my top 125 list for S.pombe, but not in the Marguerat list

methods. Each group proposed their own set of cell-cycle-related genes. Unfortunately, the

sizes and overlaps between these sets were quite poor. Attempts were made by Marguerat

et al. [66] to explain this discrepancy. They proposed a set of 500 cell-cycle-related genes

based on the combination of experiments.

A total of 10 experiments from 3 different groups [63, 64, 65] were considered. Only genes

that were common to all experiments and were missing less than 25% of their expression

profiles in each experiment were preserved. This gave us a set of 2239 genes. In this case,

the data-driven ICS approach gave only periodic, cell-cycle-related behavior with 125 genes

surviving the random ICC test at the p = 0.01 level of confidence. To construct the steered

ICS, as the core we used 33 genes from the set cited by Marguerat as previously being

known to be cell-cycle-related. Of the top 125 genes selected in this way, 107 were also

deemed cell-cycle-related by Marguerat et al. Among the genes on our list but missing from

the Marguerat et al. list, many are cell-cycle-related. See Table 6.2 for details.
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4.D Number of Cell Cycle Related Genes

There are numerous examples [66, 67] of different groups proposing sets of cell cycle related

genes on the same species, but with poor overlap. This is caused [66] by the inclusion

of genes, with weak evidence of expression modulation in concord with cell cycle, passing

statistical tests with dubious (i.e., trivial) null hypotheses. Thus, the number of cell cycle

related genes present in an organism remains an open question.

This may be addresses in two ways: extrinsic and intrinsic. Firstly, as suggested above it

is to be expected that the top ranked genes are considered cell cycle related by all methods.

Thus, the point at which the ICS results start diverging from Fourier based ones is a natural

cutoff point. For S. cerevisiae, the top 250 or so genes in the ICS list are in almost complete

agreement with the Spellman results. It is beyond 400 genes that a divergence is seen,

suggesting there are 250 to 400 cell cycle related genes. A similar conclusion may be reached

using the random ICS test proposed here. It indicates that at a p = 0.05 (0.01) level of

confidence at least the top 250(180) genes are cell cycle related. For S. pombe we only

considered the 2239 genes that survived our culling procedure. The criteria above suggest

that about 100 to 150 of these are cell cycle related. Thus, for the full set of 6000 genes, 300

to 400 are expected to be cell cycle related.

4.E Computational Details

The computational time for the scheme presented here scales linearly with the number of

genes, ICC size and number of experiments. The runs for different seed ICCs are inde-

pendent, and may be computed in parallel. It is therefore expected that there will be no

difficulty in extending this scheme to larger whole genome data sets. The computation time

for the Spellman results are less than 30 seconds per ICC iteration on an Intel Core 2 Duo

laptop with 2GB RAM. Thus, even on a laptop, a single ICS calculation (involving no more

than 50 iterations) is possible in less than 25 minutes. There must be enough (∼ 30) runs
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corresponding to each distinct ICS so that statistical quantities can be calculated reliably.

5 Discussion

5.A Comparable Methods

Although they are not very popular, there are a few existing methods that share some

common features and goals with the ICS Survey:

1. There are some methods which attempt to account for the change in profiles over

experiments by explicitly generating models to transform profiles between experiments.

This is fairly restrictive, and does not always work.

2. In the context of gene expression analysis there have been previous attempts [59, 60]

to make use of the consistency of the gene-gene correlation matrix over multiple ex-

periments. However, for each experiment they restrict themselves to considering the

reproducibility of strong correlations between pairs of genes, making them essentially a

binary (correlated/not correlated) approach. Such drastic coarse-graining of informa-

tion may be admissible if there are a large number of experiments, but is problematic

if there are just a few. In order to obtain a more global gene relation picture from

pairwise relations, they make use of clustering/network construction algorithms. Given

the limited information being used, however, the separation of clusters corresponding

to distinct biological features is not sufficiently pronounced to be used as a means of

classification.

3. As an extension to the work by Lee et al. [59], one might also conceivably calculate

the variance of the correlation matrix across experiments, and use this as a distance

measure between genes. This approaches would be the closest to ours. However, the

separation between groups is much worse than ours because only consistency of pairwise

relations are considered instead of multi-factor relations like us. This approach might
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work if there are enough experiments, but in the typical case where there are only a

few experiments, our approach seems superior.

