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Based on Varadhan LD 2010.

0.1 LD Summary

A function I(·) : X → [0,∞] will be called a (proper) rate function, if it is lower semicontinuous
and the level sets are compact in X.

Let Pn be a sequence of probability distributions on X. We say that Pn satisfies the large
deviation principle on X with rate function I, if the following two statements hold. For every closed
set C ⊂ X and for every open G ⊂ X

lim supn→∞ 1

n
logPn(C) ≤ − inf

x∈C
I(x), (0.1.1)

lim inf n→∞ 1

n
logPn(G) ≥ − inf

x∈G
I(x). (0.1.2)

Theorem Suppose Pn and Qn are two sequences on two spaces X and Y satisfying the LDP with
rate functions I and J , respectively. Then the sequence of product measures Rn = Pn × Qn on
X × Y satisfies an LDP with the rate function K(x; y) = I(x) + J(y).

Theorem If Pn satisfies an LDP on X with a rate function I, and F is a continuous mapping
from the Polish spaces1 X to another Polish space Y , then the family Qn = PnF

−1 satisfies an
LDP on Y with a rate function J given by

J(y) = inf
x:F (x)=y

I(x). (0.1.3)

Theorem Assume that Pn satisfies an LDP with rate function I on X. Suppose that F is a
bounded continuous function on X, and

an =

∫
X

dPn(x) enF (x). (0.1.4)

Then

lim
n→∞

1

n
log an = sup

x
[F (x)− I(x)]. (0.1.5)

Theorem If Pnsatisfies an LDP with rate function I and F is a bounded continuous function on
X. Define

Qn(A) =

∫
A
dPn(x)enF (x)]∫

X
dPn(x)enF (x)]

(0.1.6)

for Borel subset A ⊂ X. Then, Qn satisfies an LDP on X as well with the new rate function

J(x) = I(x)− F (x)− inf
x∈X

[I(x)− F (x)]. (0.1.7)

1A Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a
complete metric space that has a countable dense subset.
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0.2 Sanov’s theorem

Consider a sequence of i.i.d. random variables with values in some complete separable metric space
X with a common distribution α. Then the sample distribution

βn =
1

n

∑
j

δxj (0.2.1)

generates a measure Pn on the space of measures M(X) on X. LLN means Pn to converge dα.

Theorem The sequence {Pn} satisfies a large deviation principle on M(X) with the rate function
I(β) given by

I(β) =

∫
dβ

dα
log

dβ

dα
dα =

∫
log

dβ

dα
dβ, (0.2.2)

If not β � α I(β) = +∞
The proof uses the following lemma

Lemma Let α, β be two probability distributions on a measure space (X,B). Let B(X) be the
space of bounded measurable functions on (X,B). Then

I(β) = sup
f∈B(X)

[∫
f(x)dβ(x)− log

∫
ef(x)dα(x)

]
. (0.2.3)

Its demo uses

x log x− x+ 1 = sup
y

[xy − (ey − 1)]. (0.2.4)

Corollary Let {Xi} be i.i.d.r.v with values in a separable Banach space X with a common distri-
bution α. Assume

E
[
eθ‖X‖

]
<∞ (0.2.5)

satisfies a large deviation principle with rate function

H(x) = sup
y∈X∗

[
〈y|x〉 − log

∫
e〈y|x〉dα(x)

]
. (0.2.6)

0.3 Scaled processes and escaping rate

Theorem [Schilder] Let us consider the family of stochastic process {xε(t)} defined by

xε(t) =
√
εB(t) (0.3.1)

or equivalently

xε(t) = B(εt) (0.3.2)
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for t in some fixed time interval, say [0, 1] where B is the standard Brownian motion. The distri-
butions of xε(·) induce a family of scaled Wiener processes on C[0, 1] that we denote by Qε. In the
ε→ 0 limit, the LDP of Qε os with the following rate function

I(f) =
1

2

∫ 1

0

|f ′(t)|2dt (0.3.3)

if f(0) = 0 and f ′ is square integrable; otherwise, I(f) = +∞.

