0.1. LD SUMMARY 1

Based on Varadhan LD 2010.

0.1 LD Summary

A function I(-) : X — [0, 00] will be called a (proper) rate function, if it is lower semicontinuous
and the level sets are compact in X.

Let P, be a sequence of probability distributions on X. We say that P, satisfies the large
deviation principle on X with rate function I, if the following two statements hold. For every closed
set C' C X and for every open G C X

1

limsupn — co—log P,(C) < — inf I(x), (0.1.1)
n zeC
1

liminfn — co—log P,(G) > — ing I(x). (0.1.2)
n re

Theorem Suppose P, and @, are two sequences on two spaces X and Y satisfying the LDP with
rate functions I and J, respectively. Then the sequence of product measures R,, = P, X @, on
X x Y satisfies an LDP with the rate function K (z;y) = I(x) + J(y).

Theorem If P, satisfies an LDP on X with a rate function I, and F is a continuous mapping
from the Polish spaces! X to another Polish space Y , then the family Q,, = P,F ™! satisfies an
LDP on Y with a rate function J given by

J(y) = wFl(Ig:y I(x). (0.1.3)

Theorem Assume that P, satisfies an LDP with rate function 7 on X. Suppose that F' is a
bounded continuous function on X, and

an = / dP, () e"F' @), (0.1.4)
b's
Then 1
nh_}n;o - loga, = su [F(z) — I(z)]. (0.1.5)

Theorem If P,satisfies an LDP with rate function I and F' is a bounded continuous function on
X. Define

J4dPy (z)enF @)
for Borel subset A C X. Then, Q,, satisfies an LDP on X as well with the new rate function
J(z) =1I(x) — F(x) — 12)f([[(3;) — F(x)]. (0.1.7)

1A Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a
complete metric space that has a countable dense subset.



0.2 Sanov’s theorem

Consider a sequence of i.i.d. random variables with values in some complete separable metric space
X with a common distribution «. Then the sample distribution

1
Bn=— %:6%- (0.2.1)

generates a measure P, on the space of measures M(X) on X. LLN means P,, to converge d,.

Theorem The sequence {P,} satisfies a large deviation principle on M (X) with the rate function
1(B) given by
g, dp dap
I8)= [ —log—da= [ log— 2.2
(8) / 1o 108 7-da / og ——dp, (0.2.2)

If not 8 < o I(B) = +o0

The proof uses the following lemma
Lemma Let «, 8 be two probability distributions on a measure space (X,B). Let B(X) be the
space of bounded measurable functions on (X, B). Then

18) = sup [ / F(@)dB(z) — log / ef(”)da(:c)]. (0.2.3)

feB(X)
Its demo uses

zlogx —x + 1 =sup[zy — (e’ —1)]. (0.2.4)
y

Corollary Let {X;} be i.i.d.r.v with values in a separable Banach space X with a common distri-
bution a. Assume
E [e‘g“x”} < 00 (0.2.5)

satisfies a large deviation principle with rate function

H(z) = sup [(ym) ~log / e<w>da(x)]. (0.2.6)

yeX*

0.3 Scaled processes and escaping rate

Theorem [Schilder] Let us consider the family of stochastic process {z.(t)} defined by

2. (t) = VEB(t) (0.3.1)

or equivalently
x:(t) = B(et) (0.3.2)
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for ¢ in some fixed time interval, say [0, 1] where B is the standard Brownian motion. The distri-
butions of z.(+) induce a family of scaled Wiener processes on C0, 1] that we denote by Q.. In the
€ — 0 limit, the LDP of Q. os with the following rate function

1 1
1) =5 [ Iropa (033)
0
if f(0) =0 and f' is square integrable; otherwise, I(f) = +oo.

Strassen’s theorem about the iterated logarithm.