4. It may be argued that Fourier analysis does a very good job of identifying cell-cycle-

related genes. This is only because it is not an exploratory method, and looks for

a specific behavior. It thereby avoids the problems that arise from the mixing of

different behavioral classes during whole genome analyses. That said, even for this

specific purpose, there are reasons [53] to be skeptical about it. Beyond the most

cyclic genes, the ranking of genes itself could be suspect, especially for periodic profiles

that differ greatly from a sinusoidal shape. Also, if we simply average the Fourier

strength, we are discarding valuable phase information: if a gene is periodic over

multiple experiments, but is up-regulated in different cell-cycle phases, the results are

not likely to be meaningful. The steered ICS provides a method that may be used to

just identify factors of a specific type. We have shown that in the case of cell-cycle-

related genes, the results agree well with those produced by Fourier analysis. Unlike

Fourier analysis though, it is easy to apply it to identify other classes of genes.

5.B Conclusions

The vast data produced by high throughput experiments provide a snapshot of a large

number of processes running in parallel within the cell. Each of these can critically depend

on experimental protocol, hidden variables out of our control, random noise, etc. This makes

it very difficult for methods based on single experiments to distinguish between different

groups of factors, and direct comparisons of multiple sets of experiments are not always

informative. Consequently, traditional single-experiment-based methods have not taken full

advantage of high throughput experiments.

We proposed a method to identify groups of elements (e.g., genes) that represent biolog-

ically meaningful processes. The method relies on the expectation that intrinsic relations
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between related elements relevant to a particular process should be better preserved across

different experiments than those between unrelated elements. Thus, the proposed method-

ology is inherently multi-experimental and is for meta-analysis.

Listed below are salient features that distinguish this method.

• The ICS Survey is completely data driven, no biological information is needed except

for the last step of biological validation.

• Unlike traditional methods, it is not restricted to identifying strongly correlated genes.

Weak but reproducible relations may also be identified. It therefore does not make co-

expression implies relation assumption (or its converse). This is why cell cycle related

genes could be identified.

• Despite being an exploratory method, the performance in identifying cell cycle and

ribosomal genes compares favorably with methods specifically designed for these pur-

poses, while making far fewer assumptions

• Unlike traditional dimensional reduction methods (as in the honing chapter), there

is no mixing of processes. The genes belonging to the different classes are very well

separated. This is the big advantage of our method

• The uncertainty is now transferred from demarcating groups in a result to deciding

how many genes to keep in each group (for example, by the Random ICC test).

• The superior performance of this method stems from use of group instead of pairwise

relations, and the fact that the different processes are separated out explicitly in the

algorithm.

• Our method turns inter-experiment variability from a problem into the solution. If all

the experiments were identical, this method would fail completely. Thus, it explicitly

depends on variability.
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Commonly used methods usually involve applying the same single-experiment-based

methodology to all the experiments, and averaging the results. This implicitly assumes

that the differences between experiments are meaningless noise, and random enough to be

removable by averaging. The success of the method proposed here demonstrates these as-

sumptions to be untrue.

Thus, the ICS survey may be thought of as a first attempt to make use of this infor-

mation contained in experimental variability. This is a rich and as yet untapped source of

information, and it is hoped that our method encourages future work in this direction.
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Chapter 7

Summary and Future Work

We now summarize the major results in each chapter and discuss possible avenues for future

work.

1 RG and Statistics

In the second chapter, we introduced the Renormalization Group as a means of constructing

a phenomenological description of a system of interest. We explained how the strong law of

large numbers and central limit theorem emerge naturally by applying RG to an appropri-

ately chosen dynamical system. The RG process can be interpreted as a search for stability.

In the case of statistics, we suggest that the appropriate choice is a stability against addition

of more data. Thus, the basic statistical quantifiers can be ‘derived’ through such a stability

argument. The hope is that this stability can be extended beyond these obvious cases and

can offer novel insight about more complicated statistical quantifiers. We followed through

on this in various ways in the rest of the thesis.

One direct (although perhaps not simple) possibility that was not fully explored is to

continue the sequence that yielded the strong law of large numbers and central limit theorem

as the first two terms. The next term in the series should be a non-standard statistical

quantifier. The first term in the series, namely the law of large numbers is a descriptor of

samples. The next term, corresponding to the central limit theorem describes the distribution

of the previous term, viz. the sample means, which for a finite sample size, deviate from the

true mean. Thus, the third term should describe the distribution of the finite size CLT type
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distributions themselves.