Strassen’s theorem about the iterated logarithm.

0.4 Markov process

Suppose X1, · · · , Xn, · · · is a Markov Chain on a finite state space F . The Markov Chain will be
assumed to have a stationary transition probability given by a stochastic matrix π = π(x→ y). We
will assume that all the entries of π are positive, imposing thereby a strong irreducibility condition
on the Markov Chain. Under these conditions there is a unique invariant or stationary distribution
p(x) satisfying

p(x) =
∑
y

p(y)π(y → x). (0.4.1)

Let us suppose that V (x) : F → R is a function defined on the state space with a mean value
of m =

∑
x V (x)p(x) with respect to the invariant distribution. By the ergodic theorem, for any

starting point x,

lim
n→∞

Px

∣∣∣∣∣∣ 1n
∑
j

V (Xj)−m

∣∣∣∣∣∣ ≥ a
 = 0, (0.4.2)

where a > 0 is arbitrary and Px denotes, as is customary, the measure corresponding to the Markov
Chain initialized to start from the point x ∈ F .

For any V

lim
n→∞

1

n
logEx [exp[V (x1) + · · ·+ V [Xn)]] = log σ(V ) (0.4.3)

exists, where σ(V ) is the PF eigenvalue of the matrix

ψV = πV (x→ y) = π(x→ y)eV (x). (0.4.4)

This follows from
Ex [exp[V (x1) + · · ·+ V (Xn)] =

∑
y

(πV )n(x→ y). (0.4.5)

Theorem For any Markov Chain with a transition probability matrix π with positive entries, the
probability distribution of (1/n)

∑n
j=1 V (Xj) satisfies an LDP with a rate function

h(a) = sup
λ

[λa− log σ(λV )]. (0.4.6)
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There is an interesting way of looking at σ(V ). If V (x) = log(u(x)/(πu(x), then f(x) = (πu)(x)
is a column eigenfunction for πV with eigenvalue σ = 1. Therefore

log σ(log(u/πu) = 0. (0.4.7)

0.5 Applications

For a Markov chain on a

finite state space X, having π(x→ y) as the probability of transition from the state x to the state
y. The following limit

lim
n→∞

1

n
logEx[exp[V (x1) + · · ·+ V (Xn)] = λ(V ) (0.5.1)

exists and is independent of x:

λ(V ) = sup
q∈P

[∑
x

V (x)q(x)− I(q)

]
, (0.5.2)

where q = {q(x)} is a probability distribution on X, P is the space of such probability distribu-
tions and I(q) is the large deviation rate function for the distribution Qn on P, of the empirical
distribution

pn(x) =
1

n

n∑
i=1

χx(Xi). (0.5.3)

This can be generalized to

λ2(V ) = lim
n→∞

1

n
logEx[exp[V (x1, X2) + V (X2, X3) + · · ·+ V (Xn, Xn+1)]. (0.5.4)

Collection of non-interacting Brownian particles
We a N = ρL3 particles in a L3-cube. If the initial configuration with an empirical density

ν0(dx) =
1

L3

N∑
i=1

δ(xi − x) (0.5.5)

has a deterministic limit ρ0(x)dx, then the empirical distribution

νt(dx) =
1

L3

N∑
i=1

δ(xi(t)− x) (0.5.6)

has a deterministic limit ρ(t, x)dx as | → ∞ and ρ(t, x) can be obtained from ρ0(x) by solving the
heat equation

∂ρ

∂t
=

1

2
∆ρ (0.5.7)
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with the initial condition (ρ(0, x) = ρ0(x).
The proof is an elementary law of large numbers argument involving a calculation of two mo-

ments. Let f(x) be a continuous function on T3 (3-torus) and let us calculate for

