Supplementary Pages

Table of Supplements

In the original manuscript chapters are all called sections, because I wish to have continuous narrative of a more or less single line of the story. Therefore, here, I stick to the format.

This color indicates recently added or revised contents. 

This color  indicates unfinished pages.

This color indicates (almost) direct quotations/copies from other sources.

Preface & Study Guide  Counting atoms and molecules

 Minimizing metaphysics

 Problem source books byR Kubo and his colleagues

 0.1 Truth

Section 1  

1.1 Lucretius/Epicurus

1.2 `Pure empiricism’ is not enough or What is the true empiricism?

1.2 Famous example of the consequence of uncritical fundamental principles: Thomson hated 

 evolution

1.3 Feynman lectures 1-3 says….

1.4 `Anthropic principle’

1.5 Cost of our brain

1.5  should critically review what the fundamental theory is

1.5 10^10 big?

 

Section 2  2.1 Archimedes

 2.1 Archimedes’ rigorous calculation of the volume of the sphere

 2.1 Descartes

 2.1 Subject/object

 2.4 1686

 2.4 1738

 2.4 Newton’s metaphysical atomism

 2.5 French Revolution and thermodynamics

 2.Q Air density and airplanes

Section 3  3.0 1933

 3.1 What is volume? introduction to measures

 3.2 Set theory

 Lebesgue integral 

 3.4 Additivity and Cox’s theorem

 3.4 Sigma additivity

 3.10 1 + 1 = 3

Section 4  4.1 Ars Conjectandi

 4.1 Law of large numbers Demo in R

 4.1 Phylogenetic learning

 4.2 Gambler’s fallacy

 4.2 Chebyshev’s inequality and law of large numbers, illustrated

 4.2 The strong law of large numbers---demonstration

 4.2 Notable related theorems: 01 law and Regellosigkeit

 4.3 Law of large numbers mathematical demonstration

 4.7 CLT

 4.7 Iterated logarithm

Section 5  5.1 Radon-Nikodym derivative

 5.2 1860

 5.2 Maxwell’s balance argument

 5.2 Maxwell’s density distribution, a remark

 5.5 Bochner’s theorem for characteristic functions

 5.6 Sound speed

 5.7 Equality of temperature

 5.Q Beyond average and large deviation

Section 6  6.A  Introduction to distribution theory

 6.A  Integral kernel

Section 7  7.1 Buys-Ballot

 7.1 How to draw random walks using R

7.2 Fig 7.2 remark

 7.3 RW without averaging

 7.4 Bernoulli exchange model

 7.4 Ideal gas collisions

 Is gravity an entropic force?

8.2 LLN ext 

 8.6 Ball sequence independence of convergence

 8.9 Laplacian and local averages: spherical mean value

 9.1 Remark on LLN of Brownian motion

 9.2 1829

 9.2 Brown, Humboldt, Cook

 9.2 Clarkia purchella in color  9.2 Lewis and Clark

 9.3 1831

 9.3 1857

 9.3 1900

 9.3 Brownian motion, historical

 9.3 Brownian velocity correlation

 9.7 Stokes’ law, demonstration

Section 10  10.6 Velocity of Brownian motion and fluctuation dissipation relation 