The problem of pursuing a mathematical structure supported by a population may be

interpreted as a problem of arranging the sample points appropriately in a certain space (for

example, as performed by a dimensional reduction algorithm). In Chapter 3, we extended the

use of the idea of stability (against addition of new data) to such quantifiers. In particular,

we applied it to a dimensional reduction method known as non-Metric Multidimensional

Scaling (nMDS). While proposing modifications to the implementation of nMDS dynamics,

we found that we were faced with two very similar dynamics, which one might naively expect

to give very similar results. One of these dynamics conformed to the stability idea, in that

new points being added to the structure maximally respect the existing structure, while

the other one did not. It was found in practice that the first scheme performs much better

than the other, thereby vindicating our idea. This modified dynamics requires much less

inequality information, and could be very advantageous in fields (such as the humanities)

where inequalities are the direct input to nMDS.

2 Methods to Analyze Gene Expression Data Sets

In Chapters 3, 4, and 5 we discussed various aspects of the dimensional reduction, analysis

and visualization of microarray-based gene expression data sets. In Chapter 3, nMDS was

introduced as a dimensional reduction method and its superiority to other more sophisticated

schemes was demonstrated in the analysis of a microarray based data set studying the

developmental stages of Drosophila.

The agenda of Chapter 4 was to replace cluster analysis, which is the dominant method

in the field, despite the existence of other methods more suited to the analysis of gene

expression data. A major reason for the continued use of cluster analysis is its role in the

construction of clustered heatmaps, presently by far the most popular visualization method.

With a view to undermine this we demonstrated the superiority of NeatMap, a package
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created by us to create heatmap like plots by using more suitable dimensional reduction

methods (in preference to cluster analysis).

In Chapter 5, we found that despite using the best possible dimensional reduction

schemes, the performance, in biological terms, was quite poor. This is attributable to two

effects: a) biological experiments are very noisy, with many points carrying very little bi-

ological information b) biological data sets capture a large number of processes, and are

consequently very high dimensional. Thus, if the results of a whole genome data set are

projected onto a low dimensional space, the results are not very meaningful. The solution

to these problems involved two steps. First, rather than analyze all the genes at the same

time, some method for pre-selection must be used to separate out the individual processes

which can then be analyzed. Secondly, a noise reduction procedure must be applied to re-

move less meaningful points. Unfortunately, (until the emergence of the ICS Survey which

we described in Chapter 6) there were very few data driven pre-selection methods and all

of them risked biasing the results in non-biological ways. We therefore proposed that some

biology driven pre-selection method be used to produce a candidate set of genes (even a

little) likely to be involved in the process of interest. The selection can then be improved by

using an appropriate noise reduction method. For this noise reduction method, we proposed

that since genes are expected to work together, meaningful points must be consistent with

the low dimensional structure identified by (say) nMDS. Therefore, by removing points in-

consistent with this, the noise content may be reduced. This method was shown to improve

biological meaning and reduce pre-selection biases.

Our method of choice for dimensional reduction has been nMDS because it is completely

data driven, non-linear and produces better results than comparable methods like PCA.

One of the primary drawbacks of nMDS as compared to other methods are its demanding

computational needs. Since its traditional implementation requires all pairwise distances

to be ranked, it scales quite poorly with the number of points. Thus, if the computational

speed were increased, without sacrificing performance, it would greatly increase the usability
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of nMDS. We have conceived two ways in which this might be done

1. Instead of considering all pairs at once, partition the points into related groups, and

perform nMDS honestly on each of them. Then perform some appropriate joining

technique to stitch the different groups back together to generate an nMDS embedding

for the whole set. An approach of this type has been adopted by Tzeng et al. [68]. We

could potentially adopt this to our algorithm

2. The time consuming step in nMDS is the ranking step. Thus, if we could invent a

scheme where ranking is not required at each step, it would be much faster. One

possibility that has shown early promise is as follows. It is possible to move the

embedded points around to match some set of target pairwise distances Dij, provided

these are not too far away from the present set of distances dij. The idea is to have

a sequence {D1
ij, D

2
ij, · · ·} which converges to a set of distances consistent with the

rankings. At any intermediate step k, the dynamics pushes the points around to

match Dk
ij, and once a fixed point is reached, the target is updated.

3 ICS Survey

The main idea in Chapter 6 was to extend the stability idea to the realm of multiple ex-

periments. The difference in experimental parameters (known and unknown) were used as

perturbations to shake the system. Stable parts, in this case groups of genes with well

preserved relations, were identified and found to be biologically related.