U = frac1L3
∑
i

f(xi(t)) (0.5.8)

the first two moments given the initial configuration (x1, · · · , xN )

E(U) =
1

L3

∑
i

∫
T 3

dy f(y)ρ(t, y) (0.5.9)

and an elementary calculation reveals that the conditional expectation converges to the following
constant. ∫

T 3

∫
T 3

f(y)p(t, x, y)ρ0(x)dydx =

∫
T 3

f(y)ρ(t, y)dy (0.5.10)

The independence clearly provides a uniform upper bound of order L3 for the conditional variance
that clearly goes to 0. Of course on T3 we could have had a process obtained by rescaling a random
walk on a large torus of size L. Then the hydrodynamic scaling limit would be a consequence of
central limit theorem for the scaling limit of a single particle and the law of large numbers resulting
from the averaging over a large number of independently moving particles.

Simple exclusion process

The particles move randomly. Each particle waits for an exponential random time and then tries
to jump from the current site x to a new site y, The new site y is picked randomly according to a
probability distribution π(x→ y). In particular,

∑
y π(x→ y) = 1 for every x. A jump is possible

only when the destination is empty.

0.6 LD Introduction, Varadhan 2012

dxε(t) = b(xε(t))dt+
√
εdB. (0.6.1)

Theorem [Schilder] For b = 0 let the path measure for xε be Qε. Then, asymptotically in ε →
0

ε logQε[C] ' − inf
g∈C

1

2

∫
ds g′(s)2, (0.6.2)

where C is a set of ‘good functions.’
[Demo] Kac path

Qε[dx] = D[x] exp

{
− 1

2ε

∫
ds ẋ2

}
(0.6.3)

Formally, we need ∫
C

D[x] exp

{
− 1

2ε

∫
ds ẋ2

}
(0.6.4)
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Therefore, the variational principle follows.
For (0.5.11)

Qε[dx] = D[x] exp

{
− 1

2ε

∫
ds [ẋ− b(x)]2

}
(0.6.5)

Therefore,
Theorem [Schilder] For (0.5.11) let the path measure for xε be Pε. Then, asymptotically in
ε→ 0

ε logPε[C] ' − inf
f∈C

1

2

∫
ds [f ′(s)− b(f(s))]2, (0.6.6)

where C is a set of ‘good functions.’

Escape:
Consider

dx = −∇V dt+
√
edB. (0.6.7)

We know

ε logPε[C] ' − inf
f∈C

1

2

∫ T

0

ds [f ′(s) +∇V (f(s))]2, (0.6.8)

If C is aset of function with f(0) = x0 and f(T ) = x, then

inf
T∈[0,∞]

inf
f∈C

1

2

∫ T

0

ds [f ′(s) +∇V (f(s))]2 = 2[V (x)− V (x0)]. (0.6.9)

This tells that the escape is from min of V (x) at the boundary.

0.7 Long time, Varadhan 2012

Consider Markov p(x → y) with equilibrium π:
∑
y π(y)P (y → x) = π(x). The ergodic theorem

tells us
1

n

n∑
j=1

f(Xj)→
∑
x

f(x)π(x). (0.7.1)

Let the empirical distribution be

µn,x =
1

n

n∑
j=1

δXj
(0.7.2)

where x is the starting point.

Qn,x(C) = Px

 1

n

n∑
j=1

δXj ∈ C

 , (0.7.3)
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where C is a set of measures. LLN tells us Qn,x → δπ (µ → π). LDP for the empirical measure
reads

P [µn,x ∼ µ] ∼ e−nI(µ). (0.7.4)

As to the expectation value

P

[
1

n

n∑
i=1

f(Xi) ∼ q

]
∼ e−nJ(q), (0.7.5)

where

J(q) = inf
µ:

∑
x µ(x)f(x)=q

I(µ). (0.7.6)

We can obtain

P [Xi ∈ A for 1 ≤ i ≤ n] ∼ − inf
µ:µ(A)=1

I(µ). (0.7.7)

Formally, we are interested in
∏
i χA(Xi) = 1. That is,

− 1

n

n∑
i=1

logχA(Xi) < +∞ (0.7.8)

Looking at (0.5.25), set f = − logχA.
∑
x χA(x)µ(x) < +∞ implies µ(A) = 1.

