0.1 LD Summary

A function $I(\cdot): X \rightarrow[0, \infty]$ will be called a (proper) rate function, if it is lower semicontinuous and the level sets are compact in X.

Let P_{n} be a sequence of probability distributions on X. We say that P_{n} satisfies the large deviation principle on X with rate function I, if the following two statements hold. For every closed set $C \subset X$ and for every open $G \subset X$

$$
\begin{align*}
\lim \sup n \rightarrow \infty \frac{1}{n} \log P_{n}(C) & \leq-\inf _{x \in C} I(x) \tag{0.1.1}\\
\lim \inf n \rightarrow \infty \frac{1}{n} \log P_{n}(G) & \geq-\inf _{x \in G} I(x) \tag{0.1.2}
\end{align*}
$$

Theorem Suppose P_{n} and Q_{n} are two sequences on two spaces X and Y satisfying the LDP with rate functions I and J, respectively. Then the sequence of product measures $R_{n}=P_{n} \times Q_{n}$ on $X \times Y$ satisfies an LDP with the rate function $K(x ; y)=I(x)+J(y)$.

Theorem If P_{n} satisfies an LDP on X with a rate function I, and F is a continuous mapping from the Polish spaces ${ }^{1} X$ to another Polish space Y, then the family $Q_{n}=P_{n} F^{-1}$ satisfies an LDP on Y with a rate function J given by

$$
\begin{equation*}
J(y)=\inf _{x: F(x)=y} I(x) \tag{0.1.3}
\end{equation*}
$$

Theorem Assume that P_{n} satisfies an LDP with rate function I on X. Suppose that F is a bounded continuous function on X, and

$$
\begin{equation*}
a_{n}=\int_{X} d P_{n}(x) e^{n F(x)} \tag{0.1.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log a_{n}=\sup _{x}[F(x)-I(x)] \tag{0.1.5}
\end{equation*}
$$

Theorem If P_{n} satisfies an LDP with rate function I and F is a bounded continuous function on X. Define

$$
\begin{equation*}
Q_{n}(A)=\frac{\int_{A} d P_{n}(x) e^{n F(x)]}}{\int_{X} d P_{n}(x) e^{n F(x)]}} \tag{0.1.6}
\end{equation*}
$$

for Borel subset $A \subset X$. Then, Q_{n} satisfies an LDP on X as well with the new rate function

$$
\begin{equation*}
J(x)=I(x)-F(x)-\inf _{x \in X}[I(x)-F(x)] \tag{0.1.7}
\end{equation*}
$$

[^0]
0.2 Sanov's theorem

Consider a sequence of i.i.d. random variables with values in some complete separable metric space X with a common distribution α. Then the sample distribution

$$
\begin{equation*}
\beta_{n}=\frac{1}{n} \sum_{j} \delta_{x_{j}} \tag{0.2.1}
\end{equation*}
$$

generates a measure P_{n} on the space of measures $M(X)$ on X. LLN means P_{n} to converge d_{α}.
Theorem The sequence $\left\{P_{n}\right\}$ satisfies a large deviation principle on $M(X)$ with the rate function $I(\beta)$ given by

$$
\begin{equation*}
I(\beta)=\int \frac{d \beta}{d \alpha} \log \frac{d \beta}{d \alpha} d \alpha=\int \log \frac{d \beta}{d \alpha} d \beta \tag{0.2.2}
\end{equation*}
$$

If not $\beta \ll \alpha I(\beta)=+\infty$
The proof uses the following lemma
Lemma Let α, β be two probability distributions on a measure space (X, \mathcal{B}). Let $B(X)$ be the space of bounded measurable functions on (X, \mathcal{B}). Then

$$
\begin{equation*}
I(\beta)=\sup _{f \in B(X)}\left[\int f(x) d \beta(x)-\log \int e^{f(x)} d \alpha(x)\right] \tag{0.2.3}
\end{equation*}
$$

Its demo uses

$$
\begin{equation*}
x \log x-x+1=\sup _{y}\left[x y-\left(e^{y}-1\right)\right] \tag{0.2.4}
\end{equation*}
$$

Corollary Let $\left\{X_{i}\right\}$ be i.i.d.r.v with values in a separable Banach space X with a common distribution α. Assume

$$
\begin{equation*}
E\left[e^{\theta\|X\|}\right]<\infty \tag{0.2.5}
\end{equation*}
$$

satisfies a large deviation principle with rate function

$$
\begin{equation*}
H(x)=\sup _{y \in X^{*}}\left[\langle y \mid x\rangle-\log \int e^{\langle y \mid x\rangle} d \alpha(x)\right] \tag{0.2.6}
\end{equation*}
$$

0.3 Scaled processes and escaping rate

Theorem [Schilder] Let us consider the family of stochastic process $\left\{x_{\varepsilon}(t)\right\}$ defined by

$$
\begin{equation*}
x_{\varepsilon}(t)=\sqrt{\varepsilon} B(t) \tag{0.3.1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
x_{\varepsilon}(t)=B(\varepsilon t) \tag{0.3.2}
\end{equation*}
$$

for t in some fixed time interval, say $[0,1]$ where B is the standard Brownian motion. The distributions of $x_{\varepsilon}(\cdot)$ induce a family of scaled Wiener processes on $C[0,1]$ that we denote by Q_{ε}. In the $\varepsilon \rightarrow 0$ limit, the LDP of Q_{ε} os with the following rate function

$$
\begin{equation*}
I(f)=\frac{1}{2} \int_{0}^{1}\left|f^{\prime}(t)\right|^{2} d t \tag{0.3.3}
\end{equation*}
$$

if $f(0)=0$ and f^{\prime} is square integrable; otherwise, $I(f)=+\infty$.
Strassen's theorem about the iterated logarithm.