Biologically, the results were found to be very significant. The ICS Survey method,

despite being completely data driven, identifies the important classes of genes in a data set,

with performance comparable to specialized methods designed to identify specific classes of

genes. It also provides a way to solve the pre-selection problem that dogs most exploratory

methods like nMDS.
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Ideologically too, the ICS survey represents a major shift. It looks for consistency of

correlation rather than strength. Also, it explicitly depends on experimental variation; unlike

other methods whose results would improve if experiments were identical, the ICS survey

would fail completely. Thus, the ICS Survey is one of the few methods to attempt to make

use of the information contained in experimental variation. It is our belief that there is much

untapped potential in this information, and the ICS Survey should be considered as a first

attempt at utilizing this (that too only in a very specific way, i.e., through consistency).

3.A Possible ICS Survey Related Projects

The ICS Survey is our newest and most significant work. Consequently, it offers more

interesting avenues for future work than our other projects. Below a few options are ordered

according to the ease with they may be achieved.

Defining Consistency/Stability

Our basic idea was to look for features that are well preserved across experiments. Essentially,

we looked for rigid objects in expression space, i.e., those whose relative positions across

experiments were related by affine transformations. This definition could be extended.

The easiest way to implement this idea is by changing the normalization scheme used

before combining experiments. As discussed in the last chapter, for each gene g and experi-

ment e, we calculate a vector consisting of the correlations of the profiles of the ICC genes

{h1, . . . , hN} with that of g, which I shall call the raw correlation profiles:

(Ce(g, h1), · · · , Ce(g, hN))

The present scheme of normalizing this to have mean zero and unit variance is the most
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naive one imaginable.

ce
g =

1

σeg

(
Ce(g, h1)−me

g, · · · , Ce(g, hN)−me
g

)
Here, me

g and σeg are the mean and standard deviation of the raw vector respectively. This

normalization scheme has some clear drawbacks:

1. It only works with bounded measures (such as correlations). For a moderate ICC size,

if one of the distances were to become very large, then this scheme would strongly

affect all the others, making it sensitive to outliers. These are more pronounced in

un-bounded schemes

2. It is biased against ICCs consisting of genes with very similar profiles. If the genes

h1, . . . , hN have very similar profiles for a given experiment e, then it follows that the

correlations Ce(g, h1), · · · , Ce(g, hN) too will be nearly identical. It follows that σeg

becomes tiny, thereby greatly magnifying any differences in ce
g. This makes it very

difficult for ce
g’s to be consistent across experiments.

3. The normalization doesn’t take into account the distribution of correlations. It is found

to perform poorly for cases when the distribution of correlations is skewed.

Keeping these points in mind, a novel normalization scheme has been developed that re-

places the raw correlations by their corresponding cumulative distribution function (CDF)

values. More specifically, for gene g and experiment e the cumulative distribution of the set

{Ce(g, 1), · · · , Ce(g,Ng)} is used. Here, Ng is the total number of genes (not the ICC size).

The CDF is bounded, insensitive to outliers, and automatically accounts for the distribution

of correlations. No further normalization is found to be necessary, and the problems men-

tioned above are solved. The details of this will be part of a future publications, but the

results so far seem very promising
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Moving Beyond Microarray Based Time Course Experiments

In this thesis, we primarily discussed applying the ICS survey to microarray based time course

experiments with experiments differing in protocol. There are few obstacles to extending the

methodology to other types of microarray experiments. For example, striking results have

been observed where measurements are in different tissues instead of times.

Looking further, it should be possible to consider experiments that capture different types

of biological information. In such a case the ICS survey will identify the true conserved

features, and will allow us to go beyond the idiosyncrasies of the individual experiment.

Perhaps the most interesting applications are where the different experiments correspond

to different species, and striking results have already been produced in human-chimpanzee

comparisons. It is also possible to extend this methodology to experiments other than mi-

croarrays, e.g., protein interaction data, and sequence information. One of the primary

obstacles to doing this was the inability of the ICS survey to work with non-bounded dis-

tance measures. As mentioned in the section above, this problem has been solved using the

cumulative distribution based normalization. Some thought also needs to be given to what

it means to be consistent when such different types of information are being combined.

Identifying Less Prominent ICCs

In most of the data sets we have worked with, only a few distinct ICCs have been identified

with a significant number of runs converging to them. It is conceivable that these are just

the most prominent ICCs, and there are many others that the dynamics happens to visit

less frequently. To effectively sample these ICCs one would need to perform many more

runs. Multiple runs corresponding to the same ICC are not used except for averaging (see

next section for alternatives) and thus the majority of runs are wasted. Thus, it might

be advantageous to bias the dynamics in a way that less prominent ICCs are visited more

frequently. One easy way is to terminate runs that start to converge towards existing ICCs.