Let us introduce a partition function

ZP (V ) = EP

exp


n∑
j=1

V (Xj)


 ∼ enA(V ) (0.7.9)

Here,

exp


n∑
j=1

V (Xj)

 = exp

{
n

∫
µn,x(dx)V (x)

}
(0.7.10)

Therefore, (D always denotes ‘uniform measure)

EP

exp


n∑
j=1

V (Xj)


 =

∫
D[µ] exp

{
n

∫
µ(dx)V (x)

}
e−nI(µ) (0.7.11)

Thus, we get
1

n
logZP (V )→ A(V ) = sup

µ

[∫
µ(dx)V (x)− I(µ)

]
(0.7.12)

Therefore,

I(µ) = sup
V

[∫
µ(dx)V (x)−A(V )

]
. (0.7.13)

Notice that A(V + c) = A(V ) + c for any constant c. Thus, to compute (0.5.32) we may impose
the condition that A(V ) = 0.
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Theorem 3.1.3. Let p(x, y) > 0 be the transition probability of a Markov chain {Xi} on a finite
state space X. Then, the measure on the set of all the sampled measures Qn,x satisfies a large
deviation principle with rate function

I(µ) = sup
u

∑
x

µx log
u(x)

(πu)(x)
= inf
ν:µq=u

∑
x,y

µ(x)q(x, y) log
q(x, y)

π(x, y)
. (0.7.14)

Let us try a different demonstration, following YO 1989

Here, a probability space {P,B,Ω} is fixed.
Level 1:

Q
(1)
N (B) = P

ω
∣∣∣∣∣∣eN (X) =

1

N

N∑
j=1

Xj(ω) ∈ B

 (0.7.15)

Consider the following ’partition function’:

Z
(1)
N (t) = EP

exp

t
N∑
j=1

Xj(ω)


 =

∫
Q

(1)
N (dy)etNy. (0.7.16)

(Negative) free energy

a(1)(t) = lim
N→∞

1

N
logZ

(1)
N (t) = sup

y
[ty − I(1)(y)] (0.7.17)

Level 2

Q
(2)
N (B) = P

ω
∣∣∣∣∣∣µN =

1

N

N∑
j=1

δXj(ω) ∈ B

 (0.7.18)

Consider the following ’partition function’:

Z
(2)
N (φ) = EP

exp


N∑
j=1

φ(Xj(ω))


 =

∫
Q

(2)
N (dµ)eN

∫
φ(y)µ(dy). (0.7.19)

(Negative) free energy

a(2)(φ) = lim
N→∞

1

N
logZ

(2)
N (φ) = sup

µ

[∫
φ(x)µ(dx)− I(2)(µ)

]
(0.7.20)

A variational calculation gives

I(2)(µ) =

∫
dµ log

dµ

dm
. (0.7.21)
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It is basically the KS entropy.

Notice that this is for iid

d

dφ(x)

1

N
logEP

exp


N∑
j=1

φ(Xj(ω))


 =

d

dφ(x)

1

N
log

∫
dm(ω) exp


N∑
j=1

φ(Xj(ω))


=

1

N

∫
dm(ω)

∑
j δ(x−Xj(ω)) exp

{∑N
j=1 φ(Xj(ω))

}
∫
dm(ω) exp

{∑N
j=1 φ(Xj(ω))

} =
m(δx) exp[φ(x)]∫

dm(ω) exp[φ(X1(ω))]
(0.7.22)