0.4 Markov process

Suppose Xi,---, Xy, - is a Markov Chain on a finite state space F'. The Markov Chain will be
assumed to have a stationary transition probability given by a stochastic matrix 7 = m(x — y). We
will assume that all the entries of 7 are positive, imposing thereby a strong irreducibility condition
on the Markov Chain. Under these conditions there is a unique invariant or stationary distribution
p(x) satisfying

p(z) = 3 p)rly = o). (0.4.1)

Let us suppose that V(x) : F — R is a function defined on the state space with a mean value
of m =) V(x)p(x) with respect to the invariant distribution. By the ergodic theorem, for any
starting point =z,

. 1
Jim P, = Z V(X;)—m|>al| =0, (0.4.2)
J
where a > 0 is arbitrary and P, denotes, as is customary, the measure corresponding to the Markov
Chain initialized to start from the point = € F'.
For any V'

lim > log E, [exp[V(21) + - - - + V[X,)]] = log (V) (0.4.3)

n—oo N

exists, where o(V) is the PF eigenvalue of the matrix

Yy =myv(x —y) =7z — y)ev(’”). (0.4.4)
This follows from
Ey [exp[V(z1) + -+ V(X)) = > _(mv)"(z = y). (0.4.5)

Theorem For any Markov Chain with a transition probability matrix = with positive entries, the
probability distribution of (1/n)>>7_, V(X;) satisfies an LDP with a rate function

h(a) = Sl)l\p[)\a —loga(AV)]. (0.4.6)



There is an interesting way of looking at o(V). If V(z) = log(u(z)/(wu(z), then f(z) = (7u)(z)
is a column eigenfunction for my with eigenvalue o = 1. Therefore

log o(log(u/mu) = 0. (0.4.7)

0.5 Applications

For a Markov chain on a

finite state space X, having m(z — y) as the probability of transition from the state x to the state
y. The following limit

lim = log By [exp[V (1) + - - + V(X)) = A(V) (0.5.1)

n—oo N

exists and is independent of x:

= sup
qEP

Z V(x )] , (0.5.2)

where ¢ = {¢(z)} is a probability distribution on X, P is the space of such probability distribu-
tions and I(g) is the large deviation rate function for the distribution @, on P, of the empirical

distribution
1 n
= - =(X5). 0.5.3
2 () (05:3)

This can be generalized to

1
)\2(‘/) = lim — log EI[GXP[V("El, XQ) + V(XQ, X3) + -4 V(Xn, XnJrl)]. (054)

n—o00 N

Collection of non-interacting Brownian particles
We a N = pL? particles in a L3-cube. If the initial configuration with an empirical density

o(dz) LSZa ;— ) (0.5.5)

has a deterministic limit pg(x)dzx, then the empirical distribution

(dz) = Z(s z(t) — z) (0.5.6)

has a deterministic limit p(¢,z)dz as | = oo and p(t,x) can be obtained from pg(z) by solving the
heat equation
Op

1
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with the initial condition (p(0,z) = po(x).
The proof is an elementary law of large numbers argument involving a calculation of two mo-
ments. Let f(z) be a continuous function on T? (3-torus) and let us calculate for

U = fraclL? Zf(ml(t)) (0.5.8)
i
the first two moments given the initial configuration (x1,-+,2n)

BO) =5 Y [ dv ey 059

and an elementary calculation reveals that the conditional expectation converges to the following
constant.

/T3 o fWp(t, z,y)po(z)dyde = ” fW)e(t,y)dy (0.5.10)

The independence clearly provides a uniform upper bound of order L? for the conditional variance
that clearly goes to 0. Of course on T? we could have had a process obtained by rescaling a random
walk on a large torus of size L. Then the hydrodynamic scaling limit would be a consequence of
central limit theorem for the scaling limit of a single particle and the law of large numbers resulting
from the averaging over a large number of independently moving particles.

Simple exclusion process

The particles move randomly. Each particle waits for an exponential random time and then tries
to jump from the current site x to a new site y, The new site y is picked randomly according to a
probability distribution 7(xz — y). In particular, Zy m(x — y) =1 for every . A jump is possible
only when the destination is empty.

0.6 LD Introduction, Varadhan 2012

dr(t) = b(x(t))dt + /zdB. (0.6.1)

Theorem [Schilder] For b = 0 let the path measure for z. be Q.. Then, asymptotically in & —
0

1
elog Qe[C] ~ — inf 5 /dsg’(S)Q, (0.6.2)

where C' is a set of ‘good functions.’
[Demo] Kac path

Qulas] = Dlelexp {5 [ asi?} 0:63)

; D[z] exp {—215 /ds 9'62} (0.6.4)

Formally, we need



Therefore, the variational principle follows.
For (0.5.11)

Therefore,

(0.6.5)

Theorem [Schilder] For (0.5.11) let the path measure for 2. be P.. Then, asymptotically in

e—=0 1
log PL[C] = - juf 5 / ds [1'(s) — b(f(s)]2.

where C' is a set of ‘good functions.’