A more sophisticated alternative would be to choose the initial seed genes in a biased fashion

122



(perhaps by using the results of inferior methods).

Non-overlapping Data

Another important feature that needs to be added to the ICS Survey for dealing with multiple

data types is the ability to deal with non-overlapping data. Experiments are often performed

on different sets of genes, and in its present form the ICS Survey would only provide results

for those genes common to all experiments. Instead, a scoring scheme that appropriately

awards genes for being present in more experiments (but does not completely discard genes

not present in all of them) is needed.

Combining Large Numbers of Experiments

The present implementation of ICS looks for relations that are preserved across all exper-

iments. This is a reasonable strategy when one is considering a few related experiments.

However, if one wants to build databases by combining a huge number of diverse experi-

ments, this could be problematic. The same gene often plays roles in multiple processes.

Thus, experiments performed under different conditions, that invoke many different pro-

cesses, may fail to show any relations that are preserved across all of them.

For example, consider the situation where genes A and B perform some very basic func-

tion, e.g., methylation. Suppose A and B function together very closely in the response

to heat shock. Then, the ICS Survey applied to a group of heat-shock experiments would

identify the connection between A and B. However, if A is also used in some other process,

say spermatogenesis, but B is not, then ICS survey applied to such experiments would not

connect A and B. With the present implementation of ICS, if we combined both sets of

experiments, the connection between A and B would not be detected, because of the lack of

consistency in a subset of experiments. This behavior is sub-optimal.

The most obvious solution would be to look for relations that are very strongly preserved

across at least a few experiments. Unfortunately, as the number of experiments grows, the

123



computational effort in this grows combinatorially. One possible way to deal with this would

be to follow an approach similar to that taken by Hibbs et al. [69] in combining experiments.

Before data integration, they identified the significance of specific experiments for certain

classes of processes (based on Gene Ontology). Then, for any interaction, only the relevant

subset of experiments were considered. Perhaps we too could use such an approach.

Beyond Simple Consistency

As mentioned earlier, the ICS Survey is an initial attempt at making use of the information

contained in inter-experiment variability. Consistency provides just one window into this

kind of information, and there are likely to be many other approaches (although speculation

about them is outside the scope of this thesis). However, even within the scope of our

method, there are sources of information we have not exploited.

Figure 6.4 in Chapter 6 shows the ICCs corresponding to different runs. We concluded

that there were only two kinds of ICCs and averaged over all the runs within each ICC,

thereby discarding any higher order information in their distributions. Fig. 7.1 shows a

similar plot for a different data set. This data [70] was taken across different tissues in

Drosophila melanogaster, and the different experiments correspond to technical replicates.

Technical replicates are nearly identical experiments, and are therefore expected to show far

less variation. In this case, instead of showing sharply defined ICCs, we also see a continuum

among a subset of the runs. Thus, as one might expect, as the amount of variation decreases,

the performance degrades. However, this result also suggests that there is information about

the variation of the experiments in the distribution of runs. It is as yet unclear how best

one might use this information. Application to artificially generated data sets with different

models of variation could be a good first step to build intuition.

124



ICS 1

ICS 2

ICS 3

ICS 4

Continuum

Figure 7.1: The results of ICS Survey applied to a Drosophila data set. Each point here
corresponds to the fixed point ranking of a single ICS survey run. The different rankings
were compared using their Spearman rank correlation and embedded into 2D using nMDS.
The 2D results were the clustered and k-means clustering was performed to color the points.
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4 Conclusion

The goal of this thesis was to promote a phenomenological approach to statistics and data

analysis, particularly in the context of bioinformatics. We believe that the renormalization

group is the right tool to construct such a phenomenology. RG can be thought of as a

search for stability, and thus stability is the constant motif in our approaches. We proposed

that in the context of single experiments, stability against addition of additional data points

should be required. This approach was used to derive the standard statistical quantifiers, and

offered useful non-trivial guidance in the choice of algorithms for more complicated statistical

quantifiers. In the context of multiple experiments, we use the difference in experiments as

perturbations and search for stable/well-preserved relations. Based on this idea, we proposed

a data-driven method called the ICS Survey, that identifies related groups of genes far more

reliably than existing methods. Given the significance of these results, we believe that the

usefulness of phenomenological approaches to statistics has been demonstrated, and we hope

to spur future work in this direction.
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Appendix A

Central Limit Theorem from
Wilson-Kadanoff type RG

The Central Limit Theorem (CLT) states that if X1, X2, . . . , Xn are a sequence of indepen-

dent and identically distributed (i.i.d) variable each having finite values and expectation

value µ and variance σ2 > 0, then in the limit n→∞, the partial sum Sn = X1 + . . .+Xn

approaches a Normal distribution:

lim
n→∞

∑n
i=1(Xi − µ)

σn1/2
= N(0, 1),

where convergence is in distribution and N(0, 1) is a normal distribution of mean zero and

unit variance.