Thus, an explicit calculation of

I(2)(µ) = sup
φ

[∫
φ(x)µ(dx)− a(2)(φ)

]
(0.7.23)

gives

µ(δx) =
m(δx) exp[φ(x)]∫

dm(ω) exp[φ(X1(ω))]
(0.7.24)

That is,
dµ

dm

∫
dm(ω) exp[φ(X1(ω))] = exp[φ(x)] (0.7.25)

or

φ(x) = log
dµ

dm
+ log

∫
dm(ω) exp[φ(X1(ω))]. (0.7.26)

That is ∫
φdµ =

∫
dµ log

dµ

dm
+ log

∫
dm(ω) exp[φ(X1(ω))], (0.7.27)

but the last term is a(2)(φ): we get a Fenchel’s equality∫
dµ log

dµ

dm
=

∫
φdµ− a(2)(φ) = I(2)(µ). (0.7.28)

Level 2 to Level 1
The contraction principle tells us

I(1)(x) = inf
µ|

∫
yµ(dy)=x

I(2)(µ), (0.7.29)

so using Lagrange’s multiplier, we can write

I(1)(x) = inf
µ,t

[
I(2)(µ)− t

(∫
yµ(dy)− x

)]
= − sup

µ,t

[
t

(∫
yµ(dy)− x

)
− I(2)(µ)

]
(0.7.30)

That is,
I(1)(x) = − sup

t
a(2)(t(y − x)), (0.7.31)

where y denotes the variable of the function φ(y) = y − x.
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True time LD requires some trick as is formally followed in YO PTP, we could use level 2 for
samples.

Let us consider the following partition function (σ is the shift)

Q
(2)
N (B) = P

ω
∣∣∣∣∣∣ 1

N

N∑
j=1

[
T∑
i=1

δσiωj

]
∈ B

 ' e−NI(2)(µT ) (0.7.32)

Z
(2)
N,T (φ) = EP

exp

∑
N

 T∑
j=1

φ(σjωN )


 =

∫
Q

(2)
N (dµT ) exp

N
∫  T∑

j=1

φ(σjω)

µT (ω)

 .

(0.7.33)
Define

a
(2)
T (φ) =

1

N
logZ

(2)
N,T (φ) (0.7.34)

From (0.5.52)

a
(2)
T (φ) = sup

µT

∫ T∑
j=1

φ(σjω)µT (dω)− I(2)T (µT )

 (0.7.35)

Note that, actually,
∑T
j=1 φ(σjω) can be replaced by a general function φ(ω, σω, · · · , σTω). From

the above calculation

I(2)(µ) =

∫
dµ log

dµ

dm
(0.7.36)

Here, µ and m are measures on the path space. We can write

I
(2)
T (µT ) = sup

µT

∫ T∑
j=1

φ(σjω)µT (dω)− a(2)T (φ)

 (0.7.37)

Differentiating (0.5.54) wrt phi(ω) we get

δa
(2)
T (φ)

δφ(ω)
=

1

N

∑
N

∫
dm(ωN )

[∑T
j=1 δ(σ

jωN − ω)
]

exp
{∑

N

[∑T
j=1 φ(σjωN )

]}
∫
dm(ωN ) exp

{∑
N

[∑T
j=1 φ(σjωN )

]} (0.7.38)

=

∫
dm(ω′)

[∑T
j=1 δ(σ

jω′ − ω)
]

exp
[∑T

j=1 φ(σjω′)
]

∫
dm(ω′) exp

[∑T
j=1 φ(σjω′)

] (0.7.39)

=

T∑
j=1

m(δω) exp
[
φ(σ1−jω) + · · ·+ φ(ω) + · · ·+ φ(σT−jω)

]∫
dm(ω′) exp

[∑T
j=1 φ(σjω′)

] (0.7.40)

(0.7.41)

If we may use the stationality of m, we get

δa
(2)
T (φ)