Escape:
Consider
dx = —VVdt + \/edB.

We know

1 T
clog PL[C] = — juf 2 / ds [f'(s) + VV(f(s))]2,

If C is aset of function with f(0) = z¢ and f(T) = =, then

1 (7
inf inf 7/0 ds[f'(s) + VV(f(s)]? = 2[V(x) — V(z0)].

Te[0,00] fEC 2

This tells that the escape is from min of V' (z) at the boundary.

0.7 Long time, Varadhan 2012

(0.6.6)

(0.6.7)

(0.6.8)

(0.6.9)

Consider Markov p(z — y) with equilibrium m: »: 7(y)P(y — x) = 7(2). The ergodic theorem

tells us
S350 = Y Fn().

Let the empirical distribution be
1 n
Hn,z = ﬁ Z 5Xj
j=1

where z is the starting point.

1 n
Qn(C) =P, E;éxjec :
=

(0.7.1)

(0.7.2)

(0.7.3)
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where C' is a set of measures. LLN tells us Qo — 6, (u — 7). LDP for the empirical measure

reads
Pliy,z ~ p] ~ e W),

As to the expectation value

where

J(q inf I(w)

)= wd, w(x) f(z)=q
We can obtain

PX;e Afor1<i<n]~— inf I(u).
pip(A)=1

Formally, we are interested in [], xa(X;) = 1. That is,
1 n
- > log xa(X;) < 400
i=1

Looking at (0.5.25), set f = —logxa. >, xa(z)u(x) < oo implies u(A) = 1.

Let us introduce a partition function
Zp(V) = Ep |exp{ Y _V(X;) p | ~ ™)
j=1

Here,
exp iV(Xj) = exp {n/un,x(dﬂi)v(ﬂf)}

Therefore, (D always denotes ‘uniform measure)

B |ewd SoV00) b = [ Do {n [ty e

Jj=1

Thus, we get

Llog Ze(V) - A(V) =sup | [ )V ) - 160)]

Therefore,

1) =sw | [ oy (@) - 4.

v

(0.7.4)

(0.7.5)

(0.7.6)

(0.7.7)

(0.7.8)

(0.7.9)

(0.7.10)

(0.7.11)

(0.7.12)

(0.7.13)

Notice that A(V + ¢) = A(V) + ¢ for any constant ¢. Thus, to compute (0.5.32) we may impose

the condition that A(V) = 0.



Theorem 3.1.3. Let p(z,y) > 0 be the transition probability of a Markov chain {X;} on a finite
state space X. Then, the measure on the set of all the sampled measures @, , satisfies a large

deviation principle with rate function

_ u(z) q(z,y)
I(u)fsgp;uxlog( @ 71/,12fuzu q(z,y) log 1)
Let us try a different demonstration, following YO 1989
Here, a probability space {P, B, Q} is fixed.
Level 1:
(1) L -
1
ARE) =P Jwlen(X) = 5 3
Consider the following 'partition function’:
N
200 = e ot X (| = [ @ e
j=1

(Negative) free energy
a(t) = Jim 1o 2 (1) = suplty — 10 ()]
y

N—oco N

Level 2

QW (B) =P |w|uy = Z5x w) €B

Consider the following ’partition function’:

N
Z](\?)((;S) = Ep |exp ZQS(Xj(w)) = /Q%)(du)el\ffd’(y)u(dy).
j=1
(Negative) free energy
a(2)(¢) = hm — IOgZ = Sup |:/¢ (2)(/1')

A variational calculation gives

d
() = /du log ﬁ

(0.7.14)

(0.7.15)

(0.7.16)

(0.7.17)

(0.7.18)

(0.7.19)

(0.7.20)

(0.7.21)
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It is basically the KS entropy.
Notice that this is for iid