In the Wilson-Kadanoff type RG, we begin with a small system at the microscopic scale,

and look at some quantity of interest. We then consider bigger and bigger systems and look

at how this quantity changes. Ultimately, we are interested in the fixed-point behavior of

this procedure as the system size tends to infinity. To derive the CLT using Wilson-Kadanoff

type RG we follow Jona-Lasinio [12]. Spins (corresponding to the Xi) are constructed on an

infinite one dimensional lattice. This lattice is divided into a hierarchical structure of blocks

of increasing size. The probability distribution of the total spin in a block is studied as a

function of block size, particularly in the asymptotic limit of infinite block size. It is found

that a normal distribution is a fixed point distribution, and that even if the distributions for

smaller block size show deviation from a Gaussian, in the limit of large block size they shall

become Gaussian. This constitutes a proof of the CLT.

Let ξi = Xi−µ
σ

be a spin on a one dimensional lattice. ξi is therefore effectively drawn
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from a distribution of mean zero and unit standard deviation. Let us define a hierarchy of

blocks where each block may be subdivided into two smaller ones. This division may be

repeated till we arrive at the individual spins. We may then define spin variables as:

χ1
n = 2−n/2

2n∑
i=1

ξi and χ2
n = 2−n/2

2n+1∑
i=2n+1

ξi

There are 2n spins in each such block, and since the spins themselves have zero mean and

unit variance, these variables are of the form
∑n

i=1(Xi − µ)/σn1/2, which is the form of the

central limit theorem. Thus, to prove the CLT, we only need to prove that as n → ∞ the

distribution of these spin variables approaches a normal distribution.

The spin variable for a large block can be related to that of its constituent sub-blocks by

the formula:

χn+1 =
1√
2

(χ1
n + χ2

n).

Let pn(x) represent the probability distribution of χn. The equation above implies the

recursive relation

pn+1(x) =
√

2

∫
pn(
√

2x− y)pn(y)dy = (Rpn(x)).

The transformation R is called a renormalization group transformation. It relates the

value of a variable before and after scaling. Notice that R preserves the normalization, mean

and variance of the distribution. We are interested in what happens in the limit n → ∞,

and in particular we want to prove that pn(x) converges to a normal distribution. Since the

above formula is a convolution, we may prove this using Fourier transforms. However, we

choose to outline a ‘proof’ using a method that is closer to the traditional RG application

with which the reader may be familiar.

Knowing this it is easy to check that a normal distribution pG(x) = 1√
2π
e−x

2/2 is a fixed

point of the dynamical system defined by R. To prove the CLT we must show that it is
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an attractive fixed point, and that irrespective of the probability distributions of the spins

themselves there is convergence to a normal distribution after sufficient coarse graining. To

prove this, let us study the evolution of the pn under the RG coarse graining dynamics for

an arbitrary distribution. We expand the arbitrary distribution around the Gaussian fixed

point as:

pη(x) = pG(g)
(

1 + ηh(x)
)
,

where η is a parameter measuring the deformation from a normal distribution. Applying the

RG transformation

(Rpη) = R
(
pG(x)(1 + ηh(x))

)
If η is small we may linearize around the Gaussian by only keeping terms upto first order in

η

(Rpη)(x) = R(pG) +
√

2η

∫
pG(y)pG(

√
2x− y)[h(

√
2x− y) + h(y)]dy

= pG(x) +
2η√
π
pG(x)

∫
e−z

2

h(
√

2x+ z)dz

≡ pG

(
1 + η(Lh)

)
(x)

The integral operator L has the Hermite polynomials Hk as eigenfunctions with corre-

sponding eigenvalues:

λk = 21−k/2

It is natural therefore to expand h(x) in the basis of Hermite polynomials. The normal-

ization, mean and variance preserving nature of R imposes the conditions that

∫
pG(x)h(x)dx = 0∫
pG(x)xh(x)dx = 0∫
pG(x)x2h(x)dx = 0
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This implies that it has zero projections on the first three Hermite polynomials. Thus,

only the Hermite polynomials with k > 3 show up in the expansion of h.

h(x) =
∞∑
i=4

ciHi(x).