0.4 Markov process

Suppose $X_{1}, \cdots, X_{n}, \cdots$ is a Markov Chain on a finite state space F. The Markov Chain will be assumed to have a stationary transition probability given by a stochastic matrix $\pi=\pi(x \rightarrow y)$. We will assume that all the entries of π are positive, imposing thereby a strong irreducibility condition on the Markov Chain. Under these conditions there is a unique invariant or stationary distribution $p(x)$ satisfying

$$
\begin{equation*}
p(x)=\sum_{y} p(y) \pi(y \rightarrow x) \tag{0.4.1}
\end{equation*}
$$

Let us suppose that $V(x): F \rightarrow \mathbb{R}$ is a function defined on the state space with a mean value of $m=\sum_{x} V(x) p(x)$ with respect to the invariant distribution. By the ergodic theorem, for any starting point x,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P_{x}\left[\left|\frac{1}{n} \sum_{j} V\left(X_{j}\right)-m\right| \geq a\right]=0 \tag{0.4.2}
\end{equation*}
$$

where $a>0$ is arbitrary and P_{x} denotes, as is customary, the measure corresponding to the Markov Chain initialized to start from the point $x \in F$.

For any V

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log E_{x}\left[\exp \left[V\left(x_{1}\right)+\cdots+V\left[X_{n}\right)\right]\right]=\log \sigma(V) \tag{0.4.3}
\end{equation*}
$$

exists, where $\sigma(V)$ is the PF eigenvalue of the matrix

$$
\begin{equation*}
\psi_{V}=\pi_{V}(x \rightarrow y)=\pi(x \rightarrow y) e^{V(x)} \tag{0.4.4}
\end{equation*}
$$

This follows from

$$
\begin{equation*}
E_{x}\left[\exp \left[V\left(x_{1}\right)+\cdots+V\left(X_{n}\right)\right]=\sum_{y}\left(\pi_{V}\right)^{n}(x \rightarrow y)\right. \tag{0.4.5}
\end{equation*}
$$

Theorem For any Markov Chain with a transition probability matrix π with positive entries, the probability distribution of $(1 / n) \sum_{j=1}^{n} V\left(X_{j}\right)$ satisfies an LDP with a rate function

$$
\begin{equation*}
h(a)=\sup _{\lambda}[\lambda a-\log \sigma(\lambda V)] . \tag{0.4.6}
\end{equation*}
$$

There is an interesting way of looking at $\sigma(V)$. If $V(x)=\log (u(x) /(\pi u(x)$, then $f(x)=(\pi u)(x)$ is a column eigenfunction for π_{V} with eigenvalue $\sigma=1$. Therefore

$$
\begin{equation*}
\log \sigma(\log (u / \pi u)=0 \tag{0.4.7}
\end{equation*}
$$

0.5 Applications

For a Markov chain on a
finite state space X, having $\pi(x \rightarrow y)$ as the probability of transition from the state x to the state y. The following limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log E_{x}\left[\exp \left[V\left(x_{1}\right)+\cdots+V\left(X_{n}\right)\right]=\lambda(V)\right. \tag{0.5.1}
\end{equation*}
$$

exists and is independent of x :

$$
\begin{equation*}
\lambda(V)=\sup _{q \in \mathcal{P}}\left[\sum_{x} V(x) q(x)-I(q)\right] \tag{0.5.2}
\end{equation*}
$$

where $q=\{q(x)\}$ is a probability distribution on X, \mathcal{P} is the space of such probability distributions and $I(q)$ is the large deviation rate function for the distribution Q_{n} on \mathcal{P}, of the empirical distribution

$$
\begin{equation*}
p_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \chi_{x}\left(X_{i}\right) \tag{0.5.3}
\end{equation*}
$$

This can be generalized to

$$
\begin{equation*}
\lambda_{2}(V)=\lim _{n \rightarrow \infty} \frac{1}{n} \log E_{x}\left[\exp \left[V\left(x_{1}, X_{2}\right)+V\left(X_{2}, X_{3}\right)+\cdots+V\left(X_{n}, X_{n+1}\right)\right]\right. \tag{0.5.4}
\end{equation*}
$$