1 @) E0e - K@) esp { S 605D} m(s,) explo(a) 0729
N J dm(w)exp { S 6(X; ()} - Jdm(@)explp(Xa@))]
Thus, an explicit calculation of
2) —su T ) — q® 7.
190 =sup | [ olom(de) - (o) (0.7:23)
e (5.) explo(z)
B m(dy) explo(x
HO) = i (o) expl (0, (@) (0724
That is,
[ () explo(X: ()] = explo()] (0.7.25)
o(z) = log % + log/dm(w) exp[o(X7(w))]. (0.7.26)
That is
/¢du /dulog— +log/dm(w)e)<p[¢(X1((.u))]7 (0.7.27)
but the last term is a(?(¢): we get a Fenchel’s equality
[ dutog 3 = [ o~ a®6) = 120 (0.7.28)
Level 2 to Level 1
The contraction principle tells us
IW@)y= inf  1®(u), (0.7.29)

wl [ yu(dy)==

so using Lagrange’s multiplier, we can write
p ,

10 = inf [ 1900 ~ ¢ ([ tan) ~2 )| = =sup o ( [unta) =) = 190|010

That is,
I () = —supa® (t(y — z)), (0.7.31)
t

where y denotes the variable of the function ¢(y) =y — .



10

True time LD requires some trick as is formally followed in YO PTP, we could use level 2 for
samples.

Let us consider the following partition function (o is the shift)

N [T

%)(B =P lw %Z [Z(S,ﬁw B] ﬁe—N[(z)(#T) (0.7.32)

T

s gl )

N |j=1

(0.7.33)
Define

o (¢) = logz( 7 (6) (0.7.34)

From (0.5.52)

= sup [ / Z¢ (09 w)pp (dw) — I (w)] (0.7.35)

Note that, actually, Zle #(0/w) can be replaced by a general function ¢(w,ow,---,0w). From
the above calculation J
@) () = a
% (p) /du log T (0.7.36)
Here, pu and m are measures on the path space. We can write
T .
I (ur) = sup / > po?w)pr(dw) — af (9) (0.7.37)
nT j=1
Differentiating (0.5.54) wrt phi(w) we get
[T i T j
dai(¢) Z Jdmien) [ 807y — )] exp { Ty |51 6(oom)] } (0.7.38)
oW N Jdm(wn)exp {3y [S1, (07| }
Jdm(@') [ 2] 807 = w)] exp [, é(07)] 0730
J dm(w') exp {Z};l gﬁ(ajw’)}
_ i m(d,) exp [¢p(or Tw) + -+ P(w) + -+ + d(oT w)] (0.7.40)
= J dm(w)exp [S1, 607w
(0.7.41)

If we may use the stationality of m, we get

s (g) _ . MO exp [T, olot)]| (0.7.42)

do(w) [ dm(w') exp [Zle ¢(ijl)]
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Differentiating (0.5.56) wrt ¢(w) we get

- j m(dy,) exp [Zle (ZS(CTjw)} B
/ ; §(0’w — w)pr (dw) — dem(w/) - [Zle (b(ajw/)} =0 (0.7.43)

This may be rewritten as

m(d) exp S, 6(07w)]
Tur(0,) =T =0 (0.7.44)

f dm(w’) exp {Z};l gb(ajw’)}

This is an equation similar to the one in YO.

Donsker-Varadhan: Asymptotic Evaluation of CertainMarkov Process Expectations for Large Time,
I
CPAM 28 1 (1975).

Let u be a function on the state space.

mu(z) = /u(y)ﬂ'(x,dy). (0.7.45)

Here, 7(z,dy) is the transition probability from z into dy. Let L, be the empirical distribution,
and P, be the stationary measure.

Qn,o(B) = Py(L, € B) (0.7.46)
Then
Theorem 1. For any closed set C' (a set of probability measures)
1 .
A}gnoo i log QN (C) ~ ﬁrelg I(p) (0.7.47)

with (Markov version of Sanov’s theorem)
I(p) = —inf / p(dz) log (%“) . (0.7.48)

Let V = mu and e~ = u/V. Averaging ( ), over all the processes starting from x

(0.7.49)
_ [ u(Xo)u(X1) - u(Xn-2)
‘<vmwwxm~vag“K“ﬂk (0.7.50)
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Notice that the Markov property implies that

P(Xy_1,Xn_2,--, X2, X1 | Xo=2)dXNn_1---dXy = m(z,dX1)m(X1,dXs) - m(Xn_2,dXN_1)
(0.7.51)
Thus, the above average reads

u(Xo)u(Xy) - - - u(Xn-2)
/.../V<X0)V(X1).”V(XNQ)U(XN—l)W($,Xm)ﬂ(Xl,dXQ)-..W(XN—Q,dXN—l)