δφ(ω)
= T

m(δω) exp
[∑T

j=1 φ(σjω)
]

∫
dm(ω′) exp

[∑T
j=1 φ(σjω′)

] (0.7.42)
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Differentiating (0.5.56) wrt φ(ω) we get

∫ T∑
j=1

δ(σjω − ω)µT (dω)− T
m(δω) exp

[∑T
j=1 φ(σjω)

]
∫
dm(ω′) exp

[∑T
j=1 φ(σjω′)

] = 0 (0.7.43)

This may be rewritten as

TµT (δω)− T
m(δω) exp

[∑T
j=1 φ(σjω)

]
∫
dm(ω′) exp

[∑T
j=1 φ(σjω′)

] = 0 (0.7.44)

This is an equation similar to the one in YO.

Donsker-Varadhan: Asymptotic Evaluation of CertainMarkov Process Expectations for Large Time,
I
CPAM 28 1 (1975).

Let u be a function on the state space.DV4

πu(x) =

∫
u(y)π(x, dy). (0.7.45)

Here, π(x, dy) is the transition probability from x into dy. Let Ln be the empirical distribution,
and Px be the stationary measure.

Qn,x(B) = Px(Ln ∈ B) (0.7.46)

Then
Theorem 1. For any closed set C (a set of probability measures)

lim
N→∞

1

N
logQN,x(C) ' inf

µ∈C
I(µ) (0.7.47)

with (Markov version of Sanov’s theorem)

I(µ) = − inf
u

∫
µ(dx) log

(πu
u

)
. (0.7.48)

Let V = πu and e−W = u/V . Averaging 〈 〉x over all the processes starting from x

〈exp{−[W (X0) +W (X1) + · · ·+W (XN−1]}V (XN−1)〉x =

〈
u(X0)u(X1) · · ·u(XN−1)

V (X0)V (X1) · · ·V (XN−1)
V (XN−1)

〉
x

(0.7.49)

=

〈
u(X0)u(X1) · · ·u(XN−2)

V (X0)V (X1) · · ·V (XN−2)
u(XN−1)

〉
x

(0.7.50)
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Notice that the Markov property implies that

P (XN−1, XN−2, · · · , X2, X1 |X0 = x)dXN−1 · · · dX1 = π(x, dX1)π(X1, dX2) · · ·π(XN−2, dXN−1)
(0.7.51)

Thus, the above average reads

=

∫
· · ·
∫

u(X0)u(X1) · · ·u(XN−2)

V (X0)V (X1) · · ·V (XN−2)
u(XN−1)π(x, dX1)π(X1, dX2) · · ·π(XN−2, dXN−1)

(0.7.52)

=

∫
· · ·
∫

u(X0)u(X1) · · ·u(XN−2)

V (X0)V (X1) · · ·V (XN−2)
V (XN−2)π(x, dX1)π(X1, dX2) · · ·π(XN−2, dXN−2)

(0.7.53)

=

∫
· · ·
∫

u(X0)u(X1) · · ·u(XN−3)

V (X0)V (X1) · · ·V (XN−3)
u(XN−2)π(x, dX1)π(X1, dX2) · · ·π(XN−3, dXN−2)

(0.7.54)

· · ·
= u(x). (0.7.55)

Thus, we conclude

〈exp{−[W (X0) +W (X1) + · · ·+W (XN−1]}V (XN−1)〉x = u(x). (0.7.56)

Here u is bounded and V is bounded from below (ergodicity assumed), so (0.5.75) implies

〈exp{−[W (X0) +W (X1) + · · ·+W (XN−1]}〉x ≤ u(x)/ inf V (x) ≤M (0.7.57)

for some positive constant H. That this is independent of N is the key observation.
On the other hand

exp{−[W (X0) +W (X1) + · · ·+W (XN−1]} = exp{−N [[W (X0) +W (X1) + · · ·+W (XN−1]/N ]}
(0.7.58)