Collection of non-interacting Brownian particles

We a $N=\bar{\rho} L^{3}$ particles in a L^{3}-cube. If the initial configuration with an empirical density

$$
\begin{equation*}
\nu_{0}(d x)=\frac{1}{L^{3}} \sum_{i=1}^{N} \delta\left(x_{i}-x\right) \tag{0.5.5}
\end{equation*}
$$

has a deterministic limit $\rho_{0}(x) d x$, then the empirical distribution

$$
\begin{equation*}
\nu_{t}(d x)=\frac{1}{L^{3}} \sum_{i=1}^{N} \delta\left(x_{i}(t)-x\right) \tag{0.5.6}
\end{equation*}
$$

has a deterministic limit $\rho(t, x) d x$ as $\mid \rightarrow \infty$ and $\rho(t, x)$ can be obtained from $\rho_{0}(x)$ by solving the heat equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=\frac{1}{2} \Delta \rho \tag{0.5.7}
\end{equation*}
$$

with the initial condition $\left(\rho(0, x)=\rho_{0}(x)\right.$.
The proof is an elementary law of large numbers argument involving a calculation of two moments. Let $f(x)$ be a continuous function on T^{3} (3-torus) and let us calculate for

$$
\begin{equation*}
U=f r a c 1 L^{3} \sum_{i} f\left(x_{i}(t)\right) \tag{0.5.8}
\end{equation*}
$$

the first two moments given the initial configuration $\left(x_{1}, \cdots, x_{N}\right)$

$$
\begin{equation*}
E(U)=\frac{1}{L^{3}} \sum_{i} \int_{T^{3}} d y f(y) \rho(t, y) \tag{0.5.9}
\end{equation*}
$$

and an elementary calculation reveals that the conditional expectation converges to the following constant.

$$
\begin{equation*}
\int_{T^{3}} \int_{T^{3}} f(y) p(t, x, y) \rho_{0}(x) d y d x=\int_{T^{3}} f(y) \rho(t, y) d y \tag{0.5.10}
\end{equation*}
$$

The independence clearly provides a uniform upper bound of order L^{3} for the conditional variance that clearly goes to 0 . Of course on T^{3} we could have had a process obtained by rescaling a random walk on a large torus of size L. Then the hydrodynamic scaling limit would be a consequence of central limit theorem for the scaling limit of a single particle and the law of large numbers resulting from the averaging over a large number of independently moving particles.

Simple exclusion process

The particles move randomly. Each particle waits for an exponential random time and then tries to jump from the current site x to a new site y, The new site y is picked randomly according to a probability distribution $\pi(x \rightarrow y)$. In particular, $\sum_{y} \pi(x \rightarrow y)=1$ for every x. A jump is possible only when the destination is empty.

0.6 LD Introduction, Varadhan 2012

$$
\begin{equation*}
d x_{\varepsilon}(t)=b\left(x_{\varepsilon}(t)\right) d t+\sqrt{\varepsilon} d B \tag{0.6.1}
\end{equation*}
$$

Theorem [Schilder] For $b=0$ let the path measure for x_{ε} be Q_{ε}. Then, asymptotically in $\varepsilon \rightarrow$ 0

$$
\begin{equation*}
\varepsilon \log Q_{\varepsilon}[C] \simeq-\inf _{g \in C} \frac{1}{2} \int d s g^{\prime}(s)^{2} \tag{0.6.2}
\end{equation*}
$$

where C is a set of 'good functions.'
[Demo] Kac path

$$
\begin{equation*}
Q_{\varepsilon}[d x]=\mathcal{D}[x] \exp \left\{-\frac{1}{2 \varepsilon} \int d s \dot{x}^{2}\right\} \tag{0.6.3}
\end{equation*}
$$

Formally, we need

$$
\begin{equation*}
\int_{C} \mathcal{D}[x] \exp \left\{-\frac{1}{2 \varepsilon} \int d s \dot{x}^{2}\right\} \tag{0.6.4}
\end{equation*}
$$

Therefore, the variational principle follows.
For (0.5.11)

$$
\begin{equation*}
Q_{\varepsilon}[d x]=\mathcal{D}[x] \exp \left\{-\frac{1}{2 \varepsilon} \int d s[\dot{x}-b(x)]^{2}\right\} \tag{0.6.5}
\end{equation*}
$$

Therefore,
Theorem [Schilder] For (0.5.11) let the path measure for x_{ε} be P_{ε}. Then, asymptotically in $\varepsilon \rightarrow 0$

$$
\begin{equation*}
\varepsilon \log P_{\varepsilon}[C] \simeq-\inf _{f \in C} \frac{1}{2} \int d s\left[f^{\prime}(s)-b(f(s))\right]^{2} \tag{0.6.6}
\end{equation*}
$$

where C is a set of 'good functions.'

Escape:
Consider

$$
\begin{equation*}
d x=-\nabla V d t+\sqrt{e} d B \tag{0.6.7}
\end{equation*}
$$

We know

$$
\begin{equation*}
\varepsilon \log P_{\varepsilon}[C] \simeq-\inf _{f \in C} \frac{1}{2} \int_{0}^{T} d s\left[f^{\prime}(s)+\nabla V(f(s))\right]^{2} \tag{0.6.8}
\end{equation*}
$$

If C is aset of function with $f(0)=x_{0}$ and $f(T)=x$, then

$$
\begin{equation*}
\inf _{T \in[0, \infty]} \inf _{f \in C} \frac{1}{2} \int_{0}^{T} d s\left[f^{\prime}(s)+\nabla V(f(s))\right]^{2}=2\left[V(x)-V\left(x_{0}\right)\right] \tag{0.6.9}
\end{equation*}
$$

This tells that the escape is from min of $V(x)$ at the boundary.