(0.7.52)

B [ u(Xo)u(X1) - u(Xn-2) (x - -
- / /V(XO)V(Xl)-..V(XN—Q)V(XN*Q) (z,dXq1)m(X1,dX3) (Xn-2,dXN-2)

(0.7.53)

u(Xo)u(Xy) - u(Xn—3)
/ - / TRV (K]~ V (K] -2 XX, dX) - (X5, X y—2)

(0.7.54)
—— (0.7.55)
Thus, we conclude
(exp{—[W(Xo) + W(X1)+ - - + W(Xn_1]}V(XNn-1)), = u(x). (0.7.56)
Here v is bounded and V' is bounded from below (ergodicity assumed), so (0.5.75) implies
(exp{—[W(Xo) + W(X1)+ -+ W(Xn_1]}), Su(z)/infV(z) <M (0.7.57)

for some positive constant H. That this is independent of IV is the key observation.
On the other hand

exp{—[W(Xo) + W(Xy) + -+ W(Xn_1]} = exp{-N[[W(Xo)+ W(X1)+- -+ W(Xn_1]/N]}
(0.7.58)

— expl-N [ W) Ly(dy) (0.7.59)

where Ly is the empirical measure. Therefore,
(0 (~ [ (X0) 4 W) 44 WD), = (0l-N [ WLata]) <0 (0760

Inn (0.5.79) the average is over (empirical) measures Q, starting from x. Therefore, for any set of
measures C'

(exp{—[W(Xo) + W(X1)+ -+ W(Xn_1]}), = Qz(C)exp| Nigg/W (dy)]  (0.7.61)

With (0.5.79)

M > Q,(C)exp| Nsup/W £(dy)] (0.7.62)
LeC
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or

Q(C)<Mexprup/W L(dy)]
LeC

Thus

)

lim sup N log Q..(C) < sup / W (y)¢(dy) = sup / log <%u) (y)l(dy)

N—o00 LeC LeC

with an arbitrary u, so we may choose inf wrt u.

Informally, (0.5.79)

(oot | w<y>LN<dy>1>w

I
&
<

= /exp[fN/W(y)l/(dy)]e*NI(”) <M,

where M is not N-dependent. This implies

mf/log v(dy) +I(v) =0.
In case the time is continuous: Notice that
m(z,dy) = G(y,z,t = 1)dy

where G is the Green’s function for the time evolution operator

2 Gy a,1) = LGy, 1) + 8(0)3(y — ).

For the Brownian motion L = (1/2)A. Therefore,

1 etly, Lu
lim n log = —

t—0 u

Thus

u

10) = —inf [ “2(0)v(dy).

For the Wiener process L = (1/2)A, so

§ Au _ Au f
o+ [ oetsdy =557+ AL o

. Let us introduce B = f/2u?. The above formula reads

—BAu+ A(uB) = 2gradu - grad B+ uAB =0

[ ewoloN [ Wwanpy ~ o

13

(0.7.63)

(0.7.64)

(0.7.65)

(0.7.66)

(0.7.67)

(0.7.68)

(0.7.69)

(0.7.70)

(0.7.71)

(0.7.72)

(0.7.73)

(0.7.74)
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Let us multiply v and we get
gradu® - gradB + u?*AB = div(u® gradB) = 0 (0.7.75)
Thus, u?grad B = 0 (assuming the constant vanished far away). This reads

1 f gradu grad f
—_ d - d — = — ol
59ra f—|—4ug7‘a u=0= ” 57 (0.7.76)

On the other hand

I(v) = mf/gradu grad( ) = —in f/ (gradu radf—(gglj;L)Qf) dy
(0.7.77)
. +/(97”Zdjf :—f/fAfdy (0.7.78)

0.8 Hydrodynamic Scaling, Varadhan 2012

The dynamical system has five conserved quantities. The total number N of particles, the total
momenta and the total energy. The hydrodynamic scaling in this context consists of rescaling space
and time by a factor of £. The rescaled space is the 3-unit torus 7. The macroscopic quantities to
be studied correspond to conserved quantities. For the number density

/TS J(@)pe(t,2)dx = 75 ZJ (” ) (0.8.1)
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