= exp[−N
∫
W (y)LN (dy)] (0.7.59)

where LN is the empirical measure. Therefore,

〈exp{−[W (X0) +W (X1) + · · ·+W (XN−1]}〉x =

〈
exp[−N

∫
W (y)LN (dy)]

〉
x

≤M (0.7.60)

Inn (0.5.79) the average is over (empirical) measures Qx starting from x. Therefore, for any set of
measures C

〈exp{−[W (X0) +W (X1) + · · ·+W (XN−1]}〉x ≥ Qx(C) exp[−N sup
`∈C

∫
W (y)`(dy)] (0.7.61)

With (0.5.79)

M ≥ Qx(C) exp[−N sup
`∈C

∫
W (y)`(dy)] (0.7.62)
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or

Qx(C) ≤M exp[N sup
`∈C

∫
W (y)`(dy)] (0.7.63)

Thus,

lim sup
N→∞

1

N
logQx(C) ≤ sup

`∈C

∫
W (y)`(dy) = sup

`∈C

∫
log
(πu
u

)
(y)`(dy) (0.7.64)

with an arbitrary u, so we may choose inf wrt u.

Informally, (0.5.79)〈
exp[−N

∫
W (y)LN (dy)]

〉
x

=

∫
ν

exp[−N
∫
W (y)ν(dy)]P (LN ∼ δν) (0.7.65)

=

∫
ν

exp[−N
∫
W (y)ν(dy)]e−NI(ν) ≤M, (0.7.66)

where M is not N -dependent. This implies

inf
u

∫
log
(πu
u

)
(y)ν(dy) + I(ν) = 0. (0.7.67)

In case the time is continuous: Notice that

π(x, dy) = G(y, x, t = 1)dy (0.7.68)

where G is the Green’s function for the time evolution operator

∂

∂t
G(y, x, t) = LG(y, x, t) + δ(t)δ(y − x). (0.7.69)

For the Brownian motion L = (1/2)∆. Therefore,

lim
t→0

1

t
log

(
etLu

u

)
=
Lu

u
(0.7.70)

Thus

I(ν) = − inf
u

∫
Lu

u
(y)ν(dy). (0.7.71)

For the Wiener process L = (1/2)∆, so

I(ν) = − inf
u

∫
∆u

2u
(y)ν(dy). (0.7.72)

Let f be the Radon-Nikodym derivative f = ν(dy)/dy. Then,

δ

δu

∫
∆u

2u
(y)fdy = −∆u

2u2
f + ∆

f

2u
= 0 (0.7.73)

. Let us introduce B = f/2u2. The above formula reads

−B∆u+ ∆(uB) = 2grad u · gradB + u∆B = 0 (0.7.74)
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Let us multiply u and we get

gradu2 · gradB + u2∆B = div(u2 gradB) = 0 (0.7.75)

Thus, u2gradB = 0 (assuming the constant vanished far away). This reads

1

2
grad f +

f

4u
grad u = 0⇒ grad u

u
= −grad f

2f
(0.7.76)

On the other hand

I(ν) = − inf
u

∫
grad u · grad

(
f

2u

)
dy = − inf

u

∫ (
grad u

2u
· grad f − (grad u)2

2u2
f

)
dy

(0.7.77)

= +

∫
(grad f)2

8f
dy = −1

2

∫ √
f∆
√
fdy (0.7.78)

0.8 Hydrodynamic Scaling, Varadhan 2012

The dynamical system has five conserved quantities. The total number N of particles, the total
momenta and the total energy. The hydrodynamic scaling in this context consists of rescaling space
and time by a factor of `. The rescaled space is the 3-unit torus T 3. The macroscopic quantities to
be studied correspond to conserved quantities. For the number density∫

T 3

J(x)ρ`(t, x)dx =
1

`3

N∑
i=1

J

(
ri(`t)

`

)
. (0.8.1)
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