0.7 Long time, Varadhan 2012

Consider Markov $p(x \rightarrow y)$ with equilibrium $\pi: \sum_{y} \pi(y) P(y \rightarrow x)=\pi(x)$. The ergodic theorem tells us

$$
\begin{equation*}
\frac{1}{n} \sum_{j=1}^{n} f\left(X_{j}\right) \rightarrow \sum_{x} f(x) \pi(x) \tag{0.7.1}
\end{equation*}
$$

Let the empirical distribution be

$$
\begin{equation*}
\mu_{n, x}=\frac{1}{n} \sum_{j=1}^{n} \delta_{X_{j}} \tag{0.7.2}
\end{equation*}
$$

where x is the starting point.

$$
\begin{equation*}
Q_{n, x}(C)=P_{x}\left[\frac{1}{n} \sum_{j=1}^{n} \delta_{X_{j}} \in C\right] \tag{0.7.3}
\end{equation*}
$$

where C is a set of measures. LLN tells us $Q_{n, x} \rightarrow \delta_{\pi}(\mu \rightarrow \pi)$. LDP for the empirical measure reads

$$
\begin{equation*}
P\left[\mu_{n, x} \sim \mu\right] \sim e^{-n I(\mu)} \tag{0.7.4}
\end{equation*}
$$

As to the expectation value

$$
\begin{equation*}
P\left[\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right) \sim q\right] \sim e^{-n J(q)} \tag{0.7.5}
\end{equation*}
$$

where

$$
\begin{equation*}
J(q)=\inf _{\mu: \sum_{x}}^{\mu(x) f(x)=q} \mid I(\mu) \tag{0.7.6}
\end{equation*}
$$

We can obtain

$$
\begin{equation*}
P\left[X_{i} \in A \text { for } 1 \leq i \leq n\right] \sim-\inf _{\mu: \mu(A)=1} I(\mu) \tag{0.7.7}
\end{equation*}
$$

Formally, we are interested in $\prod_{i} \chi_{A}\left(X_{i}\right)=1$. That is,

$$
\begin{equation*}
-\frac{1}{n} \sum_{i=1}^{n} \log \chi_{A}\left(X_{i}\right)<+\infty \tag{0.7.8}
\end{equation*}
$$

Looking at (0.5.25), set $f=-\log \chi_{A} \cdot \sum_{x} \chi_{A}(x) \mu(x)<+\infty$ implies $\mu(A)=1$.
Let us introduce a partition function

$$
\begin{equation*}
Z_{P}(V)=E_{P}\left[\exp \left\{\sum_{j=1}^{n} V\left(X_{j}\right)\right\}\right] \sim e^{n A(V)} \tag{0.7.9}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\exp \left\{\sum_{j=1}^{n} V\left(X_{j}\right)\right\}=\exp \left\{n \int \mu_{n, x}(d x) V(x)\right\} \tag{0.7.10}
\end{equation*}
$$

Therefore, (\mathcal{D} always denotes 'uniform measure)

$$
\begin{equation*}
E_{P}\left[\exp \left\{\sum_{j=1}^{n} V\left(X_{j}\right)\right\}\right]=\int \mathcal{D}[\mu] \exp \left\{n \int \mu(d x) V(x)\right\} e^{-n I(\mu)} \tag{0.7.11}
\end{equation*}
$$

Thus, we get

$$
\begin{equation*}
\frac{1}{n} \log Z_{P}(V) \rightarrow A(V)=\sup _{\mu}\left[\int \mu(d x) V(x)-I(\mu)\right] \tag{0.7.12}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
I(\mu)=\sup _{V}\left[\int \mu(d x) V(x)-A(V)\right] \tag{0.7.13}
\end{equation*}
$$

Notice that $A(V+c)=A(V)+c$ for any constant c. Thus, to compute (0.5.32) we may impose the condition that $A(V)=0$.

Theorem 3.1.3. Let $p(x, y)>0$ be the transition probability of a Markov chain $\left\{X_{i}\right\}$ on a finite state space X. Then, the measure on the set of all the sampled measures $Q_{n, x}$ satisfies a large deviation principle with rate function

$$
\begin{equation*}
I(\mu)=\sup _{u} \sum_{x} \mu x \log \frac{u(x)}{(\pi u)(x)}=\inf _{\nu: \mu q=u} \sum_{x, y} \mu(x) q(x, y) \log \frac{q(x, y)}{\pi(x, y)} \tag{0.7.14}
\end{equation*}
$$

Let us try a different demonstration, following YO 1989
Here, a probability space $\{P, \mathcal{B}, \Omega\}$ is fixed.
Level 1:

$$
\begin{equation*}
Q_{N}^{(1)}(B)=P\left[\omega \left\lvert\, e_{N}(X)=\frac{1}{N} \sum_{j=1}^{N} X_{j}(\omega) \in B\right.\right] \tag{0.7.15}
\end{equation*}
$$

Consider the following 'partition function':

$$
\begin{equation*}
Z_{N}^{(1)}(t)=E_{P}\left[\exp \left\{t \sum_{j=1}^{N} X_{j}(\omega)\right\}\right]=\int Q_{N}^{(1)}(d y) e^{t N y} \tag{0.7.16}
\end{equation*}
$$

(Negative) free energy

$$
\begin{equation*}
a^{(1)}(t)=\lim _{N \rightarrow \infty} \frac{1}{N} \log Z_{N}^{(1)}(t)=\sup _{y}\left[t y-I^{(1)}(y)\right] \tag{0.7.17}
\end{equation*}
$$

Level 2

$$
\begin{equation*}
Q_{N}^{(2)}(B)=P\left[\omega \left\lvert\, \mu_{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{j}(\omega)} \in B\right.\right] \tag{0.7.18}
\end{equation*}
$$