So, if we repeatedly apply R, we find that

(Rnpη)(x) = pG

(
1 + η(Lnh)

)
(x),

= pG

(
1 + ηLn

∞∑
i=4

ciHi(x)
)

(x),

= pG

(
1 + η

∞∑
i=4

ciλ
n
iHi(x)

)
(x).

For all i ≥ 4 corresponding eigenvalues λi are less than 1/2. Thus, as n→∞, each of these

terms goes to zero. And hence we have the result that

lim
n→∞

Rnpη = N(0, 1)

which is the central limit therem.

In this case the spins on different sites were i.i.d and hence uncorrelated. The typical

application of RG (for example, consider the Ising model) is to cases when there are strong

correlations between sites. Thus, as shown by Jona-Lasinio [11, 12], RG may be thought

of as an attempt to expand the realm of the central limit theorem to (strongly) correlated

variables.
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Appendix B

Microarray Experiments

DNA Microarrays are tools used to simultaneously measure the expression levels of a large

number of genes at a given point of time. Since it is believed that mRNA levels represent the

amount of transcription taking place, it is these levels that microarrays attempt to measure.

Strictly speaking, what one is typically interested in is differential expression, i.e., the change

in expression of a gene. Therefore, two such measurements are usually made (one is often a

baseline measurement), and these are compared. Thus, the result of a microarray experiment

is usually a ratio of expression levels rather than an absolute level. This is thought to reduce

experimental artifacts since both measurements used to construct the ratio should be affected

in the same way.

As it turns out, mRNA is fairly unstable (especially in prokaryotes). Therefore, in prac-

tice instead of measuring the mRNA levels directly, the strands of mRNA are used to syn-

thesize complementary strands of DNA (cDNA) using the enzyme reverse transcriptase.

cDNA is far more stable, and it is in fact the cDNA levels which are directly measured in a

microarray experiment.

The microarray itself is typically a glass slide or nylon membrane marked with a very

large number of tiny spots arranged in an array (hence the name). Each spot is designed so

that only a specific cDNA attaches to it. This is achieved in different ways, according to the

type of microarray, but will always contain a sequence of base pairs present in (and hopefully

unique to) the cDNA of interest. The microarray is exposed to the cDNA (synthesized from

mRNA) from a sample of interest, and by measuring the relative amounts of cDNA attached

at the different spots, we can get an idea of the relative mRNA levels.
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Steps Involved in a Typical Microarray Experiment

There are many different ways in which microarray experiments can be performed. Most of

them involve the following steps:

1. Prepare the biological sample for which the gene expression levels are desired.

2. Purify the sample for RNA.

3. Generate a cDNA strand corresponding to each RNA, using reverse transcriptase. The

amounts of cDNA may be amplified using PCR amplification. A label/fluorescent dye

is usually attached to the cDNA to facilitate measurement. The nature of this dye

depends on the type of microarray being used.

4. The labelled sample is placed on the microarray and hybridized. The cDNA attach to

the appropriate spots on the microarray.

5. The spots are excited using lasers, and the fluorescent intensity at each spot is mea-

sured.

6. This is repeated for all the spots, and the intensity levels are supposed to be a rough

measure of mRNA level, and by extension, gene expression.

7. The measurements are appropriately normalized, first by taking the appropriate ratio

as mentioned earlier, and subsequently to account for dye, array and other artefactual

experimental effects.

Popular Microarray Types

There are many different types of microarrays, but in general most experiments correspond

to one of two types [71]:

• cDNA spotted microarrays: cDNA (usually from a cDNA library) are generated and

printed onto the slides as spots at defined locations. Typically the cDNA from the two
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populations to be compared are labelled with fluorescent dyes known as Cy3 (which is

green) and Cy5 (which is red). Spots corresponding to both dyes must be on the same

array (to avoid inter-array effects), and it is the ratio of these intensities that is the

result of the experiment.

• Oligonucleotide microarrays : In this case, rather than using cDNA, a much smaller

DNA sequence (20-25mer) is synthesized in situ.The high-reproducibility of this pro-

cess allows accurate comparison of signals hybridized to different arrays. cDNA is

tagged with an appropriate fluorescent marker and the ratio of the intensities of the

corresponding spots on the two arrays is the result of the experiment.

