New
Jan 11, 2025
あけましておめでとうございます.今年はなるべく早く熱力学については最終版を作る予定です.その前に,化学についての問題点を整理したメモを掲示します.これは去年京都の人々に公開したものを多少手直ししたものです.ご意見をoono@me.comにお送りください.
Nov 2, 2024
Thermodynamics ver 0.51 Thermodynamics
This is a source for lectures of thermodynamics for beginning graduate students. A textbook version will be prepared by sliming down this version. This is an attempt to explain thermodynamics as a branch of physics, not as a part of mathematical physics. Chemical thermodynamics is made mathematically as consistent as possible.
Nov 1, 2024
基礎熱力学 ver 0.82 基礎熱力学
京大の小柳翔輝氏に指摘された0.81にあったいろいろな誤りを訂正.
Oct 30, 2024
基礎熱力学 ver 0.81
0.80にあった不正確あるいは不親切な部分を微修正.
Oct 28, 2024
基礎熱力学 ver 0.8
教科書的な形にする前のほぼ最終版,従来の化学熱力学がなぜまともでないかに関するコメントを最後に追加.
Oct 13, 2024
「非線形な世界」第4,5刷の機会にLLMに関する補足を1ページ追加.
Aug 12, 2024
基礎熱力学 ver 0.6
項目リスト冒頭に追加.断熱可逆超曲面の滑らかさについての議論追加.
June 3, 2024
基礎熱力学 ver 0.5
エントロピー増大原理の一般の場合の証明追加.
April 26, 2024
基礎熱力学 ver 0.418
化学反応がある場合のPlanckの原理についての注意を追加.
March 24, 2024
基礎熱力学 ver 0.41
これは熱力学の基本を(数理物理としてでなく)自然科学としてまとめたものである.各「講義」(章)は普通の節よりずっと短い「項目」を単位として構成される.熱現象や化学現象を扱わない巨視的現象の物理学の基本理論及び基本的な化学の知見を既知の前提として受け入れ,その土台の上で熱現象を論理的に扱える理論体系を構成するという方針で熱力学を解説する.ただし,学生のための配慮がされてない項目は多く,それらは教師用である.従来の出鱈目な化学熱力学の修正は未公表であることに留意されたい.ただし,すべての曖昧な問題に白黒をつけようとして,行きすぎた部分がありうるので忌憚のないコメントをyoono@me.comまで寄せられたい.
熱力学の概要 ver 0.32 熱力学の概要ab2024Mar22
上の「基礎」を半分くらいに縮めたもの.教師用コメントや立ち入った話は一切除去.不親切になっている可能性はある.大体項目は「基礎」と対応しているの,不審があればまず「基礎」をみられたい.
以上は適時諸君のコメントを反映してversion updateをする.
昔の熱力学関係のノートは大部分削除する.
ついでながら「みすず書評」2023への原稿追加.最近の熱力学の本をこき下ろしている.
August 27, 2023 Thermodynamics ver 0.02
Comments and corrections thanks to Barry Friedman are added.
The part dedicated to chemical thermodynamics is still in a preliminary form with some augmentations
June 15, 2023 Thermodynamics ver 0.01
This is a set of lectures of thermodynamics for beginning graduate students. Each
`lecture' (chapter) is constructed from relatively short `units'1 that focus on single
concepts or propositions. These units reference each other as hypertext. These lecture
notes explain thermodynamics at the graduate level based on the elementary
knowledges of physics and chemistry of macroscopic phenomena.
However, this current version contains many comments that criticize or correct
conventional approaches and existing textbooks, which are not required for a textbook.
Also, the part dedicated to chemical thermodynamics is still in a preliminary form,
although the needed principles are all given.
日本語の簡約版は作るかもしれない
June 2, 2022 「非線形な世界」(東京大学出版会) 第3刷 補足も追加中.
May 12, 2022 「非線形な世界」(東京大学出版会) 第3刷改訂一覧
生物に関する文献など更新した.より長い重要なコメントは別にそのうち公開する.
熱力学講義ノートをブログで公開するのはやめる.今後は物理のページにその都度コメント共に公開する.
現状: このかなりinformalなノートと別に3コースを用意しつつある.001,101,201.001の英語版を次に公開する.今後すべて基本的には(手間を省くために)英語版になる.全て終わった後で暇がれば日本語版を作るかもしれない.
Dec 26, 2021 熱力学講義ノート1-31 第0版 一応終了
Dec 12, 2021 熱力学講義ノート1-29 第0版 24-29追加 安定性,第三法則など
May 6, 2021
Armand Marie Leroi The Lagoon How Aristotle invented science (Penguin Books 2014) Lagoon, LagoonSummary
April 14, 2021
I found an error in Perspectives. Here is an added erratum.
p138 Footnote 9 revised
I wrote ``We could reduce the changing rate by choking the flux instead of reducing the driving force. In this case slowing down the changing rate does not help us to realize reversible change.’’
This applies only when energy loss or gain due to the process is first order in the changing rate.
Therefore, the complete version of this footnote should read:
Why can we generally realize a reversible process by slowing down? Just as the slowly cooling coffee or slow leakage of gas exemplifies, slowing down is not enough to be reversible. However, if the dissipated energy is second or higher order in the rate of change or the driving force of the change, then slowing down can make the total energy dissipation small. For example, suppose the total quantity transported is $Q$ and the dissipation of energy is second order in the changing rate $Q/T$ ($T$ is the total required time). Then the total dissipation is $(Q/T)^2 \times T \propto Q^2/T$, which vanishes in the slow limit $T\map \infty$, even if $Q$ is not small. A good example is Joule heating loss $I^2R$, where $I$ is the current (changing rate of charge) and $R$ is the resistance of the resistor. Thus slowing down by reducing driving forces allows us to realize quasistatic processes.
In contrast, if the energy loss rate is first order in the changing rate $Q/T$, then the total dissipation is $(Q/T) \times T \propto Q$, which does not vanish in the slow limit $T\map \infty$. The two examples at the beginning of this footnote are the examples. Thus, for example, heat flow is reversible only if the flow is between two infinitesimally different temperatures (see 15.6). In this case improving thermal insulation only increases $T$ without changing $Q$, so we must make $Q$ infinitesimal to make the energy loss infinitesimal.
Feb 22, 2021
Feb 21 2021
Detailed Table of Contents (the list of all the units 34 pages) for Applicable Analysis is added.
Jan 6 2021
Detailed hypertext table of contents is added to the Dynamical Systems lecture notes.
Dec 23, 2020
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
May 3, 2020 Comment
I avoid political or partisan contents/statements in my homepage, but I have decided to quote the url
! https://apple.news/AKcWlfGBYR-SZ7Y1C22SVvA
that indicates the intellectual quality of the US. My purpose is solely cultural and ethical; it is very sad that this quotation sounds partisan. Some said that the episode was taken out of context. Maybe. However, we must note that this episode should not be tolerated in a civilized country irrespective of any context (except for contexts explicitly denouncing it as stupidity).
May 1, 2020 証IV 428-433追加; 過去に掲示した分をクリーン中
Mar 11, 2020 証IV 421-427追加
Jan 29, 2020 A Boxer: A Scheme of Heaven---the history of astrology and the search for our destiny in data (Norton 2020) excerpt added (humanities books)
Nov 20, 2019 Excerpts of various books have been added (Look at `Books’).