Consider the following 'partition function':

$$
\begin{equation*}
Z_{N}^{(2)}(\phi)=E_{P}\left[\exp \left\{\sum_{j=1}^{N} \phi\left(X_{j}(\omega)\right)\right\}\right]=\int Q_{N}^{(2)}(d \mu) e^{N \int \phi(y) \mu(d y)} \tag{0.7.19}
\end{equation*}
$$

(Negative) free energy

$$
\begin{equation*}
a^{(2)}(\phi)=\lim _{N \rightarrow \infty} \frac{1}{N} \log Z_{N}^{(2)}(\phi)=\sup _{\mu}\left[\int \phi(x) \mu(d x)-I^{(2)}(\mu)\right] \tag{0.7.20}
\end{equation*}
$$

A variational calculation gives

$$
\begin{equation*}
I^{(2)}(\mu)=\int d \mu \log \frac{d \mu}{d m} \tag{0.7.21}
\end{equation*}
$$

It is basically the KS entropy.
Notice that this is for iid

$$
\begin{align*}
& \frac{d}{d \phi(x)} \frac{1}{N} \log E_{P}\left[\exp \left\{\sum_{j=1}^{N} \phi\left(X_{j}(\omega)\right)\right\}\right]=\frac{d}{d \phi(x)} \frac{1}{N} \log \int d m(\omega) \exp \left\{\sum_{j=1}^{N} \phi\left(X_{j}(\omega)\right)\right\} \\
= & \frac{1}{N} \frac{\int d m(\omega) \sum_{j} \delta\left(x-X_{j}(\omega)\right) \exp \left\{\sum_{j=1}^{N} \phi\left(X_{j}(\omega)\right)\right\}}{\int d m(\omega) \exp \left\{\sum_{j=1}^{N} \phi\left(X_{j}(\omega)\right)\right\}}=\frac{m\left(\delta_{x}\right) \exp [\phi(x)]}{\int d m(\omega) \exp \left[\phi\left(X_{1}(\omega)\right)\right]} \tag{0.7.22}
\end{align*}
$$

Thus, an explicit calculation of

$$
\begin{equation*}
I^{(2)}(\mu)=\sup _{\phi}\left[\int \phi(x) \mu(d x)-a^{(2)}(\phi)\right] \tag{0.7.23}
\end{equation*}
$$

gives

$$
\begin{equation*}
\mu\left(\delta_{x}\right)=\frac{m\left(\delta_{x}\right) \exp [\phi(x)]}{\int d m(\omega) \exp \left[\phi\left(X_{1}(\omega)\right)\right]} \tag{0.7.24}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\frac{d \mu}{d m} \int d m(\omega) \exp \left[\phi\left(X_{1}(\omega)\right)\right]=\exp [\phi(x)] \tag{0.7.25}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi(x)=\log \frac{d \mu}{d m}+\log \int d m(\omega) \exp \left[\phi\left(X_{1}(\omega)\right)\right] \tag{0.7.26}
\end{equation*}
$$

That is

$$
\begin{equation*}
\int \phi d \mu=\int d \mu \log \frac{d \mu}{d m}+\log \int d m(\omega) \exp \left[\phi\left(X_{1}(\omega)\right)\right] \tag{0.7.27}
\end{equation*}
$$

but the last term is $a^{(2)}(\phi)$: we get a Fenchel's equality

$$
\begin{equation*}
\int d \mu \log \frac{d \mu}{d m}=\int \phi d \mu-a^{(2)}(\phi)=I^{(2)}(\mu) \tag{0.7.28}
\end{equation*}
$$

Level 2 to Level 1
The contraction principle tells us

$$
\begin{equation*}
I^{(1)}(x)=\inf _{\mu \mid \int y \mu(d y)=x} I^{(2)}(\mu) \tag{0.7.29}
\end{equation*}
$$

so using Lagrange's multiplier, we can write

$$
\begin{equation*}
I^{(1)}(x)=\inf _{\mu, t}\left[I^{(2)}(\mu)-t\left(\int y \mu(d y)-x\right)\right]=-\sup _{\mu, t}\left[t\left(\int y \mu(d y)-x\right)-I^{(2)}(\mu)\right] \tag{0.7.30}
\end{equation*}
$$

That is,

$$
\begin{equation*}
I^{(1)}(x)=-\sup _{t} a^{(2)}(t(y-x)) \tag{0.7.31}
\end{equation*}
$$

where y denotes the variable of the function $\phi(y)=y-x$.

True time LD requires some trick as is formally followed in YO PTP, we could use level 2 for samples.