Statistical Analysis

The result of the microarray experiment is the ratio of the intensities at two spots. We are

usually interested in the (ratio of) the mRNA levels. Unfortunately these are not the same

because of a number of experimental effects. A number of fairly sophisticated models [72,

73, 74] have been developed to infer the mRNA levels from the experimental measurements.

In particular, it is found that even for the same gene, the expression level depends on dye,

array, array position and other such effects. To account for these, typically the measured

level is modelled as a sum of these effects in a linear model such as [75]:

yijgr = µ+ Ai +Dj + (AD)ij +Gg + (AG)igr + (DG)jg + εijgr.

Here, µ represents the average signal across all factors. The global effects Ai, Dj, and (AD)ij

account for overall variation in arrays and dyes. The gene effect Gg accounts for average

signal for gene g across arrays dyes and varieties. (AG)igr refers to the spot effects which

are a function of array position. (DG)jg terms are gene-specific dye effects and so on.

ANOVA type analysis is performed, and by comparing different spots having the same

properties (dye/array positions/array) these individual effects are estimated and subtracted
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out. Many of these assumptions are ad hoc, and there is a lack of consensus on the appropriate

statistical model to use.

Reliability of Microarray Experiments

One of the foundations of science is the reproducibility of experiments. Microarray ex-

periments often depend on detailed experimental parameters and their reproducibility is

notoriously bad. To combat this, a standard known as the Minimum Information About A

Microarray Experiment (MIAME) was formulated which provides a checklist of details that

need to be supplied when reporting microarray results. Despite this it has been shown that

microarray results show very poor reproducibility and could even depend on factors such as

lab quality [57].

Thus, even after processing, microarray results are likely to contain many artefactual

effects. Thus data analysis methods to analyze the should be able to deal with such noise.
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Appendix C

PCA honing

The honing procedure can be used with any multivariate pattern extraction technique. We

have shown its usefulness with nMDS. nMDS is arguably the most powerful unsupervised

pattern extraction method, but even our efficient algorithm used in this paper is much

slower, although sufficiently fast to be practical, than the linear algebraic methods such as

PCA. Ordinary PCA is not very useful in gene analysis, because the dynamic range of the

data values is large. In such cases, it is best to perform PCA on the correlation matrix

generated from the normalized, mean-subtracted profiles [76]. Let us call this normalized

PCA. Indeed, this normalized PCA can give roughly the same result as nMDS if the data

quality is excellent and low dimensional enough. Therefore, we describe a honing procedure

for normalized PCA here.

The procedure may be summarized as follows (a similar procedure should work for kernel

PCA):

1. Apply (normalized) PCA to the whole data set (missing data must be treated appropri-

ately).

2. Pick an embedding dimension D, i.e., the number of PCA components to be used.

3. For each point (gene), find the percentage of variance captured by the D-dimensional

PCA subspace.

4. Arrange the vectors in decreasing order of this percentage.

5. Discard appropriately using the analogue of the bootstrap scheme proposed for nMDS

above or comparison to random/shuffled data.

It is systematically found that normalized PCA based honing requires more points to
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(a) Spellman Selection (b) Honed

Figure C.1: Analysis of Spellman’s cdc15 data (the normalized PCA version of Fig. 5.7;
color codings are the same). (a) shows the result using Spellman’s choice of cyclic genes; (b)
shows the result produced after honing down to 334 genes (chosen to allow comparison to
nMDS).

be discarded than its nMDS counterpart. This is consistent with the resolving power of

these methods; nMDS sees a bigger difference between true and random data of the rank

mismatch. Despite such differences, there is a rough qualitative agreement between the

results. It should be noted incidentally that the PCA honing procedure is very similar to

that of “gene shaving” [77]. However, “gene shaving” was not intended to be used for noise

reduction, and the method of deciding the number of points to discard is quite different (and

seemingly inappropriate for this purpose).

In Fig. C.1 the results obtained by PCA are compared with those by nMDS for Spellman

et al. As can be surmised from the figure, the agreement in the angular positions deter-

mined by nMDS and PCA improve dramatically with honing. Before honing, although some

clustering of genes up-regulated in specific cell cycle phases is seen, it is very unclear if we

can consider this a good starting point for the honing procedure. After honing however, the

correct time ordering is very clear. Thus, although PCA+honing can extract the correct

cell cycle behavior it is too week a method to use for determining the correct number of cell

cycle related genes. The effect of PCA honing may look more impressive than its nMDS
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counterpart, but it is simply because PCA is so weak that it cannot extract a significant

structure by itself.
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