 10.8 LD Gaussian approximation

Section 11

 11.1 Assumption about mechanical description

 11.1 Internal energy identification

 11.1 Moving coordinates

 11.2 Volta, Seebeck, et al.

 11.4 How realistic is the binary potential?

 11.4 Energy additivity demonstration 

 11.4 Dipole-dipole interaction

 11.4 Shielding

 11.5 Additivity and extensivity

 11.5 Particle number 

 11.7 1972

 11.8 Recurrence

 11.9 Boltzmann equation, introduction

 11.9 Reliability of Boltzmann equation

 11.11 How we feel time

Section 12

 12.3 Kadanoff’s angels

 12.10 Why is thermodynamics useful?  12.10 Quasistatic processes exist

Section 13  13.1  The domain of thermodynamic coordinates

 13.6 1834

 13.6 1848

 13.6 1850

 13.6 Jane Eyer quote

 13.6 Saint German and Monet

 13.14 Internal energy is C1

 13.Q 13.3 Explanation

 13.Q Magnetic potential energy

 13.Q Newcomen note

 14.6 Critical look at baths

 14.7 Excess entropy

 14.9 Landau-Lifshitz’s error

 15.5 Ideal gas fundamental equation

 15.6 Most irreversible process

 15.7 How to realize reversible processes

 15.8 Information-Entropy relation preview

 15.Q Fridge general

 15.Q Irreversible measure from the bath change

Section 16  On the differentiability of thermodynamic potentials

 16.4 D A = 0

 16.6 Gibbs free energy?

 16.8 Convex analysis note

 16.8 Inf and sup

 16.9 Continuity proof illustrated

 16.11 Outline of convex analysis

 17.2 Gibbs’ statistical mechanics

 17.5 Non-abelian case

 17.8 Boundary condition

 17.9 Direct or tensor product

 17.10 Observation induced changes

 17.Q 1884

 17.Q Lagrange’s multiplier

 17.Q Quantum version of Boltzmann equation

 18.3 Stirling proof

 18.5 I and II as E

 18.5 math detail when phase transitions occur

 18.9 Factorization?

 18.12 ZQ equivalence---proof

 18.Q A and Gibbs-Helmholtz confusion

 18.Q Einstein Z?

 19.7 Maxwell and equal probability

 19.8 Initial condition, quantum cases

 19.9 Green’s function 

 20.3 Colloidal particles

 20.4 Wigner and semiclassical approximation

 20.7 Modes detail

 Information summary

 21.Q Log sum lemma

 22.1 No work detail

 22.2 Sagawa Ueda detail

 22.6 Information writing

 23.10 Debye temperature is not constant

 23.10 NaCl

 24.1 Rubber volume

 24.6 Differentiation

 24.10 Elementary derivation of (24.35)

 24.12 Maxwell History

 24.14 Inaccessibility

 24.16 Ideal magnet experiment

Section 25

 26.14 Multivariate Gaussian

 26.Q ATP experiments

 27.2 Mass action detail

 27.4 Homogeneous not linear

 27.5 Thermodynamics and hydrodynamics

 27.11 1878, 1884, 1803

 27.14 Electric cell

 27.Q Zone melting

 28.5 Haag: spin-statistic relation

 28.5 Stability, relativistic case

 28.Q Quantum statistical mechanics equivalence demo

Section 29

 30.2 Zero point energy shift

 30.5 Planck prehistory

 30.9 Nuclear spin: Ortho and para hydrogen

 30.10 Rigid rotor

 31.0 Phase transition relevant to biology

 31.1 Bernal model

 31.4 Gibbs genericity

 31.5 Phase rule violation

 31.7 Order-order transition

 31.9 Generalized canonical ensemble

 31.9 Ising Gossip

 31.9 Protein nonequilibrium

 31.11 Holomorphic vs analyticity

 31.11 Thermodynamic limit

 32.1 Landau theory

 32.1 Order parameter examples

 32.4 1D Ruelle theorem

 32.4 Spin dimension

 32.7 Kac model

 32.7 Kac model Maxwell relation

 32.9 Numerical methods

 32.11 Ashton movies

 32.11 Beyond 3D

 32.Q Q32.1 Correspondence

 32.Q Q32.3 footnote 9 XY

 33.1 Gauss correlation

 33.1 Simon’s proof

 33.5 Ashton movie

 33.7 Fetish

 33.13 Flow projection

 34.3 Bifurcation justification

 34.5 Chase’s mean field theory work

 34.8 Perron Frobenius theorem proof

 34.9 Onsager proof

 35.2 Group demonstration

 36.4 C-infinity singularity

 36.4 Super heating etc

 36.8 No jump in T or P

 A.23 Tensor product

 A.28 Various uncertainty principles

 A.33 Trotter formula and path integral

 A.39 QM historical

Random systems

Polymers

XY