Let us consider the following partition function (σ is the shift)

$$
\begin{gather*}
Q_{N}^{(2)}(B)=P\left[\omega \left\lvert\, \frac{1}{N} \sum_{j=1}^{N}\left[\sum_{i=1}^{T} \delta_{\sigma^{i} \omega_{j}}\right] \in B\right.\right] \simeq e^{-N I^{(2)}\left(\mu_{T}\right)} \tag{0.7.32}\\
Z_{N, T}^{(2)}(\phi)=E_{P}\left[\exp \left\{\sum_{N}\left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega_{N}\right)\right]\right\}\right]=\int Q_{N}^{(2)}\left(d \mu_{T}\right) \exp \left\{N \int\left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega\right)\right] \mu_{T}(\omega)\right\} . \tag{0.7.33}
\end{gather*}
$$

Define

$$
\begin{equation*}
a_{T}^{(2)}(\phi)=\frac{1}{N} \log Z_{N, T}^{(2)}(\phi) \tag{0.7.34}
\end{equation*}
$$

From (0.5.52)

$$
\begin{equation*}
a_{T}^{(2)}(\phi)=\sup _{\mu_{T}}\left[\int \sum_{j=1}^{T} \phi\left(\sigma^{j} \omega\right) \mu_{T}(d \omega)-I_{T}^{(2)}\left(\mu_{T}\right)\right] \tag{0.7.35}
\end{equation*}
$$

Note that, actually, $\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega\right)$ can be replaced by a general function $\phi\left(\omega, \sigma \omega, \cdots, \sigma^{T} \omega\right)$. From the above calculation

$$
\begin{equation*}
I^{(2)}(\mu)=\int d \mu \log \frac{d \mu}{d m} \tag{0.7.36}
\end{equation*}
$$

Here, μ and m are measures on the path space. We can write

$$
\begin{equation*}
I_{T}^{(2)}\left(\mu_{T}\right)=\sup _{\mu_{T}}\left[\int \sum_{j=1}^{T} \phi\left(\sigma^{j} \omega\right) \mu_{T}(d \omega)-a_{T}^{(2)}(\phi)\right] \tag{0.7.37}
\end{equation*}
$$

Differentiating (0.5.54) wrt phi(ω) we get

$$
\begin{align*}
\frac{\delta a_{T}^{(2)}(\phi)}{\delta \phi(\omega)} & =\frac{1}{N} \sum_{N} \frac{\int d m\left(\omega_{N}\right)\left[\sum_{j=1}^{T} \delta\left(\sigma^{j} \omega_{N}-\omega\right)\right] \exp \left\{\sum_{N}\left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega_{N}\right)\right]\right\}}{\int d m\left(\omega_{N}\right) \exp \left\{\sum_{N}\left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega_{N}\right)\right]\right\}} \tag{0.7.38}\\
& =\frac{\int d m\left(\omega^{\prime}\right)\left[\sum_{j=1}^{T} \delta\left(\sigma^{j} \omega^{\prime}-\omega\right)\right] \exp \left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega^{\prime}\right)\right]}{\int d m\left(\omega^{\prime}\right) \exp \left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega^{\prime}\right)\right]} \tag{0.7.39}\\
& =\sum_{j=1}^{T} \frac{m\left(\delta_{\omega}\right) \exp \left[\phi\left(\sigma^{1-j} \omega\right)+\cdots+\phi(\omega)+\cdots+\phi\left(\sigma^{T-j} \omega\right)\right]}{\int d m\left(\omega^{\prime}\right) \exp \left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega^{\prime}\right)\right]} \tag{0.7.40}
\end{align*}
$$

If we may use the stationality of m, we get

$$
\begin{equation*}
\frac{\delta a_{T}^{(2)}(\phi)}{\delta \phi(\omega)}=T \frac{m\left(\delta_{\omega}\right) \exp \left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega\right)\right]}{\int d m\left(\omega^{\prime}\right) \exp \left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega^{\prime}\right)\right]} \tag{0.7.42}
\end{equation*}
$$

Differentiating (0.5.56) wrt $\phi(\omega)$ we get

$$
\begin{equation*}
\int \sum_{j=1}^{T} \delta\left(\sigma^{j} \omega-\omega\right) \mu_{T}(d \omega)-T \frac{m\left(\delta_{\omega}\right) \exp \left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega\right)\right]}{\int d m\left(\omega^{\prime}\right) \exp \left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega^{\prime}\right)\right]}=0 \tag{0.7.43}
\end{equation*}
$$

This may be rewritten as

$$
\begin{equation*}
T \mu_{T}\left(\delta_{\omega}\right)-T \frac{m\left(\delta_{\omega}\right) \exp \left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega\right)\right]}{\int d m\left(\omega^{\prime}\right) \exp \left[\sum_{j=1}^{T} \phi\left(\sigma^{j} \omega^{\prime}\right)\right]}=0 \tag{0.7.44}
\end{equation*}
$$

This is an equation similar to the one in YO.

Donsker-Varadhan: Asymptotic Evaluation of CertainMarkov Process Expectations for Large Time, I CPAM 281 (1975).

Let u be a function on the state space.

$$
\begin{equation*}
\pi u(x)=\int u(y) \pi(x, d y) \tag{0.7.45}
\end{equation*}
$$

Here, $\pi(x, d y)$ is the transition probability from x into $d y$. Let L_{n} be the empirical distribution, and P_{x} be the stationary measure.

$$
\begin{equation*}
Q_{n, x}(B)=P_{x}\left(L_{n} \in B\right) \tag{0.7.46}
\end{equation*}
$$

Then
Theorem 1. For any closed set C (a set of probability measures)

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \log Q_{N, x}(C) \simeq \inf _{\mu \in C} I(\mu) \tag{0.7.47}
\end{equation*}
$$

with (Markov version of Sanov's theorem)

$$
\begin{equation*}
I(\mu)=-\inf _{u} \int \mu(d x) \log \left(\frac{\pi u}{u}\right) . \tag{0.7.48}
\end{equation*}
$$

Let $V=\pi u$ and $e^{-W}=u / V$. Averaging $\left\rangle_{x}\right.$ over all the processes starting from x

$$
\begin{align*}
& \left\langle\exp \left\{-\left[W\left(X_{0}\right)+W\left(X_{1}\right)+\cdots+W\left(X_{N-1}\right]\right\} V\left(X_{N-1}\right)\right\rangle_{x}=\left\langle\frac{u\left(X_{0}\right) u\left(X_{1}\right) \cdots u\left(X_{N-1}\right)}{V\left(X_{0}\right) V\left(X_{1}\right) \cdots V\left(X_{N-1}\right)} V\left(X_{N-1}\right)\right\rangle_{x}\right. \\
& \quad=\left\langle\frac{u\left(X_{0}\right) u\left(X_{1}\right) \cdots u\left(X_{N-2}\right)}{V\left(X_{0}\right) V\left(X_{1}\right) \cdots V\left(X_{N-2}\right)} u\left(X_{N-1}\right)\right\rangle_{x} \tag{0.7.49}
\end{align*}
$$

Notice that the Markov property implies that

$$
\begin{equation*}
P\left(X_{N-1}, X_{N-2}, \cdots, X_{2}, X_{1} \mid X_{0}=x\right) d X_{N-1} \cdots d X_{1}=\pi\left(x, d X_{1}\right) \pi\left(X_{1}, d X_{2}\right) \cdots \pi\left(X_{N-2}, d X_{N-1}\right) \tag{0.7.51}
\end{equation*}
$$

Thus, the above average reads

$$
\begin{align*}
& =\int \cdots \int \frac{u\left(X_{0}\right) u\left(X_{1}\right) \cdots u\left(X_{N-2}\right)}{V\left(X_{0}\right) V\left(X_{1}\right) \cdots V\left(X_{N-2}\right)} u\left(X_{N-1}\right) \pi\left(x, d X_{1}\right) \pi\left(X_{1}, d X_{2}\right) \cdots \pi\left(X_{N-2}, d X_{N-1}\right) \\
& =\int \cdots \int \frac{u\left(X_{0}\right) u\left(X_{1}\right) \cdots u\left(X_{N-2}\right)}{V\left(X_{0}\right) V\left(X_{1}\right) \cdots V\left(X_{N-2}\right)} V\left(X_{N-2}\right) \pi\left(x, d X_{1}\right) \pi\left(X_{1}, d X_{2}\right) \cdots \pi\left(X_{N-2}, d X_{N-2}\right) \tag{0.7.52}\\
& =\int \cdots \int \frac{u\left(X_{0}\right) u\left(X_{1}\right) \cdots u\left(X_{N-3}\right)}{V\left(X_{0}\right) V\left(X_{1}\right) \cdots V\left(X_{N-3}\right)} u\left(X_{N-2}\right) \pi\left(x, d X_{1}\right) \pi\left(X_{1}, d X_{2}\right) \cdots \pi\left(X_{N-3}, d X_{N-2}\right) \tag{0.7.53}\\
& \cdots \tag{0.7.55}\\
& =u(x) .
\end{align*}
$$

Thus, we conclude

$$
\begin{equation*}
\left\langle\exp \left\{-\left[W\left(X_{0}\right)+W\left(X_{1}\right)+\cdots+W\left(X_{N-1}\right]\right\} V\left(X_{N-1}\right)\right\rangle_{x}=u(x)\right. \tag{0.7.56}
\end{equation*}
$$

Here u is bounded and V is bounded from below (ergodicity assumed), so (0.5.75) implies

$$
\begin{equation*}
\left\langle\exp \left\{-\left[W\left(X_{0}\right)+W\left(X_{1}\right)+\cdots+W\left(X_{N-1}\right]\right\}\right\rangle_{x} \leq u(x) / \inf V(x) \leq M\right. \tag{0.7.57}
\end{equation*}
$$

for some positive constant H. That this is independent of N is the key observation.
On the other hand

$$
\begin{align*}
\exp \left\{-\left[W\left(X_{0}\right)+W\left(X_{1}\right)+\cdots+W\left(X_{N-1}\right]\right\}\right. & =\exp \left\{-N\left[\left[W\left(X_{0}\right)+W\left(X_{1}\right)+\cdots+W\left(X_{N-1}\right] / N\right]\right\}\right. \tag{0.7.58}\\
& =\exp \left[-N \int W(y) L_{N}(d y)\right] \tag{0.7.59}
\end{align*}
$$

where L_{N} is the empirical measure. Therefore,

$$
\begin{equation*}
\left\langle\exp \left\{-\left[W\left(X_{0}\right)+W\left(X_{1}\right)+\cdots+W\left(X_{N-1}\right]\right\}\right\rangle_{x}=\left\langle\exp \left[-N \int W(y) L_{N}(d y)\right]\right\rangle_{x} \leq M\right. \tag{0.7.60}
\end{equation*}
$$

Inn (0.5.79) the average is over (empirical) measures Q_{x} starting from x. Therefore, for any set of measures C

$$
\begin{equation*}
\left\langle\exp \left\{-\left[W\left(X_{0}\right)+W\left(X_{1}\right)+\cdots+W\left(X_{N-1}\right]\right\}\right\rangle_{x} \geq Q_{x}(C) \exp \left[-N \sup _{\ell \in C} \int W(y) \ell(d y)\right]\right. \tag{0.7.61}
\end{equation*}
$$

With (0.5.79)

$$
\begin{equation*}
M \geq Q_{x}(C) \exp \left[-N \sup _{\ell \in C} \int W(y) \ell(d y)\right] \tag{0.7.62}
\end{equation*}
$$

or

$$
\begin{equation*}
Q_{x}(C) \leq M \exp \left[N \sup _{\ell \in C} \int W(y) \ell(d y)\right] \tag{0.7.63}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \frac{1}{N} \log Q_{x}(C) \leq \sup _{\ell \in C} \int W(y) \ell(d y)=\sup _{\ell \in C} \int \log \left(\frac{\pi u}{u}\right)(y) \ell(d y) \tag{0.7.64}
\end{equation*}
$$

with an arbitrary u, so we may choose \inf wrt u.
Informally, (0.5.79)

$$
\begin{align*}
\left\langle\exp \left[-N \int W(y) L_{N}(d y)\right]\right\rangle_{x} & =\int_{\nu} \exp \left[-N \int W(y) \nu(d y)\right] P\left(L_{N} \sim \delta \nu\right) \tag{0.7.65}\\
& =\int_{\nu} \exp \left[-N \int W(y) \nu(d y)\right] e^{-N I(\nu)} \leq M, \tag{0.7.66}
\end{align*}
$$

where M is not N-dependent. This implies

$$
\begin{equation*}
\inf _{u} \int \log \left(\frac{\pi u}{u}\right)(y) \nu(d y)+I(\nu)=0 . \tag{0.7.67}
\end{equation*}
$$

In case the time is continuous: Notice that

$$
\begin{equation*}
\pi(x, d y)=G(y, x, t=1) d y \tag{0.7.68}
\end{equation*}
$$

where G is the Green's function for the time evolution operator

$$
\begin{equation*}
\frac{\partial}{\partial t} G(y, x, t)=L G(y, x, t)+\delta(t) \delta(y-x) . \tag{0.7.69}
\end{equation*}
$$

For the Brownian motion $L=(1 / 2) \Delta$. Therefore,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{t} \log \left(\frac{e^{t L} u}{u}\right)=\frac{L u}{u} \tag{0.7.70}
\end{equation*}
$$

Thus

$$
\begin{equation*}
I(\nu)=-\inf _{u} \int \frac{L u}{u}(y) \nu(d y) . \tag{0.7.71}
\end{equation*}
$$

For the Wiener process $L=(1 / 2) \Delta$, so

$$
\begin{equation*}
I(\nu)=-\inf _{u} \int \frac{\Delta u}{2 u}(y) \nu(d y) . \tag{0.7.72}
\end{equation*}
$$

Let f be the Radon-Nikodym derivative $f=\nu(d y) / d y$. Then,

$$
\begin{equation*}
\frac{\delta}{\delta u} \int \frac{\Delta u}{2 u}(y) f d y=-\frac{\Delta u}{2 u^{2}} f+\Delta \frac{f}{2 u}=0 \tag{0.7.73}
\end{equation*}
$$

. Let us introduce $B=f / 2 u^{2}$. The above formula reads

$$
\begin{equation*}
-B \Delta u+\Delta(u B)=2 \operatorname{grad} u \cdot \operatorname{grad} B+u \Delta B=0 \tag{0.7.74}
\end{equation*}
$$

Let us multiply u and we get

$$
\begin{equation*}
\operatorname{grad} u^{2} \cdot \operatorname{grad} B+u^{2} \Delta B=\operatorname{div}\left(u^{2} \operatorname{grad} B\right)=0 \tag{0.7.75}
\end{equation*}
$$

Thus, $u^{2} \operatorname{grad} B=0$ (assuming the constant vanished far away). This reads

$$
\begin{equation*}
\frac{1}{2} \operatorname{grad} f+\frac{f}{4 u} \operatorname{grad} u=0 \Rightarrow \frac{\operatorname{grad} u}{u}=-\frac{\operatorname{grad} f}{2 f} \tag{0.7.76}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
I(\nu) & =-\inf _{u} \int \operatorname{grad} u \cdot \operatorname{grad}\left(\frac{f}{2 u}\right) d y=-\inf _{u} \int\left(\frac{\operatorname{grad} u}{2 u} \cdot \operatorname{grad} f-\frac{(\operatorname{grad} u)^{2}}{2 u^{2}} f\right) d y \\
& =+\int \frac{(\operatorname{grad} f)^{2}}{8 f} d y=-\frac{1}{2} \int \sqrt{f} \Delta \sqrt{f} d y \tag{0.7.77}
\end{align*}
$$

0.8 Hydrodynamic Scaling, Varadhan 2012

The dynamical system has five conserved quantities. The total number N of particles, the total momenta and the total energy. The hydrodynamic scaling in this context consists of rescaling space and time by a factor of ℓ. The rescaled space is the 3 -unit torus T^{3}. The macroscopic quantities to be studied correspond to conserved quantities. For the number density

$$
\begin{equation*}
\int_{T^{3}} J(x) \rho_{\ell}(t, x) d x=\frac{1}{\ell^{3}} \sum_{i=1}^{N} J\left(\frac{\boldsymbol{r}_{i}(\ell t)}{\ell}\right) . \tag{0.8.1}
\end{equation*}
$$

[^0]: ${ }^{1}$ A Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset.

